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1. Introduction 
A well-known approach in the numerical solution of evolutionary problems in partial differential 

equations (PDEs) is the so-:called method of lines (MOL). In this approach the solution process is 
thought of as consisting of two parts, viz., the space discretization and the time integration. In the space 
discretization the PDE is approximated by a system of ordinary differential equations (ODEs) by discre­
tizing the space variable by finite differences, finite elements, spectral techniques, etc.. The time t is then 
the independent variable of the ODE system. In the second part, the time integration, this system is 
discretized in time to yield the final, fully discrete scheme. It is well known that many existing numerical 
schemes for time dependent PDEs can be viewed in this way. Concerning the time integration, we shall 
confine our discussion to the class of one-step schemes. Concerning the discretization in space, we res­
trict our attention to finite differences. However it should be mentioned that the treatment of finite ele­
ments or spectral methods offers no essential novelty [9]. 

This paper deals with the convergence of MOL schemes. Our purpose is to set up a general frame­
work for the convergence analysis. The stability materials for this framework are borrowed from the field 
of nonlinear stiff ODEs. As a matter of fact, the whole analysis is centered around the semi-discrete 
problem. This is most convenient for the analysis and, in particular, allows for a general treatment. For 
example, in setting up the framework it is not necessary to distinguish between linear and nonlinear 
problems, although nonlinearities normally will make the hypotheses more difficult to check. 

PDE 

C-stability 

ODE method of lines analysis SCHEME 

The diagrammatic picture of the stability analysis shows the concepts used. In the direct grid 
approach, i.e., when only the PDE and the fully discrete problem are considered, one normally proves 
the necessary stability by using energy method arguments. In the MOL approach the necessary stability 
for the discretization in space can be based on the existence of a bounded logarithmic matrix norm, a 
concept which goes back to Dahlquist [3] (see Section 3). The concept of C-stability is employed for 
deciding upon the necessary stability for the time integration. C -stability is an abbreviation for conver­
gence stability (cf. [ll]) and is linked with stability in the Lax-Richtmyer sense and, more closely with 
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stability in the sense of Kreiss [7]. In many applications C -stability can be concluded directly from 
known results from the field of nonlinear stiff ODEs [4]. The existence of a bounded logarithmic matrix 
norm is often a prerequisite for proving C-stability. 

In order to give insight into the feasibility and applicability of the convergence theory we shall 
present a full convergence proof for approximations to a nonlinear parabolic problem (Section 5) and a 
nonlinear Schrodinger problem (Section 6). 

This work is a sequel to the survey papers of Sanz-Serna [9] and Verwer & Dekker [ 11 ]. Part of our 
terminology stems from these two articles. 

2. Some preliminaries 
We consider a real abstract Cauchy problem 

u, = ?f(t,u), 0 < t .;;;;;; T, u(x,O) = u0(x), (2.1) 

where ?f represents a partial differential operator which differentiates the unknown function u (x ,t) w.r. to 
its space variable x in the space domain in R,R2 or R3• ?f should not differentiate w.r. to the time vari­
able t. The function u (x ,t) may be a vector function. Boundary conditions are supposed to be included 
in the definition of ~ 

To the problem (2.1) we associate a real Cauchy problem for an ODE system, 

iJ = F(t,U), 0 < t.;;;;;; T, U(O) = U°, F(t;): Rm~ Rm, (2.2) 

which is defined by a discretization of the space variable in (2.1). For the moment it is not necessary to 
discuss in detail how the semi-discrete, continuous time approximation (2.2) arises from (2.1). Nor is it 
necessary, for the time being, to be specific about the partial differential equation. The reason is that our 
convergence analysis is centered around the ODE system (2.2). This is most convenient for the analysis 
and allows for the general treatment we aim at. We merely assume that U and F represent the values of 
grid functions on a space grid covering the space domain of (2.1). Further, we let h refer to the grid 
spacing, i.e., to the grid distances which may vary over the grid. In what follows, p(h )~o means that the 
grid is refined arbitrary far in a suitable manner; p stands for a distance function, e.g., the maximal dis­
tance in the grid. Note that the dimension m of problem (2.2) depends on h. 

In this paper we avoid questions concerning existence, uniqueness and smoothness of exact and 
numerical solutions. Hence, we suppose throughout that the two Cauchy problems at hand possess 
unique solutions u (x ,t) and U (t ), respectively. In addition, it is supposed that the true PDE solution is 
as smooth as the numerical analysis requires. 

Let rh be the natural restriction operator on the space grid. We write uh(t)=rhu(x,t). If the discreti­
zation in space is convergent, the space discretization error 

71(t) = U(t)-uh(t), (2.3) 

can be made arbitrarily small upon grid refinement. We shall discuss an error bound for 71 which depends 
merely on the smoothness of uh and on the stability of the ODE system (2.2) through a logarithmic 
matrix norm ( cf. Dahlquist [3]). This error bound exploits fully the advantage of the notion· of loga­
rithmic matrix norm which is also used later on in the paper. This error bound for 71 is discussed in Sec­
tion 3. 

For the time integration of the semi-discrete approximation (2.2) we shall concentrate on one-step 
schemes. Let the implicit relation 

(2.4) 

represent such a scheme. Here t 0=0 and un is the approximation to U(tn ). At this stage we let T and 
p(h) be independent parameters. If the scheme (2.4) is a convergent integration formula, the time discret­
ization error, or time integration error 

" 
(2.5) 
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will vanish as T-,)0 for any fixed grid spacing. It should be emphasized, however, that the use of a con­
vergent ODE solver and a convergent discretization in space, not necessarily guarantees that the full 
discretization error 

(2.6) 

will vanish for decreasing T and p(h ). It may be necessary to impose an additional relation between T and 
p(h ). A classical example is furnished by the one dimensional heat equation u1 =uxx. If we discretize in 
space on an equidistant grid using second order finite differences and integrate in time with the forward 
Euler method, the well-known additional relation -rE:;;ih2 is required [8]. The explanation of this 

behaviour is related to the fact that the standard bounds for 8(tn + 1) used in the convergence theory of 
ODE solvers, involve the Lipschitz constant of the system (2.2) and these constants increase with decreas­
ing h. Therefore in order to achieve the convergence of un to uh (tn) as T-,)0 and p(h )-,)0, we must 
demand that the convergence of un to U(tn) be uniform, in some appropriate sense, in the grid spacing. 
Here the recent results from the field of nonlinear stiff ODEs fit into the picture, as the Leitmotiv in 
those developments is the derivation of error bounds which hold uniformly with respect to the Lipschitz 
constant or the stiffness of the problem [4], [5]. We shall discuss these matters in Section 4. 

3. Convergence of the discretization in space 

Consider the two Cauchy problems (2.1 ), (2.2). Introduce the space truncation error 

a(t) = F(t ,uh(t))-ith(t), (3.1) 

where ith(t) = duh(t) / dt = rhu,(x,t), i.e., the restriction of the derivative u1 of the true PDE solution 
u to the space grid. The defect a is obtained by substituting the true solution uh into the semi-discrete 
approximation. Loosely speaking, it measures how the partial differential operator 'ff' is approximated by 
the vector function F. The consistency of the method for a given norm means, by definition, that 
lla(t )II --,) 0 as p(h) --,) 0. 

It now trivially follows that.,,, the discretization error in space, is a solution of the ODE system 

~ = F(t,uh+'I/) - F(t,uh) + a(t), 0 < t E:;; T. 

Using the mean value theorem for vector functions, we can write 

~ = M(t)'I/ + a(t), 0 < t E:;; T, 

I 

M(t) = f F'(t ,uh +fh/)dfJ, 
0 

where F'(t;) is the Jacobian matrix of F(t; ). 

(3.2) 

(3.3a) 

(3.3b) 

This result shows that 11(t) depends essentially on a(t), which is determined completely by the 
smoothness of u and the quality of the approximation in space, and on the stability of the ODE system 
(2.2). We shall give a bound for '1/ from which convergence of U to uh can be derived, provided that the 
discretization in space is consistent. This bound leans completely upon the fundamental concept of loga­
rithmic matrix norm and is due to Dahlquist [3]. For details on the important role of the logarithmic 
matrix norm in proving stability of stiff nonlinear ODE systems the reader can also consult [4], Section 
1.5. 

Introduce a norm II· II on Rm. Let µ[·] be its corresponding logarithmic matrix norm. Let 
Th(t) = {r:r = uh(t)+fhi(t),OE;;;(JE;;;l} and let /Lmax be a constant such that 

/Lmax ~ mrx{µ[F'(t ,nJ:reTh(t)} for all t E[O,T]. (3.4) 

Hence for each t we compute the maximal logarithmic matrix norm of F' on the line segment Th (t) and 

majorize these by /Lmax· Then 

t 

ll11(t )II E:;; el'mu' 1111(0)11 + J el'mu(t -·r)lla( -r)lld-r. 
0 

(3.5) 
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Supposing that 1111(0)11 = 0, we can write 

ll71(t)ll ~ C(t ,#Lmax) max lla(T)ll, 0 ~ t ~ T, 
o.;;;,..;;;1 

(3.6) 

where C(t ,ILmax) = (e,_1 -1) / P-max depends solely on t and /Lmax· Consequently, if a constant /Lmax exists 
independent of the grid spacing, ll11(t )11~0 as maxlla(t )11~0, for p(h )~O. Thus we can state 

Theorem 3.1. Suppose that the discretization in space is consistent and that /Lmax exists independent of the 
grid spacing. Then the discretization in space is convergent. D 

The practical importance of this theorem lies in the fact that in many applications in the field of non­
linear, time dependent PDEs a /Lmax can be determined which is indeed independent of h (see the Sec­
tions 5,6 and [9,11]). Applications can also be found in the solution of stationary problems in PDEs by 
means of iterative methods. As it is well known many of these methods can be thought of as integrating 
in time a related time dependent PDE whose asymptotic solution uh ( oo) should give the desired station­
ary solution (see, e.g., [13)). Here it is required that P-max<O. 

The inequality (3.5) is in fact nothing else than a stability inequality for the Cauchy problem (2.2). To 
see this, let U,U be two solutions belonging to two different initial values U0 and U0

, respectively. Let 
/Lmax now satisfy 

Then ( cf. [3]), 

/Lmax ;;;;i. max{µ[F'(t ,nJ:t = OU(t) + (1-0)U(t), O~(J~ I}, O~t ~T. 
c (3.4') 

(3.5') 

The inequality (3.5) is equivalent to this stability inequality which can be refined somewhat by taking 
/Lmax time dependent. The growth factor expCJimaxt) is then replaced by 

t 

exp(j /Lmax(T)dT). 
0 

(3.7) 

Observe that the inequality (3.5') trivially implies uniqueness of solutions for system (2.2) for any grid 
spacing 

Remark 3.:t For the standard /P norms the expression forµ is known. Let A =(a;j) be a realm Xm 
matrix. For the norms ll·lh and 11·11 00 on Rm, 

1L1[A] = m~(aij + ~ laij I), µ00[A] = m~(a;; + ~ laij I). 
} j~ I j# 

For inner product norms, lltll = <t,t> 112, 

µ[A] = max <A r,r> I llrll2. 
c*° 

Hence, for the spectral norm, 1L2[A] is the maximal eigenvalue of the real part (A +AT)/ 2 of A . D 

(3.8) 

(3.9) 

Remark 3.2. It follows from (3.9) that µ[A ] ~ v if v represents a one-sided Lipschitz constant of A , i.e., 
<A tJ> ~vllfll2, VteRm. Loosely speaking, the logarithmic matrix norm might be considered as a 
generalization of the one-sided Lipschitz constant for norms other than inner product norms. When deal­
ing with inner product norms it is sometimes more convenient to use the one-sided Lipschitz condition 
for F, 

<F(t ,t1) - F(t ,f2),t1-t2> ~ vllt1-t2112, 

Vti.t2 E Th(t), 'ft E [0,T], 

(3.4") 

rather tlian computing F' and using (3.9). Any constant v satisfying (3.4"), a one-sided Lipschitz constant 
for F, may be used for /Lmax in the inequalities (3.4), (3.4'). D 
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Remark 3.3. Obviously, the accuracy of U will depend largely on the magnitude of the truncation error 

a. For finite times, i.e., T<oo, the bound (3.6) shows that 11'1J(t)ll has the same rate of convergence as 

. lla(t)ll, provided that /Lmax exists independent of h. If JLmax<O, this bound also applies to Cauchy prob­

lems on infinite time intervals. For dissipative problems it is often possible to prove the existence of a 

negative /Lmax· If /Lmax=O, (3.6) allows a linear growth of the space error in time. If P-max>O, it allows an 

exponential growth of this error in time and will mostly be rather pessimistic on long time intervals. 0 

4. Convergence of the full discretization 

Consider the integration method (2.4) for the Cauchy problem (2.2). In this section we shall study the 

full convergence of this method as T~O and p(h )~O. For ease of presentation we restrict ourselves to 

constant stepsizes T, i.e., in the limit process we take tn+iE(O,T] fixed and suppose that T~O, n~oo in 

such a way that (n +l)T = tn+I· The restriction to constant stepsizes is not essential for our results and, 

as it is well known, can be removed. 

Let us introduce the full truncation error 

/J(tn+1) = un+I - uh(tn+1), (4.1) 

ljn + 1 = uh (tn) + -r<l>[T,uh (tn ),Un+ 1]. 

Observe that p is defined with respect to the true PDE solution and not for the true ODE solution U. If 

we had used U the time truncation error 

y(tn+1) = iJn+1-U(tn+1), iJn+I = U(tn) + -r<l>[T,U(tn),Un+I] (4.1'} 

would have been obtained which is considered normally in numerical ODE theory. In the setting of 

PDEs the error (4.1) is to be preferred for the convergence analysis for reasons which will be discussed in 

Section 7. Note that, in a sense, the full truncation error P contains the space truncation error a, given 

by (3.1), as the increment operator cl> of the integration formula depends on the ODE operator F. 

Let us express the full discretization error £(tn + 1), given by (2.6), as 

f.(tn+1) = un+1_ljn+1 + /J(tn+1), 

and suppose that for a positive KER and a norm on Rm, 

11un+l_un+111 ~ Ki1Un-un11, un = uh(tn)· 

(4.2) 

(4.3) 

Then lk(tn + 1)11 ~ Klk(tn )II + x, where x is an upper bound for /J. The error f.(tn + 1), i.e., the error after 

n + 1 time steps, then is easily shown to satisfy 

1 ~+1 
11£(tn + 1)11 ~ ~ + 1 llf.(to)ll + X ~ -K . (4.4) 

This standard inequality is the starting point for the full convergence analysis which is based on the con­

cept of C -stability. In the definition below a second numerical solution f~r + 1 is considered, i.e., 
fjn+1 = un + -r<P[T,Un ,un+1]. 

Defmition 4.1. Let II· II be a norm on Rm. The integration method is called C -stable for the Cauchy 

problem (2.2), with respect to this norm, if a positive real number To = To(h) and a real constant C0, 

independent of T and h exist, such that for each TE(O,To] and each un ,On ERm 

11un+1-un+111 ~ (l+C0T)llOn-unn. D (4.5) 

Remark 4.1. Note that for Un ,un+I one may substitute uh(tn) and ljn+I (cf. (4.3)). 0 

C-stability is an abbreviation for "convergence stability" and is linked with stability in the Lax­

Richtmyer sense [8] and, more closely with stability in the sense of Kreiss [7] (sometimes referred to as 

strong stability [8]). If c 0 ~ 0 and we think of un ' as being a numerical solution, and of un as being a 

perturbation of un ' then ( 4.5) shows that the perturbation will not increase in time. The bound ( 4.5) 

then provides the definition of contractivity, also called "computing stability" [11], a concept which plays 
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a major role in recent developments in ODEs [4]. If Co> 0, we allow an increase in the difference 
un·_ un. In this case C-stability is mainly useful in the convergence analysis and not as a concept of 
"computing stability". Finally note that the essence of C-stability in the context of PDEs, is that C0 is 
independent of the grid spacing. 

Let us now suppose that for a given Cauchy problem (2.2) the integration method is C -stable. We 
then may substitute K = 1 + C oT into the bound ( 4.4). An easy derivation yields the familiar expressions 

, C0 < 0, 

, Co= 0, 
{

T- 1xlCol- 1 

ll£(tn+1)ll :,.;;;; T-
1
Xln+l 

T- 1xc0-
1 (eco1.+'- l) , C0 > 0, 

(4.6) 

where, for convenience, 11£(t0)11 is taken to be zero. By the hypotheses of C-stability, we can conclude 
that this error bound is valid uniformly in the grid spacing under the stepsize restriction T E (0,T0(h )]. 
Note that for C0 < 0 (strict contractivity) the bound is useful for infinite time intervals. 

Finally we suppose that the full discretization is consistent, i.e., 

llT- 1,8(tn+ 1)11~0 as T,p(h) ~o. 'v'tn+l E (O,T]. (4.7) 

It is then evident that we can state 

Theorem 4.1. Suppose that the full discretization is consistent and the integration method C -stable. 
Then the full discretization is convergent. D 

At this place we want to emphasize that the stepsize restriction for C -stability, i.e., T E (0,T0(h )], may 
lead to additional conditions on the refinement of the time- and space grid. It is well known that for 
explicit integration formulas To(h) ~ 0 as p(h) ~ 0. 

Remark 4.2. The C-stability theory of implicit Runge-Kutta methods for stiff ODEs, where the state­
ment "independent of the grid spacing" is to be replaced by "independent of the stiffness", has already 
been developed to a considerable extent [4]. For example, for constant coefficient linear systems dissipa­
tive in inner product spaces the celebrated property of A -stability implies C -stability where C 0 = 0. Like­
wise, the property of B -stability [2] for nonlinear dissipative problems is a C -stability property where 
again C0=0. A general result for non-linear problems satisfying the one-sided Lipschitz condition (3.4") 
can be found in (4), Th. 7.4.2. Because of the intimate relationship with semi-discrete PDEs many results 
from the field of nonlinear stiff ODEs apply to PDEs in a straightforward manner. For integration 
methods not belonging to the class of implicit Runge-Kutta methods the hypotheses of C-stability must 
be verified separately. By way of illustration we shall devote the Sections 5 and 6 to two examples. D 

5. A n.onlinear parabolic equation 

We consider a nonlinear, one space dimensional, scalar parabolic initial -boundary value problem of 
the type (cf. [12]) 

u, = f(t,x,u, 0:(p(t,x)~~)), O < t:,.;;;; T, x E S1 = (0,1), 

u(O,t) = b0(t), u(I,t) = b 1(t), 0 < t :,.;;;; T, 

u(x,O) = u 0 (x), 0:,.;;;; x :,.;;;; 1, 

where the functions p (t ,x) and p (t ,x ,a ,b) satisfy the familiar conditions 

p(t,x);;;a:p0 >0, O<t..:;;T,xESl, 

of(t,x,a,b)/ob ;;;.: lo> 0, 0 < t:,.;;;; T, x En, a,b E IR. 

(5.1) 

(5.2a) 

(5.2b) 

Here p 0,and f 0 are constants. In addition, we suppose that there exist real numbers f _i. f 1 such that 

/-1:,.;;;; of(t,x,a,b)/oa :,.;;;; /i. 0 < t :,.;;;; T, x En, a,b ER. (5.3) 
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5. L Discretization in space 

We space discretize the problem on a nonequidistant finite difference grid. Define 
Oh = {xj :xj = Xj-l +hj, j = l(l)m; xo=O,xm +I= 1 }. Apply 3-point finite differences for the discreti­
zation of (p (t ,x )ux )x. Let ~ and Fj be the j-th component of the grid functions U and F, respectively. 
Then, for j = l(l)m, 

(5.4) 

where 

and 

Uo(t) = bo(t), Um+1(t) = b1(t). 

Let us prove convergence of U to uh in / 00
, i.e., in the maximum norm llUll 00 = maxjl~I, along the 

lines of Section 3. The logarithmic matrix norm µ00 is given by 

µ00[A] = m~(a;; + ~ laij I), (5.5) 
I j"/'i 

for any realm Xm matrix A =(aij). Let Ube a point on the line se~ent Th(t) which appears in the 
inequality (3.4) for the logarithmic norm. The Jacobian matrix F'(t ,U) of the vector function F(t ;) 
defined by (5.4) is of the form 

(5.6) 

where Di.D2,D3 are m Xm diagonal matrices and S is a symmetric tridiagonal m Xm matrix. The 
entries of D 1 are the derivatives off to the third argument. All entries are less than or equal to the con­
stant f 1• The entries of D 2 are the derivatives off w.r. to the fourth argument and, by assumption, D 2 

is positive definite. D 3 contains all numbers 2/(xj+ 1 - Xj- 1), hence is also positive definite. Finally, the 
entries in the j-th row of S are just the numbers sj-, -(sj-+s/), s/. It follows that S is diagonally 
dominant with negative diagonal entries. 

Now we are ready to compute µ00[F'(t ,U)]. First, we conclude that µ00[S]=O. Then, using the posi­
tive definiteness of D 2 and D 3, we find µ00[D2D 3S]=O, too. It follows that 

µ00[F'(t ,U)] :s;;;;; f i. 0 :s;;;;; t :s;;;;; T. (5.7) 

Clearly, this inequality is valid for any U E Th (t ), O:s;;;;;t :s;;;;; T (it is even valid for U arbitrary in !Rm). 

Hence we have found a bound /Lmax = f 1 satisfying (3.4) for any h , and /Lmax is independent of h . There 
remains to verify the consistency of the space discretization. As it is well known, any component aj of 
the truncation error (3.1) satisfies 

aj = 0 (p(h )) as p(h) --7 0, p(h) = m~(hj ), 
J 

(5.8) 

provided that max(hj) / min(hj) remains bounded. Consequently, the discretization is consistent of order 
one. We have lla(t)ll00 = O(p(h )), O:s;;;;;t :s;;;;;T. The convergence in /00 follows from Theorem 3.1. 

5.1 Discretization in space and time 

Along the lines of Section 4 we shall prove / 00 convergence of the two fully discrete schemes which 
are obtained by applying the implicit and explicit Euler rules 

un+I = Un +TF(t un+I) 
n+h ' 

un+I = Un +TF(tn,Un), 

(5.9) 

(5.10) 

to the semi"'Cliscrete continuous time system (5.4). We first consider the implicit scheme. Its C-stability 
can be concluded directly from the information available on the semi-discrete approximation using 
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known results from the field of stiff ODEs. Let f~r ,un+l be a second implicit Euler solution. Using (5.7) 
and Theorem 2.4.1 of (4] we find that, if Tf 1<1, then 

(5.11) 

This means C-stability under the stepsize restriction Tf 1<1. Note that the amplification factor and the 
restriction on T are both independent of the grid spacing and are in fact valid in the whole numerical 
solution space due to the introduction of the constant f 1 in (5.3). 

We next examine the full truncation error (4.1) of the implicit scheme. According to the definition 
(3.1) of the space truncation error the true PDE solution satisfies 

uh(tn+l) = [uh(tn+1)-Ta(tn+1)-nih(tn+1)] + TF(tn+huh(tn+1)), (5.12) 
while the local implicit Euler solution [Jn+l computed from uh(tn) satisfies 

[Jn+l = uh(tn) + TF(tn+h(Jn+l). (5.13) 

By interpreting the relation (5.12) as an implicit Euler step, with the bracketed term playing the role of 
un, application of the C-stability inequality (5.11) to the equations (5.12), (5.13) yields directly 

I If lluh(tn+1)-uh(tn)-nih(tn+1)-rn(tn+1)ll 00 -TI 

I If ll±~iih(tn+OT)+rn(tn+1)ll 00 , O-s;;;;O-s;;;;l, 
-T I 

(5.14) 

for all Tft<l. This proves the consistency of the full discretization and according to Theorem 4.1, con­
vergence for T,p(h )-+0 without any further restriction on T and p(h ). We emphasize that the second 
derivative with respect to t of the true PDE solution uh appears in the bound. 

We now proceed with the explicit Euler scheme. The truncation error /3(tn+i) is given by 

/3(tn+1)= uh(tn) + TF(tn,uh(tn))-uh(tn+1) (5.15) 

= uh(tn) + nih(tn)-uh(tn+1) + rn(tn) 

= -±~iih(tn +OT) + rn.(tn), O-s;;;;O-s;;;;I, 

showing consistency. Next the C-stability. Let un ,un +I be a second explicit Euler solution. Then, using 
the mean value theorem, 

(jn+l_ un+l = (/ +TM(tn))(Un -Un), 

I 

M(tn) = J F'(tn,ofjn +(1-0)Un)dO. 
0 

(5.16) 

For obtainini a C-stability result, we must compute the maximum of III +TF'(tn,Olloo on the line seg­
ment r = oun +(1-0)Un' 0 E [0,1]. Consider the Jacobian matrix (5.6). Let Dij be the j-th entry of the 
diagonal matrix D; for i = 1,2,3. Then 

IDfll/ +TF'(tn,nll 00 = mr: m_f{ll +TDlj -TD2jD3j(sj-+s/)I (5.17) 

+ TD2jD 3j(sj- +s/)} 

= 1+Tmrmyx Dlj..;;;; 1 + Tfi. 

if, for all r and all j' 

(5.18) 

!~ appraise these inequalities, S~ppose ~irst that ~e parab~lic ~uation ~S !:_t =: ~ ~Id that Oh is 
eqwdistant (see (5.4)). Then, for all J, D 1j - 0, D 2j - I, D 3j - h and sj - sj - h , so that the 
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inequality reduces to the well known stability result T.;;;;; fh 2• Consequently, in case of u1 = Uxx and Slh 

equidistant, explicit Euler is C-stable in / 00 under the stepsize restriction T .;;;;; fh 2• . 

Let us return to the general case. Inequality (5.18) yields a bound for T (the bound To in Definition 

4.1). However, this bound still depends on .the numerical solution un through the diagonal matrix entries 

Dlj and D 2j. The dependence is removed by using the hypotheses (5.2b), (5.3). If T satisfies 

T(foD3j{sj-+s/)-f-1).;;;;; 1, (5.19) 

we thus arrive at (for any pair of numerical solutions) 

II un +l _ un+luoo .;;;;; (1+Tf1)11 un - un lloo· (5.20) 

This proves C-stability in /00 of explicit Euler for the semi-discrete system (5.4) under the stepsize restric­

tion 
(5.21) 

6. The cubic ScbrOdinger equation 

From [10] we quote the following initial-boundary value problem for the cubic Schrodinger equation 

(here u =[v,w]T), 

v1 + Wxx + (v2 +w2)w = 0, 0 < t .;;;;; T, x E Sl = (xL,xR), 

w1 - Vxx - (v2 +w2)v = 0, 0 < t .;;;;; T, x E Sl = (xL,xR), 

vx(x,t) = wx(x,t) = 0, x = xL, xR and 0 < t .;;;;; T, 

v(x,O) = v0(x), w(x,O) = w0(x), XL .;;;;; x .;;;;; xR· 

6.1. Discrefu:ation in space 

Let us space discretize (6.1) on the equidistant grid 

Slh = {x1 =xL, xj =xj-l +h(2.;;;;_j o;;;;N -1), 

xN=xR; h=(xR-xd/(N-1)} 

(6.1) 

(6.2) 

for a given integer N. Suppose that standard second order finite differences are used for ux and uxx. Let 

Jj(t) and Wj(t) be the resulting approximation for v(xj,t) and w(xj,t), lo;;;;jo;;;;N. ·The semi-discrete, 

continuous time approximation to (6.1) is then given by, j = l(l)N, 

. -2 2 2 -
Ji} + h (Jf}+1-2Wj + WJ-1) + (Jj + Wj )Wj - 0, 

U:j - h -2(Jj +l -2 Ji} + JJ-1) - (Jj2 + Wj2) Ji} = 0, (6.3) 

where 

Vo= V2, Wo = W2 and VN+I = VN-h WN+I = WN-1 

in accordance with the boundary conditions. 

Let~ = [Jj,Wjf, U = [Uf, ... ,Ufe'f. The system can then be rewritten as 

U = F(U) = (S+B(U))U, 

where S is the block tridiagonal matrix 

-2A 2A 

A -2A A 
-1 . ,A S=- . 
h2 

A -2A A 
2A -2A 

(6.4) 

(6.5) 

(6.6) 
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anq B ( U) is block diagonal, i.e., 

[ 
o v.2+ w:2] 

Bj(~) = -V/-W/ 
1 

0 
1 

. 

This form is more convenient for our convergence analysis. 

We shall prove convergence of U(t) to uh(t) in the norm associated to the inner product 
N 

<U,U>2 = h ~ "~T0, U,U E Rm, m = 2N. 
j=I 

(6.7) 

(6.8) 

The double quote means that the first and last element in the sum are multiplied by %. Observe that sys­
tem (6.5) is conservative for this norm, i.e., llU(t)ll2 is constant in time [10]. For the !2 norm, the loga­
rithmic norm l'1 is 

. <At,t>2 
111[A ] = max 2 , A a real m X m matrix. 

f#l lltl'2 
(6.9) 

Let Ube a point on the line segment Th(t). The Jacobian matrix F'(U) can be written as 

[ 
-- -2 -2] -2V. W· -V. -3W· 

,- - . - J J J J 
F (U) - s + diag(Dj}, Dj - 3f.2+ w.2 2v. w. . 

J J J J 

(6.10) 

Because S is skew-symmetric, <S t.t> = 0, Vt, so that 

Pti.[F'(U)] = Pti.[diag(Dj)] ~ m~(~2 + W/). 
J 

(6.11) 

It follows that (3.4) can be satisfied for a 14nax independent of h if ~2 + w/ remains bounded as h -')O 
for 'Vt E [O,T]. 

In order to remove this additional hypothesis on boundedness of the semi-discrete solution we now 
resort to a standard argument which was also used in [10). Consider, instead of the problem (6.1), 

v1 + Wxx + a(v2+w2)w = 0, 0 < t ~ T, x E il = (xL,xR), 

w, - Vxx - a(v2+w2)v = 0, 0 < t ~ T, x En = (X£,XR), 

vx(x,t) = wx(x,t) = 0, x = X£, xR and t > 0, 

v(x,O) = v0(x) = w0(x), XL ~ x ~ xR, 

(6.12) 

where a(z):R-')R is a smooth function such that (i) a(z) = z in a neighbourhood of the exact solution 
{u(x,t), xL~x~xR, O~t~T} of the problem (6.1) (ii) la'(z)lz is bounded. Obviously, such a function 
can be constructed. 

Lemma 6.1. The initial-boundary value problem (6.12) has a unique solution which is just the solution 
u = [v ,w f of the problem (6.1). 

Proof. It was assumed that the problem (6.1) has a unique solution u = [v,wf. Clearly, this solution u 
also satisfies (6.12) because due to hypothesis (i) on the function a(z), a(v2+w2) = v2 + w2. To prove 
that this solution is unique, we suppose that a second solution exists, say u = [ v, w f, satisfying the 
homogeneous Neumann conditions and the initial condition u(x,O) = [v0(x), w0(x)f. Now consider the 
energy functional 

XR 

E(t) = J [(v-v)2 + (w-w)2]dx, O ~ t ~ T, (6.13) 
XL 
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"?~ch satisfies E(O) = 0. It can be shown that E(t) satisfies a differential inequality 
E(t)..;;; CE(t), O<toe;;;T, C being a positive constant. Consequently, E(t) = 0 for all t E [O,T]. Thus 
there is at most one solution. D 

Let U = Fa(U) be the semi-discrete approximation to (~12). A calculation similar to that for the 
original system (6.5) reveals that the logarithmic norm 1L2[F'a(U)] satisfies 

(6.14) 

By hypothesis (ii) on a (z ), for U = Fa ( U) a /Lmax exists independent of h. Because U = Fa ( U) is a- con­
sistent approximation (of order two) to (6.12), its solution U thus converges in 12 to the solution uh of 
(6.12) as h~O. This implies also convergence in / 00(11·11 00 ..;;; h-*11·112) so that from Lemma 6.1 and 
hypothesis (i) on a (z) it now follows that for h small enough the solutions of b_2th semi-discrete systems 
coincide. This observation completes the proof of the boundedness of the term v] + w] in the inequality 
(6.11). 

Summarizing, according to Theorem 3.1 we have proved that the ODE system (6.5) is a second order 
convergent approximation in 12 to the cubic Schrodinger problem (6.1) (the proof of second order con­
sistency is trivial). 

6.2 Discretization in space and time 

Along the lines of Section 4 we shall prove 12 convergence of the fully discrete scheme defined by the 
implicit midpoint rule 

(6.15) 

This is an obvious scheme for conservative problems such as (6.5) as it is conservative, too, i.e., 
II Un lh = llU(O)lh(n ;;a.O). A particular predictor corrector implementation of (6.15) which exploits the 
pseudo-linear form of the Schrodinger equation was studied in [6]. 

The proof of C-stability can be stated again from known results [l,2,4,5,12] from the field of non­
linear stiff ODEs. Let un, un+l be a second implicit mid-point solution. Then, using (6.10), (6.11) and 
the inequality (4.5) from [12], it follows that 

I 

II ii" +I_ u• +111, "' [; ~: ] '11 ii" - u• 11,, o..;,..<2, (6.16) 

for any one-sided Li~schitz co~stan~ v>max/P/+ W]), U now being a point on the line segment con­
necting f(Un + un + ) and f(Un + un + 1). Consequently, the implicit midpoint rule is C-stable for the 

Schrodinger problem (6.5) if componentwise the implicit midpoint solution remains bounded as h ~o. 
Let us assume, for the moment, that this is true and let us proceed with the proof of consistency. 

For this purpose it is convenient to introduce the defect (sometimes called truncation error, too) 

d1(tn+1) = uh(tn) + TF(fuh(tn) + fuh(tn+1)) - uh(tn+l)· (6.17) 

Note that d1 depends solely on the true PDE solution. The full truncation error f3 is given by 

(6.18) 

We write 

f3(tn+1) = d1(tn+1) + TF(fuh(tn)+fun+l)_ (6.19) 

I I 
-TF(1:uh(tn )+2uh(tn + 1)). 

By applyinft the same techniques which are used for deriving the C-stability inequality (6.16) one can 
prove that 
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(6.20) 

where P is again an upper bound for the logarithmic norm (here computed on the line segment connect­
ing t)n+I and uh(tn+1)). 

Next we introduce a second defect 

(6.12) 

which is associated to the trapezoidal rule (Crank-Nicholson), and establish that for the ODE system 
(6.5) the difference d(tn+1) = d1(tn+1)-d2(tn+1) is given by , 

d(tn +1) = tTB(±uh(tn)+±uh(tn +1))(uh (tn)+uh(tn +1)) 

-hB(uh (tn ))uh (tn )-±TB(uh (tn +1))uh (tn + 1). 

(6.22) 

It follows that d is independent of the space differencing. A straightforward Taylor expansion shows that 

lld(tn+1)llz.;;;;; c-?, c independent of T and h. (6.23) 

The final step in the proof of consistency is the examination of d2• Using the space truncation error 
(3.1) we can write 

. d2(tn+1) = uh(tn)-uh(tn+i)+tT(uh(tn) + uh(tn+1))+ ±7<a(tn)+a(tn+1)). (6.24) 

From the second order consistency of the trapezoidal rule, the second order consistency of the discretiza­
tion in space, the inequalities (6.20) and (6.23), we thus arrive at the consistency result 

llT-1,B(tn+t)llz.;;;;; C1~ + C2h2, TP < 2, (6.25) 

where C 1 and C 2 are constants independent of T and h . 

There remains to remove the boundedness hypothesis on the components of the fully discrete solu­
tions un + 1• This can be done in exactly the same manner as we did for the semi-discrete solution U. In 
conclusion, accordin§ to Theorem 4.1 we have proved that the fully discrete implicit midpoint solution 
un + 1 converges in I to the true PDE solution uh (tn + 1), as T, h ~o, without any further condition on T 
and h. Convergence of the fully discrete trapezoidal solution (Crank-Nicholson) can be proved in the 
same manner. 

Remark 6.1. Substitution of x = C1T3 + C2Th2 into (4.6) yields the corresponding bound for the 
discretization error £(tn + 1). Here C0>0 as the amplification factor IC in (4.4) is given by 
IC = v'2+TP / v'2-TP, where P>O stands for an upper bound for the logarithmic matrix norm p.z com­
puted in a tube around uh(t), Oo;;;;;t:s;;;T. Due to the earlier mentioned property of conservation we can 
deduce that in ( 4.6) the exponential behaviour for increasing time cannot be realistic. In fact, using con­
servation, we can state the crude bound 

lk(tn + 1)112 :e;;; II un + 1112 + lluh (In+ 1)112 = lluh (0)112 + lluh (In+ 1)llz, 

which shows that £ is bounded in time. D 

7. Some remarks on the use of the time truncation error 

(6.26) 

To conclude this paper we consider briefly the possibility of a convergence analysis which is set up 
completely in accordance with the MOL approach. More precisely, an analysis with proves the conver­
gence of the ODE solution to the true PDE solution as p(h )~O and, separately, the (uniform in h) con­
vergence of the fully discrete solution to that of the ODE as T~O. The convergence of the discretizatioil 
in space can be proved along the lines of Section 3. The convergence proof of the time integration then 
requires the use of the time truncation error y given by ( 4.1 ') in combination with the property of C -
stability. Let ~ be an upper bound for y. Supposing C-stability and using y(tn + 1) instead of P(tn + 1) in 
the derivations of Section 4, one thus arrives at the error bound 



lk(tn + 1)11 E;;; ll'll(tn + 1)11 + 116(tn + 1)11, 

where, similar to ( 4.6), the time integration error 6(tn + 1) satisfies 

{
'l"-1~ICol1 ' Co< o, 

ll6(tn+1)ll E;;; T- 1~tn+I , Co = 0, 

T-1~co-1(ec•'·+1-l) , Co> 0. 

Obviously, the task is now to prove that T- 1~~0 as T~O, uniformly in the grid distance. 
cisely, a constant C 3 and an integer q should exist, both independent of T and h, such that 

lly(tn + 1)11 E;;; C 3T'l, T~O. 
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(7.1) 

(7.2) 

More pre-

(7.3) 

As pointed out earlier in [9] this hypothesis of time consistency uniform in h may be difficult to verify. 
For example, consider the inequality (5.14). Using the present approach, one finds 

1 I 2 •• 
lly(tn+1)lloo E;;; l-Tfi 2rllU(tn+OT)ll 00 , 0E;;;0E;;;l, Tf1<1. (7.4) 

In order to ensure time consistency uniform in h, it is necessary to prove that the second derivative U(t) 
of the semi-discrete solutio~ U(t) is bounded as p(h)~O. Despite convergence of U(t) to uh(t) this pro­
perty of boundedness of U (t) requires an additional investigation. This is the main reason why we 
prefer the direct approach for the consistency part in the convergence proof. An additional reason lies in 
the fact that the approach via (7.1) is not able to account for cancellations between errors in the time and 
space discretization (an example of such a cancellation is provided by the Douglas high accuracy scheme 
for the heat equation, [8], p. 190, formula G). 

References 
[l] Axelsson, 0., Error estimates over infinite intervals of some discretizations of evolution equations, 

Technical Report, Catholic University of Nijmegen, 1983 (to appear in BIT). 

[2] Burrage, K. & J.C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. 
Anal. 16, 46-57, 1979. 

[3] Dahlquist, G., Stability and e"or bounds in the numerical integration of ordinary differential equa­
tions, Trans. Royal Inst. Techn., No 130, Stockholm, 1959. 

[4] Dekker, K. & J.G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential equa­
tions (a forthcoming monograph), North-Holland. 

[5] Frank, R., J. Schneid & C.W. Ueberhuber, The concept of B -convergence, SIAM J. Numer. Anal. 
18, 753-780, 1981. 

[6] Griffiths, D.F., A.R. Mitchell & J.LI. Morris, A numerical study of the nonlinear Schriidinger 
equation, Report NA/52, Dept. of Math., University of Dundee, 1982 (to appear in Comp. Meth. 
Appl. Mech. Engn.). 

[7] Kreiss, H.O., Ueber die Stabilitiitsdefinition for Differenzengleichungen die partiele Differential­
gleichungen approximieren, BIT 2, 153-181, 1962. 

[8] Richtmyer, R.D. & K.W. Morton, Difference methods for initial value problems, Interscience Pub­
lishers, New York, 1967. 

[9] Sanz-Serna, J.M., Convergent approximations to PDEs and contractivity of methods for stiff systems 
of ODEs, to appear in: Actas del VI CEDYA, Jaca, 1983 (this paper is a highly condensed ver­
sion of a report which is available on request). 

[10] Sanz-Serna, J.M., Methods for the numerical solution of the nonlinear SchriJdinger equation, Math. 
of Comput. (to appear), 1984. 

[11] Vetwer, J.G. & K. Dekker, Step-by-step stability in the numerical solution of partial differential 
equations, Report NW 161/83, Mathematical Centre, Amsterdam, 1983. 



14 

[12] Verwer, J.G., Contractivity of locally one-dimensional splitting methods, Numer. Math. (to appear), 
1984. 

[13] Wirz, H.J., On iterative solution methods for systems of partial differential equations, Lecture Notes 
in Mathematics 679, 151-163, 1978. 


