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Abstract

This paper confirms a conjecture of Bergstra and Klop’s from 1984 by establishing that the process
algebra obtained by adding an auxiliary operator proposed by Hennessy in 1981 to the recursion free
fragment of Milner’s Calculus of Communicating Systems is not finitely based modulo bisimulation
equivalence. Thus, Hennessy’s merge cannot replace the left merge and communication merge opera-
tors proposed by Bergstra and Klop, at least if a finite axiomatization of parallel composition modulo
bisimulation equivalence is desired.
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1. Introduction

Process algebras are prototype description languages for reactive systems that arose
from the pioneering work of figures like Bergstra, Hoare, Klop and Milner. Well-known
examples of such languages areACP[9], CCS[30], CSP[27] andMeije[6]. These algebraic
description languages for processes differ in the basic collection of operators that they offer
for building new process descriptions from existing ones. However, since they are designed
to allow for the description and analysis of systems of interacting processes, they all contain
some form of parallel composition (also known as merge) operator allowing one to put two
process terms in parallel with one another. These operators usually interleave the behaviours
of their arguments, and allow for some formof synchronization between them. For example,
Milner’s CCS offers the binary operator|, whose intended semantics is described by the
following classic rules in Plotkin-style[36]:

x
�→ x′

x | y �→ x′ | y
y

�→ y′

x | y �→ x | y′
x

�→ x′, y
�̄→ y′

x | y �→ x′ | y′
. (1)

(In the above rules, the symbol� stands for an action that a process may perform,� and�̄
are two observable actions that may synchronize, and� is a symbol denoting the result of
their synchronization.)
Although the above rules describe the behaviour of the parallel composition operator

in very intuitive fashion, the equational characterization of this operator is not straight-
forward. In their seminal paper[26], Hennessy and Milner offered, amongst a wealth of
other classic results, a complete equational axiomatization of bisimulation equivalence[35]
over the recursion free fragment of CCS. (See the paper[7] for a more detailed historical
account highlighting, e.g., Hans Beki´c’s early contributions to this field of research.) The
axiomatization proposed byHennessy andMilner[26] dealt with parallel composition using
the so-calledexpansion law—a law that, intuitively, allows one to obtain a term describ-
ing explicitly the initial transitions of the parallel composition of two terms whose initial
transitions are known. This law can be expressed as the following equation schema:(∑

i∈I
�ixi

)
|
(∑
j∈J

�j yj

)
= ∑

i∈I
�i (xi | y) + ∑

j∈J
�j (x | yj )

+ ∑
i∈I,j∈J,�i=�j

�(xi | yj )

(whereI andJare two finite index sets, and the�i and�j are actions), and is nothing but an
equational formulation of the aforementioned rules describing the operational semantics of
parallel composition.
Despite its natural and simple formulation, the expansion law, however, is an equation

schema with a countably infinite number of instances. This raised the question of whether
the parallel composition operator could be axiomatized in bisimulation semantics bymeans
of a finite collection of equations. This question was answered positively by Bergstra and
Klop, who gave in[10] a finite, equational axiomatization of the merge operator in terms
of the auxiliary left merge and communication merge operators. Moller showed in[33,34]
that bisimulation equivalence is not finitely based over CCS and PA without the left merge
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operator. (The process algebra PA[10] contains a parallel composition operator based on
pure interleaving without communication—viz. an operator described by the first two rules
in (1)—and the left merge operator.) Thus auxiliary operators are necessary to obtain a finite
axiomatization of parallel composition.
In the arguably less well-known paper[24], Hennessy proposed an axiomatization of

observation congruence[26] (also known as rooted weak bisimulation) and timed congru-
ence (also known as split-2 congruence) over a CCS-like, recursion-free process language.
(It is worth noting that, although this paper was published in 1988 by the SIAM Journal
on Computing as[24], the results reported in[24] were actually obtained in 1981–1982.)
Those axiomatizations used an auxiliary operator, denoted|/ byHennessy, that is essentially
a combination of the left and communication merge operators as its behaviour is described
by the first and the last rule in (1). Apart from having soundness problems (see Ref.[2]
for a general discussion of these problems, and corrected proofs of Hennessy’s results), the
proposed axiomatization of observation congruence offered in[2] is infinite, as it uses a
variant of the expansion law from[26]. This led Bergstra and Klop to write in[10, p. 118]
that:

“It seems that� does not have a finite, equational axiomatization”.

(In [10]BergstraandKlopused� to denoteHennessy’smerge.)To thebest of our knowledge,
the non-finite axiomatizability of Hennessy’s merge modulo bisimulation equivalence has,
however, never been proven. The main result in this paper confirms this conjecture of
Bergstra andKlop’s by showing that, in the presence of two distinct complementary actions,
it is impossible to provide a finite axiomatization of the recursion free fragment of CCS
modulo bisimulation equivalence using Hennessy’s merge operator|/. We believe that this
result further reinforces the status of the left merge and the communication merge operators
as auxiliary operators in the finite, equational characterization of parallel composition in
bisimulation semantics.
The aforementioned negative result holds in a very strong form. Indeed, we prove that

no finite collection of equations over the language we study that are sound with respect to
bisimulation equivalence can prove all of the sound closed equalities of the form

en : a0 |/ pn ≈ apn +
n∑

i=0
�ai (n�0),

where the termspn are defined thus:

pn =
n∑

i=0
āai (n�0).

The proof of our main result is given along proof theoretic lines that have their roots in those
for the aforementioned results of Moller’s to the effect that bisimulation equivalence is not
finitely based over the recursion free fragment of CCS. However, the presence of possible
synchronizations in the terms used in the family of equationsen is necessary for our result,
and requires careful attention in the proofs. (Indeed, in the absence of synchronization,
Hennessy’s merge reduces to Bergstra and Klop’s left merge operator, and thus affords a
finite, equational axiomatization.) In particular, the infinite family of equationsen and our
arguments based upon it exploit the inability of any finite axiom systemE that is sound with
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respect to bisimulation equivalence to “expand” the synchronization behaviour of terms of
the formp |/ q, for termsq that, like the termspn above eventually do, have a number of
inequivalent “summands” that is larger than the maximum size of the terms mentioned in
equations inE. As in the original arguments of Moller’s, the root of this problem can be
traced back to the fact that the choice operator+ distributes with respect to|/ in the first
argument, butnot in the second.

1.1. Related work

The equational characterization of different versions of the parallel composition operator
is a classic topic in the theory of computation, and this paper joins the aforementioned
seminal references in contributing to this line of research. In particular, the process al-
gebraic literature abounds with results on equational axiomatizations of various notions of
behavioural equivalences or preorders over languages incorporating some notion of parallel
composition—see, e.g., the textbooks[9,25,30]and the classic papers[10,26,29]for gen-
eral references. Early�-complete axiomatizations are offered in[23,32]. More recently,
Fokkink and Luttik have shown in[20] that the process algebra PA[10] affords an�-
complete axiomatization that is finite if so is the underlying set of actions.
Ananalysis of the reasonswhyoperators like the leftmergeand the communicationmerge

are equationally well behaved in bisimulation semantics has led to general algorithms for
the generation of (finite) equational axiomatizations for behavioural equivalences from their
operational semantics—see, e.g.,[1,4,8]and references in[5] for further details.
Parallel composition appears as the shuffle operator in the time-honoured theory of formal

languages. Not surprisingly, the equational theory of shuffle has received considerable
attention in the literature. Here, we limit ourselves to mentioning some results that have a
special relationship with process theory.
In [38], Tschantz offered a finite, equational axiomatization of the theory of languages

over concatenation and shuffle, solving an open problem raised by Pratt. In proving this
result he essentially rediscovered the concept of pomset[22,37]—a model of concurrency
based on partial orderswhose algebraic aspects have been investigated byGischer in[21]—,
and proved that the equational theory of series-parallel pomsets coincides with that of
languages over concatenation and shuffle. The argument adopted by Tschantz was based on
the observation that series-parallel pomsetsmay be coded by a suitable homomorphism into
languages, where the series and parallel composition operators on pomsets are modelled
by the concatenation and shuffle operators on languages. Tschantz’s technique of coding
pomsets with languages homomorphically was further extended in the papers[12,13,15]
to deal with several other operators, infinite pomsets and infinitary languages, and sets of
pomsets. The axiomatizations by Gischer and Tschantz have later been extended in[15,19]
to a two-sorted language with� powers of the concatenation and parallel composition
operators. The axiomatization of the algebra of pomsets resulting from the addition of these
iteration operators is, however, necessarily infinite because, as shown in[15,19] no finite
collection of equations can capture all the sound equalities involving them. (See[17] for
closely related developments.)
The results of Moller’s on the non-finite axiomatizability of bisimulation equivalence

over the recursion-free fragment of CCS and PA without the left merge operator given in
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[33,34]are paralleled in the world of formal language theory by those offered in[11,14,18].
In the first of those references, Bloom and Ésik proved that the valid inequations in the
algebra of languages equipped with concatenation and shuffle have no finite basis. Ésik
and Bertol showed in[18] that the equational theory of union, concatenation and shuffle
over languages has no finite first-order axiomatization relative to the collection of all valid
inequations that hold for concatenation and shuffle. Hence the combination of some form
of parallel composition, sequencing and choice is hard to characterize equationally both in
the theory of languages and in that of processes. Moreover, Bloom and Ésik have shown
in [14] that the variety of all languages over a finite alphabet ordered by inclusion with
the operators of concatenation and shuffle, and a constant denoting the singleton language
containing only the empty word is not finitely axiomatizable by first-order sentences that
are valid in the equational theory of languages over concatenation, union and shuffle.

1.2. Roadmap of the paper

Webegin by presenting preliminaries on the languageCCSH—the extension of CCSwith
Hennessy’s merge operator—and equational logic (Section2). In particular, Section2.2of-
fers a detailed discussion of the simplifying assumptions we shall make, without loss of
generality, on the equational axiom systems that we shall consider in the rest of the paper.
Our main result on the non-existence of a finite equational axiomatization for bisimulation
equivalence over the language CCSH (Theorem18) is stated in Section3. There we show
how to reduce the proof of Theorem18 to that of a proposition (Proposition24) to the
effect that no finite axiom system over the fragment of the language CCSH that does not
use the parallel composition operator can prove all of the aforementioned equationsen.
The following two technical sections of the paper, viz. Sections4 and5, are entirely de-
voted to a detailed proof of Proposition24. The paper ends with some concluding remarks
(Section6).

2. Preliminaries

We begin by introducing the basic definitions and results on which the technical devel-
opments to follow are based.

2.1. The languageCCSH

The language forprocessesweshall consider in thispaper, henceforth referred toasCCSH,
is obtained by adding Hennessy’s merge operator from[24] to the recursion, restriction
and relabelling free subset of Milner’s CCS[30]. This language is given by the following
grammar:

t ::= x | 0 | at | āt | �t | t + t | t | t | t |/ t,

wherex is a variable drawn from a countably infinite setV , a is an action, and̄a is its
complement. We assume that the actionsa andā are distinct. Following Milner[30], the
action symbol�will result from the synchronized occurrence of the complementary actions
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Table 1
SOS rules for the CCS operators (� ∈ {a, ā, �} and� ∈ {a, ā})

�x
�→ x

x
�→ x′

x + y
�→ x′

y
�→ y′

x + y
�→ y′

x
�→ x′

x | y �→ x′ | y
y

�→ y′

x | y �→ x | y′
x

�→ x′, y
�̄→ y′

x | y �→ x′ | y′

aandā.We let� ∈ {a, ā, �} and� ∈ {a, ā}. As usual, we postulate that¯̄a = a.We shall use
the meta-variablest, u, v,w to range over process terms, and writevar(t) for the collection
of variables occurring in the termt. Thesizeof a term is the number of operator symbols
in it. A process term isclosedif it does not contain any variables. Closed terms will be
typically denoted byp, q, r.

In order to obtain the negative results offered in this paper, it will be sufficient to consider
the above language. The results we shall present in what follows carry over unchanged to a
setting with an arbitrary number of actions, and corresponding unary prefixing operators.
A (closed) substitution is a mapping from process variables to (closed) CCSH terms.

For every termt and (closed) substitution�, the (closed) term obtained by replacing every
occurrence of a variablex in t with the (closed) term�(x) will be written�(t).
In the remainder of this paper, we leta0 denote0, andam+1 denotea(am).
The SOS rules for all of the classic CCS operators are standard, and may be found in

Table 1. Those for Hennessy’s|/ formalize the intuition that this operator is indeed a
combination of the left and communication merge operators, and are:

x
�→ x′

x |/ y
�→ x′ | y

x
�→ x′, y

�̄→ y′

x |/ y
�→ x′ | y′

.

These transition rules give rise to transitions between CCSH terms. The operational seman-
tics for CCSH is thus given by the labelled transition system[28] whose states are CCSH
terms, and whose labelled transitions are those that are provable using the rules. As usual,

for each termt and action�, we writet
�→ if t

�→ t ′ holds for some termt ′.
The transition relations

�→ naturally compose to determine the possible effects that per-
forming a sequence of actions may have on a CCSH term.

Definition 1. For a sequence of actionss = �1 · · ·�k (k�0), and CCSH termst, t ′, we
write t

s→ t ′ iff there exists a sequence of transitions

t = t0
�1→ t1

�2→ · · · �k→ tk = t ′.

If t
s→ t ′ holds for some CCSH termt ′, thens is atraceof t.

Thedepthof a termt, writtendepth(t), is the length of the longest trace it affords.
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The depth of closed terms can also be characterized inductively thus:

depth(0) = 0,
depth(�p) = 1+ depth(p),

depth(p + q) = max{depth(p),depth(q)},
depth(p | q) = depth(p) + depth(q),

depth(p |/ q) =
{
0 if depth(p) = 0,
depth(p) + depth(q) otherwise.

In what follows, we shall sometimes need to consider the possible origins of a transition

of the form�(t)
�→ p, for some action� ∈ {a, ā}, closed substitution�, CCSH term t and

closed termp. Naturally enough, we expect that�(t) affords that transition ift
�→ t ′, for

somet ′ such thatp = �(t ′). However, the above transition may also derive from the initial
behaviour of some closed term�(x), provided that the collection of initial moves of�(t)
depends, in some formal sense, on that of the closed term substituted for the variablex. To
fully describe this situation, we introduce the auxiliary notion of configuration of a CCSH
term. To this end, we assume a set of symbols

Vd = {xd | x ∈ V }
disjoint fromV . Intuitively, the symbolxd (read “duringx”) will be used to denote that the
closed term substituted for variablex has begun executing.

Definition 2. The set of CCSH configurations is given by the following grammar:

c ::= t | xd | c | t | t | c,
wheret is a CCSH term, andxd ∈ Vd .

Forexample, theconfigurationxd | (a0 |/ x) ismeant todescribeastateof thecomputation
of some term in which the (closed term substituted for the) occurrence of variablex on the
left-hand side of the| operator has begun its execution, but the one on the right-hand side
has not. We shall consider the symbolsxd as variables, and use the notation�[xd �→ p],
where� is a closed substitution andp is a closed CCSH term, to stand for the substitution
mappingxd to p, and acting like� on all of the variables inV .
The way in which the initial behaviour of a termmay depend on that of the variables that

occur in it is formally described by an auxiliary transition relation whose elements have
the formt

x→ c, wheret is a term,x is a variable, andc is a configuration. The SOS rules
defining these transitions are given in Table2.

Lemma 3. Assume that t is aCCSH term, � is a closed substitution and� ∈ {a, ā}. Then
the following statements hold:

(1) If t
�→ t ′, then�(t)

�→ �(t ′).
(2) Assume thatt

x→ c and�(x)
�→ p, for some configuration c and closed term p. Then

�(t)
�→ �[xd �→ p](c).
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Table 2
SOS rules for the auxiliary transitions

x→ (x ∈ V )

x
x→ xd

t
x→ c

t + u
x→ c

u
x→ c

t + u
x→ c

t
x→ c

t | u x→ c | u
u

x→ c

t | u x→ t | c
t

x→ c

t |/ u
x→ c | u

(3) Assume that�(t)
�→ p, for some closed term p. Then

• eithert
�→ t ′ for somet ′ such thatp = �(t ′)

• or t
x→ c and�(x)

�→ q, for some variable x, configuration c and closed term q such
that�[xd �→ q](c) = p.

In this paper, we shall consider the language CCSH modulo bisimulation equivalence
[30,35].

Definition 4. Bisimulation equivalence (also sometimes referred to as bisimilarity), de-
noted by↔, is the largest symmetric relation over closed CCSH terms such that whenever

p ↔ q andp
�→ p′, then there is a transitionq

�→ q ′ with p′ ↔ q ′.
If p ↔ q, then we say thatp andq are bisimilar.

It is well known that, as the name suggests, bisimulation equivalence is indeed an equiv-
alence relation (see, e.g., Refs.[30,35]). Moreover, two bisimulation equivalent terms over
the language CCSH afford the same finite non-empty set of traces, and have therefore the
same depth. Since the SOS rules defining the operational semantics of the language CCSH
are in de Simone’s format[16], we have that:

Fact 5.Bisimulation equivalence is a congruence over the collection of closedCCSH terms.

Note that a closed term is bisimilar to0 if, and only if, its depth is zero.
Bisimulation equivalence is extended to arbitrary CCSH terms thus:

Definition 6. Let t, u be CCSH terms. Thent ↔ u iff �(t) ↔ �(u) for every closed
substitution�.

For instance, we have that

0 |/ x ↔ 0

because0 |/ p affords no transition, for each closed termp.

Definition 7. We say that a termt has a0 factor if it contains a subterm of the formt ′ | t ′′
or t ′ |/ t ′′, where eithert ′ or t ′′ is bisimilar to0.

For example, the termsa(0 | x) and(0 |/ x) | y have a0 factor.
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2.2. Equational logic

Anaxiomsystemis a collection of equationst ≈ u, wheretanduare terms in the language
CCSH. An equationp ≈ q is derivable from an axiom systemE, notationE�p ≈ q, if
it can be proven from the axioms inE using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under CCSH contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

�(t) ≈ �(u)
t ≈ u

�t ≈ �u
,

t ≈ u t ′ ≈ u′

t + t ′ ≈ u + u′
t ≈ u t ′ ≈ u′

t |/ t ′ ≈ u |/ u′
t ≈ u t ′ ≈ u′

t | t ′ ≈ u | u′ .

Without loss of generality one may assume that substitutions happen first in equational
proofs, i.e., that the rule

t ≈ u

�(t) ≈ �(u)

may only be used when(t ≈ u) ∈ E. In this case�(t) ≈ �(u) is called asubstitution
instanceof an axiom inE.

Definition 8. We call a closed substitution� substantialif depth(�(x)) > 0 for each
variablex.

For reasons of technical convenience, in the proofs of our non-finite axiomatizability
results presented in this paper, we shall only allow for the use of closed substantial substi-
tutions in the rule of substitution. This does not limit the generality of those results because
every finite, equational axiomatizationE can be converted into a finite, equational axiom-
atizationE′ such that the closed substitution instances of the axioms ofE are the same as
the closed substantial substitution instances of the axioms ofE′ (when equating any closed
subterm of depth 0with0). This is done by including inE′ any equation that can be obtained
from an equation inE by replacing all occurrences of any number of variables by0. (The
identification of each CCSH term that is bisimilar to0with 0can be done equationally using
three equations. See Fact 11 to follow.)

Definition 9. We say that a substitution� is a 0-substitution iff�(x) �= x implies that
�(x) = 0, for each variablex.
An axiom systemE is closed with respect to0-substitutions iff�(t) ≈ �(u) is contained

in E, for each0-substitution�, if so is t ≈ u.

Simplifying Assumption 1. In the remainder of this paper, we shall always tacitly assume
that equational axiom systems are closed with respect to0-substitutions.

Note that ifE is a finite axiom system, then so is its closurewith respect to0-substitutions.
In fact, for each termt, the collection of terms

{�(t) | � a0-substitution}
is finite.
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Table 3
Some axioms for CCSH

A1 x + y ≈ y + x

A2 (x + y) + z ≈ x + (y + z)

A3 0+ x ≈ x

A4 x + 0 ≈ x

HM1 0 |/ x ≈ 0
HM2 x |/ 0 ≈ x

M1 x | 0 ≈ x

M2 0 | x ≈ x

Moreover, bypostulating that for eachaxiom inEalso its symmetric counterpart is present
in E, one may assume that applications of symmetry happen first in equational proofs.

Simplifying Assumption 2. In the remainder of this paper, we shall also tacitly assume
that our equational axiom systems are closed with respect to symmetry.

Definition 10. An equationt ≈ u over the language CCSH is sound with respect to↔ iff
t ↔ u. An axiom system is sound with respect to↔ iff so is each of its equations.
An axiom systemE is an equational axiomatization of↔ over the language CCSH if E

is sound with respect to↔, and proves all of the equations over the language CCSH that
are sound with respect to↔. If E is sound with respect to↔, and proves all of the closed
equations over the language CCSH that are sound with respect to↔, then we say thatE
axiomatizes the collection of closed equations that hold modulo↔.

An example of a collection of equations over the language CCSH that are sound with
respect to↔ is given in Table3. In addition, the following law, which expresses the parallel
composition operator in terms of Hennessy’s merge, is easily seen to be sound with respect
to↔:

x | y ≈ (x |/ y) + (y |/ x). (2)

The axioms A4, HM1 and M1 in Table3 (used from left to right) are enough to establish
that each CCSH term that is bisimilar to0 is also provably equal to0. Since we feel that the
proof of this little result is instructive, we now proceed to present its sketch.

Fact 11.Let t be a CCSH term. Thent ↔ 0 if, and only if, the equationt ≈ 0 is provable
using axioms A4, HM1 and M1 in Table3 from left to right.

Proof. The “if” implication is an immediate consequence of the soundness of the equations
A4, HM1 and M1 with respect to↔. To prove the “only if” implication, define, first of all,
the collection NIL of CCSH terms as the set of terms generated by the following grammar:

t ::= 0 | t + t | t | t | t |/ u,

whereu is an arbitrary CCSH term. We claim that:
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Claim 12. EachCCSH term t is bisimilar to0 if, and only if, t ∈ NIL.

Using this claim and structural induction ont ∈ NIL, it is a simple matter to show that if
t ↔ 0, thent ≈ 0 is provable using axiomsA4, HM1 and M1 from left to right, which was
to be shown. (In fact, as the attentive reader may have already noticed, the full strength of
axioms A4 and M1 is not necessary in the proof, as their substitution instances0+ 0 ≈ 0
and0 | 0 ≈ 0 suffice.)
To complete the proof, it therefore suffices to show the above claim. To establish the “if”

implication in the statement of the claim, one proves, using structural induction ont and
the congruence properties of bisimilarity (Fact 5), that ift ∈ NIL, then�(t) ↔ 0 for every
closed substitution�. To show the “only if” implication, we establish the contrapositive
statement, viz. that ift �∈ NIL, then�(t) ↔/ 0 for some closed substitution�. To this end,

it suffices only to show, using structural induction ont, that if t �∈ NIL, then�a(t)
�→ for

some action� ∈ {a, ā, �}, where�a is the closed substitution mapping each variable to the
closed terma0. The details of this argument are not hard, and are therefore left to the reader.

�
In light of the above result, we find it convenient to make the following:

Simplifying Assumption 3. In the technical developments to follow, we shall assume,
without loss of generality, that each axiom system we consider includes the equations in
Table3.

This assumption means, in particular, that our axiom systems will allow us to identify
each term that is bisimilar to0with 0.
In the remainder of this paper, process terms are considered modulo associativity and

commutativity of+. In other words, we do not distinguisht + u andu+ t , nor(t + u)+ v

andt + (u+ v). This is justified because, as previously observed, bisimulation equivalence
satisfies axioms A1, A2 in Table3. In what follows, the symbol= will denote equality
modulo axioms A1, A2. We use asummation

∑
i∈{1,...,k} ti to denotet1 + · · · + tk, where

the empty sum represents0. It is easy to see that, modulo the equations in Table3, every
CCSH term t has the form

∑
i∈I ti , for some finite index setI, and termsti (i ∈ I ) that are

not 0 and do not have themselves the formt ′ + t ′′, for some termst ′ andt ′′. The termsti
(i ∈ I ) will be referred to as thesummandsof t. Moreover, again modulo the equations in
Table3, each of theti can be assumed to have no0 factors. (Recall that this means that,
whenever a term of the formt ′ |/ t ′′ or t ′ | t ′′ is a subterm ofti , thent ′ ↔/ 0 andt ′′ ↔/ 0.)
For example, a term of the form(a0+ ā0) | 0 will notbe considered a summand in what
follows because, using equation M1 in Table3, that term can be proven equal toa0+ ā0.
The collection of summands of a termt can be inductively characterized thus:
• 0 has no summands;
• x and�t are their only summands;
• u is a summand oft1 + t2 if it is either a summand oft1 or a summand oft2;
• the summands oft1 | t2 are

◦ those oft2, if t1 ↔ 0,
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◦ those oft1, if t2 ↔ 0, and
◦ only t1 | t2, otherwise;

• the summands oft1 |/ t2 are
◦ none, ift1 ↔ 0,
◦ those oft1, if t2 ↔ 0, and
◦ only t1 |/ t2, otherwise.

It is well known (cf., e.g., Section 2 in[23]) that if an equation relating two closed terms
can be proven from an axiom systemE, then there is a closed proof for it. We shall now
argue that ifE satisfies a further closure property in addition to those mentioned earlier,
and that closed equation relates two terms containing no occurrences of0 as a summand or
factor, then there is a closed proof for it in which all of the terms have no occurrences of0
as a summand or factor—see[32, Proposition 5.1.5].

Definition 13.
(1) For CCSH termst andt ′, we writet�t ′ if t ′ can be obtained fromt by applying one

of the equationsA3, A4, HM1, HM2, M1 and M2 from left to right. As usual, we write�∗
for the reflexive, transitive closure of the relation�.
(2) LetE be an axiom system. We define the axiom systemcl(E) thus:

cl(E) = {t ′ ≈ u′ | (t ≈ u) ∈ E, t�∗t ′ andu�∗u′}.
(3) An axiom systemE is saturated ifE = cl(E).

Intuitively, one application of the rewrite relation� eliminates one occurrence of0 as a
summand or a factor in terms. Note thatt ↔ t ′ holds whenevert�t ′.
The following lemma collects some basic sanity properties of the closure operatorcl(·).

(Note, inparticular, that theapplicationofcl(·) to anaxiomsystemsatisfyingour simplifying
assumptions is guaranteed to produce a saturated axiom system that also affords them.)

Lemma 14. Let E be an axiom system. Then the following statements hold.
(1) E ⊆ cl(E) = cl(cl(E)).
(2) cl(E) is finite, if so is E.
(3) cl(E) is sound, if so is E.
(4) cl(E) is closed with respect to0 substitutions and symmetry, if so is E.
(5) cl(E) and E prove the same equations, if E contains the equations in Table3.

Proof. We limit ourselves to sketching a proof of the second statement in the lemma. To
prove this claim, we begin by noting that the size of the termt ′ is smaller than that oft
whenevert�t ′. Using this observation, it is not hard to see that, for each termt, the set

{t ′ | t�∗t ′}
is finite. In fact, the rooted tree with roott resulting from the unfolding of the directed
acyclic graph whose nodes are the terms reachable fromt via�∗, and whose edges are
given by the� relation is finitely branching, and all of its paths are finite because the�
relation decreases the size of terms. Thus this tree must be finite, or else it would have an
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infinite path by König’s lemma. It follows that, for each equationt ≈ u in E, the setcl(E)

containsnm equations, wheren andm are the cardinalities of the sets{t ′ | t�∗t ′} and
{u′ | u�∗u′}, respectively. We may therefore conclude thatcl(E) is finite, if so isE. �
We now proceed to characterize syntactically the normal forms of the rewriting relation
�. The syntactic characterization of the normal forms given below will be useful in ob-
taining the promised result to the effect that if a saturated axiom systemE proves a closed
equation relating two terms containing no occurrences of0 as a summand or factor, then
there is a closed proof for it in which all of the terms have no occurrences of0as a summand
or factor.

Definition 15. For each CCSH termt, we definet/0 thus:

0/0 = 0 (t + u)/0 =


u/0 if t ↔ 0,

t/0 if u ↔ 0,

(t/0) + (u/0) otherwise,

x/0 = x (t |/ u)/0 =


0 if t ↔ 0,

t/0 if u ↔ 0,

(t/0) |/ (u/0) otherwise,

�t/0 = �(t/0) (t | u)/0 =


u/0 if t ↔ 0,

t/0 if u ↔ 0,

(t/0) | (u/0) otherwise.

Intuitively, t/0 is the term that results by removingall occurrences of0 as a summand or
factor fromt.
The following lemma, whose simple proof by structural induction on terms is omitted,

collects the basic properties of the above construction. In particular, note that, as expected,
the termt/0 is the normal form fort with respect to the rewrite relation�.

Lemma 16. For eachCCSH term t, the following statements hold:
(1) t�∗t/0 and thereforet ↔ t/0;
(2) t/0�u for no term u;
(3) the termt/0 has no occurrence of0 as a summand or factor;
(4) t/0 = t , if t has no occurrence of0 as a summand or factor.

We are now ready to state our counterpart of[32, Proposition 5.1.5].

Proposition 17. Assume that E is a saturated axiom system. Suppose furthermore that we
have a closed proof from E of the closed equationp ≈ q.Then replacing each term r in that
proof with r/0 yields a closed proof of the equationp/0 ≈ q/0. In particular, the proof
from E of an equationp ≈ q, where p and q are terms not containing occurrences of0
as a summand or factor, need not use terms containing occurrences of0 as a summand or
factor.
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Proof. Theproof follows the linesof that of[32,Proposition5.1.5], and is therefore omitted.
�

In light of this result, since the saturation of a finite axiom system that includes the
equations in Table3 results in an equivalent, finite collection of equations (Lemma14(2)
and (5)), we put forth our last:

Simplifying Assumption 4. Henceforth, we shall limit ourselves to considering saturated
axiom systems.

The use of saturated axiom systems will play an important role in the proof of our main
technical results.

3. Hennessy’s merge is not finitely based

Our order of business in the remainder of this paper will be to show the following result
to the effect that bisimulation equivalence doesnotadmit a finite, equational axiomatization
over the language CCSH, and that thus Bergstra and Klop were indeed right in writing in
[10, p. 118]that:

“It seems that� does not have a finite, equational axiomatization.”

(In [10, p. 118]Bergstra and Klop used� to denote Hennessy’s merge.)

Theorem 18. Bisimulation equivalence admits no finite, equational axiomatization over
the languageCCSH. In fact, the collection of closed equations over that language that hold
with respect to bisimulation equivalence has no finite, equational axiomatization.

As a first stepping stone towards the proof of this result, we now proceed to argue that it is
sufficient to show that bisimulation equivalence admits no finite, equational axiomatization
over the language CCS−H, consisting of the CCSH terms that do not contain occurrences of
the parallel composition operator. Even though this observation is not unexpected—as Eq.
(2) essentially states that parallel composition is a derived operator in the algebra of CCSH
terms modulo bisimulation equivalence—, we now argue for it in some detail for the sake
of completeness.

Definition 19. For each CCSH termt, we definêt thus:

0̂ = 0, t̂ + u = t̂ + û,

x̂ = x, t̂ |/ u = t̂ |/ û,

�̂t = �t̂ , t̂ | u = (t̂ |/ û) + (û |/ t̂).

If E is an axiom system over the language CCSH, then

Ê = {t̂ ≈ û | (t ≈ u) ∈ E}.
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Note that, for each CCSH term t, the termt̂ is in the language CCS−H. Moreover, if t
contains no occurrences of the parallel composition operator, thent̂ = t . Since Eq. (2) is
sound with respect to bisimulation equivalence, and bisimilarity is a congruence (Fact 5),
it is not hard to show that:

Fact 20. Each term t in the languageCCSH is bisimilar to t̂ . Therefore if E is an axiom
system over the languageCCSH that is sound with respect to bisimilarity, then Ê is an
axiom system over the languageCCS−

H that is sound with respect to bisimilarity.

The following result states the promised reduction of the non-finite axiomatizability of
bisimilarity over the language CCSH to that of bisimilarity over the language CCS−

H.

Proposition 21. Let E be an axiom system over the languageCCSH. Then the following
statements hold.
(1) If E proves the equationt ≈ u, thenÊ proves the equation̂t ≈ û.
(2) If E gives a complete axiomatization of bisimulation equivalence over the language

CCSH, then Ê completely axiomatizes bisimulation equivalence over the language
CCS−

H.
(3) If bisimulation equivalence admits no finite, equational axiomatization over the lan-

guageCCS−
H, then it has no finite, equational axiomatization over the languageCCSH

either.

In light of this result, henceforth we shall focus on proving that bisimulation equivalence
affords no finite, equational axiomatization over the language CCS−

H. The following infinite
family of closed CCS−H terms will play a key role in the technical developments to follow:

en : a0 |/ pn ≈ apn +
n∑

i=0
�ai (n�0), (3)

where the termspn are defined thus

pn =
n∑

i=0
āai (n�0).

It is not hard to see that all of the equationsen (n�0) are sound modulo bisimulation
equivalence. In the remainder of this paper, we shall prove the following result, of which
Theorem18is an immediate consequence, to the effect that no finite collection of equations
over the language CCS−H that are sound with respect to bisimulation equivalence can prove
all of the equationsen (n�0).

Theorem 22. Let E be a finite axiom system over the languageCCS−
H that is sound with

respect tobisimulationequivalence. Let nbe larger than thesizeof each term in theequations
in E. Then E does not prove the sound equationen from (3).

The remainder of this paper will be devoted to a proof of the above result, which will be
given along proof theoretic lines that have their roots inMoller’s arguments to the effect that
bisimulation equivalence is not finitely based over the language CCS—see Refs.[32–34].
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More precisely, to establish Theorem22, we shall show that there is a property of terms
associated with each finite axiom systemE over the language CCS−H that is sound with
respect to bisimulation equivalence, such that whenever the equationp ≈ q can be derived
fromE, for some “suitably large” closed terms without0 summands and factors, then either
bothp andq enjoy the property, or none of them does. The aforementioned property will
be chosen so that, for suitably large values ofn, the right-hand side of equalityen, viz. the
terma0 |/ pn, affords it, whilst the left-hand side, viz. the termapn +∑n

i=0 �ai , does not.

Remark 23. In the absence of synchronization, Hennessy’smerge reduces to the leftmerge
operator of Bergstra and Klop’s. It follows that the collection of closed equations that hold
modulo↔ over the sub-language of CCSH obtained by considering those terms that do
not contain occurrences of theā prefixing operator has a finite, equational axiomatization.
Therefore the use of synchronization is necessary in the proof of Theorem18.

The following proposition states the property mentioned in the proof strategy outlined
above.

Proposition 24. Let E be a finite axiom system over the languageCCS−
H that is sound

with respect to bisimulation equivalence. Let n be larger than the size of each term in the
equations in E. Assume that p and q are closed terms that are bisimilar toa0 |/ pn, and
contain no occurrences of0 as a summand or a factor. IfE�p ≈ q and p has a summand
bisimilar toa0 |/ pn, then so does q.

Using the above proposition, it is a simple matter to prove Theorem22. In fact, since
none of the summands of the term

apn +
n∑

i=0
�ai,

viz. apn and�ai (i ∈ {0, . . . , n}), is bisimilar toa0 |/ pn, if n�0, Proposition24 yields
that the sound equalityen cannot be proven fromE, and thus thatE is incomplete.
We shall now begin to develop the technical machinery that will be brought to bear in

the proof of Proposition24. This proof will occupy the remainder of this study.

4. Preparatory results and observations

Note that terms in the language CCS−
H may contain some occurrences of variables that

can never contribute to the behaviour of their closed instantiations. A typical example of
this situation occurs in the term0 |/ x, which is bisimilar to0. However, terms that have
no 0 factors contain no such redundant occurrences of variables. Moreover, each variable
occurring in such terms contributes to the behaviour of its closed substantial instantiations.
The following basic result, that will be used repeatedly in the technical developments to
follow, formalizes this intuition.

Lemma 25. Let t be aCCS−
H term, and let� be a closed substitution.
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(1) Assume that t is not bisimilar to0, and� is substantial. Then depth(�(t)) is positive,
and thus�(t) ↔/ 0.

(2) If t has no0 factors andx ∈ var(t), then depth(�(t))�depth(�(x)).

Remark 26. The requirement that� be substantial is necessary in statement 1 of the above
lemma. For example,x ↔/ 0, but�(x) ↔ 0 if depth(�(x)) = 0.

Similarly, the proviso thatthas no0 factors cannot be omitted in statement 2. For instance,
if t = 0 |/ x and�(x) = a0, thendepth(�(t)) < depth(�(x)).

In the proof of our main result, we shall make use of some notions from[31,32]. These
we now proceed to introduce for the sake of completeness and readability.

Definition 27. A closed termp is irreducible ifp ↔ q | r impliesq ↔ 0 or r ↔ 0, for all
closed termsq, r.
We say thatp is prime if it is irreducible and is not bisimilar to0.

For example, each termpof depth 1 is prime because every termof the formq | r that does
not involve0 factors has depth at least 2, and thus cannot be bisimilar top. The following
proposition states the primality of two families of closed terms that will play a key role in
the proof of our main result.

Proposition 28.
(1) Letm�1 and 0� i1 < · · · < im. Then the term̄a.ai1 + · · · + ā.aim is prime. In

particular, pn is prime, for eachn�0.
(2)The terma0 |/ pn is prime, for eachn�0.

Proof. We prove the two claims separately. In each case, sinceā.ai1 + · · · + ā.aim (with
m�1) anda0 |/ pn are not bisimilar to0, it suffices only to show that the relevant term is
irreducible.

• Proof of Claim 1. Suppose, towards a contradiction, that there exist closed termsq, r

that are not bisimilar0 such that

ā.ai1 + · · · + ā.aim ↔ q | r.
Then, sinceq, r ↔/ 0, in light of the above equivalence we have thatq

ā→ q ′ andr ā→ r ′,
for someq ′, r ′. But then it follows that

q | r ā→ q ′ | r ā→ q ′ | r ′,

whereas the term̄a.ai1 + · · · + ā.aim cannot perform two subsequentā-transitions. It
follows that suchq and r cannot exist, and hence that the termā.ai1 + · · · + ā.aim is
irreducible, which was to be shown.

• Proof of Claim 2.We now proceed to prove thata0 |/ pn is irreducible forn�0.
Assume, towards a contradiction, thata0 |/ pn ↔ p | q for two closed termsp and

q with p ↔/ 0 andq ↔/ 0—that is,a0 |/ pn is not irreducible. Sincepn
ā→ 0 for each
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n�0, we have that

a0 |/ pn
�→ 0 | 0↔ 0.

Asa0 |/ pn ↔ p | q, there is a transitionp | q �→ p′ | q ′, for somep′, q ′ with p′ | q ′ ↔ 0.
In light of our assumption thata0 |/ pn ↔ p | q, p ↔/ 0 andq ↔/ 0, the transition

p | q �→ p′ | q ′ must be derived from the synchronization of two transitionsp
�→ p′

andq
�̄→ q ′ with � ∈ {a, ā}. This means thatp | q ā→, contradicting the assumption that

a0 |/ pn ↔ p | q. Thusa0 |/ pn is irreducible, which was to be shown. �

Lemma 29. Let t be a term in the languageCCS−
H with neither0 summands nor factors

that does not have+ as head operator. Assume that� is a closed substantial substitution,
and that

�(t) ↔ ā.ai1 + · · · + ā.aim

for somem > 1 and0� i1 < · · · < im. Thent = x, for some variable x.

Proof. Assume, towards a contradiction, thatt is not a variable. We proceed by a case
analysis on the possible form this term may have.
(1) Caset = �t ′ for some termt ′: Then� = ā andai1 ↔ �(t ′) ↔ aim . However, this is a

contradiction because, sincei1 �= im, the termsai1 andaim are not bisimilar.
(2) Caset = t ′ |/ t ′′ for some termst ′, t ′′: Sincet has no0 factors, we have that neithert ′

nor t ′′ is bisimilar to0. As� is a substantial substitution, it follows that�(t ′) ↔/ 0 and
�(t ′′) ↔/ 0.

Observe now that̄a.ai1 + · · · + ā.aim
ā→ aim . Thus, as

�(t) = �(t ′) |/ �(t ′′) ↔ ā.ai1 + · · · + ā.aim,

there is a termp such that

�(t ′) ā→ p andp | �(t ′′) ↔ aim.

As �(t ′′) ↔/ 0, this implies that�(t ′′) a→ q, for someq. This leads to a contradiction,
because the term�(t) = �(t ′) |/ �(t ′′) affords an initial�-transition, viz.

�(t) = �(t ′) |/ �(t ′′) �→ p | q,
whereas̄a.ai1 + · · · + ā.aim does not.

We may therefore conclude thatt must be a variable, which was to be shown.�
The following decomposition property will find application in the proof of our main

technical result, viz. Proposition32 to follow.

Lemma 30. Letn�0.Assume thatp |/ q ↔ a0 |/ pn,where q is a closed term that is not
bisimilar to0. Thenp ↔ a0 andq ↔ pn.
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Proof. Sincep |/ q ↔ a0 |/ pn anda0 |/ pn
a→ 0 |pn ↔pn, there is ap′ such thatp a→ p′

andp′ | q ↔ pn. It follows thatq ↔ pn andp′ ↔ 0, becausepn is prime (Proposition28)
andq ↔/ 0. We are therefore left to prove thatp is bisimilar toa0. To this end, note, first of
all, that, as↔ is a congruence over the language CCSH, we have that

p |/ pn ↔ a0 |/ pn.

Assume now thatp
�→ p′′ for some action� and closed termp′′. In light of the above

equivalence, one of the following two cases may arise:
(1) � = a andp′′ | pn ↔ pn or
(2) � = � andp′′ | pn ↔ ai for somei ∈ {0, . . . , n}.
In the former case,p′′ must have depth 0 and is thus bisimilar to0. The latter case is
impossible, because the depth ofp′′ | pn is at leastn + 1.
We may therefore conclude that every transition ofp is of the formp

a→ p′′, for some
p′′ ↔ 0. Since we have already seen thatp affords ana-labelled transition leading to0,
modulo bisimulation equivalence, it follows thatp ↔ a0, which was to be shown. �

Lemma 31. Let t ≈ u be an equation over the languageCCS−
H that is sound with respect

to bisimulation equivalence, where t and u are terms that have neither0 summands nor
factors. Assume that some variable x occurs as a summand in t. Then x also occurs as a
summand in u.

Proof. Recall that, for some finite index setsI, J , we can write

t = ∑
i∈I

ti

and

u = ∑
j∈J

uj ,

where none of theti (i ∈ I ) anduj (j ∈ J ) is 0 or a sum. Assume that variablex occurs as
a summand int—i.e., that there is ani ∈ I with ti = x. We shall argue thatx also occurs
as a summand inu—i.e., that there is aj ∈ J with uj = x.
Consider the substitution�0 mapping each variable to0. Pick an integerm larger than

the depth of�0(t) and of�0(u). Let � be the substitution mappingx to the termam+1 and
agreeing with�0 on all the other variables.
As t ≈ u is sound with respect to bisimulation equivalence, we have that

�(t) ↔ �(u).

Moreover, the term�(t) affords the transition�(t)
a→ am, for ti = x and�(x) = am+1 a→

am. Hence, for some closed termp,

�(u) = ∑
j∈J

�(uj )
a→ p ↔ am.
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This means that there is aj ∈ J such that�(uj )
a→ p. We claim that thisuj can only be

the variablex. To see that this claim holds, observe, first of all, thatx ∈ var(uj ). In fact, if
x did not occur inuj , then we would reach a contradiction thus:

m = depth(p) < depth(�(uj )) = depth(�0(uj ))�depth(�0(u)) < m.

Using this observation and Lemma25(2), it is not hard to show that, for each of the other
possible formsuj may have,�(uj ) does not afford ana-labelled transition leading to a term
of depthm. We may therefore conclude thatuj = x, which was to be shown. �

5. Proof of Proposition 24

We now proceed to present a detailed proof of Proposition24. The following result,
stating that the property mentioned in the statement of that proposition holds for all closed
substantial instantiations of axioms inE, will be the crux in such a proof.

Proposition 32. Let t ≈ u be an equation over the languageCCS−
H that is sound with

respect to bisimulation equivalence,where t and u are termswithout0summands or factors.
Let n be larger than the size of t. Assume that� is a substantial substitution. Letp = �(t)
andq = �(u).Suppose that p and q are bisimilar toa0 |/ pn. If p has a summand bisimilar
to a0 |/ pn, then so does q.

Proof. We can assume that, for some finite non-empty index setsI, J ,

t = ∑
i∈I

ti (4)

and

u = ∑
j∈J

uj , (5)

where none of theti (i ∈ I ) anduj (j ∈ J ) is 0 or a sum. (That is, none of theti (i ∈ I )
anduj (j ∈ J ) has+ as its head operator.) Note that, ast andu have no0 summands or
factors, then none of theti (i ∈ I ) anduj (j ∈ J ) does either.

Sincep = �(t) has a summand bisimilar toa0 |/ pn, there is an indexi ∈ I such that

�(ti) ↔ a0 |/ pn.

Our aim is now to show that there is an indexj ∈ J such that

�(uj ) ↔ a0 |/ pn,

proving thatq = �(u) also has a summand bisimilar toa0 |/ pn. This we proceed to do by
a case analysis on the formti may have.
(1) Caseti = x for some variable x: In this case, we have that

�(x) ↔ a0 |/ pn
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andt hasx as a summand. Ast ≈ u is sound with respect to bisimulation equivalence
and neithert noruhave0summands or factors, it follows thatualso hasxas a summand
(Lemma31). Thus there is an indexj ∈ J such thatuj = x, and, modulo bisimulation,
�(u) hasa0 |/ pn as a summand, which was to be shown.

(2) Caseti = �t ′ for some termt ′: This case is vacuous because, since

�(ti) = ��(t ′) �→ �(t ′)

is the only transition afforded by�(ti), anda and� are both traces ofa0 |/ pn, the term
�(ti) cannot be bisimilar toa0 |/ pn.

(3) Caseti = t ′ |/ t ′′ for some termst ′, t ′′: The analysis of this case is the crux of the proof,
and we present the argument in considerable detail.

Sinceti = t ′ |/ t ′′, we have that

�(ti) = �(t ′) |/ �(t ′′) ↔ a0 |/ pn.

As� is a substantial substitution, it follows that�(t ′)↔/ 0and�(t ′′)↔/ 0 (Lemma25(1)).
Thus�(t ′) ↔ a0 and�(t ′′) ↔ pn (Lemma30). Now, t ′′ can be written thus:

t ′′ = v1 + · · · + v ( > 0),

where none of the summandsvi is 0 or a sum. Observe that, sincen is larger than the
size oft, we have that < n. Hence, since

�(t ′′) ↔ pn =
n∑

i=0
āai ,

there must be someh ∈ {1, . . . ,  } such that

� (vh) ↔ ā.ai1 + · · · + ā.aim

for somem > 1 and 0� i1 < · · · < im�n. By Lemma29, it follows thatvh can only
be a variablex and thus that

�(x) ↔ ā.ai1 + · · · + ā.aim . (6)

Sincet ′ has no0 factors, the above equation yields thatx �∈ var(t ′)—or else�(t ′) ↔/ a0
(Lemma25(2)). Thus, since� is substantial, modulo bisimulation equivalence,

t ′ = y1 + · · · + yk[+a0] (7)

for somek�0 and some variablesy1, . . . , yk different fromxwith

�(y1) ↔ · · · ↔ �(yk) ↔ a0.

(The notation[+a0] in (7) denotes an optionala0 summand. Moreover, ifk = 0, then
t ′ = a0.) So, modulo bisimulation equivalence,ti has the formt ′ |/ (x + t ′′′), for some
termt ′′′.
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Our order of business will now be to use the information collected so far in this case of
the proof to argue that�(u) has a summand bisimilar toa0 |/ pn. To this end, consider
the substitution

�′ = �[x �→ ā(a0 |/ pn)].
We have that

�′(ti) = �′(t ′) |/ �′(t ′′)
= �(t ′) |/ �′(t ′′) (As x �∈ var(t ′))
↔ a0 |/ (ā(a0 |/ pn) + �′(t ′′′)).

Thus,�′(ti)
�→ p′ ↔ a0 |/ pn for somep′. By (4), we have that�′(t) �→ p′ also holds.

Sincet ≈ u is sound with respect to↔ , it follows that�′(t) ↔ �′(u). Hence, by (5),
there are aj ∈ J and aq ′ such that

�′(uj )
�→ q ′ ↔ a0 |/ pn. (8)

Recall that, by one of the assumptions of the proposition,�(u) ↔ a0 |/ pn, and thus
�(u) has depthn + 2. On the other hand, by (8), depth(�′(uj ))�n + 3. Since� and�′
differ only in the closed term they map variablex to, it follows that

x ∈ var(uj ). (9)

We now proceed to show that�(uj ) ↔ a0 |/ pn by a further case analysis on the form
a termuj satisfying (8) and (9) may have.

(a) Caseuj = x: This case is vacuous because�′(x) = ā(a0 |/ pn)
�

�, and thus this
possible form foruj does not meet (8).

(b) Caseuj = �u′ for some termu′: In light of (8), we have that� = � andq ′ =
�′(u′) ↔ (a0 |/ pn). Using (9) and the fact thatu′ has no0 factors, we have that
depth(�′(u′))
�n + 3 (Lemma25(2)). Sincea0 |/ pn has depthn + 2, this contradicts the fact
that�′(u′) ↔ a0 |/ pn.

(c) Caseuj = u′ |/ u′′ for some termsu′, u′′: This is the lengthiest sub-case of case 3
of the proof, and its analysis will occupy us for the next couple of pages.

Our assumption thatu has no0 factors yields that neitheru′ noru′′ is bisimilar
to 0. Moreover, by (9), eitherx ∈ var(u′) or x ∈ var(u′′).
Since�′(uj ) = �′(u′) |/ �′(u′′) affords transition (8), we have thatq ′ = q1 | q2

for someq1, q2. Sincea0 |/ pn is prime (Proposition28(2)), it follows that either
q1 ↔ 0 or q2 ↔ 0. We now continue our proof by examining the two possible
origins for transition (8). These are

(i) �′(u′) �→ q1 andq2 = �′(u′′) and
(ii) �′(u′) �→ q1 and�′(u′′) �̄→ q2, with � ∈ {a, ā}.

We examine these two cases in turn.

(i) Assume that�′(u′) �→ q1 andq2 = �′(u′′). We now proceed to argue that
this case produces a contradiction. To this end, note first of all that, as�′ is



L. Aceto et al. / Theoretical Computer Science 330 (2005) 377–405 399

substantial andu′′ is not bisimilar to0, it must be the case thatq1 ↔ 0 and
q2 = �′(u′′) ↔ a0 |/ pn. In light of the definition of�′, it follows thatx occurs
in u′, but not inu′′ (Lemma25(2)). Therefore, since� and�′ only differ at the
variablex,

�(u′′) = �′(u′′) ↔ a0 |/ pn.

Since ↔ is a congruence, we derive that

�(uj ) = �(u′) |/ �(u′′) ↔ �(u′) |/ (a0 |/ pn). (10)

Since� is substantial,x occurs inu′, andu′ has no0 factors, we may infer that

n + 2 = depth(a0 |/ pn)

= depth(�(u)) (As �(u) ↔ a0 |/ pn)

� depth(�(uj )) (By (5))

= depth(�(u′)) + n + 2 (By (10))

> n + 2 (Asdepth(�(u′)) > 0 by Lemma25(2)),

which is the desired contradiction.
(ii) Assume now that�′(u′) �→ q1 and�′(u′′) �̄→ q2, with � ∈ {a, ā}. Recall that

exactly one ofq1, q2 is bisimilar to0.We proceedwith the proof by considering
these two possible cases in turn.
Caseq1↔0:Ourorderofbusinesswill be toargue that, in this case,�(uj )↔a0 |/
pn, and thus thatq = �(u) has a summand bisimilar toa0 |/ pn.
To this end, observe, first of all, thatq2 ↔ a0 |/ pn by (8). It follows that

x ∈ var(u′′), for otherwise we could derive a contradiction thus:

depth(a0 |/ pn) = depth(�(u)) (As �(u) ↔ a0 |/ pn)

� depth(�(uj )) (By (5))

> depth(�(u′′)) (As depth(�(u′)) > 0)

= depth(�′(u′′)) (As x �∈ var(u′′))
> depth(a0 |/ pn)

(As �′(u′′) �̄→ q2 ↔ a0 |/ pn).

Moreover, we claim thatx �∈ var(u′). Indeed, ifxalso occurred inu′, then, since
u′ has no0 factors, the term�(x) would contribute to the behaviour of�(uj ).
Therefore, by (6), the term�(uj )would afford a sequence of actions containing
two occurrences of̄a, contradicting our assumption that�(u) ↔ a0 |/ pn. It
follows that� = a, because

�′(u′) = �(u′) ā
�,

since�(u) ↔ a0 |/ pn.

Observe now that, as�′(u′′) ā→ q2 ↔ a0 |/ pn, it must be the case thatu′′ has
a summandx. To see that this does hold, we examine the other possible forms a
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summandw of u′′ responsible for the transition

�′(u′′) ā→ q2 ↔ a0 |/ pn

may have, and argue that each of them leads to a contradiction.
(A) Casew = āw′, for some termw′: In this case,q2 = �′(w′). However, the depth

of such aq2 is either smaller thann+2 (if x �∈ var(w′)), or larger thann+2 (if
x ∈ var(w′)). This contradicts the fact thatq2 is bisimilar toa0 |/ pn, because
the latter term has depthn + 2.

(B) Casew = w1 |/ w2, for some termsw1 andw2: Since

�′(w) = �′(w1) |/ �′(w2)
ā→ q2,

there is a closed termq3 such that�′(w1)
ā→ q3 andq2 = q3 | �′(w2) ↔ a0 |/

pn. As the terma0 |/ pn is prime,�′ is substantial, andw2 is not bisimilar to0,
we may infer thatq3 ↔ 0 and

�′(w2) ↔ a0 |/ pn.

It follows that x �∈ var(w2)—or else the depth of�′(w2) would be at least
n + 3—, and therefore that

�′(w2) = �(w2) ↔ a0 |/ pn.

However, this contradicts our assumption that�(u) ↔ a0 |/ pn.
Summing up, we have argued thatu′′ has a summandx. Therefore, by (6),

�(u′′) ↔ ā.ai1 + · · · + ā.aim + r ′′

for some closed termr ′′. We have already noted that

�(u′) = �′(u′) a→ q1 ↔ 0.

Therefore, we have that

�(u′) ↔ a0+ r ′

for some closed termr ′. Using the congruence properties of bisimulation equiva-
lence, we may infer that

�(uj ) = �(u′) |/ �(u′′) ↔ (a0+ r ′) |/ (ā.ai1 + · · · + ā.aim + r ′′).

In light of this equivalence, we have that

�(uj )
a→ r ↔ ā.ai1 + · · · + ā.aim + r ′′ ↔ �(u′′)

for some closed termr. By (5),

q = �(u)
a→ r.
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Sinceq = �(u)↔a0 |/ pn byourassumption, itmustbe thecase thatr ↔�(u′′)↔pn.
So, again using the congruence properties of↔ , we have that

�(uj ) = �(u′) |/ �(u′′) ↔ (a0+ r ′) |/ pn.

As �(u) ↔ a0 |/ pn, using Lemma30 it is now a simple matter to infer that

�(u′) ↔ a0.

Hence�(uj ) ↔ a0 |/ pn. Note that�(uj ) is a summand ofq = �(u). Thereforeq
has a summand bisimilar toa0 |/ pn, which was to be shown.
Caseq2 ↔ 0: We now proceed to argue that this case produces a contradiction.

To this end, observe, first of all, thatq1 ↔ a0 |/ pn. Reasoning as in the analysis
of the previous case, we may infer that� = a, x occurs inu′, butx does not occur
in u′′. Moreover, since�′(u′) a→ q1 ↔ a0 |/ pn, it must be the case thatu′ a→ u′′′
for someu′′′ such that

�′(u′′′) = q1 ↔ a0 |/ pn.

(For, otherwise, using Lemma3(2), we would have that

�′(u′) a→ q1

becauseu′ y→ c, �(y)
a→ q ′

1 andq1 = �′[yd �→ q ′
1](c), for some variabley,

configurationc and closed termq ′
1. Note thaty �= x. In fact, if y = x, then we

would have thata = ā by the definition of�′, contradicting the distinctness of these
two complementary actions. Observe now that, again in light of the definition of�′,
the variablex cannot occur inc, or else the depth ofq1 = �′[yd �→ q ′

1](c) would
be at leastn + 3, contradicting our assumption thatq1 ↔ a0 |/ pn. Hence, since

the variabley is different fromx, it is not hard to see that�(u′) a→ q1 also holds,
and thus thatdepth(q1) < depth(�(u)) = n+ 2, contradicting our assumption that
q1 ↔ a0 |/ pn.) Sinceucontains no0 factors, in light of the definition of�′, thisu′′′
cannot contain occurrences of the variablex. (For, otherwise, Lemma25(2) would
yield that

depth(�′(u′′′)) = depth(q1)�n + 3,

contradicting our assumption thatq1 ↔ a0 |/ pn.) So

�(u′′′) = q1 ↔ a0 |/ pn

also holds. Thus

n + 2 = depth(a0 |/ pn)

= depth(�(u)) (As �(u) ↔ a0 |/ pn)

� depth(�(uj )) (By (5))

= depth(�(u′) |/ �(u′′))
> depth(�(u′′′)) + depth(�(u′′))
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(As �(u′) a→ �(u′′′))
> n + 2

(As depth(�(u′′)) > 0 anddepth(�(u′′′)) = n + 2)

which is the desired contradiction.
This completes the proof for the caseuj = u′ |/ u′′ for some termsu′, u′′. The proof is

now complete. �
We are now ready to prove Proposition24, thus completing the proof of Theorem22and

of our main result (Theorem18).

Proof of Proposition 24: Assume thatE is a finite axiom system over the language CCS−
H

that is sound with respect to bisimulation equivalence, and that the following hold, for some
closed termspandqand positive integern larger than the size of each term in the equations
in E:
(1) E�p ≈ q,
(2) p ↔ q ↔ a0 |/ pn,
(3) p andq contain no occurrences of0 as a summand or factor, and
(4) p has a summand bisimilar toa0 |/ pn.

We prove thatq also has a summand bisimilar toa0 |/ pn by induction on the depth of
the closed proof of the equationp ≈ q from E. Recall that, without loss of generality,
we may assume that the closed terms involved in the proof of the equationp ≈ q have
no 0 summands or factors (by Proposition17, asEmay be assumed to be saturated), that
applications of symmetry happen first in equational proofs (that is,E is closedwith respect to
symmetry), and that only closed substantial substitutions are used (E is closed with respect
to 0-substitutions).
We proceed by a case analysis on the last rule used in the proof ofp ≈ q fromE. The case

of reflexivity is trivial, and that of transitivity follows immediately by using the inductive
hypothesis twice. Below we only consider the other possibilities.
• CaseE�p ≈ q, because�(t) = p and�(u) = q for some equation(t ≈ u) ∈ E and
closed substantial substitution�: Observe, first of all, that since�(t) = p and�(u) = q

have no0 summands or factors, then neither dot andu. Therefore, asn is larger than the
size of each term mentioned in equations inE, the claim follows by Proposition32.

• CaseE�p ≈ q, becausep = �p′ andq = �q ′ for somep′, q ′ such thatE�p′ ≈ q ′:
This case is vacuous becausep = �p′ ↔/ a0 |/ pn, and thusp does not have a summand
bisimilar toa0 |/ pn.

• CaseE�p ≈ q, becausep = p′ + p′′ andq = q ′ + q ′′ for somep′, q ′, p′′, q ′′ such
thatE�p′ ≈ q ′ andE�p′′ ≈ q ′′: Sincep has a summand bisimilar toa0 |/ pn, we have
that so does eitherp′ or p′′. Assume, without loss of generality, thatp′ has a summand
bisimilar to a0 |/ pn. Sincep is bisimilar toa0 |/ pn, so isp′. Using the soundness
of Emodulo bisimulation, it follows thatq ′ ↔ a0 |/ pn. The inductive hypothesis now
yields thatq ′ has a summand bisimilar toa0 |/ pn. Hence,q has a summand bisimilar to
a0 |/ pn, which was to be shown.

• CaseE�p ≈ q, becausep = p′ |/ p′′ andq = q ′ |/ q ′′ for somep′, q ′, p′′, q ′′ such that
E�p′ ≈ q ′ andE�p′′ ≈ q ′′: Since the proof involves no uses of0 as a summand or a
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factor, we have thatp′, p′′ ↔/ 0 andq ′, q ′′ ↔/ 0. It follows thatq is a summand of itself.
By our assumptions,

a0 |/ pn ↔ q.

Therefore we have thatq has a summand bisimilar toa0 |/ pn, and we are done.

This completes the proof. � �

6. Concluding remarks

In their seminal paper[10], Bergstra and Klop showed that the parallel composition op-
erator can be finitely axiomatized modulo bisimulation equivalence with the use of two
auxiliary operators, viz. the by now classic left merge and communication merge. Inde-
pendently, and at roughly the same time, Hennessy proposed the auxiliary operator|/, and
used it in[24] to give equational axiomatizations of Milner’s observation congruence[30]
and timed congruence. The axiomatization of observation congruence offered by Hennessy
using the|/ operator relies, however, on a variation on the classic expansion law[30], and is
therefore infinite. This led Bergstra and Klop to conjecture in[10, p. 118]that Hennessy’s
|/ operator does not have a finite equational axiomatization. The main result in this paper
confirms this conjecture of Bergstra and Klop’s, and answers one of the questions in[3,
Problem 8], by showing that, in the presence of two distinct complementary actions, it is
impossible to provide a finite axiomatization of the recursion free fragment of CCSmodulo
bisimulation equivalence using|/. This result further reinforces the status of the left merge
and the communication merge operators as auxiliary operators in the finite, equational
characterization of parallel composition in bisimulation semantics.
A natural question to ask at this point is whether there is a singlebinary operator that

preserves bisimulation equivalence, and whose addition to the recursion free fragment
of CCS allows for the finite equational axiomatization of parallel composition—see[3,
Problem 8]. (As was recently pointed out to us by Jos Baeten and Rob van Glabbeek,
it is certainly possible to obtain a finite axiomatization of bisimulation equivalence by
adding oneternaryoperator to the signature of CCS.) We conjecture that no such operator
exists, and that the use oftwoauxiliary operators is therefore necessary to achieve a finite
axiomatization of parallel composition in bisimulation semantics. This result would offer
the definitive justification we seek for the canonical standing of the operators proposed by
Bergstra and Klop. Work on the confirmation of this conjecture is under way, and we hope
to report on it elsewhere in the near future.
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