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A note on translations of C into I.

0. This note presents a stronger form of Glivenco's translation
(prop. 14). The method used yields all the known translations of C
into I, assuming Kolmogorov's translation as a starting point. The
result is generalized (prop. 17), and the impossibility to obtain

an "optimal" translation is shown.

1. Notation:

A, B, C, D, E denote formulas.

A, B etc. - occurrences of formulas.

A - the symbol of absurdity.

SA - the set of all occurrences of subformulas of A.

Sé - the set of all negative occurrences of subformulas of A.

S, - the set of all positive occurrences of subformulas of A.

Sf+— the set of all strictly-positive occurrences of subformulas
of A.
(cf. [Prawitz 65] for definitions).

I - the intuitionistic predicate calculus.

C - the classical predicate calculus.

If B ¢ SA’ then A(%) is the formula which results from A by sub-

stituting C for §,—Similarly for A(g), where

B=<§1a ey EK?’ B_iESA(15i§K)§‘S=<_]J_1: :P_K>-
5
Also: B(_Q_ ) =Df <§.1a ey Ei_1a c, §i+1s ceey E‘K>’
and =B =Df <_ﬂ], ey _-.-._BK>.

We call A a d-formula if either:
(i) A is a prime formula, or

(ii) the main logical symbol of A is V or 3.



2. Definitions:

On SA define a partial order < by:

.:..Bii.g_ :Df QGS_B_‘

TA‘ =D <SA,§? is then a tree, which we call the formula-
tree of A.

Clearly we can identify every point (i.e. - formula) of TA

with its main logical symbol.

B = 1{B,, covs Bl ST S5, is a bar of T, if

A
(i) B. andgj are uncomparable under < for 1 < i < j < K.

(ii) every C € T is comparable to somelgi.

B is a clear bar if no C € 8, s.t. C < B, (for some 1 < i < k)

is a d-formula.

The set of bars of T ¢ S, is partially-ordered by

A

B, < B, = [VB, « 8, VB

2 “pr o € By nlBy < By1.

1

Clearly every T < S, has a maximal clear bar in this ordering, the

A
elements of which are either A or d-formulas.

B is free of x if every Ei (15;55) is free of x.

3. Lemma:

(a) Let B e SX’ and B> C ¢ I, then }EA > A(%).

+ . .
(b) Let B e 8,. have no free variable bounded in A by 4, and C
have no free variable bounded in A by V¥V, then
B
C)'

B> C kA~ A

).

(d) ©Let B e SA and C be restricted as in (b), then
C~>B Fi A~ A(Z).

(¢) Let

|0

es}'\, and C > B € I, then \"IA->A(

lalw

lQlw



Proof: (a) and (c):
Proceed by double-induction. The main induction is on the number of

. + - . . .
alternation between SA and SA in the branch leading from A to B in
SA' To prove the basis use the following induction-steps in the
natural-deduction system of [Prowitz 65] (I denotes everywhere a

deduction of I, by the induction-assumption).

(1) D&E
D
I D&E
B Loh
D(E) 5
B
(D&E)('_E_)
(1)
(ii) DVE D
il
(2)
D(%) E
(Dvm(g) <DVE><§>
(1)(2)
(Dvm@
(iii) ¥xDx
Da
I
_B_X
Da(c%)
—a,
(vm)(é)
(1)
(iv) dxDx Da
il
BX
Da(“c‘%>
—a
emm)(é)




For the main-induction inductive step we have to consider,

in addition to the above, also the following case:

(vi) D e SA, and by the main-induction assumption D(%) - De I,
hence ' -
) (1)
B B
D(g) + D D(g)
D D> E

E

(1)

(B

(Dﬁ“)(c)

The main-induction inductive step for (c) is symmetric to
(vi). This concludes the proof for (a) and (c).

The proof for (b) and (d) is similar. The restrictions on
B and C result from the restrictions on the VI and 2E-rules in

cases (iii) and (iv)-.

Remarks:
1. The lemma can be extended, using a trivial induction, to the

replacement of sequences of occurrences-of-formulas.

2. Let Xy oeee Xy be the complete list of the free variables of B
bounded in A by 3, and of the free variables of C bounded in A by
V. Then we clearly have:

+
1
(b') For B e Sy

¥x ¥x,. (B>C) FI A > A(=)

IR K

Q|



L.

(without any additional restrictions on B and C. And analoguely -
(a')).

The significance of the restrictions becomes apparent only

when some property of B - C which VX, ... xK,(B+C) does not possess
is used. For instance:

o= (B>C) but H=m= Vx, ... XK,(B*C)'
Lemna
The following are theorems of I:
(a) = (A%B) <> 42 A & -~ B
(b) - (A»B) <= (=nA>a-B) <= (A>4-B)
(c) (==AV==B) - =~ (AVB)
() Ax am A > 4 AxA
(e) am VXA > ¥x =4 A
(f) = A > A equivalently: == A > o A
(g) A~ o A
(h) == (4=A>A)
Proof:

cf. [Kleene 52].

. Lemma (Kolmogorov 25)

Let A result from A by double-negating (inductively) every B e S
then FC A= 1 A.

IS

Check (using lemma L) for some formal systems generating I and C
(CPrawitz 651 or [Kleene 52] for instance), that for every A which
is an axiom of C,'K is a theorem of I, and if C—i) is a rule of

B
inference for C, then % Ai +~ B is a theorem of I.



6. Lemma:
+

Let A" result from A by double-negating (inductively) every B e SA;

then b A = b At.

Proof:
Delete inductively the double-negations of B e SK in lemma 5; using
3(c) and k4(g).

K

T. Proposition (G&del 32)
+

Let A be s.t. every d-formula in SA

is negated in A; then FCA = PIA.

Proof:

Assume b A. By (6) kIA+.

.. . + . +
We eliminate now the double-negations added to SA to obtain A by
. . . . + .
procedding inductively upwards 1n TA' Let B € SA' If B 1s a

d-formula use the proposition's assumption, (4f) and (3a) to get
b+ =B
AT (TT=)).
+
S

If B = C&D, then by (La)

+ + + +
-= B = o= (ﬁﬁc+&ﬁﬂD ) > am=m= C & 594 D

> C+ & == D+ (by (hf))'

~
q"B+).
Similarly for B negational, implicational or universal, using

(instead of (La)) (Lf), (4b) and (Le) respectively.

) +
Hence,again by (3a),kIA (

8. Proposition (Glivenco 29, Minc-Orevkov 63):
+ . .
Let A be sucht that no B € SA 1s a universal formula; then

FCA - FI - A,



10.

1.

Proof':
Symmetric to the proof of (7). We proceed inductively downwards in

Tpo using (La-d,f), to eliminate the double-negations in A",

. Corollary (Kreisel 58):

If A is a negation of a prenex formula, then FCA.=$ FIA.

Proposition:

+
If for every VxB e SA we have

(%) ¥X an B > - VxB,
then \-CA = I—I —-= A.

Proof:

Like that of (8).

Proposition (10) establishes incidentally that the intermediate
logic MH, which arrises from I by the adjunction of (%) (understood
as a scheme) is the minimal logic X s.t. FCA = FX == A for every

first-order formuls A.

Lemma.:

If 2=C € Sy is free of x, then p; ViB > -~ VxB (369).

Proof':

If -=C € S_ the result follows immediately 3(c) and L(g) (without

B
the restriction on C).

+ . . .
If -=C € S_, then, since C is free of x, there is by 3(b) a
deduction T, and by 4(h) a deduction ), s.t. the following is a

proof (in the natural-deduction system of [Prawitz 65]):



12.

13.

1k,

¥xB ~4=C~>C
i (3)
-=C -=C
VXB(‘Q ) -¥ B(‘g )
T )
—|( —-=C~>C ) 2 ) - ( —-=C~>C )
A
— (3
_.—‘VXB(—Q_)
—=C (1)
VxB+quXBbﬁ§—)
a
Lemma,:
++ K
Let « be a clear bar of S; , then b --B > B( K).

Proof:

Like the proof of prop. T.

Proposition:

++
If SB has a clear bar free of x, then . VX =«= B > =4 VxB.

I

Proof:

By (12) and (3a) by ¥x =~ B > ¥xB( KK), where K = <Ci, ..., C> is
++ o .

a clear bar of SB free of x. K applications of (11) and (4f)

yield +the result.

Corollary:
+ ++
If for a formula A VxB € S, = S has a clear bar free of x, then

A B
‘_CA = "-'I -- A,

Proof:

By (10) and (13).



15.

16.

Corollary (Cellucci 69):

* either B = -C or Bx =

N Cx > D (D is free of x),

If for every VxB € S
then ‘—CA = |—I = A,

Proof':

. . ++
Use (14). In the first case <A> is a clear bar free of x for SB .

in the second - <D>.

Definitions:

A positive-chain in S, is a sequence of consecutive elements

SO <

A
+ . .
. i'SK of SA’ and s.t. SK 1s an end-point of SA'

By the convention we have made to identify a p € S, with its

A

main logical symbol, if <S - SK> is a possitive-chain, then

SO ce SK_1

letter.

o’

are logical symbols, and S, is either A or a predicate

K

If we assume that every =B € S, is writen as B > A, (as we do

A
for the sequel), then no S; (1<i<K) is a =-symbol.

Define now classes T (0<n) and o, (1<n) of positive-chains induc-

tively:
<N\>
(1) A> € ™
(2) <P> € o,
™ i
n n
(3) Eseeest > o€ {cn = <&,to,...,t > € {zn and
<+,t1,...,t > € {02
(L) Eseeent > € 0 = <V,to,..t > € 0 and
<§x,t1,...,ta> €0
(5) tyseeest > 0 = <Vx,t1,...,tm> €m
(6) <ty St > 0 = <V,t1,...,tm> €0 and
<3x,t1,...,tm> €01
(7) <t1, St € o, - <Vx,t1,...,tmf € if some ti

(1<i<m) is a d-formula in which
x 1s free

Vx,t,5...,t > €0 otherwise.
m n



17.

10

We define classes n, of formulas by

A e nm EDf m = max{n|<SO...SK> 1s a positive-chain 1n SA’ and
™
<So...SK> E{cn .
n

Proposition:
If A e n, and + A, then m is a bound on the number of nested appli-

-rule of [Prawitz 651)

C

cations of the rule of double-negation (the AC
along any path in a classical proof of A in the natural-deduction

system of [Prawitz 65].

Proof:

Let A be s.t. kA, let {By» o B.} <8
elements of SA s.t. inBi € SA . EO Df
and A = A( EB)'

-

be the complete list of

“pr BosBys--aBy”

By (15) |-IK.
++

Let T. = S and k. be the maximal clear bar of T. (0<i<K).
1 Df Ei 1 1 -

K
K Zpe ;:é K3 (set-theoretic: union).

By (11), (12) and (3a) A= FIA’ where A =a( ).

I ==K
Let Yy be a maximal positive chain in SA’ Yy = <t1 ce tm> € {gn .

Call a subchain L e (1<j<k<m) of y a d-block if: n

(1) for some j <1 <k t; is a d-formula

(ii) for no j < i <k ti is an "effective" universal-formula,

i.e. - a Vx-formula s.t. x occurs free in some tl (i<l§m)
which is a d-formula.

(iii) <t. ... ty > is maximal in y with repsect to properties (i)
and (ii).

A routine induction on (16) and the construction of A above

yields:

n = the number of d-blocks in ¥y

the number of double-negations along y in A.



1

To prove now the proposition, begin a deduction with K, and
split it, using the elimination rules. Whenever a a-D € ==K appears,
use the rule of double-negation to replace it by D. When all the
elements of K are treated, reconstruct A.

For any positive chain y,its initial segment ending with the
first element of the last d-block in it (= the last element of
K nvy) is a segment of the E-part of some path § in the deduction

~

A
() described above; thus the number of applications of the rule
A

of double-negation along § = the number of d-block in § = the index
of the on (or ﬂn) class to which it belongs. This concludes the

proof, since klﬁ, and therefore we have a deduction E without
¥

applications of the rule of double-negation s.t. is a proof.

= e

X

. We cannot expect to have a complete structural description which will

give for every A € C a set x < 8, s.t. FCA = kIA ( KK), and which
-

is minimal in that respect, i.e.A— for every B ¢ K hIA (ﬂf ).

Such a description would yield immediately a decision for I:
Given A, take DA EDf A vs A,
We can, by our assumption, find effectively a E.SDA s.t. FIDA(ﬂ:k)
but for every B ¢ K K DA(ﬂEB)’

Now, if k = @, then FIDA, hence kIA or b, - A, and it can be decided
effectively which case holds.
If « # ¢, then HIA, for otherwise FIDA, construdicting the minimality

of «k.
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