stichting mathematisch centrum

AFDELING ZUIVERE WISKUNDE
ZW 5/71
JUNE
D. LEIVANT

A NOTE ON TRANSLATIONS OF C INTO I

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Ansterdam, by the University of Amsterdam, by the Free university at Ansterdam, and by industries.

A note on translations of C into I.
0. This note presents a stronger form of Glivenco's translation (prop. 14). The method used yields all the known translations of C into I, assuming Kolmogorov's translation as a starting point. The result is generalized (prop. 17), and the impossibility to obtain an "optimal" translation is shown.

1. Notation:

A, B, C, D, E denote formulas.
A, B etc. - occurrences of formulas.
Λ - the symbol of absurdity.
S_{A} - the set of all occurrences of subformulas of A.
$\mathrm{S}_{\mathrm{A}}^{-}$- the set of all negative occurrences of subformulas of A .
S_{A}^{+}- the set of all positive occurrences of subformulas of A.
S_{A}^{++}- the set of all strictly-positive occurrences of subformulas of A.
(cf. [Prawitz 65] for definitions).
I - the intuitionistic predicate calculus.
C - the classical predicate calculus.
If $B \in S_{A}$, then $A\left(\frac{B}{C}\right)$ is the formula which results from A by substituting C for B. Similarly for $A\binom{\beta}{\delta}$, where

$$
\beta=\left\langle\underline{B}_{1}, \ldots, \underline{B}_{K}\right\rangle, \underline{B}_{i} \in S_{A}(1 \leq i \leq K) ; \delta=\left\langle\underline{D}_{1}, \ldots, \underline{D}_{K}\right\rangle
$$

Also: $\beta\left(\underset{\underline{C}}{\underline{B}_{i}}\right)={ }_{D f}\left\langle\underline{B}_{1}, \ldots, \underline{B}_{i-1}, \underline{C}, \underline{B}_{i+1}, \ldots, \underline{B}_{K}\right\rangle$,
and $\quad \neg \neg B=$ Df $_{\langle\neg \neg B}, \cdots, \rightarrow \neg B_{K}>$.

We call A a d-formula if either:
(i) A is a prime formula, or
(ii) the main logical symbol of A is V or \exists.

2. Definitions:

On S_{A} define a partial order \leq by:
$\underline{B} \leq \underline{C} \quad \equiv_{D f} \underline{C} \in S_{\underline{B}}$.
$T_{A}={ }_{D f}\left\langle\dot{S}_{A} \rho \leq>\right.$ is then a tree, which we call the formulatree of A.

Clearly we can identify every point (i.e. - formula) of T_{A} with its main logical symbol.
$\beta=\left\{\underline{B}_{1}, \ldots, \underline{B}_{K}\right\} \subseteq T \subseteq S_{A}$ is a bar of T, if
(i) \underline{B}_{i} and \underline{B}_{j} are uncomparable under \leq for $1 \leq i<j \leq K$.
(ii) every $\underline{C} \in T$ is comparable to some \underline{B}_{i}.
β is a clear bar if no $\underline{C} \in S_{A}$ s.t. $\underline{C}<\underline{B}_{i}$ (for some $1 \leq i \leq k$) is a d-formula.

The set of bars of $T \subseteq S_{A}$ is partially-ordered by
$\beta_{1} \leq \beta_{2} \equiv \overline{D f}\left[\underline{U B}_{i} \in \beta_{1} \quad \underline{B}_{2} \in \beta_{2} \neg\left[\underline{B}_{2}<\underline{B}_{1}\right]\right]$.
Clearly every $T \subseteq S_{A}$ has a maximal clear bar in this ordering, the elements of which are either $\underline{\Lambda}$ or d-formulas.
β is free of x if every $\underline{B}_{i}(1 \leq i \leq K)$ is free of x.
3. Lemma:
(a) Let $\underline{B} \in S_{A}^{+}$, and $B \rightarrow C \in I$, then $\vdash_{I} A \rightarrow A(\underline{B})$.
(b) Let $B \in S_{A}^{+}$, have no free variable bounded in A by \exists, and C have no free variable bounded in A by \forall, then

$$
B \rightarrow C \vdash_{I} A \rightarrow A\left(\frac{B}{\underline{C}}\right)
$$

(c) Let $\underline{B} \in S_{A}^{-}$, and $C \rightarrow B \in I$, then $r_{I} A \rightarrow A(\underline{B})$.
(d) Let $\underline{B} \in S_{A}^{-}$and C be restricted as in (b), then $C \rightarrow B \vdash_{I} A \rightarrow A\left(\frac{B}{\underline{C}}\right)$.

Proof: (a) and (c):
Proceed by double-induction. The main induction is on the number of alternation between S_{A}^{+}and S_{A}^{-}in the branch leading from A to \underline{B} in S_{A}. To prove the basis use the following induction-steps in the natural-deduction system of [Prowitz 65] (II denotes everywhere a deduction of I, by the induction-assumption).
(i)

(1)
(ii)
$D \vee E \quad D$

(iii)

$$
\begin{aligned}
& \forall x D x \\
& \text { Da } \\
& \text { II } \\
& \operatorname{Da}\binom{B_{-a}^{x}}{C_{a}^{x}} \\
& (\forall x D x)\left(\frac{B}{\underline{C}}\right)
\end{aligned}
$$

(iv) $\exists x D x \quad D a$

$$
\begin{gathered}
\pi \\
\operatorname{Da}\binom{\underline{B}^{\mathrm{a}}}{\underline{C}_{a}^{\mathrm{X}}} \\
(\exists \mathrm{JxDx})\left(\frac{\mathrm{B}}{\mathrm{C}}\right) \\
(\exists \mathrm{Dx})\left(\frac{\mathrm{B}}{\mathrm{C}}\right)
\end{gathered}
$$

(v)

II
$D\left(\frac{B}{\mathrm{C}}\right)$
$(\mathrm{E} \rightarrow \mathrm{D})(\underline{\mathrm{B}})$

For the main-induction inductive step we have to consider, in addition to the above, also the following case:
(vi) $D \in S_{A}^{-}$, and by the main-induction assumption $D\left(\frac{B}{C}\right) \rightarrow D \in I$, hence

The main-induction inductive step for (c) is symmetric to (vi). This concludes the proof for (a) and (c).

The proof for (b) and (d) is similar. The restrictions on \underline{B} and C result from the restrictions on the $\forall I$ and $\exists E-r u l e s$ in cases (iii) and (iv).

Remarks:

1. The lemma can be extended, using a trivial induction, to the replacement of sequences of occurrences-of-formulas.
2. Let $x_{1} \ldots x_{K}$ be the complete list of the free variables of B bounded in A by \exists, and of the free variables of C bounded in A by \forall. Then we clearly have:
(b^{\prime}) For $B \in S_{A}^{+}$

$$
\forall x_{1} \ldots \forall x_{K}(B \rightarrow C) \vdash_{I} A \rightarrow A\left(\frac{B}{\underline{C}}\right)
$$

(without any additional restrictions on B and C. And analoguely (d')).

The significance of the restrictions becomes apparent only when some property of $B \rightarrow C$ which $\forall x_{1} \ldots x_{K}(B \rightarrow C)$ does not possess is used. For instance:

$$
\vdash(B \rightarrow C) \text { but } \quad \forall \neg \operatorname{ci}_{1} \ldots x_{K}(B \rightarrow C) \text {. }
$$

4. Lemma:

The following are theorems of I:

(b) $\quad \neg \neg(A \rightarrow B) \longleftrightarrow(\neg \neg A \rightarrow \neg \neg B) \longleftrightarrow(A \rightarrow \neg \neg B)$
(c) $(\neg \neg A \vee \neg \neg B) \rightarrow \neg(A \vee B)$
(d) $\quad \exists x \neg A \rightarrow \neg \exists x A$
(e) $\quad \forall x A \rightarrow \forall x \neg A$
(f) $\quad \neg \rightarrow \Lambda \Lambda$ equivalently: $\rightarrow \neg A \rightarrow A$
$(g) \quad A \rightarrow \neg A$
(h) \quad ר $(\neg \rightarrow A \rightarrow A)$

Proof:
cf. [Kleene 52].
x
5. Lemma (Kolmogorov 25)

Let \bar{A} result from A by double-negating (inductively) every $B \in S_{A}$. then $\vdash_{C} A \Rightarrow \vdash_{I} \bar{A}$.

Proof:
Check (using lemma 4) for some formal systems generating I and C ([Prawitz 65] or [Kleene 52] for instance), that for every A which is an axiom of C, \bar{A} is a theorem of I, and if $\left(\frac{A_{i}}{B}\right)$ is a rule of inference for C, then ${ }_{i} \bar{A}_{i} \rightarrow \bar{B}$ is a theorem of I.
6. Lemma:

Let A^{+}result from A by double-negating (inductively) every $B \in S_{A}^{+}$; then $\vdash_{C} A \Rightarrow \vdash_{I} A^{+}$.

Proof:

Delete inductively the double-negations of $\underline{B} \in S_{\bar{A}}$ in lemma 5; using 3(c) and 4(g).
7. Proposition (Gödel 32)

Let A be s.t. every d-formula in S_{A}^{+}is negated in A; then $r_{C} A \rightarrow r_{I} A$.

Proof:
Assume $\vdash_{C} A$. By (6) $\vdash_{I} A^{+}$.
We eliminate now the double-negations added to S_{A}^{+}to obtain A^{+}by procedding inductively upwards in T_{A}. Let $\underline{B} \in S_{A}^{+}$. If B is a
d-formula use the proposition's assumption, (4f) and (3a) to get
$\vdash_{\mathrm{I}^{+}}\left(\underset{\underline{B}^{+}}{ } \mathrm{B}^{+}\right)$.
If $B \equiv C \& D$, then by (4a)

$$
\begin{aligned}
\neg \mathrm{B}^{+} \equiv \neg\left(\neg \neg C^{+} \& \neg \neg D^{+}\right) & \rightarrow \sim C^{+} \& \sim ר D^{+} \\
& \rightarrow \neg C^{+} \& \sim D^{+} \quad(b y(4 f)) .
\end{aligned}
$$

Hence, again by (3a), $r_{I^{A^{+}}}\left(\neg \neg B^{+}\right)$.
Similarly for B negational, implicational or universal, using
(instead of (4a)) (4f), (4b) and (4e) respectively.
8. Proposition (Glivenco 29, Minc-Orevkov 63):

Let A be sucht that no $\underline{B} \in S_{A}^{+}$is a universal formula; then $\vdash_{C} A \Rightarrow \vdash_{I} \rightarrow A$.

Proof:
Symmetric to the proof of (7). We proceed inductively downwards in T_{A}, using (4a-d,f), to eliminate the double-negations in A^{+}.
\otimes
9. Corollary (Kreisel 58):

If A is a negation of a prenex formula, then $\vdash_{C} A \Rightarrow \vdash_{I} A$.
10. Proposition:

If for every $\forall x B \in S_{A}^{+}$we have
(*) $\quad \forall x$ ר $B \rightarrow \forall x B$,
then $\vdash_{C} A \Rightarrow \vdash_{I} \neg A$.

Proof:
Like that of (8).

Proposition (10) establishes incidentally that the intermediate logic MH , which arrises from I by the adjunction of (*) (understood as a scheme) is the minimal logic X s.t. $\vdash_{C} A \Rightarrow \vdash_{X} \neg$ ר for every first-order formula A.
11. Lemma:

If $\neg C \in S_{B}$ is free of x, then $\vdash_{I} \forall x B \rightarrow \neg \operatorname{VxB}\left(\frac{\neg \neg C}{\underline{C}}\right)$.

Proof:
If $\underset{\rightarrow-\mathrm{C}}{ } \in \mathrm{S}_{\mathrm{B}}^{-}$the result follows immediately $3(\mathrm{c})$ and $4(\mathrm{~g})$ (without the restriction on C).

If $\neg \subset C \in S_{B}^{+}$, then, since C is free of x, there is by $3(b)$ a deduction Π, and by $4(h)$ a deduction $[$, s.t. the following is a proof (in the natural-deduction system of [Prawitz 65]):

12. Lemma:

Let k be a clear bar of S_{B}^{++}, then $\vdash \neg \rightarrow B \rightarrow B(\underset{\neg \neg K}{K})$.

Proof:
Like the proof of prop. 7.
13. Proposition:

Proof:
By (12) and (3a) $\vdash_{I} \forall x \rightarrow \neg \rightarrow \forall x B\binom{K}{7 \neg K}$, where $K=\left\langle\underline{C}_{1}, \ldots, \mathcal{C}_{K}\right\rangle$ is
a clear bar of $S_{B}^{++^{\perp}}$ free of $x . K$ applications of (11) and (4f)
yield the result.
\boxtimes
14. Corollary:

If for a formula $A \quad \forall x B \in S_{A}^{+} \Rightarrow S_{B}^{++}$has a clear bar free of x, then $\vdash_{C} A \Rightarrow \vdash_{I} \rightarrow A$.

Proof:
By (10) and (13).
15. Corollary (Cellucci 69):

If for every $\forall x B \in S_{A}^{+}$either $B \equiv \neg C$ or $B x \equiv C x \rightarrow D(D$ is free of $x)$, then $\vdash_{C} A \Rightarrow \vdash_{I} A$.

Proof:

Use (14). In the first case $\langle\Lambda\rangle$ is a clear bar free of x for S_{B}^{++}, in the second - <D>.

囚
16. Definitions:

A positive-chain in S_{A} is a sequence of consecutive elements $\mathrm{S}_{\mathrm{O}} \leq \cdots \leq \mathrm{S}_{\mathrm{K}}$ of $\mathrm{S}_{\mathrm{A}}^{+}$, and s.t. S_{K} is an end-point of S_{A}.

By the convention we have made to identify a $p \in S_{A}$ with its main logical symbol, if $\leq S_{O}, \ldots, S_{K}>$ is a possitive-chain, then $S_{0} \ldots S_{K-1}$ are logical symbols, and S_{K} is either Λ or a predicate letter.

If we assume that every $\neg B \in S_{A}$ is writen as $B \rightarrow \Lambda$, (as we do for the sequel), then no $S_{i}(1 \leq i \leq K)$ is a -symbol.

Define now classes $\pi_{n}(0 \leq n)$ and $\sigma_{n}(1 \leq n)$ of positive-chains inductively:
(1)
(2)
(4)

$$
<t_{1}, \ldots, t_{m}>\in \sigma_{n} \quad \Rightarrow<v, t_{1}, \ldots, t_{m}>\in \sigma_{n} \quad \text { and }
$$

$$
\left\langle\overline{\mathrm{x}}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}\right\rangle \in \sigma_{\mathrm{n}}
$$

$$
\begin{equation*}
\left.\left.<t_{1}, \ldots, t_{m}\right\rangle \in \pi_{n} \quad \Rightarrow<\forall x, t_{1}, \ldots, t_{m}\right\rangle \in \pi_{n} \tag{5}
\end{equation*}
$$

$$
<\exists x, t_{1}, \ldots, t_{m}>\in \sigma_{n+1}
$$

(7)

$$
\begin{equation*}
<t_{1}, \ldots, t_{m}>\pi_{n} \quad \Rightarrow<v, t_{1}, \ldots, t_{m}>\in \sigma_{n+1} \text { and } \tag{6}
\end{equation*}
$$

$$
\left.<t_{1}, \ldots, t_{m}\right\rangle \in \sigma_{n} \quad\left\{\begin{array}{l}
\left.<\forall x, t_{1}, \ldots, t_{m}\right\rangle \in \pi_{n} \text { if some } t_{i} \\
(1 \leq i \leq m) \text { is a d-formula in which } \\
x \text { is free } \\
\left.<\forall x, t_{1}, \ldots, t_{m}\right\rangle \in \sigma_{n} \text { otherwise }
\end{array}\right.
$$

$$
\begin{align*}
& <\Lambda>\in \pi_{0} \\
& \left\langle P>\in \sigma_{1}\right. \\
& \begin{aligned}
<t_{1}, \ldots, t_{m}>\in\left\{\sigma_{n}^{n} \Rightarrow\right. & <\&, t_{1}, \ldots, t_{m}>\in \underset{\left\{\sigma_{n}^{n}\right.}{\pi} \text { and } \\
& <, t_{1}, \ldots, t_{m}>\in\left\{\sigma_{n}^{n}\right.
\end{aligned} \tag{3}
\end{align*}
$$

We define classes η_{n} of formulas by
$A \in \eta_{m} \equiv_{D f} m=\max \left\{n \mid<S_{O} \ldots S_{K}>\right.$ is a positive-chain in S_{A}, and

$$
<S_{0} \cdots S_{K}>\in\left\{_{\sigma_{n}^{n}}^{n} .\right.
$$

17. Proposition:

If $A \in \eta_{m}$ and $\vdash_{C} A$, then m is a bound on the number of nested applications of the rule of double-negation (the Λ_{C}-rule of [Prawitz 65]) along any path in a classical proof of A in the natural-deduction system of [Prawitz 65].

Proof:

Let A be s.t. $\vdash_{C} A$, let $\left\{\underline{B}_{1}, \ldots, \underline{B}_{K}\right\} \subseteq S_{A}$ be the complete list of elements of S_{A} s.t. $\forall x_{i} B_{i} \in S_{A}^{+}, \underline{B}_{0} \equiv_{D f} \underline{A}, \beta \equiv_{D f}<\underline{B}_{O}, \underline{B}_{1}, \ldots, \underline{B}_{K}>$ and $\bar{A}=A\binom{\beta}{\neg \neg B}$.

By $(15) \vdash_{I} \bar{A}$.
Let $T_{i}=\operatorname{Df}^{S_{B}^{++}}$and $_{i} \kappa_{i}$ be the maximal clear bar of $T_{i}(0 \leq i \leq K)$.
$k=D f \bigcup_{i=0}^{K} k_{i}$ (set-theoretic union).
By (11), (12) and (3a) $\vdash_{I} \bar{A} \Rightarrow \vdash_{I} \hat{A}$, where $\hat{A} \equiv A(\underset{\rightarrow C}{\kappa})$.
Let γ be a maximal positive chain in $S_{A}, \gamma=<t_{1} \ldots t_{m}>\in\left\{\begin{array}{l}\pi_{n}^{n} \\ n\end{array}\right.$.
Call a subchain $<t_{j}, \ldots, t_{k}>(1 \leq j<k<m)$ of γ a d-block if:
(i) for some $j \leq i \leq k \quad t_{i}$ is a d-formula
(ii) for no $j \leq i \leq k \quad t_{i}$ is an "effective" universal-formula, i.e. - a $\forall x$-formula s.t. x occurs free in some $t_{l}(i<l \leq m)$ which is a d-formula.
(iii) $<t_{j} \ldots t_{k}$ is maximal in γ with repsect to properties (i) and (ii).
A routine induction on (16) and the construction of \widehat{A} above yields:
$\mathrm{n}=$ the number of d -blocks in γ
$=$ the number of double-negations along γ in \hat{A}.

To prove now the proposition, begin a deduction with \widehat{A}, and split it, using the elimination rules. Whenever a $\underset{\sim}{ } \rightarrow \mathbb{D} \in \mathbb{A}$ appears, use the rule of double-negation to replace it by \underline{D}. When all the elements of k are treated, reconstruct A.

For any positive chain γ,its initial segment ending with the first element of the last d-block in it (= the last element of $K \cap \gamma$) is a segment of the E-part of some path δ in the deduction \hat{A}
(π) described above; thus the number of applications of the rule A
of double-negation along $\delta=$ the number of d -block in $\delta=$ the index of the σ_{n} (or π_{n}) class to which it belongs. This concludes the proof, since $r_{I} \hat{A}$, and therefore we have a deduction \sum without applications of the rule of double-negation s.t. \hat{A} is a proof. π
A

区
18. We cannot expect to have a complete structural description which will give for every $A \in C$ a set $k \subseteq S_{A}$ s.t. $\vdash_{C} A \Rightarrow \vdash_{I} A\left(\begin{array}{c}k-K\end{array}\right)$, and which is minimal in that respect, i.e. - for every $\beta \underset{\neq}{ } K H_{I} A(\underset{\sim}{c} \beta)$.

Such a description would yield immediately a decision for I : Given A, take $D^{A} \equiv_{D f} A V_{-}$. We can, by our assumption, find effectively a $\kappa \subseteq S_{D A}$ s.t. $\vdash_{I} D^{A}\left({ }_{7-K}{ }^{k}\right)$ but for every $\beta \underset{\neq}{\subsetneq} \quad H_{I_{A}} D^{A}(\underset{\rightarrow-\beta}{\beta})$.
Now, if $k=\phi$, then $r_{I} D^{A}$, hence $\vdash_{I} A$ or $r_{I} \neg A$, and it can be decided effectively which case holds.
If $\kappa \neq \phi$, then $H_{I} A$, for otherwise $r_{I} D^{A}$, construdicting the minimality of k.

