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Abstract

This paper confirms a conjecture of Bergstra and Klop’s from 1984 by establishing that the process
algebra obtained by adding an auxiliary operator proposed by Hennessy in 1981 to the recursion free
fragment of Milner’s Calculus of Communicating Systems is not finitely based modulo bisimulation
equivalence. Thus, Hennessy’'s merge cannot replace the left merge and communication merge opera-
tors proposed by Bergstra and Klop, at least if a finite axiomatization of parallel composition modulo
bisimulation equivalence is desired.
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1. Introduction

Process algebras are prototype description languages for reactive systems that arose
from the pioneering work of figures like Bergstra, Hoare, Klop and Milner. Well-known
examples of such languages are AGR CCS[30], CSP[27] and Meije[6]. These algebraic
description languages for processes differ in the basic collection of operators that they offer
for building new process descriptions from existing ones. However, since they are designed
to allow for the description and analysis of systems of interacting processes, they all contain
some form of parallel composition (also known as merge) operator allowing one to put two
process terms in parallel with one another. These operators usually interleave the behaviours
of their arguments, and allow for some form of synchronization between them. For example,
Milner's CCS offers the binary operatgrwhose intended semantics is described by the
following classic rules in Plotkin-stylE36]:

u ’ u / o / o /
X —> X y—>Yy X—>XxX,y—Yy

1)

Hey H / T /.
x|ly—=>x"|y x|ly—=>xly x|ly—>x"ly

(In the above rules, the symbplstands for an action that a process may perforiamda
are two observable actions that may synchronize,@isda symbol denoting the result of
their synchronization.)

Although the above rules describe the behaviour of the parallel composition operator
in very intuitive fashion, the equational characterization of this operator is not straight-
forward. In their seminal papg26], Hennessy and Milner offered, amongst a wealth of
other classic results, a complete equational axiomatization of bisimulation equivi8&hce
over the recursion free fragment of CCS. (See the pafidor a more detailed historical
account highlighting, e.g., Hans Belg early contributions to this field of research.) The
axiomatization proposed by Hennessy and Mi[26i dealt with parallel composition using
the so-calledexpansion law-a law that, intuitively, allows one to obtain a term describ-
ing explicitly the initial transitions of the parallel composition of two terms whose initial
transitions are known. This law can be expressed as the following equation schema:

(Z um) | (Z Vj)’j> =2 G| y)+ 2 vy
jeJ iel jed

iel
+ X t&ily))
ieI,jeJ,,u,-:ﬂ
(wherel andJ are two finite index sets, and theandy ; are actions), and is nothing but an
equational formulation of the aforementioned rules describing the operational semantics of
parallel composition.

Despite its natural and simple formulation, the expansion law, however, is an equation
schema with a countably infinite number of instances. This raised the question of whether
the parallel composition operator could be axiomatized in bisimulation semantics by means
of a finite collection of equations. This question was answered positively by Bergstra and
Klop, who gave in10] a finite, equational axiomatization of the merge operator in terms
of the auxiliary left merge and communication merge operators. Moller show&a 4]
that bisimulation equivalence is not finitely based over CCS and PA without the left merge
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operator. (The process algebra P®] contains a parallel composition operator based on
pure interleaving without communication—viz. an operator described by the first two rules
in (1)—and the left merge operator.) Thus auxiliary operators are necessary to obtain a finite
axiomatization of parallel composition.

In the arguably less well-known papg4], Hennessy proposed an axiomatization of
observation congruend26] (also known as rooted weak bisimulation) and timed congru-
ence (also known as split-2 congruence) over a CCS-like, recursion-free process language.
(It is worth noting that, although this paper was published in 1988 by the SIAM Journal
on Computing a$24], the results reported if24] were actually obtained in 1981-1982.)
Those axiomatizations used an auxiliary operator, derjobsctHennessy, that is essentially
a combination of the left and communication merge operators as its behaviour is described
by the first and the last rule irL). Apart from having soundness problems (see [R&f.
for a general discussion of these problems, and corrected proofs of Hennessy's results), the
proposed axiomatization of observation congruence offerdgd]irs infinite, as it uses a
variant of the expansion law frof@6]. This led Bergstra and Klop to write 40, p. 118]
that:

“It seems that does not have a finite, equational axiomatization”.

(In[10] Bergstraand Klop usedo denote Hennessy’s merge.) To the best of our knowledge,
the non-finite axiomatizability of Hennessy’s merge modulo bisimulation equivalence has,
however, never been proven. The main result in this paper confirms this conjecture of
Bergstra and Klop’s by showing that, in the presence of two distinct complementary actions,
it is impossible to provide a finite axiomatization of the recursion free fragment of CCS
modulo bisimulation equivalence using Hennessy’s merge opdfattie believe that this
result further reinforces the status of the left merge and the communication merge operators
as auxiliary operators in the finite, equational characterization of parallel composition in
bisimulation semantics.

The aforementioned negative result holds in a very strong form. Indeed, we prove that
no finite collection of equations over the language we study that are sound with respect to
bisimulation equivalence can prove all of the sound closed equalities of the form

n .
en: aOf py~ap,+ Y @ (n=0),
i=0

where the termgp,, are defined thus:
n .
pn=> aa" (n=0).
i=0

The proof of our main result is given along proof theoretic lines that have their roots in those
for the aforementioned results of Moller’s to the effect that bisimulation equivalence is not
finitely based over the recursion free fragment of CCS. However, the presence of possible
synchronizations in the terms used in the family of equatignis necessary for our result,

and requires careful attention in the proofs. (Indeed, in the absence of synchronization,
Hennessy’s merge reduces to Bergstra and Klop’s left merge operator, and thus affords a
finite, equational axiomatization.) In particular, the infinite family of equatignand our
arguments based upon it exploit the inability of any finite axiom sy&idinat is sound with
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respect to bisimulation equivalence to “expand” the synchronization behaviour of terms of
the formp | g, for termsq that, like the termg, above eventually do, have a number of
inequivalent “summands” that is larger than the maximum size of the terms mentioned in
equations irE. As in the original arguments of Moller’s, the root of this problem can be
traced back to the fact that the choice operatatistributes with respect tp in the first
argument, buhotin the second.

1.1. Related work

The equational characterization of different versions of the parallel composition operator
is a classic topic in the theory of computation, and this paper joins the aforementioned
seminal references in contributing to this line of research. In particular, the process al-
gebraic literature abounds with results on equational axiomatizations of various notions of
behavioural equivalences or preorders over languages incorporating some notion of parallel
composition—see, e.g., the textbodRs25,30]and the classic papef$0,26,29]for gen-
eral references. Early-complete axiomatizations are offered[28,32] More recently,
Fokkink and Luttik have shown if20] that the process algebra HAO] affords anw-
complete axiomatization that is finite if so is the underlying set of actions.

An analysis of the reasons why operators like the left merge and the communication merge
are equationally well behaved in bisimulation semantics has led to general algorithms for
the generation of (finite) equational axiomatizations for behavioural equivalences from their
operational semantics—see, e[f,4,8]and references ifb] for further details.

Parallel composition appears as the shuffle operator in the time-honoured theory of formal
languages. Not surprisingly, the equational theory of shuffle has received considerable
attention in the literature. Here, we limit ourselves to mentioning some results that have a
special relationship with process theory.

In [38], Tschantz offered a finite, equational axiomatization of the theory of languages
over concatenation and shuffle, solving an open problem raised by Pratt. In proving this
result he essentially rediscovered the concept of pof@2e37}—a model of concurrency
based on partial orders whose algebraic aspects have been investigated by Gj2dher,in
and proved that the equational theory of series-parallel pomsets coincides with that of
languages over concatenation and shuffle. The argument adopted by Tschantz was based on
the observation that series-parallel pomsets may be coded by a suitable homomorphism into
languages, where the series and parallel composition operators on pomsets are modelled
by the concatenation and shuffle operators on languages. Tschantz’s technique of coding
pomsets with languages homomorphically was further extended in the Jaget3,15]
to deal with several other operators, infinite pomsets and infinitary languages, and sets of
pomsets. The axiomatizations by Gischer and Tschantz have later been extdidetah
to a two-sorted language witth powers of the concatenation and parallel composition
operators. The axiomatization of the algebra of pomsets resulting from the addition of these
iteration operators is, however, necessarily infinite because, as shqgds, 18] no finite
collection of equations can capture all the sound equalities involving them[13Efor
closely related developments.)

The results of Moller’s on the non-finite axiomatizability of bisimulation equivalence
over the recursion-free fragment of CCS and PA without the left merge operator given in
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[33,34]are paralleled in the world of formal language theory by those offergidlii4,18]

In the first of those references, Bloom and Esik proved that the valid inequations in the
algebra of languages equipped with concatenation and shuffle have no finite basis. Esik
and Bertol showed ifil 8] that the equational theory of union, concatenation and shuffle
over languages has no finite first-order axiomatization relative to the collection of all valid
inequations that hold for concatenation and shuffle. Hence the combination of some form
of parallel composition, sequencing and choice is hard to characterize equationally both in
the theory of languages and in that of processes. Moreover, Bloom and Esik have shown
in [14] that the variety of all languages over a finite alphabet ordered by inclusion with
the operators of concatenation and shuffle, and a constant denoting the singleton language
containing only the empty word is not finitely axiomatizable by first-order sentences that
are valid in the equational theory of languages over concatenation, union and shuffle.

1.2. Roadmap of the paper

We begin by presenting preliminaries on the languageEte extension of CCS with
Hennessy’s merge operator—and equational logic (Segjidn particular, Sectio.2 of-
fers a detailed discussion of the simplifying assumptions we shall make, without loss of
generality, on the equational axiom systems that we shall consider in the rest of the paper.
Our main result on the non-existence of a finite equational axiomatization for bisimulation
equivalence over the language G£8 heoreml8) is stated in Sectio. There we show
how to reduce the proof of Theoref8 to that of a proposition (Propositia24) to the
effect that no finite axiom system over the fragment of the language Q@8 does not
use the parallel composition operator can prove all of the aforementioned equgtions
The following two technical sections of the paper, viz. Sectibrsd5, are entirely de-
voted to a detailed proof of Propositi@d. The paper ends with some concluding remarks
(Section®).

2. Preliminaries

We begin by introducing the basic definitions and results on which the technical devel-
opments to follow are based.

2.1. The languag€ECSy

Thelanguage for processes we shall consider in this paper, henceforth referred tgjas CCS
is obtained by adding Hennessy’s merge operator fip#j to the recursion, restriction
and relabelling free subset of Milner's CE®0]. This language is given by the following
grammar:

tu=x | O | ar | at | wt | t4¢ | t]t | tV¢,

wherex is a variable drawn from a countably infinite Sét a is an action, and: is its
complement. We assume that the actiarenda are distinct. Following Milnef30], the
action symbot will result from the synchronized occurrence of the complementary actions
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Table 1
SOS rules for the CCS operatoys € {a, a, 7} anda € {a, a})

ooy woy

X =X y—=>y
n I / o
ux — x x+y—>x x+y—y
Hor K oy x
X =X y =y x—>x,y—>y
D / H ’ T / /
x|y—>x'ly xly—>xly xly—>x'|y

aanda. We letu € {a, a, 1} ando € {a, a}. As usual, we postulate that= a. We shall use
the meta-variables u, v, w to range over process terms, and wviée(¢) for the collection

of variables occurring in the tern Thesizeof a term is the number of operator symbols
in it. A process term iglosedif it does not contain any variables. Closed terms will be
typically denoted by, g, r.

In order to obtain the negative results offered in this paper, it will be sufficient to consider
the above language. The results we shall present in what follows carry over unchanged to a
setting with an arbitrary number of actions, and corresponding unary prefixing operators.

A (closed) substitution is a mapping from process variables to (closedy G&8s.

For every ternt and (closed) substitutiosm, the (closed) term obtained by replacing every
occurrence of a variabbein t with the (closed) terna(x) will be written o (¢).

In the remainder of this paper, we lét denote0, anda”*! denoteu (a™).

The SOS rules for all of the classic CCS operators are standard, and may be found in
Table 1. Those for Hennessy’$ formalize the intuition that this operator is indeed a
combination of the left and communication merge operators, and are:

Ko % @
X —X X—=>X,y—>Yy

xfyLxy xfy=>x |y

These transition rules give rise to transitions betweenC@8ns. The operational seman-
tics for CCSy is thus given by the labelled transition systg28] whose states are CGS
terms, and whose labelled transitions are those that are provable using the rules. As usual,

for each ternt and actioru, we writer £ it ¢+ 5 ¢ holds for some term.

The transition relationgs naturally compose to determine the possible effects that per-
forming a sequence of actions may have on a G@&sm.

Definition 1. For a sequence of actions= p; - -- i (k>=0), and CC§ termst, ¢, we
write 1 > ¢’ iff there exists a sequence of transitions

15 H2 e
t=tg—>t—= >t =t.

If + > ¢ holds for some CCSterm¢t’, thensis atraceof t.
Thedepthof a termt, written depth), is the length of the longest trace it affords.
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The depth of closed terms can also be characterized inductively thus:

depth0) = 0,
depth(up) = 1+ depth(p),
depth(p + q) = maxdepth(p), depthiq)},
depth(p | g) = depth(p) + depthyg),
0 if depth(p) =0,
/ _
depthip | q) = {depthp)+deptk(q) otherwise

In what follows, we shall sometimes need to consider the possible origins of a transition
of the forma(r) = p, for some action € {a, a}, closed substitutioa, CCS; termt and
closed ternp. Naturally enough, we expect thafr) affords that transition if X ¢, for
somet’ such thatp = a(¢). However, the above transition may also derive from the initial
behaviour of some closed terarix), provided that the collection of initial moves afr)
depends, in some formal sense, on that of the closed term substituted for the varfable
fully describe this situation, we introduce the auxiliary notion of configuration of agCCS
term. To this end, we assume a set of symbols

Vi ={xa|x €V}

disjoint from V. Intuitively, the symbok, (read “duringx”) will be used to denote that the
closed term substituted for variabtéas begun executing.

Definition 2. The set of CC§ configurations is given by the following grammar:
cu=t | x4 | c|t | t]ec,
wheret is a CCSy term, andx, € V.

Forexample, the configuratiag | (a0 |/ x) is meantto describe a state of the computation
of some term in which the (closed term substituted for the) occurrence of vaxiahléhe
left-hand side of the operator has begun its execution, but the one on the right-hand side
has not. We shall consider the symbe/sas variables, and use the notatign; — pl,
whereg is a closed substitution arglis a closed CC$term, to stand for the substitution
mappingx, to p, and acting likes on all of the variables iV

The way in which the initial behaviour of a term may depend on that of the variables that
occur in it is formally described by an auxiliary transition relation whose elements have
the forms = ¢, wheret is a termx is a variable, and is a configuration. The SOS rules
defining these transitions are given in TaBle

Lemma 3. Assume thattis €CS term, ¢ is a closed substitution arnd € {a, a}. Then
the following statements hald

(1) If t > ¢, thena(t) = a(t').
(2) Assume that = ¢ ando(x) = p, for some configuration ¢ and closed term p. Then
a(t) = olxg — pl(c).
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Table 2 )
SOS rules for the auxiliary transitions xeV)

t>c u—c
X X X
X = Xq t+u—c t+u—c
X X X
t—c u—c t—c
X X / X
tlu—>clu tlu—>tlc tVu->clu

(3) Assume that () = p, for some closed term p. Then
e eithert > ¢’ for some’ such thatp = a(¢)
e Ort > cando(x) > g, for some variable xconfiguration ¢ and closed term q such
thatao[xy — ¢l(c) = p.
In this paper, we shall consider the language G@%dulo bisimulation equivalence
[30,35]

Definition 4. Bisimulation equivalence (also sometimes referred to as bisimilarity), de-
noted by<, is the largest symmetric relation over closed GA&ms such that whenever

p < qandp £ p’, then thereis a transitiopi g’ with p’ < ¢'.
If p <> g, then we say that andq are bisimilar.

Itis well known that, as the name suggests, bisimulation equivalence is indeed an equiv-
alence relation (see, e.g., R€f30,35). Moreover, two bisimulation equivalent terms over
the language CG$afford the same finite non-empty set of traces, and have therefore the
same depth. Since the SOS rules defining the operational semantics of the langugge CCS
are in de Simone’s form416], we have that:

Fact 5. Bisimulation equivalence is a congruence over the collection of clo§&8), terms

Note that a closed term is bisimilar @af, and only if, its depth is zero.
Bisimulation equivalence is extended to arbitrary ¢GG&ms thus:

Definition 6. Let t,u be CC$ terms. Thery < u iff a(t) < o(u) for every closed
substitutiono.

For instance, we have that
0/ x<0

becaus® | p affords no transition, for each closed tepm

Definition 7. We say that a terrhhas &0 factor if it contains a subterm of the forrh| ¢
ort’ | ¢, where either’ or¢” is bisimilar to0.

For example, the terms0 | x) and(0 | x) | y have &0 factor.
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2.2. Equational logic

An axiom systeris a collection of equations~ u, wheret andu are terms in the language
CCSy. An equationp =~ ¢ is derivable from an axiom systeE notationEtp ~ ¢, if
it can be proven from the axioms Eusing the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under GE&8ntexts):

P~ IRuU XU UV t~u t~u
u~t t R o(t)~ o) ut~uu’
~ut'~u trutcu trut cu

t+t~u+u tft~ulfu t|t~ulu’
Without loss of generality one may assume that substitutions happen first in equational
proofs, i.e., that the rule
t=xu
o(t) =~ a(u)

may only be used whe@r ~ u) € E. In this cases(t) ~ a(u) is called asubstitution
instanceof an axiom inE.

Definition 8. We call a closed substitution substantialif deptia(x)) > 0 for each
variablex.

For reasons of technical convenience, in the proofs of our non-finite axiomatizability
results presented in this paper, we shall only allow for the use of closed substantial substi-
tutions in the rule of substitution. This does not limit the generality of those results because
every finite, equational axiomatizati@can be converted into a finite, equational axiom-
atizationE’ such that the closed substitution instances of the axiontsasé the same as
the closed substantial substitution instances of the axior$ @fhen equating any closed
subterm of depth 0 witB). This is done by including iz’ any equation that can be obtained
from an equation itk by replacing all occurrences of any number of variable®.b{he
identification of each CG$term that is bisimilar t@ with 0 can be done equationally using
three equations. See Fact 11 to follow.)

Definition 9. We say that a substitutios is a 0-substitution iffa(x) # x implies that
o(x) = 0, for each variable.

An axiom systent is closed with respect tb-substitutions iffe () ~ a(u) is contained
in E, for eachO-substitutions, if soist ~ u.

Simplifying Assumption 1. Inthe remainder of this paper, we shall always tacitly assume
that equational axiom systems are closed with respd@stdostitutions.

Note thatifE is a finite axiom system, then so is its closure with respe@dobstitutions.
In fact, for each ternt, the collection of terms
{a(t) | o a0-substitution

is finite.
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Table 3
Some axioms for CG$
Al X+y & y+ux
A2 x+y+z ~ x+(+2)
A3 O+x ~ «x
A4 x+0 ~ x
HM1 0fx ~ 0
HM2 x/0 ~ x
M1 x|]0 ~ «x
M2 Olx ~ x

Moreover, by postulating that for each axiontialso its symmetric counterpartis present
in E, one may assume that applications of symmetry happen first in equational proofs.

Simplifying Assumption 2. In the remainder of this paper, we shall also tacitly assume
that our equational axiom systems are closed with respect to symmetry.

Definition 10. An equatiorr ~ u over the language CGSs sound with respect te> iff
t <> u. An axiom system is sound with respect to iff so is each of its equations.

An axiom systenE is an equational axiomatization e# over the language CGSf E
is sound with respect te>, and proves all of the equations over the language (Ctb&t
are sound with respect te. If E is sound with respect te>, and proves all of the closed
equations over the language G¢that are sound with respect to, then we say thaE
axiomatizes the collection of closed equations that hold mogtillo

An example of a collection of equations over the language (¢ @&t are sound with
respect ta is given in Table3. In addition, the following law, which expresses the parallel
composition operator in terms of Hennessy's merge, is easily seen to be sound with respect
to

xly~@l n+ ol . )

The axioms A4, HM1 and M1 in Tablg (used from left to right) are enough to establish
that each CCgterm that is bisimilar td® is also provably equal t0. Since we feel that the
proof of this little result is instructive, we now proceed to present its sketch.

Fact 11.Lett be a CCg term. Therr « 0if, and only if, the equatiom ~ 0 is provable
using axioms A4, HM1 and M1 in Tabl&from left to right.

Proof. The “if” implication is an immediate consequence of the soundness of the equations
A4, HM1 and M1 with respect te>. To prove the “only if” implication, define, first of all,
the collection NIL of CC§ terms as the set of terms generated by the following grammar:

tu=0 | t4¢t | ]t | 1 u

whereu is an arbitrary CCS term. We claim that:
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Claim 12. EachCCSy term tis bisimilar toQ if, and only if # € NIL.

Using this claim and structural induction o NIL, it is a simple matter to show that if
t <> 0, thent ~ Qis provable using axioms A4, HM1 and M1 from left to right, which was
to be shown. (In fact, as the attentive reader may have already noticed, the full strength of
axioms A4 and M1 is not necessary in the proof, as their substitution instAne@s~ 0
andO | 0 =~ 0 suffice.)

To complete the proof, it therefore suffices to show the above claim. To establish the “if”
implication in the statement of the claim, one proves, using structural inductioraioc
the congruence properties of bisimilarity (Fact 5), thatdf NIL, thena(z) <> O for every
closed substitutiow. To show the “only if” implication, we establish the contrapositive
statement, viz. that if ¢ NIL, thena(z) <4 0 for some closed substitutian To this end,

it suffices only to show, using structural inductiontphat if + ¢ NIL, then g, (¢) £ for

some action € {a, a, 1}, whereg, is the closed substitution mapping each variable to the

closed termz0. The details of this argument are not hard, and are therefore left to the reader.
O

In light of the above result, we find it convenient to make the following:

Simplifying Assumption 3. In the technical developments to follow, we shall assume,
without loss of generality, that each axiom system we consider includes the equations in
Table3.

This assumption means, in particular, that our axiom systems will allow us to identify
each term that is bisimilar @ with 0.

In the remainder of this paper, process terms are considered modulo associativity and
commutativity of+. In other words, we do not distinguish+- u andu + ¢, nor (¢ + u) + v
andr + (u + v). This is justified because, as previously observed, bisimulation equivalence
satisfies axioms Al, A2 in Tabld. In what follows, the symbot will denote equality
modulo axioms Al, A2. We usesummation .,y % to denote + - - - + #, where
the empty sum represer@slt is easy to see that, modulo the equations in T&blkevery
CC& termt has the form)_; , 1;, for some finite index sdt and terms; (i € I) that are
not 0 and do not have themselves the form- ¢”, for some termg’ and:”. The terms;
(i € I) will be referred to as theummandsf t. Moreover, again modulo the equations in
Table3, each of the; can be assumed to have @dactors. (Recall that this means that,
whenever a term of the formi |/ ¢ or+’ | ¢ is a subterm of;, thent’ <4 0 ands” <4 0.)
For example, a term of the fori@0 + @0) | 0 will notbe considered a summand in what
follows because, using equation M1 in TaBlehat term can be proven equald6 + a0.
The collection of summands of a tetroan be inductively characterized thus:
e 0has no summands;
e xandur are their only summands;
e Uis asummand ofy + 1, if it is either a summand aofi or a summand of;
e the summands aof | r» are

o those ofty, if 11 < 0,
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o those ofty, if 1, < 0, and
o only 1t | 2, otherwise;

e the summands af | 1, are
o none, ifry < 0,
o those ofty, if » < 0, and
o only | 1, otherwise.

It is well known (cf., e.g., Section 2 i[23]) that if an equation relating two closed terms
can be proven from an axiom systdimthen there is a closed proof for it. We shall now
argue that ifE satisfies a further closure property in addition to those mentioned earlier,
and that closed equation relates two terms containing no occurren@es afsummand or
factor, then there is a closed proof for it in which all of the terms have no occurren@es of
as a summand or factor—sf82, Proposition 5.1.5]

Definition 13.

(1) For CC$, termst andt’, we writer~¢’ if ¢ can be obtained frorby applying one
of the equations A3, A4, HM1, HM2, M1 and M2 from left to right. As usual, we wité
for the reflexive, transitive closure of the relatiosn
(2) LetE be an axiom system. We define the axiom systéff) thus:

c(E)={t'~u'| (t ~u) e E, t~*"t andu~~*u'}.

(3) An axiom systent is saturated i = cl(E).

Intuitively, one application of the rewrite relatier eliminates one occurrence 0fs a
summand or a factor in terms. Note that- t' holds whenever~t'.

The following lemma collects some basic sanity properties of the closure opel@for
(Note, in particular, that the applicationdf-) to an axiom system satisfying our simplifying
assumptions is guaranteed to produce a saturated axiom system that also affords them.)

Lemma 14. Let E be an axiom system. Then the following statements hold
(1) E C cl(E) = cl(cl(E)).

(2) cl(E) isfinite if so is E

(3) cl(E) is soundifsois E

(4) cl(E) is closed with respect 0 substitutions and symmeti§so is E

(5) cl(E) and E prove the same equatigifE contains the equations in TabBe

Proof. We limit ourselves to sketching a proof of the second statement in the lemma. To
prove this claim, we begin by noting that the size of the teris smaller than that of
whenever~t". Using this observation, it is not hard to see that, for each tethe set

{t" | t~*1"}

is finite. In fact, the rooted tree with rootresulting from the unfolding of the directed
acyclic graph whose nodes are the terms reachable tfnden~~*, and whose edges are
given by the~- relation is finitely branching, and all of its paths are finite because-the
relation decreases the size of terms. Thus this tree must be finite, or else it would have an
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infinite path by Konig’s lemma. It follows that, for each equatiow u in E, the settl(E)
containsnm equations, whera andm are the cardinalities of the sefs | t~~*t'} and
{u" | u~*u'}, respectively. We may therefore conclude tHaF) is finite, if so ise. [

We now proceed to characterize syntactically the normal forms of the rewriting relation
~~. The syntactic characterization of the normal forms given below will be useful in ob-
taining the promised result to the effect that if a saturated axiom sySteraves a closed
equation relating two terms containing no occurrence8 a a summand or factor, then
there is a closed proof for it in which all of the terms have no occurrend@a®é summand
or factor.

Definition 15. For each CC termt, we definer /0 thus:

u/0 if r <0,
0/0=0 (t+u)/0=41/0 if u< 0,
(t/0) + (u/0) otherwise
0 if 1 <0,
x/0 = x (¢ u)/0=141t/0 if u <0,
(t/0) | (u/0) otherwise
u/0 ift <0,
ut/0 = u(t/0) (¢ |u)/0 = { /0 if u <0,
(t/0) | (u/0) otherwise

Intuitively, 7 /0 is the term that results by removilad] occurrences dd as a summand or
factor fromt.

The following lemma, whose simple proof by structural induction on terms is omitted,
collects the basic properties of the above construction. In particular, note that, as expected,
the termr /0 is the normal form fot with respect to the rewrite relatios.

Lemma 16. For eachCCSy term t, the following statements haold
(1) t~~*t/0 and thereforg < t/0;

(2) t/0~»u for no term uy

(3) the term¢/0 has no occurrence df as a summand or factpr
(4) t/0 = ¢, if t has no occurrence d as a summand or factor

We are now ready to state our counterpaifi3®, Proposition 5.1.5]

Proposition 17. Assume that E is a saturated axiom system. Suppose furthermore that we
have a closed proof from E of the closed equajiow ¢. Then replacing each termr in that
proof with /0 yields a closed proof of the equatigrn’O ~ ¢/0. In particular, the proof

from E of an equatiorp ~ ¢, where p and g are terms not containing occurrence® of

as a summand or factpneed not use terms containing occurrence8 a§ a summand or
factor.



390 L. Aceto et al. / Theoretical Computer Science 330 (2005) 377—-405

Proof. The prooffollows the lines of that §82, Proposition 5.1.5hnd is therefore omitted.
O

In light of this result, since the saturation of a finite axiom system that includes the
equations in Tabl& results in an equivalent, finite collection of equations (Leni)
and (5)), we put forth our last:

Simplifying Assumption 4. Henceforth, we shall limit ourselves to considering saturated
axiom systems.

The use of saturated axiom systems will play an important role in the proof of our main
technical results.

3. Hennessy’s merge is not finitely based

Our order of business in the remainder of this paper will be to show the following result
to the effect that bisimulation equivalence doesadmit a finite, equational axiomatization
over the language CGSand that thus Bergstra and Klop were indeed right in writing in
[10, p. 118]that:

“It seems that does not have a finite, equational axiomatization.”

(In [10, p. 118]Bergstra and Klop usedto denote Hennessy’s merge.)

Theorem 18. Bisimulation equivalence admits no finite, equational axiomatization over
the languageCCSy. In fact, the collection of closed equations over that language that hold
with respect to bisimulation equivalence has no finite, equational axiomatization

As afirst stepping stone towards the proof of this result, we now proceed to argue that it is
sufficient to show that bisimulation equivalence admits no finite, equational axiomatization
over the language CGS consisting of the CGgterms that do not contain occurrences of
the parallel composition operator. Even though this observation is not unexpected—as Eq.
(2) essentially states that parallel composition is a derived operator in the algebragf CCS
terms modulo bisimulation equivalence—, we now argue for it in some detail for the sake
of completeness.

Definition 19. For each CCS termt, we define thus:

0=0 i4u=7i+a,
r=x, tfu=1t/(a,
pro=pi,  tlu= @GV o)+ @l .

If Eis an axiom system over the language ¢GC®en

)

={f~i|(t~u)ekE).
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Note that, for each CG$termt, the termi is in the language CGS Moreover, ift
contains no occurrences of the parallel composition operator,/teen. Since Eq. 2) is
sound with respect to bisimulation equivalence, and bisimilarity is a congruence (Fact 5),
it is not hard to show that:

Fact 20. Each term t in the languag€CS is bisimilar tof. Therefore if E is an axiom
system over the languadgeCSy that is sound with respect to bisimilarjtthen E is an
axiom system over the languaG€s; that is sound with respect to bisimilarity

The following result states the promised reduction of the non-finite axiomatizability of
bisimilarity over the language CGSo that of bisimilarity over the language CGS

Proposition 21. Let E be an axiom system over the langu&geS,. Then the following

statements hold

(1) If E proves the equation~ u, thenE proves the equation~ i.

(2) If E gives a complete axiomatization of bisimulation equivalence over the language
CCsy, then E completely axiomatizes bisimulation equivalence over the language
CCs,.

(3) If bisimulation equivalence admits no finite, equational axiomatization over the lan-
guageCC§,, then it has no finite, equational axiomatization over the languag&,
either.

In light of this result, henceforth we shall focus on proving that bisimulation equivalence
affords no finite, equational axiomatization over the language,CCTBe following infinite
family of closed CC§g terms will play a key role in the technical developments to follow:

en: aOf py~ap,+ Y @ (n=0), 3)
i=0

where the termgp,, are defined thus
n .
pn=>. aa" (n=0).
i=0

It is not hard to see that all of the equations(n >0) are sound modulo bisimulation
equivalence. In the remainder of this paper, we shall prove the following result, of which
Theoreml8is an immediate consequence, to the effect that no finite collection of equations
over the language CGShat are sound with respect to bisimulation equivalence can prove
all of the equations,, (n>0).

Theorem 22. Let E be a finite axiom system over the langu@ges, that is sound with
respectto bisimulation equivalence. Letn be larger than the size of each terminthe equations
in E. Then E does not prove the sound equatipfrom (3).

The remainder of this paper will be devoted to a proof of the above result, which will be
given along proof theoretic lines that have their roots in Moller's arguments to the effect that
bisimulation equivalence is not finitely based over the language CCS—sed32e{34]
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More precisely, to establish Theore2g, we shall show that there is a property of terms
associated with each finite axiom syst&wver the language CGSthat is sound with
respect to bisimulation equivalence, such that whenever the equation can be derived
from E, for some “suitably large” closed terms withdusummands and factors, then either
bothp andq enjoy the property, or none of them does. The aforementioned property will
be chosen so that, for suitably large values,ahe right-hand side of equality,, viz. the
terma0 |/ p,, affords it, whilst the left-hand side, viz. the teap, + Y7, ta’, does not.

Remark 23. Inthe absence of synchronization, Hennessy’s merge reduces to the left merge
operator of Bergstra and Klop’s. It follows that the collection of closed equations that hold
modulo <> over the sub-language of CG®btained by considering those terms that do
not contain occurrences of tlheprefixing operator has a finite, equational axiomatization.
Therefore the use of synchronization is necessary in the proof of ThekBem

The following proposition states the property mentioned in the proof strategy outlined
above.

Proposition 24. Let E be a finite axiom system over the langu@yeS, that is sound

with respect to bisimulation equivalence. Let n be larger than the size of each term in the
equations in E. Assume that p and q are closed terms that are bisimited o p,,, and
contain no occurrences @as a summand or a factor. E+p ~ ¢ and p has a summand
bisimilar toa0 | p,, then so does.q

Using the above proposition, it is a simple matter to prove Thed2nin fact, since
none of the summands of the term
n R
ap, + > ta',
i=0
viz. ap, andta’ (i € {0, ..., n}), is bisimilar toaO | p,, if n>0, Propositior24 yields
that the sound equality, cannot be proven fror, and thus thaE is incomplete.
We shall now begin to develop the technical machinery that will be brought to bear in
the proof of Propositio24. This proof will occupy the remainder of this study.

4. Preparatory results and observations

Note that terms in the language CC8ay contain some occurrences of variables that
can never contribute to the behaviour of their closed instantiations. A typical example of
this situation occurs in the ter@} x, which is bisimilar to0. However, terms that have
no 0 factors contain no such redundant occurrences of variables. Moreover, each variable
occurring in such terms contributes to the behaviour of its closed substantial instantiations.
The following basic result, that will be used repeatedly in the technical developments to
follow, formalizes this intuition.

Lemma 25. Let t be aCCS; term and lets be a closed substitution



L. Aceto et al. / Theoretical Computer Science 330 (2005) 377—-405 393

(1) Assume that t is not bisimilar 1@, and ¢ is substantial. Then depi(r)) is positive
and thuso(r) <4 0.
(2) If t has noO factors andx € var(t), then depthio(¢)) > depth(a(x)).

Remark 26. The requirement that be substantial is necessary in statement 1 of the above
lemma. For example; <4 0, buta(x) < 0if deptha(x)) = 0.

Similarly, the proviso thathas nd factors cannot be omitted in statement 2. For instance,
if t =0} x anda(x) = a0, thendeptha(r)) < deptho(x)).

In the proof of our main result, we shall make use of some notions [8in32] These
we now proceed to introduce for the sake of completeness and readability.

Definition 27. A closed ternpis irreducible ifp <> ¢ | r impliesg <> 0 orr < 0, for all
closed termg, r.
We say thap is prime if it is irreducible and is not bisimilar @

For example, each terpof depth 1 is prime because every term of the fqrim that does
not involveO factors has depth at least 2, and thus cannot be bisimifarTbe following
proposition states the primality of two families of closed terms that will play a key role in
the proof of our main result.

Proposition 28.

(1) Letm>1and0<iy < --- < in. Then the ternii.a’* + --- + a.a’ is prime. In
particular, p, is prime for eachn > 0.

(2) The terma0 |/ p, is prime for eachn > 0.

Proof. We prove the two claims separately. In each case, sin¢e+ - - - + a.a'» (with
m>1) andaO | p, are not bisimilar td, it suffices only to show that the relevant term is
irreducible.

e Proof of Claim 1. Suppose, towards a contradiction, that there exist closed tgrms
that are not bisimila® such that

aat+---+aam<qlr.

Then, sincey, r <4 0, in light of the above equivalence we have tb\a{a» q' andr LN r,
for somey’, r’. But then it follows that

glrSq1rSq 07,

whereas the terma.a’* + --- + a.a’ cannot perform two subsequentransitions. It
follows that suchg andr cannot exist, and hence that the tegma't + --- + a.a' is
irreducible, which was to be shown.

e Proof of Claim 2. We now proceed to prove tha0 | p, is irreducible for >0.
Assume, towards a contradiction, thel | p, < p | ¢ for two closed termp and

qwith p <¢ 0 andg <4 O—that is,a0 | p, is notirreducible. Sincep,, 4 0for each
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n >0, we have that
a0/ p, > 0]0< 0.

Asa0 | p, < plq,thereisatransitiop | g — p’ | ¢, for somep’, ¢’ with p’ | ¢’ < 0.

In light of our assumption thaiO | p, <> p | g, p <4 0 andg < 0, the transition
T / / . . . e o /

p |l g — p'| ¢ must be derived from the synchronization of two transitipns> p

andg 5 q' with o € {a, a}. This means that | ¢ 5. contradicting the assumption that
a0/ p, <> plq.ThusaO | p, is irreducible, which was to be shown. O

Lemma 29. Let t be a term in the languageéCs, with neither0 summands nor factors
that does not have- as head operator. Assume thats a closed substantial substitution
and that

o(t) < a.at +---+a.am

for somen > 1and0<i; < --- < i,,. Thent = x, for some variable x

Proof. Assume, towards a contradiction, thas not a variable. We proceed by a case

analysis on the possible form this term may have.

(1) Caser = ut’ for some term’: Thenu = a anda’® < a(t') <> a'. However, this is a
contradiction because, singe# i,,, the terms:’t anda’» are not bisimilar.

(2) Caser =1’/ t” for some terms’, t”: Sincet has no0 factors, we have that neither
nort” is bisimilar to0. As ¢ is a substantial substitution, it follows that’) <4 0 and

a(t”) < 0.
Observe now thai.a't + - - - + a.aim -5 ain. Thus, as

ot)=o(t) | o(t") < a.a*+-- +a.a™,
there is a ternp such that
o) 5 pandp | a(t") < ain.

As a(t") <4 0, this implies that (+”) 5 g, for someq. This leads to a contradiction,
because the term(r) = o(¢') | o(¢”) affords an initiak-transition, viz.

a(t)=a(t) | at") > plq.
whereasi.a'l + - - - + a.a' does not.

We may therefore conclude thiatust be a variable, which was to be showm.l

The following decomposition property will find application in the proof of our main
technical result, viz. Propositid32 to follow.

Lemma 30. Letn >0.Assume thap | ¢ <> a0 | p,, where q is a closed term that is not
bisimilar to 0. Thenp <> a0 andq < p,.
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Proof. Sincep |/ ¢ < a0 p,andaO | p, = 0| p, < pu, thereis @’ suchthap > p’
andp’ | g < p,. Itfollows thatg < p, andp’ < 0, because, is prime (Propositior28)
andqg <4 0. We are therefore left to prove thats bisimilar toa0. To this end, note, first of
all, that, as<> is a congruence over the language GC®e have that

pl pn< a0l p.

Assume now thap £ p” for some actioru and closed ternp”. In light of the above
equivalence, one of the following two cases may arise:
(l) nH=a andp” | pn <> pn OF
(2) u=rtandp” | p, < a' forsomei € {0, ..., n}.
In the former casep” must have depth 0 and is thus bisimilarGoThe latter case is
impossible, because the depthidf| p, is at leastz + 1.

We may therefore conclude that every transitiopds of the formp > p”, for some
p” < 0. Since we have already seen tlpadffords ana-labelled transition leading t6,
modulo bisimulation equivalence, it follows that< 0, which was to be shown. [

Lemma 31. Letr ~ u be an equation over the langua@iC s, that is sound with respect

to bisimulation equivalencavhere t and u are terms that have neittesummands nor
factors. Assume that some variable x occurs as a summand in t. Then x also occurs as a
summand in u

Proof. Recall that, for some finite index setsJ, we can write

=>4
iel
and
u=y uj,
jelJ

where none of thg (i € I) andu; (j € J) is 0 or a sum. Assume that variabl®ccurs as
a summand it—i.e., that there is an € I with ; = x. We shall argue that also occurs
as a summand io—i.e., that there is g € J withu; = x.

Consider the substitutiomg mapping each variable @ Pick an integem larger than
the depth ofrg(r) and ofag(u). Let o be the substitution mappingto the terma™+1 and
agreeing witho on all the other variables.

Ast ~ u is sound with respect to bisimulation equivalence, we have that

a(t) < a(u).

Moreover, the terna(¢) affords the transitiow(t) — a™, fort; = x ando(x) = a1 5%

a™. Hence, for some closed tenm

o)=Y o(uj) Y p<a”.
jelJ
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This means that there isjac J such thais(u;) > p. We claim that this:; can only be
the variablex. To see that this claim holds, observe, first of all, that var(u ;). In fact, if
x did not occur in j, then we would reach a contradiction thus:

m = depth(p) < deptha(u;)) = depthiao(u ;)) <depthag(u)) < m.

Using this observation and Lemm2&(2), it is not hard to show that, for each of the other
possible forms ; may haveg(u ;) does not afford as-labelled transition leading to a term
of depthm. We may therefore conclude that = x, which was to be shown. [

5. Proof of Proposition 24

We now proceed to present a detailed proof of Proposi#énThe following result,
stating that the property mentioned in the statement of that proposition holds for all closed
substantial instantiations of axiomsHywill be the crux in such a proof.

Proposition 32. Lets ~ u be an equation over the languagiCs, that is sound with
respect to bisimulation equivalenaehere t and u are terms withoOsummands or factors.
Let n be larger than the size of t. Assume thad a substantial substitution. Let = a(¢)
andg = o(u). Suppose that p and g are bisimilard0 | p,. If p has a summand bisimilar
toa0 | p,, then so does.q

Proof. We can assume that, for some finite non-empty indexiets

iel
and
jed

where none of thg (i € I) andu; (j € J)is0orasum. (Thatis, none of the(i € 1)
andu; (j € J) has+ as its head operator.) Note that,tandu have no0 summands or
factors, then none of the (i € I) andu; (j € J) does either.

Sincep = a(t) has a summand bisimilar t® | p,, there is an index € I such that

a(ti) < a0 py.
Our aim is now to show that there is an indgx J such that
o(uj) < a0 py,

proving thaty = ¢(«) also has a summand bisimilard® | p,,. This we proceed to do by
a case analysis on the fommmay have.
(1) Caser; = x for some variable xIn this case, we have that

o(x) < a0 p,
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andt hasx as a summand. As~ u is sound with respect to bisimulation equivalence
and neithet noru haveO summands or factors, it follows thatlso has as a summand
(Lemma31). Thus there is anindex e J such thai; = x, and, modulo bisimulation,
o(u) hasaO | p, as a summand, which was to be shown.

(2) Caser; = ut’ for some term’: This case is vacuous because, since

o(t;) = po(t') 5 o(t')

is the only transition afforded by(z;), anda andr are both traces af0 | p,, the term
a(t;) cannot be bisimilar ta0 | p,,.

(3) Caser; =’ | " for some terms’, ”: The analysis of this case is the crux of the proof,
and we present the argument in considerable detail.

Sincer; = ¢’ | ", we have that
a(t) = o) | a(t") a0/ p,.

As g is a substantial substitution, it follows that) <4 0ando (") <4 0 (Lemma25(1)).
Thuso(t') < a0anda(t”) < p, (Lemma30). Now, t” can be written thus:

t/’=v1—|—--~+vg € >0,

where none of the summandsis 0 or a sum. Observe that, sinoés larger than the
size oft, we have that < n. Hence, since

n .
o(t") < p, = ) ad',
i=0
there must be somee {1, ..., ¢} such that
o (vp) < aal+---+aan

for somem > 1 and 0<i1 < --- < i, <n. By Lemma29, it follows thatv;, can only
be a variablex and thus that

o(x) < a.at+---+a.a. (6)

Sincetr’ has nd factors, the above equation yields tiag var(:")—or elses(t’) <4 a0
(Lemma25(2)). Thus, since is substantial, modulo bisimulation equivalence,

t'=y1+ -+ yl+a0l @)
for somek >0 and some variables, . .., y; different fromx with
o(y1) < -+ < a(y) < a0.

(The notation{+40] in (7) denotes an optional0 summand. Moreover, & = 0, then
" = a0.) So, modulo bisimulation equivalenaghas the form’ | (x + "), for some
term¢”.
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Our order of business will now be to use the information collected so far in this case of
the proof to argue that(u) has a summand bisimilar t® | p,. To this end, consider
the substitution

o =alx — a@0l pw)l.
We have that
d) = di) a1
= o)/ d'(t") (Asx & var(t))
< a0y @@oy p,) +d@").

Thus,d’(t;) — p' <> a0 p, for somep’. By (4), we have that'(t) — p’ also holds.
Sincer ~ u is sound with respect ta- , it follows thate’(r) < ¢’(u). Hence, by §),
there are g € J and ag’ such that

O-/(uj) _T> q/ ﬁao |/ Pn- (8)

Recall that, by one of the assumptions of the propositign) < a0 | p,, and thus
o(u) has deptt + 2. On the other hand, by, depth(a’(u;)) >n + 3. Sinces ands’
differ only in the closed term they map varial¥éo, it follows that

x evar(uj). 9)

We now proceed to show thatu ;) < a0 /' p. by a further case analysis on the form
atermu ; satisfying @) and @) may have.

(a) Caseu; = x: This case is vacuous becausér) = a(a0 V' pn) —, and thus this
possible form for; does not meeig).

(b) Caseu; = uu' for some termu’: In light of (8), we have thait = 7 andqg’ =
o'(u') < (@0 | p,). Using @) and the fact that’ has noO factors, we have that
depth(a’ (1))
>n + 3 (Lemma25(2)). Sincea0 | p, has dept + 2, this contradicts the fact
thato’'(u') < a0 | p,.

(c) Caseu; = u' | u” for some terms’, u”: This is the lengthiest sub-case of case 3
of the proof, and its analysis will occupy us for the next couple of pages.

Our assumption that has na0 factors yields that neither noru” is bisimilar
to 0. Moreover, by 9), eitherx € var(u’) or x € var(u”).
Sinced’ (u;) = o’ (u') V ¢ (u") affords transition§), we have thag’ = g1 | ¢2
for someys, ¢». Sincea0 | p, is prime (Propositior28(2)), it follows that either
g1 < 0or g2 < 0. We now continue our proof by examining the two possible
origins for transition §). These are

(i) ¢ ') - g1 andgo = ¢’ (u”) and
(i) ) > g1 andd’ (W) > go, with o € {a, a}.
We examine these two cases in turn.

(i) Assume thats’(u’) — g1 andgz = o’ (u”). We now proceed to argue that
this case produces a contradiction. To this end, note first of all that, ias
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substantial ana@” is not bisimilar to0, it must be the case that < 0 and
go = W) < a0 p,.Inlight of the definition of¢’, it follows thatx occurs
inu’, but notink” (Lemma25(2)). Therefore, since ands’ only differ at the
variablex,

ou") =o' W") < a0{ p,.
Since < is a congruence, we derive that
o)) =a@) | ow") = o)l @0V p. (10)
Sinceg is substantialx occurs inu’, andu’ has nad0 factors, we may infer that

n + 2 = depth(a0 4 DPn)
= deptho(w)) (Aso) < a0l p)
> depthio(u;)) (By (5))
= depthio(u’)) +n+2 (By (10)
>n+2 (Asdeptho(u’)) > 0 by Lemma25(2)),

which is the desired contradiction. )

(i) Assume now that’ (u’) = g1 andd’(u”) = g2, with o € {a, a}. Recall that
exactly one ofj1, g2 is bisimilar to0. We proceed with the proof by considering
these two possible cases in turn.

Casey; < 0: Ourorder of business willbe to argue that, in this case; ) <> a0 4
pn, and thus thay = ¢ () has a summand bisimilar t® | p,.

To this end, observe, first of all, thag <> a0 | p, by (8). It follows that
x € var(u"), for otherwise we could derive a contradiction thus:

deptt(a0 | p,) = deptho()) (Asa(u) < a0y p,)
> depthia(u;)) (By (5))
> depthic(@”)) (Asdepthia(u’)) > 0)
= depthic’ ")) (Asx ¢ var(u”))
> deptha0 / Pn)
(Asd’ (") > g2 <> a0 | py).
Moreover, we claimthat ¢ var(x’). Indeed, ifxalso occurred im’, then, since
u’ has no0 factors, the terna(x) would contribute to the behaviour ofu ;).
Therefore, by§), the termz (1 ;) would afford a sequence of actions containing

two occurrences af, contradicting our assumption thatu) < a0 | p,. It
follows thato = a, because

& W) = o) %,

sincea(u) <> a0 p,.
Observe now that, ag (u”) - g2 <> a0 | p,,itmustbe the case thaf has

a summand. To see that this does hold, we examine the other possible forms a
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summandy of u” responsible for the transition

)% g2 a0y p,

may have, and argue that each of them leads to a contradiction.

(A) Casew = aw’,for some termw’: In this caseg, = ¢’(w’). However, the depth
of such &, is either smaller than+ 2 (if x ¢ var(w")), or larger tham + 2 (if
x e var(w’)). This contradicts the fact thap is bisimilar toa0 | p,, because
the latter term has depth+ 2.

(B) Casew = w1 | wp, for some termsv; andwo: Since

¢ (w) =o' (wy) | & (w2) > g2,

there is a closed tergy such that’ (w1) 4 gz andgy = g3 | ¢/(wp) <> a0 |
pn.As the termu0 | p, is prime,d’ is substantial, and» is not bisimilar to0,
we may infer thajz < 0 and

o' (w2) <> a0 | p,.

It follows thatx ¢ var(wz)—or else the depth of’(w») would be at least
n + 3—, and therefore that

o' (w2) = a(wz) < a0l py.

However, this contradicts our assumption that) <> a0 | p,.
Summing up, we have argued théthas a summanxl Therefore, by §),

o) < a.at+---+aam +r"

for some closed term’. We have already noted that
cu)=dW)> g1 < 0.

Therefore, we have that
o) < a0+7r

for some closed term. Using the congruence properties of bisimulation equiva-
lence, we may infer that

ou;) =o@) | o) < @O+ (@a™ +-- +aa" +r").
In light of this equivalence, we have that

o(uj) Sroadt+ - +adm +r" <o)
for some closed term By (5),

q = 0o(u) o
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Sinceg = o(u) <> a0 | p, byourassumption, itmustbe the casethato(u”) < p,.
So, again using the congruence propertiesof, we have that

o) =) ow") < @0+r) | pa.
Asa(u) <> a0 | p,, using LemmaB0it is now a simple matter to infer that
o) < aO0.

Hences(u;) < a0 /' pn. Note thato(u ;) is a summand of = o(u). Thereforeg
has a summand bisimilar t® | p,, which was to be shown.
Caseg2 <> 0: We now proceed to argue that this case produces a contradiction.
To this end, observe, first of all, that <> a0 | p,. Reasoning as in the analysis
of the previous case, we may infer that a, x occurs inu’, butx does not occur
in u”. Moreover, since’ (u') — g1 <> a0 | p,, it must be the case that > u"”
for someu’ such that

o W) = q1< a0 p,.
(For, otherwise, using Lemng{2), we would have that
d ) > q1

because/ > c, a(y) = gj andg1 = d'[ya — g4l(c), for some variabley,
configurationc and closed terng;. Note thaty # x. In fact, if y = x, then we
would have that = a by the definition o, contradicting the distinctness of these
two complementary actions. Observe now that, again in light of the definitioh of
the variablex cannot occur irc, or else the depth afy = ¢'[ys — ¢11(c) would
be at leask + 3, contradicting our assumption that <> a0 | p,. Hence, since
the variabley is different fromx, it is not hard to see that(u") 5 g1 also holds,
and thus thatlepth(g1) < deptho (1)) = n + 2, contradicting our assumption that
g1 < a0/ p,.) Sinceucontains nd factors, in light of the definition of’, thisu””
cannot contain occurrences of the variabléor, otherwise, Lemm25(2) would
yield that

depth(a’(u"")) = depthig1) >n + 3,

contradicting our assumption that <> a0 | p,.) So

"

o) =q1 < a0 p,

also holds. Thus
n + 2 = deptha0 / DPn)
= depthow)) (Asa(u) < a0/ p,)
> depthia(u;)) (By (5))
= deptha() { a(u"))
> depthi(a(u)) + depthia(’))
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(Aso') > o)
>n+42
(As depthio(u”)) > 0 anddepth(a(u”)) = n + 2)

which is the desired contradiction.
This completes the proof for the case = u’ |/ u” for some terms.’, u”. The proof is
now complete. [

We are now ready to prove Propositiad thus completing the proof of Theore2@ and
of our main result (Theorerh8).

Proof of Proposition 24: Assume thaE is a finite axiom system over the language GCS
that is sound with respect to bisimulation equivalence, and that the following hold, for some
closed termg andq and positive integem larger than the size of each term in the equations
in E:

(1) Etp~gq,

(2) p=q<=a0y py,

(3) p andq contain no occurrences 6fas a summand or factor, and

(4) p has a summand bisimilar t® | p,,.

We prove thag also has a summand bisimilar #® | p, by induction on the depth of
the closed proof of the equatigh ~ ¢ from E. Recall that, without loss of generality,
we may assume that the closed terms involved in the proof of the equatierny have

no 0 summands or factors (by Propositidi, asE may be assumed to be saturated), that

applications of symmetry happen firstin equational proofs (th&iigsglosed with respect to

symmetry), and that only closed substantial substitutions are ESedlposed with respect

to O-substitutions).

We proceed by a case analysis on the last rule used in the prpofaf from E. The case

of reflexivity is trivial, and that of transitivity follows immediately by using the inductive

hypothesis twice. Below we only consider the other possibilities.

e CaseElp =~ ¢, becauser(t) = p ando(u) = ¢ for some equationr ~ u) € E and
closed substantial substitutian Observe, first of all, that sinae(r) = p ando(u) = ¢
have ndd summands or factors, then neithertdgmdu. Therefore, as is larger than the
size of each term mentioned in equation&jrthe claim follows by PropositioB2.

e CaseElp ~ ¢, becausep = up’ andg = ug’ for somep’, ¢’ such thatElrp’ ~ ¢’:
This case is vacuous becayse- up’ <4 a0 | p,, and thugp does not have a summand
bisimilar toa0 | p,,.

e CaseElp ~ ¢, becausep = p’ + p” andq = ¢’ + ¢” for somep’, q’, p”, q¢” such
that E+p’ ~ ¢’ and EFp” ~ ¢”: Sincep has a summand bisimilar t® | p,, we have
that so does eithey’ or p”. Assume, without loss of generality, thathas a summand
bisimilar toa0 | p,. Sincep is bisimilar toa0 | p,, so isp’. Using the soundness
of E modulo bisimulation, it follows thag’ <> a0 | p,. The inductive hypothesis now
yields thaty’ has a summand bisimilar t® | p,. Henceg has a summand bisimilar to
a0/ p,, which was to be shown.

e CaseElp ~ g, because = p' | p” andq = ¢’ | ¢” forsomep’, ¢’, p”, ¢” such that
EFp’ =~ g’ and EF-p” =~ ¢”: Since the proof involves no uses @Bs a summand or a
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factor, we have that’, p” <¢ 0andq’, g” <4 0. It follows thatq is a summand of itself.
By our assumptions,

a0 |/ Pn = q.
Therefore we have thathas a summand bisimilar t® | p,,, and we are done.

This completes the proof. (I O

6. Concluding remarks

In their seminal papdi0], Bergstra and Klop showed that the parallel composition op-
erator can be finitely axiomatized modulo bisimulation equivalence with the use of two
auxiliary operators, viz. the by now classic left merge and communication merge. Inde-
pendently, and at roughly the same time, Hennessy proposed the auxiliary opesaidr
used it in[24] to give equational axiomatizations of Milner's observation congrugsige
and timed congruence. The axiomatization of observation congruence offered by Hennessy
using the/ operator relies, however, on a variation on the classic expansid8tyand is
therefore infinite. This led Bergstra and Klop to conjecturflity p. 118]that Hennessy's
/' operator does not have a finite equational axiomatization. The main result in this paper
confirms this conjecture of Bergstra and Klop’s, and answers one of the questii@s in
Problem 8] by showing that, in the presence of two distinct complementary actions, it is
impossible to provide a finite axiomatization of the recursion free fragment of CCS modulo
bisimulation equivalence usirig This result further reinforces the status of the left merge
and the communication merge operators as auxiliary operators in the finite, equational
characterization of parallel composition in bisimulation semantics.

A natural question to ask at this point is whether there is a sibiglary operator that
preserves bisimulation equivalence, and whose addition to the recursion free fragment
of CCS allows for the finite equational axiomatization of parallel composition—|{3ee
Problem 8] (As was recently pointed out to us by Jos Baeten and Rob van Glabbeek,
it is certainly possible to obtain a finite axiomatization of bisimulation equivalence by
adding ondernaryoperator to the signature of CCS.) We conjecture that no such operator
exists, and that the use tfio auxiliary operators is therefore necessary to achieve a finite
axiomatization of parallel composition in bisimulation semantics. This result would offer
the definitive justification we seek for the canonical standing of the operators proposed by
Bergstra and Klop. Work on the confirmation of this conjecture is under way, and we hope
to report on it elsewhere in the near future.
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