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It is well known that many discretizations of time dependent problems in partial differential equations 

(PDEs) can be derived by means of the following two stage procedure. First, the space variables are 

discretized so as to convert the PDE into a system of ordinary differential equations (ODEs) with the 

time as independent variable. Then, the discretization in time of this ODE system yields the sought, 

fully discrete scheme. In the litera,ture this two-stage procedure is often referred to as the method of 

lines (MOL). The purpose of the present contribution is to give an expository account of some funda

mental results concerning the stability and convergence analysis of one-step MOL schemes. In our 

exposition, which is largely based on our earlier papers [2, 3 (Ch. 10), 11, 12, 14, 17, 18] the emphasis 

lies in the interplay between the stability and convergence properties of the fully discrete scheme and 

those of the ODE solver. 
The contents of the paper is as follows. Section 2 deals with preliminaries. Here we introduce the 

PDE considered and collect some basic material which is needed later in the paper. Section 3 deals 

with stability aspects. In this section we briefly mention the standard PDE analysis, the (shortcom

ings) of the spectral condition property, and the notion of contractivity which in the last decade has 

attracted much attention [3] . In Section 4 we discuss consistency and convergence properties of the 

fully discrete MOL schemes. In particular, attention is paid to the order of convergence under simul

taneous refinement of the grids in time and in space. This leads us to the somewhat awkward 

phenomenon of order reduction, i.e., in many cases it is found that under simultaneous refinement the 

order of convergence in time of the fully discrete scheme is less than the order of convergence of the 
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ODE solver. A numerical example is given to illustrate the order reduction phenomenon. 

2. PRELIMINARIES 

2.1 Partial differential problem 
We consider linear problems of the form 

u,=Anu+fn(t), xe'1, O~t~T<oo, 

Aru=fr(t), xef, O~t~T, 

(2.la) 

(2.lb) 

u (x, 0) given, x eO, (2. lc) 

where 0 is a spatial domain in R,R2 , or R3, with boundary r and An denotes a linear, q - th order 
differential operator in 0 which differentiates the (possibly vector valued) unknown function u with 
respect to the spatial variables. The linear differential operator Ar possesses order ~q - l, acts on the 
boundary r and serves to introduce the boundary conditions (2.lb). Note that the inhomogeneous 
terms fn,Jr and the coefficients of An,Ar may depend on x. This dependence is not however 
reflected in the notation. 

Most of the following considerations may be extended, with varying degrees of difficulty, to prob
lems more general than (2.1), including nonlinear cases. Nevertheless, the class (2.1) is wide enough to 
describe a large number of interesting practical situations and also to display some major difficulties 
to be expected in the time-integration of evolutionary PDEs. We therefore focus our attention in this 
paper on problems of the form (2.1 ), and briefly comment on other models when appropriate. It is 
assumed thatAn,Ar,fn,/r and u(x,O) are such that (2.1) possesses a unique solution u. 

2.2 Space discretization 
The discretization in space of the problem (2.10), by means of finite differences, results in a Cauchy 
problem 

(2.2) 

which is assumed to be uniquely solvable. Here h is the parameter of a grid in 0 Ur and Uh= Uh(t) 
is an m-dimensional real vector consisting of approximations to u at grid points. The time
independent matrix Ah originates from An,Ar and the vector fi,(t) arises from the inhomogeneous 
terms of (2.1). Finite-element discretizations can be catered for with minor modifications (see (11]) 
and will not be treated here. 

Note that the dimension m of Uh depends on h. Throughout the paper, 11·11 denotes a chosen norm 
for m-dimensional vectors and the corresponding operator norm for m X m matrices. 

We denote by uh(t) the restriction of u(x,t) to the spatial grid (or other suitable representation of u 
in that grid (11)). Then (2.2) is said to be a convergent semidiscretization .of (2.1) if, as 
h~O,maxo..;1 ..;;rlluh(t)- Uh(t)ll =o(l), provided that llu~(O)- Uh(O)ll =o(l). Convergence of order p is 
defined in the obvious way, i.e. replacing o(l) by O(hP) in both occurrences of the symbol o(l). For 
simplicity we assume hereafter that Uh(O)=uh(O)=[u(xi.O), · · · ,u(xm,O)f, i.e., in the semidiscretiza
tion there is no error involved in approximating the initial function. 

The vector uh(t)- Uh(t) is referred to as the global error of the semidiscretization. Also of interest 
later is the truncation error of (2.2) defined by 

(2.3) 
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2.3 An illustration 
The following example might be helpful in order to become familiar with the preceding notation. We 
consider the simple hyperbolic problem 

u1 =-ux+fn(x,t), O:s;;;;x.;;;;;1, O=s;;;;t=s;;;;T, 

u(O,t)= fr(t), O=s;;;;t=s;;;;T, 

u(x, 0) given, O:s;;;;x:s;;;;l, 

(2.4a} 

(2.4b} 

(2.4c) 

which is of the form (2.1) with q = 1. Let m be a positive integer. A uniform grid xj = j I m(O:s;;;;j :s;;;;m) 
is introduced in the x-interval [0,1) and (2.4a,b) is discretized in space by first order, backward 
differences to yield the semidiscretization 

U1 -1/h 
1/h-1/h 

1/h-1/h Um 

+ 
fn(l,t) 

where Uh(t)=[U1(t), · · · ,Um(t)f, with ~(t) an approximation to u(jh,t),j= 1, · · · ,m. 

(2.5) 

Note that (2.5) represents a family of ODEs depending on the parameter h and that the dimension 
m = 1/h of the system and the spectral radius 1 / h of the matrix Ah grows as h-'J>O. For smooth solu
tions u the semidiscretization (2.5) can be proved to be V-convergent of the first order for p = l, 2, oo, 
i.e., 

Here, ll·llp is the V-norm for grid functions, i.e., for p = 1,2 
m 

llwll~= ~hlw(xj)f, xj=}h, 
j=I 

with the obvious modification for p = oo. The convergence is proved in two steps. i) Prove that for the 
truncation error (2.3), with components a/t)=h- 1(u(xj-1>t)-u(xj,t))+ux(xj,t), a bound 

max llah(t)llp = 0 (h) (2.6) 
Q<,1<,T 

holds. This is trivially achieved by. means of Taylor expansions. ii) Note that the global error uh - Uh 
of the semidiscretization satisfies, by using (2.2) and (2.3), the differential equation 
d(uh- Uh)!dt =Ah( uh- Uh)-ah(t). Next, use the variation of constant formula or the energy method 
(as in [18)) to bound lluh(t)- Uh(t)llp in terms of llah(t)llp· 

The fact that we have chosen the model hyperbolic problem (2.4) is dictated by the simplicity in 
presentation. Further, this problem also proves to be useful for us in two later instances. Other 
examples of convergence proofs of semidiscretizations can be found in [18). 

2.4 The ODE solver and full convergence 
In order to get a fully discrete scheme, the problem (2.2) is discretized in time by a convergent, p-th 
order, one-step ODE solver with step T independent oft. We suppose that T satisfies 

(2.7) 

with AE(O,oo] a fixed constant and q the order in space of (2.1). We denote by un the corresponding 
fully discrete solution at time tn =n-r (the dependence on h is suppressed in the notation un and in 
other notations introduced later). 

Our task is to study the behaviour of the global error en =uh(tn)- un of the fully discrete solution 
and more precisely to bound 
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(2.8) 

under an appropriate choice of i\ in (2.7). Again we assume that there is no error involved in approxi
mating the initial condition, i.e., u° = Uh(O)=uh(O). A minimal requirement that the {full) discretiza
tion should satisfy is that of convergence, i.e., that as h, T~O, subject to (2.7), the quantity in {2.8) 
tends to zero. 

An important point here is that the convergence of the semidiscrete approximation Uh to u, 
together with the use of a convergent ODE solver, is not sufficient to guarantee the convergence of the 
fully discrete approximations un. For example, time-stepping in the convergent semidiscretization 
(2.5) with the convergent forward Euler rule results in a well known explicit method for (2.4), which 
does not converge if i\> I. (The CPL condition [10,15] is violated). 

Let us write, for fixed nT=tn, 

(2.9) 

The convergence of the semidiscrete approximation implies that the first term in the right hand-side of 
(2.9) tends to zero as h~O. For a convergent ODE solver, llUh(tn)-Unll tends to zero as T~O for 
fixed h. However, the system (2.2) to which the ODE solver is applied changes with h. Therefore, in 
order to achieve the convergence of the fully-discrete scheme we must demand that, as h varies, the 
convergence of the ODE solver be uniform in the members of the family (2.2). 

Such a uniformity cannot be concluded from the standard convergence results for ODE solvers as 
the underlying error bounds there typically involve the factor exp(Lhtn), with Lh the classical Lipschitz 
constant for Ah. This Lipschitz constant is of no use here due to the negative powers of h in Ah· This 
observation makes clear that for proving convergence of fully discrete MOL approximations it is 
necessary to derive error bounds which are basically independent of h or, using ODE terminology, 
independent of stiffness. 

The derivation of stiffness independent error bounds has recently attracted much attention in the 
field of implicit RK. methods for ODEs (B-convergence theory, FRANK, SCHNEID & UEBERHUBER [4]). 
In [17] it has been shown that the results of this theory are also of use for the MOL convergence 
analysis. It should be noted however that this analysis is not based on the use of the error splitting 
(2.9), but compares uh and un directly without employing the intermediate uh. 

3. STABILITY ASPECTS 

3.1 The standard PDE analysis 
The application to (2.2) of a orie-step method usually results in a recursion 

un+ 1 =R(TAh)Un+Fn, O~(n+l)T~T, (3.1) 

where R(") is the stability function associated with the method and Fn is an m-dimensional vector ori
ginating from the inhomogeneous termfi,(t). The standard PDE analysis relates (3.1)° to (2.1) without 
resorting to {2.2) and requires the introduction of the full truncation error of (3.1) given by 

ff'+I =uh(tn+i)-R(TAh)uh(tn)-Fn. {3.2) 

Note that this is a residual associated with the PDE solution and is therefore different from the local 
error of (3.1) considered as a time-discretization of the ODE system (2.2). From (3.1) - {3.2) we find 
the following recursion for the full global error en =uh(tn)- un 

en+I =R(TAh)en-{f'+I, 

whence (recall that e0 =O) 
n 

en= ~R(TAh)n-ip. 
i=I 

(3.3) 

{3.4) 
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From this expression (which is the discrete counterpart of the variation of constant formula we men

tioned before) we conclude that, together, the following two conditions guarantee convergence [10]: 

(LS) (Stability) As T,h vary subject to (2.7), the norms llR(TAhYll, O..;.jT..;.T, can be bounded by a 

constant S independently of h, T and j. 
(Cons.) (Consistency) As T,h vary subject to (2.7), 

max llP"+ 11i=O(T). 
0..;;1 • ..;;T 

In fact, it is enough to write 

lien 11..;.ns maxll,8" II..;. TST- 1 maxllP" II. (3.5) 
n n 

The stability requirement LS is the Lax-stability condition and, under very general hypotheses, is also 

necessary for (full) convergence [8,9,10,13,15]. 

A somewhat more demanding stability property related to the concept of strong stability ( KRE1ss 

[ 6]) is given by 
(SS) As T,h vary subject to (2.7) 

llR(TAh)ll..;.I+CT, (3.6) 

where C is a constant independent of T,h. 
This requirement is stronger than (LS), because if (3.6) holds 

llR ( TAhY 11..;. liR ( TAh)IV ..;.(I+ CT)i ..;.exp( CjT)..;.exp( CT) 

so that (LS) holds with S = exp (CT). Also note that if (SS) is satisfied there is no need to consider 

the representation (3.4), since in this case (3.3) leads directly to 

lien+ 111..;.(l + CT)llen II+ 11,8" + 1 11, (3.7) 

a recursion for lien II which can be easily used to prove convergence. 

3.2 Contractivity and C-stability - MOL analysis 
The condition (SS) and the recursion (3.7) have often been used in convergence proofs of one-step 

MOL schemes (see [3], Ch. 10; there the term C-stability is used). In fact, a particular case of (3.6) is 

the condition llR ( TAh)ll..;. I which implies that for any two solutions vn' wn of (3.1 ), stemming from 

different initial functions V°, W°, there holds 

11vn+ 1 -wn+ 111..;.11vn-wn1i. (3.8) 

In the field of stiff ODEs this behaviour is called contractivity. 
The concepts of contractivity and C-stability have two merits: i) They can be extended in a natural 

way to nonlinear problems. When they hold, they imply, together with full consistency, the conver

gence of the fully discrete approximations. ii) It is possible to give general results for the contractivity 

and C-stability of Runge-Kutta methods. For instance, the backward Euler method is contractive in 

any norm when applied to any dissipative system of ODEs. 
The investigation of the concepts of contractivity (B-stability) and C-stability has been dominant in 

the recent studies of stability in ODE-solvers. The points i) and ii) above are adequately covered in 

the monograph [3] and the interested reader is referred to this work for the study of these issues. 

3.3 The spectral condition 
Consider the stability region ~={zEC:IR(z)l..;.l} of the method. A stability requirement that easily 

comes to mind in MOL applications is the demand that the constant A. in (2.7) should be chosen to 

guarantee that, as T and h vary, the eigenvalues TA;h of TAh(i = l(l)m) should lie in~ or even in the 

interior of ~IR (z )I< 1 ). The demand that TA;h(i = 1(1 )m) lies in the interior of ~ seems particularly 

appealing in that it guarantees that if, for fixed T and h,j increases without bound that then 
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llR('rAhYll~O. Hence, any error such as round-off will be then eventually damped. 
However, this spectral condition approach may be dangerous, since in general it provides little infor

mation on the behaviour of llR('rAhYll as T,h~O, nor does it exclude excessive growth of llR(TAhYll 
for finite values of j with T,h fixed. A classical example showing such a disastrous behaviour is given 
by the semi-discrete hyperbolic problem (2.5) when integrated in time by the forward Euler method 
[10, p. 152], [3, p. 272]. The choice >.=2 in (2.7) satisfies the spectral condition, whereas the Lax sta
bility condition (LS) or the condition (SS) (in the common V norms) dictates the choice>.= 1 which 
means T/h~I. In practice, computations with l~T/h~2 easily lead to inacceptably large errors. 

In spite of the previous remarks, there are cases where conditions on the stability region of the 
ODE method are sufficient to guarantee stability in the senses (LS) or (SS): 
(i) If 11·11 is an inner product norm and Ah is normal with respect to this inner product, then the con

dition TA;hE~,i=l, ···,m, implies llR(TAhYll~l, j=l,2, ···.This is a consequence of the 
fact that R(TAhY is normal and therefore llR(TAhYll=p(R(TAh)i)=(p(R(TAh))Y, where p(") 
denotes the spectral radius. 

(ii) If 11·11 is an inner product norm and the solver is A-stable then llR(TAhYll~l, j= 1,2, · · · for 
arbitrary T. Here is assumed that <Ahvh,vh>~O for any grid function vh. This result follows 
from a deep theorem by VON NEUMANN [5] [7] and does not require the normality of Ah. 

The result by von Neumann has been recently used by SPIJKER [16] to derive an interesting 
sufficient condition for contractivity . 

4. CONSISTENCY ASPECTS 

4.1 The structure of the (full) local error 
After our review of the behaviour of the powers R(TAhY we now turn our attention towards the local 
errors ff'+ 1, the other factor that according to (3.4) determines the global error. Our aim is to investi
gate the behaviour of ff'+ 1 in terms of the smoothness in time of the PDE solution uh(t) and the 
space truncation error ah(t) introduced in (2.3). 

We now assume that the ODE solver used for the system (2.2) is an s-stage, p-th order explicit 
Runge-Kutta method given by the array 

CJ 

Cz a11 

(4.1) 

Cs as) ass-I 

b1 bs-1 bs 

As usual we let ~f=1b;=l,~);;;;\au=c;(l~i~s) and set as+1,j=b/l~j~s) and Cs+I =I. 
It is emphasized that the main conclusions of the following analysis are also valid for implicit 

Runge-Kutta methods, but the technical details are somehow different and also slightly more compli
cated (see [14,17]). For the sake of presentation in this expository contribution we therefore concen
trate on the explicit methods. 

We begin by defining the residual r; associated with the i-th stage (i =I, · · · ,s + 1) of the step 
tn~tn+I• 

i-1 

r; =uh(tn +c;T)-uh(tn)-T ~ a;j[Ahuh(tn +cjT)+ fi,(tn +cjT)]. 
j=I 

Note that this residual is defined for the PDE solution uh as in Section 3.1 and that, by definition , 
r 1 =O. Using (2.3) we can write 

i-1 

r; =uh(tn +c;T)-uh(tn)-T ~ a;j[uh(tn +cjT)+ah(tn +cjT)], 
" j=I 
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and if we assume that uh(t) possesses p + 1 derivatives we can Taylor expand uh(tn +cjT),uh(tn +cjT) to 

arrive at an expresssion 

(4.2) 

Here dij are coefficients which only depend on the array ( 4.1) and R; is the sum of the remainder in 

the Taylor expansions plus the term T~aijah(tn +cjT), which is the space error contribution. 

The intermediate residuals are used for deriving an expression for If' + 1 which is more amenable for 

the task we have set ourselves than the expression given in (3.2). This is done as follows. We write 

down the ordinary Runge-Kutta equation (cf. (4.1)) 

i-1 

' Y; = un + <~ a;j[Ah yj + jj.(tn + Cj'T')] (I ..;;i ..;;s + 1) 
j=l 

where un +I = Ys +I' and the perturbed equations 
i-1 

uh(tn +e;T)=uh(tn)+T ~ aij[Ahuh(tn +cjT)+ Jh(tn +cjT)]+r; (I ..;;i..;;s + 1). 
j=I 

Then we subtract these two formulas to obtain a set of relations satisfied by the full global errors 

en=uh(tn)-Un,en+I and the intermediate errors uh(tn+c;T)-Y; (1..;;i..;;s). A straightforward recur

sive elimination of the latter errors leads to the recursion (3.3) for the full global error, but with pn + 1 

now in the form 
s+I 

/!'+ 1 = ~ QhAh)r;, (4.3) 
i=I 

where Q; is a polynomial of degree ..;;s + 1-i whose coefficients depend on (4.1). Note that the 

behaviour of these polynomials accounts for the internal stability of the RK-scheme, i.e., for the effect 

on un + 1 of perturbations in the stages of the step tn ~tn + 1• Substitution of ( 4.2) in ( 4.3) finally leads 

to the full local error expression 
s+I 

+I 1+· I (i) If' =~µ1/' 1Ahuli (tn)+ ~ QhAh)R;, (4.4) 
l,j i=2 

where µlj are scalars which only depend on the parameters in ( 4.1) and the summation l,j extends to 

1..;;1..;;s -1, 2..;;j..;;p, p + 1..;;1 + j. 
An important point to notice is that in (4.4) we find not only derivatives uV>(tn) (that are expected 

to behave nicely as h~O), but also powers A~ that will increase as h~O due to the negative powers of 

h contained in A~. Thus the analysis of (4.4) can be expected to be delicate and, indeed, we will see 

below that the negative powers of h cause difficulties. 

4.2 Behaviour of the full local error - Local order reduction 

The subsequent analysis is carried out under the following hypotheses: (HI) The restriction uh(t) of the 

PDE solution possesses p +I derivatives uV>(t). Furthermore lluW>(t)ll can be bounded uniformly iii t 
and h. (H2) The space-time grid refinement is carried out subject to a condition (2.7) with ;\.<oo and 

for this refinement the expression TllAh II can be bounded independently of T and h. 

Hypothesis (H2) is natural here since we are discussing explicit methods. Recall that the order in 

space of (2.1) is q and that therefore the entries of Ah are expected to increase like h-q. 

Our task in this subsection is to derive for 11/f' + 1 11 bounds of the type 

C(-1' +T max llah(t)ll), (4.5) 
0..;1..;T 

where C denotes a constant independent of tn,'1' and hand k is a positive number. We will see that in 

order that the bound (4.5) be uniform in h, the exponent k must usually be taken smaller than p + 1, 

the value one naively expects from the behaviour of the RK method applied to ODEs. 
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Now the hypothesis (HI) implies that in (4.4) the terms R; satisfy a bound of the form (4.5) with 
k=p + 1. On the other hand, (H2) implies that llQ;(TAh)ll are bounded uniformly in T,h and there
fore the second summation in ( 4.4) can be bounded in the form ( 4.5) with an optimal k = p + 1. In 
estimating the first sum at least two different settings may be considered (see [14] for a third setting). 

(SI) If the further assumption is made that the norms llA~uW°>(tn)ll are bounded uniformly in tn and 
h, then 11,8" + 1 II is bounded by ( 4.5) with k = p + 1. 

(S2). If no relation is assumed between the powers of Ah and the derivatives of uh(t), then to bound 
a term like ,J+jA~uV>(tn) uniformly in h, one must write 

Iii+ j A~uW°>(tn)ll =.,.jll(.,.AhiuW°>(tn)ll :;;;;,_.,.jll.,.Ah ll'lluW°>(tn)ll 

and employ (HI) and (H2). The price to be paid is that for such a term the order in.,. is j rather than 
l + j~p + 1. In general the local error (4.4) contains terms with j =2 so that in this way only an O(-r2) 
bound is obtained regardless of the value of the classical order p. We emphasize that this order reduction 
is not induced by lack of smoothness in u(x,t), but rather by the presence of powers of Ah in the 
local error ( 4.4). · 

4.3 Behaviour of the (full) global error - Global order reduction 
Once ,8" +I has been bounded in the form (4.5) (possibly with a reduced k, i.e.,k<p + 1) a stability 
assumption like (LS) or (SS) mentioned in Section 3.1 immediately leads to the global error bound 

llenll:;;;;,_C(!"-I + max llah(t)ll), (4.6) 
o,,;;;1.;;;T 

by applying the standard arguments given there (cf. (3.5) or (3.7)). An important point we wish to 
make now is that if k<p + 1, these standard arguments of transferring the local errors to the global 
error (first bounding and then adding via stability) can be unduly pessimistic [l,2,14,18]. 

Consider (3.4) and ( 4.4). As already concluded in Section 4.2 the second summation in ( 4.4) can be 
bounded in the form (4.5) with an optimal k =p + 1, implying that this part of the local error causes 
no order problem and can be dealt with in the standard way. So we now confine ourselves to the first 
sum in (4.4) and treat only one of the terms µlj,J+jA~uV> that may suffer from reduction. The other 
terms can be dealt with in the same fashion. 

According to (3.4) the term considered contributes to the global error eZ by an amount 
n 

aZ =µlj,J+j ~R('TAht-;A~uW°>(t;-1). 
i=I 

Assume that the matrix (I -R(TAh))- 1TAh can be defined and satisfies a bound 

ll(I-R(TAh))- 1TAhll:r;;;,_3 

(4.7) 

(4.8) 

with 5C independent of T,h. (The feasibility of this condition is discussed in [14]). Then (4.7) can be 
rewritten as 

n 
aZ =µij,J+j-l[(I - R(TAh))- 1TAh](I - R(TAh)) ~R(TAh)n -;A~-i uW°>(t; _i) 

i=I 

=µiji +j- 1[(1 - R(TAh))- 1 TAh]"[A~-i uW°>(tn -d-R(TAhtA~-i uW°>(to)+ 
n-1 

~ R(.,.Ahr-;A~- 1 (uW°>(t;-1)-uW°>(t;))]. 
i=I 

Further we write 

The following result now follows easily: Suppose that as h,T vary (4.8) holds and llR(TAh)ll:r;;;,_1. 



Then the global error contribution aZ possesses a bound of the form 

Cu .,;+j- 1(max.llA1- 1 u<,f +1> 11 +max.llA1- 1um II). 
t"lj h h . h h Ii 

~ ~ 
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(4.9) 

The crucial observation is that we have got rid of one power of Ah, i.e., we are now dealing with Ah-I 

instead of the Ah we started with. This is of importance since the reduction emanates from the nega-

tive powers of h contained in Ah. · 
If we collect all bounds ( 4.9) for 1,1 from their range of summation 

(1,,.;;;;/,,.;;;;s -1,2,,.;;;;1,,.;;;;p,I + 1-I~p), 
take into account the second summation in (4.4) and the hypotheses (HI), (H2) of Section 4.2, we 

finally arrive at a global error bound (cf. (4.6)) 

llenll,,.;;;;C(,.g+ max llah(t)ll), k-l<g,,.;;;;p. (4.10) 
o..;;1..;;T 

The particular value of g depends on the problem, i.e., on the order in space q and on the possible 

growth with h of the grid functions occurring in ( 4.9). In the worst case, where no relation is assumed 

between the powers of Ah and the derivatives of uh (setting (S2)) the order in T of the individual 

bounds (4.9) can be put equal to 1, so that if p> I we have g~2 in (4.10). Hence in the worst case 

setting it is possible that the drop in global order is one unit less than that in local order (see Section 

(4.2)). Obviously, in the setting (S 1) we have g =p and the special derivation of this subsection is not 

necessary. 
In the next subsection we shall discuss a particular example with the aim of illustrating the analysis, 

but also to show that the (minimal) order g =2 in (4.10) really may occur. 

4.4 An example 
We consider the hyperbolic model problem (2.4) with its semidiscretization (2.5). It is supposed that 

the solution u of (2.4) is as smooth as the analysis requires. (This assumption implies not only that 

u0,Jn and fr are smooth, but also that they satisfy certain compatibility conditions whose expressions 

are of no consequence here). We shall work with the usual L 2-norm and L 00 -norm. 
Let v(x),O,,.;;;;x,,.;;;;l, be some smooth function. When the matrix Ah given by (2.5) acts on the restric

tion vh, the 2nd, · · · ,m1h entries in Ahvh approximate values of vx and can therefore be bounded 
independently of h. However, the first entry in Ah vh will behave like h - I as h-»0 unless v satisfies the 

homogeneous boundary condition v(O)=O. Likewise, the yd, · · · ,m1h entries in A~vh approximate 

values of Vxx and are thus bounded. However, the first and second entries in A~vh will only be 

bounded if v(O)=vx(O)=O. The general trend should now be clear. For/ -1=1,2, · · · ,s -2 ( = the 

highest power of Ah which occurs in the bounds (4.9)), 11Ah- 1vhll is bounded in h if 

akv(O) _ _ .... _ 
k -0' k -0, l, ,/ 2. 

ax 

In general, llAh- 1vhll2 behaves like h<3 1 2- 1>(/~2) while in L 00 we have the behaviou.r h(l-t>. 

Next, since the highest power of Ah in the bounds (4.9) is (s -2), it follows that the optimal 
exponent g=p in (4.10) will be obtained if the theoretical solution u(x,i) satisfies s -2 boundary 

requirements 

u(O,t)=O, ux(O,t)=O, · · · ,(<f-31axs-3)u(O,t)=O 

that render it possible for Ah- 1u<,t>,Ah- 1u<,t+ 1> (l,,.;;;;/,,.;;;;s -1,2,,.;;;;1,,.;;;;p, I+ l~P + 1) to remain bounded 

uniformly in h. Theses -2 boundary requirements for u will be satisfied if and only if Jn.fr do not 
violate a set of s -2 constraints fr-0,fn(O,t)=O, · · ·, (as-4 1axs-4)fn(O,t)=O. We emphasize that 

such constraints are induced by the numerical method and are not related to the compatibility condi

tions that fr,Jn,uo must satisfy in order that u be smooth. Perhaps it is useful to point out that for 

homogeneous problems (homogeneous boundary conditions and no forcing term), the above 
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constraints are trivially satisfied and no order reduction occurs. If one or more of the constraints are 
not satisfied the exponent gin (4.10) can be found by a simple inspection of the differentials featuring 
in ( 4.9) (µ./j:f:O). The one with the largest reduction will determine g. 

Finally, we have tacitly assumed that the number of stages sis greater than or equal to three. No 
reduction will take place with a 2-stage method, and, of course, with the Euler method. 

For the time integration of the semidiscretization (2.5) we consider the classical 4-stage, 4-th order 
scheme 

0 0 
112 112 0 
112 0 112 

I 0 0 
0 
I 0 

1/6 1/3 1/3 1/6 

From its local error expression (14) 

an+t =(-1-A u<4) + -1 A2uC3) +-•-A3u<2>)-r5 + 
p 576 h h 288 h h 96 h h 

-=..!.__ 2 <4> _I_ 3 C3) 6 _l _ 3 <4> 1 ~ 
( 

1152 
Ah uh + 576 Ah uh )'r + 

4608 
Ah uh T + /~2 QhAh)R;, 

we deduce that none of the coefficients µ./j(l o;;;;;/o;;;;;3,2o;;;;;j.;;;;,4, l + f~5) is zero so that all grid functions 
which feature in (4.9) may contribute to a reduction of the order. Obviously, the largest reduction will 
emanate from the two terms in (4.9) with (l + j) minimal and (l -1) maximal, which are here T4A~u~2) 
and T4A~url. Hence if the additional boundary requirements mentioned above are not satisfied 
(v(O)=vx(O)=O,v=u~2>,v=ur» and T!h is kept fixed (cf. (2.7)), we will have to face a reduction in 
global order from 4 to 2 if we measure in L 00 and from 4 to 2.5 if we measure in L 2 • 

4.5 A numerical illustration 
We have applied the above RK method to the semidiscretization (2.5) with the choice 
u(x,O)=l+x, fr(t)=l!(l+t),fo(x,t)=(t-x)/(l+t)2 which yields the simple solution 
u(x,t)=(l + x)/(l +t). Since this solution is linear in space, thereis no error introduced by the space 
discretization (ah=<l). The time derivatives of u are not zero at the boundary so that the reduction 
mentioned in the preceding example should occur. 

The floating point numbers in the table below are the L 00 
- errors at t = 1 for certain values of T,h. 

The fixed point numbers represent the observed orders of convergence upon either simultaneous halv
ing of T,h (the numbers in italics) or halving Ton a.fixed grid. Recall that these computed orders are 
given by the expression logi (error ratio). 

h-1 
10 20 40 80 

10 .6910-• 
4.7 2.1 

20 .2610-• .1610-• 
4.2 2.0 4.7 2.1 

40 .1510-• .6510-• .4010-• 
4.1 2.2 4.3 2.0 4.6 2.0 

80 .8510-• .3210-7 .1610-• .9710-• 

For the simultaneous refinement the anticipated reduction from 4 to 2 is clearly seen. On a fixed 
spatial grid there is no order reduction visible. Of course, this is the behaviour one should expect as 
one is now solving a fixed system of ODEs. With our fourth order method, the order asymptotically 
behaves like CT4 on each fixed grid. The issue at hand is that C depends on the choice of mesh and 
increases with decreasing h. This is very clearly borne out in the last row of the table. 
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An illustration of order reduction occurring in a RK-finite element scheme applied to problem (2.4) 

can be found in [14]. The interested reader should also consult [17] where examples with implicit RK 

methods applied to parabolic problems are discussed. 

4.6 Some concluding remarks on order reduction 
The attention here has been restricted to linear problems. Order reduction also takes place for non

linear problems and the mechanism involved there is essentially the one we have discussed. The exten

sion of the analysis to the nonlinear case is possible but becomes rather technical and offers no new 

insight. 
As mentioned earlier, for implicit RK schemes the main ideas of our analysis are still valid. How

ever, the interest there is in situations where T and h are not related and therefore our hypotheses 

(H2) should be forsaken. The details of the analysis become then quite different [l,17]. 

A simple means for avoiding order reduction has been suggested and tested in [14]. It is based on 

reformulating the PDE problem, prior to the space discretization, so that the additionally required 

boundary conditions are satisfied. 
Finally, it is fair to say that in practical problems the negative effects caused by order reduction are 

likely to be less important than those stemming from other sources, such as errors in space, instabili

ties at boundaries, curved boundaries, etc. However, the understanding of this phenomenon is essen~ 

tial in situations where one is interested in higher order methods. 
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