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Abstract

We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted
binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can
be used to compute the rooted Subtree Prune-and-Regraft (rSPR) distance between two phylogenetic
trees. Our algorithm is combinatorial and its running time is quadratic in the input size. To prove the
approximation guarantee, we construct a feasible dual solution for a novel linear programming formulation.
In addition, we show this linear program is stronger than previously known formulations, and we give a
compact formulation, showing that it can be solved in polynomial time.

Keywords: Maximum agreement forest, phylogenetic tree, SPR distance, subtree prune-and-regraft distance,
computational biology.
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1 Introduction

Evolutionary relationships are often modeled by a rooted tree, where the leaves represent a set of species,
and internal nodes are (putative) common ancestors of the leaves below the internal node. Such phylogenetic
trees date back to Darwin [10], who used them in his notebook to elucidate his thoughts on evolution. For an
introduction to phylogenetic trees we refer to [11, 22]

The topology of phylogenetic trees can be based on different sources of data, e.g., morphological data,
behavioral data, genetic data, etc., which can lead to different phylogenetic trees on the same set of species.

Such partly incompatible trees may actually be unavoidable: there exist non-tree-like evolutionary
processes that preclude the existence of a phylogenetic tree, so-called reticulation events, such as hybridization,
recombination and horizontal gene transfer [16, 17]. Irrespective of the cause of the conflict, the natural
question arises to quantify the dissimilarity between such trees. Especially in the context of reticulation, a
particularly meaningful measure of comparing phylogenetic trees is the Subtree Prune-and-Regraft distance for

∗This paper is based on the (substantially different) extended abstract [21].
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rooted trees (rSPR-distance), which provides a lower bound on a certain type of these non-tree evolutionary
events. The problem of finding the exact value of this measure for a set of species motivated the formulation
of the Maximum Agreement Forest Problem (MAF) by Hein, Jian, Wang and Zhang [15].

In the definition of MAF by Hein et al. we are given two rooted binary trees, each having its leaves
labeled with the same set of labels L, where in each tree each leaf has one label and each label is assigned
to one leaf. The problem is to find a minimum set of edges to be deleted from the two trees, so that the
rooted trees in the resulting two forests (where the choice of the root is the natural choice) can be paired up
into pairs of isomorphic trees. Two rooted trees are isomorphic if their restrictions are the same, where the
restriction of a tree is obtained by considering the minimal tree spanning the same set of leaves from L, and
then contracting nodes with only a single child.

Since the introduction by Hein et al. in [15], in which they also proved NP-hardness, MAF has been
extensively studied, mostly in its version of two rooted binary input trees. After Allen and Steel [1] pointed
out that the claim by Hein et al. that solving MAF on two rooted directed trees computes the rSPR-distance
between the trees is incorrect, Bordewich and Semple [5] presented a subtle redefinition of MAF, whose
optimal value does coincide with the rSPR-distance. In this redefinition it is required that the two forests
agree on the tree containing the original roots of the input trees. This has now become the standard definition
of MAF, for which Bordewich and Semple [5] showed that NP-hardness still holds, and Rodrigues [19] showed
that it is in fact APX-hard.

The problem has attracted a lot of attention, and indeed has become a canonical problem in the field of
phylogenetic networks. Many variants of MAF have been studied, including versions where the input consists
of more than two trees [6, 7], and where the input trees are unrooted [27, 26] or non-binary [20, 25]. We will
concentrate on MAF in its classical form with two rooted binary input trees, and we will be concerned with
the worst-case approximability of the problem. The literature includes many other approaches to the problem,
including fixed-parameter tractable algorithms (e.g., [27, 26]) and integer linear programming [28, 29]. But
the quest for better approximation algorithms has become central within the MAF literature.

Our result improves over a sequence spanning 10 years of approximation algorithms, starting with the first
correct 5-approximation [3]. This was followed by several 3-approximations [4, 20, 26], each one improving
on the running time, and the last one giving a relatively simple and elegant proof. A 2.5-approximation
followed [23]. In 2016, Chen et al. [9] described a 7/3-approximation. Independently in the same year, a
subset of the present authors [21] gave a factor 2 approximation algorithm. Subsequently, Chen et al. [8] gave
a different factor 2 approximation algorithm using very different methods, and with a cubic running time.

The 2-approximation algorithm presented in the current paper may be viewed as the full version of the
algorithm in [21]. However, while the algorithm presented here is similar in spirit, it differs in many details,
and the exposition is entirely new. Although the algorithm and analysis remain quite subtle, this version is
significantly shorter and clearer. Moreover, we show how our algorithm can, with some care, be implemented
in quadratic time ([21] discuss only a polynomial time bound). This improves over the cubic running time of
Chen et al. [8].

Our 2-approximation algorithm differs from previous works in two key aspects. First of all, our algorithm
takes a global approach; choices may depend on large parts of the instance. All the previous algorithms
that obtained a worse approximation ratio considered only local, constant-sized, substructures. Secondly, we
introduce a novel integer linear programming formulation for the analysis. Our approximation guarantee
is proved by constructing a feasible solution to the dual of this linear program, rather than arguing locally
about the objective of the optimal solution.

While we provide a new integer linear programming formulation and exploit its linear relaxation in our
analysis, we do not need to actually solve the relaxation as part of our algorithm. In fact, the formulation
has an exponential number of variables, and so it is not immediately clear that it can be efficiently optimized.
We show that it can be reformulated as a compact LP, with only a polynomial number of variables and
constraints. We believe that this is interesting for a number of reasons. It implies that the linear relaxation
can be solved efficiently (in polynomial time); this may be of future utility in obtaining better approximation
guarantees using LP-rounding techniques, which do require an optimal solution to the relaxation. Moreover,
the compact formulation is amenable to use in commercial integer programming solvers. There is a previous
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formulation due to Wu [28], but our formulation is significantly stronger: the integrality gap of the relaxation
of Wu is at least 3.2, whereas for ours we show it is at most 2, and in fact the worst example that we are
aware of has integrality gap 1.25 (see the appendix). Finally, we remark that our compact formulation can be
easily adapted to handle other variants of MAF—for example, settings with more than two trees.

We have implemented and tested our algorithm, as well as the compact formulation [18]. The implemen-
tation has been designed so that it is easy to step through the algorithm and explore its behaviour on a given
instance; the reader may find it helpful when examining the technical details of the algorithm.

Outline. We define the problem and introduce necessary notation in Section 2. Section 3 describes the
algorithm, and proves that it produces a feasible solution to MAF. In Section 4, we introduce the linear
program, and describe a feasible solution to its dual that can be maintained by the algorithm. We then show
the objective value of this dual solution is always at least half the objective value of the MAF solution, which
proves the approximation ratio of two. In Section 5, we show a compact formulation of the (exponential sized)
linear program used for the analysis. In the appendices, we show that our algorithm can be implemented to
run in time quadratic in the size of the input, and we give an example that shows that a previously known
integer linear program [28] is not as strong as the formulation introduced here.

2 Preliminaries

The input to the Maximum Agreement Forest problem (MAF) consists of two rooted binary trees T1 and T2,
where the leaves in each binary tree are labeled with the same label set L. Each leaf has exactly one label,
and each label in L is assigned to exactly one leaf in T1, and one leaf in T2. We will use L also to denote the
leaves of the trees.

Let V1 and V2 denote the node set of T1 and T2 respectively, and let V = V1 ∪ V2. We call all nodes in
V \ L internal nodes. We let L(u) denote the set of leaves that are descendants of a node u ∈ V .

We will use the following notational conventions: we use u and v to denote arbitrary nodes (including
leaves), if the node we refer to is an internal node in V2, we will use û and v̂, and we use the letters x, y and
w to refer to leaves.

For A ⊂ L we use Vi[A] to denote the set of (internal) nodes in Ti that lie on a path between any two
leaves in A for i ∈ {1, 2}, and define V [A] := V1[A] ∪ V2[A].

Definition 1. We will say that a set A ⊆ L covers a node u ∈ V if u ∈ V [A]. We say that A,A′ ⊆ L overlap
if V [A] ∩ V [A′] 6= ∅; we can also say that A overlaps A′ in U , for U ⊆ V , if V [A] ∩ V [A′] ∩ U 6= ∅. We say a
partition P of L overlaps in U ⊆ V if there exist A,A′ ∈ P, A 6= A′ such that A and A′ overlap in U .

For A ⊆ L, we let lcai(A) denote the least common ancestor of A in Ti. We will sometimes omit braces of
explicit sets and write, e.g., lca1(x1, x2, x3) instead of lca1({x1, x2, x3}).

For nodes u, v in the same tree, we use u ≺ v to indicate that u is a descendant of v and u � v if u is
equal to v or a descendant of v.

Definition 2. A set L ⊆ L is compatible if for all x1, x2, x3 ∈ L

lca1(x1, x2) ≺ lca1(x1, x2, x3)⇔ lca2(x1, x2) ≺ lca2(x1, x2, x3).

We call a triple of leaves incompatible if it is not a compatible set. Note that L ⊆ L is compatible precisely
if the subtrees induced by L in T1 and T2 are isomorphic.

A feasible solution to MAF is a partition P = {A1, A2, . . . , Ak} of L such that every component Ai is
compatible, and Ai does not overlap Aj , for each i 6= j. The cost of this solution is defined to be |P| − 1.
This cost corresponds to the number of edges that must be deleted from T1, as well as the same number from
T2, so that in both of the resulting forests, each Ai ∈ P is the leaf set of a single tree.
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T1

x1 x2 x3 x4

ρ
T2

x1 x3 x2 x4

ρRemark. In order for MAF to correspond to the rSPR dis-
tance, it is necessary to add an additional node ρ to L, as a
unique sibling to the root in both T1 and T2. This is the distinc-
tion between the original definition of MAF by Hein [15] and
the correction by Bordewich and Semple [5]. We simply assume
that this addition is already included in the input instance,
after which there is no need to distinguish this additional leaf from the others.

To describe our algorithm, it will be convenient to extend the notion of compatibility.

Definition 3. Given K ⊆ L, we say a set L ⊆ L is K-compatible if L ∩ K is compatible. A partition
P = {A1, A2, . . . , Ak} of L is K-compatible if Ai is K-compatible for all i = 1, 2, . . . , k.

3 The Red-Blue Algorithm

The algorithm maintains a partition P of L, which at the end of the algorithm will correspond to a feasible
solution to MAF. The algorithm will maintain the invariant that P does not overlap in V2. Observe that this
is equivalent to defining P to be the leaf sets of the trees in a forest, obtained by deleting edges from T2.
Initially P = {L}.

The algorithm works towards feasibility by iteratively refining P , focusing each iteration on a set of leaves
L(u) for some u ∈ V1, for which the current partition is infeasible in some (quite narrowly defined) way. At
the end of the iteration the solution is feasible if we restrict our attention to L(u), and even if we consider
L(u) ∪ {w} for any arbitrary w ∈ L \ L(u).

We use the following definition to specify which sets L(u) the algorithm considers.

Definition 4. Given an infeasible partition P that does not overlap in V2, we call u ∈ V1 a root-of-infeasibility
if at least one of the following holds:

(a) P is not L(u)-compatible;

(b) P overlaps in V1[L(u)];

(c) there exists a component A in P such that A \ L(u) 6= ∅, and A ∩ L(u) ∪ {w} is not compatible for all
w ∈ A \ L(u).

Observe that if u ∈ V1 is a root-of-infeasibility, then any ancestor of u is a root-of-infeasibility. We will
say an internal node u in tree Ti is the “lowest” node with property Γ if property Γ does not hold for any of
u’s descendants in Ti. The algorithm will identify a lowest node u ∈ V1 that is a root-of-infeasibility.

Given a root-of-infeasibility u ∈ T1, we partition L into R,B,W , where R = L(ur) and B = L(u`) for
the two children u` and ur of u. We will refer to this partition as a coloring of the leaves; we will refer to
the leaves in R as red leaves, the leaves in B as blue leaves and the leaves in W as white leaves. We call
a component of P tricolored if it has a nonempty intersection with R,B and W , and bicolored if it has a
nonempty intersection with exactly two of the sets R,B,W . A component is called multicolored if it is either
tricolored or bicolored, and unicolored otherwise.

Observation 1. Let u be a lowest root-of-infeasibility for P, and consider the coloring R,B,W , where
R = L(ur) and B = L(u`) for the two children u` and ur of u. Then the set of multicolored components of P
consists of either at most two bicolored components or exactly one tricolored component.

Proof. If u is a lowest root-of-infeasibility, P does not overlap in V1[R] and V1[B], and so at most one
component of P covers lca1(R), and at most one covers lca1(B). The observation thus follows immediately,
since any bicolored component covers either lca1(R) or lca1(B), and any tricolored component covers both
lca1(R) and lca1(B).
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T1

B1 B2 R1 R2 W1 W2 W3

u` ur

u

T2

B1 R1 B2 W1 R2 W2 W3

Figure 1: If P = {L}, then node u satisfies case (a) of Definition 4; if P = {{B1}, {B2,W1}, {R1, R2,W2,W3}},
it satisfies case (b) and if P = {{R1}, {B1, B2,W1, R2,W2}, {W3}}, it satisfies (c).

We note that the above observation can be refined; it is possible to show that P contains either one
tricolored component or exactly two bicolored components; see Lemma 12 in Section 4.3.

In Figure 1, we give an example of an input T1, T2 and a coloring of the leaves, where R1 can be a single
leaf in R, or it can be a tree with leaves labeled by a compatible subset R1 ⊂ R with likewise interpretations
for the other capital leaves in this and future figures; the caption gives three partitions such that u satisfies
exactly one of the three conditions of Definition 4: If P = {L}, u satisfies (a). Note that u is indeed a lowest
root-of-infeasibility, since {R1, R2,W3} and {B1, B2,W3} are compatible sets, so u` and ur do not satisfy
(c) (nor (a) and (b)). If P = {{B1}, {B2,W1}, {R1, R2,W2,W3}}, node u satisfies (b). Again, u is a lowest
root-of-infeasibility(clearly u` and ur does not satisfy (a) and (b); they also do not satisfy (c) since {B1,W1}
is compatible, as is {R1, R2,W3}). Finally, if P = {{R1}, {B1, B2,W1, R2,W2}, {W3}}, node u satisfies (c).
Observe that in this case u is again a lowest root-of-infeasibility.

Red-Blue Algorithm

P ← {L}.
pairslist← ∅.
while P is not feasible do
? Let u ∈ T1 be a lowest root-of-infeasibility, with children u` and ur.

Let R = L(ur), B = L(u`) and W = L \ (R ∪B).
Make-R ∪B-compatible(P, (R,B,W )).
Make-Splittable(P, (R,B,W )).
Split(P, (R,B,W )).
Find-Merge-Pair(pairslist,P, (R,B,W )).

end while
Merge-Components(pairslist,P).

An overview of the algorithm is given above. The procedures will be described in detail in the subsequent
subsections, along with with lemmas regarding the properties they ensure.

We will refer to a pass through the main while-loop of the algorithm as an “iteration”. In order
to simplify the statement of the lemmas, we will make statements like “let P ′ be the partition after
ProcedureName(P, (R,B,W ))”. This implicitly assumes that (R,B,W ) was a coloring chosen in the
beginning of the current iteration of the Red-Blue algorithm (and thus, that lca1(R∪B) was a lowest root-of-
infeasibility at that moment), and that P ′ is the partition resulting from calling ProcedureName(P, (R,B,W ))
in the current iteration.

Finally, the ? in front of certain lines will be used to refer to these lines in the analysis in Section 4.2.
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T2

B1 R1 B2 W1 R2 W2 W3

Make-R ∪ B-compatible−−−−−−−−−−−−−−−→

T2

B1 R1 B2 W1 R2 W2 W3

û

Figure 2: Illustration of Make-R ∪B-compatible(P, (R,B,W )). Because P and P ′ do not overlap in V2,
we can represent these as the leaf sets of trees in a forest obtained by deleting edges from T2. In this figure
and the following figures the dashed edges represent deleted edges.
In this example P = {L}. Then û = lca2(R1, B1), and Make-R ∪B-compatible(P, (R,B,W )) refines the
partition to {{B1, R1}, {B2,W1, R2,W2,W3}}, which is R ∪B-compatible.

3.1 Make-R ∪B-compatible

procedure Make-R ∪B-compatible(P, (R,B,W ))
while ∃A ∈ P that is not R ∪B-compatible do
? Let û be a lowest internal node in V2[A] for which A ∩ L(û) intersects both R and

B.
P ← P \ {A} ∪ {A ∩ L(û), A \ L(û)}.

end while
end procedure

An example is given in Figure 2. We note that in general, the choice of û does not have to be unique, and
that multiple refinements may be needed to make the partition R ∪B-compatible.

As observed above, for any partition P that does not overlap in V2, there is a set of edges in T2, such
that P consists of the leaf sets of the trees in the forest obtained after deleting these edges. Our refinement
is equivalent to deleting the edge from û towards the root in T2 and hence the resulting partition does not
overlap in V2 if the original partition did not overlap in T2.

Lemma 1. Let P ′ be the partition after Make-R ∪B-compatible(P, (R,B,W )). Then P ′ is a refinement
of P that does not overlap in V2 and is R ∪B-compatible.

Proof. First, observe P is R-compatible and B-compatible, since u’s children are not roots-of-infeasibility. If
P is R ∪B-compatible then P is not modified by the procedure, and the lemma is vacuously true. Otherwise,
the procedure refines P, and we already mentioned above that the resulting partition P ′ does not overlap
in V2 provided that P does not overlap in V2. The procedure ends when there are no sets in P that are
not R ∪ B-compatible, so the only thing left to show is that this procedure halts. Because û was chosen
to be the lowest internal node in V2[A] such that A ∩ L(û) intersects both R and B, the children of û, say
ûr and û`, are so that A ∩ L(ûr) and A ∩ L(û`) can only intersect one of R and B. Therefore A ∩ L(û) is
R ∪B-compatible, where A was not, and thus the number of R ∪B-compatible components in P increases,
which can only happen at most |L| times.

Observe that if P is R ∪ B-compatible, then any refinement of P is also R ∪ B-compatible, hence we
may assume that the partition at any later point in the current iteration of the Red-Blue Algorithm is
R ∪B-compatible.

3.2 Make-Splittable

The goal of the next two procedures is to further refine the partition so that there is no overlap in V1[R ∪B].
We will do this in two steps, the first of which will achieve the following property.

6



T2

B1 R1 B2 W1 R2 W2 W3

Make-Splittable−−−−−−−−−−−→

T2

B1 R1 B2 W1 R2 W2 W3

û

Figure 3: Illustration of Make-Splittable(P, (R,B,W )). P = {{R1}, {B1, B2,W1, R2,W2}, {W3}}, and
the set A = {B1, B2,W1, R2,W2} is not splittable. Make-Splittable(P) would choose û = lca2(B2,W1)
and replace A by {B2,W1} and {B1, R2,W2,W3}.

Definition 5. Given a coloring (R,B,W ) of L. A set A ⊆ L is splittable if A ∩R, A ∩B and A ∩W do not
overlap in V2.

procedure Make-Splittable(P, (R,B,W ))
while ∃A ∈ P that is not splittable do
? Let û be a lowest internal node in V2[A] such that A∩L(û) is bicolored and A\L(û)

intersects precisely the same colors as A.
P ← P \ {A} ∪ {A ∩ L(û), A \ L(û)}.

end while
end procedure

First, note that by the same arguments as in the previous subsection, the partition that results from
Make-Splittable does not overlap in V2 if the original partition did not overlap in V2. It is easy to see
that if A is bicolored and not splittable, then there exists û ∈ V2[A] such that both A ∩ L(û) and A \ L(û)
are bicolored: just take û to be a lowest node in V2[A∩C1]∩ V2[A∩C2] for distinct C1, C2 ∈ {R,B,W}. We
prove below in Lemma 2 that if A is tricolored, we can additionally ensure that A \ L(û) is tricolored. For
this to hold, we need that P is R∪B-compatible, which by Lemma 1 is indeed true when Make-Splittable
is called.

As a first example of Make-Splittable, consider P = {{B1, R1}, {B2,W1, R2,W2,W3}} that was the
output of Make-R∪B-compatible depicted in Figure 2. In this example P is already splittable. In Figure 3
a more interesting example is given.

Lemma 2. Make-splittable is well-defined, in that a node û satisfying the desired properties in line ? can
always be found.

Proof. As noted above the existence of û is clear when A is bicolored. So suppose A is tricolored and not
splittable. Note that V2[A ∩ R] and V2[A ∩ B] cannot intersect because A is R ∪ B-compatible. Assume
without loss of generality that V2[A∩R]∩V2[A∩W ] 6= ∅, and let û be a lowest node in V2[A∩R]∩V2[A∩W ].
Note that both A ∩ L(û) and A \ L(û) must intersect W and R, and that A ∩ L(û) cannot intersect B, since
then A is not R ∪B-compatible. So A ∩ L(û) is bicolored, and A \ L(û) is tricolored.

Lemma 3. Let P ′ be the partition after Make-splittable(P, (R,B,W )). Then P ′ is a refinement of P
that does not overlap in V2 and in which every component is splittable.

Proof. By Lemma 2, and since each iteration increases the number of components in P, Make-splittable
must terminate, and by its definition, the final partition P ′ contains only splittable components. Clearly P ′
is a refinement of P; it does not overlap in V2 by the same arguments as used in the proof of Lemma 1.

Before continuing, we summarize the properties of the partition that is the result after Make-Splittable
that will be useful in the proof of the approximation guarantee in Section 4. To describe these, we need the
notion of a top component.
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Definition 6. Given the partition P at the start of the current iteration, and P ′ another partition encountered
in the current iteration, let D be the components that were created during the current iteration, i.e., D = P ′\P .
Then A ∈ D is a top component if there exists no A′ ∈ D such that lca2(A) ≺ lca2(A′).

Lemma 4. Let P(0) denote the partition at the start of a given iteration, and (R,B,W ) the coloring of the
leaves that is selected, let P(1) denote the partition after Make-R ∪B-compatible(P(0), (R,B,W )), and let
P(2) denote the partition after Make-Splittable(P(1), (R,B,W )),

1. Only multicolored components are subdivided by the iteration, i.e., if A ∈ P(0) \ P(2), then A is
multicolored.

2. Only multicolored components are created by Make-R ∪B-compatible and Make-Splittable, i.e.,
if A ∈ P(2) \ P(0), then A is multicolored.

3. The number of tricolored components in P(2) is the same as in P(1).

4. Any tricolored component in P(1) or P(2) that is not a top component contains no compatible tricolored
triple.

5. Any bicolored component A in P(2) that is not a top component satisfies that lca2(A) is not overlapped
by A ∩ C for any color C ∈ {R,B,W}. In other words, L(û`) ∩A and L(ûr) ∩A are unicolored where
û` and ûr are the children of lca2(A).

6. If xW is in a top component A in P(0) and xW is not a descendant of lca2(A ∩ (R ∪B)), then xW is
in a top component in P(2).

Proof. Each of the properties is easily verified by inspection of the Make-R ∪B-compatible and Make-
Splittable procedures. For example, point 4 follows from the fact that a node û picked in Make-R ∪B-
compatible is always chosen as low as possible. This implies that for the newly created component A′, and
any r ∈ A′ ∩R, b ∈ A′ ∩B, lca2(r, b) = û.

3.3 Split

The next procedure will refine P so that the resulting partition does not overlap in V1[R ∪ B]. Since by
Lemma 3, P is splittable, we can simply intersect each component with R, B and W , to achieve this property.
However, we will need to be slightly more careful in order to achieve the approximation guarantee; in
particular, we will sometimes need to perform what we call a Special-Split.

procedure Split(P, (R,B,W ))
for each multicolored component A do

if A is tricolored, and there exists a tricolored triple in A that is compatible then
Special-Split(A,P, (R,B,W ))

else
P ← P \ {A} ∪ {A ∩R,A ∩B,A ∩W} (where empty sets are not added)

end if
end for

end procedure

Remark. Our analysis in Section 4 needs the Special-Split, Find-Merge-Pair and Merge-Components
procedures only in one (of three) cases that will be described in Lemma 12. Without these procedures, it
is trivial to see that the resulting partition is feasible, and we will see in Section 4 that the proof of the
approximation ratio is quite simple in these cases.

We now describe the property that the outcome partition of Split will have, which goes beyond merely
being R ∪ B-compatible and non-overlapping in V2 ∪ V1[R ∪ B]. We first define that property, and give
necessary and sufficient conditions for a partition that does not overlap in V2 to have this property.
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Definition 7. Let K ⊆ L. A partition P is K-feasible if for all w ∈ L, P is K ∪ {w}-compatible, and no
two components in P overlap in V2 ∪ V1[K].

We will simply say P is feasible if it is L-feasible, which we note does indeed coincide with the definition
of a feasible solution to MAF. We make two additional remarks about the notion of K-feasibility:

• Being K-feasible requires something stronger than simply not overlapping in V2 ∪ V1[K] and K-
compatibility. The stronger compatibility notion will be used in Lemma 7 to show that if P is
R∪B-feasible, then future iterations of the Red-Blue algorithm will not further subdivide (the partition
induced on) the leaves in R ∪B. This is not necessarily true if P is only R ∪B-compatible and does
not overlap in V2 ∪ V1[R ∪B].1

• If u ∈ V1 is a root-of-infeasibility for P , then P is not L(u)-feasible. The converse is not true, however: if
P contains a single component containing L(u) which is L(u)-compatible, but this component contains
both w ∈ L \ L(u) such that L(u) ∪ {w} is compatible, and w′ ∈ L \ L(u) such that L(u) ∪ {w′} is not
compatible, then P is not L(u)-feasible, but u is not a root-of-infeasibility. The stronger notion of a u
being a root-of-infeasibility versus not being L(u)-feasible is needed when we prove the approximation
guarantee in Section 4.

The following technical lemma gives conditions to check if a partition does not overlap in V1[R ∪B].

Lemma 5. Let P be the partition and (R,B,W ) be the coloring at the start of an iteration. Let P ′ be a
refinement of P that does not overlap in V2 and that is R ∪ B-compatible. Then P ′ does not overlap in
V1[R ∪B] if

(i) P ′ has at most one multicolored component A∗;

(ii) if A∗ exists, and lca2(A∗) ≺ lca2(R ∪B), then any node v′ with lca2(A∗) ≺ v′ � lca2(R ∪B) is covered
only by components in P ′ that are subsets of W , or that are also components of P.

Proof. Suppose the conditions of the lemma hold for P ′. First, observe that by (i), P ′ contains at most one
component covering lca1(R ∪B). Suppose for a contradiction that A′, A′′ ∈ P ′ overlap in V1[R] ∪ V1[B].

Since lca1(R ∪ B) was chosen as a lowest root-of-infeasibility, lca1(R) and lca1(B) were not roots-of-
infeasibility for P . This implies that no two components of P overlap in V1[R]∪ V1[B], so it must be the case
that A′ and A′′ were both part of a single component in P. Furthermore, P must have been R-compatible
and B-compatible, so (A′ ∪A′′) ∩R and (A′ ∪A′′) ∩B are compatible sets. We will show that these facts
imply that if A′ and A′′ overlap in V1[R] or V1[B], then they must overlap in V2[R] or V2[B] respectively,
thus contradicting that P ′ does not overlap in V2.

Let v be a lowest node in V1[R ∪B] such that A′ ∩ L(v) 6= ∅ and A′′ ∩ L(v) 6= ∅ (where we note that v
exists since A′, A′′ overlap in some node in V1[R ∪B]). Observe that a child of v cannot be in both V1[A′]
and V1[A′′], as this contradicts the choice of v. Hence v can be in V1[A′] and V1[A′′] only if A′ and A′′ also
contain leaves in L\L(v). Let x′, x′′ be in A′ ∩L(v) and A′′ ∩L(v) respectively, and choose y′, y′′ in A′ \L(v)
and A′′ \ L(v).

First, assume both A′ and A′′ are unicolored, and thus they are each either red or blue (since otherwise they
would not overlap in V1[R] ∪ V1[B]). Note that lca1(x′, x′′) = v ≺ lca1(x′, x′′, y′) and similarly lca1(x′, x′′) ≺
lca1(x′, x′′, y′′). Since {x′, x′′, y′, y′′} is a compatible set, we must also have lca2(x′, x′′) ≺ lca2(x′, x′′, y′) and
lca2(x′, x′′) ≺ lca2(x′, x′′, y′′). But then lca2(x′, x′′) is on the path from x′ to y′ as well as on the path from
x′′ to y′′. Hence, A′ and A′′ overlap in lca2(x′, x′′) ∈ V2, contradicting that P ′ does not overlap in V2.

Now, suppose A′ is unicolored, and A′′ is the unique multicolored component A∗, and A′, A∗ overlap
in V1[R] ∪ V1[B]. Without loss of generality A′ ⊆ R. Then we still know that {x′, x′′, y′} is compatible,
and thus that lca2(x′, x′′) ≺ lca2(x′, x′′, y′), so that lca2(x′, x′′) ∈ V2[A′]. Now, x′′ ∈ A∗ is a descendant
of lca2(x′, x′′), so if A∗ also has a leaf that is not a descendant of lca2(x′, x′′) then A′ and A∗ overlap in

1For example, if P has only one multicolored component, which is R ∪ B-compatible but not splittable, and P does not
overlap in V2 ∪ V1[R ∪B], then the Red-Blue algorithm will further subdivide the partition induced on R ∪B.
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T2

B1 R1 B2 W1 R2 W2 W3

Split−−−−−−−−−→

T2

B1 R1 B2 W1 R2 W2 W3

T2

B1 R1 B2 W1 R2 W2 W3

Split−−−−−−−−−→

T2

B1 R1 B2 W1 R2 W2 W3

û

Figure 4: Two illustrations of Split(P, (R,B,W )). In the top example P = {{R1}, {B2,W1}, {B1, R2,W2},
{W3}} and Split(P) would simply refine each set of P by intersecting it with the three color classes. The
result is that every leaf is a singleton in P ′.
In the bottom example, P = {{B1, R1}, {B2,W1, R2,W2,W3}}. The set A = {B2,W1, R2,W2,W3} is
tricolored and contains triple {B2, R2,W3} that is tricolored and compatible, but not every tricolored triple
in A is compatible, e.g. {B2, R2,W2} is not compatible. In this case, the Special-Split replaces A by
{{B2}, {R2}, {W1,W2}, {W3}}.

lca2(x′, x′′), again contradicting that P ′ does not overlap in V2. So it must be the case that lca2(A∗) is a
descendant of lca2(x′, x′′). But then V2[A′] intersects the path from lca2(A∗) to lca2(R ∪B). But we already
showed above that A′ ∪A∗ was part of a single component in P , which implies that A′ is not a component of
P, contradicting (ii).

We now describe the Special-Split procedure. Recall that this is only called if A is tricolored, and there
is at least one tricolored compatible triple in A.

procedure Special-Split(A,P, (R,B,W ))
if every tricolored triple in A is compatible then
P ← P \ {A} ∪ {A ∩R,A \R}.

else
? Let û = lca2(A ∩ (R ∪B)).
P ← P \ {A} ∪ {A \ L(û), A′ ∩R,A′ ∩B,A′ ∩W} where A′ = A ∩ L(û).

end if
end procedure

The next lemma states that this ensures the partition resulting after Split is R ∪B-feasible.

Lemma 6. Let P ′ be the partition after Split(P, (R,B,W )). Then P ′ is a refinement of P that is R ∪B-
feasible. Moreover, Special-Split is applied to at most one component in each iteration of the Red-Blue
algorithm, implying that P ′ has at most one multicolored component.

Proof. The fact that P ′ does not overlap in V2 follows from the fact that every component of P was splittable.
It is also easy to see that every component is R ∪B ∪ {w}-compatible for all w ∈ L: each component is

either unicolored (and thus R ∪B ∪ {w}-compatible by the fact that the partition is R ∪B-compatible by
Lemma 1), or it is the result of a Special-Split on a component that was already R ∪B ∪ {w}-compatible
for all w ∈ L before the Special-Split.
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It remains to show that no two components in P ′ overlap in V1[R ∪ B]. By Lemma 5, it suffices to
show P ′ has at most one multicolored component, and that this component, if it exists, is a top component
(recall Definition 6). Note that the only possible multicolored components of P ′ are bicolored components
created by Special-Split on a component A ∈ P that is tricolored and in which every tricolored triple is
compatible. By property 4 of Lemma 4, the only tricolored components that have a compatible tricolored
triple are top components, and by Observation 1, the partition at the start of the iteration had at most one
tricolored component, and thus there is also at most one tricolored top component in P. So P ′ has at most
one multicolored component, which is a top component, and by Lemma 5, this implies P ′ does not overlap in
V1[R ∪B].

3.4 Find-Merge-Pair and Merge-Components

The astute reader may have noted that the Red-Blue Algorithm sometimes increases the number of components
by more than necessary to be R ∪B-feasible. For example, it follows from the arguments in the proof of the
previous lemma that if there is a tricolored component in which every tricolored triple is compatible, then not
further subdividing this component would also leave a partition that is R ∪B-feasible. Find-Merge-Pair
and Merge-Components aim to merge two components of the partition produced at the end of Split, so
that the partition with the merged components is still R ∪B-feasible. Find-Merge-Pair thus looks for a
pair of components that can be merged, by scanning the components of the current partition, and finding
two leaves in R ∪B that are in different sets of the partition now, but that were in the same component at
the start of the current iteration.

procedure Find-Merge-Pair(pairslist,P, (R,B,W ))
if exists x1, x2 ∈ R ∪B such that

x1 and x2 were in the same component at the start of the current iteration,

x1 and x2 are in distinct components A1 and A2 in P, and

P \ {A1, A2} ∪ {A1 ∪A2} is R ∪B-feasible

then
pairslist← pairslist ∪ {(x1, x2)}

end if
end procedure

Although we could simply merge the components containing x1 and x2 for the pair found by Find-Merge-
Pair, we will not do so until the very end of the algorithm. The reason we keep such “superfluous” splits
is because they will increase the objective value of the dual solution we use to prove the approximation
guarantee of 2 (see Section 4). We “reverse” these superfluous splits (i.e., we will merge components) at
the end of the algorithm; this is reminiscent of a “reverse delete” in approximation algorithms for network
design [12].

procedure Merge-Components(pairslist,P)
for each pair (x1, x2) in pairslist do

Let A1 and A2 be the sets in P containing x1 and x2, respectively.
P ← P \ {A1, A2} ∪ {A1 ∪A2}.

end for
end procedure

The proof that we will be able to merge the components containing the pair of leaves identified by Find-
Merge-Pair at the end of the algorithm will rely on the fact that (i) because the partition is R ∪B ∪ {w}-
compatible for any w ∈ L, merging the components containing the identified leaves x1, x2 ∈ R ∪B cannot
increase the number of incompatible triples contained in a component, and (ii) because the partition is
R ∪B-feasible, future iterations of the algorithm will not further refine the partition induced on R ∪B. This
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is the reason why we do not allow Find-Merge-Pair to choose leaves in W (and only choosing leaves in
R ∪B is sufficient to prove the claimed approximation guarantee).

Lemma 7. Let (R,B,W ) be the coloring during some iteration of the Red-Blue algorithm, let P be the
partition at the end of the pass, and let x, x′ ∈ R∪B. If x, x′ are in the same component of P, then x and x′

are in the same component in any partition at any later point of the algorithm’s execution.

Proof. Let (R′, B′,W ′) be the coloring of the leaves in some later iteration of the algorithm, and suppose for
a contradiction that the iteration with coloring (R′, B′,W ′) separates x and x′ in different components. From
a brief consideration of the algorithm, it is apparent that there must exist some û ∈ T2 such that A ∩ L(û)
is multicolored with respect to the coloring (R′, B′,W ′), and A ∩ L(û) contains precisely one of x, x′. By
relabeling if needed, assume that x ∈ A ∩ L(û) and x′ ∈ A \ L(û), and let w ∈ A ∩ L(û) be any leaf with a
color different from x, and note that

lca2(x,w) ≺ û ≺ lca2(x, x′, w). (1)

Since P is R ∪B-feasible, no v ∈ V1[R ∪B] is a root-of-infeasibility, and hence all leaves in R ∪B, and in
particular x and x′, must have the same color in the coloring (R′, B′,W ′). Furthermore, if w has a different
color than x and x′ in (R′, B′,W ′), then w 6∈ R ∪ B, and thus lca2(x, x′) ≺ lca2(x, x′, w). But, since P is
R ∪ B ∪ {w}-compatible, this implies that if w is in the same component as x and x′ in (a refinement of)
P, then lca2(x, x′) ≺ lca2(x, x′, w), contradicting (1), because only one of lca2(x, x′) and lca2(x,w) can be
strictly below lca2(x, x′, w).

3.5 Correctness of the algorithm

Theorem 8. The Red-Blue Algorithm returns a feasible solution to MAF.

Proof. Let k be the number of pairs in pairslist. We prove the theorem by induction on k. If k = 0, then
the algorithm returns the partition obtained at the end of the while-loop, which is feasible by the fact that
otherwise lca1(L) would be a root-of-infeasibility.

If k > 0, observe that the final partition is the same irrespective of the order in which the pairs in
pairslist are considered. We may thus assume without loss of generality that they are considered in the
reverse order in which they were added to pairslist. Let P ′ be the partition after the components have
been merged for all pairs on pairslist, except the pair (x1, x2) that was added to pairslist first. Let P
be the partition at the moment when (x1, x2) was added to pairslist, and let R,B,W be the three color
sets at that moment. Observe that P ′ is a refinement of P, and that, by Lemma 7, P and P ′ induce the
same partition of R ∪B.

Let A1, A2 be the components in P containing x1, x2 respectively. By the choice of x1, x2, (A1 ∪A2) is
R ∪B ∪ {w}-compatible for any w ∈ L, and does not overlap any component of P \ {A1, A2}.

If A1, A2 are unicolored, they both contain leaves in R ∪ B only, and thus by Lemma 7, P ′ contains
components A1 and A2 as well. Furthermore, in this case, the set A1 ∪A2 is a subset of R ∪B and thus the
fact that it is R ∪B ∪ {w}-compatible for any w ∈ L implies it is compatible. The fact that A1 ∪A2 does
not overlap any set A ∈ P \ {A1, A2} implies it also does not overlap any set A′ ∈ P ′ \ {A1, A2}, since P ′ is
a refinement of P.

If A1 and A2 are not both unicolored, observe that only one of A1, A2 is bicolored and contains leaves
in B ∪W , since those are the only type of multicolored components after Split, and P does not overlap
in V1[R ∪ B] so it can only have one multicolored component. Suppose without loss of generality that A1

is unicolored and A2 contains leaves in B ∪W . By Lemma 7, P ′ contains component A1 and a component
A′2 ⊆ A2, where A′2 ∩ (R ∪B) = A2 ∩ (R ∪B).

We need to show that A1∪A′2 is compatible and does not overlap any component in P ′ \{A1, A
′
2}. For the

latter, suppose in order to derive a contradiction that A1 ∪A′2 overlaps A′ ∈ P ′ \ {A1, A
′
2}. Observe that the

only nodes in V [A1∪A′2] that are not in V [A1]∪V [A′2] are in V2∪V1[R∪B], so the overlap must be on a node
v ∈ V2 ∪V1[R∪B]. Since P ′ is a refinement of P , there must exist A ∈ P such that A′ ⊂ A, and thus A1 ∪A′2

12



overlaps A in v as well. But then A1 ∪A2 also overlaps A in v contradicting that P \ {A1, A2} ∪ {A1 ∪A2}
is R ∪B-feasible.

To show that A1∪A′2 is compatible, note that A′2 is compatible, and that A1∪A′2 ⊂ A1∪A2 is R∪B∪{w}-
compatible for any w ∈ L. So to show that A1 ∪A′2 is compatible, it suffices to consider x,w,w′ ∈ A1 ∪A′2
with x ∈ A1 and w,w′ ∈ A′2 ∩W .

Fix any xB ∈ A′2∩B. Note that lcai(xB , w) = lcai(x, xB , w) = lcai(x,w) for i = 1, 2, because lcai(x, xB) ≺
lcai(x, xB , w) because A1 ∪A2 is R ∪B ∪ {w}-compatible. Therefore {x,w,w′} is compatible exactly when
{xB , w, w′} is compatible. We conclude that A1 ∪A′2 is compatible because A′2 is compatible.

4 Proof of the approximation guarantee

We showed in the previous section that the Red-Blue algorithm returns a feasible solution P. In order to
prove that our algorithm achieves an approximation guarantee of 2, we will use linear programming duality.

4.1 The linear programming relaxation

Introduce a variable xL for every compatible set L ∈ C, where in an integral solution, xL = 1 indicates that
the tree with leaf set L forms part of the solution to MAF. The constraints ensure that in an integral solution,
{L : xL = 1} is a partition, and that V [L] ∩ V [L′] = ∅ for two distinct sets L,L′ with xL = xL′ = 1. The
objective encodes the size of the partition minus 1.

minimize
∑

L∈C xL − 1,
s.t.

∑
L:v∈L xL = 1 ∀v ∈ L,∑
L:v∈V [L] xL ≤ 1 ∀v ∈ V \ L,

xL ≥ 0 ∀L ∈ C.

(LP)

In fact, it will be convenient for our analysis to expand the first set of constraints to contain a constraint
for every (not necessarily compatible) set of leaves A, stating that every such set must be intersected by at
least one tree in the chosen MAF solution. All these constraints are clearly already implied by the constraints
for A a singleton, already present in (LP), but they provide us a more expressive dual.

minimize
∑

L∈C xL − 1,
s.t.

∑
L:A∩L 6=∅ xL ≥ 1 ∀A ⊆ L, A 6= ∅∑
L:v∈V [L] xL ≤ 1 ∀v ∈ V \ L,

xL ≥ 0 ∀L ∈ C.

(LP′)

The dual of (LP′) is

max
∑

v∈V \L yv +
∑

A⊆L zA − 1,

s.t.
∑

v∈V [L]\L yv +
∑

A:A∩L6=∅ zA ≤ 1 ∀L ∈ C,
yv ≤ 0 ∀v ∈ V \ L,
zA ≥ 0 ∀A ⊆ L.

(D′)

We will refer to the left-hand side of the first family of constraints, i.e.,
∑

v∈V [L]\L yv +
∑

A:A∩L 6=∅ zA, as

the load on set L, and denote it by load(y,z)(L). By weak duality, we have that the objective value of any
feasible dual solution provides a lower bound on the objective value of any feasible solution to (LP), and
hence also on the optimal value of any feasible solution to MAF. Hence, in order to prove that an agreement
forest that has |P| components is a 2-approximation, it suffices to find a feasible dual solution with objective
value 1

2 (|P| − 1), i.e., for every new component created by the algorithm, the dual objective value should
increase by 1

2 (on average).
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4.2 The dual solution

The dual solution maintained is as follows. Throughout the main loop of the algorithm, zA = 1 if and only if
A is a component in P . In the last part of the algorithm, when we merge components according to pairslist,
we do not update the dual solution; these operations affect the primal solution (i.e., P) only.

Initially, yv = 0 for all v ∈ V1∪V2. At the start of each iteration, we decrease yu by 1, where u = lca1(R∪B).
Whenever in the algorithm we choose a component A and a node û ∈ V2[A], and separate the component A
into A ∩ L(û) and A \ L(û), we decrease yû by 1. To be precise this happens in Make-R ∪B-compatible,
Make-splittable and in one case in Special-Split (where we actually further refine A ∪ L(û)). The lines
where such nodes are chosen are indicated by ? in the description of the algorithm and the procedures it
contains.

Lemma 9. The dual solution maintained by the algorithm is feasible.

Proof. We prove the lemma by induction on the number of iterations. Initially, zA = 0 for all A 6= L and
zL = 1 and hence every compatible set L has a load of 1.

At the start of an iteration, we decrease ylca1(R∪B) by 1, thus decreasing the load by 1 on any multicolored
compatible set L. We show that the remainder of the iteration increases the load by at most 1 on a
multicolored compatible set and that it does not increase the load on any unicolored compatible set.

First, observe that Make-R ∪B-compatible and Make-Splittable do not increase the load on any
set: Separating A into A ∩ L(û) and A \ L(û) increases the load on sets L that intersect both A ∩ L(û) and
A \ L(û), since zA gets decreased from 1 to 0, and zA∩L(û) and zA\L(û) increase from 0 to 1. However, in this
case û ∈ V [L], and thus decreasing yû by 1 ensures that the load on L does not increase.

To analyze the effect of Split, we use the following two claims.

Claim 10. In the procedure Split(P, (R,B,W )) the load on any compatible set L is increased by at most
the number of components A ∈ P such that L ∩A is multicolored.

Proof of Claim: If the load on L is increased because Split splits a bicolored component A into two unicolored
components, then L must intersect both new components, so L ∩A is bicolored (and thus multicolored).

Consider the case where the load on L is increased because a tricolored component A is split into A ∩R,
A ∩ B and A ∩W . This split happens when all tricolored triples in A are incompatible. Therefore L ∩ A
cannot be tricolored, and the load is increased by 1. And again L ∩A is multicolored.

Suppose the load on L is increased because Special-Split(A,P, (R,B,W )) is executed for a component A.
We consider the two cases. Either A is split into two components, one of which contains all red leaves in A.
The load on a set L thus increases by 1 if L ∩A is multicolored and L ∩A ∩R 6= ∅ and by 0 otherwise. If
A is split into four components; we think of this as first splitting A into A ∩ L(û) and A \ L(û), and then
splitting A ∩ L(û) by intersecting with R,B and W . Since yû is decreased by 1, splitting A into A ∩ L(û)
and A \ L(û) does not affect the load on any set L. Splitting A∩L(û) by intersecting with R,B,W increases
the load on L by 1 if L ∩ A ∩ L(û) is bicolored and by 2 if it is tricolored; note however that the latter is
impossible, since û = lca2(A ∩ (R ∪B)), so any tricolored triple in A ∩ L(û) must be incompatible. So the
load on L again increases by at most 1 if A ∩ L is multicolored. �

Claim 11. If L is compatible, and A and A′ do not overlap in V2, then L ∩ A and L ∩ A′ cannot both be
multicolored.

Proof of Claim: Since V2[A] and V2[A′] are disjoint, it must be the case that lca2(x, y) ≺ lca2(x, y, x′) for
all x, y ∈ A and x′ ∈ A′, or lca2(x′, y′) ≺ lca2(x, x′, y′) for all x′, y′ ∈ A′ and x ∈ A (or both). Hence, if
L ∩A and L ∩A′ are both multicolored sets, then there exists x, y, x′, y′ ∈ L where x, y have different colors,
x′, y′ have different colors, lca2(x, y) ≺ lca2(x, y, x′), and lca2(x, y) ≺ lca2(x, y, y′). We claim this implies
{x, y, x′, y′} is incompatible.

Clearly one of x, y has the same color as one of x′, y′. Suppose first that either red or blue is a shared color.
Without loss of generality, we may assume that x and x′ are both red; y is then either blue or white. x and
x′ being red implies lca1(x, x′) ≺ lca1(x, y, x′), which, since lca2(x, y) ≺ lca2(x, y, x′), shows that {x, x′, y} is
an incompatible triple.
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So suppose that white is the only shared color, and that x and x′ are both white. Then either y is red
and y′ is blue, or vice versa. This implies lca1(y, y′) ≺ lca1(x, y, y′), and so, since lca2(x, y) ≺ lca2(x, y, y′),
this implies {x, y, y′} is an incompatible triple. �

It follows immediately from the two claims that Split increases the load by at most 1 on any multicolored
compatible set and that it does not increase the load on any unicolored set, which completes the proof of the
lemma.

4.3 The primal and dual objective values

Let P , pairslist be the partition and pairslist at the end of an iteration, and let D =
∑

v∈V \L yv + |P|−1
be the objective value of the dual solution at this time. In this section, we show that our algorithm maintains
the invariant that

2D ≥ (|P| − 1− |pairslist|) . (2)

Observe that the approximation guarantee immediately follows from this inequality, since the objective value
of the algorithm’s solution is P − 1− |pairslist| (where P , pairslist are the partition and pairslist at
the end of the final iteration), and by weak duality D gives a lower bound on the optimal value of the MAF
instance.

To prove that the algorithm maintains the invariant, we will show that a given iteration increases the
left-hand side of (2) by at least as much as the right-hand side. We let ∆D be the change in the dual objective
during the iteration and ∆P be the increase in the number of components less the number of pairs added to
pairslist (either 0 or 1) during the current iteration.

Since at the start of the algorithm, the partition consists of exactly one component, and yv = 0 for all
v ∈ V \ L, (2) holds before the first iteration. So to show (2), it suffices to show that

2∆D ≥ ∆P (3)

for any iteration.

In what follows, we use the following to refer to the state of the partition at various points in the current
iteration: P(0) at the start; P(1) after Make-R ∪B-compatible; P(2) after Make-Splittable; and P(3)

after Split.
We begin by showing that the coloring (R,B,W ) and the partition P(0) satisfies the conditions of one of

three cases.

Lemma 12. Given an infeasible partition P(0) that does not overlap in T2, let u ∈ V1 be a lowest root-of-
infeasibility, and let u` and ur be u’s children in T1. Let R = L(ur), B = L(u`), and W = L \ (R ∪B). Then
P(0) is R-compatible and B-compatible and satisfies exactly one of the following three additional properties:

Case 1. P(0) has exactly one multicolored component, say A0, where A0 is tricolored, not R ∪B-compatible,
and there exists xW ∈ A0 \ L(lca2(A0 ∩ (R ∪B))).

Case 2. P(0) has exactly two multicolored components, say AB , AR, where AB ∩R = ∅ and AR ∩B = ∅.

Case 3. P(0) has exactly one multicolored component, say A0, where A0 is tricolored, R ∪B-compatible and
A0 contains no compatible tricolored triple.

We will see in the proof below that Case 1, 2 and 3 correspond to a lowest root-of-infeasibility satisfying
(a), (b) and (c) respectively in Definition 4. We refer the reader to Figure 1 for an illustration of the three
cases.

Proof. Observe that if P(0) is infeasible, then the root of T1, i.e., lca1(L) is a root-of-infeasibility, and that
any v ∈ L is not a root-of-infeasibility. Hence, u is well-defined and R and B are non-empty. Note that P(0)

is R-compatible and B-compatible, since u’s children are not root-of-infeasibility.
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We will show that if u satisfies condition (a) in the definition of root-of-infeasibility, then the conditions
of Case 1 are satisfied, if (b) holds, the conditions of Case 2 are satisfied, and if (c) holds, but not (a), then
the conditions of Case 3 are satisfied.

We start with (b). Observe that, because P(0) is R-compatible and B-compatible, there must be at least
two multicolored components if (b) holds. If there are two multicolored components, both containing, say, red
leaves, then they overlap in ur = lca1(R), which implies ur is a root-of-infeasibility, contradicting the choice
of u. Similarly, there is at most one multicolored component containing blue leaves. Hence, the conditions of
Case 2 are satisfied.

If (b) does not hold, then there is at most one multicolored component; the conditions in (a) and (c)
both imply there must be at least one (and thus there is exactly one), which we will call A0. We let
R0 = R ∩A,B0 = B ∩A and û = lca2(R0 ∪B0) (where we stress that û is a node in V2, whereas u is a node
in V1).

If (a) holds, then A0 is not R ∪ B-compatible, and thus R0 6= ∅, B0 6= ∅. Assume, in order to derive
a contradiction, that A0 ⊆ L(û). Observe that, because A0 is not R ∪ B-compatible, lca2(R0) = û or
lca2(B0) = û. Suppose the former without loss of generality. But then lca1(R0) is a root-of-infeasibility
satisfying (c) which is a descendant of u thus contradicting the choice of u: A0\L(lca1(R0)) = A0\R0 ⊇ B0 6= ∅,
and R0 ∪ {w} is incompatible for any w ∈ A0 \R0.

Suppose now (c) holds, but not (a), i.e., P(0) is R∪B-compatible. Thus A0 must be R∪B-compatible and
A0 \ (R0 ∪B0) 6= ∅. Assume without loss of generality that R0 6= ∅, and note that lca1(R0) is a descendant of
u, and that, if B0 = ∅, then (c) holds for lca1(R0), contradicting the choice of u. Hence, A0 is tricolored.
Since A0 is R ∪B-compatible, lca2(R0) and lca2(B0) must be descendants of the distinct children of û, or
the children itself. Furthermore, the fact that P(0) is not R ∪B ∪ {w}-compatible for any w ∈ A0 \ (R ∪B)
implies that all white leaves are descendants of û as well, and thus any tricolored triple of leaves in A0 is
incompatible. Thus, if (c) holds but not (a), the conditions for Case 3 are satisfied.

Recall that the coloring is defined only at the start of the iteration. The lemma ensures that the partitions
during the iteration always have either one (in Case 1 and 3) or two (in Case 2) top components.

For Cases 2 and 3, the analysis is quite simple.

Proposition 13. Let the initial partition P(0) and coloring (R,B,W ) satisfy the conditions of Case 2 or 3
in Lemma 12. Then 2∆D ≥ ∆P .

Proof. We first make two observations that apply in Case 2 and 3: (i) P(0) is already R ∪B-compatible, so
P(1) = P(0), and (ii) Split(P(2), (R,B,W )) will not perform any Special-Split, by property 4 in Lemma 4
and because the top component has no tricolored triple that is compatible (since we are in Case 2 or 3).

These two observations imply that

|P(3)| − |P(2)| = |P(2)| − |P(0)|+ 2. (4)

To see this, note that, since no Special-Split is performed, |P(3)|− |P(2)| is equal to the number of bicolored
components in P(2) plus twice the number of tricolored components in P(2). Since P(1) = P(0), and using
properties 2 and 3 of Lemma 4, P(2) has |P(2)|−|P(0)| more multicolored components than P(0), and the same
number of tricolored components as P(0). So in Case 2, P(2) has |P(2)| − |P(0)|+ 2 bicolored components and
zero tricolored components, and in Case 3, P(2) has |P(2)| − |P(0)| bicolored components plus one tricolored
component, thus indeed (4) holds.

In addition, we note that
∆D = |P(3)| − |P(2)| − 1. (5)

To see this, note that at the start of the iteration, the dual objective value is reduced by 1 when yu is
decreased by 1 for u = lca1(R ∪B). Make-splittable does not change the dual objective value, because,
even though |P| increases by 1 every time the number of components increases by 1,

∑
v yv decreases by 1 as

well. Finally, since Split will not perform any Special-Split, the increase in the dual objective value due
to Split is equal to the increase in the number of components due to Split, which is |P(3)| − |P(2)|.
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Note that the size of pairslist may increase but will never decrease, and thus

∆P ≤ |P(3)| − |P(2)|+ |P(2)| − |P(0)|

= 2
(
|P(3)| − |P(2)|

)
− 2 by (4)

= 2∆D by (5).

We now prove a similar proposition for Case 1, the proof of which is more involved.

Proposition 14. Suppose the initial partition P(0) and coloring (R,B,W ) satisfy the conditions of Case 1
in Lemma 12. Then 2∆D ≥ ∆P .

Proof. In Case 1, we start with one tricolored component A0, which is not R ∪B-compatible. Let xW be a
white leaf in A0 that is not a descendant of lca2(A0 ∩ (R ∪B)), which exists by the definition of Case 1. By
property 6 in Lemma 4, xW is also contained in the top component of P(3), and by property 2 in Lemma 4,
the top component is multicolored. Therefore, the top component of P(2) is either bicolored, or it is tricolored
and a Special-Split is performed on the top component.

Let χ be an indicator variable that is 1 if the top component in P(2) is tricolored and has a tricolored
triple that is incompatible. Let t be the number of tricolored components in P(2) that are not top components.
We claim that

|P(3)| − |P(2)| = |P(2)| − |P(0)|+ 1 + 2χ+ t. (6)

Indeed, if χ = 0, the top component is divided into two components by Split, and if χ = 1 it is subdivided
into four components. Thus splitting the top component increases the number of components by 1 + 2χ. By
property 2 of Lemma 4, P(2) has |P(2)|− |P(0)| multicolored components that are not top components, and by
property 4, each of the tricolored components that are not top components do not require a Special-Split
and are thus subdivided into three components by Split. Hence, splitting the components that are not top
components increases the number of components by |P(2)| − |P(0)|+ t.

Next, we analyze the increase in the dual objective. We claim that

∆D = |P(3)| − |P(2)| − 1− χ. (7)

To see this, note that the dual objective is decreased by 1 when we decrease ylca1(R∪B) by 1 at the start of the
iteration. The dual objective is not affected by Make-R ∪B-compatible and Make-Splittable. Finally,
if χ = 0, the increase in the dual objective due to Split is equal to the increase in the number of components
|P(3)| − |P(2)|. If χ = 1, the same holds, but Special-Split on the top component also decreases yû0

by 1.
So we get that

|P(3)| − |P(0)| = |P(3)| − |P(2)|+ |P(2)| − |P(0)|

= 2
(
|P(3)| − |P(2)|

)
− 1− 2χ− t by (6)

= 2∆D + 1− t by (7).

Recall that ∆P is equal to |P(3)| − |P(0)| minus the number of pairs added to pairslist in the current
iteration. Hence, to conclude that ∆P ≤ 2∆D, we need to show that if t = 0, then a pair is added to
pairslist by Find-Merge-Pair.

We will say that a component A is able to reach û if û ∈ V2[A] or if lca2(A) ≺ û and all intermediate
nodes on the path from lca2(A) to û are not covered by any component in P(3). The following lemma (which
is actually valid in general, and not only for Case 1) enumerates precisely the situations when a merge is
possible.

Lemma 15. Let A0 ∈ P(0), and let Q denote the set of components in P(3) that are contained in A0. Then
there exist a pair of elements in A0 that can be added to pairslist if and only if at least one of the following
is true:

17



(a) Q contains a bicolored component.

(b) There is a node û ∈ V2 that can be reached by two red components or two blue components in Q.

(c) There is a node û ∈ V2 that can be reached by a red and a blue component in Q, but is not covered by
these components. Furthermore, the node û must satisfy that the nodes on the path from û to lca2(A0)
are not covered by any red or blue component in Q.

Proof. By the definitions of Split and Special-Split, a multicolored component in P(3) must be a top
component with blue and white leaves created by applying Special-Split to a tricolored component. By
Lemma 6, there is at most one such multicolored component; if it exists, call it A∗.

(a) If A∗ exists, then let A ∪ A∗ be the tricolored component from which Special-Split formed a red
component A and the bicolored component A∗. Then we can merge A and A∗ to obtain a new partition
that is R∪B-feasible: it is clear that undoing the Special-Split yields a partition that does not overlap
any other component of P in V2. The new component A ∪A∗ is R ∪B ∪ {w}-compatible since A ∪A∗ is
R ∪B-compatible and every tricolored triple in A ∪A∗ is compatible. Since the new unique bicolored
component is a top component, by Lemma 5, the new partition also does not overlap in V1[R ∪B].

(b) If Q does not contain a bicolored component A∗, suppose A,A′ ∈ Q are distinct red components in Q so
that A and A′ can both reach the same node û in V2. Then merging A and A′ gives a new partition that
does not overlap in V2, and which has no multicolored components. Since A0 ∩ R is compatible, so is
A ∪A′. By Lemma 5 the new partition does not overlap in V1[R ∪B]. Hence, merging A and A′ gives a
new partition that is R ∪B-feasible.

The same applies if A and A′ are both blue components in Q.

(c) If Q does not contain a bicolored component A∗, suppose there exist A,A′ ∈ Q with A red and A′ blue
such that (i) there exists û ∈ V2 \ (V2[A] ∪ V2[A′]) that can be reached by both A and A′; and (ii) the
nodes on the path from û to lca2(A0) are not in V2[A′′] for any A′′ 6⊆W . Then merging A and A′ gives
a new partition that does not overlap in V2 and the new component A ∪ A′, is R ∪ B-compatible by
(i). Thus the new partition is R ∪B ∪ {w}-compatible for any w ∈ L. The unique bicolored component
A ∪A′ in this new partition satisfies that any node on the path from û = lca2(A ∪A′) to lca2(A0) is not
covered by a component that is not white. The components of the partition that overlap a node on the
path from lca2(A0) to lca2(R ∪B) were not changed in the current iteration. Therefore, by Lemma 5,
the new partition does not overlap in V1[R ∪B]. Hence, merging A and A′ gives a new partition that is
R ∪B-feasible.

We note that the above three cases encompass all possible merge opportunities within Q. If two components
cannot reach the same node û ∈ V2, then merging them gives a partition that overlaps in V2. If a red
and blue component A and A′ can reach the same node û ∈ V2 and this node is covered by either A
or A′, then A ∪ A′ is not R ∪ B-compatible. And if a red and blue component A and A′ can reach a
node û ∈ V2 that is not in V2[A] ∪ V2[A′], but some node on the path from û to lca2(A0) is covered by a
component A′′ ∈ Q that is red or blue, then A ∪A′ will overlap A′′ in V1[R] or V1[B]. To see this, assume
A′′ is red (the blue case is analogous) and let v̂ be the node in V2[A′′] closest to û on the path from û to
lca2(A0). Then v̂ = lca2(A ∪ (A′′ ∩ L(v̂)) ≺ lca2(A′′), and since A ∪ A′′ are compatible in R, we should
also have lca1(A ∪ (A′′ ∩ L(v̂)) ≺ lca1(A′′). Thus A′′ and A overlap on a node on the path from lca1(A) to
lca1(R ∪B).

We are now ready to complete the proof of Proposition 14, by showing that if t = 0, then at least one of
(a), (b) and (c) in Lemma 15 holds for P(3).

Suppose (a) does not hold, i.e., P(3) has only unicolored components. Let û be the last node chosen in
Make-R ∪ B-compatible to subdivide the top component. The existence of û follows since P(1) 6= P(0)

as we observed above. Let A ⊂ L(û) be the non-top component added to the partition at this point. Since
t = 0, we have that A is bicolored by property 2 in Lemma 4. Split will split A into A ∩R and A ∩B, and
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by property 5 in Lemma 4, node û itself is not covered by any component of P(3) and it can be reached by
red component A∩R and blue component A∩B. So if there is no node on the path in T2 from û to lca2(A0)
that is covered by a red or blue component in P(3), then A ∩R and A ∩B give a pair that can be added to
pairslist according to (c).

So suppose that there is a node on the path from û to lca2(A0) that is covered by a (say) red component
AR in P(3); without loss of generality v̂ is the node closest to û such that v̂ ∈ V2[AR] for some red component
AR. If A ∩R can reach v̂ then v̂ can be reached by two red components, so we can add a pair to pairslist

according to (b).
Otherwise, let ŵ be the node closest to v̂ on the path from û to v̂ that is covered by a white component

AW . By definition of ŵ, all nodes on the path from ŵ to v̂ are not covered by any component in P(3). Observe
that

• AW and AR must have been part of the top component of P(1), by definition of û.

• AW and AR cannot have been part of the top component of P(2): as we observed above, the top
component of P(2) contains a white leaf xW that is not a descendant of lca2(A0∩(R∪B)), so AW ∪{xW }
overlaps v̂, and since AR also overlaps v̂, the top component of P(2) would not be splittable if it contained
AR ∪AW , contradicting Lemma 3.

• AW was part of non-top component A′′ in P(2), which contained red and white leaves: by the second
observation, AW must have been part of a non-top component A′′, which was multicolored by property 2
of Lemma 4. Since A′′ and AR were part of the same component of P(1) by the first observation,
A′′ ∪AR must be R ∪B-compatible by Lemma 1. This implies A′′ does not contain any blue leaves,
since otherwise such a blue leaf xB , and a red leaf xR ∈ AR ∩L(v̂) and a red leaf yR ∈ AR \ L(v̂) would
have lca2(xB , xR) = v̂ ≺ lca2(xB , xR, yR), and thus the triple would be incompatible, contradicting
that A′′ ∪AR is R ∪B-compatible.

Thus, A′′ = AW ∪ (A′′∩R), and by property 5 in Lemma 4, the component A′′∩R in P(3) can reach lca2(A′′).
Since ŵ ≺ lca2(A′′), lca2(A′′) is on the path from ŵ to v̂. But then A′′ ∩R can reach v̂, so AR and A′′ ∩R
give a pair to be added to pairslist according to (b).

5 A compact formulation of the LP

Here we give a compact formulation for (LP). This shows that it can be optimized efficiently. While this
is not needed in our algorithm, it is possible that an LP-rounding based algorithm could achieve a better
approximation guarantee, in which case this formulation will be of use. Moreover, the LP explicitly encodes
the structure of compatible sets in a way that (LP) does not; we believe this may provide additional structural
insights in the future.

We remark that (LP) can also be shown to be polynomially solvable by providing a separation oracle for
the dual. The dual of (LP) is similar to (5), the dual of (LP′), except that z is indexed only by singletons
and not arbitrary subsets of L. This dual has a polynomial number of variables, but an exponential number
of constraints. By the equivalence of separation and optimization, it suffices to provide a separation oracle
for this dual. The following problem subsumes this separation problem: given some (positive or negative)
weights y on the nodes of V , find a compatible subset L ∈ C which maximizes

∑
v∈V [L] yv. This is a weighted

variant of the maximum agreement subtree problem. Similar to the usual (unweighted) version [24], this can
be solved in polynomial time via dynamic programming.

Assume for convenience that L = {1, 2, . . . , n}. We will deviate from the notational conventions in the
previous sections, and use i and j to denote leaves, and we will use t ∈ {1, 2} to denote the indices of the two
input trees.

Consider a set L ⊆ L, and the tree Tt[L] it induces in Tt for t ∈ {1, 2}. We can identify each internal
node u of Tt that has two children in Tt[L] by a pair consisting of the smallest leaf in L in the subtree below
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each of the two children. If these two leaves are i and j, where i ≤ j, we will label u with (i, j). Note that
u = lcat(i, j). We extend this labeling to the leaves in L, and label i ∈ L with the pair (i, i).

The set L is compatible precisely if the set of labels of the labelled nodes of T1[L] and T2[L] are the same,
and the ancestry relationship between the labelled nodes are also the same. Observe that if an internal node
u in Tt[L] is labelled with (i1, i2), then it must have two descendants u1 and u2 where u1 is labelled (i1, j)
and u2 is labelled (i2, k) for some j, k ∈ L.

Using this observation, we can use the labelling to describe compatibility constraints. To do this, we
begin by constructing a directed acyclic graph D = (Z,U1 ∪ U2) as follows. The node set Z consists of all
pairs (i1, i2) ∈ L2 for which i1 ≤ i2. With a slight abuse of notation, we define lcat(r) for r = (i1, i2) ∈ Z as
lcat(i1, i2). Given two nodes r = (i1, i2) and s = (j1, j2) in Z:

• if lcat(s) ≺ lcat(r) for all t ∈ {1, 2} and i1 = j1, then (r, s) ∈ U1;

• if lcat(s) ≺ lcat(r) for all t ∈ {1, 2} and i2 = j1, then (r, s) ∈ U2.

Suppose (r, r1) ∈ U1, (r, r2) ∈ U2. Observe that then L(lcat(r1)) and L(lcat(r2)) are disjoint subsets of
L(lcat(r)) for t ∈ {1, 2}. This implies that r1 and r2 cannot both have a directed path to the same node
s = (j1, j2), since that would imply that j1, j2 ∈ L(lcat(r1)) ∩ L(lcat(r2)).

Define ZL = {(i, i) : i ∈ L}. Let F denote the set of out-arborescences in D with leaf set contained in
ZL and where each internal node has one outgoing arc in U1 and one outgoing arc in U2. Then the above
implies that L ∈ C if and only if there is an F (L) ∈ F with leaf set corresponding to L. (If |L| = 1, F (L) is
empty.) Let χF ∈ {0, 1}U1∪U2 be the characteristic vector of the arc set of F , for any F ∈ F . Let CF denote
the cone generated by {χF : F ∈ F}, i.e., y ∈ CF , if and only if there exists xL ≥ 0 for L ∈ C such that
y =

∑
L∈C:|L|≥2 xLχF (L).

We begin by giving a description of CF . For r ∈ Z, let δ+(r) denote the arcs in D leaving r, and δ−(r)
the arcs entering r. For S ⊆ U1 ∪ U2, let y(S) =

∑
a∈S ya.

Lemma 16.

CF = {y ∈ RU1∪U2
+ : y(δ+(r) ∩ U1) = y(δ+(r) ∩ U2) ∀r ∈ Z \ ZL

y(δ+(r) ∩ U1) ≥ y(δ−(r)) ∀r ∈ Z \ ZL}.

Proof. Let Y denote the cone described by the right hand side of the claimed equality. It is clear that χF ∈ Y
for any F ∈ F , and hence that CF ⊆ Y . It remains to show that Y ⊆ CF .

Suppose y ∈ Y ; we prove that y ∈ CF , proceeding by induction on the size of the support of y. The claim
trivially holds if y = 0. So suppose y 6= 0. Choose r = (i1, i2) ∈ Z such that y(δ−(r)) = 0 but y(δ+(r)) > 0.
We now find an arborescence F ∈ F rooted at r and contained in the support of y. This is trivial if i1 = i2;
if not, we proceed as follows. Choose any (r, r1) ∈ U1 ∩ δ+(r) and (r, r2) ∈ U2 ∩ δ+(r) that are both in the
support of y. Arguing inductively, we obtain arborescences F1 and FR in the support of y rooted at r1 and
r2 respectively. We have already noted that there is no node that both r1 and r2 can reach; thus F1 and FR

are disjoint. We obtain F by combining F1, FR and the arcs from r.
Now set y′ = y − εχF , where ε is chosen maximally so that y′ ≥ 0. So y′ has smaller support, and so by

induction, y′ ∈ CF . Hence y = y′ + εχF is too.

Using Lemma 16, we now describe our compact formulation. For t ∈ {1, 2} and v ∈ Vt, let lca−1(v) =
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{r ∈ Z : lcat(r) = v}.

min
∑

r∈Z\ZL

(
y(δ+(r) ∩ U1)− y(δ−(r))

)
+
∑
i∈L

x{i} − 1 (LP?-1)

s.t. y(δ+(r) ∩ U1) = y(δ+(r) ∩ U2) ∀r ∈ Z (LP?-2)

y(δ+(r) ∩ U1) ≥ y(δ−(r)) ∀r ∈ Z (LP?-3)

x{i} = 1− y(δ−(i, i)) ∀i ∈ Z (LP?-4)∑
r∈lca−1(v)

y(δ+(r) ∩ U1) ≤ 1 ∀v ∈ V \ L (LP?-5)

x{i} ≥ 0 ∀i ∈ L
ya ≥ 0 ∀a ∈ U1 ∪ U2

Lemma 17. This LP is equivalent to (LP).

Proof. By Lemma 16, (LP?-2) and (LP?-3) ensure y ∈ CF and thus we can expand y =
∑

L∈C:|L|≥2 xLχF (L)

for x ≥ 0. Then taking xL for |L| = 1 as defined by (LP?-4), we ensure that
∑

L∈C:i∈L xL = 1 for all i ∈ L.
Constraint (LP?-5) becomes

∑
L∈C:v∈L xL ≤ 1 for all non-leaves v. And for r ∈ Z \ ZL,

y(δ+(r) ∩ U1)− y(δ−(r)) =
∑

L∈C:rt(F (L))=r

xL,

where rt(F ) denotes the root of F . So the objective becomes
∑

L∈C xL − 1. Thus, this formulation is
equivalent to (LP).
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A The running time

It is quite clear from the definition of the Red-Blue Algorithm that it runs in polynomial time. In this section
we show that it can be implementated to run in O(n2) time, where n denotes the number of leaves. (We
work in the random access machine model of computation, and assume a word size of Ω(log n).)

We note that our presentation is focused on showing the bound on the running time as straightforwardly
as possible, and there are some places where a more careful implementation is more efficient. However, we
have not been able to find an implementation with an overall running time of o(n2).

We assume P is a given partition (not overlapping in V2), that is stored such that we can query the size of
any component in constant time, and that for each node û ∈ V2, we can query Aû, the component in P that
covers û (which will be equal to ∅ if P does not cover û), and s(û) = |L(û)∩Aû|. Note that we can determine
this information by a bottom-up pass of T2 in O(n) time. We will recompute it whenever we refine P; since
there can only be at most n− 1 refinement operations, the total time to maintain this information is O(n2).

By Harel [13] (see also [14, 2]), we furthermore may assume that the computation of lcai(u, v) for given
nodes u, v ∈ Vi takes constant time (after a linear preprocessing time). It immediately follows from this that
we can determine whether or not u � v in tree Ti in constant time as well.

We will show that the time between subsequent refinements of P is O(n). This bounds the time of the
main loop of the algorithm by O(n2). The only remaining part of the algorithm is the Merge-Components
step, which will perform at most n− 1 merges, each of which can clearly be done in O(n) time.

Finding a lowest root-of-infeasibility

We make a single pass through T1, in bottom-up order (starting from the leaves), until we find a root-of-
infeasibility. We will spend constant time per node, thus showing that the time to find a lowest root-of-
infeasibility is O(n).

For each node u ∈ V1 that we have already considered, Au references the component A ∈ P which
covers u, with Au = ∅ if there are no such components. (If there are multiple such components, u is a
root-of-infeasibility.) Furthermore, p̂u is equal to lca2(Au ∩ L(u)), and s(u) is the size of Au ∩ L(u). Observe
that for any x ∈ L, we know Ax, the component containing x, and s(x) = 1 and p̂x = x.

Given a non-leaf node u ∈ V1, with children u1 and u2 that have already been considered, we can determine
whether u is a root-of-infeasibility, and if not determine Au, p̂u and s(u), in constant time: If either (or both)
of Au1 and Au2 do not cover u (which can be determined by checking if Aui = ∅ or s(ui) = |Aui |), set all the
values according to which child (if any) does cover u, and end the consideration of node u. So assume from
now on that both do cover u.

If Au1
6= Au2

, then u satisfies the second condition of a root-of-infeasibility, and we are done. Otherwise,
Au = Au1

= Au2
. Set p̂u = lca2(p̂u1

, p̂u2
) and s(u) = s(u1) + s(u2). If p̂u1

⊀ p̂u or p̂u2
⊀ p̂u, then L(u) is

incompatible, and u satisfies the first condition of a root-of-infeasibility. If s(p̂u) = |Au| and s(u) < |Au|
then u satisfies the third condition for being a root-of-infeasibility: by s(u) < |Au|, we know Au \ L(u) 6= ∅.
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For any w ∈ Au \ L(u), lca1(Au ∩ L(u)) � u � lca1(Au ∩ L(u) ∪ {w}), while by s(p̂u) = |Au| we know that
lca2(Au ∩ L(u)) = lca2(Au). So Au ∩ L(u) ∪ {w} is incompatible for any w ∈ Au \ L(u). Otherwise, u is not
a root-of-infeasibility, and we finish our consideration of u.

Once we have determined the coloring (R,B,W ), we compute |A ∩ C| for each component A ∈ P and
C ∈ {R,B,W}. We also compute three additional labels for each node û ∈ V2: sC(û) = |Aû ∩ L(û) ∩ C|
for C ∈ {R,B,W}. This information can be determined by a bottom-up traversal of T2 in O(n) time. We
assume this information is updated whenever the partition is refined.

Make-R ∪B-compatible

Consider the nodes of T2 in bottom-up order, until we find a node û such that both sB(û) > 1 and sR(û) > 1.
Since û is a lowest such node, if |Aû ∩ R| = sR(û) and |Aû ∩ B| = sB(û), then Aû is R ∪ B-compatible;
otherwise û is precisely as indicated in Make-R ∪B-compatible.

Make-Splittable

We again consider the nodes in T2 in bottom-up order. For any node û with Aû 6= ∅, using sC(û) for
C ∈ {R,B,W}, we can check in O(1) time whether Aû ∩ L(û) is bicolored, and that for any C ∈ {R,B,W}
with Aû ∩ C 6= ∅, that sC(û) < |Aû ∩ C| (and hence (Aû \ L(û)) ∩ C 6= ∅).

Split

Note that a regular split of a component A can be done in O(n) time, by simply checking the color of each
leaf in A and partitioning A accordingly. We now show how to check if A needs a Special-Split (and if so
which of the two possible refinements is applied) by considering the nodes in V2[A] in bottom-up order.

If A is tricolored, then the fact that A is R∪B-compatible and splittable implies that there exist ûR and ûB
that are covered by A and for which A∩L(ûR) = A∩R and A∩L(ûB) = A∩B. Using a bottom-up traversal
of V2 will find ûR and ûB (they are the first nodes v̂ encountered such that Av̂ = A and sC(v̂) = |A ∩ C| for
C = R and B respectively).

Given ûR and ûB, we check if a Special-Split is required, by considering û = lca2(A ∩ (R ∪ B)) =
lca2(ûR, ûB); a Special-Split is required exactly if s(lca2(ûR, ûB)) < |A|, since in that case any xW ∈ A \
L(lca2(ûR, ûB)) forms a compatible triple with any xR ∈ A∩R, xB ∈ A∩B. If, in addition, sW (lca2(ûR, ûB)) =
0, we know that every tricolored triple in A is compatible.

Find-Merge-Pair

We need to determine if there exist two components (both intersecting R ∪B) that can be merged, in time
O(n). If such components are found, then we can take a non-white leaf in each component and add this pair
to pairslist. Recall Lemma 15, which enumerates all possible situations where a potential merge may exist.

(a) P has a bicolored component. This component must have been created by an application of Special-
Split, splitting some component A ∪A∗ ∈ P(2) into A and A∗. As discussed in the proof of Lemma 15,
simply undoing this split is a valid merge. Since Special-Split is invoked at most once per iteration, we
can simply add a pair to pairslist during Special-Split.

(b) There is a node û ∈ V2 that can be reached by two red or two blue components that were part of the same
component at the start of the current iteration. By Lemma 12 (and property 1 of Lemma 4), any two
components that are not white that were created in the current iteration must have been part of the
same partition at the start of the iteration. We may assume that we can check for each component in
constant time whether it was created in the current iteration.

We work bottom-up in T2, and set Bû to be the set of red and blue components that were created in the
current iteration, and that can reach û for every û ∈ V2. If Bû contains two components of the same
color, these two components can be merged, and we terminate.
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Note that if Bû ever contains three components, we will have found a merge and the algorithm will
terminate. This ensures that we can compute this for û in constant time, given the values of Aû and Bû1

and Bû2
for the children of û.

(c) There is a node û ∈ V2 that can be reached by a red and a blue component that were part of the same
component A0 at the start of the current iteration, but is not covered by these components. Furthermore,
the node û must satisfy that the nodes on the path from û to lca2(A0) are not covered by any red or blue
component. Note that by Lemma 12, A0 is the only component that was modified in the current iteration,
so for this second condition we can simply check that no node on the path from û to the root of V2 is
covered by a red or blue component that was created in the current iteration.

If we did not find two components of the same color that can be merged, we have found Bû for every
û ∈ V2, where |Bû| ≤ 2. We now work top-down in T2. If we encounter a node û that is covered by a red
or blue component that was created in the current iteration, we stop and do not consider the descendants
of û (since for any such a descendant, û is on its path to lca2(A0)). If we encounter a node û such that
|Bû| = 2 and û is not covered by any component, the two components in Bû can be merged, and we may
terminate.

B Integrality gap lower bounds

We show a lower bound on the integrality gap of 16
5 for the integer linear program formulation of Wu [28].

Recall that a solution to MAF can be viewed as the leaf sets of the trees in a forest, obtained by deleting
edges from the input trees. The formulation has binary variables xe for every edge e ∈ T1, indicating whether
e is deleted from T1. We use P (i, j) to denote the set of edges in T1 on the path between leaves i and j, and
P2(i, j) to denote the set of edges in T2 on the path between leaves i and j. Wu’s integer linear program [28]
is given by:

minimize
∑
e

xe

s.t.
∑

e∈P (i,j)∪P (i,k)∪P (j,k)

xe ≥ 1 for all incompatible triples i, j, k

∑
e∈P (i,j)

xe +
∑

e∈P (k,`)

xe ≥ 1
for all two pairs (i, j) and (k, `) for which P (i, j) ∩ P (k, `) = ∅, and
P2(i, j) ∩ P2(k, `) 6= ∅

The first family of constraints ensures that at least one edge of the paths between i and j, i and k, and j and
k has to be deleted for each inconsistent triple i, j and k. The second family of constraints ensures that at
least one edge is deleted for every pair of paths between i and j, and k and ` that are disjoint in T1, but for
which the corresponding paths in T2 are not disjoint.

Lemma 18. The integrality gap of the integer linear program of Wu [28] is at least 16
5 .

Proof. Let n = 2k for some k even. We label each internal node in both T1 and T2 with a binary string:
the roots get the empty string as label, and given an internal node u its left child gets u’s label with a “0”
appended, and its right child gets u’s label with a “1” appended. In T1, the leaves are labeled in the same
way as the internal nodes, with a binary string of length k. In T2, the binary string is reversed to give the
label of the leaf. For example, the leftmost leaf (of both trees) has label 00 · · · 0, and the leaf to the right of it
has label 0 · · · 01 in T1, and 10 · · · 0 in T2.

Consider the internal nodes whose label is a string of length strictly less than k/2; there are exactly
2k/2 − 1 =

√
n− 1 such nodes in each tree. We claim that any component A must cover at least |A| − 1 of

these internal nodes. To see this, consider the set of internal nodes in Vt that have two children in the subtree
of Tt induced by A for t = 1, 2. We will call such nodes bifurcating. Observe that there are 2(|A| − 1) such
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T1

1 2 3 4 5 6 7 8

T2

1 5 8 2 7 3 6 4

Figure 5: Example with integrality gap of 5
4 for the new ILP introduced in Section 4. An optimal solution to

the LP-relaxation is indicated by the colors: the compatible sets corresponding to each of the components
{1, 2, 3}, {1, 5, 8} and {4, 6, 7} (indicated by the colors red, blue and green respectively) have an x-value of 1

2 ,
as well as every singleton leaf set, except leaf 1; all other x-values are 0. The objective value of this solution
is 1

2 (3 + 7)− 1 = 4. An optimal solution to the ILP has 6 components, i.e., an objective value of 5.

nodes. Furthermore, since A is compatible, there is a 1-1 mapping f from the bifurcating nodes in V1 to the
bifurcating nodes in V2, where, L(u) ∩A = L(f(u)) ∩A. Now, the label for a bifurcating node u ∈ V1 is the
maximum length prefix that the binary strings for the leaves in L(u) ∩A have in common, and the label for
f(u) is the reverse of the maximum length suffix the leaves in L(u) ∩A have in common. Hence, at least one
of u and f(u)’s labels has length less than k/2.

The fact that any component A must cover at least |A| − 1 of the 2
√
n − 2 internal nodes with labels

of length less than k/2 implies that any partition that does not overlap must have at least n − 2
√
n + 2

components. Thus the optimal value of the integer program is at least n− 2
√
n+ 1.

On the other hand, the LP relaxation of the integer program has a feasible solution with objective value
5
16n: set a value of 1

4 on the edges to each leaf in the tree (i.e., from an internal node with a label of length
k− 1 to a node with a label length k), and a value of 1

8 on all edges between nodes with labels of length k− 2

to nodes with labels of length k − 1. This implies a lower bound of limn→∞
n−2
√
n+1

5
16n

= 16
5 on the integrality

gap.

As remarked in the introduction, the largest integrality gap for our formulation that we are aware of is
5/4. The instance is described in Figure 5.
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