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Abstract
The effectiveness of a fire department is largely determined by its ability to respond

to incidents in a timely manner. To do so, fire departments typically have fire sta-

tions spread evenly across the region, and dispatch the closest truck(s) whenever

a new incident occurs. However, large gaps in coverage may arise in the case of

a major incident that requires many nearby fire trucks over a long period of time,

substantially increasing response times for emergencies that occur subsequently. We

propose a heuristic for relocating idle trucks during a major incident in order to

retain good coverage. This is done by solving a mathematical program that takes into

account the location of the available fire trucks and the historic spatial distribution

of incidents. This heuristic allows the user to balance the coverage and the number

of truck movements. Using extensive simulation experiments we test the heuristic

for the operations of the Fire Department of Amsterdam-Amstelland, and compare

it against three other benchmark strategies in a simulation fitted using 10 years of

historical data. We demonstrate substantial improvement over the current relocation

policy, and show that not relocating during major incidents may lead to a significant

decrease in performance.
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1 INTRODUCTION

Fire fighting services are designed and operated to minimize

the response time to fires and other incidents that require fire

department presence. To this end, fire stations are positioned

throughout the coverage area of a fire department to allow

for a fast response to any incident, irrespective of its loca-

tion. This coverage may be disrupted by major incidents, such

as large fires, which can occupy many nearby trucks over an

extended period of time. Consequently, emergencies that arise

during a major incident may experience a slower response. To

address this issue, it is standard practice of many fire depart-

ments to reduce the gap in coverage by temporarily relocating

idle fire trucks (Green & Kolesar, 2004).

A substantial research effort has been devoted to orga-

nizing the fire department and other emergency services on

the strategic, tactical and operational level, which has suc-

ceeded in reducing response time, see the literature review in

Section 2 for an overview. However, the problem of relocat-

ing fire trucks during major incidents has received relatively

little attention, and in practice this is done based mainly on

the dispatchers’ intuition. In Appendix D, we describe (an

abstraction of) the relocation heuristic currently used by the

Fire Department of Amsterdam-Amstelland (FDAA) (which

covers Amsterdam and its surrounding areas), obtained from

discussions with its dispatchers. This heuristic does a sin-

gle relocation in case of a major incident, moving an idle

truck to the now empty fire station closest to the incident.

Discussions with the FDAA revealed that, in order for any

relocation algorithm to be acceptable in practice, it should

be simple to implement and intuitive to explain. Most impor-

tantly, the number of relocations done after a major incident

should be limited, and controlled by the dispatchers. The latter

constraint is designed to prevent relocations of limited util-

ity, which may cause unnecessary inconvenience to the fire

fighters.
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To our knowledge, the only study that considers reloca-

tions during major incidents is Kolesar and Walker (1974),

in the context of the Fire Department of the City of New

York (FDNY). The approach proposed there was adopted by

the FDNY, and was for instance successfully used during the

terrorist attacks on September 11, 2001, to maintain good cov-

erage throughout the city (Green & Kolesar, 2004). While

successful in New York, we are not aware of any other fire

departments that have implemented this algorithm, at least

not in the Netherlands. We conjecture that this is because this

approach lacks some of the desired characteristics outlined

above. In particular: (1) the procedure used to calculate cost

coefficients for the objective function is complicated and hard

to explain to practitioners; (2) some of the assumptions made

seem specific for the regular grid structure of New York; and

(3) it does not allow the user to control the number of reloca-

tions. We discuss the implementation of the algorithm from

Kolesar and Walker (1974) and some of the issues that arise

in detail in Appendix C. In the present paper we propose a

relocation heuristic that has all the desired features, and in

addition also allows us to find better relocations.

We consider the situation where a new major incident has

just started, and fire trucks have been dispatched to the inci-

dent. We then solve a coverage-maximization problem that

takes into account both the location of the remaining idle

fire trucks and the historic spatial distribution of incidents.

Our objective function contains a parameter indicating the

willingness to relocate, which can be used to control the num-

ber of relocations made during a major incident. Moreover,

we impose some measure of fairness across the region by

ensuring that each location is covered by a certain minimum

number of fire trucks. Once the major incident is resolved, the

relocated trucks return to their base station.

In order to assess the effectiveness of our approach, we

apply it to the case of the FDAA, by fitting our model to 10

years of incident and dispatch data. We demonstrate a sub-

stantial improvement over the current practice, and confirm

the importance of relocations by showing a significant reduc-

tion in the response time compared to no relocations at all. In

addition, we compare our heuristic to that proposed in Kolesar

and Walker (1974), and argue that ours is easier to implement

and explain, allows the user to control the number of reloca-

tions, and provides better response times. This improvement

is even more pronounced in the case when the major incident

requires many trucks, which is exactly the regime where doing

relocations is essential.

Summarizing, our main contributions are as follows.

• We introduce a new relocation heuristic which is easy to

implement and to explain to practitioners.

• This heuristic grants the user significant control in terms

of the number of relocations made per major incident,

allowing him to strike a balance between coverage gain

and inconvenience to fire fighters caused by additional

relocations.

• Using real-life data, it is tested against three other relo-

cation methods. Our heuristic shows better performance,

especially when there are few trucks available.

The rest of our paper is structured as follows. In Section

2 we provide an overview of the relevant literature. The

model outline is described in Section 3, followed by Section

4 where our relocation algorithm is presented. In Section

5 we discuss the performance metrics used to evaluate the

relocation methods. The simulation and the data used to con-

duct computational experiments, together with the results of

the experiments, are discussed in Section 6. In Section 7 we

conclude and outline future research directions.

2 LITERATURE REVIEW

The topic of this paper falls into the area of organizing emer-

gency service systems, which is usually divided into three

levels: strategic, tactical and operational. At the strategic

level, facility location problems are solved to determine where

to optimally locate the system facilities (eg, fire stations). At

the tactical level, the problem of allocating vehicles (eg, fire

trucks or ambulances) to the facilities is addressed. Often the

strategic and tactical level problems are solved jointly. The

operational level concerns short-term decisions, such as how

to dispatch vehicles to incidents or how to relocate vehicles

between the facilities in real time.

The majority of the research on organizing emergency

service systems have been motivated by ambulance manage-

ment. Reviews of the emergency facility location and ambu-

lance relocation models can be found in Brotcorne, Laporte,

and Semet (2003) Li, Zhao, Zhu, and Wyatt (2011). One of

the first emergency facility location models is the location

set covering model (LSCM) introduced in Toregas, Swain,

ReVelle, and Bergman (1971). LSCM finds the smallest num-

ber and the locations of facilities required to cover every

demand point within a certain universal time threshold. The

same concept of coverage was used in the maximal covering

location problem (MCLP) formulated in Church and ReV-

elle (1974). However, the objective of MCLP is to maximize

population covered by a given number of facilities. These

two basic models were followed by extensions that incor-

porated backup or multiple coverage, and partial coverage.

Examples of such extensions are the hierarchical objective

set covering model (Daskin & Stern, 1981), backup cover-

age models (Hogan & ReVelle, 1986), maximum availability

location problem (ReVelle & Hogan, 1989), double stan-

dard model (DSM) (Gendreau, Laporte, & Semet, 1997), and

MCLP with partial coverage (Karasakal & Karasakal, 2004).

In Daskin (1983) the maximum expected covering location

problem (MEXCLP) was introduced, a probabilistic exten-

sion of MCLP. The MEXCLP model uses the concept of

marginal coverage accounting for the probability that facil-

ities may be busy responding to incidents. The MEXCLP

model was further followed by extensions incorporating
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stochastic travel times (Ingolfsson, Budge, & Erkut, 2008;

Van den Berg, Kommer, & Zuzáková, 2016), time-dependent

demand (Van den Berg & Aardal, 2015), and survival proba-

bilities (Erkut, Ingolfsson, & Erdoğan, 2008; Knight, Harper,

& Smith, 2012).

One of the first models for facility location in a fire depart-

ment context was introduced in Hogg (1968), where the

authors proposed a greedy heuristic for determining the loca-

tions of the fire stations. Since then, various studies have

looked at formulating and solving mathematical programs

for fire department related coverage problems. Such stud-

ies include Plane and Hendrick (1977), where the authors

used a hierarchical objective function for the set-covering

problem in a case study for the Denver Fire Department.

In Schilling, ReVelle, Cohon, and Elzinga (1980), MCLP

and a multi-objective formulation were applied to the city of

Baltimore. A multiobjective model was also used in Badri,

Mortagy, and Alsayed (1998). Recent firefighter-specific

facility location case studies include Chevalier et al. (2012),

Degel, Wiesche, Rachuba, and Werners (2014), Van den Berg,

Legemaate, and Van der Mei (2017).

At the operational level, we limit ourselves to discussing lit-

erature related to relocations. The locations of the emergency

facilities are assumed to be given, of interest is the decision

how to relocate vehicles between those facilities in real time.

The first problem of such type was addressed in Kolesar and

Walker (1974) in the early 70s. The authors introduced the

mathematical programming formulation and a heuristic for

relocating idle trucks during a major incident. The problem of

dynamic ambulance relocation was first discussed in Berman

(1981), where the authors used dynamic programming to find

an optimal solution.

The basic concepts and models developed to solve the

strategic and tactical level problems were further used

to develop relocation models on the operational level for

emergency medical services (EMS). Such models include

the dynamic extensions of DSM (Gendreau, Laporte, &

Semet, 2001) and MEXCLP (Gendreau, Laporte, & Semet,

2006; Van Barneveld, 2016). Additionally, recent approaches

addressed the problem using heuristics (Jagtenberg, Bhulai, &

Van der Mei, 2015; Van Barneveld, Bhulai, & Van der

Mei, 2015), approximate dynamic programming (Maxwell,

Restrepo, Henderson, & Topaloglu, 2010; Schmid, 2012),

stochastic optimization (Naoum-Sawaya & Elhedhli, 2013),

and Markov chains (Alanis, Ingolfsson, & Kolfal, 2013).

It is worth noting that insights and heuristics obtained for

EMS cannot directly be applied to the fire department setting.

One of the main reasons is that fire departments usually expe-

rience much lower incident rates than EMS, and consequently,

the fraction of time each truck is busy responding to incidents

is small. This allows the use of one-shot decision formula-

tions instead of multiple-step or infinite horizon. Moreover,

EMS models are often driven by the regulatory requirement

that are uniform across the coverage area. Fire departments,

however, may impose different time thresholds for different

TABLE 1 Deployment per vehicle type grouped by priority (data: FDAA
2008-2018)

Vehicle type (%)

Priority Incidents Pumper Ladder Rescue Marine rescue

1 88,879 99 28 3 3

2 28,432 95 30 1 2

3 10,085 87 20 2 2

Total 127,396 97 28 3 2

buildings depending on its function and location. Another dis-

tinguishing feature of the fire departments’ operations is that

often multiple trucks are required for one incident.

3 MODEL OUTLINE

We consider a region partitioned into a set of demand loca-

tions , and assume that new incidents start at each demand

location l∈ according to Poisson process with rate 𝜆l.

Poisson arrivals are common in the research literature on

emergency service operations, where the time between events

is indeed memoryless. The rates at which new incidents occur

may differ between demand locations due to, for instance,

population density and building types.

The region is served by a set of fire stations  . Denote by

g(i)∈ the demand location that station i ∈  is located

in. In practice, the fire department uses a range of vehicles,

including pumpers, ladder trucks and trucks specialized in

roadside accidents. A particular incident may require one spe-

cific truck type or a mix. To simplify the analysis, we limit

ourselves to a single type of fire truck that is dispatched to all

incidents. All results, however, generalize easily to the case

with multiple types of vehicles, as discussed in Section 4.1.

This assumption is motivated by the example of FDAA, where

a pumper is dispatched to almost every high-priority incident.

The FDAA fleet usage statistics are summarized by vehicle

type in Table 1. It shows the number of incidents that occurred

over a 10-year period, and for each vehicle type and incident

priority level (priority 1 being the highest) the percentage of

incidents of that priority that required at least one truck of that

type. From this table it is clear that pumpers are dispatched to

almost every incident. Each fire truck has a base station where

it is located when not handling an incident or temporarily relo-

cated to another station. We assume that each fire station is

the base station for at least one truck.

The travel time tlm between each pair of demand locations

l, m∈ is assumed to be deterministic and known. The time

it takes for a truck at station i to travel to another fire sta-

tion j or an incident location l is equal to the travel time

between the corresponding demand locations (ie, tg(i)g(j) and

tg(i)l, respectively). Let qi be the (deterministic) dispatch time

corresponding to station i ∈  , that is, the time it takes for

a truck to leave its base station i after an incident started. We

define the response time of a fire truck from station i ∈ 
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to an incident at a demand location l∈ as rg(i)l := qi + tg(i)l.

Because both the travel times and dispatch times are assumed

to be deterministic, so are the response times.

We denote by i(k)(l) ∈  the kth closest fire station to

demand location l measured in terms of response time, k =
1,… , | |. We define the service area SAi of a fire station

i ∈  as the set of demand locations to which this fire sta-

tion is closest in terms of response time, that is, SAi = {l∈|

i= i(1)(l)}. We assume that for every demand location l∈

there are no two stations i and j such that rg(i)l = rg(j)l. Let di =∑
l∈SAi

𝜆l be the total demand corresponding to the service area

of station i.
The number of trucks required for a new incident is random,

and assumed to be independent and identically distributed

between incidents. When a new incident arises, all required

trucks are dispatched simultaneously. In case there are insuffi-

cient idle trucks, the remainder will be provided by neighbor-

ing fire departments. Whenever a new incident arises, those

idle fire trucks with the smallest response time for the corre-

sponding demand location are dispatched. After the incident

is resolved, all trucks return to their base station. Since we

only consider incidents of the highest priority, this is in accor-

dance with the current dispatching policy of FDAA (and fire

departments elsewhere).

3.1 Response neighborhoods

The relocation heuristic that we present in Section 4 will strive

to relocate trucks to improve coverage, that is, position the

idle trucks to maximize the probability that the next incident

is responded to in time. However, in the fire fighting domain

fairness is an important secondary criterion, as we want to

avoid neglecting certain areas. For instance, not covering rural

areas because this is not optimal from a coverage perspective

may not be acceptable for a fire department, as all fires should

be responded to within certain time limits. Hence, assuming

that the fire department considers its original allocation of

trucks to be fair, we try to maintain that relative distribution

of trucks across the region when relocating.

In order to measure fairness we use the concept of a

response neighborhood (RN) of a set of fire stations N ⊆  ,

defined as the set of all demand locations for which the fire

stations in N are the |N| closest, that is, RN(N)= {l∈ |

N = {i(1)(l), … , i(| N | )(l)}}. If N contains a single station (ie,|N | = 1), its response neighborhood corresponds to the ser-

vice area of that station (ie, RN({i})= SAi). If N contains all

stations (ie, N =  ), its response neighborhood is simply

the collection of all demand locations (ie, RN( ) = ). Note

that the response neighborhood of a set of fire stations may be

empty, for instance if those stations are located on opposite

sides of the service region.

We are particularly interested in the collection of response

neighborhoods corresponding to all sets of fire stations of

equal size n ∈ {1, … , | |}. We denote this by n =
{RN(N) | |N| = n}, and observe that for each n, n forms

a partition of the set of all demand locations . We say that a

fire station i serves response neighborhood k ∈ n if it is one

of the n closest stations for that response neighborhood.

We illustrate the partitioning of demand locations in

Figure 1, which visualizes n in a toy example with three fire

stations. Every point of the rectangular region in Figure 1 is

considered as a separate demand location, and Euclidean dis-

tance is used to determine the response time. Points belonging

to the same response neighborhood have the same color. For

n= 2 (Figure 1b), for example, the region is partitioned into

two response neighborhoods: the light blue is served by the

fire stations 2 and 3, and the dark blue is served by the sta-

tions 1 and 3. In this case there are no points with 1 and 2 as

their closest stations, so RN({1, 2})=Ø.

To store the relation between fire stations  and response

neighborhoods n, we use an | | by |n| incidence matrix

An, with an element an
ik = 1 if the fire station i ∈  serves

the response neighborhood k ∈ n, and an
ik = 0 otherwise.

One fire station can serve several response neighborhoods of

size n, and one response neighborhood of size n is served

by exactly n fire stations. We say that a response neighbor-

hood k is covered if at least one of the fire station serving

this response neighborhood has a truck ready to respond to an

incident.

The notion of response neighborhoods was originally intro-

duced in Kolesar and Walker (1974) for n= 3, and in this

paper we extend it to general n, to allow us to address the

feasibility issues discussed in Section 4.1.

4 RELOCATION ALGORITHM

We consider the moment when a new incident occurs and

the required trucks are dispatched, and are interested in

how to relocate the remaining idle fire trucks between sta-

tions to compensate for the temporary loss of coverage. For

ease of presentation and implementation, we decompose this

problem into two parts, with no loss in performance. In

Section 4.1 we introduce an integer program that identifies

a set of trucks to be relocated and a set of empty stations

to be filled with those trucks. In Section 4.2 we use the

well-known linear bottleneck assignment problem (LBAP)

(Burkard, Dell’Amico, & Martello, 2009, chapter 6) to deter-

mine which of those trucks should be relocated to which sta-

tions. The relocation algorithm uses these two formulations,

and is summarized in pseudocode in Appendix A.

To provide an even coverage of the region, we require that

each response neighborhood k ∈ n, for some fixed value of

n, is covered by at least one truck. In other words, for every

demand location, at least one of the n closest fire stations

should have a fire truck available. The appropriate value of n
is decided upon by the fire department. If an incident involv-

ing at least n trucks happens, some response neighborhoods

in n may become uncovered, and some trucks have to be

relocated to satisfy the requirement.
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(A) n = 1 (B) n = 2 (C) n = 3

FIGURE 1 Representation of the response neighborhoods n for n= 1, 2, 3 [Color figure can be viewed at wileyonlinelibrary.com]

The choice of n influences how frequently relocations will

be made, and how uniformly trucks are redistributed over the

region when making relocations. For lower n we will have to

make relocations more frequently, since the response neigh-

borhoods of smaller size lose coverage more often. However,

the distribution of trucks over the region will be more uniform

when smaller response neighborhoods are covered.

Not every incident should necessarily lead to making relo-

cations, as the coverage may still remain sufficient or the

coverage loss may be for a short period of time. The condition

that triggers the relocation algorithm can be anything, such as

uncovering of response neighborhoods, or the number of idle

trucks falling below some threshold. In the numerical evalu-

ation in Section 6 we run the relocation algorithm whenever

three or more trucks are dispatched in a single major incident.

4.1 Maximum coverage relocation problem

We now introduce some additional notation, in order to for-

mulate the decision which trucks to relocate as a mathematical

program. Let f i be the number of trucks available at a sta-

tion i right after a major incident occurred and the required

trucks are dispatched to it. We also introduce three sets of fire

stations: the set of empty stations  = {i ∈  ∶ fi = 0}, sta-

tions with exactly one available truck  = {i ∈  ∶ fi = 1},

and stations with more than one available truck  = {i ∈
 ∶ fi ≥ 2}. Finally, we use the following three sets of vari-

ables. The variable xij is equal to 1 if we decide to relocate

a truck from station i to station j, and 0 otherwise. The vari-

able zi is equal to 1 if station i has no trucks available after all

the relocations are made, and 0 otherwise. The variable yi is

equal to the number of trucks at station i after all relocations

are completed.

The objective that we want to optimize is a combination

of the gain in coverage obtained from relocation and some

penalty for making too many relocations. The former consists

of multiple terms, depending on whether the relocated trucks

came from stations with multiple trucks or not. If not, the net

gain in coverage can be written as∑
i∈

∑
j∈

xij(dj − di),

and the gain for the cases with multiple trucks present is

represented as ∑
i∈

∑
j∈

xijdj −
∑
i∈

zidi.

The penalty for relocation is simply given by the total num-

ber of relocations made,
∑

i∈
∑

j∈xij. Combining these we

obtain the objective function (1) below.

The weight parameter W ∈ [0, 1] serves two purposes. First,

when chosen correctly it ensures that both components of the

objective function have the same order of magnitude. Second,

it indicates the willingness to relocate. If W = 0, the smaller

number of relocations is made to satisfy the constraints. If

W = 1, the gain in demand covered is maximized indepen-

dently of the number of relocations made. The value of W
can be set by the user of the relocation heuristic. The rele-

vant range of parameter W depends on the data, as the order

of magnitude of the gain in coverage (the first term of the

objective (1), see below) depends on the fire department’s pol-

icy. Specifically, it is affected by the locations of fire stations,

the allocation of trucks, and on the frequency and spatial dis-

tribution of the incidents. If W is too large (close to 1), too

many relocations are made. Conversely, if W is close to 0

then coverage is ignored completely, and an arbitrary feasible

solution (satisfying (2), see below) is chosen. For instance, in

our case, W = 0.01 was sufficient to ensure that the number

of relocations made does not exceed the minimum required

by the constraints (2) while resulting in substantial coverage

gains. However, the choice of W also depends on the user’s

http://wileyonlinelibrary.com
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willingness to relocate fire trucks. In Section 6.3.4 we show

how the system performance can be improved by increasing

W and allowing users to make additional relocations.

As mentioned above, in addition to maximizing coverage,

we also aim for fairness, by ensuring that all response neigh-

borhoods are covered after relocations are finished. To do

this, we impose constraint (2) below. Combining the objective

function and this fairness constraint, we are in position to pro-

vide the Maximum Coverage Relocation Problem (MCRP)

formulation:

max W

(∑
i∈

∑
j∈

xij(dj − di) +
∑
i∈

∑
j∈

xijdj −
∑
i∈

zidi

)
− (1 − W)

∑
i∈

∑
j∈

xij, (1)

s.t.
∑
i∈

an
ikyi ≥ 1, ∀k ∈ n, (2)∑

j∈

xij ≤ fi, ∀i ∈  , (3)∑
j∈

xji ≤ 1, ∀i ∈  , (4)

1 − zi ≤ yi, ∀i ∈ , (5)

yi = fi +
∑
j∈

xji −
∑
j∈

xij, ∀i ∈  , (6)

xij = 0, ∀i ∈  , j ∈  ∪, (7)

xij, zi ∈ {0, 1}, ∀i, j ∈  ,

xij, zi ∈ {0, 1} (8)

yi ∈ {0, 1, …}, ∀i ∈  . (9)

Here, constraints (3) do not allow to relocate more trucks

than available at a station. At most one truck is relocated

to the same empty station due to (4). Constraints (5) force

the decision variable zi to take value 1 if station i becomes

uncovered in a given solution. Constraints (6) ensure that the

variables yi have the correct values. Finally, (7) makes sure

that relocations are made only to the empty stations.

Fire departments typically have very strict rules about what

vehicles are dispatched to what types of incidents (in partic-

ular for high priority incidents). Specifically, FDAA uses a

dispatching policy where for each type of incident it is pre-

defined how many trucks of each type are needed, and the

vehicles of different types are typically not mutually substi-

tutable. Hence, the model can be easily applied to multiple

types of trucks by decomposing the problem into different

vehicle types. In this case response neighborhoods, coverage

requirements and the objective coefficients are defined for

each vehicle type separately. The same formulation can then

be used with different input data to find optimal relocations

for each type of trucks independently of other types.

Note that different fire departments may have policies or

rules that impose additional constraints which can be easily

included in our model. In the case of FDAA, for example, fire

stations are of two types: professional and volunteer. Trucks

from volunteer fire stations are not allowed to relocate. We

can take this into account by adding the following constraint

to the MCRP formulation:

yi ≥ vi ∀i ∈  ,

where vi is the number of volunteer trucks at station i before

making relocations. In our numerical evaluation in Section 6

we will include this constraint as well.

Remark 1 (MCRP feasibility). It can be infea-

sible to satisfy the MCRP constraints (2) for

a given value of n if the number of available

idle trucks is too small to cover all response

neighborhoods in n. A similar set of con-

straints to ours was used in Kolesar and Walker

(1974)) with the definition of response neigh-

borhood implying a fixed size of it. Kolesar and

Walker (1974) admit that there may be no fea-

sible solution to their problem, and that the fire

department in this case uses some emergency

allocation procedures. To handle this problem

we introduce the starting response neighbor-

hoods’ size n0 ∈N. We suggest to initially solve

MCRP with n= n0. If the problem is infeasible,

we set n= n0 + 1, and solve MCRP again. We

continue incrementing n by 1 until the problem

is feasible. As the size n of response neigh-

borhoods increases, fewer trucks are needed to

satisfy constraint (2). Assuming that there is at

least one idle truck available, the problem is

always feasible with n = | |, as there is only

one response neighborhood in | |.
Remark 2 (MCRP generalization). In the for-

mulation (1) to (9) we partition the region into

response neighborhoods of the same size n to

ensure that each demand location has at least

one idle truck at one of the n closest fire stations.

This approach appeals to FDAA as it provides

fairness across the region, independent of the

arrival rates of new incidents. If needed, by

increasing the W parameter additional reloca-

tions can be made so that the busier response

neighborhoods are covered by more trucks if

the number of idle trucks exceeds the minimum

required to satisfy constraint (2). Although this

definition of fairness was requested by FDAA,

other fire departments may have different con-

straints. For example, one could require for one

set of demand locations to have at least one idle

truck at one of the two closest stations, and for

another set to have at least two trucks at one

of the five closest stations. To allow for this,

in Appendix B we provide a generalized for-

mulation of MCRP that can incorporate more
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complicated response neighborhood structures

and their coverage requirements.

4.2 Linear bottleneck assignment problem

There may be several optimal solutions to MCRP that would

relocate the same set of trucks to the same set of empty sta-

tions. For instance, assume that the MCRP model proposes

to relocate one truck from station 1 to station 2, and another

truck from station 3 to station 4. For the MCRP model this

solution is equivalent to the one where we relocate a truck

from station 1 to station 4, and another truck from station 2 to

station 3. However, in practice, because of differences in trav-

eling time between the stations, these two solutions can differ

in terms of time it takes to realize them.

To maintain good coverage levels in real-time, we want

to move to a new configuration of trucks as fast as possi-

ble. A similar task for ambulance relocation was addressed in

Van Barneveld (2016) using the LBAP, that can be solved in

polynomial time (Burkard et al., 2009, chapter 6). We formu-

late LBAP in the context of fire truck relocation. Let xij for

i, j ∈  be the solution of MCRP. Next we construct the set

of origin fire stations O and the set of destination fire stations

D as follows. For every pair (i, j) such that xij = 1, we add sta-

tion i into the set of origins O, and we add station j into the

set of destinations D. There can be more than one truck relo-

cated from the same station i elsewhere. In this case we add

station i to the set O as a separate element for each truck relo-

cation from this station. Hence, multiple origins o∈O may

correspond to the same fire station. Due to constraints (4) it is

never optimal in MCRP to relocate more than one truck to the

same station j, so each of the destination stations appears in

the set D only once. Without constraints (4) it could be ben-

eficial to relocate multiple trucks to the same empty station,

as each truck would contribute to the objective function in the

same way. The obtained sets O and D are of the same size,

containing origins and destinations for all the trucks that have

to be relocated. Let the decision variable x̂od be equal to 1 if a

truck should be relocated from station o∈O to station d ∈D,

and 0 otherwise. The problem of minimizing the maximum

traveling time over all relocations can then be formulated as

follows:

min max
o∈O, d∈D

tg(o)g(d)x̂od, (10)

s.t.
∑
d∈D

x̂od = 1, ∀o ∈ O, (11)∑
o∈O

x̂od = 1, ∀d ∈ D, (12)

x̂od ∈ {0, 1}, ∀o ∈ O, ∀d ∈ D. (13)

Here we use the function g introduced in Section 3 to indi-

cate the demand locations corresponding to the elements of O
and D. Constraints (11) and (12) ensure that exactly one truck

is relocated from each origin o∈O, and exactly one truck is

assigned to each destination d ∈D, respectively.

5 PERFORMANCE METRICS

There are many possible ways of measuring the performance

of an emergency service system. In this section we present

some of the main performance metrics used by practitioners

and researchers. Assume we have a sequence of incidents .

Let ri denote the response time for incident i∈. The perfor-

mance metrics we consider are of the form
∑||

i=1
Φ(ri)∕||,

whereΦ(.) is a non-decreasing one-dimensional penalty func-

tion. So we consider the average penalty over incidents

in .

One of the most commonly used penalty functions, shown

in Figure 2a, is a linear penalty function:

Φ(ri) = ri, i ∈ , (14)

which represents the response time. The disadvantage of

this performance measure is that even if the overall aver-

age response time is low, there can be a lot of variability in

response time for particular incidents.

Alternatively, the fire department can use time thresholds,

indicating how soon incidents should be responded to since

the moment of an alarm. It can be a single time threshold T
for the whole region, or different time thresholds for different

demand locations. Assume Ti is the time threshold corre-

sponding to the ith incident’s location. The penalty function

displayed in Figure 2b corresponds to the “fraction of late

arrivals” performance metric, and is defined as follows:

Φ(ri) =

{
0, if ri ≤ Ti

1, if ri > Ti.
(15)

However, the disadvantage is that this function gives the

same penalty no matter how much the response time exceeds

the time threshold. So, once the response time threshold has

been exceeded, further delays will not be penalized.

The final penalty function we consider is a combination of

the first two:

Φ(ri) =
⎧⎪⎨⎪⎩

a e𝛼ri∕Ti−1

e𝛼−1
, if ri ≤ Ti

1 − b e𝛽(2Ti−ri )∕Ti−1

e𝛽−1
, if ri > Ti.

(16)

Here, parameters a, b, 𝛼 and 𝛽 allow us to adjust the shape of

the function, providing flexibility in the system performance

evaluation. The parameters a and b define the points where

the two functions comprising Φ(.) intersect the time threshold

Ti, and the parameters 𝛼 and 𝛽 define the steepness of those

functions. Examples of the compromising penalty function

for different parameters’ values are presented in Figures 2c-d.

6 NUMERICAL EXPERIMENTS

In this section we evaluate the performance of our relocation

algorithm by applying it to incident data from FDAA. In our

computational experiments we compare it to the following

three benchmarks:
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FIGURE 2 Examples of penalty functions Φ(ri) [Color figure can be viewed at wileyonlinelibrary.com]

1 Using our algorithm (Appendix A) with

the MCRP formulation substituted with

the adapted version of the mathematical

program proposed in Kolesar and Walker

(1974). We refer to this relocation strat-

egy as KW. The adapted formulation can be

found in Appendix C, where we discuss in

detail how to implement this formulation,

and highlight several implementation issues

that may arise.

2 The relocation algorithm used in current

practice by FDAA. This algorithm was orig-

inally developed between 1994 and 1996,

and different dispatchers use their own inter-

pretation of it during deployment, based on

their experiences and intuition. A detailed

description of this algorithm can be found

in Appendix D. We refer to this relocation

strategy as CP.

3 Making no relocations, referred to as NR.

In Kolesar and Walker (1974) the authors note that the

integer programming formulation used in the KW heuris-

tic cannot be solved exactly in a reasonable amount of

time. They, therefore, decompose the problem in two stages

and solve it heuristically. However, nowadays computational

time is no longer an issue for solving both MCRP and

KW integer programs exactly, for realistic problem sizes. In

our computational experiments we used Gurobi MIP solver

(Gurobi Optimization Inc., 2017) that was able to find exact

solutions in a matter of seconds.

6.1 Simulation

We simulate the FDAA operations to measure the perfor-

mance of the four strategies. Here we describe how the

simulation works.

We generate the sequence of incidents over a given time

horizon. Each incident has four attributes. These are time,

location, size in terms of the number of trucks involved,

and duration. The duration of an incident is defined as the

time between the arrival of the first truck to the location of

the incident, and the end of the incident. We then process

the sequence of incidents using one of the four relocation

strategies.

In each demand location l new incidents arrive with rate

𝜆l. Given the demand location of a new incident, we also

know the corresponding service area. The service area is fur-

ther used to sample the random size of an incident. The size

of an incident is independent of other incidents and identi-

cally distributed for the same service area. It is drawn from

an empirical distribution based on data for the correspond-

ing service area. For the duration of an incident we use a

Weibull distribution, where the parameters are fit to the data

corresponding to the service area and the size of an incident.

As there are less data available for large incidents, we group

these and use the same parameters for all major incidents in

the same service area. In order to arrive at realistic values for

the duration, this distribution is truncated between 0.1 and

24 hours. We choose the Weibull distribution because it has

positive support and allows us to accurately fit the data.

When we process the sequence of incidents, the trucks are

dispatched to incidents according to their mean response time

http://wileyonlinelibrary.com
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for a given demand location. The dispatch and traveling times

are assumed to be deterministic. Each truck can be in one of

the two states. It is either “busy” with an incident or “avail-

able” to be dispatched. When a truck is dispatched to an

incident, its state changes to “busy.” The state of a truck is

switched to “available” again immediately after the incident is

finished, and the truck starts traveling to the fire station it was

assigned to. We do not track the exact location of fire trucks.

We only track their “destination” fire stations. So, when dis-

patching a truck that is relocating or returning from another

incident, we assume it to be dispatched from its “destination”

fire station.

Whenever a major incident occurs, we consider relocating

trucks using one of the four relocation strategies mentioned

earlier. If the truck is relocated, its “destination” changes to

the fire station it is relocated to. The state of such truck

remains “available.” The relocated truck goes back (changes

its “destination”) to its base station whenever another “avail-

able” truck is assigned to the station the first truck was

relocated to.

6.2 Data

In order to estimate the input parameters of the simulation,

we use the real-world data from FDAA. This fire depart-

ment currently operates 22 pumpers located at 19 fire stations,

and covers 6 municipalities with total population of approx-

imately one million inhabitants. In our simulation we omit

one volunteer station with one pumper that does not have its

own service area. There are several professional fire stations

close to it, so the truck from this station is never the closest

to any incident because of the relatively large dispatch time

associated with volunteer fire fighters.

We use the partitioning of the region into 2,663 demand

locations defined and used by FDAA. Those demand loca-

tions are the polygons comprising the region in Figure 3.

FDAA also provided us with the average traveling times

between each pair of demand locations. In addition, we

received information on all the incidents that occurred in the

FDAA coverage area over the 10-year period 2006-2015. This

information includes for each incident its location, starting

and end times, and the specific trucks used to handle the inci-

dent. For every truck, we know the time it took to dispatch to

an incident location from the moment of an alarm, the trav-

eling time between the fire station and the incident location,

the time it spent at the scene, and the time it took to return to

the fire station.

The incidents are distinguished into three priority levels.

Priority 1 incidents are the most important and constitute the

majority of all incidents. The trucks busy with either a priority

2 or a priority 3 incident can be dispatched to a priority 1 inci-

dent upon request. To evaluate the arrival rates, we use only

the data on priority 1 incidents to which at least one fire truck

was dispatched. Figure 3 represents the spatial distribution

of incidents, with darker demand locations corresponding to

FIGURE 3 Spatial distribution of incidents [Color figure can be viewed at

wileyonlinelibrary.com]

higher arrival rates. The overall arrival rate is 21.28 incidents

per day. The average duration of an incident is 1.16 hours,

and the average number of available trucks upon an incident

arrival is 19.6 out of 21. So on average the trucks are idle most

of the time. In fact, an average fire truck is busy responding

to priority 1 incidents only about 3.5% of the time.

FDAA uses four different time thresholds T depending on

the type of the building where an incident happened: 5, 6, 8

or 10 minutes. For every demand location l∈ we know the

number nlT of buildings with the corresponding time thresh-

old equal to T . To get a single time threshold Tl for every

demand location l∈ we compute a weighted average as fol-

lows: Tl = (5nl5 + 6nl6 + 8nl8 + 10nl10)/(nl5 + nl6 + nl8 + nl10).

These time thresholds are used to calculate performance

measures below.

6.3 Computational results

In this section we present the results of the experiments con-

ducted using the FDAA data and the simulation. Both MCRP

and KW formulations were solved using the state-of-the-art

mathematical programming solver Gurobi Optimizer (Gurobi

Optimization, Inc., 2017).

6.3.1 Aggregate performance
First, we run the simulation of FDAA over a time horizon of

200 years with the starting RN size n0 equal to 3 and param-

eter W = 0.01, that is sufficiently small to make the fewest

number of relocations. We do not set W = 0 since in this case

the model finds an arbitrary solution with the smallest num-

ber of relocations neglecting the secondary objective. We use

the same sequence of incidents for all four relocation strate-

gies. To compute the performance of the system, we keep

http://wileyonlinelibrary.com
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TABLE 2 Aggregate results computed over 200 years simulation run

MCRP KW CP NR

ART (seconds) 413 417 466 511

FLAR5 (%) 75.1 77.2 84.7 88.7

FLAR6 (%) 56.8 58.3 71.2 79.4

FLAR8 (%) 29.7 29.9 42.4 53.3

FLAR10 (%) 12.6 12.8 20.9 29.4

FLAR 32.2% 32.7% 45.3 56.1

CPFc 0.330 0.335 0.457 0.561

CPFd 0.330 0.335 0.458 0.562

CPFe 0.298 0.300 0.418 0.520

track of the response times for all the incidents. Then we limit

ourselves to those incidents such that at least one of the four

relocation strategies results in a different response time from

the others. This is done in order to isolate those incidents that

are affected by the coverage gap left by the major incident and

the relocation decision made by one of the algorithms. We call

these incidents the decisive subset of all incidents. The per-

formance metrics are calculated using this decisive subset. In

our experiments the decisive subset constitutes 33.3% of all

incidents that occurred simultaneously with a major incident.

And the incidents that happen simultaneously with a major

incident constitute 3.4% of all incidents.

We use the following notation to refer to the performance

measures. ART for the average response time (14) and FLART
for the fraction of late arrivals (15) given a single time thresh-

old T . Using different time thresholds Tl for different demand

locations l∈, we also compute FLAR and the three ver-

sions of the compromise penalty function (16) CPFc, CPFd
and CPFe from Figure 2c-e, respectively. For the time thresh-

old T we choose the four values used by FDAA: 5, 6, 8 and

10 minutes. These performance metrics, computed over the

decisive set of incidents, are presented in Table 2. The results

show that the MCRP model outperforms all other approaches,

and making no relocations is the worst strategy. Improvement

made by MCRP over the NR scenario is 19.2% in terms of

ART , 42.6% in terms of FLAR, and 15.3% to 57.2% in terms

of FLART . The KW model performs quite close to MCRP,

with the biggest difference observed in terms of FLART for

time threshold T equal to 5 and 6.

6.3.2 Impact of the number of busy trucks
Table 2 compares the four scenarios over all incidents that

occur when there are at least three trucks already busy. Next,

we break down the same decisive subset of incidents by the

number of trucks already busy upon arrival of an incident.

Figure 4 shows relative improvement over the NR reloca-

tion strategy as a function of the number of trucks occupied

elsewhere.

We can see that the KW and MCRP models perform

approximately the same until the number of busy trucks

reaches 7. If 7 trucks or more are already occupied, MCRP

significantly outperforms KW. The reason is in the objective

of KW. Each cost coefficient in the KW model objective is an

estimate of the average response time during the major inci-

dent if the corresponding relocation is made (see Appendix

C). The average response time depends on the configura-

tion of all the trucks, and, therefore, on all the relocations

made. Hence, the effect of every single relocation depends

on whether and how other trucks are relocated. This depen-

dency is not taken into account in the KW objective. Hence,

the more relocations we make, the less accurate the estimates

are. When bigger incidents happen, we have to relocate more

trucks to satisfy the coverage constraints, and this increases

inaccuracy of the objective of KW.

For the subset of incidents occurring when there are at least

7 trucks busy, Figure 5 plots the FLART performance measure

as a function of time threshold T , ranging from 0 to 20 minutes

with the step of 5 seconds. The MCRP and KW lines are sig-

nificantly below the other two methods. They are close to each

other, but MCRP is consistently better for the time thresholds

between 3 and 10 minutes. For T between 7 and 9 minutes,

FLART is at least 5% better with the MCRP model than the

corresponding value with the KW model.

6.3.3 Confidence intervals
Next, we split the 200 years incidents sequence into 400 inter-

vals of 6 months length. We compute the ART and FLAR
performance measures over each interval for every scenario,

and calculate the 95% confidence intervals for the obtained

values. We do this first for the incidents that occur when there

are at least 3 trucks busy, and then for the subset with at least 7

trucks already occupied. These confidence intervals are plot-

ted in Figure 6. Again, MCRP shows the best performance,

with both sides of the confidence intervals having the low-

est values. The most significant improvement over the other

methods is observed in terms of FLAR when there are at least

7 trucks busy.

6.3.4 Varying parameter W
So far we measured the performance with the two models

KW and MCRP making the smallest number of relocations

required to cover every response neighborhood. Now we show

how the performance changes for the KW and MCRP mod-

els if we change the value of parameter W to allow for more

relocations. We generate a sequence of incidents over 50 years

time horizon. Then we run the two scenarios using the KW

and MCRP models for different values of W so that the num-

ber of relocations made per major incident gradually increases

from the minimum required to the maximum possible with

both models. We vary W in the range between 0.01 and 0.999,

and for each value of W we report the average number of relo-

cations made per major incident and the average performance

over the generated 50 years incidents sequence. In Figure 7

ART and FLAR are plotted against the number of relocations

made per major incident.
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FIGURE 4 Performance as a function of the number of busy fire trucks [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 FLART plotted as a function of time threshold T [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Confidence intervals [Color figure can be viewed at wileyonlinelibrary.com]

First, since the KW model associates costs with each relo-

cation, and the objective is to minimize the total costs, it does

not make many more relocations than the minimum required,

even if we set the parameter W equal to 1 (see Appendix C)

and allow for as many relocations as possible. The minimum

number of relocations needed to satisfy the constraints is 1.2

per major incident with both models. The maximum obtained

is 1.3 with the KW model, and 3.2 with the MCRP model.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 7 Change in performance if gradually increasing the number of relocations made per major incident [Color figure can be viewed at

wileyonlinelibrary.com]

Secondly, we can see that making more relocations boosts

the performance of the MCRP model. Making just about 0.5

relocations more than the minimum required decreased ART
by 2.6% (10 seconds), and FLAR by 11.8%. In contrast, allow-

ing for more relocations does not improve the performance of

the KW model. In fact, when making more relocations the per-

formance of the KW model slightly decreases, most likely due

to the negative effects on the KW model’s objective accuracy.

The reasons behind this decrease in accuracy are discussed in

more detail in Appendix C.3.

6.3.5 Risk maps
So far we looked at the overall performance over the entire

region. We may also construct the risk maps of the region

shown in Figure 8. To do this, we simulate 100 major inci-

dents for each demand location. The size of each incident is

sampled from the empirical distribution for the correspond-

ing service area, and the duration is sampled from a Weibull

distribution, as described in Section 6.1. For each major inci-

dent the relocations are made using one of the four strategies,

with both KW and MCRP making the minimum number of

relocations required to satisfy the constraints (W = 0.01). The

new incidents are then generated until the major incident is

resolved. We keep track of response times to those simulta-

neous incidents, and compute ART for each demand location

over all the incidents.

In the end, we get four values of ART for each of the

2,663 demand locations, so 10,652 measurements in total. We

use these values to color the demand locations in Figure 8.

We pick an interval between 355 and 455 seconds containing

about 98% of all 10,652 observations excluding very small

and very large ART values. We then divide this interval into

subintervals of 5 seconds, and color the demand locations

gradually changing from dark green (ART below 355 seconds)

to dark red (ART above 455 seconds).

Figure 8 shows that the KW and MCRP models provide a

significantly higher level of coverage during the major inci-

dents overall and a much more fair coverage across the region.

Comparing these two models, MCRP showed a better overall

performance than KW while keeping a fair coverage of the

whole region. For example, ART and FLAR computed over

all simultaneous incidents are 378 seconds and 24.6%, respec-

tively, with the MCRP model against 383 seconds and 25.5%

with the KW model.

7 DISCUSSION

In this paper we considered the problem of relocating

fire trucks during major incidents, to compensate for gaps

in the coverage arising from the large number of trucks

required for the incident. We proposed a novel reloca-

tion algorithm that solves a Maximum Coverage Relocation

Problem (MCRP) whenever a major incident arises, in order

to find the best relocations. The MCRP model is then tested

by applying it to the operations of the FDAA. We cali-

brated the model based on 10 years of historical incident

data from the fire department, and used discrete-event sim-

ulation to evaluate its performance. We demonstrated that

MCRP shows massive gains compared to not doing any

relocations at all, and also provides significant improve-

ment over the current practice at the FDAA. We also com-

pared MCRP with the state-of-the-art as proposed by Kolesar

and Walker (1974). We showed that MCRP performs bet-

ter for larger incidents and, unlike the KW model, benefits

from increasing willingness to make relocations. Moreover,

MCRP is argued to be more flexible and easier to implement

than KW.

For future work we intend to test MCRP on data from

different fire departments, to better evaluate its performance

across a wide range of possible scenarios. In addition, the

framework presented here can be extended in various ways.

First, our definition of coverage can be modified to include

the risk in certain demand locations, in addition to the rate

at which new incidents arise. For instance, a fire at a chem-

ical plant may prove disastrous if not responded to in a

timely manner, so a demand location housing a chemical plant

should be weighted heavier than a demand location corre-

sponding to farm land. Other extensions include dealing with

http://wileyonlinelibrary.com
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FIGURE 8 ART computed conditioning on location of a major incident over all simultaneous events. Colors range from dark green (below 330 seconds) to

dark red (above 449 seconds) [Color figure can be viewed at wileyonlinelibrary.com]

incidents that require a mixture of different vehicle types

(such as a ladder truck and a pumper) and explicitly modeling

stochastic effects, such as random travel times and incident

durations.
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APPENDIX A: ALGORITHM PSEUDOCODE

Algorithm 1 Relocation algorithm

function RELOCATE n0

n ← n0

X ← MCRP(n)
while X is empty do

n ← n + 1

X ← MCRP(n)
end while
X̂ ← LBAP(X)

end function

We summarize the relocation Algorithm in 1. The

algorithm uses the MCRP and LBAP formulations, and is

launched whenever an incident occurs involving at least n0

trucks. The fire department decides up front on the proper

value of n0 as discussed in the beginning of Section 4. Let
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MCRP(n) be interpreted as a function that takes parameter n
as an argument, solves MCRP with response neighborhoods

of size n, and outputs | | × | | matrix X with elements

Xij = xij, that is, the solution of MCRP. Assume, MCRP(n)

outputs the empty matrix in case the corresponding MCRP is

infeasible. Let LBAP(X) be the function that takes the matrix

X =MCRP(n) as an argument, solves LBAP constructed as

described in Section 4.2, and outputs | | × | | matrix X̂
with elements X̂ij = x̂ij (ie, the solution of LBAP).

APPENDIX B: MCRP GENERALIZATION

In this section we formulate the MCRP generalization that can

incorporate various RN structures, potentially of different car-

dinality and coverage requirements. Let be a set of response

neighborhoods, where k ∈  is a collection of demand loca-

tions for which at least bk idle fire trucks are required to

be at stations k ⊆  . The following is the generalized

formulation of MCRP:

max W

(∑
i∈

∑
j∈

xij(dj − di) +
∑
i∈

∑
j∈

xijdj −
∑
i∈

zidi

)
− (1 − W)

∑
i∈

∑
j∈

xij, (B1)

s.t.
∑
i∈

an
ikyi ≥ bk, ∀k ∈ , (B2)∑

j∈

xij ≤ fi, ∀i ∈  , (B3)∑
j∈

xji ≤ 1, ∀i ∈  , (B4)

1 − zi ≤ yi, ∀i ∈ , (B5)

yi = fi +
∑
j∈

xji −
∑
j∈

xij, ∀i ∈  , (B6)

xij = 0, ∀i ∈  , j ∈  ∪, (B7)

xij, zi ∈ {0, 1}, ∀i, j ∈  , (B8)

yi ∈ {0, 1, …}, ∀i ∈  . (B9)

This formulation differs from the formulation (1) to (9) in

constraints (2). Here, instead of partitioning the region into

the RNs n of the same cardinality n, any partitioning  of

the region is possible. A partition k ∈  is required to be

covered by at least bk ∈N fire trucks instead of 1, as in (2).

APPENDIX C: KOLESAR AND WALKER
FORMULATION

Here we provide an extended version of the approach from

Kolesar and Walker (1974). As mentioned in Section 3 the

original definition of RN used in Kolesar and Walker (1974)

implied a fixed size depending on the type of vehicle. We

parametrize the size of RN to be able to extend it in case the

model is infeasible for a given value of RN size. It allows us

to use the KW model in the algorithm presented in Section

4 instead of the MCRP model. We also introduce the W
parameter in the KW objective in the same manner as for the

MCRP model to see how the model performs if we increase

willingness to relocate (see Section 6.3.4).

In the KW formulation we use the same notations as in

the MCRP formulation. The KW model can be formulated as

follows:

min W
∑
i∈

∑
j∈

cijxij + (1 − W)
∑
i∈

∑
j∈

xij, (C1)

s.t.
∑
i∈

an
ikyi ≥ 1, ∀k ∈ n, (C2)

yi = fi +
∑
j∈

xji −
∑
j∈

xij, ∀i ∈  , (C3)∑
j∈

xij ≤ fi, ∀i ∈  , (C4)

xij ∈ {0, 1}, ∀i, j ∈  , (C5)

yi ∈ {0, 1, …}, ∀i ∈  . (C6)

The objective function (C1) consists of two parts. The first

part is an indication of the expected total response time dur-

ing the major incident multiplied by parameter W, as we

discuss in detail in Appendix C.1. The second part is the

number of relocations made, multiplied by (1−W). This

objective is equivalent to the original one if the W parameter

is close enough to 0, so the minimum number of relocations is

made to satisfy the constraints. Constraints (C2) require every

response neighborhood to be covered by at least one truck,

and constraints (C4) ensure not more than available trucks

are relocated from every station. Note that the KW formu-

lation does not have constraints (4)/(B4). Those constraints

prevent relocating more than one fire truck to the same sta-

tion, which otherwise could happen in case of W > 0, as in

MCRP each relocation is associated with a positive gain in the

objective function. In the KW formulation, each relocation is

associated with a cost. Relocating trucks beyond the first to an

empty station can only make a feasible solution infeasible, by

uncovering one or more response neighborhoods, while not

increasing coverage. Hence, it is never optimal in the KW for-

mulation to relocate more than one truck to the same empty

station.

The main difference between the KW and the MCRP for-

mulations is in the first component of the objective function.

While the MCRP model maximizes the gains in coverage

obtained by making relocations, the KW model minimizes the

total costs
∑

i∈
∑

j∈ cijxij incurred by making relocations.

The cij’s themselves do not have a clear interpretation, but the

difference in the objective between two candidate relocation

solutions is an estimation of the difference in the expected

total response time to the incidents arriving during the fire

that triggered the relocation. In other words, the solution to

the KW model minimizes an approximation of the expected

total response time to incidents occurring during the major

incident.
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Computing these cij factors is a complex task that requires

more detailed data and computations compared to MCRP.

Below, we provide a procedure for computing the cij along the

lines of Kolesar and Walker (1974). This is intended both to

clarify the interpretation mentioned above, as well as to illus-

trate why the performance of the KW model decreases for

larger incidents, when more relocations are required to satisfy

constraints (C2).

C.1 Computing the cij coefficients

The definition of the cij is based on the square root law,

which was first stated in Kolesar and Blum (1973) as a way

to approximate the expected traveling time to an incident.

Consider a region with area A that is served by N fire sta-

tions. By the square root law, the expected distance between

the locations of the incidents and the fire stations closest

to those incidents can be approximated as D = K
√

A∕N,

where K is some constant. In the remainder of this subsection,

we describe how the authors in Kolesar and Walker (1974)

propose to use the square root law to define and compute

the cij.

Denote by Ai a physical area of the service area of station

i, and by di the arrival rate of incidents in the service area of

station i. Constants c1 and c2 are chosen such that c1

√
Ai is

a good estimate of the expected response distance D(1)
i of the

closest fire truck to the incidents in service area i, and c2

√
Ai

is an estimate of the expected response distance D(2)
i of the

second closest truck to the incidents in service area i. We will

discuss choosing the c1 and c2 in Appendix C.2.

Denote the average response velocity in the service area of

station i by vi. These can be evaluated using the distance and

traveling time data. Let i(1)j denote the station where the closest

truck to j is located. The arrival rate of incidents in the service

area of station i is computed as di =
∑

j∶i(1)j =i𝜆j. Let t denote

the duration of the major incident, then the aggregate response

time over all incidents in the service area of station i dur-

ing the time interval [0, t] can approximated with c1

√
Aidit∕vi

if i has a truck available, and with c2

√
Aidit∕vi if it

does not.

The KW model was developed with the main objective to

cover all response neighborhoods with minimum number of

relocations. In their iterative approach, the empty fire stations

to be covered were defined first, and then the trucks were

chosen for relocation to those empty fire stations. Assume

that station j ∈  is to be covered, and a set of stations 

have a truck available for relocation. We need to decide from

which station i∈ to relocate a truck to station j. Denote

𝛼i = di
√

Ai∕vi and let rij be the driving time from station i∈

to station j. Let T > t denote the time when the major inci-

dent is finished, and all trucks have returned to their original

stations, then the aggregate response time over all incidents

during [0, T] in the response area of the region  ∪ {j}, given

that a truck from station i∈ is relocated to the empty station

j, can be approximated with

(c2 − c1)[𝛼i(t + rij) + 𝛼jrij] + c1T
∑

k∈∪{j}
𝛼k.

The second term c1T
∑

k∈∪{j}𝛼k in the expression above

indicates the total response time in case all the station had an

idle truck, and the first term accounts for the fact that demand

locations in the service areas of stations i and j are served

by the second closest truck during t+ rij and rij time units,

respectively. As the second term is the same for any poten-

tial relocation, it is then omitted, and the cost cij of relocating

an available fire truck from station i to an empty station j is

approximated by

cij = (c2 − c1)[𝛼i(t + rij) + 𝛼jrij]. (C7)

In our implementation of the KW model, the value t in

(C7) for the duration of a major incident is picked as a sam-

ple average over the historical incidents data, and is equal to

3 hours.

C.2 Fitting historical data

Recall that c1 (c2) denotes a constant such that c1

√
Ai (c2

√
Ai)

is a good approximation for the expected response distance

in region i if the closest (second-closest) truck is dispatched.

In order to estimate the parameters c1 and c2 we use linear

regression based on the following data of the FDAA: The

arrival rates 𝜆j of new incidents for every demand location j,
the distance dij and the travel time tij between any pair of a

demand location j and fire station i.
Based on the given travel times, the service areas are

constructed for every station i, and the physical area Ai is

computed for a corresponding service area. The expected dis-

tance of the closest and the second closest trucks to incidents

arriving in a service area i is computed based on the provided

arrival rates, travel times (for D(2)
i to define which truck is

second closest for every demand location in a given service

area), and distances. Remember that i(1)j denotes the station

where the closest truck to j is located. Let also i(2)j indicate the

fire station with the second closest truck to demand location j.
Given the data mentioned above, we can estimate the expected

traveling distance of the closest and the second closest truck

in a service area of station i as

D̃(1)
i =

∑
j∶i(1)j =i𝜆jdi(1)j j∑

j∶i(1)j =i𝜆j
and D̃(2)

i =

∑
j∶i(1)j =i𝜆jdi(2)j j∑

j∶i(1)j =i𝜆j
,

respectively. Based on the obtained estimations D̃(1)
i and D̃(2)

i
for 17 fire stations, and the corresponding data on physical

areas Ai, a simple linear regression is fit to model the relation-

ships D(1)
i = c1

√
Ai and D(2)

i = c2

√
Ai. The obtained linear

regression is shown in Figure C1.

As the graphs show, the linear regression does not fit the

data well. Specifically, the coefficient of determination R2 is

equal to −0.58 for the c1 regression and to −1.19 for the c2
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FIGURE C1 Linear regression for c1 and c2 parameters [Color figure can be viewed at wileyonlinelibrary.com]

model. The root-mean-sqare error (RMSE) is 0.77 and 1.79,

respectively. The coefficient of determination is computed as

R2 = 1− SSres/SStot, where SSres is the residual sum of squares

and SStot is the total sum of squares. Hence, the negative value

of R2 means that a horizontal line that is the mean of the

data provides a better fit than does the fitted function. We

conjecture that this poor fit is due to the irregular road net-

work in the FDAA coverage area, which is in sharp contrast

with the grid-like network in NY, for which the approach in

Kolesar and Blum (1973) and Kolesar and Walker (1974) was

developed.

C.3 Implementing the KW model

In order to implement the KW model, we require the follow-

ing data:

• the arrival rate of new incidents 𝜆j per demand

location;

• the traveling times rij between each pair of demand

location and fire station;

• the traveling distances dij between each pair of

demand location and fire station;

• the physical area Ai of each service area;

• the duration of major incidents.

In contrast, to implement the MCRP model, we require only

the following:

• the arrival rate of new incidents di per service area;

• the traveling times rij between each pair of demand

location and fire station.

Note that obtaining the arrival rate per service area di
is much easier than finding the arrival rate 𝜆j per demand

location, since the latter is much more granular.

Clearly, the data requirements for MCRP are much lighter

compared to KW. Moreover, the computations required to

implement KW outlined in Appendices C.1 and C.2 are more

complex than those for MCRP, and require expert knowledge

to execute. Consequently, the threshold for implementing

MCRP should be much lower than for KW.

Looking at the KW formulation and the computation of the

cij, we observe that the authors of (Kolesar & Walker, 1974)

make a number of significant assumptions and approximation

steps that may result in inaccuracies, in particular as the size

of the major incident grows. For instance, it requires an esti-

mate up front for the duration t of the major incident. Given

the substantial variability of these durations (for FDAA the

historical duration of major incidents ranges from 1 hour to

a full day), requiring a single point estimate for the dura-

tion has significant impact on the objective function and the

accuracy. Moreover, KW leans heavily on the square root law

from Kolesar and Blum (1973), which as we have seen in

Appendix C.2 is not accurate in the coverage area of FDAA.

We conjecture that its successful usage in NY is due to

that city’s regular road network. Both these errors compound

when the size of the major incident grows.

Upon closer inspection of the cij components, we see that in

computing these it is always assumed that the second-closest

truck is dispatched in case that the closest truck is not avail-

able. This is of course not true in practice, since sometimes

both the first and second-closest trucks are unavailable. This

is particularly likely during large incidents, which explains

why KW becomes less accurate in that regime. Furthermore,

when it comes to the cij, the authors of (Kolesar & Walker,

1974) write “each relocation cost cij [...] depends on the resul-

tant configuration of houses to be filled and to be left empty

[...]. However, we can approximate the cij by taking an average

configuration.” So, in Kolesar and Walker (1974), the authors

use some “default” configuration rather than the current one,

the gap between which again grows with the incident size.

APPENDIX D: “CURRENT PRACTICE”
ALGORITHM

In this section, we describe the CP algorithm using the

example from Figure D1. The service area of the fire sta-

tion corresponding to the major incident’s demand location

is painted red. The service areas of the other empty and vol-

unteer stations are painted white, and the service areas of

the fire stations with available professional trucks are painted

blue. If a major incident happened, and several trucks are

dispatched to its location (flame icon), the CP algorithm relo-

cates one of the available professional trucks to the fire station

(big star) servicing the major incident’s demand location. The

procedure identifying which truck to relocate is as follows.

http://wileyonlinelibrary.com
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FIGURE D1 Current practice algorithm example [Color figure can be

viewed at wileyonlinelibrary.com]

The available professional trucks are first ordered according

to their mean response time corresponding to the incident’s

demand location. Then these trucks are divided into three

groups. Assume there are N trucks available for relocation.

The first ⌊N/3⌋ trucks from the ordered list are put into the

first group (light blue), the next ⌊N/3⌋ trucks are put into the

second group (blue), and the last N − 2⌊N/3⌋ trucks are put

into the third group (dark blue). The first truck from the third

group is then chosen for relocation.

http://wileyonlinelibrary.com

