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Abstract

The cryptographic task of secure multi-party (classical) computation has received a lot of
attention in the last decades. Even in the extreme case where a computation is performed
between k mutually distrustful players, and security is required even for the single honest
player if all other players are colluding adversaries, secure protocols are known. For quantum
computation, on the other hand, protocols allowing arbitrary dishonest majority have only
been proven for k = 2. In this work, we generalize the approach taken by Dupuis, Nielsen
and Salvail (CRYPTO 2012) in the two-party setting to devise a secure, efficient protocol for
multi-party quantum computation for any number of players k, and prove security against up
to k − 1 colluding adversaries. The quantum round complexity of the protocol for computing
a quantum circuit with g gates acting on w qubits is O((w + g)k). To achieve efficiency, we
develop a novel public verification protocol for the Clifford authentication code, and a testing
protocol for magic-state inputs, both using classical multi-party computation.

1 Introduction

In secure multi-party computation (MPC), two or more players want to jointly compute some
publicly known function on their private data, without revealing their inputs to the other players.
Since its introduction by Yao [Yao82], MPC has been extensively developed in different setups,
leading to applications of both theoretical and practical interest (see, e.g., [CDN15] for a detailed
overview).

With the emergence of quantum technologies, it becomes necessary to understand its conse-
quences in the field of MPC. First, classical MPC protocols have to be secured against quantum
attacks. But also, the increasing number of applications where quantum computational power is
desired motivates protocols enabling multi-party quantum computation (MPQC) on the players’
private (possibly quantum) data. In this work, we focus on the second task. Informally, we say
a MPQC protocol is secure if the following two properties hold: 1. Dishonest players gain no
information about the honest players’ private inputs. 2. If the players do not abort the protocol,
then at the end of the protocol they share a state corresponding to the correct computation applied
to the inputs of honest players (those that follow the protocol) and some choice of inputs for the
dishonest players.

MPQC was first studied by Crépeau, Gottesman and Smith [CGS02], who proposed a k-party
protocol based on verifiable secret sharing that is information-theoretically secure, but requires the
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assumption that at most k/6 players are dishonest. The fraction k/6 was subsequently improved
to < k/2 [BOCG+06] which is optimal for secret-sharing-based protocols due to no-cloning. The
case of a dishonest majority was thus far only considered for k = 2 parties, where one of the two
players can be dishonest [DNS10, DNS12, KMW17]1. These protocols are based on different cryp-
tographic techniques, in particular quantum authentication codes in conjunction with classical
MPC [DNS10, DNS12] and quantum-secure bit commitment and oblivious transfer [KMW17].

In this work, we propose the first secure MPQC protocol for any number k of players in the
dishonest majority setting, i.e., the case with up to k − 1 colluding adversarial players.2 We re-
mark that our result achieves composable security, which is proven according to the standard ideal-
vs.-real definition. Like the protocol of [DNS12], on which our protocol is built, our protocol
assumes a classical MPC that is secure against a dishonest majority, and achieves the same se-
curity guarantees as this classical MPC. In particular, if we instantiate this classical MPC with an
MPC in the pre-processing model (see [BDOZ11, DPSZ12, KPR18, CDE+18]), our construction yields
a MPQC protocol consisting of a classical “offline” phase used to produce authenticated shared
randomness among the players, and a second “computation” phase, consisting of our protocol,
combined with the “computation” phase of the classical MPC. The security of the “offline” phase
requires computational assumptions, but assuming no attack was successful in this phase, the
second phase has information theoretic security.

1.1 Prior work

Our protocol builds on the two-party protocol of Dupuis, Nielsen, and Salvail [DNS12], which
we now describe in brief. The protocol uses a classical MPC protocol, and involves two parties,
Alice and Bob, of whom at least one is honestly following the protocol. Alice and Bob encode
their inputs using a technique called swaddling: if Alice has an input qubit |ψ〉, she first encodes
it using the n-qubit Clifford code (see Definition 2.5), resulting in A(|0n〉 ⊗ |ψ〉), for some random
(n + 1)-qubit Clifford A sampled by Alice, where n is the security parameter. Then, she sends
the state to Bob, who puts another encoding on top of Alice’s: he creates the “swaddled” state
B(A(|0n〉 ⊗ |ψ〉)⊗ |0n〉) for some random (2n+1)-qubit Clifford B sampled by Bob. This encoded
state consists of 2n+ 1 qubits, and the data qubit |ψ〉 sits in the middle.

If Bob wants to test the state at some point during the protocol, he simply needs to undo the
Clifford B, and test that the last n qubits (called traps) are |0〉. However, if Alice wants to test
the state, she needs to work together with Bob to access her traps. Using classical multi-party
computation, they jointly sample a random (n + 1)-qubit Clifford B′ which is only revealed to
Bob, and compute a Clifford T := (I⊗n⊗B′)(A†⊗I⊗n)B† that is only revealed to Alice. Alice, who
will not learn any relevant information about B or B′, can use T to “flip” the swaddle, revealing
her n trap qubits for measurement. After checking that the first n qubits are |0〉, she adds a fresh
(2n+1)-qubit Clifford on top of the state to re-encode the state, before computation can continue.

Single-qubit Clifford gates are performed simply by classically updating the inner key: if a
state is encrypted with Cliffords BA, updating the decryption key to BAG† effectively applies the
gateG. In order to avoid that the player holding the inner keyB skips this step, both players keep

1In Kashefi and Pappa [KP17], they consider a non-symmetric setting where the protocol is secure only when some
specific sets of k − 1 players are dishonest.

2In the case where there are k adversaries and no honest players, there is nobody whose input privacy and output
authenticity is worth protecting.
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track of their keys using a classical commitment scheme. This can be encapsulated in the classical
MPC, which we can assume acts as a trusted third party with a memory.

CNOT operations and measurements are slightly more involved, and require both players to
test the authenticity of the relevant states several times. Hence, the communication complexity
scales linearly with the number of CNOTs and measurements in the circuit.

Finally, to perform T gates, the protocol makes use of so-called magic states. To obtain reliable
magic states, Alice generates a large number of them, so that Bob can test a sufficiently large
fraction. He decodes them (with Alice’s help), and measures whether they are in the expected
state. If all measurements succeeds, Bob can be sufficiently certain that the untested (but still
encoded) magic states are in the correct state as well.

1.1.1 Extending two-party computation to multi-party computation

A natural question is the possibility of lifting a two-party computation protocol to a multi-party
computation protocol in a natural way. We discuss some of the issues that arise from such an
approach, making it either infeasible or inefficient.

Composing ideal functionalities. The first naive idea would be trying to split the k players in
two groups and make the groups simulate the players of a two-party protocol, whereas internally,
the players run k

2 -party computation protocols for all steps in the two-party protocol. Those k
2 -

party protocols are in turn realized by running k
4 -party protocols, et cetera, until at the lowest

level, the players can run actual two-party protocols.
Trying to construct such a composition in a black-box way, using the ideal functionality of a two-

party protocol, one immediately faces a problem: at the lower levels, players learn intermediate
states of the circuit, because they receive plaintext outputs from the ideal two-party functionality.
This would immediately break the privacy of the protocol. If, on the other hand, we require the
ideal two-party functionality to output encoded states instead of plaintexts, then the size of the
ciphertext will grow at each level. The overhead of this approach would be O(nlog k), where n > k
is the security parameter of the encoding, which would make this overhead super-polynomial in
the number of players.

Naive extension of DNS to multi-party. One could also try to extend [DNS12] to multiple par-
ties by adapting the subprotocols to work for more than two players. While this approach would
likely lead to a correct and secure protocol for k parties, the computational costs of such an exten-
sion could be high.

First, note that in such an extension, each party would need to append n trap qubits to the en-
coding of each qubit, causing an overhead in the ciphertext size that is linear in k. Secondly, in this
naive extension, the players would need to create Θ(2k) magic states for T gates (see Section 2.5),
since each party would need to test at least half of the ones approved by all previous players.

1.2 Our contributions

Our protocol builds on the work of Dupuis, Nielsen, and Salvail [DNS10, DNS12], and like it,
assumes a classical MPC, and achieves the same security guarantees as this classical MPC. In con-
trast to a naive extension of [DNS12], requiring Θ(2k) magic states, the complexity of our protocol,
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when considering a quantum circuit that contains, among other gates, g gates in {CNOT,T} and
acts on w qubits, scales as O((g + w)k).

In order to efficiently extend the two-party protocol of [DNS12] to a general k-party protocol,
we make two major alterations to the protocol:

Public authentication test. In [DNS12], given a security parameter n, each party adds n qubits
in the state |0〉 to each input qubit in order to authenticate it. The size of each ciphertext is thus
2n + 1. The extra qubits serve as check qubits (or “traps”) for each party, which can be measured
at regular intervals: if they are non-zero, somebody tampered with the state.

In a straightforward generalization to k parties, the ciphertext size would become kn + 1 per
input qubit, putting a strain on the computing space of each player. In our protocol, the ciphertext
size is constant in the number of players: it is usually n+1 per input qubit, temporarily increasing
to 2n + 1 for qubits that are involved in a computation step. As an additional advantage, our
protocol does not require that all players measure their traps every time a state needs to be checked
for its authenticity.

To achieve this smaller ciphertext size, we introduce a public authentication test. Our protocol
uses a single, shared set of traps for each qubit. If the protocol calls for the authentication to be
checked, the player that currently holds the state cannot be trusted to simply measure those traps.
Instead, she temporarily adds extra trap qubits, and fills them with an encrypted version of the
content of the existing traps. Now she measures only the newly created ones. The encryption
ensures that the measuring player does not know the expected measurement outcome. If she is
dishonest and has tampered with the state, she would have to guess a random n-bit string, or be
detected by the other players. We design a similar test that checks whether a player has honestly
created the first set of traps for their input at encoding time.

Efficient magic-state preparation. For the computation of non-Clifford gates, the [DNS12] proto-
col requires the existence of authenticated “magic states”, auxiliary qubits in a known and fixed
state that aid in the computation. In a two-party setting, one of the players can create a large
number of such states, and the other player can, if he distrusts the first player, test a random sub-
set of them to check if they were honestly initialized. Those tested states are discarded, and the
remaining states are used in the computation.

In a k-party setting, such a “cut-and-choose” strategy where all players want to test a sufficient
number of states would require the first party to prepare an exponential number (in k) of authen-
ticated magic states, which quickly gets infeasible as the number of players grows. Instead, we
need a testing strategy where dishonest players have no control over which states are selected for
testing. We ask the first player to create a polynomial number of authenticated magic states. Sub-
sequently, we use classical MPC to sample random, disjoint subsets of the proposed magic states,
one for each player. Each player continues to decrypt and test their subset of states. The random
selection process implies that, conditioned on the test of the honest player(s) being successful,
the remaining registers indeed contain encrypted states that are reasonably close to magic states.
Finally, we use standard magic-state distillation to obtain auxiliary inputs that are exponentially
close to magic states.

1.3 Overview of the protocol

We describe some details of the k-player quantum MPC protocol for circuits consisting of classically-
controlled Clifford operations and measurements. Such circuits suffice to perform Clifford com-
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putation and magic-state distillation, so that the protocol can be extended to arbitrary circuits
using the technique described above. The protocol consists of several subprotocols, of which we
highlight four here: input encoding, public authentication test, single-qubit gate application, and
CNOT application. In the following description, the classical MPC is treated as a trusted third
party with memory3. The general idea is to first ensure that initially all inputs are properly en-
coded into the Clifford authentication code, and to test the encoding after each computation step
that exposes the encoded qubit to an attack. During the protocol, the encryption keys for the
Clifford authentication code are only known to the MPC.

Input encoding. For an input qubit |ψ〉 of player i, the MPC hands each player a circuit for a
random (2n+1)-qubit Clifford group element. Now player i appends 2n “trap” qubits initialized
in the |0〉-state and applies her Clifford. The state is passed around, and all other players apply
their Clifford one-by-one, resulting in a Clifford-encoded qubit F (|ψ〉

∣

∣02n
〉

) for which knowledge
of the encoding key F is distributed among all players. The final step is our public authentication
test, which is used in several of the other subprotocols as well. Its goal is to ensure that all players,
including player i, have honestly followed the protocol.

The public authentication test (details). The player holding the state F (|ψ〉
∣

∣02n
〉

) (player i) will
measure n out of the 2n trap qubits, which should all be 0. To enable player i to measure a
random subset of n of the trap qubits, the MPC could instruct her to apply (E ⊗ Xr)(I⊗ Uπ)F

† to
get E(|ψ〉 |0n〉)⊗ |r〉, where Uπ permutes the 2n trap qubits by a random permutation π, and E is
a random (n+ 1) qubit Clifford, and r ∈ {0, 1}n is a random string. Then when player i measures
the last n trap qubits, if the encoding was correct, she will obtain r and communicate this to the
MPC. However, this only guarantees that the remaining traps are correct up to polynomial error.

To get a stronger guarantee, we replace the random permutation with an element from the suf-
ficiently rich yet still efficiently samplable group of invertible transformations over F2n, GL(2n,F2).
An element g ∈ GL(2n,F2) maybe be viewed as a unitary Ug acting on computational basis states
as Ug |x〉 = |gx〉where x ∈ {0, 1}2n . In particular, Ug

∣

∣02n
〉

=
∣

∣02n
〉

, so if all traps are in the state |0〉,
applying Ug does not change this, whereas for non-zero x, Ug |x〉 = |x′〉 for a random x′ ∈ {0, 1}2n.
Thus the MPC instructs player i to apply (E⊗Xr)(I⊗Ug)F

† to the state F (|ψ〉
∣

∣02n
〉

), then measure
the last n qubits and return the result, aborting if it is not r. Crucially, (E ⊗ Xr)(I⊗Ug)F

† is given
as an element of the Clifford group, hiding the structure of the unitary and, more importantly, the
values of r and g. So if player i is dishonest and holds a corrupted state, she can only pass the
MPC’s test by guessing r. If player i correctly returns r, we have the guarantee that the remaining
state is a Clifford-authenticated qubit with n traps, E(|ψ〉 |0n〉), up to exponentially small error.

Single-qubit Clifford gate application. As in [DNS12], this is done by simply updating encryp-
tion key held by the MPC: If a state is currently encrypted with a Clifford E, decrypting with a
“wrong” key EG† has the effect of applying G to the state.
CNOT application. Applying a CNOT gate to two qubits is slightly more complicated: as they
are encrypted separately, we cannot just implement the CNOT via a key update like in the case
of single qubit Clifford gates. Instead, we bring the two encoded qubits together, and then run a
protocol that is similar to input encoding using the (2n+2)-qubit register as “input”, but using 2n
additional traps instead of just n, and skipping the final authentication-testing step. The joint state
now has 4n+2 qubits and is encrypted with some Clifford F only known to the MPC. Afterwards,

3The most common way to achieve classical MPC against dishonest majority is in the so called pre-processing model,
as suggested by the SPDZ [BDOZ11] and MASCOT [KOS16] families of protocols. We believe that these protocols can
be made post-quantum secure, but that is beyond the scope of this paper.
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CNOT can be applied via a key update, similarly to single-qubit Cliffords. To split up the qubits
again afterwards, the executing player applies (E1⊗E2)F

†, where E1 and E2 are freshly sampled
by the MPC. The two encoded qubits can then be tested separately using the public authentication
test.

1.4 Open problems

Our results leave a number of exciting open problems to be addressed in future work. Firstly,
the scope of this work was to provide a protocol that reduces the problem of MPQC to classical
MPC in an information-theoretically secure way. Hence we obtain an information-theoretically
secure MPQC protocol in the preprocessing model, leaving the post-quantum secure instantiation of
the latter as an open problem.

Another class of open problems concerns applications of MPQC. Classically, MPC can be used
to devise zero-knowledge proofs [IKOS09] and digital signature schemes [CDG+17]. Are there
quantum generalizations of these applications?

An interesting open question concerning our protocol more specifically is whether the CNOT
sub-protocol can be replaced by a different one that has round complexity independent of the total
number of players, reducing the round complexity of the whole protocol to O(g + kw), where g is
the number of gates in the circuit and w the number of qubits involved in the computation. We
also wonder if it is possible to develop more efficient protocols for narrower classes of quantum
computation, instead of arbitrary (polynomial-size) quantum circuits.

Finally, it would be interesting to investigate whether the public authentication test we use can
be leveraged in protocols for specific MPC-related tasks like oblivious transfer.

1.5 Outline

In Section 2, we outline the necessary preliminaries and tools we will make use of in our protocol.
In Section 3, we give a precise definition of MPQC. In Section 4, we describe how players encode
their inputs to setup for computation in our protocol. In Section 5 we describe our protocol for
Clifford circuits, and finally, in Section 6, we show how to extend this to universal quantum circuits
in Clifford+T.
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2 Preliminaries

2.1 Notation

We assume familiarity with standard notation in quantum computation, such as (pure and mixed)
quantum states, the Pauli gates X and Z, the Clifford gates H and CNOT, the non-Clifford gate T,
and measurements.

We work in the quantum circuit model, with circuits C composed of elementary unitary gates
(of the set Clifford+T), plus computational basis measurements. We consider those measurement
gates to be destructive, i.e., to destroy the post-measurement state immediately, and only a clas-
sical wire to remain. Since subsequent gates in the circuit can still classically control on those
measured wires, this point of view is as general as keeping the post-measurement states around.

For two circuits C1 and C2, we write C2 ◦ C1 for the circuit that consists of executing C1,
followed by C2. Similarly, for two protocols Π1 and Π2, we write Π2 ⋄ Π1 for the execution of Π1,
followed by the execution of Π2.

We use capital letters for both quantum registers (M , R, S, T, . . . ) and unitaries (A, B, U ,
V , W, . . . ). We write |R| for the dimension of the Hilbert space in a register R. The registers in
which a certain quantum state exists, or on which some map acts, are written as gray superscripts,
whenever it may be unclear otherwise. For example, a unitary U that acts on register A, applied
to a state ρ in the registers AB, is written as UAρABU †, where the registers U † acts on can be
determined by finding the matching U and reading the grey subscripts. Note that we do not
explicitly write the operation IB with which U is in tensor product. The gray superscripts are
purely informational, and do not signify any mathematical operation. If we want to denote, for
example, a partial trace of the state ρAB, we use the conventional notation ρA.

For an n-bit string s = s1s2 · · · sn, define U s := U s1 ⊗ U s2 ⊗ · · · ⊗ U sn . For an n-element
permutation π ∈ Sn, define Pπ to be the unitary that permutes n qubits according to π:

Pπ |ψ1〉 ... |ψn〉 =
∣

∣ψπ(1)

〉

...
∣

∣ψπ(n)

〉

.

Write [k] for the set {1, 2, . . . , k}.
For a projector Π, write Π for its complement I−Π. Write τR := I/|R| for the fully mixed state

on the register R.
Write GL(n, F ) for the general linear group of degree n over a field F . We refer to the Galois

field of two elements as F2, the n-qubit Pauli group as Pn, and the n-qubit Clifford group as Cn.
Whenever a protocol mandates handing an element from one of these groups, or more generally,
a unitary operation, to an agent, we mean that a description of the group element is given, e.g. in
form of a normal-form circuit.

Finally, for a quantum operation that may take multiple rounds of inputs and outputs, for
example an environment E interacting with a protocol Π, we write E ⇆ Π for the final output of E
after the entire interaction.

2.2 Classical multi-party computation

For multi-party computations where possibly more than half of the players are corrupted by the
adversary, it is well known that one cannot achieve fairness which asks that either all parties receive
the protocol output or nobody does. Cleve has shown [Cle86] that in the case of dishonest majority
there cannot exist MPC protocols that provide fairness and guaranteed output delivery. In this
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setting, we cannot prevent a dishonest player from simply aborting the protocol at any point, for
example after having learned an unfavorable outcome of the protocol, before the honest player(s)
have obtained their output(s). Hence, we have to settle for protocols allowing abort.

Over the last years, the most efficient protocols for classical multi-party computation with
abort are in the so-called pre-processing model, as introduced by the SPDZ-family of protocols
[BDOZ11, DPSZ12, KPR18, CDE+18]4. These protocols consist of two phases: The first “offline”
phase is executed independently of the inputs to the actual MPC and produces authenticated
shared randomness among the players, for example in the form of authenticated multiplication
triples [Bea92]. These triples are used in the second phase to run a very efficient secure-function-
evaluation protocol which is UC information-theoretically secure against active corruptions of up to
k − 1 players, see, e.g., [CDN15, Section 8.5].

At this point, we are unaware of any formal analysis of the post-quantum security of these
schemes. However, it should follow directly from Unruh’s lifting theorem [Unr10] (asserting that
classically secure protocols remain (statistically) secure in the quantum world) that the UC security
of the second (online) phase can be lifted to the post-quantum setting. As for the pre-processing
phase, there are two main types of protocols:

1. The SPDZ-family make use of the homomorphic properties of computationally-secure public-
key encryption systems to generate the authenticated multiplication triples. The scheme
in [DPSZ12] uses somewhat homomorphic encryption which is built from lattice assump-
tions and might already be post-quantum secure. In addition, the players provide non-
interactive zero-knowledge proofs that they have performed these operations correctly. Those
proofs are typically not post-quantum secure, but should be replaced by post-quantum se-
cure variants like lattice-based zk-SNARGs [GMNO18] or zk-STARKs [BBHR18].

2. The authors of MASCOT (Multi-party Arithmetic Secure Computation with Oblivious Trans-
fer) [KOS16] suggest a way to avoid the use of expensive public-key cryptography altogether
and propose to use oblivious transfer (OT) and consistency checks to generate authenticated
multiplication triples. A large number of OTs can be obtained from a few base OTs by OT
extension-techniques such as [KOS15]. Those techniques are currently only proven in the
classical random-oracle model (ROM), but can possibly be proven in the QROM as well. A
post-quantum secure base OT can be obtained from lattices [PVW08]. Recent even more
efficient MPC schemes [CDE+18] have followed this OT-based approach as well.

Establishing full post-quantum security of classical multi-party computation is outside the
scope of this paper. For the purpose of this paper, we assume that such a post-quantum secure
classical multi-party computation is available. According to the discussion above, it suffices that
a preprocessing phase has been successfully run in order to have UC information-theoretically
secure function evaluation (SFE). Unlike for general adversary structures [HMZ08], in our case of
threshold adversaries, one can obtain (reactive) MPC from SFE by outputting shares of the overall
state to the players and by asking the players to input them again in the next phase, see [CDN15,
Section 5.3.1].

Throughout this paper, we will utilize the following ideal MPC functionality as a black box:

4 We refer to [ACR18, Section 5] for a recent overview of other models of active corruptions that tolerate a dishonest
majority of players, such as identifiable abort, covert security and public auditability.
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Definition 2.1 (Ideal classical k-party stateful computation with abort). Let f1, ..., fk and fS be public
classical deterministic functions on k + 2 inputs. Let a string s represent the internal state of the ideal
functionality. (The first time the ideal functionality is called, s is empty.) Let A ( [k] be a set of corrupted
players.

1. Every player i ∈ [k] chooses an input xi of appropriate size, and sends it (securely) to the trusted
third party.

2. The trusted third party samples a bit string r uniformly at random.

3. The trusted third party computes fi(s, x1, ..., xk, r) for all i ∈ [k] ∪ {S}.

4. For all i ∈ A, the trusted third party sends fi(s, x1, ..., xk, r) to player i.

5. All i ∈ A respond with a bit bi, which is 1 if they choose to abort, or 0 otherwise.

6. If bj = 0 for all j, the trusted third party sends fi(s, x1, ..., xk, r) to the other players i ∈ [k]\A and
stores fS(s, x1, ..., xk, r) in an internal state register (replacing s). Otherwise, he sends an abort

message to those players.

2.3 Pauli filter

In our protocol, we use a technique which alters a channel that would act jointly on registers A
and B, so that its actions on A are replaced by a flag bit into a separate register. The flag is set to 0
if the actions on A belong to some set P, or to 1 otherwise. This way, the new channel “filters” the
allowed actions of A.

Definition 2.2 (Pauli filter). For registers A and B with |B| > 0, let UAB be a unitary, and let P ⊆
(

{0, 1}log |A|)2 contain pairs of bit strings. The P-filter of U on register A, denoted PauliFilterAP(U), is the
map B → BF (where F is some single-qubit flag register) that results from the following operations:

1. Initialize two separate registersA andA′ in the state |Φ〉〈Φ|, where |Φ〉 :=
(

1√
2
(|00〉+ |11〉)

)⊗ log |A|
.

Half of each pair is stored in A, the other in A′.

2. Run U on AB.

3. Measure AA′ with the projective measurement {Π, I −Π} for

Π :=
∑

(a,b)∈P

(

XaZb
)A
|Φ〉〈Φ|

(

ZbXa
)

.

If the outcome is Π, set the F register to |0〉〈0|. Otherwise, set it to |1〉〈1|.
The functionality of the Pauli filter becomes clear in the following lemma, which we prove

in Appendix B by straightforward calculation:

Lemma 2.3. For registers A and B with |B| > 0, let UAB be a unitary, and let P ⊆
(

{0, 1}log |A|)2. Write

U =
∑

x,z(X
xZz)A ⊗ UB

x,z. Then PauliFilterAP(U) equals the map

(·) 7→
∑

(a,b)∈P
UB
a,b(·)U †

a,b ⊗ |0〉〈0|
F +

∑

(a,b)6∈P
UB
a,b(·)U †

a,b ⊗ |1〉〈1|
F
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A special case of the Pauli filter forP = {(0log |A|, 0log |A|)} is due to Broadbent and Wainewright
[BW16]. This choice of P represents only identity: the operation PauliFilterP filters out any com-
ponents of U that do not act as identity on A. We will denote this type of filter with the name
IdFilter.

In this work, we will also use XFilter, which only accepts components of U that act trivially on
register A in the computational basis. It is defined by choosing P = {0log |A|} × {0, 1}log |A|.

Finally, we note that the functionality of the Pauli filter given in Definition 2.2 can general-
ized, or weakened in a sense, by choosing a different state than |Φ〉〈Φ|. In this work, we will

use the ZeroFilter, which initializes AA′ in the state |00〉log |A|, and measures using the projector
Π = |00〉〈00|. It filters U by allowing only those Pauli operations that leave the computational-
zero state (but not necessarily any other computational-basis states) unaltered:

(·) 7→ UB
0 (·)U †

0 ⊗ |0〉〈0|F +
∑

a6=0

UB
a (·)U †

a ⊗ |1〉〈1|F ,

where we abbreviate Ua :=
∑

b Ua,b. Note that for ZeroFilter, the extra register A′ can also be left
out. For all the filters, we use (black) superscripts to denote the registers where the filtering is
applied, e.g. XFilterR(U)S→SF for U acting on RS denotes thatR is filtered, and the resulting map
hence still acts on S and produces flag F .

2.4 Clifford authentication code

The protocol presented in this paper will rely on quantum authentication. The players will encode
their inputs using a quantum authentication code to prevent the other, potentially adversarial,
players from making unauthorized alterations to their data. That way, they can ensure that the
output of the computation is in the correct logical state.

A quantum authentication code transforms a quantum state (the logical state or plaintext) into
a larger quantum state (the physical state or ciphertext) in a way that depends on a secret key. An
adversarial party that has access to the ciphertext, but does not know the secret key, cannot alter
the logical state without being detected at decoding time.

More formally, an authentication code consists of an encoding map EncM→MT
k and a decoding

map DecMT→M
k , for a secret key k, which we usually assume that the key is drawn uniformly at

random from some key set K. The message register M is expanded with an extra register T to
accommodate for the fact that the ciphertext requires more space than the plaintext.

An authentication code is correct if Deck ◦ Enck = I. It is secure if the decoding map rejects
(e.g., by replacing the output with a fixed reject symbol ⊥) whenever an attacker tried to alter an
encoded state:

Definition 2.4 (Security of authentication codes [DNS10]). Let (EncM→MT
k , DecMT→M

k ) be a quantum
authentication scheme for k in a key set K. The scheme is ε-secure if for all CPTP maps AMTR acting on
the ciphertext and a side-information register R, there exist CP maps Λacc and Λrej such that Λacc +Λrej is
trace-preserving, and for all ρMR:

∥

∥

∥

∥

E
k∈K

[Deck (A (Enck (ρ)))] −
(

ΛR
acc(ρ) + |⊥〉〈⊥|M ⊗ TrM

[

ΛR
rej (ρ)

]

)

∥

∥

∥

∥

1

6 ε.

A fairly simple but powerful authentication code is the Clifford code:
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Definition 2.5 (Clifford code [ABOE10]). The n-qubit Clifford code is defined by a key set Cn+1, and the
encoding and decoding maps for a C ∈ Cn+1:

EncC(ρ
M ) := C(ρM ⊗ |0n〉〈0n|T )C†,

DecC(σ
MT ) := 〈0n|T C†σC |0n〉+ |⊥〉〈⊥|M ⊗ TrM





∑

x 6=0n

〈x|C†σC |x〉



 .

Note that, from the point of view of someone who does not know the Clifford key C , the
encoding of the Clifford code looks like a Clifford twirl (see Appendix A) of the input state plus
some trap states.

We prove the security of the Clifford code in Appendix C.

2.5 Universal gate sets

It is well known that if, in addition to Clifford gates, we are able to apply any non-Clifford gate
G, then we are able to achieve universal quantum computation. In this work, we focus on the
non-Clifford T gate (or π/8 gate).

In several contexts, however, applying non-Clifford gates are not straightforward for different
reasons: common quantum error-correcting codes do not accept transversal implementation of
non-Clifford gates, the non-Clifford gates do not commute with the quantum one-time pad and,
more importantly in this work, neither with the Clifford encoding.

In order to concentrate the hardness of non-Clifford gates in an offline pre-processing phase,
we can use techniques from computation by teleportation if we have so-called magic states of the
form |T〉 := T |+〉. Using a single copy of this state as a resource, we are able to implement a T

gate using the circuit in Figure 1. The circuit only requires (classically controlled) Clifford gates.

|ψ〉

T |+〉 Xc Pc

c

T |ψ〉

Figure 1: Using a magic state |T〉 = T |+〉 to implement a T gate.

The problem is how to create such magic states in a fault-tolerant way. Bravyi and Kitaev [BK05]
proposed a distillation protocol that allows to create states that are δ-close to true magic states,
given poly(log(1/δ)) copies of noisy magic-states. Let

∣

∣T⊥〉 = T |−〉. Then we have:

Theorem 2.6 (Magic state distillation [BK05]). There exists a circuit consisting of classically controlled

Cliffords and computational-basis measurements such that for any ε < 1
2

(

1−
√

3/7
)

, if ρ is the output

on the first wire using input

(

(1− ε) |T〉 〈T|+ ε
∣

∣

∣T
⊥
〉〈

T⊥
∣

∣

∣

)⊗n
, (1)

then 1− 〈T| ρ |T〉 6 O
(

(5ε)n
c)

, where c = (log2 30)
−1 ≈ 0.2.
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As we will see in Section 6, our starting point is a bit different from the input state required by
Theorem 2.6. We now present a procedure that will allow us to prepare the states necessary for
applying Theorem 2.6 (see Circuit 2.8). We prove Lemma 2.7 in Appendix D.

Lemma 2.7. Let VLW = span{Pπ(|T〉⊗m−w
∣

∣T⊥〉w) : w 6 ℓ, π ∈ Sm}, and let ΠLW be the orthogonal
projector onto VLW . Let Ξ denote the CPTP map induced by Circuit 2.8. If ρ is an m-qubit state such that
Tr(ΠLW ρ) > 1− ε, then

∥

∥Ξ(ρ)− (|T〉 〈T|)⊗t
∥

∥

1
6 O

(

m
√
t

(

ℓ

m

)O((m/t)c/2)

+ ε

)

,

for some constant c > 0.

Circuit 2.8 (Magic-state distillation). Given an m-qubit input state and a parameter t < m:

1. To each qubit, apply Ẑ := PX with probability 1
2 .

2. Permute the qubits by a random π ∈ Sm.

3. Divide the m qubits into t blocks of size m/t, and apply magic-state distillation from
Theorem 2.6 to each block.

Remark. Circuit 2.8 can be implemented with (classically controlled) Clifford gates and measure-
ments in the computational basis.

3 Multi-party Quantum Computation: Definitions

In this section, we describe the ideal functionality we aim to achieve for multi-party quantum com-
putation (MPQC) with a dishonest majority. As noted in Section 2.2, we cannot hope to achieve
fairness: therefore, we consider an ideal functionality with the option for the dishonest players to
abort.

Definition 3.1 (Ideal quantum k-party computation with abort). Let C be a quantum circuit on W ∈
N>0 wires. Consider a partition of the wires into the players’ input registers plus an ancillary register, as
[W ] = Rin

1 ⊔ · · · ⊔ Rin
k ⊔ Rancilla, and a partition into the players’ output registers plus a register that is

discarded at the end of the computation, as [W ] = Rout
1 ⊔ · · · ⊔ Rout

k ⊔ Rdiscard. Let IA ( [k] be a set of
corrupted players.

1. Every player i ∈ [k] sends the content of Rin
i to the trusted third party.

2. The trusted third party populates Rancilla with computational-zero states.

3. The trusted third party applies the quantum circuit C on the wires [W ].

4. For all i ∈ IA, the trusted third party sends the content of Rout
i to player i.

5. All i ∈ IA respond with a bit bi, which is 1 if they choose to abort, or 0 otherwise.

12
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E

I
MPQC
C,S
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Figure 2: (1) The environment interacting with the protocol as run by honest players P1, . . . , Pℓ,
and an adversary who has corrupted the remaining players. (2) The environment interacting with
a simulator running the ideal functionality.

6. If bi = 0 for all i, the trusted third party sends the content of Rout
i to the other players i ∈ [k]\IA.

Otherwise, he sends an abort message to those players.

In Definition 3.1, all corrupted players individually choose whether to abort the protocol (and
thereby to prevent the honest players from receiving their respective outputs). In reality, how-
ever, one cannot prevent several corrupted players from actively working together and sharing all
information they have among each other. To ensure that our protocol is also secure in those scenar-
ios, we consider security against a general adversary that corrupts all players in IA, by replacing
their protocols by a single (interactive) algorithmA that receives the registersRin

A := R⊔⊔i∈IA R
in
i

as input, and after the protocol produces output in the register Rout
A := R ⊔⊔i∈IA R

out
i . Here, R is

a side-information register in which the adversary may output extra information.
We will always consider protocols that fulfill the ideal functionality with respect to some gate

set G: the protocol should then mimic the ideal functionality only for circuits C that consist of
gates from G. This security is captured by the definition below.

Definition 3.2 (Computational security of quantum k-party computation with abort). Let G be a
set of quantum gates. Let ΠMPQC be a k-party quantum computation protocol, parameterized by a security
parameter n. For any circuit C , set IA ( [k] of corrupted players, and adversarial (interactive) algorithm
A that performs all interactions of the players in IA, define ΠMPQC

C,A : Rin
A⊔
⊔

i 6∈IA R
in
i → Rout

A ⊔
⊔

i 6∈IA R
out
i

to be the channel that executes the protocol ΠMPQC for circuit C by executing the honest interactions of the
players in [k] \ IA, and letting A fulfill the role of the players in IA (See Figure 2, (1)).

For a simulator S that receives inputs in Rin
A, then interacts with the ideal functionalities on all inter-

faces for players in IA, and then produces output in Rout
A , let IMPQC

C,S be the ideal functionality described in
Definition 3.1, for circuit C , simulator S for players i ∈ IA, and honest executions (with bi = 0) for players
i 6∈ IA (See Figure 2, (2)). We say that ΠMPQC is a computationally ε-secure quantum k-party computation
protocol with abort, if for all IA ( [k], for all QPT adversaries A, and all circuits C comprised of gates from
G, there exists a QPT simulator S such that for all QPT environments E ,

∣

∣

∣
Pr
[

1← (E ⇆ ΠMPQC
C,A )

]

− Pr
[

1← (E ⇆ I
MPQC
C,S )

]∣

∣

∣
6 ε.

Here, the notation b ← (E ⇆ (·)) represents the environment E , on input 1n, interacting with the (real or
ideal) functionality (·), and producing a single bit b as output.
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Remark. In the above definition, we assume that all QPT parties are polynomial in the size of
circuit |C|, and in the security parameter n.

We show in Section 6.2 the protocol ΠMPQC implementing the ideal functionality described
in Definition 3.1, and we prove its security in Theorem 6.5.

4 Setup and encoding

4.1 Input encoding

In the first phase of the protocol, all players encode their input registers qubit-by-qubit. For sim-
plicity of presentation, we pretend that player 1 holds a single-qubit input state, and the other
players do not have input. In the actual protocol, multiple players can hold multiple-qubit inputs:
in that case, the initialization is run several times in parallel, using independent randomness. Any
other player i can trivially take on the role of player 1 by relabeling the player indices.

Definition 4.1 (Ideal functionality for input encoding). Without loss of generality, let Rin
1 be a single-

qubit input register, and let dim(Rin
i ) = 0 for all i 6= 1. Let IA ( [k] be a set of corrupted players.

1. Player 1 sends register Rin
1 to the trusted third party.

2. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a random (n+1)-qubit Clifford
E to MT1, and sends these registers to player 1.

3. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all i, then the trusted third
party stores the key E in the state register S of the ideal functionality. Otherwise, it aborts by storing
⊥ in S.

The following protocol implements the ideal functionality. It uses, as a black box, an ideal
functionality MPC that implements a classical multi-party computation with memory.

Protocol 4.2. (Input encoding) Without loss of generality, let M := Rin
1 be a single-qubit input

register, and let dim(Rin
i ) = 0 for all i 6= 1.

1. For every i ∈ [k], MPC samples a random (2n+1)-qubit Clifford Fi and tells it to player i.

2. Player 1 applies the map ρM 7→ F1

(

ρM ⊗
∣

∣02n
〉〈

02n
∣

∣

T1T2
)

F †
1 for two n-qubit (trap) reg-

isters T1 and T2, and sends the registers MT1T2 to player 2.

3. Every player i = 2, 3, ..., k applies Fi to MT1T2, and forwards it to player i+ 1. Eventu-
ally, player k sends the registers back to player 1.

4. MPC samples a random (n+1)-qubit Clifford E, random n-bit string r and s, and a ran-
dom classical invertible linear operator g ∈ GL(2n,F). Let Ug be the (Clifford) unitary
that computes g in-place, i.e., Ug |t〉 = |g(t)〉 for all t ∈ {0, 1}2n.

5. MPC givesa

V := (EMT1 ⊗ (XrZs)T2)(I⊗ (Ug)
T1T2)(Fk · · ·F2F1)

†
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to player 1, who applies it to MT1T2.

6. Player 1 measures T2 in the computational basis, discarding the measured wires, and
keeps the other (n+ 1) qubits as its output in Rout

1 =MT1).

7. Player 1 submits the measurement outcome r′ to MPC, who checks whether r = r′. If so,
MPC stores the key E in its memory-state register S. If not, it aborts by storing ⊥ in S.

aAs described in Section 2.1, the MPC gives V as a group element, and the adversary cannot decompose it in
the different parts that appear in its definition.

If MPC aborts the protocol in step 7, the information about the Clifford encoding key E is erased.
In that case, the registers MT1 will be fully mixed. Note that this result differs slightly from the
‘reject’ outcome of a quantum authentication code as in Definition 2.4, where the message register
M is replaced by a dummy state |⊥〉〈⊥|. In our current setting, the register M is in the hands of
(the possibly malicious) player 1. We therefore cannot enforce the replacement of register M with
a dummy state: we can only make sure that all its information content is removed. Depending on
the application or setting, the trusted MPC can of course broadcast the fact that they aborted to all
players, including the honest one(s).

To run Protocol 4.2 in parallel for multiple input qubits held by multiple players, MPC samples
a list of Cliffords Fi,q for each player i ∈ [k] and each qubit q. The Fi,q operations can be applied
in parallel for all qubits q: with k rounds of communication, all qubits will have completed their
round past all players.

We will show that Protocol 4.2 fulfills the ideal functionality for input encoding:

Lemma 4.3. Let ΠEnc be Protocol 4.2, and IEnc be the ideal functionality described in Definition 4.1. For
all sets IA ( [k] of corrupted players and all adversaries A that perform the interactions of players in IA
with Π, there exists a simulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E ,

|Pr[1← (E ⇆ ΠEnc
A )]− Pr[1← (E ⇆ I

Enc
S )| 6 negl (n) .

Note that the environment E also receives the state register S, which acts as the “output”
register of the ideal functionality (in the simulated case) or of MPC (in the real case). It is important
that the environment cannot distinguish between the output states even given that state register
S, because we want to be able to compose Protocol 5.4 with other protocols that use the key
information inside S. In other words, it is important that, unless the key is discarded, the states
inside the Clifford encoding are also indistinguishable for the environment.

We provide just a sketch of the proof for Lemma 4.3, and refer to Appendix E for its full proof.

Proof sketch. We divide our proof into two cases: when player 1 is honest, or when she is dishonest.
For the case when player 1 is honest, we know that she correctly prepares the expected state

before the state is given to the other players. That is, she appends 2n ancilla qubits and applies the
random Clifford instructed by the classical MPC. When the encoded state is returned to player 1,
and she performs the Clifford V as instructed by the MPC, then by the properties of the Clifford
encoding, the tested traps will be non-zero with probability exponentially close to 1, unless the
other players performed the honest strategies.

The second case is a bit more complicated: the first player has full control over the state and,
more importantly, the traps that will be used in the first encoding. In particular, she could start
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Figure 3: On the left, the adversary’s interaction with the protocol ΠEnc, ΠEnc
A in case player 1 is the

only honest player. On the right, the simulator’s interaction with JEnc, JEncS . It performs the Pauli
filter IdFilterMT1T2 on the adversary’s attack on the encoded state.

with nonzero traps, which could possibly give some advantage to the dishonest players later on
the execution of the protocol.

In order to prevent this type of attack, the MPC instructs the first player to apply a random
linear function Ug on the traps, which is hidden from the players inside the Clifford V . If the traps
were initially zero, their value does not change, but otherwise, they will be mapped to a random
value, unknown by the dishonest parties. As such, the map Ug removes any advantage that the
dishonest parties could have in step 7 by starting with non-zero traps. Because any nonzero trap
state in T1T2 is mapped to a random string, it suffices to measure only T2 in order to be certain
that T1 is also in the all-zero state (except with negligible probability). This intuition is formalized
in Lemma E.1 in Appendix E.

Other possible attacks are dealt with in a way that is similar to the case where player 1 is honest
(but from the perspective of another honest player).

In the full proof (see Appendix E), we present two simulators, one for each case, that tests
(using Pauli filters from Section 2.3) whether the adversary performs any such attacks during the
protocol, and chooses the input to the ideal functionality accordingly. See Figure 3 for a pictorial
representation of the structure of the simulator for the case where player 1 is honest.

4.2 Preparing ancilla qubits

Apart from encrypting the players’ inputs, we also need a way to obtain encoded ancilla-zero
states, which may be fed as additional input to the circuit. Since none of the players can be trusted
to simply generate these states as part of their input, we need to treat them separately.

In [DNS10], Alice generates an encoding of |0〉〈0|, and Bob tests it by entangling (with the help
of the classical MPC) the data qubit with a separate |0〉〈0| qubit. Upon measuring that qubit, Bob
then either detects a maliciously generated data qubit, or collapses it into the correct state. For
details, see [DNS10, Appendix E].

Here, we take a similar approach, except with a public test on the shared traps. In order to
guard against a player that may lie about the measurement outcomes during a test, we entangle
the data qubits with all traps. We do so using a random linear operator, similarly to the encoding
described in the previous subsection.
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Essentially, the protocol for preparing ancilla qubits is identical to Protocol 4.2 for input encod-
ing, except that now we do not only test whether the 2n traps are in the |0〉〈0| state, but also the
data qubit: concretely, the linear operator g acts on 2n+ 1 elements instead of 2n. That is,

V := (E ⊗ P )Ug(Fk · · ·F2F1)
†.

As a convention, Player 1 will always create the ancilla |0〉〈0| states and encode them. In principle,
the ancillas can be created by any other player, or by all players together.

Per the same proof as for Lemma 4.3, we have implemented the following ideal functionality,
again making use of a classical MPC as a black box.

Definition 4.4 (Ideal functionality for encoding of |0〉〈0|). Let IA ( [k] be a set of corrupted players.

1. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a random (n+1)-qubit Clifford
E to MT1, and sends these registers to player 1.

2. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all i, then the trusted third
party stores the key E in the state register S of the ideal functionality. Otherwise, it aborts by storing
⊥ in S.

5 Computation of Clifford and measurement

After all players have successfully encoded their inputs and sufficiently many ancillary qubits,
they perform a quantum computation gate-by-gate on their joint inputs. In this section, we will
present a protocol for circuits that consist only of Clifford gates and computational-basis mea-
surements. The Clifford gates may be classically controlled (for example, on the measurement
outcomes that appear earlier in the circuit). In Section 6, we will discuss how to expand the pro-
tocol to general quantum circuits.

Concretely, we wish to achieve the functionality in Definition 3.1 for all circuits C that consist
of Clifford gates and computational-basis measurements. As an intermediate step, we aim to
achieve the following ideal functionality, where the players only receive an encoded output, for all
such circuits:

Definition 5.1 (Ideal quantum k-party computation without decoding). Let C be a quantum circuit
on W wires. Consider a partition of the wires into the players’ input registers plus an ancillary register, as
[W ] = Rin

1 ⊔ · · · ⊔ Rin
k ⊔ Rancilla, and a partition into the players’ output registers plus a register that is

discarded at the end of the computation, as [W ] = Rout
1 ⊔ · · · ⊔ Rout

k ⊔ Rdiscard. Let IA ( [k] be the set of
corrupted players.

1. All players i send their register Rin
i to the trusted third party.

2. The trusted third party instantiates Rancilla with |0〉〈0| states.

3. The trusted third party applies C to the wires [W ].

4. For every player i and every output wire w ∈ Routi , the trusted third party samples a random

(n+ 1)-qubit Clifford Ew, applies ρ 7→ Ew(ρ⊗ |0n〉〈0n|)E†
w to w, and sends the result to player i.

5. All players i ∈ IA send a bit bi to the trusted third party.
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(a) If bi = 0 for all i, all keys Ew and all measurement outcomes are stored in the state register S.

(b) Otherwise, the trusted third party aborts by storing ⊥ in S.

To achieve the ideal functionality, we define several subprotocols. The subprotocols for encod-
ing the players’ inputs and ancillary qubits have already been described in Section 4. It remains to
describe the subprotocols for (classically-controlled) single-qubit Clifford gates (Section 5.1), (clas-
sically controlled) CNOT gates (Section 5.2), and computational-basis measurements (Section 5.3).

In Section 5.5, we show how to combine the subprotocols in order to compute any polynomial-
sized Clifford+measurement circuit. Our approach is inductive in the number of gates in the
circuit. The base case is the identity circuit, which is essentially covered in Section 4. In Sec-
tions 5.1–5.3, we show that the ideal functionality for any circuit C , followed by the subprotocol
for a gate G, results in the ideal functionality for the circuit G ◦ C (C followed by G). As such,
we can chain together the subprotocols to realize the ideal functionality in Definition 5.1 for any
polynomial-sized Clifford+measurement circuit. Combined with the decoding subprotocol we
present in Section 5.4, such a chain of subprotocols satisfies Definition 3.1 for ideal k-party quan-
tum Clifford+measurement computation with abort.

In Definition 5.1, all measurement outcomes are stored in the state register of the ideal func-
tionality. We do so to ensure that the measurement results can be used as a classical control to
gates that are applied after the circuit C , which can be technically required when building up to
the ideal functionality for C inductively. Our protocols can easily be altered to broadcast measure-
ment results as they happen, but the functionality presented in Definition 5.1 is the most general:
if some player is supposed to learn a measurement outcomemℓ, then the circuit can contain a gate
Xmℓ on an ancillary zero qubit that will be part of that player’s output.

5.1 Subprotocol: single-qubit Cliffords

Due to the structure of the Clifford code, applying single-qubit Clifford is simple: the classical
MPC, who keeps track of the encoding keys, can simply update the key so that it includes the
single-qubit Clifford on the data register. We describe the case of a single-qubit Clifford that is
classically controlled on a previous measurement outcome stored in the MPC’s state. The uncon-
ditional case can be trivially obtained by omitting the conditioning.

Protocol 5.2 (Single-qubit Cliffords). LetGmℓ be a single-qubit Clifford to be applied on a wire
w (held by a player i), conditioned on a measurement outcome mℓ. Initially, player i holds an
encoding of the state on that wire, and the classical MPC holds the encoding key E.

1. MPC reads result mℓ from its state register S, and updates its internally stored key E to

E((Gmℓ)† ⊗ I⊗n).

If mℓ = 0, nothing happens. To see that the protocol is correct for mℓ = 1, consider what happens
if the state E(ρ⊗ |0n〉〈0n|)E† is decoded using the updated key: the decoded output is

(E(G† ⊗ I⊗n))†E(ρ⊗ |0n〉〈0n|)E†(E(G† ⊗ I⊗n)) = GρG† ⊗ |0n〉〈0n| .

Protocol 5.2 implements the ideal functionality securely: given an ideal implementation IC for
some circuit C , we can implement Gmℓ ◦ C (i.e., the circuit C followed by the gate Gmℓ ) by per-
forming Protocol 5.2 right after the interaction with IC .
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Lemma 5.3. Let Gmℓ be a single-qubit Clifford to be applied on a wire w (held by a player i), conditioned
on a measurement outcomemℓ. Let ΠGmℓ be Protocol 5.2 for the gateGmℓ , and IC be the ideal functionality
for a circuit C as described in Definition 5.1. For all sets IA ( [k] of corrupted players and all adversaries
A that perform the interactions of players in IA, there exists a simulator S (the complexity of which scales
polynomially in that of the adversary) such that for all environments E ,

Pr[1← (E ⇆ (ΠGmℓ ⋄ IC)A)] = Pr[1← (E ⇆ IG
mℓ◦C

S )].

Proof sketch. In the protocol ΠGmℓ ⋄ IC , an adversary has two opportunities to attack: once before
its input state is submitted to IC , and once afterwards. We define a simulator that applies these
same attacks, except that it interacts with the ideal functionality IG

mℓ◦C .
Syntactically, the state register S of IC is provided as input to the MPC in ΠGmℓ , so that the

MPC can update the key as described by the protocol. As such, the output state of the adversary
and the simulator are exactly equal. We provide a full proof in Appendix F.

5.2 Subprotocol: CNOT gates

The application of two-qubit Clifford gates (such as CNOT) is more complicated than the single-
qubit case, for two reasons.

First, a CNOT is a joint operation on two states that are encrypted with separate keys. If we were
to classically update two keys E1 and E2 in a similar fashion as in Protocol 5.2, we would end up
with a new key (E1⊗E2)(CNOT1,n+2), which cannot be written as a product of two separate keys.
The keys would become ‘entangled’, which is undesirable for the rest of the computation.

Second, the input qubits might belong to separate players, who may not trust the authenticity
of each other’s qubits. In [DNS12], authenticity of the output state is guaranteed by having both
players test each state several times. In a multi-party setting, both players involved in the CNOT

are potentially dishonest, so it might seem necessary to involve all players in this extensive testing.
However, because all our tests are publicly verified, our protocol requires less testing. Still, inter-
action with all other players is necessary to apply a fresh ‘joint’ Clifford on the two ciphertexts.

Protocol 5.4 (CNOT). This protocol applies a CNOT gate to wires wi (control) and wj (target),
conditioned on a measurement outcome mℓ. Suppose that player i holds an encoding of the

first wire, in register M iT i
1, and player j of the second wire, in register M jT j

1 . The classical
MPC holds the encoding keys Ei and Ej .

1. If i 6= j, player j sends their registers M jT j
1 to player i. Player i now holds a (2n + 2)-

qubit state.

2. Player i initializes the registers T i
2 and T j

2 both in the state |0n〉〈0n|.

3. For all players h, MPC samples random (4n + 2)-qubit Cliffords Dh, and gives them

to the respective players. Starting with player i, each player h applies Dh to M ijT ij
12.a

Eventually, player i receives the state back from player i−1. MPC remembers the applied
Clifford

D := Di−1Di−2 · · ·D1DkDk−1 · · ·Di.
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4. MPC samples random (2n + 1)-qubit Cliffords Fi and Fj , and tells player i to apply

V := (Fi ⊗ Fj)CNOT
mℓ

1,2n+2(E
†
i ⊗ I⊗n ⊗ E†

j ⊗ I⊗n)D†.

Here, the CNOT acts on the two data qubits inside the encodings.

5. If i 6= j, player i sends M jT j
12 to player j.

6. Players i and j publicly tests their encodings. The procedures are identical, we describe
the steps for player i:

(a) MPC samples a random (n + 1)-qubit Clifford E′
i, which will be the new encoding

key. Furthermore, MPC samples random n-bit strings si and ri, and a random
classical invertible linear operator gi on F2n

2 .

(b) MPC tells player i to apply

Wi := (E′
i ⊗ (XriZsi)T

i
2)U

T i
12

gi F †
i .

Here, Ugi is as defined in Protocol 4.2.

(c) Player i measures T i
2 in the computational basis and reports the n-bit measurement

outcome r′i to the MPC.

(d) MPC checks whether r′i = ri. If it is not, MPC sends abort to all players. If it is, the
test has passed, and MPC stores the new encoding key E′

i in their internal memory.

aWe combine subscripts and superscripts to denote multiple registers: e.g., T ij
12 is shorthand for T i

1T
i
2T

j
1T

j
2 .

Lemma 5.5. Let ΠCNOTmℓ be Protocol 5.4, to be executed on wires wi and wj , held by players i and j,
respectively. Let IC be the ideal functionality for a circuit C as described in Definition 5.1. For all sets
IA ( [k] of corrupted players and all adversaries A that perform the interactions of players in IA, there
exists a simulator S (the complexity of which scales polynomially in that of the adversary) such that for all
environments E ,

∣

∣

∣Pr[1← (E ⇆ (ΠCNOTmℓ ⋄ IC)A)] = Pr[1← (E ⇆ I
CNOTmℓ◦C
S )]

∣

∣

∣ 6 negl (n) .

Proof sketch. There are four different cases, depending on which of players i and j are dishonest.
In Appendix G, we provide a full proof by detailing the simulators for all four cases, but in this
sketch, we only provide an intuition for the security in the case where both players are dishonest.

It is crucial that the adversary does not learn any information about the keys (Ei, Ej , E
′
i, E

′
j),

nor about the randomizing elements ri, si, gi. Even though the adversary learns Wi,Wj , and
V explicitly during the protocol, all the secret information remains hidden by the randomizing
Cliffords Fi, Fj , and D.

Consider a few ways in which the adversary may attack.

First, he may prepare a non-zero state in the registers T i
2 (or T j

2 ) in step 2, potentially intending

to spread those errors into M iT i
1 (or M jT j

1 ). Doing so, however, will cause Ugi (or Ugj ) to map the
trap state to a random non-zero string, and the adversary would not know what measurement
string r′i (or r′j) to report. Since gi is unknown to the adversary, Lemma E.1 (see Appendix E) is

applicable in this case: it states that it suffices to measure T i
2 in order to detect any errors in T i

12.
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Second, the adversary may fail to execute its instructions V or Wi ⊗ Wj correctly. Doing so
is equivalent to attacking the state right before or right after these instructions. In both cases,
however, the state in M iT i

1 is Clifford-encoded (and the state in T i
2 is Pauli-encoded) with keys

unknown to the adversary, so the authentication property of the Clifford code prevents the adver-
sary from altering the outcome.

The simulator we define in Appendix G tests the adversary exactly for the types of attacks
above. By using Pauli filters (see Definition 2.2), the simulator checks whether the attacker leaves

the authenticated states and the trap states T i
2 and T j

2 (both at initialization and before measure-
ment) unaltered. In the full proof, we show that the output state of the simulator approximates,
up to an error negligible in n, the output state of the real protocol.

5.3 Subprotocol: Measurement

Measurement of authenticated states introduces a new conceptual challenge. For a random keyE,
the result of measuring E(ρ ⊗ |0n〉〈0n|)E† in a fixed basis is in no way correlated with the logical
measurement outcome of the state ρ. However, the measuring player is also not allowed to learn
the key E, so they cannot perform a measurement in a basis that depends meaningfully on E.

In [DNS10, Appendix E], this challenge is solved by entangling the state with an ancilla-zero
state on a logical level. After this entanglement step, Alice gets the original state while Bob gets
the ancilla state. They both decode their state (learning the key from the MPC), and can measure
it. Because those states are entangled, and at least one of Alice and Bob is honest, they can ensure
that the measurement outcome was not altered, simply by checking that they both obtained the
same outcome. The same strategy can in principle also be scaled up to k players, by making all k
players hold part of a big (logically) entangled state. However, doing so requires the application
of k − 1 logical CNOT operations, making it a relatively expensive procedure.

We take a different approach in our protocol. The player that performs the measurement es-
sentially entangles, with the help of the MPC, the data qubit with a random subset of the traps.
The MPC later checks the consistency of the outcomes: all entangled qubits should yield the same
measurement result.

Our alternative approach has the additional benefit that the measurement outcome can be kept
secret from some or all of the players. In the description of the protocol below, the MPC stores the
measurement outcome in its internal state. This allows the MPC to classically control future gates
on the outcome. If it is desired to instead reveal the outcome to one or more of the players, this can
easily be done by performing a classically-controlled X operation on some unused output qubit of
those players.

Protocol 5.6 (Computational-basis measurement). Player i holds an encoding of the state in a
wire w in the register MT1. The classical MPC holds the encoding key E in the register S.

1. MPC samples random strings r, s ∈ {0, 1}n+1 and c ∈ {0, 1}n .

2. MPC tells player i to apply
V := XrZsCNOT1,cE

†
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to the registerMT1, where CNOT1,c denotes the unitary
∏

i∈[n] CNOT
ci
1,i (that is, the string

c dictates with which of the qubits in T1 the M register will be entangled).

3. Player i measures the register MT1 in the computational basis, reporting the result r′ to
MPC.

4. MPC checks whether r′ = r⊕ (m,m · c) for somem ∈ {0, 1}.a If so, it stores the measure-
ment outcome m in the state register S. Otherwise, it aborts by storing ⊥ in S.

5. MPC removes the key E from the state register S.

aThe · symbol represents scalar multiplication of the bit m with the string c.

Lemma 5.7. Let C be a circuit on W wires that leaves some wire w 6 W unmeasured. Let IC the ideal
functionality for C , as described in Definition 5.1, and let Π be Protocol 5.6 for a computational-basis
measurement on w. For all sets IA ( [k] of corrupted players and all adversaries A that perform the
interactions of players in IA, there exists a simulator S (the complexity of which scales polynomially in that
of the adversary) such that for all environments E ,

∣

∣Pr[1← (E ⇆ (Π ⋄ IC)A)]− Pr[1← (E ⇆ I
◦C

S )]
∣

∣ 6 negl (n) .

Proof sketch. The operation CNOT1,c entangles the data qubit in register M with a random subset
of the trap qubits in register T1, as dictated by c. In step 4 of Protocol 5.6, the MPC checks both for
consistency of all the bits entangled by c (they have to match the measured data) and all the bits
that are not entangled by c (they have to remain zero).

In Lemma H.1 in Appendix H, we show that checking the consistency of a measurement out-
come after the application of CNOT1,c is as good as measuring the logical state: any attacker that
does not know c will have a hard time influencing the measurement outcome, as he will have to
flip all qubits in positions i for which ci = 1 without accidentally flipping any of the qubits in
positions i for which ci = 0. See Appendix H for a full proof that the output state in the real and
simulated case are negligibly close.

5.4 Subprotocol: Decoding

After the players run the computation subprotocols for all gates in the Clifford circuit, all they
need to do is to decode their wires to recover their output. At this point, there is no need to
check the authentication traps publicly: there is nothing to gain for a dishonest player by incor-
rectly measuring or lying about their measurement outcome. Hence, it is sufficient for all (honest)
players to apply the regular decoding procedure for the Clifford code.

Below, we describe the decoding procedure for a single wire held by one of the players. If there
are multiple output wires, then Protocol 5.8 can be run in parallel for all those wires.

Protocol 5.8 (Decoding). Player i holds an encoding of the state w in the register MT1. The
classical MPC holds the encoding key E in the state register S.

1. MPC sends E to player i, removing it from the state register S.

2. Player i applies E to register MT1.
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3. Player i measures T1 in the computational basis. If the outcome is not 0n, player i dis-
cards M and aborts the protocol.

Lemma 5.9. Let C be a circuit on W wires that leaves a single wire w 6 W (intended for player i)
unmeasured. Let IC be the ideal functionality for C , as described in Definition 5.1, and let IMPQC

C be the
ideal MPQC functionality for C , as described in Definition 3.1. Let ΠDec be Protocol 5.8 for decoding wire
w. For all sets IA ( [k] of corrupted players and all adversaries A that perform the interactions of players
in IA, there exists a simulator S (the complexity of which scales polynomially in that of the adversary) such
that for all environments E ,

Pr[1← (E ⇆ (ΠDec ⋄ IC)A)] = Pr[1← (E ⇆ I
MPQC
C,S )].

Proof sketch. If player i is honest, then he correctly decodes the state received from the ideal func-
tionality IC . A simulator would only have to compute the adversary’s abort bit for IMPQC

C based
on whether the adversary decides to abort in either IC or the MPC computation in ΠDec.

If player i is dishonest, a simulator S runs the adversary on the input state received from the
environment before inputting the resulting state into the ideal functionality I

MPQC
C . The simulator

then samples a key for the Clifford code and encodes the output of IMPQC
C , before handing it back

to the adversary. It then simulates ΠDec by handing the sampled key to the adversary. If the
adversary aborts in one of the two simulated protocols, then the simulator sends abort to the ideal
functionality I

MPQC
C .

5.5 Combining Subprotocols

We show in this section how to combine the subprotocols of the previous sections in order to
perform multi-party quantum Clifford computation.

Recalling the notation defined in Definition 3.1, let C be a quantum circuit on W ∈ N>0 wires,
which are partitioned into the players’ input registers plus an ancillary register, as [W ] = Rin

1 ⊔· · ·⊔
Rin

k ⊔ Rancilla, and a partition into the players’ output registers plus a register that is discarded at
the end of the computation, as [W ] = Rout

1 ⊔ · · · ⊔Rout
k ⊔Rdiscard. We assume that C is decomposed

in a sequence G1, ..., Gm of operations where each Gi is one of the following operations:

• a single-qubit Clifford on some wire j ∈ [M ];

• a CNOT on wires j1, j2 ∈ [M ] for j1 6= j2;

• a measurement of the qubit on wire j in the computational basis.

In Sections 4 and 5.1–5.3, we have presented subprotocols for encoding single qubits and perform
these types of operations on single wires. The protocol for all players to jointly perform the bigger
computation C is simply a concatenation of those smaller subprotocols:

Protocol 5.10 (Encoding and Clifford+measurement computation). Let C be a Clifford + mea-
surement circuit composed of the gates G1, . . . , Gm on wires [W ] as described above.

1. For all i ∈ [k] and j ∈ Rin
i , run Protocol 4.2 for the qubit in wire j.

2. For all j ∈ Rancilla, run Protocol 4.2 (with the differences described in Section 4.2).

23



3. For all j ∈ [m]:

(a) If Gj is a single-qubit Clifford, run Protocol 5.2 for Gj .

(b) If Gj is a CNOT, run Protocol 5.4 for Gj .

(c) If Gj is a computational-basis measurement, run Protocol 5.6 for Gj .

4. For all i ∈ [k] and j ∈ Rout
i , run Protocol 5.8 for the qubit in wire j.

Lemma 5.11. Let ΠCliff be Protocol 5.10, and ICliff be the ideal functionality described in Definition 3.1 for
the special case where the circuit consists of Cliffords and measurements. For all sets IA ( [k] of corrupted
players and all adversaries A that perform the interactions of players in IA with Π, there exists a simulator
S (the complexity of which scales polynomially in that of the adversary) such that for all environments E ,

|Pr[1← (E ⇆ ΠCliff
A )]− Pr[1← (E ⇆ ICliffS )| 6 negl (n) .

Proof. First notice that ICliff = IGm◦···◦G1◦Enc and ΠCliff = ΠDec⋄ΠGm ⋄...⋄ΠG1 ⋄ΠEnc. For simplicity,

for some circuit C ′ composed of gatesG′
1, ...G

′
m′ , we denote ΠC′

= ΠG′

m′ ⋄ ...⋄ΠG′
1 . We also denote

C ′
r,s, for 1 6 r 6 s 6 m′ as the circuit composed by gates G′

r, ..., G
′
s.

We start by proving by induction that for all i, the following holds:

∣

∣

∣
Pr[1← (E ′ ⇆ ΠC ⋄ΠEnc

A )]− Pr[1← (E ′ ⇆ ΠCi,m ⋄ IC1,i−1◦Enc
SEnc

)
∣

∣

∣
6 i · negl (n) .

For the basis case i = 1, notice that from Lemma 4.3, there exists a simulator SEnc such that for
all E ′

|Pr[1← (E ′ ⇆ ΠEnc
A )]− Pr[1← (E ′ ⇆ IEncSEnc

)| 6 negl (n) ,

therefore, in particular for every E ′′ we have that

|Pr[1← (E ′′ ⇆ ΠC ⋄ ΠEnc
A )]− Pr[1← (E ′′ ⇆ ΠC ⋄ IEncSEnc

)| 6 negl (n) .

For the induction step, assume that our statement holds for some i > 1. Then if Gi+1 is a
single-qubit Clifford we have that

|Pr[1← (E ′ ⇆ ΠC ⋄ ΠEnc
A )]− Pr[1← (E ′ ⇆ ΠCi+1,m ⋄ IC1,i◦Enc

SEnc
)|

6 |Pr[1← (E ′ ⇆ ΠC ⋄ ΠEnc
A )]− Pr[1← (E ′ ⇆ ΠCi,m ⋄ IC1,i−1◦Enc

SEnc
)|

+ |Pr[1← (E ′ ⇆ ΠCi,m ⋄ IC1,i−1◦Enc
SEnc

)− Pr[1← (E ′ ⇆ ΠCi+1,m ⋄ IC1,i◦Enc
SEnc

)|
6 (i+ 1)negl (n) ,

where in the first step we use the triangle inequality and in the second step we use the induction
hypothesis and Lemma 5.3.

For the cases where Gi+1 is a CNOT or measurement, the same argument follows by using
Lemmas 5.5 and 5.7 accordingly.

Finally, by Lemma 5.9, we can also replace ΠDec by IDec, at the cost of negl (n). As long as
m = poly (n), the result follows since m · negl (n) = negl (n).
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6 Protocol: MPQC for general quantum circuits

In this section, we show how to lift the MPQC for Clifford operations (as laid out in Sections 4
and 5) to MPQC for general quantum circuits.

The main idea is to use magic states for T gates, as described in Section 2.5. Our main difficulty
here is to that the magic states must be supplied by the possibly dishonest players themselves. We
solve this problem in Section 6.1 and then in Section 6.2, we describe the MPQC protocol for
universal computation combining the results from Sections 5 and 6.1.

6.1 Magic-state distillation

We now describe a subprotocol that allows the players to create the encoding of exponentially
good magic states, if the players do not abort.

Our subprotocol can be divided into two parts. In the first part, player 1 is asked to create
many magic states, which the other players will test. After this step, if none of the players abort
during the testing, then with high probability the resource states created by player 1 are at least
somewhat good. In the second part of the subprotocol, the players run a distillation procedure to
further increase the quality of the magic states.

Protocol 6.1 (Magic-state creation). Let t be the number of magic states we wish to create. Let
ℓ := (t+ k)n.

1. Player 1 creates ℓ copies of |T〉 and encodes them separately using Protocol 4.2 (jointly
with the other players).

2. MPC picks disjoint sets S2, . . . , Sk ⊆ [ℓ] of size n each.

3. For each i ∈ 2, . . . , k, player i decodes the magic states indicated by Si (see Protocol 5.8),
measures in the {|T〉 ,

∣

∣T⊥〉}-basis and aborts if any outcome is different from |T〉 .

4. On the remaining encoded states, the players run Protocol 5.10 for multi-party compu-
tation of Clifford circuits (but skipping the input-encoding step) to perform the magic-
state distillation protocol describe in Protocol 2.8. Any randomness required in that
protocol is sampled by the classical MPC.

We claim that Protocol 6.1 implements the following ideal functionality for creating t magic
states, up to a negligible error:

Definition 6.2 (Ideal functionality for magic-state creation). Let t be the number of magic states we
wish to create. Let IA ( [k] be a set of corrupted players.

1. For every i ∈ IA, player i sends a bit bi to the trusted third party.

(a) If bi = 0 for all i, the trusted third party samples t random (n + 1)-qubit Clifford Ej for
1 6 j 6 t, and sends Ej(|T〉 ⊗ |0n〉) to Player 1

(b) Otherwise, the trusted third party sends abort to all players.

2. Store the keys Ej , for 1 6 j 6 t in the state register S of the ideal functionality.
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Lemma 6.3. Let ΠMS be Protocol 6.1, and IMS be the ideal functionality described in Definition 6.2. For
all sets IA ( [k] of corrupted players and all adversaries A that perform the interactions of players in IA
with Π, there exists a simulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E ,

∣

∣Pr[1← (E ⇆ ΠMS
A )]− Pr[1← (E ⇆ I

MS
S )

∣

∣ 6 negl (n) .

We prove this lemma in Appendix I.

6.2 MPQC protocol for universal quantum computation

Finally, we present our protocol for some arbitrary quantum computation. For this setting, we
extend the setup of Section 5.5 by considering quantum circuits C = Gm...G1 where Gi can be
single-qubit Cliffords, CNOTs, measurements or, additionally, T gates.

For that, we will consider a circuit C ′ where each gateGi = T acting on qubit j is then replaced
by the T-gadget presented in Figure 1, acting on the qubit j and a fresh new T magic states.

Protocol 6.4 (Protocol for universal MPQC). Let C be a polynomial-sized quantum circuit,
and t be the number of T-gates in C .

1. Run Protocol 6.1 to create t magic states.

2. Run Protocol 5.10 for the circuit C ′, which is equal to the circuit C , except each T gate is
replaced with the T-gadget from Figure 1.

Theorem 6.5. Let ΠMPQC be Protocol 6.4, and IMPQC be the ideal functionality described in Definition 3.1.
For all sets IA ( [k] of corrupted players and all adversaries A that perform the interactions of players in
IA with Π, there exists a simulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E ,

|Pr[1← (E ⇆ ΠMPQC
A )]− Pr[1← (E ⇆ I

MPQC
S )| 6 negl (n) .

Proof. Direct from Lemmas 5.11 and 6.3.
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Appendices

A Twirling

One of the techniques we use in this work is the twirl over a group G of unitary operators, which
maps a state (or channel) to its ‘G-averaged’ version. Specifically, the twirl of a state ρ is defined

TG(ρ) :=
1

|G|
∑

U∈G
UρU †,

and the twirl of a channel Λ is defined as

TG(Λ(·)) :=
1

|G|
∑

U∈G
U †(Λ(U(·)U †))U.

We sometimes abuse notation for non-unitary groups: for example, throughout this work we use
TGL(2n,F2)(·) to denote a twirl over the unitary group {Ug | g ∈ GL(2n,F2)}, where Ug is defined
as the unitary that applies g in-place, i.e., Ug |t〉 = |g(t)〉 for all t ∈ {0, 1}2n.

Twirling a state over the n-qubit Pauli group is equivalent to encrypting the state under the
quantum one-time pad, and tracing out the encryption key. From the point of view of someone
without that encryption key, the resulting state is fully mixed:

Lemma A.1 (Pauli twirl of a state). For all n-dimensional states ρ,

TPn
(ρ) = τ.

Proof. Write ρ =
∑

i,j∈{0,1}n αij |i〉〈j|. For every i, j we have

TPn
(|i〉〈j|) = E

x,z∈{0,1}n
XxZz |i〉〈j|ZzXx

= E
x,z∈{0,1}n

(−1)z(i⊕j) |i⊕ x〉〈j ⊕ x| .

Note that Ez∈{0,1}n(−1)z(i⊕j) = 0 whenever i 6= j (i.e., i⊕ j 6= 0), and that the term evaluates to 1
whenever i = j. So

TPn
(|i〉〈j|) =

{

Ex |i⊕ x〉〈i⊕ x| = τ if i = j
0 otherwise.

To conclude the proof, sum all terms of ρ to get

TPn
(ρ) =

∑

i,j

αijTPn
(|i〉〈j|) =

∑

i

αiiτ = τ.

Since the Pauli group is a subgroup of the Clifford group, Lemma A.1 also holds when twirling
over the n-qubit Clifford group.

On a channel, the Pauli twirl has a similar effect of transforming a superposition of attack maps
into a classical mixture of Pauli attacks. This transformation greatly simplifies analysis:
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Lemma A.2 (Pauli twirl of a channel [ABOEM17, Lemma 5.1]). For all V AB =
∑

P∈Pn
PA ⊗ V B

P ,

T A
Pn

(V (·)V †) =
∑

P∈Pn

(P ⊗ VP )(·)(P ⊗ VP )†,

where the twirl is applied on the 2n-dimensional register A.

B Proof of Lemma 2.3

Proof. Given an arbitrary state ρBR (for some reference system R), we calculate the result of ap-
plying PauliFilterAS to ρ. The state in BR corresponding to |0〉〈0| in the flag register F is:

TrAA′

[

ΠUAB
(

|Φ〉〈Φ|AA′ ⊗ ρBR
)

U †
]

=
∑

(a,b)∈S
x,z,x′,z′

TrAA′

[

XaZb |Φ〉〈Φ|ZbXaXxZz |Φ〉〈Φ|Zz′Xx′
]

⊗ UB
x,zρ

BRU †
x′,z′

=
∑

(a,b)∈S
x,z,x′,z′

TrAA′

[

|Φ〉〈Φ|Xa⊕xZb⊕z |Φ〉〈Φ|Zb⊕z′Xa⊕x′
]

⊗ UB
x,zρ

BRU †
x′,z′ · (−1)b·(x⊕x′)

=
∑

(a,b)∈S
UB
a,bρ

BRU †
a,b.

The calculation for the |1〉〈1|-flag is very similar, after observing that

I−
∑

(a,b)∈S
XaZb |Φ〉〈Φ|ZbXa =

∑

(a,b)6∈S
XaZb |Φ〉〈Φ|ZbXa.

C Security of Clifford code

Lemma C.1 (Variation on [AM17, Theorem 3.7]). Let M , T , and R be registers with log |M | = 1 and
log |T | = n > 0. Let UMTR be a unitary, and write U =

∑

x,z∈{0,1}n+1(XxZz)MT ⊗ UR
x,z. Then for any

state ρMR,

∥

∥

∥

∥

∥

∥

T MT
Cn+1

(U)
(

ρMR ⊗ |0n〉〈0n|T
)

−



UR
0,0ρU

†
0,0 ⊗ |0n〉〈0n|T + TrM





∑

(x,z)6=(0,0)

UR
x,zρU

†
x,z



⊗ τMT





∥

∥

∥

∥

∥

∥

1

6 negl (n) .

Proof. The proof is a straightforward application of the Clifford twirl [ABOEM17, Lemma 3.6],
which is similar to Lemma A.2, but for the Clifford group. Using this Clifford twirl in the first
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step, and writing U =
∑

x,z(X
xZz)MT ⊗ UR

x,z, we derive

T MT
Cn+1

(U)(ρ⊗ |0n〉〈0n|)
=
∑

x,z

E
C
(CXxZzC† ⊗ Ux,z)(ρ⊗ |0n〉〈0n|)(C†XxZzC ⊗ U †

x,z)

= UR
0,0ρU

†
0,0 +

∑

(x,z)6=(0,0)

E
C
(CXxZzC† ⊗ Ux,z)(ρ⊗ |0n〉〈0n|)(C†XxZzC ⊗ U †

x,z) (2)

= UR
0,0ρU

†
0,0 +

∑

(x,z)6=(0,0)

E
(x′,z′)6=(0,0)

(Xx′

Zz′ ⊗ Ux,z)(ρ⊗ |0n〉〈0n|)(Xx′

Zz′ ⊗ U †
x,z) (3)

≈negl(n) U
R
0,0ρU

†
0,0 +

∑

(x,z)6=(0,0)

UR
x,z

(

T MT
Pn+1

(ρ⊗ |0n〉〈0n|)
)

U †
x,z

= UR
0,0ρU

†
0,0 +

∑

(x,z)6=(0,0)

TrM

[

UR
x,zρU

†
x,z

]

⊗ τMT .

In the step from Equation (2) to Equation (3), we used the fact that any non-identity Pauli is
mapped to a random non-identity Pauli by expectation over the Clifford group.

Corollary C.2. The Clifford authentication code with n trap qubits is negl (n)-secure.

Proof. In the decoding procedure for the n-trap Clifford code, the register T is measured using the
two-outcome measurement defined by the projector Π := |0n〉〈0n|. Note that, given an attack A,

E
k∈K

[Deck (A (Enck (ρ)))] = LΠ
(

TCn+1(A)
(

ρMR ⊗ |0n〉〈0n|T
))

,

where LΠ(X) := TrT [ΠXΠ] + |⊥〉〈⊥|M ⊗ TrMT [ΠXΠ]. Then apply Lemma C.1, and use the fact

that Tr[|0〉〈0|T τMT ] = 2−n. In the terminology of Definition 2.4, we may explicitly describe Λacc :=

U0,0(·)U †
0,0 and Λrej :=

∑

(x,z)6=(0,0) Ux,z(·)U †
x,z forA = U(·)U † and U decomposed as in the proof of

Lemma C.1.

D Proof of Lemma 2.7

For the rest of this section, fix a basis
∣

∣0̂
〉

:= |T〉 and
∣

∣1̂
〉

:=
∣

∣T⊥〉. For w ∈ {0, 1}m, we will let
|ŵ〉 := |ŵ1〉 . . . |ŵm〉 . Then the all-0s string in this basis represents m copies of |T〉. We analyze
Circuit 2.8. It is simple to verify that Ẑ =

∣

∣0̂
〉 〈

0̂
∣

∣ −
∣

∣1̂
〉 〈

1̂
∣

∣ (up to a global phase). The first step

of the circuit is to apply Ẑ with probability 1
2 to each qubit, which has the effect of dephasing the

qubit, or equivalently, making the state diagonal, in the {
∣

∣0̂
〉

,
∣

∣1̂
〉

} basis. More precisely, if we let
ρ =

∑

w,w′∈{0,1}m αw,w′ |ŵ〉 〈ŵ′|:

ρ 7→
∑

w,w′∈{0,1}m
αw,w′

m
⊗

i=1

1

2

(

|ŵi〉
〈

ŵ′
i

∣

∣+ Ẑ |ŵi〉
〈

ŵ′
i

∣

∣ Ẑ
)

(4)

=
∑

w,w′∈{0,1}m
αw,w′

m
⊗

i=1

1

2

(

|ŵi〉
〈

ŵ′
i

∣

∣+ (−1)wi+w′
i |ŵi〉

〈

ŵ′
i

∣

∣

)

(5)

=
∑

w∈{0,1}m
αw,w |ŵ〉 〈ŵ| =: ρ′. (6)
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Let Ξ′ denote the quantum channel given by steps 2–3 of Circuit 2.8. Note that Ξ′ is symmetric:
Given two inputs ρ and ρ′ = πρπ†, after step 2, either state will be mapped to

∑

τ∈Sm

1
m!τρτ

†.
Thus, we can apply Theorem D.1 of [DNS10], which states the following:

Theorem D.1 ([DNS10]). Let σ be an m-qubit state, diagonal in the basis {|ŵ〉 : w ∈ {0, 1}m}, and
suppose ΠLWσ = σ. Let Ξ′ be any CPTP map from m qubits to t qubits such that Ξ′(πωπ†) = Ξ′(ω) for
any n-qubit state ω and any π ∈ Sm. Then, letting δs =

s
m :

∥

∥Ξ′(σ)− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

1
6 (m+ 1)max

s6ℓ

∥

∥

∥
Ξ′
(

(

(1− δs)
∣

∣0̂
〉 〈

0̂
∣

∣+ δs
∣

∣1̂
〉 〈

1̂
∣

∣

)⊗m
)

− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

∥

1
.

We can put everything together to prove Lemma 2.7.

of Lemma 2.7. Let ρ′ be as in (6). We have

Tr(ΠLW ρ
′) = Tr(ΠLW ρ) > 1− ε.

Thus, write ρ′ = (1− ε)σ + εσ′ for σ = 1
1−εΠLW ρ

′. Applying Theorem D.1, we get
∥

∥

∥
Ξ′(σ)−

(∣

∣0̂
〉 〈

0̂
∣

∣

)⊗t
∥

∥

∥

1
6 (m+ 1)max

s6ℓ

∥

∥

∥
Ξ′
(

(

(1− δs)
∣

∣0̂
〉 〈

0̂
∣

∣+ δs
∣

∣1̂
〉 〈

1̂
∣

∣

)⊗m
)

− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

∥

1
.

On a symmetric state, Ξ′ is simply the state distillation protocol of [BK05], applied t times in
parallel to m/t qubits each time. Let Φ be one state distillation protocol distilling one qubit from
m/t (so Ξ′ acts as Φ⊗t on symmetric states). By Theorem 2.6, using δs =

s
m 6 ℓ

m , and

τ =
(

(1− δs)
∣

∣0̂
〉 〈

0̂
∣

∣+ δs
∣

∣1̂
〉 〈

1̂
∣

∣

)⊗m/t
,

we have

1−
〈

0̂
∣

∣Φ(τ)
∣

∣0̂
〉

6 O
(

(5δs)
(m/t)c

)

6 O

(

(

5
ℓ

m

)(m/t)c
)

for c ≈ .2. Let δ = (5ℓ/m)(m/t)c . Using the inequality between trace distance and fidelity,
‖ ρ− |ψ〉 〈ψ| ‖1 6 2

√

1− 〈ψ| ρ |ψ〉, we have
∥

∥

∥
Ξ′
(

(

(1− δs)
∣

∣0̂
〉 〈

0̂
∣

∣+ δs
∣

∣1̂
〉 〈

1̂
∣

∣

)⊗m
)

− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

∥

1

=
∥

∥Φ(τ)⊗t − (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

1

6 2
√

1− (
〈

0̂
∣

∣Φ(τ)
∣

∣0̂
〉

)t 6 2
√

1− (1− δ)t.

Since 1− x 6 e−x for all x, and e−2x 6 1− x whenever x 6 1/2, it follows that:

1− 2δt 6 e−2δt
6 (1− δ)t.

Thus
∥

∥

∥Ξ′
(

(

(1− δs)
∣

∣0̂
〉 〈

0̂
∣

∣+ δs
∣

∣1̂
〉 〈

1̂
∣

∣

)⊗m
)

− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

∥

1
6 2
√
2δt.

Thus, we have:
∥

∥Ξ(ρ)− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

1
=
∥

∥Ξ′(ρ′)− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

1
=
∥

∥ (1− ε)Ξ′(σ) + εΞ′(σ′)− (
∣

∣0̂
〉 〈

0̂
∣

∣)⊗t
∥

∥

1

6 (1− ε)(m+ 1)2
√
2δt+ ε = O

(

m
√
t(5ℓ/m)(m/t)c/2 + ε

)

.
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E Proof of Lemma 4.3

Before we prove Lemma 4.3, let us begin by zooming in on the test phase (steps 4–6): we show in
a separate lemma that, with high probability, it only checks out if the resulting state is a correctly-
encoded one.

For a projector Π on two n-qubit quantum registers T1T2, define the quantum channel LΠ by

LΠ(X) = Π(X)Π + |⊥〉〈⊥|Tr
[

Π̄X
]

where |⊥〉 is a distinguished state on T1T2 with Π |⊥〉 = 0. Furthermore, for x ∈ {0, 1}n, define the
“full” and “half” projectors

Πs,F :=

{

∣

∣02n
〉〈

02n
∣

∣ s = 0

0 else

Πs,H := I⊗ |s〉〈s| .

The following lemma shows that measuring Πs,F on the one hand, and applying a twirl TGL(2n,F2)

followed by a measurement of Πs,H are equivalent as tests in the above protocol.

Lemma E.1. Applying a random element of GL(2n,F2) followed by LΠs,H is essentially equivalent to
applying LΠs,F :

∥

∥LΠs,F −LΠs,H ◦ TGL(2n,F2)

∥

∥

⋄ 6 12 · 2−n
2 6 negl (n) .

Proof. First, observe the following facts about a random g ∈ GL(2n,F2). Of course, g0 = 0 by
linearity. On the other hand, gx is uniformly random on F2n

2 \{0} for x 6= 0. More generally, x and
y with x 6= 0 6= y are linearly independent if and only if x 6= y, and therefore (gx, gy) is uniformly

random on
{

(x, y) ∈
(

F2n
2 \ {0}

)2 |x 6= y
}

. In the following we abbreviate T := TGL(2n,F2). We

calculate for x, y ∈ F2n
2 \ {0} with x 6= y,

T (|0〉〈0|) = |0〉〈0|

T (|x〉〈x|) = I− |0〉〈0|
22n − 1

T (|x〉〈0|) =
(

22n − 1
)− 1

2
∣

∣+′〉〈0|
T (|x〉〈y|) =

(

22n − 1
)−1 (

22n − 2
)−1 ∑

z,t∈F2n
2 \{0}

z 6=t

|z〉〈t|

=
(

22n − 2
)−1

(

∣

∣+′〉〈+′∣
∣− I− |0〉〈0|

22n − 1

)

=: S.

Here we have defined the unit vector

∣

∣+′〉 =
(

22n − 1
)− 1

2
∑

x∈F2n
2 \{0}

|x〉 .
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We can now evaluate T on an arbitrary input density matrix,

T (ρT1T2E) =
∑

x,y∈{0,1}2n
T (|x〉〈y|)T1T2 ⊗ 〈x|T1T2

ρT1T2E |y〉T1T2

= |0〉〈0|T1T2
⊗ 〈0|T1T2

ρT1T2E |0〉T1T2
+ |0〉

〈

+′∣
∣

T1T2
⊗ 〈0|T1T2

ρT1T2E

∣

∣+′〉
T1T2

+
∣

∣+′〉〈0|T1T2
⊗
〈

+′∣
∣

T1T2
ρT1T2E |0〉T1T2

+
I− |0〉〈0|
22n − 1

⊗ TrT1T2 [(I− |0〉〈0|)T1T2ρT1T2E ]

+ S ⊗
∑

x,y∈F2n
2 \{0}

x 6=y

〈x|T1T2
ρT1T2E |y〉T1T2

. (7)

We calculate

‖Πs,H

∣

∣+′〉 ‖2 6
√

2n

22n − 1
and

∥

∥

∥

∥

Πs,H
I− |0〉〈0|
22n − 1

Πs,H

∥

∥

∥

∥

1

6
2n − 1

22n − 1
,

where the first inequality is tight for s = 0 and the second inequality for s 6= 0. We also have

‖S‖1 =2
1−

(

22n − 1
)−1

22n − 2

Using these quantities, we analyze Πs,HT (ρT1T2E)Πs,H term by term according to equation (7). We
have

Πs,H |0〉〈0|T1T2
Πs,H =

{

|0〉〈0|T1T2
s = 0

0 else,
(8)

∥

∥

∥
Πs,H |0〉

〈

+′∣
∣

T1T2
Πs,H ⊗ 〈0|T1T2

ρT1T2E

∣

∣+′〉
T1T2

∥

∥

∥

1
≤
√

2n

22n − 1
, (9)

∥

∥

∥

∥

Πs,H
I− |0〉〈0|
22n − 1

Πs,H ⊗ TrT1T2 [(I − |0〉〈0|)T1T2ρT1T2E]

∥

∥

∥

∥

1

≤ 2n

22n − 1
, and (10)

(11)
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∥

∥

∥

∥

∥

∥

∥

∥

∥

Πs,HSΠs,H ⊗
∑

x,y∈F2n
2 \{0}

x 6=y

〈x|T1T2
ρT1T2E |y〉T1T2

∥

∥

∥

∥

∥

∥

∥

∥

∥

1

≤

∥

∥

∥

∥

∥

∥

Πs,HSΠs,H ⊗
∑

x,y∈F2n
2 \{0}

〈x|T1T2
ρT1T2E |y〉T1T2

∥

∥

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

∥

Πs,HSΠs,H ⊗
∑

x∈F2n
2 \{0}

〈x|T1T2
ρT1T2E |x〉T1T2

∥

∥

∥

∥

∥

∥

1

≤ 2
(

22n − 2
)−1

(

∥

∥Πs,H

∣

∣+′〉〈+′∣
∣Πs,H

∥

∥

1
+

∥

∥

∥

∥

Πs,H
I− |0〉〈0|
22n − 1

Πs,H

∥

∥

∥

∥

1

)

Tr
[

((

22n − 1
) ∣

∣+′〉〈+′∣
∣+ I− |0〉〈0|

)

T1T2
ρT1T2E

]

≤ 2
(

22n − 2
)−1

(

2n

22n − 1
+

2n

22n − 1

)

(

2
(

22n − 1
)]

≤ 8
2n
(

22n − 1
)

(22n − 1) (22n − 2)

≤ 2
2n

(22n − 2)
. (12)

The first, second and fifth inequality use normalization of ρ and the third and fourth inequality
use the triangle inequality for the trace norm. The fifth inequality additionally uses Hölder’s
inequality. The observation that

Πs,FT (ρT1T2E)Πs,F =

{

|0〉〈0|T1T2
⊗ 〈0|T1T2

ρT1T2E |0〉T1T2
s = 0

0 else
, (13)

together with Equations (7) and (8)-(12), we get that there exists a ρT1T2E such that
∥

∥LΠs,F − LΠs,H ◦ TGL(2n,F2)

∥

∥

⋄ =
∥

∥LΠs,F (ρ)− LΠs,H ◦ TGL(2n,F2)(ρ)
∥

∥

1

≤
∥

∥

∥Πs,H |0〉
〈

+′∣
∣

T1T2
Πs,H ⊗ 〈0|T1T2

ρT1T2E

∣

∣+′〉
T1T2

∥

∥

∥

1

+
∥

∥

∥Πs,H

∣

∣+′〉〈0|T1T2
Πs,H ⊗

〈

+′∣
∣

T1T2
ρT1T2E |0〉T1T2

∥

∥

∥

+

∥

∥

∥

∥

Πs,H
I− |0〉〈0|
22n − 1

Πs,H ⊗ TrT1T2 [(I− |0〉〈0|)T1T2ρT1T2E]

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

Πs,HSΠs,H ⊗
∑

x,y∈F2n
2 \{0}

x 6=y

〈x|T1T2
ρT1T2E |y〉T1T2

∥

∥

∥

∥

∥

∥

∥

∥

∥

1

≤2
√

2n

22n − 1
+

2n

22n − 1
+ 8

2n

22n − 2

≤12 · 2−n
2 ,

which is negligible.

Now that we have established that it suffices to measure only the T2 register (after applying a
random g ∈ GL(2n,F2)), we are ready to prove the security of Protocol 4.2:
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of Lemma 4.3. We consider two cases: either player 1 is honest, or she is corrupted.

Case 1: player 1 is honest. Assume, without loss of generality, that all other players are cor-
rupted: IA = {2, 3, . . . , k}. That this is indeed the worst case can be seen as follows. The situation
where a set H of additional players are honest can be emulated by an adversary in the case where
only player 1 is honest, but follows the protocol for the additional honest players, and does not
use any information received by those honest players as part of the dishonest players’ (i.e., the
players in IA \H) actions.

The corrupted players act as one entity whose honest action is to apply UH := FkFk−1 · · ·F3F2,
and return the state to player 1. Without loss of generality, assume that A is unitary by expanding

the side-information register R as necessary. Then, define an attack unitary A := U †
HA, so that we

may write A = UHA. In other words, we establish that A consists of a unitary attack A, followed
by the honest unitary UH . Note that A may depend arbitrarily on its instructions F2 through Fk

The simulator S has access to the ideal functionality only through the ability to submit the
bits bi for players i 6= 1. It does not receive any input from the environment, except for a side-
information register R. Define the simulator as follows (in terms of an adversarial map A):

Simulator 1. On input register R received from the environment, do:

1. Sample random F ′
1, F

′
2, . . . , F

′
k ∈ C2n+1.a

2. Run IdFilterMT1(A) on the register R, using the instructions F ′
2, F

′
3, . . . , F

′
k to determine

A. (See Section 2.3.)

3. If the flag register is 0, set bi = 0 for all i 6= 1. Otherwise, set bi = 1. Submit the bits bi to
the ideal functionality.

aWhenever a simulator samples random elements, it does so by running the ideal functionality for classical
MPC with the adversary it is currently simulating. If that ideal functionality aborts, the simulator will also abort
by setting bi = 1 for the adversarial players i. In that case, the simulated output state and the real output state
will be indistinguishable by security of the classical MPC. To avoid clutter in the exposition of our simulators and
proofs, we will ignore this technicality, and pretend that the simulator generates the randomness itself.

We will consider the joint state in the output register Rout
1 = MT1, the state register S, and the

attacker’s side-information register R in both the real and the ideal (simulated) case. In both
cases, it will be useful to decompose the attack map A as

A =
∑

a,c∈{0,1}n+1

(XaZc)MT1 ⊗AR
a,c.

We start by analyzing the ideal case. By Lemma 2.3, and using P = {(0, 0)} with 0 as an abbrevia-
tion for 0n, the output state in MT1RS in case of accept (setting all bi = 0) is

E
E
EMT1

(

AR
0,0ρ

MRA†
0,0 ⊗ |0n〉〈0n|T1

)

E† ⊗ |E〉〈E|S . (14)
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The output state in MT1RS in case of reject is (again by Lemma 2.3)

T MT1
Cn+1





∑

(x,z)6=(0,0)

AR
x,zρ

MRA†
x,z ⊗ |0n〉〈0n|T1



⊗ |⊥〉〈⊥|S (15)

= τMT1 ⊗
∑

(x,z)6=(0,0)

Ax,zρRA
†
x,z ⊗ |⊥〉〈⊥|S . (16)

Next, we consider the state in MT1RS after the real protocol is executed, and argue that it is
negligibly close to Equations (14)+(16). Again, we first consider the accept case. Following the
steps in Protocol 4.2 on an input state ρMR, and noting that

(

F †
1

)MT1T2

AMT1T2RF1

(

ρMR ⊗
∣

∣02n
〉〈

02n
∣

∣

T1T2
)

F †
1A

†F1 =
(

T MT1T2
C2n+1

(A)
)

(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

,

the output state in the case of accept is

E
E,r,s
〈r|T2 (E ⊗ XrZs)T T1T2

GL(2n,F2)

((

T MT1T2
C2n+1

(A)
)

(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

)

(E ⊗ XrZs)† |r〉 ⊗ |E〉〈E|S

= E
E
EMT1 〈0n|T2 T T1T2

GL(2n,F2)

((

T MT1T2
C2n+1

(A)
)

(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

)

|0n〉E† ⊗ |E〉〈E|S

≈negl(n) E
E
EMT1

〈

02n
∣

∣

T1T2
((

T MT1T2
C2n+1

(A)
)

(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

)

∣

∣02n
〉

E† ⊗ |E〉〈E|S , (17)

where the approximation follows from Lemma E.1. This is where the authentication property of
the Clifford code comes in: by Lemma C.1, only the part of A that acts trivially on MT1T2 remains
after the measurement of T1T2. Thus, Eq. (17) ≈negl(n) Eq. (14).

The reject case of the real protocol is similar: again using Lemmas E.1 and C.1, we can see that
it approximates (up to a negligible factor in n) Eq. (16).

We conclude that, from the point of view of any environment, the real output state in registers
MT1SR (encoding, memory state, and side information) is indistinguishable from the simulated
state.

Case 2: player 1 is dishonest. Assume (without loss of generality) that the only honest player is
player 2, i.e., IA = {1, 3, 4, ..., k}.

In the real protocol, the adversary interacts with the honest player 2, and has two opportunities
to attack: before player 2 applies its Clifford operation, and after.

The adversaries’ actions before the interaction with player 2 can, without loss of generality, be
described by a unitary UH,AA, that acts on the input state ρMR, plus the registers T1T2 that are are
initialized to zero. The unitary UH,A is player 1’s honest operation FMT1T2

1 .
Similarly, the adversaries’ actions after the interaction with player 2 can be described by a

unitary BUH,B, followed by a computational-basis measurement on T2 which results in an n-bit
string r′. Again, UH,B is the honest unitary V Fk · · ·F4F3 that should be applied jointly by players
3, 4, . . . , k, 1.

For any adversary, described by such unitaries A and B, define a simulator as follows:
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Simulator 2. On input register MR received from the environment, do:

1. Initialize bi = 0 for all i ∈ IA.

2. Sample random F1, F2, . . . , Fk ∈ C2n+1. Run ZeroFilterT1T2(A) onMR, using the instruc-
tions Fi (for all i ∈ IA) to determine A. If the filter flag is 1, abort by setting b1 = 1.

3. Input the M register into the ideal functionality, and receive a state in the register MT1.

4. Run XFilterT2(B) on MT1R, using the instruction V := F †
2F

†
3 · · ·F

†
k to determine B.

(This choice of V ensures that the honest action UH,B is identity.) If the filter flag is 1,
abort by setting b1 = 1.

5. Submit all the bi to the ideal functionality.

Similarly to the previous case, we consider the output state in the registersMT1RS in both the
ideal (simulated) case, and the real case, as computed on an input state ρMR.

Again, we decompose the attack maps A and B as

A =
∑

a,c∈{0,1}2n
(XaZc)T1T2 ⊗AMR

a,c , (18)

B =
∑

b,d∈{0,1}n

(

XbZd
)T2

⊗BMT1R
b,d . (19)

Note that the decompositions are taken over different registers for A and B. In the derivations
below, we will often abbreviate Aa :=

∑

bAa,b, and, in the subscripts, we will abbreviate 0 for the
all-zero string.

In the ideal or simulated case, one of three things may happen: the simulator sets b1 to 0
(signaling accept to the ideal functionality), or sets b1 to 1 in step 2, or sets b1 to 1 in step 4 (both
signaling reject to the ideal functionality). The ideal output state is thus the sum of three separate
terms, which we will analyze separately.

We start with the the accept case, where both filters result in a |0〉〈0| flag. Using the decompo-
sitions from Equations (18) and (19), we apply Lemma 2.3 to see that the resulting state is

E
E

∑

d

BMT1R
0,d E

(

A0ρA
†
0 ⊗ |0n〉〈0n|T1

)

E†B†
0,d ⊗ |E〉〈E|

S . (20)

Here, E is the key that the ideal functionality samples (and stores in the register S) when it is
called to encode M .

Next, we consider the simulator choosing b1 = 1 already in step 2, the zero filter has failed. In
this case, the ideal functionality does not store the encoding keyE in the register S. This allows us
to view the Clifford encoding as a twirl on the Clifford group. The output state is (by Lemma 2.3)

∑

a6=02n,b,d

Bb,dT MT1
Cn+1

(

Aaρ
MRA†

a ⊗ |0n〉〈0n|T1

)

B†
b,d ⊗ |⊥〉〈⊥|

S

=
∑

a6=02n,b,d

Bb,d

(

TrM

[

Aaρ
MRA†

a

]

⊗ τMT1

)

B†
b,d ⊗ |⊥〉〈⊥|

S . (21)
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Note that in this case, the flag in the X filter does not influence the bit b1 (it is already set to 1).
Therefore, both terms in Lemma 2.3 survive, and all pairs (b, d) are included in the sum.

Finally, we look at the case where the zero filter does not result in changing b1, but the X filter
does, in step 4. If this happens, the key E is erased so we can again apply a Clifford twirl, and the
output state is (by Lemma 2.3)

∑

b6=0n,d

Bb,dT MT1
Cn+1

(

A0ρ
MRA†

0 ⊗ |0n〉〈0n|T1

)

B†
b,d ⊗ |⊥〉〈⊥|

S

=
∑

b6=0n

Bb,d

(

TrM

[

A0ρ
MRA†

0

]

⊗ τMT1

)

B†
b,d ⊗ |⊥〉〈⊥|

S . (22)

In summary, the output state in the ideal case is

Eq. (20) + Eq. (21) + Eq. (22).

In the real protocol, only one measurement is performed at the end. The output state in the
real case is thus a sum of only two terms: an accept and reject case. We will again analyze these
separately, and will show that the accept state is approximately equal to Equation (20), while the
reject state approximates Equations (21) + (22).

Following Protocol 4.2 on an input state ρMR, and canceling out the Fi and F †
i terms that are

part of the honest actions, we first consider the state in case of accept. We abbreviate

σ :=E
g
EMT1UT1T2

g (A(ρ⊗
∣

∣02n
〉〈

02n
∣

∣)A†)U †
gE

†

= EMT1T T1T2

GL(2n,F2)
(A(ρ⊗

∣

∣02n
〉〈

02n
∣

∣)A†)E†,

where we are allowed to view Eg Ug(·)U †
g as a Twirling operation, since A and B are independent

of g. We decompose the attack B as in Equation (19), and derive the accept case

E
E,r,s
〈r|T2 B (XrZs)T2 σ (XrZs)†B† |r〉 ⊗ |E〉〈E|S (23)

= E
E,r,s
〈0|T2 (XrZs)†T2 B (XrZs)T2 σ (XrZs)†B† (XrZs) |0〉 ⊗ |E〉〈E|S

= E
E,r,s

∑

b,d,b′,d′

〈0|T2

((

XrZsXbZdXrZs
)

⊗Bb,d

)

σ
((

XrZsXb′Zd′XrZs
)

⊗B†
b′,d′

)

|0〉 ⊗ |E〉〈E|S (24)

=E
E

∑

b,d

〈b|T2 Bb,dσB
†
b,d |b〉 ⊗ |E〉〈E|

S (25)

=E
E

∑

b,d

Bb,dTrT2

[

ΠT2
b,HσΠ

†
b,H

]

B†
b,d ⊗ |E〉〈E|

S . (26)

From Equation (24) to (25), we used the Pauli twirl to remove all terms for which (b, d) 6= (b′, d′).
This application of the Pauli twirl is possible, because neither A nor B depends on r, s.

We continue with the accept case by expanding σ in Equation (26), and evaluate the effect
of the random GL2n,F2 element on T1T2 using Lemma E.1. It ensures that, if A altered the T1T2
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register, then B cannot successfully reset the register T2 to the correct value r. It follows that

Eq. (26) ≈ E
E

∑

b,d

BMT1R
b,d EMT1TrT2

[

ΠT1T2
b,F A

(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

A†Π†
b,F

]

E†B†
b,d ⊗ |E〉〈E|

S (27)

= E
E

∑

d

BMT1R
0,d EMT1TrT2

[

∣

∣02n
〉〈

02n
∣

∣A
(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

A† ∣
∣02n

〉〈

02n
∣

∣

]

E†B†
0,d ⊗ |E〉〈E|

S

= E
E

∑

d

BMT1R
0,d EMT1

(

A0ρA
†
0 ⊗ |0n〉〈0n|

)

E†B†
0,d (28)

= Eq. (20). (29)

The difference in the approximation is bound by negl (n), since for each b we can use Lemma E.1
(and there is an implicit average over the bs because of the normalization factor induced by Bb,d

operator). Essentially, the only way to pass the measurement test successfully is for A not to
alter the all-zero state in T1T2, and for B to leave T2 unaltered in the computational basis. This is
reflected in the simulator’s zero filter and X filter, respectively.

If the real protocol rejects, the MPC stores a dummy ⊥ in the key register S. The resulting state
can be derived in a similar way, up to Equation (27), after which the derivation becomes slightly
different. The output state in the case of reject approximates (up to a difference of negl (n))

E
E

∑

b,d

BMT1R
b,d EMT1TrT2

[

(I−Πb,F )
T1T2 A

(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

A† (I−Πb,F )
†
]

E†B†
b,d ⊗ |⊥〉〈⊥|

S

=
∑

b,d

BMT1R
b,d T MT1

Cn+1

(

TrT2

[

(I−Πb,F )
T1T2 A

(

ρ⊗
∣

∣02n
〉〈

02n
∣

∣

)

A† (I−Πb,F )
†
])

B†
b,d ⊗ |⊥〉〈⊥|

S

(30)

=
∑

b6=0n

d,a,a′

BMT1R
b,d T MT1

Cn+1

(

TrT2

[

Aaρ
MRA†

a′ ⊗ |a〉
〈

a′
∣

∣

])

B†
b,d ⊗ |⊥〉〈⊥|

S

+
∑

a,a′ 6=02n

d

BMT1R
0,d T MT1

Cn+1

(

TrT2

[

Aaρ
MRA†

a′ ⊗ |a〉
〈

a′
∣

∣

])

B†
0,d ⊗ |⊥〉〈⊥|

S

=
∑

(b,a)6=(0n,02n)
d

BMT1R
b,d

(

TrM

[

Aaρ
MRA†

a

]

⊗ τMT1

)

B†
b,d ⊗ |⊥〉〈⊥|

S

= Eq. (21) + Eq. (22).

Tracing out register T2 ensures that the second half of a and a′ have to be equal; Twirling over the
Clifford group ensures that the first half (acting on register T1) of a and a′ have to be equal (see
the proof of Lemma A.1).

These derivations show that the output state that the environment sees (in registers MT1RS)
in the real protocol are negligibly close to the output state in the ideal protocol. This concludes
our proof for the second case, where player 1 is dishonest.

F Proof of Lemma 5.3

Proof. For the sake of clarity, assume again that there is only one wire, held by player 1 (who
might be honest or dishonest). Generalizing the proof to multiple wires does not require any new
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technical ingredients, but simply requires a lot more (cluttering) notation.
In the protocol ΠGmℓ ⋄ IC , an adversary A receives a state ρMR from the environment (where

again, M := Rin
1 ). It potentially alters this state with a unitary map A, submits the result to the

ideal functionality, and receives the register MT1 = Rout
1 . The adversary may again act on the

state, say with a map B, and then gets a chance to submit (for all players i ∈ IA) bits bi to IC (or
ΠGmℓ ). If one or more of those bits are 1, the ideal functionality (or the MPC) aborts by overwriting
the state register S with ⊥.

In case all bits are 0, the output register MT1RS contains

E
E
BMT1REMT1

(

CM
(

AρMRA†
)

⊗ |0n〉〈0n|T1

)

E†B† ⊗
∣

∣

∣E((Gmℓ)† ⊗ I⊗n)
〉〈

E((Gmℓ)† ⊗ I⊗n)
∣

∣

∣

S

=E
E
BMT1REMT1 (Gmℓ)M

(

CM
(

AρMRA†
)

⊗ |0n〉〈0n|T1

)

(Gmℓ)†E†B† ⊗ |E〉〈E|S , (31)

where C(·) is the map induced by the circuit C .
In case not all bits are 0, the output register MT1RS contains

B′A′ρR(B
′A′)† ⊗ τMT1 ⊗ |⊥〉〈⊥|S , (32)

where A′ and B′ are the reduced maps A and B on register R.
Define a simulator S as follows:

Simulator 3. On input ρMR from the environment, do:

• Run A on MR.

• Submit M to the ideal functionality for Gmℓ ◦ C , and receive MT1.

• Run B on MT1R, and note its output bits (bi, b
′
i) for all i ∈ IA. Submit max{bi, b′i} to the

ideal functionality for Gmℓ ◦ C .

From the point of view of the adversary, the state it receives from the ideal functionality is the
same: a Clifford-encoded state. Thus, the bits bi and b′i will not be different in this simulated
scenario. In fact, the output state is exactly Eq. (31) + Eq. (32).

G Proof of Lemma 5.5

Proof. There are four different cases, for which we construct simulators separately: both players
involved in the CNOT are honest (i, j 6∈ IA), both players are dishonest (i, j ∈ IA), only player i
is honest (i 6∈ IA, j ∈ IA), or only player j is honest (i ∈ IA, j 6∈ IA). Without loss of generality,
we will assume that all other players are dishonest (except in the second case, where at least one
of the other players has to be honest), and that they have no inputs themselves: their encoded
inputs can be regarded as part of the adversary’s side information R. Note that these four cases
also cover the possibility that i = j.
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Case 1: player i and j are honest. In this case, the adversarial players in IA only have influence
on the execution of step 3 of the protocol, where the state is sent around in order for the players to
jointly apply the random Clifford D.

As in the first case of the proof of Lemma 4.3 for the encoding protocol ΠEnc (where the en-
coding player is honest), define a simulator that performs a Pauli filter IdFilter on the attack of the
adversary. The simulator and proof are almost identical to those in Lemma 4.3, so we omit the
details here.

Case 2: player i and j are dishonest. Without loss of generality, we can break up the attack of the
adversary (acting jointly for players i, j and any other players in IA) into three unitary operations,
acting on the relevant register plus a side-information register. As in the proof of Lemma 4.3,
we may assume that the honest actions are executed as well, since each attack may start or end

with undoing that honest action. The first attack AM ijR is executed on the plaintexts, before any

protocol starts. The second attack ÃM ijT ij
12R happens after step 2 of Protocol 5.4, on the output of

IC and the initialized registers T ij
2 . Finally, the third attack ˜̃AM ijT ij

12R happens toward the end of

the protocol, right before the T ij
2 registers are measured in step 6c of Protocol 5.4. Note that ˜̃A may

depend on the instructions V , Wi and Wj .
It will be useful to decompose the second and third attacks as follows:

Ã =
∑

ai1,a
i
2,a

j
1,a

j
2,c

i
1,c

i
2,c

j
1,c

j
2

(Xai1Zci1)M
iT i

1 ⊗ (Xai2Zci2)T
i
2 ⊗ (Xaj1Zcj1)M

jT j
1 ⊗ (Xaj2Zcj2)T

j
2 ⊗ ÃR

aij12,c
ij
12

(33)

˜̃A =
∑

b,d

(XbZd)T
ij
2 ⊗ ˜̃A

M ijT ij
1 R

b,d (34)

Whenever the order is clear from the context, we will abbreviate, for example, aij12 for the concate-

nation ai1a
i
2a

j
1a

j
2, as we have done in the last term of Equation (33).

In terms of an arbitrary attack A, Ã, ˜̃A, define the simulator S as follows:

Simulator 4. On input ρM
iMjR from the environment, do:

1. Initialize bi = 0.

2. Run A on M ijR.

3. Submit M ij to ICNOTmℓ◦C , and receive M ijT ij
1 , containing an encodings of the M i and

M j registers of CNOTmℓ(C(ρ)), under some (secret) keys Ei, Ej .

4. Run ZeroFilterT
ij
2 (IdFilterM

ijT ij
1 (Ã)) on R (see Section 2.3). If one of the filter flags is 1,

set bi = 1.

5. Sample random V ′ ∈ C4n+2 and W ′
i ,W

′
j ∈ C2n+1, and run XFilterT

ij
2 ( ˜̃A) on M ijT ij

1 R,

where ˜̃A may depend on V ′,W ′
i ,W

′
j . If the filter flag is 1, set bi = 1.

6. Submit bi to the ideal functionality, along with all other bℓ = 0 for ℓ ∈ IA \ {bi}.
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The simulator should also abort whenever the adversary signals abort during an interaction
with MPC. For simplicity, we leave out these abort bits in the simulator and proof. They are dealt
with in the same way as in the proof of Lemma 5.3.

As before, we derive the real and ideal output states in the registers Rout
i = M iT i

1 and Rout
j =

M jT j
i , the state register S, and the attacker’s side information R, and aim to show that they are

negligibly close in terms of the security parameter n.
In the ideal (simulated) case, there are two points at which cheating may be detected by the

simulator: once during the zero/identity filter of Ã, and during the X filter of ˜̃A. Thus, there are
three possible outcome scenarios: both tests are passed, the first test is passed but the second is
not, or the first test fails (in which case it does not matter whether the second test is passed or not).

If both tests pass, then by three applications of Lemma 2.3, the simulated output state is

E
Ei,Ej

˜̃A
M ijT ij

1 R
0 ÃR

0,0 (Ei ⊗ Ej)
M ijT ij

1

(

CNOTmℓC
(

AρA†
)

CNOTmℓ† ⊗
∣

∣02n
〉〈

02n
∣

∣

T ij
1

)

(Ei ⊗ Ej)
† Ã†

0,0
˜̃A†
0 ⊗ |Ei, Ej〉〈Ei, Ej |S , (35)

where we write Ã0,0 to denote the attack
∑

cij2
Ã

0000,0ci20c
j
2

that passes through the zero/identity

filter, and ˜̃A0 to denote the attack
∑

d
˜̃A0,d that passes through the X filter.

If the first test is passed but the second test is not, then the storage register S gets erased, so
that we may view the Ei and Ej operations as Clifford twirls of the registers they encode. In that
case, the (simulated) output state is

∑

b6=0

˜̃AbÃ0,0T M iT i
1

Cn+1

(

T MjT j
1

Cn+1

(

CNOTmℓC
(

AρA†
)

CNOTmℓ† ⊗
∣

∣02n
〉〈

02n
∣

∣

)

)

Ã†
0,0

˜̃A†
b ⊗ |⊥〉〈⊥|

S (36)

=
∑

b6=0

˜̃AbÃ0,0

(

TrM ij

[

AρM
ijRA†

]

⊗ τMT ij
1

)

Ã†
0,0

˜̃A†
b ⊗ |⊥〉〈⊥|

S . (37)

The Clifford twirls cause the data and trap registers to become fully mixed, thereby also nullifying
the effect of the CNOT and circuit C on the data.

Finally, we consider the third scenario, where already the first test (the zero / identity filter)
fails. As in the previous scenario, the storage register S is erased, allowing us to apply the Clifford
twirl again. By Lemma 2.3, the output state in this case is

∑

b

∑

(aij12,c
ij
1 )6=

(04n+2,02n+2)

˜̃AbÃaij12,c
ij
1

(

TrM ij

[

AρM
ijRA†

]

⊗ τMT ij
1

)

Ã†
aij12,c

ij
1

˜̃A†
b ⊗ |⊥〉〈⊥|

S , (38)

writing Ã
aij12,c

ij
1

:=
∑

cij2
Ã

aij12,c
ij
12

. Note that for the second test (the X filter), the terms for both

possible flag values remain: the cheating bit bi is already set to 1, regardless of the outcome of this
second test.

We move on to the analysis of the real protocol ΠCNOTmℓ ⋄IC , and aim to show that the output
state is equal to Eq. (35) + Eq. (37) + Eq. (38). To do so, consider the output state of the real protocol,
right before the final measurement.

We continue to argue why the attacks are independent of Eij , E′
ij , gij , rij and sij . The intuition

for this fact is that D is uniformly random and independent of Eij from the perspective of the
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adversary. Therefore it “hides” all other information that is used to compile V , including Fij .
Therefore Fij are as random and independent as D from the perspective of the adversary, i.e.
given V . This allows for a similar argument for the Cliffords Wij , where now F hides all the other
information, i.e. E′

ij, gij , rij and sij .
For the following more formal argument, we treat all the mentioned quantities as random

variables. Initially, Eij are uniformly random. D is the product of a number of Clifford group
elements, at least one of which is generated honestly and therefore sampled uniformly at random.
But for any group G, given two independent random variables ζ and η on G, where ζ is uni-
formly random, we have that ηζ is uniformly random and ηζ⊥η, where ⊥ denotes independence.
This implies that D is indeed a uniformly random Clifford itself. Using the same argument, V
is uniformly random and V⊥(Eij , Fij). The quantities E′

ij , gij , rij and sij are sampled indepen-
dently and uniformly after V is handed to player i, so we even have V⊥(Eij , Fij , E

′
ij , gij , rij , sij).

After step 4. in Protocol 5.4, the adversary has a description of V , so when analyzing Wij , we
have to derive independence statements given V . But as shown before Fij are independent of
V , so the the group random variable property above we have Wij⊥(E′

ij , gij , rij , sij)|V . Clearly,
Eij is independent of all the random variables used in Wij , and we have shown that Eij⊥V , so
Wij⊥(Eij , E

′
ij , gij , rij , sij)|V . In summary, we have

(V,Wij)⊥(Eij , E
′
ij , gij , rij , sij). (39)

According to the decomposition of the attack into attack maps A, Ã and ˜̃A, that we made without
loss of generality, the Clifford operations Fi, Fj , andD cancel again after having fulfilled their task
of hiding information, which allows us to utilize Equation (39) to carry out the expectation values
over various variables from the right hand side of that equation.

The output state of the real protocol is

E
E′

i,E
′
j ,gi,gj

ri,si,rj ,sj

˜̃AM ijT ij
12R
(

E′
i ⊗ (XriZsi)T

i
2 ⊗ E′

j ⊗ (XrjZsj)T
j
2

)

(

U
T i
12

gi ⊗ U
T j
12

gj

)

CNOTmℓσ CNOTmℓ†

(

U †
gi ⊗ U

†
gj

)

(

E′
i ⊗ (XriZsi)⊗ E′

j ⊗ (XrjZsj)
)† ˜̃A† ⊗

∣

∣E′
i, E

′
j

〉〈

E′
i, E

′
j

∣

∣

S
, (40)

where (again writing C(·) for the map induced by the circuit C)
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σ := E
Ei,Ej∈Cn+1

(

E†
i ⊗E

†
j

)

ÃM ijT ij
12R

(

(

E
M iT i

1
i ⊗ EMjT j

1
j

)(

C
(

AρM
ijRA†

)

⊗
∣

∣02n
〉〈

02n
∣

∣

T ij
1

)

(

E†
i ⊗ E

†
j

)

⊗
∣

∣02n
〉〈

02n
∣

∣

T ij
2

)

Ã† (Ei ⊗Ej)

= T M iT i
1

Cn+1

(

T MjT j
1

Cn+1

(

Ã
)

)(

C
(

AρM
ijRA†

)

⊗
∣

∣04n
〉〈

04n
∣

∣

T ij
12

)

≈negl(n) Ã
T ij
2 R

00

(

C
(

AρM
ijRA†

)

⊗
∣

∣02n
〉〈

02n
∣

∣

T ij
2

)

Ã†
00 ⊗

∣

∣02n
〉〈

02n
∣

∣

T ij
1

+ TrM i

[

Ã
T ij
2 R

01

(

C
(

AρM
ijRA†

)

⊗
∣

∣02n
〉〈

02n
∣

∣

T ij
2

)

Ã†
01

]

⊗ τM iT i
1 ⊗ |0n〉〈0n|T

j
1

+ TrMj

[

Ã
T ij
2 R

10

(

C
(

AρM
ijRA†

)

⊗
∣

∣02n
〉〈

02n
∣

∣

T ij
2

)

Ã†
10

]

⊗ |0n〉〈0n|T i
1 ⊗ τMjT j

1

+ TrM ij

[

Ã
T ij
2 R

11

(

C
(

AρM
ijRA†

)

⊗
∣

∣02n
〉〈

02n
∣

∣

T ij
2

)

Ã†
11

]

⊗ τM ijT ij
1 , (41)

and

Ãpq :=
∑

aij2 ,cij2
ai1c

i
1∈Sp

aj1c
j
1∈Sq

(Xaij2 Zcij2 )T
ij
2 ⊗ ÃR

ai12a
j
12,c

i
12c

j
12

.

for p, q ∈ {0, 1} and S0 := {02n+2}, S1 := {0, 1}2n+2 \ S0. The approximation follows by a double
application of Lemma C.1. We can twirl with the keys Ei and Ej , since none of the attacks can
depend on the secret encoding keys Ei, Ej , and the keys have been removed from the storage
register S, and replaced by the new keys E′

i, E
′
j .

Having rewritten the state σ in this form, we consider the state in Equation (40) after the T ij
2

registers are measured in the computational basis, as in step 6c of Protocol 5.4. We first consider
the case where the measurement outcome is accepted by the MPC (i.e., the measurement outcome
is rirj). Using the same derivation steps as in Equations (23)–(30), we see that the real accept state
approximates (up to a negligible error in n)

E
E′

i,E
′
j∈Cn+1

˜̃A
M ijT ij

1 R
0

(

E′
i ⊗ E′

j

)M ijT ij
1 Tr

T ij
2

[

∣

∣04n
〉〈

04n
∣

∣

T ij
12 CNOTmℓσCNOTmℓ†

∣

∣04n
〉〈

04n
∣

∣

]

(

E′
i ⊗ E′

j

)† ˜̃A†
0 ⊗

∣

∣E′
i, E

′
j

〉〈

E′
i, E

′
j

∣

∣

S
. (42)

To derive the above expression, we applied a Pauli twirl, which relies on the fact that the adversary
cannot learn ri, rj , si, sj . Furthermore, the derivation contains an application of Lemma E.1 to

expand the effect of measuring T ij
2 to measuring both registers T ij

12. To apply this lemma, we use
the aforementioned fact that gi and gj remain hidden from the adversary.

The second, third, and fourth terms of the sum in the approximation of σ (see Equation (41))
have negligible weight inside Equation (42), since the probability of measuring an all-zero string in
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the T ij
1 registers is negligible in nwhenever one or both are in the fully mixed state τ . Additionally,

the only components in Ã00 that survive are those that act trivially in the computational basis on

T ij
2 . Hence,

Eq. (42) ≈negl(n) Eq. (35).

In case the measurement outcome is rejected by the MPC (i.e., it is anything other than rirj), the
output state can be derived using the same steps that were used to obtain Equation (30) in the
proof of Lemma 4.3. Up to an error negligible in n, it approximates

∑

b

˜̃A
M ijT ij

1 R
b T M iT i

1
Cn+1

(

T MjT j
1

Cn+1

(

Tr
T ij
2

[

(I−Πb,F )
T ij
12CNOTmℓσCNOTmℓ†(I−Πb,F )

†
]))

˜̃A†
b ⊗ |⊥〉〈⊥|

S .

The encoding under the keys E′
i, E

′
j in Equation (40) can be regarded as two Clifford twirls, be-

cause these keys are removed from the storage register S, and because the attack maps also cannot
depend on them, since they are unknown by the adversary.

The next step is to substitute the expression for σ that was derived in Equation (41). We dis-
tinguish between the case b 6= 0, where I − Πb,F = I and thus all terms of Equation (41) remain,
and the case b = 0, where one has to more carefully count which (parts of the) terms remain.

To do so, observe that the first term is projected to non-zero in T ij
12 whenever a2

ij is nonzero.
The other three terms are always projected to non-zero, up to a negligible contribution of the all-
zero string in the fully mixed state τ . In summary, exactly those terms ÃR

aij12,c
ij
12

remain for which

(aij12, c
ij
1 ) 6= (04n+2, 02n+1).

Because the two Clifford twirls map the M ij registers to a fully mixed state, the four terms in
Equation (41) can be combined, resulting in the following output state in the reject case

∑

b6=0

∑

aij12,c
ij
1

˜̃AbÃaij12,c
ij
1

(

TrM ij

[

AρM
ijRA†

]

⊗ τMT ij
1

)

Ã†
aij12,c

ij
1

˜̃A†
b ⊗ |⊥〉〈⊥|

S

+
∑

(aij12,c
ij
1 )6=

(04n+2,02n+2)

˜̃A0Ãaij12,c
ij
1

(

TrM ij

[

AρM
ijRA†

]

⊗ τMT ij
1

)

Ã†
aij12,c

ij
1

˜̃A†
0 ⊗ |⊥〉〈⊥|S

= Eq. (37) + Eq. (38).

We have shown that the sum of the three terms of the output state in the simulated case (both tests
accept, the first test accepts but the second rejects, and the first test rejects) is approximately equal
to the sum of the two terms of the output state in the real case (the MPC accepts the measurement
outcome, or the MPC rejects the measurement outcome).

Case 3: only player i is honest. At first, it may seem that this is just a special case of the previous
one, where both players are dishonest. While this is true in spirit, we cannot directly use the
simulator from the previous case. The reason is syntactical: a simulator would not have access to
the registers M iT i

12, because they are held by honest player i. Thus, the simulator needs to differ
slightly from the previous case. However, it is very similar, as is the derivation of the real/ideal
output states. We therefore omit the full proof, and instead only define the simulator.

The adversary again has three opportunities to attack: an attack A on the plaintext and side-
information register M jR, which happens before the ideal functionality IC is called; an attack Ã
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on the output of IC in registersM jT j
1R (right before player j sends their state to player i); and an

attack ˜̃A on M jT j
12R, after an honest application of Wj (which we may assume to happen without

loss of generality), but before the computational-basis measurement of T2. Given these attacks,
define the simulator as follows.

Simulator 5. On input ρM
jR from the environment, do:

1. Initialize bj = 0.

2. Run A on M jR.

3. Submit M j to the ideal functionality ICNOTmℓ◦C , and receive M jT j
1 , containing an en-

coding under a secret key Ej . (Honest player i holds the other output, encoded under
Ei.)

4. Run IdFilterM
jT j

1 (Ã) on R. If the filter flag is 1, then set bj = 1.

5. Sample random W ′
j ∈ C2n+1, and run XFilterT

j
2 ( ˜̃A) on M jT j

1R, where ˜̃A may depend on
W ′

j . If the filter flag is 1, then set bj = 1.

6. Submit bj to the ideal functionality, along with all other bℓ = 0 for ℓ ∈ IA \ {bj}.

Intuitively, the simulator tests whether player j sent the actual outcome of IC without altering it
(step 4 of the simulator), and whether player j left the computational basis of T2 invariant before
measuring it (step 5 of the simulator).

Case 4: only player j is honest. Similarly to the previous case, we need to provide a separate
simulator for the case where player i is dishonest, player j is honest, and (without loss of general-
ity) all other players are dishonest.

The adversary has three opportunities to attack: an attackA on the plaintext and side-information
register M iR, which happens before the ideal functionality IC is called; an attack Ã on registers

M ijT ij
12R that is applied on the outputs of the ideal functionality and on the extra registers T2,

right before D is applied; and an attack ˜̃A on M ijT ij
12R, right before the measurement on T i

2 (as
part of player i’s test) and the application of Wj (so right before sending the appropriate registers
to player j). Given these attacks, define the simulator as follows.

Simulator 6. On input ρM
iR from the environment, do:

1. Initialize bi = 0.

2. Run A on M iR.

3. Submit M i to the ideal functionality ICNOTmℓ◦C , and receive M iT i
1, containing an en-

coding under a secret key Ei. (Honest player j holds the other output, encoded under
Ej .)

47



4. Run ZeroFilterT
ij
2

(

IdFilterM
ijT ij

1 (Ã)
)

on R. If the filter flag is 1, then set bi = 1.

5. Sample random V,W ′
i ∈ C2n+1, and run XFilterT

i
2

(

IdFilterM
jT j

12( ˜̃A)
)

on M iT j
1R, where

˜̃A may depend on V and W ′
i . If the filter flag is 1, then set bi = 1.

6. Submit bi to the ideal functionality, along with all other bℓ = 0 for ℓ ∈ IA \ {bi}.

Intuitively, the simulator tests (in step 4) whether player i leaves the states received from the ideal

functionality and player j intact, as well as the traps in T ij
2 that are initialized to

∣

∣02n
〉〈

02n
∣

∣. In
step 5, it tests both whether player i executes the test honestly by not altering the computational-
basis value of T i

2, and whether he would give the correct (uncorrupted) state to player j.

H Proof of Lemma 5.7

The following lemma captures the fact that CNOT1,c makes it hard to alter the outcome of a
computational-basis measurement with a (Pauli) attack Xb if b does not depend on c. We will
use this lemma later in the security proof of the measurement protocol.

Lemma H.1. Let m ∈ {0, 1}, and let ρ be a single-qubit state. Let p : {0, 1}n+1 → [0, 1] be a probability
distribution, and un the uniform distribution on {0, 1}n . Then

∥

∥

∥

∥

∥

∥

E
b∼p
c∼un

〈m,m · c|XbCNOT1,c (ρ⊗ |0n〉〈0n|)CNOT†
1,cX

b |m,m · c〉 − p(0n+1) 〈m| ρ |m〉

∥

∥

∥

∥

∥

∥

1

6 2−n.

Proof. By commutation relations between CNOT and X, we have that for all b and c,

XbCNOT1,c = CNOT1,cX
b⊕(0,b1·c),

where b1 denotes the first bit of b. Furthermore, CNOT1,c |m,m · c〉 = |m, 0n〉. Using these two
equalities, we have

E
b∼p
c∼un

〈m,m · c|XbCNOT1,c (ρ⊗ |0n〉〈0n|)CNOT†
1,cX

b |m,m · c〉

= E
b∼p
c∼un

〈m, 0n|Xb⊕(0,b1·c) (ρ⊗ |0n〉〈0n|)Xb⊕(0,b1·c) |m, 0n〉 . (43)

Let us consider which values of b result in a non-zero term. In order for the last n qubits to be in
the |0n〉〈0n| state after Xb⊕(0,b1·c), it is necessary that b⊕ (0, b1 · c) ∈ {(0, 0n), (1, 0n)}. By considering
the two possible cases b1 = 0 and b1 = 1, we see that the only two values of b for which this is the
case are b = (0, 0n) and b = (1, c). Thus Equation (43) equals

E
c∼un

p(0n+1) 〈m, 0n| (ρ⊗ |0n〉〈0n|) |m, 0n〉 +p(c) 〈m, 0n|X1,0n (ρ⊗ |0n〉〈0n|)X1,0n |m, 0n〉

= p(0n+1) 〈m| ρ |m〉 + E
c∼un

p(c) 〈m+ 1| ρ |m+ 1〉

≈2−n p(0n+1) 〈m| ρ |m〉 .

The last step follows from the fact that Ec p(c) = 2−n.
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We now move on to proving the security of Protocol 5.6 by showing that its outcome resembles
that of the ideal functionality.

of Lemma 5.7. Let player i be the player holding (the encoding of) the state in wire w (assume, for
simplicity, that w is the only wire in the computation). If player i is honest, then it is simple to
check that the outcome is correct: the unitary V is designed so that, whatever the first (data) qubit
collapses to, all other qubits that appear in s measure to the same value. In step 4, the MPC checks
that this is indeed the case, and stores the measured value in the state register.

For the rest of this proof, we will assume that player i is dishonest. The other players do not
play a role, except for their power to abort the ideal functionalities and/or MPC. We do not fix
which players in [k] \ {i} are honest: as long as at least one of them is, the encoding key E will be
unknown to the adversary.

In an execution of Π ⋄ IC , an adversary has two opportunities to influence the outcome:
before and after interacting with the ideal functionality for C . Before the adversary submits the
register M = Rin

i to IC , it applies an arbitrary attack unitary A to the register MR it receives
from the environment. (Recall that R is a side-information register.) Afterwards, it can act on
MT1 = Rout

i and R, and produces two bits (bi to signal cheating to IC , and b′i to signal cheating to
the MPC which is part of Π ), plus a bit string. We may assume, without loss of generality, that
the adversary first applies the honest unitary V , followed by an arbitrary (unitary) attack B and
subsequently by an honest computational-basis measurement of the registers MT1.

For any adversary, specified by the unitaries A and B, define a simulator S as follows:

Simulator 7. On input ρMR from the environment, do:

1. Run A on registersMR.

2. Sample a random F ∈ Cn+1 and a random r ∈ {0, 1}n+1.

3. Prepare the state F |r〉〈r|F † in a separate register XT1, and apply the map B to XT1R,
using the instruction F † instead of T .

4. Measure XT1 in the computational basis, and check that the outcome is r. If so, submit
M to I ◦C , along with a bit b = 0 (no cheating). Otherwise, submit M and b = 1.

Throughout this proof, we decompose the attack B as

B =
∑

b,d∈{0,1}n+1

(

XbZd
)MT1

⊗BR
b,d, (44)

and similarly as before, we abbreviate Bb :=
∑

dBb,d (and B0 for B0n+1).
We analyze the output state in registers RS (note that the MT1 registers are destroyed by the

measurement) in both the ideal and the real case, and aim to show that they are indistinguishable,
whatever the input ρMR was.

In the ideal (simulated) case, first consider the output state in case of accept. Write C (·) for the
map induced by the circuit C . Following the steps of the simulator, abbreviating σ = AMRρMRA†,
and decomposingB as in Equation (44), we see that the output in RS in case of accept is
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∑

m∈{0,1}m
E
r
〈m|M CM

(

〈r|XT1 BXT1R

(

σ ⊗
(

F †F |r〉〈r|F †F
)XT1

)

B† |r〉
)

|m〉 ⊗ |m〉〈m|S

=
∑

m∈{0,1}

∑

b,d,b′,d′

E
r
〈m|M

(

CM
(

BR
b,dσB

†
b′,d′

)

⊗ 〈r|XbZd |r〉〈r|Zd′Xb′ |r〉XT1

)

|m〉 ⊗ |m〉〈m|S

=
∑

m∈{0,1}
〈m|M CM

(

BR
0 A

MRρMRA†B†
0

)

|m〉 ⊗ |m〉〈m|S . (45)

The ideal reject case is similar, except we project onto I − |r〉〈r| instead of onto |r〉〈r|. The output
state is

∑

m∈{0,1}

∑

b6=0n+1

〈m|M CM
(

BR
b A

MRρMRA†B†
b

)

|m〉 ⊗ |⊥〉〈⊥|S

=
∑

b6=0n+1

TrM

[

BR
b A

MRρMRA†B†
b

]

⊗ |⊥〉〈⊥|S . (46)

In the real protocol, the unitary T does not reveal any information about c, so the attack B is
independent of it. This allows us to apply Lemma H.1, after performing a Pauli twirl to decompose
the attack B. Again abbreviating σ = AρA†, the state in the accept case is

=E
c

∑

m

〈r ⊕ (m,m · c)|MT1 BMT1RXrZsCNOT1,cE
†E
(

CM (σ)⊗ |0n〉〈0n|T1

)

E†ECNOT
†
1,cZ

sXrB† |r ⊕ (m,m · c)〉 ⊗ |m〉〈m|S

= E
c

∑

m,b

〈m,m · c|XbCNOT1,c

(

CM
(

BR
b σB

†
b

)

⊗ |0n〉〈0n|
)

CNOT
†
1,cX

b |m,m · c〉 ⊗ |m〉〈m|S

≈2−n Eq. (45).

For the last step, observe that the probabilities p(b) in the statement of Lemma H.1 are part of Bb.
Similarly, the real reject state is

E
c

∑

m,b

∑

x 6=(m,m·c)
〈x|MT1 XbCNOT1,c

(

CM
(

BR
b σB

†
b

)

⊗ |0n〉〈0n|T1

)

CNOT
†
1,cX

b |x〉 ⊗ |⊥〉〈⊥|S

≈2−n Eq. (46).

In summary, we have shown that the output state in the real case is close to Eq. (45) + Eq. (46), for
any input state ρMR provided by the environment E .

I Proof of Lemma 6.3

Before proving Lemma 6.3, we discuss the task of sampling in the quantum world.
Classically, some properties of a bit-string can be estimated just by querying a small fraction of

it. For instance, in order to estimate the Hamming weightw of a n-bit string x, one could calculate
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the Hamming weight wS of a subset S of the bits of x and we have that w ∈ [wS − δ, wS + δ] except

with probability O(2−2δ2 |S|).
Such a result does not follow directly in the quantum setting, since the tested quantum state

could, for instance, be entangled with the environment. However, Bouman and Fehr [BF10] have
studied this problem in the quantum setting, and they showed that such sampling arguments also
hold in the quantum setting, but with a quadratic loss in the error probability. A corollary of their
result that will be important in this work is the following.

Lemma I.1 (Application of Theorem 3 of [BF10]). Let |φAE〉 ∈ (C2)⊗n ⊗HE be a quantum state and
let B = {|v0〉 , |v1〉} be a fixed single-qubit basis. If we measure k random qubits of TrE(|φAE〉〈φAE|) in

the B-basis and all of the outcomes are |v0〉, then with probability O(2−δ2k), we have that

|φAE〉 ∈ span
(

(Pπ |v0〉⊗n−t |v1〉⊗t)⊗ |ψ〉 : 0 6 t 6 δn, π ∈ Sn, |ψ〉 ∈ HE

)

).

We now proceed to the proof of Lemma 6.3.

of Lemma 6.3. The simulator for ΠMS is similar to the composed simulator for ΠDec ⋄ ΠC ⋄ ΠEnc,
where C is the Clifford circuit of Protocol 2.8. The difference is that the input is now chosen by
player 1 instead of being given by the environment, and that each player tests if the decoded qubit
is correct. We make a small modification for each of the following cases:

Case 1: player 1 is honest. In this case, the simulator only needs to also set bi = 1 whenever
the adversary aborts after it receives the output of the ideal quantum computation in Step 3 of
Protocol 6.1. Otherwise, the simulator is exactly the same as the composed one.

Case 2: player 1 is dishonest. In this case, the simulator also tests if the decoded qubits by the
(simulated) honest players in [k] \ IA are indeed magic states of the correct form. More concretely,
the simulator also measures all the qubits that the simulated players receive in the {|T〉 ,

∣

∣T⊥〉}
basis, and sets bi = 1 if any of the outcomes is

∣

∣T⊥〉. Otherwise, the simulator replaces the qubits in
[ℓ]\
(
⋃

26i6k Si
)

by true magic-states |T〉, re-encodes them, and continues the composed simulation.
Notice that this change makes the simulator abort with the same probability that an honest player
would abort in Step 3.

We now argue that when there is no abort, the output of ΠMS is exponentially close to that
of IMS . Notice that picking the disjoint S2, ..., Sk ⊆ [ℓ] uniformly at random is equivalent to first
picking {Si}i∈IA from [ℓ], and then picking {Si}i 6∈A from the remaining [ℓ] \

(
⋃

i∈A Si
)

elements.
From this perspective, if the honest players do not abort in Step 3, then Lemma I.1 implies that

the state created by player 1 in the other positions [ℓ] \
(

⋃

i 6∈A Si
)

is O(2ε
2(k−|IA|)n)-close to the the

subspace span
(

(Pπ |T〉⊗tn−j
∣

∣T⊥〉⊗j
) : 0 6 j 6 εtn, π ∈ Stn

)

. If we choose ε 6 1
2

(

1−
√

3/7
)

, by

Lemma 2.7 and the union bound, the output of the distillation procedure is O (tε)n
c

-close to |T〉⊗t.
In this case, the output of ΠMS will be negl (n) close to encodings of |T 〉⊗t, which is the output of
IMS in the no-abort case.
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