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1. Introduction 

. In this note we study the recursion 

yo=l,Yn+ 1=yn +ry:{', n =0,1,2, ... , (1) 

where m>l is a constant and T>0 a small parameter. Clearly, for nT<ll(m-1) the termsyn are the 
approximations ·given by Euler's method to the value at t = n T of the solution 

y(t)=[l-(m-l)t]1/(l-m) (2) 

of the initial v~ue problem 

dy ldt =ym ,y(0)= 1. (3) 

Note that this solution exists only fort< 1/(m -1). In this connection the recurrence (1) provides a very 
simple example of application to a nonlinear problem of a method for the numerical integration of ordi­
nary differential equations. The derivation of sharp bounds for the error Yn -y(nT) may throw some light 
on the error propagation mechanism in nonlinear situations, which, as distinct from linear situations, is 
often difficult to investigate. 

However, there are other instances in Numerical Analysis which lead to recursions similar to (1). Our 
initial motivation arose in the study of the two-dimensional system [1] 

du/dt = (uru),tu,A =[~I~]• (4) 
which, in turn, stems from the study of the time-dependent cubic Schrodinger equation [4], [5], [6]. The 
skew- symmetry of A implies that, if u(t) is a solution of (4), then the Euclidean norm (energy) llu(t)II 
does not change with t. When (4) is discretized by means of Euler's rule with step-size h the norms 
en = llun II satisfy the recursion 

(5) 

which, upon definingyn =e;JeJ, n =0,1,2, ... , T = h 2et, reduces to (1) with m =3. More generally, (1) or 
recursions similar to it, often appear in the application of the energy method in ODEs or time- depen­
dent PDEs. From (5) we conclude that the norms en increase monotonically, as distinct from the situa­
tion llu(t)ll=constant. In Section 2 we show that the norms eventually exceed any given constant Mand 
we obtain estimates for the smallest value of n such that llun II ;;a,, M. Section 3 is devoted to a closer study 
of the case m = 2. Here we derive sharp bounds for the iterants Yn from a detailed investigation of the 
error Yn -y(nT) committed by Euler's rule. 

2. Asymptotic estimations 

The solutiony(t) of (3) increases monotonically fromy(0)= 1 up to y(l/(m -1))= oo. The iterants Yn 
also increase monotonically with n( sinceyn+ 1-yn>0) and for n large enough exceed any given con­
stant M ;;a,: I (since Yn +1-yn =ry:{';;a,:T). We shall provide asymptotic (T• 0) estimations for the smallest 
value of n such that Yn ;;a,: M. 

It is well known that the error Yn ~y(nT) of Euler's rule possesses an asymptotic expansion [3] (see [2] 
for a simple derivation) 

Yn =y(nT)+TU(nT)+O(~), T• 0, nT fixed and <1/(m -1). (6) 

Here u(t) is the solution of the variational problem 

u(0)=0, du ldt =mym-lu -(l/2)(d2y Jdt 2). (7) 

Differentiation in (3) shows that d 2y!dt2 = my2m-1, so that (7) can be rewritten (takingy as indepen­
dent variable) in the form 

u(O)=O,y-2m(:ym -mym-Iu)= -(ml 2)y- 1• 

The problem (8) is readily integrated to yield 

(8) 
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u(t)=-(m/2)ym lny, 0:s;;;;t<Il(m -1), (9) 

which substituted into ( 6) gives 

Yn ~y(t)-½mry(tr lny(t)+O(-r2), T - 0, t =nT~I!(m -1). (10) 

The expansion (10) is valid uniformly in t as long as t ranges in a compact interval 0:s;;;;t :s;;;;a < II (m - 1 ). 
It is clearly nonuniform for 0:s;;;;t <Il(m -1); note that for T fixed and t near 1/(m -1) one has 
y(t)-(ml 2)'T)'(tr lny(t)<<0: 

. It is convenient to define Yn for noninteger values of n by means of linear interpolation between con­
secutive integers. The expansion (10) is easily seen to hold even for real n, since linear interpolation 
within an interval of length T has errors O(-r2). 

Let M;;;i.I be a fixed constant and let n*= n*(T) be such thatyn·=M. We shall compare n* with the 
value n** defined by the equality y(n**T)=M, i.e., 

** 1 1 n = (m-l)T (m-l)Mm-l'T' 
(11) 

We note that since Euler's method is convergent, n *'T decreases as T-0 towards the fixed quantity 
n •• T< I / ( m - 1 ), i.e.; the products n * T vary in a region of uniformity of ( 10). Therefore, setting 
z =y(n*T), we can write 

M =z -½m'Tzm lnz +O(-r2), 

whence, after a straightforward calculation we conclude 

z = M + ½mTMm lnM +O(-r2). 

Using (2) and (11) we then get n*= n**+½m lnM +O(T), i.e., the number of steps required in order that 

the computed solution reaches the fixed value M equals asymptotically the theoretical number of steps 
plus a constant. If we again restrict the interest to integer values of n we have the estimate 

[ l l + .!!!.. lnM] (12) 
(m - 1 )T (m - l )Mm - IT 2 

for the largest integer n such that Yn -,s;;;,,M. In this paper the symbol [x] denotes integer part of x The 
following table compares, form =2, values of the estimate (12) with true values of n 

'T m true estimated 
0.1 10 11 11 
0.1 100 13 14 
0.01 10 92 92 
0.01 100 103 103 

As an example of application of (12) we consider Euler's method for the problem (4) with 
u(0)=[l,0f, h =0.1,Uo=u(0). We ask for the maximum number of steps such that the norm llun II does 
not exceed the true norm llu(nT)II = IIUoll = 1 in more than 10%, i.e., en2:s;;;;I.21. As in the introduction, a 
change of variables brings our problem into the form (1). Then our estimate yields n = 16, which agrees 
exactly with the value found experimentally. This number of steps spans a time interval of length 
nh = 1.6. The lenr11 of the spanned interval approximately doubles when h is halved, since 
n =O(T- 1)=O(h- ). 

3. Bounds 
In this section we restrict our attention to the case m =2 in (1). We begin by computing explicitely 

the O(-r2) term in the expansion (6) for the global error. Namely 

Yn = y(nT)+TU(nT)+-r2v(nT)+O(-r3), c-0, nT fixed and <1, (13) 

where, for 'O:s;;;;t < lJ!(t)= 1/(I -t),u(t)= -y2(t) lny(t), and v(t) solves the initial value problem 
C= d !dt) 
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v(0)=0, dv !dt =2yv -(l/6)y"' -(l/2)u'' +u2
• (14) 

This problem is best treated by taking y as new independent variable as we did in (8). In this way we 
easily find · 

(15) 

We now turn to the investigation of sharp bounds for the iterants Yn using the asymptotic error rela-
tion (13). · · 

Theorem 1. Let m =2 and nT<l. The iterants Yn then satisfy 

TU(nT)= -ry2(nT)lny(nT)~n -y(nT)<0. (16) 

Proof. The inequality Yn <y(nT) is obvious in view of the geometrical interpretation of Euler's rule. We 
prove that 

Zn =y(nT)-ry2(nT)lny(nT) ,s;;;; Yn, n =0,1, .. ,[T-l]-l. 

This expression can be expanded as 

oo ~ U(k -1) 
-r(y(l)_y2)+~(u<I)_2uy +½y<2>)--r3u2+ ~ ~[ ' + '], 

· k=3 k. (k-1). 
(17) 

where bracketed indices denote derivates with respect to t and functions are evaluated at t = n T. The first 
and second terms of (17) vanish by definition of y ,u (see (3), (7)), while the third is nonpositive. There­
fore the proof will be finished if we show that 

(l/k!)y(k)+(l/(k-l)!)u(k-l)..;;;o, k=3,4,.... (18) 

Differentiation of (3) leads to y<k>=k!yk+I_ The derivatives of u are given by 

u<k)= -akyk+2-(k + l)ryk+2 1ny, k = 1,2, ... , 

where a1=1,ak=(k+l)ak-l+k!,k=2,3, ... , so that ak~k!,k=l,2, .... Substitution of y<k>, u<k-l) by 
their expressions in terms of y leads to (18). • 

We emphasize that, after (13), for nT fixed and T• 0 the lower bound in (16) and the error Yn -y(nT) 
differ only in O ( ~) terms. On the other hand, for a given T the sharpness of the lower bound decreases 
as n increases, since for nT close to l,TU(nr)>> y(nr). Later we shall show how to find sharper bounds 
for n T close to 1. For the relative error we can prove 

Theorem 2. Let c ~l,r:s;;;;exp(-1). Then if nr:s;;;l -crln T-1, 

I Yn -y(nT) -- ..;;;~--'--- ..;;;o, 
c y(nr) 

(19) 

and 

ry(nT)lny(nr):s;;; 1/c. (20) 

Proof. The inequality (21) is a direct consequence of (16) and (20). The verification of (20) is straight-
forward. • · 

Remark. We conclude from (19) that the relative error is less than 1 / c uniformly in n , T provided that n T 

is not too close to 1. Note that as Tis decreased the length of the t- interval [0,l-cTlnT- 1] of unifor­
mity of the relative error tends to 1, the length of the interval of existence of y(t). We shall prove later 
that a bound like (19) does not exist uniformly for 0:s;;;;t < 1. • 

We next improve the upper bound in (16): 



Theorem 3. Let m = 2 a~d n T::s;;;; I -T In T- 1. The iterants Yn then satisfy 

Yn -y(nT)::s;;;;Tu(nT)+r2v(nTi 

Proof. We prove that if Zn =y(nT)+ru(nT)+r2 v(nT), then 

Zn+l-zn -nt~o, nT::s;;;:1-TlnT-l. 

lbis expression can be expandeq as 

T(y(l)_y2)+~(u<I>-2yu +½J,<2>)+~(v<I>-2yv -u2+½u<2>+¾y<3)) 

oo ~ u<k - I) v<k -2) 

-2T4uv -~v2+ k;4~( k! + (k-1)! + (k-2)! ). 
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(21) 

The terms in T : ~. ~ vanish by definition of y ,u ,v. The series can be shown to be positive by an argu­
m~t similar to that employed in the proof of Theorem 1. It remains to be proved that ( o is positive) 
-2u -TV ;;;..Q, Or 

2-7J' -7J' Iny ;;;..o. (22) 

From (20) with c = 1 we can write 7)' In y ::s;;;; 1, which clearly leads to (22). lbis concludes the proof. D 

It was pointed out before that the bounds obtained so far loose their sharpness if n T is close to 1. In 
the proof of our last theorem we employ a change of scale in y ,t near t = I which enables us to describe 
the behaviour of Yn when n T= I or is very close to 1. 

Theorem 4. Assume that T= I! N, N an integer. Then the value YN corresponding to the last grid point t = I 
in [0,1] behaves like NI InN. More precisely, 

1im Yn InN = I. 
N • OO N 

(23) 

Proof. Let c ;;;..1 be a fixed constant and set 

n*=[l. - clnl.] ;;;..l. - clnl. - 1. 
T T T T 

Here Tis assumed to be small enough in order to guarantee that n*;;;..O. From (19), 

1 • 1 1 F(c) 
Yn";;;.. (l-7)y(n T);;;.. (1-7)y(l-cTln-:;:--T) = TlnT-I+Tc-1' 

where we have set F(c) = (c -1)/c2. In order to describe the behaviour of the iterates Yn for n ;;;..n• we 
introduce the scaled iterates 

Yk =yn·+d(Tln l. + .!.)/F(c)}, k =O,I, .. ,N -n•. 
T C 

These satisfy 

Yo;;;.. 1, (24) 

F(c) 2 _ _ *-
Yk+1=Yk + lnT-I+c-I Yk, k-0,1, ... ,N n I, 

i.e., a recursion of the form (1). If we set n**=N-n*, we have n**=T- 1-[T- 1-c lnT- 1], so that the 
lower bound in (16) applied to the new recursion (24) yields 

F(c) 
Yn**;;;., i/,{T,c)(l- lnT-I+c-1 i/,{T,c)lni/,{T,C)), (25) 

where 

I I I F(c) 1/ip(T,c)=l-(--[--cln-]) __ 
T T T lnT 1+c I 
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Note that it is allowed to have Y0> 1 in (24) as all iterates increase with Y0• Returning to the original 
iterates Yn, (25) can be written to 

· 1 T · · F(c) 
(T1n-+~)yN ~F(cN(T,c)(l- -1 -I i/{T,c)1ntp(T,c)). 

T C 1nT +c 

Letting now T• O we find 
1 2_ 

liminf(T1n-+.!.)YN~F(c)/(1-cF(c)) = ~, 
T C C 

whence 

. . 1 c2-c 
liminf( T 1n -)yN ~ --. 

T CZ 

Since this holds for every c ~ 1 we conclude that 

liminf( T 1n l. )YN ~ 1. 
T 

It remains to be proved that 

limsup( T 1n l. )YN ~ 1. 
T 

This can be done in a similar way using now the bounds of Theorem 3 rather than (16). • 
Corollary. Assume that T = 1 / N ,N an integer. Then the relative error for the value YN _ 1 corresponding to 
the last grid point t = 1 -T in [0, 1) satisfies 

YN-1-y(l-T) 1 
y(l -T) ~ 1nN -1, T• O, (26) 

and thus approaches -1 as T• O. 

Proof. From the recursion formula we have YN _ 1 = ½ N ( y 1 + 4yN IN - 1 ), so that, using (23), 
YN-i~N I 1nN as N • OO. Relation (26) is trivial now, sincey(l-T)=N. • 

Finally we provide some numerical illustrations of the theorems above. When T=0.05, n = 10 the 
theoretical solution y(nT) takes the value 2. The approximation is Yn =1.8844 with error -.1156. The 
lower bound (16) yields -.1387 and the upper bound (21) gives -.1151. The table illustrates the estimates 
of Theorem 4 and its corollary. 

T YN N-JJN 1nN N-J'N-1-l l/1nN-1 
l.E-1 6.12EO 1.41 -.571 -.566 
1.E-2 3.03El 1.39 -.756 -.783 
1.E-3 l.93E2 1.33 -.834 -.855 
1.E-4 l.39E3 1.28 -.876 -.891 
1.E-5 1.08E4 1.24 -.901 -.913 
l.E-6 8.81E4 1.21 -.918 -.927 
1.E-7 7.41E5 1.19 -.931 -.938 
1.E-8 6.39E6 1.17 -.940 -.946 
1.E-9 5.61E7 1.16 -.948 -.952 
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