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PREFACE 

Since 1985, when I started my research in the field of algebraic techniques for 
software specification, I developed the ambition to make process algebra 
operational. In the process algebra group at the University of Amsterdam and 
the Center for Mathematics and Computer Science (CWI), this was an 
unexplored subject. A first attempt was to catch process algebra in an algebraic 
specification formalism. This worked out quite well, but the resulting 
specification was not executable (see (82]) . This was mainly a consequence of the 
undecidable character of most notions in process algebra. 

In spite of this undecidability, it seemed that software development using 
process algebra could benefit from a series of tools that could be an aid in 
specification, simulation, verification and implementation, or even automate 
it. The writing of a simple prototype of a process simulation tool made it clear 
to me that the first thing to do was the design of an input language for such a 
tool. This language was called PSF, and now it is the basis of all implementa­
tion directed work on process algebra in our group. 

This specification language, together with a number of implementation 
issues and case studies was the topic of the research of which this thesis reports. 
The finishing of this thesis does not imply that the work on the toolkit and 
related aspects is also finished . It just provides a snapshot of a project that is 
still going on. 

ACKNOWLEDGEMENTS 

Of the various people who influenced the contents and preparation of this 
thesis, my promotor Jan Bergstra and co-promotor Jos Baeten take a special 
position. Jan, with his symbiotic view on the combination of science and 
management created an encouraging environment for scientific research. His 
optimism and richness of ideas stimulated me a lot in the preparation of this 
thesis . 

I thank Jos for his friendly though critical guidance. His comments were 
always very thorough and useful. He showed a good eye for detail by reading 
and debugging the boring proofs and lengthy specifications I came up with. 

Parts of this thesis were written in fruitful co-operation with Gert Veltink 
and Freek Wiedijk. I thank Gert for his efficient and constructive way of 
working and Freek for sharing both his enthusiasm and contempt with respect 
to computer science. His presence as well as his regular absence stimulated me 
in writing this thesis. 

Thanks are due to Hans Mulder because he never failed in pointing out the 
weakness in the algebraic approach towards software specification. He eagerly 



viii 

showed his knowledge of computer operation and skillfulness in close reading 
by finding bugs in computer programs and in papers. 

At the weekly Process Algebra Meetings I always enjoyed the open atmo­
sphere of critical co-operation. Internal reviews and brain-storms as at this 
seminar are necessary conditions to keep the work of a group of researchers 
focussed and up to date. Therefore I thank the participants of the Process 
Algebra Meetings, among whom Wiet Bouma, Nicolien Drost, Rob van 
Glabbeek, Henk Goeman, Jan Friso Groote, Jan Willem Klop, Karst Koymans, 
Alban Ponse, Gerard Renardel, Piet Rodenburg, Frits Vaandrager, Chris 
Verhoef, Jos Vrancken, Fer-Jan de Vries, Peter Weijland and Han Zuidweg. 

I thank the members of the GIPE group for their assistance in using ASF and 
SDF: Paul Hendriks, Emma van der Meulen, Jan Rekers, Pum Walters and 
especially Paul Klint whose suggestions on practical issues were of great value 
and Wilco Koorn for programming a prototype of the PSF type checker. 

I thank Casper Dik for keeping the machines running, Bob Diertens for his 
skillful programming and Madelon Drolsbach for secretarial assistance. 

Furthermore a number of master's students from the University of 
Amsterdam helped by performing case studies and writing software: Firoez 
Azarhoosh, Duncan Barrow, Jeroen Brouwer, Felix Croes, Henrik Jacobsson, 
and Arnout Oldenburger. 

I thank the promotion committee, consisting of Jan Bergstra, Jos Baeten, 
Paul Klint, Scott Smolka, Martin Rem and Karst Koymans, for their comments. 

Finally, my special thanks go to Hans van Herwijnen who designed the 
cover . 



TABLE OF CONTENTS 

Preface ... ..... ....... .. .. .. ................................. ..... .... .... .. ..................... .... .......... vi i 

Acknowledgernents ........ ...... ............ ........ ............. ..... ........ ...... ..... .. .. ... .. vii 

Table of Contents ...................... ....... ......... .......... .... .. ... .. ....... .... .. ...... .... ... . ix 

1 Introduction ....... .... ........................................................................... ..... 1 

2 A Process Specification Forrnalisrn ... .............. ....... ... .... ........ ... .... ..... 5 

3 Extending PSF .................... .. .................. ... .............. .. ... ........................ 73 

4 A Tool Interface Language for PSF .. .. .... ..... ...... .... .. ....... ................ 103 

5 Specification and Verification of CIM-Architectures ........ ...... .. 123 

6 Specification of the Transit Node in PSF ...... ..... ... ... ...... ............. . 161 

References ........ .. .. .......... .. ............ ................... ..... ...... ........ ......... ... ..... ..... 185 

Nederlandse Sarnenvatting .. .............. .......................... .. ...... ...... .. ....... 193 





Chapter 1 

/ NTRODUCTION 

1. SPECIFICATION 

The recognition that in the construction of software a number of different 
phases can be distinguished, led to the formulation of the classical life cycle 
model for software development, as described e.g. by Sommerville [97]. In this 
model, the actual coding of the software only starts after a thorough analysis of 
the problems involved and a design of the solutions for these problems. The 
result of this design phase is the specification, a complete description of the way 
in which the problems are to be solved. 

For this purpose, several specification techniques have been developed. 
These techniques range from the use of (structured) natural languages and 
informal drawings, to formal specification techniques. Often the resulting 
computer program itself is considered as the specification of the system. The 
main problem with informal specification techniques is that they allow 
ambiguities, inconsistencies and incompleteness, while on the other hand a 
formal approach enables formal verification. These are the main reasons that 
there is an increased interest in formal specification techniques by software 
developers . If the specification technique allows to write executable specifica­
tions, it can be used as a method for rapid prototyping. This type of software 
development is emphasized in the spiral model of Boehm [31]. 

Formal techniques comprise wide spectrum languages, such as COLD [41] 
and VDM [102], as well as dedicated techniques for small domains, such as SDL 
[44] for telecommunication applications and LOTOS [67] for concurrent systems. 
The formal description technique described in this thesis is designed for the 
domain of concurrent, or parallel, systems. 
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2. CONCURRENT SYSTEMS 

Due to their non-deterministic nature, concurrent sys tems are even harder to 
program correctly than sequential ones. Since testing and debugging concurrent 
systems is hard, the need for formal verification and thus formal techniques 
becomes clear. The occurrence of a deadlock, for example, may be difficult to 
reproduce, and thus the source of such an error might be difficult to localize. 
Only a formal verification can ensure deadlock freedom for all possible 
scenarios. 

A number of formal techniques for parallel systems are gathered in the term 
process algebra . The main members of this family are CCS [90], CSP [61] and 
ACP [22]. ACP, the Algebra of Communicating Processes will be the starting 
point for this thesis. It allows one to specify a concurrent system algebraically 
and to produce an algebraic verification of correctness. 

3. PSF 

ACP has been used in practice for a number of relatively small case studies (as 
in [4]). Already in these simple examples the need was felt for computer 
support in the specification and verification process. This resulted in the 
development of a number of ad-hoc computer-tools which remained in the 
prototype phase. 

The first step towards the construction of an integrated toolset for ACP is 
described in this thesis. That is the description of an ACP based specification 
language with a fixed syntax and semantics, named PSF (Process Specification 
Formalism). 

A number of reasons prevents the use of ACP itself as a specification 
language. First of all, the syntax of ACP is not fixed and contains non-ASCII 
symbols. The second reason is that the data objects involved in ACP specifica­
tions have no form,al status. The third reason is that in order to produce more 
complex and extensive examples, a mechanism for structuring specifications is 
needed. 

The specification language PSF, as described in chapter 2 of this thesis, deals 
with these shortcomings. PSF has a fixed syntax in which, for example, the sets 
and communication function occurring in a specification have an explicit 
definition, rather than an informal description. Furthermore, data objects in 
PSF are defined using the technique of algebraic specifications and finally, PSF 
supports modularization and parameterization of specifications. Beside a 
motivation for the PSF language, this chapter also contains a comparison of 
PSF with other languages for parallelism. 

Since the extension of ACP with new operators and constants is being 
studied comprehensively, the choice had to be made of what features to 
include in PSF. We chose to include only the basic and well understood ACP 
constants and operators. The practical use of PSF will indicate what extensions 
are to be incorporated in a possible update of PSF. The issue of extending PSF is 
discussed in chapter 3 of this thesis. 
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4. TOWARDS TOOLS 

When actually building tools for ACP, it is desirable to make the tools 
independent of the actual specification language as much as possible. This 
reduces the risks related to a possible misdesign of the language. Another 
reason why PSF itself should not be used as the core language of the toolkit is 
that, although features such as modularization, parameterization and 
overloading are useful and even necessary for writing specifications, they do 
not allow for easy parsing and manipulation by computer-tools. Furthermore, 
the process of normalizing a specification, that is removing all modular 
structure, is quite costly (see [103]). 

These observations led to the design of a format for the internal 
representation of specifications. This Tool Interface Language (TIL) is described 
in chapter 4. The free format feature of TIL provides the tools with a means to 
insert their own tool dependent information in order to communicate it to 
other tools. 

TIL also allows for input from other sources or other specification languages 
for parallel systems. 

The current status of the toolkit is described in [104] . It contains a parser and 
a syntax and type checker for PSF, a compiler from PSF to TIL which makes use 
of a library manager, a term-rewriting tool, a simulation tool and a proof 
assistant (as described in [88]). The work on other tools is continuing, such as a 
tool for deciding bisimulation equivalence for regular processes, based on work 
from [53] and (81] . 

5. CASE STUDIES 

Application of PSF to practical case studies is a test for its usefulness. The 
purpose of case studies is to provide insight in the possibilities and limitations 
of the formalism. Not only concerning the expressiveness and the concrete 
syntax, but also concerning the role that the formalism may play in the 
specification phase of the life cycle model. This means that we investigate if it 
is possible to provide a functional specification starting with a requirements 
specification in either a formal or an informal language, if it is suited for 
formal verification and validation and if it is a clear starting point for 
implementation. 

The case studies provided in this thesis are of two hypothetical systems, a 
computer integrated manufacturing system (chapter 5) and a transit node 
(chapter 6) . The CIM case study is based on a specification in the language 
LOTOS (30] and is supplied with a verification in ACP of the correctness of the 
specification. The case study of the transit node is an exercise to design a 
specification based on a requirement study which was both formally and 
informally expressed. 

Other case studies in the PSF language are in (69], [84], [91] and [33]. 



4 Introduction 

6. PRELIMINARIES 

This thesis will not contain a detailed introduction to the theory of ACP. 
Chapter 2 contains a quick overview. The textbook [14] gives a thorough 
treatment of all relevant concepts. Other overview papers on ACP are [23] and 
[22]. 

We will not provide a formal proof-theory for ACP with abstract data types. 
This means that, although PSF has a formal operational semantics, verification 
of PSF specifications are still in an informal ACP-like format. A formal proof-

theory for the PSF related language µ-CRL is developed in [52] . 
Also the theory of algebraic specification is not elaborated extensively. Refer 

to [40] or [20] for more details on this subject. Chapter 2 contains a short 
introduction to the algebraic specification language ASF and the syntax 
definition formalism SDF [56]. 

7. ORGANIZATION Of THIS THESIS 

This thesis, consisting of a number of papers, can be divided into three parts. 
The first part deals with the definition of the specification language PSF (in 
some papers referred to as PSFd). Chapter 2 (appeared as [87]) contains the 
description of the syntax and semantics of PSF and demonstrates the use of the 
language by a number of simple examples. It concludes with a comparison of 
PSF with related languages. An introduction to PSF is presented in [85]. Chapter 
3 considers possible extensions of PSF. The need for a stable language somehow 
contradicts the practice to enhance ACP with some operators needed for a 
special application. Guide-lines and examples are given on how to enhance 
PSF without making all existing tools and specifications obsolete. The 
extensions considered include conditional choices, operators for disabling, 
interrupts and priorities, and constructions for state manipulation. 

The second part (chapter 4) describes a~ implementation directed issue. It 
contains the definition of the Tool Interface Language TIL, which appeared as 
[86]. It discusses the criteria for the design of TIL and its syntax and semantics. 

The third part comprises two case studies. The first case study (chapter 5) 
contains a specification of two CIM-architectures, which is a revised version of 
[83]. This case study contains two protocols for co-operating machines in a 
factory environment, which are both proven correct. The first protocol is based 
on [30]. The second protocol is derived from the first one by adding more 
capabilities. The specification of the transit node in chapter 6 was published as 
[89]. It is the common case study in the METEOR project. The transit node is a 
hypothetical device (or cluster of devices) which can be used to route data from 
one location to another. The specification is based on a requirements analysis 
in the ERAE language [55] and contains a description of the method which lead 
to this specification. 

All complete specifications in this thesis have been checked with the PSF 
and SDF type checkers. 
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A PROCESS SPECIF/CATION 

FORMALISM 
(with G.}. Veltink) 

Traditional methods for programming sequential machines are inadequate for specifying 
parallel systems. Because debugging of parallel programs is hard, due to e.g. non­
deterministic execution, verification of program correctness becomes an even more important 
issue. The Algebra of Communicating Processes (ACP) is a formal theory which emphasizes 
verification and can be applied to a large domain of problems ranging from electronic circuits 
to CAM architectures. The manual verification of specifications of small size has already 
been achieved, but this cannot easily be extended to the verification of larger industrially 
relevant systems. To deal with this problem we need computer tools to help with the 
specification, simulation, verification and implementation. The first requirement for 
building such a set of tools is a specification language. In this chapter we introduce PSF 
(Process Specification Formalism ) which can be used to formally express processes in ACP. In 
order to meet the modern requirements of software engineering, such as reusability of 
software, PSF supports the modular construction of specifications and parameterization of 
modules. To be able to deal with the notion of data, ASF (Algebraic Specification 
Formalism) is embedded in our formalism. As semantics for PSF a combination of initial 
algebra semantics for the data types and operational semantics for concurrent processes is 
used. A comparison with programming languages and other formal description techniques for 
the specification of concurrent systems is included. 

1. MOTIVATION 

The last decade has shown yet another revolution in computer technology: 
parallel computers. And with this progression in hardware ought to come a 
progression in the development of software. Though software development 

5 
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has come a long way, since the days that Alan Turing fed machine code 
programs written in Baudot code into the Colossus [62], through assemblers, 
higher level languages like FORTRAN and later Pascal and even Adat, it still 
finds itself in the midst of the so-called software crisis. With the introduction of 
parallel computers things tend to become even worse. 

1.1. PROBLEMS WITH SOFTWARE 

It seems that developers of software were not yet ready for this next step. It is a 
well-known fact that large programs, though being used in every day services, 
have the nasty property of still containing software errors or bugs as they are 
called in the vernacular. That programmers have become used to this fact is 
evidenced by the UNIX+ reference manuals [16], wherein, in the standard 
format for describing programs, there is a special section devoted to the known 
bugs. Construction of large programs may be difficult, but maintaining and 
tailoring programs to new needs is far more complex. In many cases it is better 
to rewrite the whole program from scratch than to try and adapt it. 

1.2. BUILDING BETTER PROGRAMS 

Of course there have been attempts to develop methods to help programmers 
in constructing software and excluding errors. One of the most formal 
approaches, using mathematical techniques, is the proving of program 
correctness. See for example the work by Dijkstra [37] and Hoare [60] . Though 
these formal methods do well for small programs, they have never really 
found their way to the programming-in-the-large. Other methods use data flow 
charts and different kinds of graphical representations of the program to help 
the programmer. 

Yet another method to support program development is the use of 
programming environments. A programming environment consists of a large 
number of tools and an environment that help the programmer in 
constructing programs. Some examples of these tools, currently available, are 
(syntax-directed) editors, debuggers, compilation aids (like the make program 
on UNIX machines) and so on, but also hierarchical file systems and facilities to 
communicate with other programmers on the same computer, or even on a 
network. In designing a new programming language more and more attention 
is being paid to such an environment. See for example Ada [100], where a set of 
requirements has been defined that a programming environment should meet 
to be called an Ada Program Support Environment (APSE). 

An example of an even more integrated system is the IOTA programming 
system [92] that offers a set of programs consisting of a syntax-directed editor, 
compiler, debugger and a correctness prover, that all work on a huge database 
in which program modules are being represented in some internal 

+ Acta® is a trademark of the United States Government, Ada Joint Program Office 
+ UNJXTM is a trademark of Bell Laboratories, Incorporated 
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representation. In this way the cooperation between programmers and the 
reusability of software modules is highly improved. 

1.3. PARALLEL PROGRAMMING 

With the introduction of parallelism in programming two main approaches 
can be seen in the field of programming languages. On the one hand, existing 
programming languages have been extended to incorporate features that deal 
with parallelism like Concurrent Pascal (32], on the other hand new languages 
have been developed that are suitable for writing parallel programs from the 
start, like OCCAM [65] and Ada [15] . We think that with the introduction of 
concurrency in programming languages, programmers have to start thinking of 
solving problems in a parallel way, as opposed to the sequential way of 
thinking imposed by the Von Neumann computers. Therefore we are in 
favour of programming languages especially designed to support concurrency. 
Such programming languages will be the first step towards real parallel 
programming. 

1.4. MATHEMATICAL CONCURRENCY THEORIES 

ACP (Algebra of Communicating Processes, (24]), or more informal process 
algebra, is one of the many mathematical theories for concurrency. Other 
examples from this family of theories are: CSP, CCS, Petri nets, trace theory, 
temporal logic and denotational semantics. Specifications in ACP have been 
applied to a large domain of problems ranging from communication protocols 
(25], [4], algorithms for systolic systems (109] and electronic circuits (13] up to CIM 
architectures (83] . The manual verification of specifications of small size has 
already been achieved, but for industrially relevant problems we feel the need 
for a set of computer tools to help us with the specification, simulation, 
verification and implementation. These tools will together form a 
programming or specification environment. The first requirement for building 
such a set of tools is a specification language that is based on ACP. 

1.5. MOTIVATION FOR PSF 

A first attempt has been made in (82] to give an algebraic specification of ACP. 
In this paper it is concluded that the transformation of process algebra into an 
algebraic specification is quite easy, but that the transformation of an 
application of process algebra into an algebraic specification takes more effort. It 
was also stated in this paper, that in specifying process algebra applications in 
some formal language, one has to be more accurate with respect to the 
specification of the data types and the ports at which processes communicate. 
Another disadvantage of specifying process algebra applications by means of 
algebraic specifications is that the specifications do not have the same 
appearance as the ones we are used to. 
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To deal with these problems we have decided to start the development of a 
new specification formalism called PSF (Process Specification Formalism) that 
would be based on two concepts. Firstly, the specification of the data types must 
be performed in some algebraic specification formalism and secondly, the 
specification of the behaviour of processes must be performed in some 
formalism especially designed for this need. Another example of such a project 
is LOTOS [67] in which ACT ONE [40] has been combined with CCS [90]. We 
have chosen ASF (20] as the algebraic specification formalism and ACP as the 
base for the formalism as presented in this chapter. For a short explanation of 
ASF, see section 2.3 and for a short explanation of ACP, see the following 
section. 

2. DEFINITION & DESCRIPTION 

2.1. EXPLANATION OF ACP 

ACP is a theory that deals with concurrent, communicating processes. These 
processes can be the execution of an algorithm by a computer as well as the 
description of a drinks dispenser or actions of human beings. However the 
current interest focuses mainly on distributed systems and communication 
protocols . 

2 .1.1. General Setting 
The development of ACP started in 1982, at the Centre for Mathematics and 
Computer Science in Amsterdam, by J.A. Bergstra and J.W. Klop. Compared 
with other concurrency theories, ACP is most closely related to CCS. There is, 
however, one important difference; the starting point of CCS, like CSP and Petri 
nets, is some model of concurrency whereas the starting point of ACP is a 
system of axioms. In the first approach, an algebraic structure is obtained by 
abstracting from certain aspects of processes. There are usually some basic 
objects or atoms and ways of constructing more complex expressions from these 
basic objects. Next, equivalences in this model are investigated and general 
rules are formulated . 

In ACP, on the contrary, a set of rules is defined first. These rules hold in 
most models that have been proposed. This way we get a more common 
algebraic theory, such that whenever a new rule is introduced we can find out 
in which class of models it holds and in which it does not. We can try to 
describe a model just by rules and we can find out which operators can be 
defined in a model and which ones cannot. Because of this approach we are 
able to compare theories of concurrency and the pros and cons of, say, CSP and 
CCS can be discussed. See for example [46]. 
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2.1.2. An Introduction 

In this section we will give a brief introduction to ACP. This introduction is by 
no means intended to be complete, but merely gives an intuitive notion of 
what we are dealing with. For a complete introduction to ACP we refer to [24] 
and [14] . 

ACP starts from a set of objects, called atomic actions, atoms or steps. Atomic 
actions are the basic and indivisible elements of ACP and will be represented in 
the sequel by the symbols a,b,c. In ACP all atoms are constants. Moreover, we 
have two extra constants: 

• 8, deadlock. 
deadlock is the acknowledgement that there is no possibility to 
proceed. 

• ,, silent action. 

, represents the process terminating after some time, without 
performing observable actions. 

Processes, which will be denoted by the symbols x,y, are generated from the 
constants by means of operators. A few examples of such operators are: 

• · , sequential composition or product. 
x·y is the process that executes x first and continues with y upon 
termination of x. 

• +, alternative composition or sum. 
x+y is the process that first makes a choice between its summands x 
and y, and then proceeds with the execution of the chosen 

summand. In the presence of an alternative, 8 is never chosen. 

• 11, parallel composition or merge. 
x II y is the process that represents the interleaved execution of x and y. 

• aH, encapsulation. 

aH(x) is the process x without the possibility of performing actions 
from the set of atomic actions H. Algebraically this is achieved by 

renaming all atomic actions from Hin x into 8. 

• ,r, abstraction. 

, 1(x) is the process x without the possibility of observing actions from 
the set of atomic actions I. This is achieved by renaming all atomic 

actions from I in x into ,. 
There are many more operators and predicates on processes, but we will not 
present them here. As stated earlier ACP is capable of dealing with several 
models, generated by different sets of axioms. The simplest of these axiom 
systems is called Basic Process Algebra (BPA) that only deals with + and •. Its 
axioms are: 
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1 . x+y=y+x 

2 . (x + y) + z = x + (y + z) 
3. X+X=X 

4 . (x + y)z = xz + yz 

5 . (xy)z = x(yz) 

figure 2.1 Basic Process Algebra. 

As in regular algebra • binds stronger than +. Furthermore we leave out 
brackets and the ·. Thus (x • y) + z becomes xy + z. 

One might think that the axiom x(y + z) = xy + xz is missing. However, this 
axiom was left out on purpose, because x(y + z) represents something else than 
xy + xz, i.e. we want to consider models of the theory where they are different. 
The difference originates from the moment of choice. An example, due to Peter 
Weijland [14], will explain this difference. 

Suppose we are playing a game of Russian roulette. We start with putting 
just one bullet in the revolver's container and then swing the container. At 
this moment the system, in this case the revolver, 'knows' whether it will fire 
or not when the trigger is pulled. The outside world, however cannot tell the 
difference. The atomic actions involved in the sequel of this game are: 

trigger the act of pulling the trigger of the revolver. 
- bang the sound of the bullet that gets fired. 
- click the sound of the revolver when the hammer hits an empty 

chamber. 
Now there is a big difference between trigger • bang+ trigger · click and trigger · 

( bang + click ). The first expression models the actual situation. The outside 
world is only able to perform a trigger action and does not know what the result 
of this action will be. The second example models a situation in which we first 
pull the trigger and then let the system make a choice between bang and click, 
as if the container has to be swung again. 

2.1.3. Axiomatization of ACP't 

For completeness, we will list the axiomatization of the theory ACP't in the 
following table. In order to define the merge operator, we need two auxiliary 
operators. The first one is the left-merge, which is equal to the merge operator 
but has the constraint that the left argument must start with executing an 
action. The second one is the communication merge (I), which has the 
constraint that the first actions of the two arguments must communicate. 
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x+ y=y +x A1 X't =X T1 

(x + y) + z = x + (y + z) A2 'tX = 'tX+ X T2 

X+ X=X A3 a(-rx + y) = a(-rx + y) +ax T3 

(x + y)z = xz + yz A4 

(xy)z = x(yz) AS 
X+ 6= X A6 
6x = 6 A7 

alb = bla C1 

(alb)lc = al(blc) C2 
6ia = 6 C3 

xll y =x!L y+y \Lx + xly CM1 
a\Lx = ax CM2 -r \LX ='tX TM1 
ax \L y = a(xll y) CM3 -rx \L y = 't(X II y) TM2 
(x + y)\L z = x\Lz + y \L z CM4 Tix = 6 TC1 

ax!b = (aJb)x CMS xJ-r= 6 TC2 

albx = (aJb)x CM6 -rxJy = xJy TC3 
axlby = (alb)(x II y) CM? xl'tY = xly TC4 

(x + Y)lz = xlz + ylz CMS 

xl(y+z) = xly + xJz CM9 d!-t('t) ='t DT 

'ti('t) = 't Tl1 

d!-t(a) = a if at H D1 TJ(a) = a if aEI Tl2 

UH(a) = 6 if aeH D2 TJ(a) ='t if ael Tl3 

VH(X+y) = VH(X) + d!-t(Y) D3 -r1(x+y) = -r1(x) + -r1(y) Tl4 

dH(Xy) = dH(X)·dH(Y) D4 -r1(xy) = -r1(x) ·-r1(Y) TIS 

figure 2.2 ACP-r . 

2.2. EXPLANATION OF SDF 

In this section we will give a short introduction to SDF, the formalism we have 
u sed to define the syntax of PSF. 

2.2.1. General Aspects 

SDF, as introduced in [56], stands for : 'Syntax Definition Formalism' . It is a 
language to specify the lexical syntax, context-free syntax and abstract syntax of 
programming languages in a formal way and can be seen as an alternative to 
LEX [76] and YACC [70] . It is possible to generate a lexical scanner and parser 
from such an SDF-definition. These parse tables together with a universal 
parser form a parser for the specified language. It is also possible to generate a 
so-called syntax directed editor from a description of the layout and the parse 
tables. This whole system is being implemented in LISP as part of ESPRIT 
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Project 2177: GIPE II (Generation of Interactive Programming Environments). 
We will use the SDF language from [56] with the additions and changes as 
described in [58] . 

2.2.2. SDF Syntax 
An SDF definition contains the description of the lexical syntax and of the 
context-free syntax of a language. The notion sort corresponds to non-terminals 
and the function declared in the other sections correspond to production rules 
as used in BNP grammars [1] . 

Following is an adaptation of an example taken from [20]. 

module example 
export• 

aorta 
Digit Letter Int Id Id-tail Comment-char 

lexical ayntax 
[a-z) 
[0-9) 
Digit+ 
[a-z0-9) 
Letter Id-tail* 
[ \n\t) 
~ [ { I l 
" { " Comment -char* 

aorta 
Expr 

"}" 

context-free syntax 

- > Letter 
-> Digit 
-> Int 
-> Id-tail 
- > Id 
- > LAYOUT 
-> Comment-char 
-> LAYOUT 

Expr "+" Expr -> Expr assoc 
Expr "*" Expr -> Expr assoc 
" (" Expr ") " -> Expr bracket 
Id -> Expr 

figure 2.3 A small SDF example. 

We will point out some of the SDF constructions that appear in this example. 
The sorts section contains the names of the non-terminals of the grammar 
which can be derived from an SDF-specification. The lexical syntax section spe­
cifies part of the regular grammar which is used to generate a lexical analyzer. 
Elements of the context-free syntax may be interspersed with strings belonging 
to the predefined sort LAYOUT. The latter will be skipped by the lexical analy­
zer generated from the SDF definition. The function declaration may be com­
posed of other lexical sorts, (negated) character classes, terminals and list ex­
pressions. In the lexical syntax section two kinds of list expressions are allowed: 

S * zero or more occurrences of sort S 
S + one or more occurrences of sort S 

In the context-free syntax section lexical sorts are used as terminals of the 
grammar, though terminals may also be introduced directly, like "+" and "*" in 
the example. Moreover two more list expressions are allowed in this section: 

{S t}* 
{St}+ 

zero or more occurrences of sort S, separated by the terminal t. 
one or more occurrences of sort S, separated by the terminal t. 
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The associativity of functions may be declared by means of the attributes assoc, 
left, right and non-assoc, while the attribute bracket can be added to the 
function declaration to state that the function may be surrounded by 
parentheses of the given form, in order to change its priority. 

2.3. EXPLANATION OF ASF 

ASF is an algebraic specification formalism that emerged from the so-called 
'PICO-formalism' [19] and which is fully described in [20] . An implementation 
of ASF is described in [57] . 

We are using ASF as the basis for the modularization concepts of PSF and for 
the specification of abstract data types in PSF. Because most aspects of ASF 
specifications will appear in the description of PSF we will not discuss them 
here. For specific information we refer to [20] . 

2.4. AN INFORMAL DESCRIPTION OF PSF 

In this section we will give a description of all the features of PSF. These 
features are divided into three sections: modularization, specification of data 
types and specification of processes. 

2.4.1. Modules 

A PSF specification consists of a sequence of modules each one of which is 
either a data module or a process module. The data modules are used to define 
the properties of the data types and the process modules define the behaviour 
of the processes. Each module is given a unique name. PSF modules can be 
combined by parameter binding and importing only. 

A module consists of a number of sections which are listed below. 

DATA MODULE 

parameter section 
export section 
import section 
sort section 
function section 
variable section 
equation section 

PROCESS MODULE 

parameter section 
export section 
import section 
atom section 
process section 
set section 
communication section 
variable section 
(process) definition section 

figure 2.4 The different sections in modules. 

In the next paragraphs we will explain the function of each section. 
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2.4.2. Lexical Syntax 

In this paragraph we will describe the lexical syntax of PSF in an informal way. 

• Layout: 
Possible layout characters are: 
- space 
- horizontal tabulation 
- carriage return 
- line feed 

• Comments: 
Comments follow a layout character and begin with two hyphens 
and end with either an end of line (i.e. carriage return or line feed) or 
another pair of hyphens. 

• Identifiers: 
Identifiers consist of a non-empty sequence of letters, digits or single 
quote characters, possibly with embedded hyphens. 
- examples : i, me, type-writer, prime', 'quotation', double--hyphen 
- non-examples: -x, -, x-

• Keywords: 
The following identifiers are reserved keywords: 

atoms exports 
begin for 
bound functions 
by hide 
communications imports 
data in 
definitions merge 
encaps module 
end of 
equations parameters 

process 
processes 
renamed 
sets 
skip 
sorts 
sum 
to 
variables 
when 

The names hidden and export are also forbidden as names for a 
parameter section. 

• Operators: 
Operators are denoted by either a nonempty sequence of operator 
symbols or an identifier surrounded by dots. Possible operator 
symbols are: ! @ $ % " & + - * ; ? - / I \ 
Some examples: &&, -?-, .push., %"@$ 

Layout characters and comments may separate identifiers in PSF but may 
never occur embedded in a lexical token. In cases of ambiguity, the longest 
token is preferred. For detailed information on the lexical syntax of ASF we 
refer to [20] . 
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2.4.3. Modularization 

There are some constructs in PSF that help to make specifications in a modular 
fashion. The three sections that deal with this feature are the export, import 
and parameter section. Along with a short description of each modularization 
concept we will give the associated structure diagrams, as introduced in [20]. 

Module A is represented by a rectangular box. 

figure 2.5 Structure diagram of a module. 

2.4.3.1. Export 
All definitions that are listed in the export section are visible outside the 
module. A data module may define sorts and functions, while a process 
module may define atoms, processes and sets. All sorts, functions, atoms, 
processes and sets that are declared outside the export section are called hidden 
and are only visible inside the module in which they were declared. When a 
module A imports a module B, all the names in the export section of B are 
automatically exported by A too. This feature is called inheritance. 

2.4.3.2. Import 
The basic way to combine modules is by way of import. In the import section 
we define which modules have to be imported, possibly perform some 
renamings on the imported items and possibly bind parameters (see next 
section) of the imported module. By importing module A in module B, all 
exported objects in A become visible to B. The declaration of the importing 
module must be preceded by the declaration of the imported module in order 
to avoid cycles in the import graph. It is not allowed to import a process 
module in a data module. 

Module A is imported by module B: 

B 

figure 2.6 Structure diagram of an import. 
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2.4.3.3. Parameters 
To be able to exploit the reusability of specifications, a parameterization concept 
is included in PSF. Parameterization is described in the parameters section and 
takes the form of a sequence of formal parameters. Each parameter is a block 
that lists some formal objects and each block has a name. Parameters in a data 
module may only consist of sorts and functions, whereas parameters in a 
process module may in addition consist of atoms, processes and sets. Whenever 
a parameterized module is imported into another module each parameter of 
the former module may become bound to a third module while all objects 
listed in the parameter are bound to actual sorts, functions, atoms, processes 
and sets from this third module. Not all parameters have to be bound when a 
module is imported . The unbound parameters are inherited by the importing 
module and are indistinguishable from the parameters defined in its own 
parameter section. Because parameter names cannot be renamed in PSF 
implicitly, all name clashes between a module's own and inherited parameters 
should be resolved by explicitly giving unique names to the parameters 
involved. 

Parameters of a module are represented by ellipses carrying the name of the 
parameter. In the next example module B has a parameter P. 

figure 2.7 Structure diagram of module with a parameter. 

2.4.4. Module Expressions 

Module expressions are used inside the import section to rename visible names 
of the imported module and to bind formal to actual parameters. 

2.4.4.1. Renaming 
The visible names of a module can be renamed by use of the renamed by 
construct, which specifies a renaming by giving a list of pairs of renamings in 
the form of an old visible name and a new visible name. It is not possible to 
rename just one of the instances of an overloaded name. So if a renaming is 
applied to an overloaded name, all instances of this name will be renamed. 

2.4.4.2. Parameter Binding 
The bound by construct is used to bind parameters and specifies the name of a 
parameterized module, a parameter name, a list of bindings (pairs consisting of 
a formal name and an actual name), and the name of an actual module. As a 
result of parameter binding, a parameter is replaced by a name from the actual 
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module as specified by the list of bindings. Therefore a parameter can only be 
bound once. Parameter binding should obey the following rules: 

• The actual names must be visible outside the actual module. 

• Formal names and actual names must be of the same kind, i.e., they 
both should be atoms, sorts etc. Furthermore their input type and 
output type should be the same. 

• All names in a parameter should be bound to a name of the actual 
module. 

Binding of parameters is indicated by a line connecting the parameter and the 
actual module to which the parameter is bound. Parameter P of module B is 
bound to module A. 

A 

figure 2.8 Structure diagram of parameter binding. 

2.4.5. Data Specification 
There are some sections that are specific for the specification of data types. 
These sections are explained below. For more specific information about the 
specification of the data types we refer to [20] . 

2.4.5.1. Sorts & Functions, Signatures 
As we have seen, the declaration of sorts and functions can occur in two places. 
Declarations can occur in the export section of a module, so that they are 
visible, or they can be declared as being hidden . In the sorts section we define 
which sorts are introduced. The functions are declared within the functions 
section along with their input type (the type of the arguments) and their output 
type. The combination of an input type and an output type is simply called the 
type of a function . Functions without arguments will be called constants . 
Declarations of sorts and functions over these sorts are called signatures. See, 
for instance, [40] for a description of the notion of signatures. 

2.4.5.2. Equations 
To complete a data module we need a set of variables and a set of equations. 
The variables in a data module are typed with one of the sorts of the signature. 
With a set of typed variables and a signature it is possible to construct well-
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typed terms, i.e., terms that are constructed by type-wise correct composition of 
functions and variables . 

An (unconditional) equation has the following form: 

[tag] t1 = tr 
where t1 and tr are well-typed terms of the same type. 

Conditional equations can have two (equivalent) forms: 

[tag] t11 = tri, ... , tin= trn ==> t1 = tr or 

[tag] t1 = tr when t11 = tr11 ••• , tin= trn 

All equations occurring in a conditional equation must be made up of 
well-typed terms of the same type. 

Variables in equations are implicitly universally quantified. 

2.4.6. Process Specification 
In this section we will describe the features of PSF that deal with the 
specification of processes. We will look at the definition of atomic actions, 
communication between atomic actions, processes and sets. 

2.4.6.1. Sets 
We introduce sets as a special feature in PSF in order to make specifications 
compact. A set is a collection of well-formed terms of the same sort, the sort 
associated with the set. Each set is given a unique name and is d efined in the 
following way: 

set -name = set-expression 
There are several ways to construct a set-expression, which are listed below: 

• Just the name of a sort denotes the set of all well-formed terms that are 
typed with the specified sort. Sorts do not have to be declared as sets. 

• We are able to construct sets by enumerating terms: { t1, t2, ... , tn ). The 
empty set is denoted by{}. 

• Because it is impossible to enumerate infinite sets we need some weak 
form of replacement in which the variables can only range over the 
domain of a given set. So we introduce the so-called placeholder 
construction which is used in the next example to define a set A that 
consists of the terms that can be obtained by applying a certain function f 
to all elements of S: In this example t is the variable, which we will call 
a placeholder in the sequel. 

A= { f(t) I tin S ) 

In general the definition of a set by means of placeholders looks like: 

A = { t1(!f), tz(g), . .. , tn<0 I u1 in D1 1 u2 in D2, . ... , Um in Dm ) 
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where t;(g) means that all free variables oft; are among u1, u2, ... ,Um, D; 
may be either a sort or the name of a set, already declared in the sets 
section, and u; acts as a placeholder for an arbitrary term or element of 
D;. 

The enumeration construction, as introduced above, can be looked 
upon as a special form of the placeholder construction in which the 
terms t; do not contain any free variables. In this case we do not use any 
placeholders so the vertical bar disappears . 

• Finally, there are three binary operators on sets of the same type: 
- Union: s1 + s2. 
- Intersection: s1 . s2. 
- Difference: SJ \ s2. 

The + and . operator are associative and the \ operator is left­
associative. All operators have the same precedence, however 
precedence can be forced using parentheses. 

2.4.6.2. Atomic Actions 
The atomic actions that are used to describe a process are listed in the atoms 
section. The atomic actions resemble the functions from the data section in 
some respects. They possibly have some arguments but they do not have an 
output type, as functions do. 

An example of the declaration of some atomic actions where a; stands for the 
name of an atomic action and s; stands for a sort: 

a 1, a2 : s1 

a3 

a4 : s2# s3 

To be more specific, we will not call a construction an atomic action until all 
arguments are substituted by a term. So a4 : s2 # s3 is in fact the mere definition 
of a scheme to generate atomic actions rather than an atomic action itself. 

There is one implicitly defined sort called: atoms. This sort is only available 
in the process specification part and can be used in constructing sets of atoms as 
in the next example: 

sets 
of atoms 

H = [ send(n) , read(n) In in NATURAL} 

figure 2.9 Example of the use of the predefined sort atoms. 

2.4.6.3. Communication 
Communication in PSF can occur between atomic actions only. In such a 
communication exactly three atomic actions are involved. Two atomic actions 
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which communicate and one that is the resulting communication action. We 
have handshaking communication, which means that such a resulting 
communication action can not participate in any further communication. In 
the communications section we define which atoms can communicate and 
what the result of this communication will be. 

An example of such a communication definition in which a,b,c stand for 
atomic actions: 

a I b = c 
Communication is commutative so the definition of a I b '-= c implies b I a = c. 

In the next example we want to express the fact that the communication of an a 
action and a b action which both operate on elements of the set S results in a c 
action. We will use the placeholder again: 

a(d) I b(d) = c(d) for d in S 
Beware of the difference between this example, where each a(d) action 

communicates with one specific b(d) action and where d stands for the same 
term in both actions, and the next example: 

a(d) I b(e) = c(d) ford in S, e in S 
A communication definition should be given for all atomic actions that are 

visible within a module. Whenever a communication is not listed in the 
communications section, it is thought of as being a communication resulting in 
deadlock (see [24]). 

2.4.6.4. Variables 
The variables in a process module can range over a sort or a set. The scope of a 
variable is the whole definitions section, unless a variable is temporarily 
overridden due to the use of a placeholder with the same name. Each variable 
in the variables section should have a unique name. 

2.4.6.5. Processes 
Processes have to be declared in the processes section along with the type of 
their possible arguments. 

An example in which P; stands for a process name and s; stands for a sort: 

P1 
P2 : s1 # s2 

In the definitions section the behaviour of the processes, that have been 
declared in the processes section first, is defined. An example of such a 
definition in which P stands for a process name, a; stands for an argument and 
PE stands for a process-expression: 

P(a1,t12, .. . , an)= PE 
Each argument is a term of the right type, possibly containing variables 

which are defined in the variables section. The process name with possibly a list 
of arguments is called the process definition head. 

Process expressions are defined by means of induction: 

• Each atomic action is a process-expression. 
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• There is one predefined process-expression called skip that represents 
the pre-abstraction from ACP. This feature was introduced in [5] where 
the atomic action t is used. 

• There are three binary operators on process-expressions: 
- sequential composition : PE1 . PE2 
- alternative composition or choice : PE1 + PE2 
- parallel composition or merge : PE1 I I PE2 

These operators are all associative. Sequential composition has 
precedence over parallel composition which in turn has precedence 
over alternative composition. 

• There are two constructions that use the placeholder: 
- summation : sum( v in S, PE(v)) 

which generalizes alternative composition. 
For a finite set S, where S = {v1, ... , vnl, this is an abbreviation of: 

PE(v1) + PE(v2) + ... + PE(vn) 
- merge : merge( v in S, PE(v)) 

which generalizes parallel composition. 
For a finite set S, where S = {v1, ... , vnl, this is an abbreviation of: 

PE(v1) I I PE(v2) I I . . . I I PE(vn) 

• Finally, there are two constructions that operate on a set of atoms and a 
process-expression: 
- encapsulation : encaps( S, PE) 

- pre-abstraction : hide( S, PE ) 

Note that we will not need the ACP constant S or the (auxiliary) 
operators I, lL (as in [14]). 

2.4.6.6. Scope of Placeholders 
We have pointed out the use of placeholders in some of the constructions we 
mentioned earlier. As of yet, we have not defined the scope of the placeholder. 
In the following examples the placeholder along with its scope are underlined. 

• Sets : The scope is limited to the enclosing braces. 
A={[ill I fin SJ 

• Communication : The scope is limited to the communication definition 
preceding the placeholder definition. 

!!J_@__J_g_z(d) = b(d) for 4 in S 

• Processes : The scope is limited to the enclosing parentheses and can be 
overridden by a placeholder definition on a lower level. 

X = x + y · sum(d. in S, r(d) · z + ... merge(g in D, Y(d)) =) 
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2.5. DEFINITION OF PSF IN SDF 

2.5.1. Why Use SDF? 

In this section we will give the definition of the PSF formalism in SDF. The 
reason that we have chosen to use SDF instead of, for instance, a BNF grammar 
is that we found the former to be much more formal and that we had the 
possibility to check the PSF grammar during the development by means of the 
error messages generated by the parser generator described in [20] . Moreover, we 
could easily build a prototype parser that was able to check our PSF 
specifications for any grammatical inconsistencies. 

2.5.2. Definition of PSF 

This definition of PSF does not contain the syntax of the data modules. We 
refer to [20] for a description of the syntax of the algebraic specifications in ASF. 
Nevertheless, the syntax for the modularization concepts, which is borrowed 
from ASF, is included. Note that the constraint that comments must follow a 
layout character is not expressed in the following definition. 

module PSF 
export• 

aorta 
Id-char Id-body Ident 
Op-symbol Operator 
Com-char Com-end 

lexical syntax 
[0-9a-zA-Z'] 
[0-9a-zA-Z '\ -] 
Id-char 
Id-char Id-body* Id-char 

[!@$ %\A&+\-*;? ~/1\\] 
Op-symbol+ 
"." Ident 

\n\t] 

~ [ \n\ -] 
"-" ~ [ \ n \ -] 

"\n" 
"-\n" 
11

- -
11 Com-char* Com-end 

aorta 

- > Id-char 
-> Id-body 
-> Ident 
-> Ident 

-> Op-symbol 
-> Operator 
- > Operator 

-> LAYOUT 

-> Com-char 
-> Com-char 
- > Com-end 
-> Com-end 
-> Com-end 
- > LAYOUT 

Specification Process-module Parameters Parameter Exports 
Imports Module-expression Modifier Renamed 
Renamings Renaming Binding Bound Psf-sorts 
Psi-functions Psi-function At oms Atom-declaration Processes 
Process-dee! Sets Set-defs Set-definit ion Sets-param 
Set-param-defs Set-exp Placeholder 
Set -item Variables Vars 
Communicat i ons Communication Communication- def 



Atom-exp Definitions 
Process-def Process-def-head 
Process-exp Predef-process Set-operator 
Identifier Ident-or-op 
Term Primary 

context-free ayntax 
Ident 
Process-module+ 
11 process" "module" Identifier 

"begin" 
Parameters 
Exports 
Imports 
Atoms 
Processes 
Sets 
Communications 
variables 
Definitions 

''end'' Identifier 

"parameters" { Parameter 

Identifier 
"begin" 

Psf-sorts 
Psf-functions 
Atoms 
Processes 
Sets-param 

''end'' Identifier 

"exports" 
"begin" 

Atoms 
Processes 
Sets 

"end" 

}+ 

11 imports" {Module-expression","}+ 
Identifier 
Identifier"{" Modifier"}" 
Renamed 
Bound 
Renamed Bound 
Bound Renamed 

"renamed" "by" Renamings 
"["{Renaming","}+"]" 
Ident-or-op "->" Ident-or-op 

Identifier 
"_" Operator 
Operator 

Binding+ 
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-> Identifier 
-> Specification 

-> Process-module 

-> Parameters 
-> Parameters 

-> Parameter 

-> Exports 
-> Exports 

-> Imports 
-> Imports 
-> Module-expression 
-> Module-expression 
-> Modifier 
-> Modifier 
-> Modifier 
-> Modifier 

-> Renamed 
-> Renamings 
-> Renaming 

-> I dent-or-op 
-> I dent-or-op 
-> I dent-or-op 

-> Bound 



24 A Process Specification Formalism 

Identifier "bound" "by" Renamings "to" Identifier 
-> Binding 

"sorts" {Identifier","}+ -> Psf-sorts 
-> Psf-sorts 

''functions'' Psf-function+ -> Psf-functions 
-> Psf-functions 

Identifier":" {Identifier"#")* "->" {Identifier"#")+ 
-> Psf-function 

Operator "_11 

Operator 
Identifier"->" Identifier -> Psf-function 
"·" Identifier"#" Identifier 

"->" {Identifier "#")+ -> Psf-function 

"atoms" Atom-declaration+ 

{ Identifier ", ") + 
{Identifier",")+":" {Identifier"#"}+ 

"processes" Process-dee!+ 

{Identifier","}+ 
{Identifier","}+ 

"sets" Set-defs+ 

{Identifier"#"}+ 

"of" Identifier Set-definition+ 
"of" "atoms" Set-definition+ 
Identifier"=" Set-exp 

"sets" Set-pararn-defs+ 

"of" Identifier Identifier+ 
"of" "atoms" Identifier+ 

Identifier 
"{" { Set-item"," }* "}" 
"(" Set-exp '')" 
Set-exp"+" Set-exp 
Set-exp"." Set-exp 
Set-exp"\\" Set-exp 
"{" {Set-item","}+ "I" {Placeholder",")+ 

Identifier 
Identifier"(" {Term","}+")" 

Identifier "in" Identifier 

"variables" Vars+ 

{ Identifier"," }+ ":" "->" Identifier 

"communications 11 Communication-def+ 

Communication 
Communication "for" {Placeholder","}+ 
Atom-exp "I" Atom-exp "-" Atom-exp 

-> Atoms 
-> Atoms 
-> Atom-declaration 
-> Atom-declaration 

-> Processes 
-> Processes 
-> Process-decl 
-> Process-decl 

-> Sets 
-> Sets 

-> Set-defs 
-> Set-defs 
-> Set-definition 

-> Sets-param 
-> Sets-param 
-> Set-param-defs 
-> Set-param-defs 

-> Set-exp 
-> Set-exp 
-> Set-exp bracket 
-> Set-exp assoc 
-> Set-exp assoc 
-> Set-exp 

")" 

-> Set-exp 

-> Set-item 
-> Set-item 

-> Placeholder 

-> Variables 
-> Variables 
-> Vars 

-> Communications 
-> Communications 
-> Communication-def 
-> Communication-def 
-> Communication 
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Identifier 
Identifier"(" {Term","}+")" 

"definitions" Process-def+ 

Process-def-head"=" Process-exp 
Identifier 
Identifier''('' { Term )+ ")" 

Predef-process 
Process-def-head 
"("Process-exp")" 
Process-exp ". 11 Process-exp 
Process-exp"+" Process-exp 
Process-exp "I I" Process-exp 

Primary 
Term Operator Primary 
Identifier 
Identifier"(" {Term","}+")" 
Operator Primary 
"(" Term ")" 

"sum" " (" Placeholder ", " Process-exp ") " 
"merge" 11 

(" Placeholder ", 11 Process-exp ")" 
Set-operator"(" Identifier , Process-exp 

"skip" 
"encaps 11 

"hide" 

figure 2.10 Specification of PSF. 

2.6. SEMANTICAL CONSTRAINTS 

-> Atom-exp 
-> Atom-exp 

-> Definitions 
-> Definitions 
-> Process-def 
-> Process-def-head 
-> Process-def-head 

-> Process-exp 
-> Process-exp 
-> Process-exp bracket 
-> Process-exp assoc 
-> 1:-'rocess-exp assoc 
-> Process-exp assoc 

-> Term 
-> Term 
-> Primary 
-> Primary 
-> Primary 
-> Primary 

-> Process-exp 
-> Process-exp 

")" 

-> Process-exp 

-> Predef-process 
-> Set-operator 
-> Set-operator 

There are some constraints imposed on PSF specifications that we are not able 
to express in SDF. This concerns overloading, restriction on communication 
and binding of variables. 

2.6.1. Overloading 

It is allowed to overload the names of functions, atoms and processes. This 
means that the same name can be used to denote different functions, atoms or 
processes. An example for a function f: 

f: s1#s2->s3 
f: s3 -> s3 

A similar example can be constructed for atoms and processes, though the 
latter do not have an output-type. When the function name f occurs in a 
certain term we will have to determine which function f was meant by looking 
at the types of the arguments f is applied to. It is possible to disambiguate each 
overloaded name by postfixing it with its input-type, i.e. its arguments. The 
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names used in the sequel for functions, atoms and processes will be disambi­
guated names. 

Overloaded functions, atoms and processes should have unique input types. 
This restriction forbids overloaded constants and multiple declaration of names 
with the same type. Thus the following is not allowed. 

f : sl -> s2 
f: sl -> s3 --not allowed 

Variables and sets cannot be overloaded. This restriction forbids multiple 
declaration of variable names and set names within one module. 

2.6.2. Typing of Terms 

Type assignment of a term is performed by inside-out typing. This can be 
achieved by first determining the type of the constants and variables in a term 
and thereafter propagating this type information outward to the enclosing 
terms until the type of the complete term has been determined. The 
uniqueness of types in each stage of this process is guaranteed by the restriction 
that the sets of names of as well constants and variables as sorts and sets must 
be disjoint, and by the restrictions placed on overloaded functions and 
variables. 

2.6.3. Communication 

There are three restrictions imposed on the definition of communications. The 
first is firm handshaking, the second considers the consistency of export of 
atoms involved in communication actions and the third deals with the 
consistency of communications when combining modules. 

2.6.3.1. Firm Handshaking 
All communications must satisfy handshaking . This means that no atomic 
action that is the result of a communication is able to communicate itself with 
some other atomic action. To be able to check this property we demand that an 
atomic action a(:e), with a possibly empty list of arguments v; may not occur on 
the left as well as the right hand side of the equation sign in a list of 
communication definitions. We call this firm handshaking because it is more 
restrictive than handshaking. It forbids, for instance, the following definition: 

atoms 
r,s ,c : NATURAL 

communications 
r(O) I s(O) = c(O) 

c(1) I s(1) = r(1) 

figure 2.11 A violation of firm handshaking. 

However, we think of this as bad programming style anyway. 
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2.6.3.2. Consistency of Export 
The second restriction on communications deals with visibility, outside a 
module, of the atoms involved in a communication. Whenever two atoms 
that are able to communicate with each other are exported from a module, the 
atom that is the result of this communication must be exported too. This 
restriction forbids the situation in which it is possible to have a communication 
between two (visible) atomic actions, but subsequently not being able to see the 
result of this communication. 

2.6.3.3. Consistency of Communications 
The definition, in separate modules, of the result of a communication may lead 
to inconsistencies when putting these modules together. We call two modules 
inconsistent with respect to their communications whenever there exists a 
communication between two atomic actions that is defined in both modules 
and yields two different atomic actions. It is not allowed to combine two 
inconsistent modules. To be more precise, the following situations are not 
allowed: 

!-~~ -~---------- ---~~·------~·------------~~~~~ 

1 1~0 1 l,,D I ~ 
figure 2.12 Three ways of illegally combining inconsistent modules. 

Whenever two modules are inconsistent they may not be 
- imported into a third module. 
- imported into each other. 
- bound to each other's parameters. 

In figure 2.13 two examples of such an inconsistency are shown: In the first 
example modules A and B are inconsistent with respect to their commu­
nications, because A defines r Is to be c and B defines r Is to bed. In determining 
whether two modules are consistent we should not only consider the explicitly 
defined communications, but also the assumption that all communications, 
between atomic actions that are visible in a module, that have not been defined 
in the communications section, are implicitly defined to be deadlock. The 
second example in figure 2.13 illustrates this situation. Module P does not list a 
communication between a and d, and so this communication is defined to yield 
deadlock. However, module Q tries to re-define this communication by a Id = e, 
which is illegal. 
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process module C 
begin 

imports 
A, B 

end C 

process module A 
begin 

imports 
R, S 

atoms 
C 

communications 
rls = c 

end A 

process module R 
begin 

exports 
begin 

atoms 
r 

end 

end R 

process module B 
begin 

imports 
R, S 

atoms 
d 

communications 
rls = d 

end B 

process module S 
begin 

exports 
begin 

atoms 
s 

end 

end S 

figure 2.13 Two possible sources of inconsistency. 

2.6.4. Variables 

process module Q 
begin 

imports 
p 

communications 
aid= e 

endQ 

process module P 
begin 

exports 
begin 

atoms 
a,b,c,d,e 

end 

communications 
alb= c 

end P 

All variables that occur in a process-expression, i.e. on the right hand side of the 
equation sign in a process definition, should be bound. This binding can be 
obtained in one of two ways: 

• the variable belongs to a placeholder construction in which this variable 
was introduced. 
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• the variable already occurred in one of the arguments of the process 
definition head, i.e. on the left hand side of the equation sign. 

~X~•~l-l 
.......... . ! 

figure 2.14 Binding of variables in a process expression. 

3. SEMANTICS 

3.1. SEMANTICS FOR PSF 

Due to the nature of PSF, being a mixture of two different formalisms, it is not 
possible to assign one uniform semantics to the language and so its definition 
will break up into four sections. 

First, we have to define the semantics for the data specification part. It is 
quite natural to choose the same semantics as the one chosen for ASF, i.e. the 
initial algebra semantics as in [40] and [48]. Ideally, the set of equations takes the 
form of a complete term rewriting system [71], so that equality of terms can be 
determined by reducing to normal form, and the set of normal forms is 
isomorphic to the initial algebra. For the section that defines the processes it is 
convenient to use another kind of semantics because, by nature, it has more in 
common with transition networks. (Note, on the other hand, that in [82] we 
find an attempt to give an algebraic specification of ACP using initial algebra 
semantics.) For this process section we use an operational semantics that is 
defined with the aid of action relations [95], which will be presented in section 
3.7.3. Action relations for ACP have been introduced in [47] . On top of these 
action relations we can define a semantics, such as bisimulation semantics or 
failure semantics. Finally we also give a semantics for the sets and the atomic 
actions, which will both be derived from the initial algebra semantics. The 
dependencies among the semantics of the different parts of PSF are expressed by 
the following picture: 
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data 
initial algebra 

processes 
semantics 

figure 3.1 Dependencies among different semantical domains. 

We will discuss the semantics in order of dependency starting with the 
semantics for data types. However, we have to make sure that modules are in 
some kind of normal form before we can treat the semantics, so we treat the 
origin rule and normalization in the next two paragraphs. 

3.2. THE ORIGIN RULE 

Because a PSF specification may consist of several modules, there may arise 
some problems with multiple declarations of the same name when putting 
these modules together in case of import. We don't want any unintended and 
unexpected name identifications, so we introduce the so-called origin rule, in a 
similar way as is done in ASF (20] to locate the defining position of each 
occurrence of an identifier. In contrast with ASF, the origin rule in PSF is also 
defined for parameters. This extension is due to Hans Mulder. 

To each name a of an identifier we encounter in a module we assign an 
origin in the form of a tuple <t,m,s,c,n> which gives information about the 
textual position where a certain name n, to which a 'owes its existence', has 
been declared. The parameters in the tuple stand for: 

•t: The type of the module in which the declaration of n occurs: 
t = data for a data module 
t = process for a process module 

•m: The name of the module in which the declaration of n occurs; 
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•s: The section of the module in which the declaration of n occurs: 
s = <p-name> for a parameter section with name p-name, 
s = par if the object is a parameter, 
s = export for the export section, 
s = hidden for the sort, function, atom, process, set and variable 

sections outside the export section. 

•c: The subcategory to which n belongs: 
c = par for a parameter, 
c = sort for a sort name, 
c = function for a function name, 
c = atom for an atom name, 
c = process for a process name, 
c = set for a set name, 
c = variable for a a variable name. 

•n: The name as introduced by the declaration. This name is extended by 
the input type for functions, atoms and processes. For parameters it is 
extended by the signature of the objects belonging to the parameter. 
(This signature consists of a collection of names plus origins.) 

The origin of a certain name propagates in the following way: 

• Declaration: When a name a is declared, it obtains origin <t,m,s,c,n>, 
where t, m, sand c are determined from the context of the declaration 
and initially n = a. 

• Import: Import of a name does not affect its origin. All hidden objects 
are implicitly renamed after importing, in order to avoid name clashes. 

• Renaming: A name introduced by a renaming inherits the origin of the 
name it replaces. 

• Parameter binding: The origin of an actual name does not change by 
binding it to a formal name. The origin of the formal name disappears 
along with the formal name itself. 

The origin rule: 

• Two visible sorts, functions, atoms, processes or sets are identical if they 
both have the same name and the same origin. For functions we also 
require that they have the same output sort and for sets we require that 
they are of the same sort. Visible sorts, functions, atoms, processes and 
sets having the same name but different origin are forbidden. Functions 
with the same name and the same origin, but with different output type 
are forbidden. Sets with the same name and the same origin, but of a 
different type are also forbidden. 

• Two hidden sorts or hidden sets are identical if they have the same 
origin. 
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• Two variables are identical if they have the same ongm and if the 
corresponding types (sorts) can be identified using the aforementioned 
rules. 

• Two hidden functions, atoms and processes are identical if they have 
the same origin and if the two corresponding types have equal structure 
and can be identified componentwise using the first two rules given 
above. 

• Two parameters are identical if they both have the same name and the 
same origin. Parameters having the same name but different origin are 
forbidden. 

• A set and a sort may not have identical names (possibly after the 
implicit renaming for imported hidden objects). The same holds for a 
variable together with a function without input. In the same way, an 
atomic action and a process may not have the same name if they have 
identical input type. 

Due to the origin rule multiple import of the same module, via different 
routes, is allowed, but clashes of identical (disambiguated) names originating 
from different modules are forbidden. When two modules are combined, the 
hidden names of the modules are implicitly renamed to avoid name clashes. 

3.3. NORMALIZATION 

In order to be able to assign a semantics to a PSF specification we have to assign 
a semantics to each module. The semantics of a module can only be determined 
in its context, being the total specification. This evaluation of a module in its 
context leaves us with a so-called normal form. 

In evaluating a module, as many imports and parameter bindings as possible 
are eliminated. Because each PSF specification consists of two types of modules, 
it is quite natural to extend this division into the notion of the normal form of 
a module . This means that after evaluating a module each normal form 
consists of one process module and one data module which is imported in the 
former . 

How this normalization should be performed, is described in (103] . 

3.4. SEMANTICS FOR DATA TYPES 

As the semantics for the data types we use the initial algebra semantics as 
defined in (40] and (48]. We assume that all modularization concepts from the 
data modules have been removed by the normalization procedure, thus 
leaving a flat algebraic specification. To define this initial algebra we first need 
to introduce some other notions. 

• A signature I is a collection of names of sorts and functions . To each 
function name we associate a list of sort names that represent the input 
type and one sort name for the output type. Functions with an empty 
input type are constants of the specified output type. 
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• The set V consists of variables. To each variable a sort is associated. 

• A term is a construction of functions and variables with correctly typed 
arguments, defined inductively: 
- Each variable associated with sort S, is a term of sort S. 

- If t1 ... tn are terms of sort 51 ... Sn, and function f has input type 51 x ... 
x Sn and output type T, then f(t1 ,. .. ,tn) is a term of sort T. 

A term containing no variables is called a closed term, as opposed to an 
open term which may contain variables. 

• An equation is a pair of two terms of the same sort. For example: t1 = t2 . 
Variables in equations are universally quantified. 

• An equational specification CLE) consists of a signature I and a set of 
equations E. 

• Derivability, of an equality of two terms of an algebraic specification, 
(I,,E) f- t1 = t2 , is inductively defined by: 

- (I,,E) f- t1 = t2 if t1 = t2 E E. 
- (I,,E) f- t = I. 
- (I,,E) f- t1 = t2 if (I,,E) f- t2 = t1 . 
- (I,,E) f- t1 = t3 if (I,,E) f- t1 = t2 and (I,,E) f- t2 = t3 . 
- (I,,E) f- 0(t1)= 0(t2) if (I,,E) f- t1 = t2 

variables. 
if (I,,E) f- t1 = t2 

single hole. 

, with 0 a substitution of 

, with C[ ... ] a context with a 

• A I-algebra is a structure with an interpretation of every sort and 
function from I. The interpretation of a sort is a set and an interpreta­
tion of a function is a correctly typed function defined on these sets. The 
interpretation of a closed term is defined using the following: 

ff-ti, ... ,tJ] =[fl< lt1J,. . . JtnD 

• An equation of two terms is true in a I-algebra A, whenever the 
interpretation of both terms denotes the same element. 

A F t; = t2 <=> [ti] =A [t2l 

If all equations, t1 = t2, in E, are valid in the I-algebra A, we write A F E. 

• The class of I,-algebras A with A F E. is denoted by Alg(I,,E). This class 
contains one special algebra called the initial algebra of (I,,E), l(I,,E). 

The initial algebra is the algebra that satisfies two requirements, namely: 

- No junk. This means that each element in the I-algebra is the 
interpretation of some closed term over the signature, so there are no 
unnamed elements of the I-algebra. 

- No confusion . This means that equations between closed terms in 
l(I,,E) are only valid when they can be derived from the specification E. 

l(I,,E) F t1 = t2 ⇒ (I,,E) f- t1 = t2 
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3.5. SET SEMANTICS 

Because we have defined a very simple notion of sets, it is both intuitively and 
formally simple to give a meaning to it. The initial algebra generated by the sort 
associated with the set is considered to be the basis. Sets are given a meaning by 
interpreting them as parts of the initial algebra . Every sort by itself defines the 
set of all elements in its initial algebra . The set constructed by enumerating 
some terms over the signature of a sort S is just the set of equivalence classes of 
these terms. In the same way one can define the union, intersection and 
difference operators by applying these operations to the sets of corresponding 
elements in the initial algebra. 

Formally: Let S be a sort, and let for every term t over the signah1re of S, [t]5 
be defined as the corresponding element in the initial algebra of S. Thus ltls (or 
for short [t]) is the equivalence class of all terms equal to t. For each element a in 
the initial algebra we can find a representative t (such that [t] = a). For each 
subset D of the initial algebra we will denote a set of representatives of all 
elements in D by Repr(D). 

Then we define the interpretation of a set of sort S in the initial algebra (IA) 
inductively by: 

• [SJ= IA; 

• [{t1, ... , tn)J = {[t1], ... , [tnll for terms t 1, ... , tn over the signature of S; 

• [s1 + s2] = [s1] u [s2], 

[s1 . s2] = [s1] n [s2], 

[s1 \ s2] = [s1] \ [s2] for sets s1 and s2 of sort S; 

• W1(!!.), • . . , tn(g) I U1 E D1, ... , Um E Dn,}] = 

[{t1(w I u1 E D1, . . . , Um E Dmll U ... U Wn(!!.) I Uj E Di, ... , Um E Dmll; 

• [{t(g) I u1 E D1, . . . , Um E D111}] = {[t(g)] I u1 E Repr(D1), . .. , Um E Repr(Dm)l. 

3.6. SEMANTICS FOR ATOMIC ACTIONS 

The atomic actions resemble the functions from the data modules, though 
atomic actions do not have an output type. Because of this similarity we want 
to define the semantics of the atomic actions in the same way as the functions, 
namely by means of the initial algebra semantics. We define an equivalence 
relation on atomic actions in the following way: 

a(v1, Vz, ... , Vn) = b(u1, 112, ... , u,,,) whenever 
• the name a is equd.l to the name b 
• m=n 
• the input types of a and b are equal 

• Vi, 1 ::::; i ::::; n: v ; = u ; , in the initial algebra of the sort of v; and u; . 
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This construction corresponds with the initial algebra obtained by extending the 
algebraic specification of the data types with a new sort atom and adding for 
each name of an atom, a corresponding function. 

3.7. OPERATIONAL SEMANTICS 

3.7.1. Action Rules 

In this section we will define the operational semantics for the process 
definition part of PSF with the aid of so-called action rules. These action rules 
have been used already in other concurrency theories, see for example [95) in 
which Plotkin gives the operational semantics for CSP [61]. Action rules in ACP 
are introduced in [47]. But first we will have a look at what a process definition 
stands for. 

3.7.2. Process Definitions 

A process definition in general looks like: 

• X(t1(:Q), ... , tn(p)) = y(p) ; 

:Q. is a list of variables declared in the variables section.t; is a term 
from the data specification part, possibly containing some variables 
from the list :g. X is a process name from the process definition part. 
y is a process expression. 

All closed data terms occurring in a process definition should be looked upon 
as a notation for the corresponding equivalence class of this term, in the initial 
algebra. It would have been more accurate if we would have written a term t as 
[t]. However, we leave out the brackets for reasons of simplicity. 

There are no differences between the process expressions in figure 3.2. These 
are just different ways of writing: send([0]).X([0]): 

send(0).X(0) 
send(0+0) .X(0) 
send(0).X(0+0) 

figure 3.2 Three different representations of the same process expression. 

All process definitions that contain variables, which must be bound properly, 
are an abbreviation of a possibly infinite series of process definitions in which 
all variables have been eliminated. This series is constructed by replacing all 
occurrences of a certain variable v, of sort S, with a representative of each 
equivalence class of the initial algebra of S. 
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The next example will clarify this notion. Suppose we have the following 
fragment of a specification : 

processes 
X, Y: BOOLEAN# NATURAL 

variables 
b : -> BOOLEAN 
n: -> NATURAL 

definitions 
X(b,n) = send(n) . Y(b,n) 

figure 3.3 An abbreviation of process definitions. 

Then the definitions section represents, a.o.: 

X([true],[O]) = send([O]) . Y([true].[O]) 
X([true],[s(O)]) = send([s(O)]) . Y([true].[s(O)]) 
X([true],[s(s(O))]) = send([s(s(Oi)]) . Y([true].[s(s(O))]) 

X([false],[O]) = send([O]) . Y([false].[O]) 
X([false].[s(O)]) = send([s(O)]) . Y([false],[s(O))) 

figure 3.4 Part of the expanded definitions section . 

Though we are writing process definitions as equations such as X = a, X = b, we 
merely mean that X has a summand a and a summand b. So whenever the 
same left-hand side of an equation occurs more than once, possibly due to 
expanding the definitions sections as described above, we consider the 
corresponding right-hand sides as alternatives. In this way we can make a non­
deterministic choice between the alternative right-hand sides, just like applying 
the +-operator. 

Note that an alternative decision could have been to forbid this situation and 
to rename alternative definitions into deadlock, indicating an error. It is 
possible that a future implementation of a simulator would support both 
modes of execution and would let the user choose between them. 

Whenever a process name with closed terms for all its arguments does not 
occur in a expanded specification as a left-hand side, it is considered to be equal 

to deadlock. We recall that o is the neutral element for alternative composition. 
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3.7.3. Action Rules for PSF 

In the following section we present the action rules for PSF. 
For each element [a] of the initial algebra of atomic actions we define a binary 

relation ~ and a unary relation ~ v' on closed process expressions. If a is an 

atomic action, and [a] its equivalence class (so [a] E IA), we write~ instead of~-

x ~ y means that the process expression r epresented by x can evolve into 
y, by executing the atomic action [a]. 

x ~ v' means that the process expression represented by x can terminate 
successfully after having executed the atomic action [a]. The special 
symbol -v' can be looked upon as a symbol indicating successful 
termination of a process. 

The relations ~ are generated by the rules in the following tables, i.e. x ~ y 
only holds if this can be derived using these rules. 

In the following tables we will use some symbols that have a special 
meaning. These symbols are: 

• a,b,c : atomic actions or skip . 

• x,y,x',y' : variables on processes, i.e. we can substitute any process for 
these variables. 

Along with some of the rules we will give an explanation: 

• R.I I 
- a I b = c means that the communication between a and b has been 

defined to be c. 

• R.encaps : 
- H : the set of atomic actions that have to be encapsulated. 

• R.hide: 
- I : the set of atomic actions that have to be renamed into skip. 

• R.rec: 

- J!E!2 means U1ED1, UzEDz, ... , UnEDn 
- !!. = (u 1, u 2, . . . , Un) 
- Q = (D1, D2, ... , Dn) 
- D; is a sort. 

- y(y_) : a process expression with a list of terms J!E Q__ as parameters. 
- X : a process name declared as X : D1 # D2 # ... # Dn 
- X(y_) = y(M) : an equation from the definitions section. 

• R .sum: 
- D: a set. 

- uE D: u is an element of repr(D). 
- d in D : dis a variable over the sort associated with the set D. 

• R.merge: 
- ID I : the number of elements in set D. 
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R.a a~ ✓ 

X ~ X' X ~ ✓ 
R.+I 

x+y ~ x' 
R .+2 

x+y ~ ✓ 

y ~ y' y ~ ✓ 
R.+3 

x+y ~ y' 
R.+4 

x+y ~ ✓ 

X ~ x' X ~ ✓ 
R.·1 

x·y ~ x'·y 
R.·2 a x·y ➔ y 

X ~ X' X ~ ✓ 
R.111 

xllY ~ x'IIY 
R.112 

xllY ~ y 

y ~ y' y ~ ✓ 
R.113 

xllY ~ xllY' 
R.114 

xllY ~ x 

x ~ x'; y ~ y' ; alb=C x ~ ✓: y ~ y'; alb=c 
R.115 

xllY ~ x'lly' 
R.116 

xllY~ y ' 

x ~ x'; y ~ ✓; a lb=c x ~ ✓: y ~ ✓ : a lb=c 
R.117 

xllY~ x' 
R.118 

xllY~ ✓ 

x ~ x·; a11 H x ~ ✓: a11 H 
R.encapsl 

encaps{H ,x) ~ encaps(H ,x') 
R.encaps2 

encaps{H ,x) ~➔ ✓ 

x ~ x'; ae I x ~ ✓; ae I 
R.hidcl 

hide(l,x) ~i.e➔ hide(l ,x') 
R.hidc2 

hide{l ,x) skip ✓ 

x ~ x'; a11 I x ~ ✓; a11 I 
R.hide3 

hide(l, x) ~ hide ( l,x') 
R .hide4 

hide{l ,x) ~ ✓ 

!J.eQ_; Y(l.!.) ~ y'; X (.u.) = Y(!J.) l,!_e D ; y(.u.) ~ ✓; X(.u,) = y(.u..) 
R.recl 

X(!.!.)~ y' 
R.rec2 

X(JJ.)~ ✓ 

ue D; x(u) ~ x' ue D; x(u) ~ ✓ 
R.suml 

sum(d in D , x(d)) ~ x' 
R.sum2 

sum(d in D, x(d)) ~ ✓ 



R.mergel 

R.mcrge2 

R.merge3 

R.merge4 

IDl>1; LIED ;x(LI)~ x' 

merge(d In D, x(d)) ~ merge(d In D\ {LI}, x(d)) II x' 

ID I>1; LIED ; x(LI) ~ ✓ 
merge(d in D, x(d)) ~ merge(d In D\ {LI}, x(d)) 

IDI=1; LIED; x(LI) ~ x' 

merge(d in D, x(d)) ~ x' 

IDI=1; LIED ; x(LI) ~ ✓ 

merge(d in D, x(d)) ~ ✓ 

a b 
IDI>2; LIED ; VE D; LI;tcv ; x(LI) ➔ y; x(v) ➔ z; a lb=c 
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R.merge5 
merge(d In D, x(d)) ~ (merge(d In Dl {LI,v }, x(d)) II y) II z 

R.merge6 

R.merge7 

R.merge8 

R.merge9 

R.mergelO 

a b ✓ 1DI>2 ; LIED; VE D; LI;tcv ; x(LI) ➔ y; x(v) ➔ ; a lb=c 

merge(d in D, x(d)) ~ merge(d In D\ {LI,v}, x(d)) II y 

IDI>2; LIED ; VE D; LI;tcv ; x(LI) ~ ✓; x(v) ~ ✓; alb=C 

merge(d In D, x(d)) ~ merge(d in D\ {LI,v}, x(d)) 

IDl:52; LIED; VE D; wv; x(LI) ~ y; x(v) ~ z ; a lb=c 

merge(d In D, x(d)) ~ y 11 z 

a b ✓ IDl:52; LIED; VE D; LI;tcv; x(LI) ➔ y; x(v) ➔ ; a lb=C 

merge(d in D, x(d)) ~ y 

ID l:52; LIED; VE D; LI;tcv ; x(LI) ~ ✓; x(v) ~ ✓; a lb=c 

merge(d In D, x(d)) ~ ✓ 

figure 3.6 Table of action relations . 

3.7.4. Process Semantics 
Now that we have defined the action relations for PSF we are able to assign a 

semantics to processes. In this case we define bisimulation [94) on top of these 
action relations. 

A bisimulation is a binary relation R on process expressions, satisfying: 

• if pRq and p -4 p', then 3q': q -4 q' and p'Rq' ([a] E IA) 

• if pRq and q -4 q', then 3p': p -4 p' and p'Rq' ([a] E IA) 

• if pRq then p -4 V, if and only if q -4 Y ([a] E IA) 
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If there exists a bisimulation R on process expressions with pRq, then p and q 
are called bisimilar, notation p tlq. 

ti is a congruence on process expressions. See [12] for a proof. 

3.7.5. An Example 
Suppose we have the following definition of a certain process X: N is the sort of 
the naturals and B is the sort of the booleans. 

X = sum(d in N, sum (e in 8N, r(d,e) ·Y(d,not(e)))) 
Y(d,true) = s(d) ·s(true) ·X 

Y(d,false) = s(false) ·s(d) ·X 

figure 3.7 Definition of process X. 

Now we want to know what actions process X can perform. See the following 
example for the derivation of: 

• X r(S,false) Y(S,not(false)) s(S) ) s(not(false))·X s(true) X 

R.a : r(5,false) r(5 ,false) ✓ 

r(5 ,false) r(5 ,false) ✓ 
R .· 2: 

R.suml : 

r(5,false)·Y(5,not(false)) r(S,false) Y(5,not(false)) 

r(5,false) ·Y(5,not(false)) r(S,false) Y(S ,not(false)) 

sum(e in 8 , r(5,e)·Y(5 ,not(e))) r(S,false) Y(S,not(false)) 

sum (e in 8 , r(S,e) ·Y(S,not(e))) r(S,false) Y(S,not(false)) 
R.suml: -------------------------

R.recl: 

sum(d In N, sum (e in 8 , r(d ,e) ·Y(d ,not(e)))) r(S,false) Y(S,not(false)) 

X = sum (d in N, sum (e In 8 , r(d,e)·Y(d,not(e)))); 

sum(d in N, sum (e in B, r(d ,e)·Y(d ,not(e)))) ~~ Y(S,not(false)) 

X r(S,false) Y(S,not(false)) 

figure 3.8 The derivation of a transition. 
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Now we have proved that it is possible to have a transition labeled with the 
atomic action r(5,false) from X to Y(5,not(false)). The next step is to show a 
possible atomic action to be performed by Y(5,not(false)) . 

R.a: s(5) ~(~ ✓ 

s(5) s(5) ✓ 
R. ·2: 

R.· l: 

R.recl: 

s(S)·s(not(false)) s(S) s(not(false)) 

s(5)·s(not(false)) ~ s(not(false)) 

s(5)·s(not(false))·X s(
5
) s(not(false))X 

Y(5,not(false)) = s(S)·s(not(false))X; 

s(S)·s(not(false))·X --3~ s(not(false))·X 

Y(5,not(false)) s(5) s(not(false))·X 

figure 3.9 The derivation of a transition. 

R.a: s(not(false)) -3!.".!:!~ ✓ 

R.·2 : 
s(not(false)) ~ ✓ 

s(not(false))·X s(true) X 

figure 3.1 O The derivation of a transition . 

3.8. OTHER PROCESS SEMANTICS 

In the previous section we have defined an operational semantics for process­
expressions by means of action relations. These action relations are suitable as a 
base for the development of simulation tools. It can be used to define a 
semantic domain, i.e . the graph model, on which most of the known 
equivalence relations on processes can be defined. 
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We assign a graph to each process expression. 
• Such a graph is rooted (i.e. there is just one root node) 
• Each node is labeled with a closed process-expression possibly 

containing elements [t1L- .. ,[tnl of the initial algebra of the data types. 

• Each edge is labeled with elements (a] of the initial algebra of atomic 
actions or skip. 

Before we are able to define the graph of a certain process x, we have to define 
the set of all subprocesses of x. The definition of this set Sub (x) is done 
recursively. 

• x E Sub(x ) 

• if y E Sub(x ) and y ~ z can be derived from the action relations (for 

some a), then z E Sub(x) 
The graph of a certain process-expression x is constructed as follows: 

• For each element y of Sub(x), we generate a node labeled with y. 
Moreover there is one node that will be used as a termi nal node, labeled 
with v. 

• The node labeled with x is the root of the graph we are looking for. 

• Next we add an edge, labeled with a, from node p to node q, whenever 

the corresponding transition p ~ q can be derived from the action 
relations. 

Now that we have given a way of constructing graphs, it is possible to define a 
wide variety of semantics on this graph domain. These semantics include for 
example: trace semantics, failure semantics ((26], (10]) . We can also define strong 
observational congruence (90] on this graph domain, which is in fact equal to 
our bisimulation semantics as defined in section 3.7.3. 

4. EXAMPLES 

In this section we give three examples of a specification in PSF, which illustrate 
the use of simple data types, process definitions and the concept of 
parameterization. The examples d eal with a landing control system for an 
airport, the alternating bit protocol and a palindrome recognizer. 

4.1. A LANDING CONTROL SYSTEM 

4.1.1. The Problem 

In the first example we specify a hypothetical landing control system for an 
airport. It is designed to handle the landing of a number of airplanes on a 
number of landing strips. Since the actual names of the airplanes and the strips 
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can be considered as conditions local to some specific airport, we specify a 
control system which is parameterized with these items. The system consists of 
a number of parallel operating subsystems, first of which is the Distribution 
process. The other processes, the Strip-Controllers, all have the same 
behaviour. Each of them has control over exactly one landing strip. 

,------- ------

North 

East 

South 

I ______ -- --------------

figure 4.1 Timbuktu Airport . 

4.1.2. The Implementation 

The process module Landing-Control has a parameter Airport-Conditions, 
which consists of the two sorts STRIPS, containing the names of the landing 
strips, and PLANE-IDS, containing the id's of all planes potentially willing to 
land. The module exports an atom receive-req-to-land, which enables the 
system to communicate with arriving airplanes, and the process Control, which 
is the name of the overall process being specified. Internal to this module are a 
number of atomic actions. The atoms read, send and communicate are used to 
model the communication between the process Distribution and each of the 
Strip-Controllers . The STRIPS argument determines which Strip-Controller is 
involved, and the PLANE-IDS argument indicates the plane that should be 
landed. As is indicated in the communications section, placing the atoms send 
and read in parallel yields the atom communicate. The set H, containing the 
read and send actions will be used to encapsulate unsuccessful communication. 
This happens when the read and send actions do not have a partner to 
communicate with. The other atomic actions, land and disembark, are not 
intended to take part in a communication. 

Apart from the Control process we define three processes. The process 
Distribution receives a request to land from some plane and sends its id to one 
of the Strip-Controllers, which is willing to communicate with the 
Distribution. After that, the Distribution process starts all over again. The 
process Strip-Control is indexed with the name of some STRIP. In fact it defines 
a new process for each STRIP . It starts by receiving a message from the 
Distribution to handle a plane with a given id. After handling this plane, as 
defined by the process Handle, the Strip-Controller starts all over and is again 
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able to receive a plane-id. The process Handle serves as a sub-process of the 
process Strip-Control. The second argument determines the plane and the first 
one determines the STRIP the plane must land on. This process stops after 
landing and disembarking the plane. 

Finally the overall process Control is defined as the concurrent operation of 
the Distribution and all Strip-Controllers. The encapsulation operator removes 
unsuccessful communications. 

4.1.3. The Specification 

proceaa module Landing-Control 
begin 

parameter a 
Airport-Conditions 

begin 
aorta 

STRIPS, PLANE-IDS 
end Airport-Conditions 

exports 
begin 

atoms 
receive-req-to-land 

proc••••• 
Control 

end 

atoms 
read, send, communicate 
land 
disembark 

STRIPS 

PLANE-IDS 

STRIPS# PLANE-IDS 
STRIPS# PLANE-IDS 
PLANE-IDS 

proceaaea 
Distribution 
Strip-Control 
Handle STRIPS# PLANE-IDS 

aeta 
of atoms 

H = { read ( s, id) , send ( s, id) I s in STRIPS, id in PLANE-IDS ) 

communications 
send(s,id} I read(s,id} c ommunicate(s,id) 

for sin STRIP S , id in PLANE-IDS 

variables 
s : -> STRIPS 
i d :-> PLANE-IDS 



Examples 45 

definitions 
Distribution aum(id in PLANE-IDS, receive-req-to-land(id). 

aum(s in STRIPS, send(s,id)) 
) . Distribution 

Strip-Control(s) = aum(id in PLANE-IDS, read(s,id) .Handle(s,id) 
) . Strip-Control(s) 

Handle (s, id) = land (s, id) . disembark (id) 
Control= encaps(H, Distribution I I 

merge(s in STRIPS, Strip-Control(s))) 

end Landing-Control 

figure 4.2 Specification of a generic landing control system. 

This specification can be used as a generic specification for Landing-Controllers. 
A Landing-Control at for instance Timbuktu-Airport can be constructed by 
binding a module which defines the landing strips and the planes that 
potentially land at Timbuktu-Airport to the parameter of Landing-Control. A 
graphical representation is given in figure 4.4. 

data module Timbuktu-Airport 
begin 

exports 
begin 

aorta 
Timbuktu-STRIPS, Timbuktu-PLANE-IDS 

functions 
North -> Timbuktu-STRIPS 
East -> Timbuktu-STRIPS 
South -> Timbuktu-STRIPS 
West -> Timbuktu-STRIPS 
KL204 -> Timbuktu-PLANE-IDS 
SQ001 -> Timbuktu-PLANE-IDS 
JL403 -> Timbuktu-PLANE-IDS 
PA666 -> Timbuktu-PLANE-IDS 
HA345 -> Timbuktu-PLANE-IDS 

end 

end Timbuktu-Airport 

process module Timbuktu-Landing-Control 
begin 

imports 
Landing-Control 

{Airport-Conditions bound by 
[STRIPS-> Timbuktu-STRIPS, 
PLANE-IDS-> Timbuktu-PLANE-IDS) 

to Timbuktu-Airport) 

end Timbuktu-Landing-Control 

figure 4.3 Timbuktu Airport definition. 



46 A Process Specification Formalism 

Timbuklu 
Airport 

Timbuktu-landlng-Control 

figure 4.4 Timbuktu Airport structure diagram. 

4.2. ALTERNATING BIT PROTOCOL 

4.2.1. The Problem 

One of the most famous communication protocols is the Alternating Bit 
Protocol (ABP). It has been used many times to serve as a test case for a new 
formalism. Our specification emanates from the ABP specification in ACP as 
described in (25] . 

We can represent the Alternating Bit Protocol by a picture as follows: 

s R 

K 

3 4 
input 

6 L 5 

~---------- ------- ----··---

figure 4.5 Graphical representation of the Alternating Bit Protoco l. 

It consists of four components: 

• S : The sender. 

• R : The receiver. 

• K : A channel connecting the sender and the receiver. 

• L : A channel connecting the receiver and the sender. 
The goal of the Alternating Bit Protocol is to transport data items from a certain 
set D from the input port to the output port. In the next paragraphs we give a 
description of each component. 
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4.2.1.1. The Sender 
First, component S reads a message at the input port. This message is extended 
by a control boolean to form a so-called frame and this frame is sent along 
channel K. The sending of the frame proceeds until component S receives an 
acknowledgement of a successful transmission at channel L. After a successful 
transmission component S flips the control boolean and starts all over. 

4.2.1.2. Communication Channel K 
Component K transmits frames from the sender to the receiver. There are two 
situations that can occur when sending information along channel K. 

• The frame is properly transmitted. 

• The frame is corrupted during the transmission. 
We assume channel K to be fair, i.e, it will not produce an infinite stream of 
corrupted data. 

4.2.1.3. The Receiver 
The receiver R reads a frame from channel K . We assume that R is able to tell, 
e.g. by performing a checksum control, whether or not the frame has been 
corrupted. When the frame is correct R checks the control boolean in the frame. 
If this control boolean matches the internal control boolean of K, the message 
in the frame is sent to the output port, K flips its internal boolean and starts 
waiting for the next frame to arrive. In all other cases R sends the complement 
of its own control boolean along channel L and waits for the retransmission of 
the frame. 

4.2.1.4. Communication Channel L 
Component L is used to transmit receive acknowledgements from the receiver 
to the sender. Like channel K, channel Lis able to corrupt data. We will assume 
that the sender S can tell whether an acknowledgement has been corrupted. We 
assume that channel L is fair too. 

4.2.2. The Specification 

data module Booleans 
begin 

exports 
begin 

aorta 
BOOLEAN 

functions 
true 
false 
and BOOLEAN 
or BOOLEAN 
not BOOLEAN 

end 

-> BOOLEAN 
-> BOOLEAN 

ii BOOLEAN -> BOOLEAN 

* BOOLEAN -> BOOLEAN 
-> BOOLEAN 
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variables 
x : - > BOOLEAN 

equations 
[Bl] and(true,x) = x 
[B2] and(false,x) = false 
[B3] or(true,x) = true 
[B4] or(false,x) = x 
[BS] not(true) = false 
[BG] not(false ) = true 

end Booleans 

data module ABP-Ports 
begin 

exports 
begin 

sorta 
ABP-PORT 

functions 

end 

p3 - > ABP-PORT 
p4 - > ABP-PORT 
p5 - > ABP-PORT 
p6 - > ABP-PORT 

end ABP-Ports 

data module Errors 
begin 

exports 
begin 

sorta 
ERROR 

functions 
ce : - > ERROR 

end 

end Errors 

data module Bits 
begin 

exports 
begin 

aorta 
BIT 

functions 
0 - > BIT 
1 : - > BIT 

end 

end Bits 



process module Producer 
begin 

parameters 
Ext-Ports 

begin 
atoms 

output : BIT 
end Ext-Ports 

exports 
begi n 

process ea 
PROD 

end 

imports 
Bits 

definit i ons 
PROD = (ski p . output (0) + skip . output (1)) . PROD 

end Producer 

process module Consumer 
begin 

parameters 
Data-Items 

begi n 
aor ta 

DATA 
end Data-Items, 

Ext-Ports 
begin 

atoma 
input : DATA 

end Ext-Ports 

export• 
begin 

proc••••• 
CONS 

end 

definit i on• 
CONS= sum (d i n DATA, input(d)) . CONS 

end Consumer 
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process module ABP 
begin 

parameters 
Data- Items 

begin 
aorta 

DATA 
end Data-Items, 

Ext-Ports 
begin 

atolllll 
input : DATA 
output : DATA 

end Ext-Ports 

exports 
begin 

proceasea 
ABP 

end 

import• 
Booleans, ABP-Ports, Errors 

atom• 
r,s,c 
r,s,c 
r,s,c 

ABP - PORT f DATA f BOOLEAN 
ABP-PORT f BOOLEAN 
ABP-PORT f ERROR 

proceaaes 
S,K,L,R 
RM 
SF,RA,K,SM 
L,RF , SA 

set• 
of ABP-PORT 

BOOLEAN 
DATA f BOOLEAN 
BOOLEAN 

FRAME - PORT= {p3,p4} 
ACK-PORT= {p5,p6} 
ERROR-PORT= (p4,p6) 

of atoms 
H = s (p,d,b), r(p,d,b) 

p in FRAME-PORT, d in DATA, b in BOOLEAN} + 
s(p,b), r(p,b) \p in ACK-PORT, b in BOOLEAN}+ 
s(p,e), r(p,e) \p in ERROR-PORT, e in ERROR) 

communi cation ■ 

s(p,d,b) I r(p,d,b) = c(p,d,b) 

s(p,b) 
s (p , e) 

variables 

for p in FRAME-PORT, d in DATA, b in BOOLEAN 
r(p,b) c(p,b) for p in ACK-PORT, b in BOOLEAN 
r(p,e) = c(p,e) for p in ERROR-PORT, e in ERROR 

b -> BOOLEAN 
d : -> DATA 



definitions 
s = RM(false) 
RM(b) = aum(d in DATA, input(d) . SF(d,b)) 
SF(d,b) s(p3,d,b) . RA(d,b) 
RA(d,b) (r(p6,not(b)) + r(p6,ce)) . SF(d,b) + 

r(p6,b) RM(not(b)) 
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K = aum(d in DATA, sum(b in BOOLEAN, r(p3,d,b) . K(d,b))) 
K(d,b) =(skip. s(p4,ce) +skip. s(p4,d,b)) . K 

R = RF (false) 
RF(b) aum(d in DATA, r(p4,d,not(b)) + r(p4,ce)) 

SA(b) 
SM(d,b) 

aum(d in DATA, r(p4,d,b) . SM(d,b)) 
s(p5,b) . RF(not(b)) 

output(d) . SA(b) 

L = aum(b in BOOLEAN, r(p5,b) L(b)) 
L(b) =(skip. s(p6,ce) +skip. s(p6,b)) . L 

ABP = encapa (H, S 11 K 11 R I I L) 

end ABP 

proc••• module Communication-Ports 
begin 

parameter a 
Data-Items 

begin 
aorta 

DATA 
end Data-Items 

exports 
begin 

atoms 
prod-out,abp-in,abp-out,cons-in, 

prod-abp-comm,abp-cons-comm: DATA 
■eta of atom■ 

. SA(not(b)) + 

H prod-out(d),abp-in(d),abp-out(d),cons-in(d) 
din DATA} 

end 

communication■ 

prod-out (d) I abp-in(d) 
abp-out(d) I cons-in(d) 

end Communication-Ports 

prod-abp-comm(d) ford in DATA 
abp-cons-comm(d) ford in DATA 
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proceaa module System-Ports 
begin 

import• 
Communication-Ports 

{Data-Items bound by 
[DATA -> BIT] 

to Bits} 

end System-Ports 

proceaa module System 
begin 

export• 
begin 

proceaaea 
SYS 

end 

import• 
Producer 

{Ext-Ports bound by 
[output-> prod-out] 

to System-Ports}, 
Consumer 

{Data-Items bound by 
[DATA -> BIT] 

to Bits 
Ext-Ports bound by 

[input-> cons-in] 
to System-Ports}, 

ABP 
{Data-Items bound by 

[DATA -> BIT] 
to Bits 
Ext-Ports bound by 
[input-> abp-in, 
output-> abp-out] 

to System-Ports} 

definitions 
SYS = encapa (H, ( PROD I I ABP I I CONS ) ) 

end System 

figure 4.6 PSF specification of the Alternating Bit Protocol. 

In this solution the module that is dealing with the Alternating Bit Protocol, is 
part of a bigger system that also contains a producer of (random) data elements 
and a consumer. The interconnection of modules is established by 
communications as defined in System-Ports. This solution is an example of 
how modularization and parameterization is achieved in PSF. To point out the 
constitution of module System, figure 4.7 shows the visualization of the 
imports, at the top level. 
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figure 4.7 Structure diagram of the ABP specification . 

4.3. A PALINDROME RECOGNIZER 

4.3.1. The Problem 

The algorithm for a palindrome recognizer was introduced in (74). In [59) the 
first proof of correctness is given and in [109) we find the ACP version of this 
proof. The algorithm stems from a class of algorithms for systolic systems. 
Systolic systems are systems that are constructed from a large number of small 
cells so that the behaviour of the whole system resembles the behaviour of an 
individual cell. In this case we will define the behaviour of a cell that will be 
able to tell whether a string of length two, or less, is a palindrome. Then we 
construct a true palindrome recognizer by putting many of these cells together 
in the form of a long chain. A typical cell is shown in figure 4.8. 

~----------------------

boolean 

t+l 
r-------1 

symboll 

symbol2 

figure 4.8 One cell of the palindrome recognizer. 

The ith cell has two communication ports, i and i+l . It has two locations to 
store a symbol and one location to store a boolean. A cell can be in one of three 
states: 



54 A Process Specification Formalism 

1. This is the initial state in which the cell contains no symbols. It 
represents the empty word in this state and because the empty word is a 
palindrome it can always write the boolean true at port i. If a symbol is 
read at port i it is stored in symbol2 . Then, the boolean value true is 
written to channel i because a word consisting of just one symbol is 
always a palindrome. After this, the cell is in state 2. 

2. In this state, another symbol is read from i and a boolean from i+l, in 
arbitrary order, and stored in symboll and boolean, respectively. Next, 
the cell is in state 3 . 

3. In state 3 the cell contains two symbols and it computes whether the 
two symbols form a palindrome (i.e. are equal). The result of the 
calculation : ((symboll = symbol2) and boolean) is written at port i and 
the symbol in symboll is written at port i+l leaving room for a new 
symbol to be read from i. The cell is now in state 2 once more. 

4.3.2. The Specification 
Now we want to specify this palindrome recognizer in PSF. Though this 
example may seem rather complex, there are only two process modules in it. 
The rest of the specification deals with the data types. The two process modules 
define the palindrome recognizer from a different point of view. The first 
process module defines the external behaviour of the process and here we need 
a rather complicated predicate is-pal to determine whether a string is a 
palindrome. The second specification defines the nature of the cells from which 
the recognizer is constructed. 

data module Booleans 
begin 

exports 
begin 

aorta 
BOOLEAN 

functions 
true 
false 
and BOOLEAN 
or BOOLEAN 
not BOOLEAN 

end 

variables 
x : - > BOOLEAN 

equations 
[Bl] and(true,x) = x 

# BOOLEAN 
# BOOLEAN 

[B2] and(false, x ) = false 
[B3] or(true,x) = true 
[B4] or(false,x) = x 
[BS] not(true) = false 
[B6] not(false) = true 

end Booleans 

- > BOOLEAN 
- > BOOLEAN 
- > BOOLEAN 
-> BOOLEAN 
- > BOOLEAN 



data module Naturals 
begin 

exports 
begin 

aorta 
NATURAL 

function• 
zero 
s NATURAL 

+ NATURAL j/ 

* NATURAL j/ 

equal NATURAL * end 

imports 
Booleans 

variab1ea 
x, y: -> NATURAL 

equations 
[Pl) X + zero X 

[P2] X + S (y) S(x+y) 
[Ml] X * zero zero 
[M2] X * S(y) (x*y) + 
[Nl] equal(zero,zero) = 
[N2] equal(zero, S(x)) 
[N3) equal( S (x), zero 
(N4) equal( S(x), S(y) 

end Naturals 

data module Symbols 
begin 

exports 
begin 

aorta 
SYMBOL 

function• 
'a -> 
'b -> 
'c -> 
'd -> 
'e -> 
'f -> 
'g -> 
'h -> 
'i -> 
'j - > 
'k -> 
'1 - > 
'm -> 
'n -> 
'o -> 
'p - > 

SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
SYMBOL 
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- > NATURAL 
-> NATURAL 

NATURAL -> NATURAL 
NATURAL -> NATURAL 
NATURAL -> BOOLEAN 

X 

true 
- false 

false 
= equal(x,y) 
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'q -> SYMBOL 
'r -> SYMBOL 
's -> SYMBOL 
't -> SYMBOL 
'u -> SYMBOL 
'v -> SYMBOL 
'w -> SYMBOL 
'x -> SYMBOL 
'y -> SYMBOL 
'z -> SYMBOL 
equal SYMBOL# SYMBOL-> BOOLEAN 

end 

imports 
Booleans, Na.turals 

£unction• 
ord: SYMBOL-> NATURAL 

variables 
sl,s2 : -> SYMBOL 

equations 
[Sl] ord( 'a) = zero 
[S2] ord('b) S(ord('a)) 
[S3] ord('c) S(ord('b)) 
[S4] ord('d) • S(ord('c)) 
[SS] ord('e) S(ord('d)) 
[S6] ord('f) S(ord('e)) 
[S7] ord('g) S(ord('f)) 
[SB] ord( 'h) S (ord( 'g)) 
[S9] ord('i) S(ord('h)) 
[Sl0] ord('j) S(ord('i)) 
[Sll] ord('k) S(ord('j)) 
[S12] ord('l) S(ord('k)) 
[Sl3] ord( 'm) S (ord( '1)) 
[S14] ord('n) = S(ord('m)) 
[SlS] ord('o) S(ord('n)) 
[S16) ord('p) = S(ord('o)) 
[S17) ord('q) S(ord('p)) 
[S18] ord( 'r) = S (ord( 'q)) 
[S19] ord('s) - S(ord('r)) 
[S20] ord('t) S(ord('s)) 
[S21) ord('u) =S(ord('t)) 
[S22] ord('v) S(ord('u)) 
[S23) ord('w) =S(ord('v)) 
[S24) ord('x) = S(ord('w)) 
[S25] ord('y) S(ord('x)) 
[S26) ord('z) S(ord('y)) 
[El] equal (sl, s2) = equal ( ord(sl), ord(s2) ) 

end Symbols 



data module Strings 
begin 

exports 
begin 

sorts 
STRING 

functions 
empty 

equal 
length 
reverse 
add-back 
is-pal 

end 

imports 

SYMBOL 
STRING 
STRING 
STRING 
SYMBOL 
STRING 

t STRING 
# STRING 

t STRING 

Symbols, Booleans, Naturals 

variable• 
sl, s2, s3 
syml, sym2 

equations 

-> STRING 
-> SYMBOL 

-> 
-> 
-> 
-> 
-> 
-> 
-> 

[El] equal(empty, empty) = true 

STRING 
STRING 
BOOLEAN 
NATURAL 
STRING 
STRING 
BOOLEAN 

[E2] equal(empty, sym2 - s2) = false 
[E3] equal(syml ~ sl , empty) = false 
[E4] equal(syml ~ sl, sym2 - s2) = 

and( equal(syml, sym2), equal(sl,s2)) 
[Ll] length(empty) = zero 
[L2] length(syml ~ sl) = S( length(sl) ) 
[Rl] reverse(empty) = empty 
[R2] reverse(syml - sl) = add-back(syml,reverse(sl)) 
[Al] add-back(syml, empty) = syml ~ empty 
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[A2] add-back(syml, sym2 - s2) = sym2 - add-back(syml,s 2 ) 
[Il] is-pal(sl) = equal(sl, reverse(sl)) 

end Strings 

proceaa module Palindrome-Behaviour 
begin 

imports 
Booleans, Strings, Symbols 

atoms 
r SYMBOL 
s : BOOLEAN 

proceaaes 
PAL 
PAL: STRING 

variable a 
w : -> STRING 
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definitions 
PAL s(true} .PAL + sum( x in SYMBOL, r(x} .s(true) .PAL(x ~ empty}} 
PAL(w} = eum(x in SYMBOL, r(x} . s(is-pal(x ~ w}} .PAL(x ~ w)) 

end Palindrome-Behaviour 

data module Ports 
begin 

export• 
begin 

■ort ■ 

PORT 
function• 

port-nr 
equal 
pred 

NATURAL -> PORT 
PORT# PORT-> BOOLEAN 
PORT -> PORT 

end 

import• 
Naturals, Booleans 

variables 
x, y: - > NATURAL 

equations 
[El] equal(port-nr(x), port-nr(y)) = equal(x,y) 
[Bl] pred(port-nr(S(x}}) port-nr(x} 
[B2] pred(port-nr(zero)) = port-nr(zero) 

end Ports 

procese module Palindrome 
begin 

imports 
Booleans, Symbols, Ports 

atoms 
r, s, C 

r, S, C 

proceeees 
C PORT 

PORT# SYMBOL 
PORT fl BOOLEAN 

C PORT f SYMBOL 
C PORT# SYMBOL f SYMBOL# BOOLEAN 
p 

sete 
of PORT 

CELL= PORT \ (port-nr(zero}} 
of atom• 

H s(p,s}, r(p,s) Ip in CELL, sin SYMBOL)+ 
( s(p,b}, r(p,b} Ip in CELL, bin BOOLEAN 

I c(p,s} I p in CELL, sin SYMBOL)+ 
{ c(p,b} Ip in CELL, bin BOOLEAN) 



communications 
s(p,s) I r(p,s) 
s (p,b) I r(p,b) 

variables 
x,y - > SYMBOL 
v - > BOOLEAN 
i - > PORT 

definitions 

c(p,s) for pin CELL, sin SYMBOL 
c(p,b) for pin CELL, bin BOOLEAN 

C(i) s(pred(i),true).C(i) + 
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sum(x in SYMBOL, r(pred(i),x) . s(pred(i),true) .C(i,x)) 
C (i, x) sum(y in SYMBOL, 

r(pred(i),y).sum(v in BOOLEAN, r(i,v) .C(i,x,y,v))) + 
sum(v in BOOLEAN, 

r(i,v).sum (y in SYMBOL, r(pred(i),y) .C(i,x,y,v))) 
C(i,x,y,v) = ( s(pred(i),and(equal(x,y), v)) II s(i,y) ). C(i,x) 
P = hide (I,encaps (H, (merge ( k in CELL, C (k))))) 

end Palindrome 

figure 4.9 PSF specification of the palindrome recognizer. 

In [109] it has been proven that P=PAL. 

5. CONSIDERATIONS & COMPARISONS 

5.1. A COMPARISON WITH OTHER FORMAL DESCRIPTION TECHNIQUES 

In this section we will compare PSF with some other Formal Description 
Techniques. We will mainly focus on the comparison with LOTOS. 

5.1.1. LOTOS 

LOTOS (Language of Temporal Ordering Specification, [67]) is one of the two 
Formal Description Techniques, developed within ISO (International Organi­
zation for Standardization) for the formal specification of open distributed 
systems, in particular for those related to the Open Systems Interconnection 
(OSI) computer network architecture. 

5.1.1.1. Similarities 
Like PSF, LOTOS is a combination of two formalisms, namely a variation on 
ACT ONE [40] to describe data types and a process description part based on CCS 
[90] . As opposed to PSF, which was designed to be as close to ACP as possible, 
the distance between LOTOS and CCS is much greater. Many differences 
between LOTOS and PSF originate from the differences between ACT ONE and 
ASF, and CCS and ACP. We will start off with a list of constructions that are 
available in both languages: 
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LOTOS 

i 
81 □ 82 
choice x:O D B(x) 
par gin [91, ... , Qn] <parallel-op> 8 

hide 91, ... , Qn in 8 

PSF 

skip 
81 + 82 
sum( x in 0, B(x)) 
merge( gin G, BJ where G = {g1, ... , gnl 
hide( G, BJ where G = lg1, .. . , gnl 

figure 5.1 Similarities between L0T0S and PSF. 

From this table it is clear that in LOTOS one has to specify a set of gates in the 
hide and par operation by summing up all elements, whereas in PSF it is 
possible to construct such a set with more powerful operators and subsequently 
attach a name to it. 

5.1.1.2. Action Prefix vs. Sequential Composition 
One of the major differences between LOTOS and PSF is the way in which 
sequential composition is expressed. In ACP processes can be linked together by 
means of the · -operator. CCS, however, only considers action prefix. This 
means that it is only possible to put an atomic action in front of a process or 
behaviour expression. In order to have a sequential composition on behaviour 
expressions a new operator, the enable operator; had to be introduced. 

LOTOS PSF 

g; 8 g · 8 
81 » 82 81 · 82 

figure 5.2 Action prefix vs. sequential composition. 

5.1.1.3. Concurrency 
Yet another difference occurs when expressing that processes have to be 
executed concurrently. In LOTOS there are three operators to express 
concurrency. 

• Bl I [g1, .. . ,gnl I B2 
This is the most general operator. It states that two processes Bl and 
B2 have to synchronize at gates g1, .. . , gn. 

• Bl II B2 
The actions from Bl and B2 have to synchronize in each step. 

• Bl Ill B2 
There is no synchronization between Bl and B2 at all. This is called 
interleaving 
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Synchronization means that both processes have to be willing to execute a g, 
from the given set, simultaneously. So in LOTOS synchronization is only 
possible between identical actions as opposed to PSF where communication is 
settled by the definition of a communication function which leads to a more 
general concept of communication. To force communication in PSF the encaps 
operator is used. 

LOTOS PSF 

81 1(91 , ... , 9n ]I B2 encaps(G, B1 II B2} 
where G = {gi'', ... , gn ", g{', . .. , gn") 

g;* I g;" =g; 
81 II 82 encaps(A, B1 II B2') 

where A= {a1", .. . ,an",a1", ... ,an") 
a;" I a;" = a; for all atomic actions 
in the alphabets of Bl and B2. 

B1 Ill B2 B1 II B2 

5.1.1.4. Communication 

where no atomic action from the 
alphabet of Bl can communicate 
with any atomic action from the 
alphabet of B2 . 

figure 5.3 Concurrency constructs . 

In LOTOS all communication takes place at gates. We have already shown that 
an action/gate can synchronize with an identical action/gate. However, it is 
also possible to transfer data from one process to another by means of 
synchronization. This is achieved by two constructions: 

• value declaration !E, where E is a value expression, i.e. a LOTOS 
expression describing a data value. 

examples: !TRUE, !(3+5), !(x+l), !'example', !min(x,y) 

• variable declaration : ?x:t, where x stands for a variable of type t. 
examples: ?x:integer, ?switch:boolean 

A gate can be coupled with one of these constructions so that the expression 
g?x :integer describes the set of all actions g<v> where v is an instance of sort 
integer . 

LOTOS 

g!au-j 
g? x:t 

figure 5.4 

PSF 

senct;a(.0) 
sum( x in t, receive(_ x)) 

Communication constructs . 
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5.1.1.5. Features Supported by LOTOS but not by PSF 
There are some features in LOTOS that PSF (currently) does not support. Two 
of these features use conditional constructs . Conditional constructs are 
expressed as an equation between two value expressions or boolean 
expressions. In the former case, the condition is met if the two expressions 
evaluate to exactly the same value. Conditional constructs are used in 
synchronization as a selection predicate to impose a restriction on the values 
that may be transferred, and as guards in guarded expressions . PSF does not 
support conditional constructs, but has nevertheless the same expressive 
power. This is achieved by using sets, however we admit that this is carried out 
in a rather cumbersome way. In chapter 3 several extensions of PSF are 
considered. 

LOTOS PSF 

g? x:integer[x<3] sum( xin /, receive(_ x)) 
I is the set representing the integers 
smaller than 3. 

[ X> 3] ➔ processt X(g) = processt 

where g E Integer \ ( 0, ... , 3) 
O [ x = 5] ➔ process2 X(5) = process2 

O [ X< 9] ➔ process3 X(~ = process3 where IE ( 0, ... , 9) 

figure 5.5 Conditional constructs and their translations in PSF. 

Another feature that is not present in PSF is the disabling operator. The LOTOS 
expression: Bl [> B2, means that as long as Bl is active B2 can take over the 
execution at any time, resulting in the disappearance of Bl . 

In LOTOS each behaviour expression has a functionality. This functionality 
is used whenever one process, upon successful termination, enables another 
process and wants to send some data to the enabled process. When combining 
behaviour expressions by means of an operator, the functionality of the total 
expression depends on the functionality of the operands. There are three main 
types of functionality: 

• noexit: 
• exit : 
• E1, ... ,En: 

no successful termination. Deadlock or explicit stop. 
successful termination. 
a list of value expressions. Successful termination with value 
passing. 

In PSF there is no such thing as value passing. All processes coexist and 
exchange information by communication, although a lot of them may be held 
up, waiting to take part in a communication. The chaining operator, which is 
merely an abbreviation of two renamings, a merge and an abstraction, in ACP 
[101] resembles the enabling operator but has a slightly different semantics. 
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5 .1.1.6. Data Specification 
As stated earlier LOTOS uses a variation on ACT ONE for the specification of 
the data types. Though the syntax of the data specification parts of LOTOS and 
PSF differs, they look very much like each other. This includes parameteri­
zation and renaming of imported sorts and functions. The only difference is, 
that it is not possible to define a hidden signature in LOTOS. This would be the 
same as defining all sorts and all functions in the exports section in PSF. 

5.1.1.7. Modularization 
Though modularization is possible when defining data types, LOTOS does not 
support such a powerful concept of importing and exporting process 
definitions . We think of this as a serious shortcoming in LOTOS. The only way 
to have some abstraction is by writing a specification in a stringent top-down 
manner using the where construction. An example will clarify this notion. 

process Sender[ConReq, ConCnf, DatReq, DisReq] :; 
Connection-Phase[ConReq, ConCn~ " Data-Phase[DatReq,DisReq) 

where 
process Connection-Phase[ConReq, ConCnf) :; 

ConReq; ConCnf; exit 
endproc 
process Data-Phase[DatReq, DisReq) :; 

(DatReq; Data-Phase[DatReq, DisReq] 
D DisReq; stop) 

endproc 
endproc 

figure 5.6 Example of a LOTOS specification. 

We claim that such an approach does not support the reusability of 
specifications and we think that it will lead to monolithic specifications that are 
harder to understand due to the lack of a proper abstraction mechanism. 

5.1.2. Estelle 

Estelle [66] is the other Formal Description Technique developed by the ISO. 
Estelle is based upon an extended finite state machine model. 

Finite state machines are a class of theoretical automata and have been 
widely used in the field of compiler design for string recognition in the lexical 
analysis and parsing of programming languages. Finite state machines are often 
depicted by graphs with the nodes representing states and the edges 
representing a transition from one state to another. The labels connected to the 
edges identify the input that causes the transition from one node to another. 

A specification in Estelle consists of a set of modules which can communi­
cate with each other. Modules represent finite state machines and are defined 
by using a number of primitives which are extensions to ISO Pascal. So a 
specification in Estelle looks like a Pascal program with some extra facilities. 
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Being based on Pascal, there are no abstract data types and verification of 
specifications is hindered. 

5.1.3. COLD 
COLD [41) is a series of languages developed in the framework of ESPRIT 
project 432 (METEOR). COLD is defined by means of a translation of its 
grammatical constructs to the constructs of a three layered formal language. 
The top layer of this kernel is a special version of lambda calculus, which is 
called A7t, and is used for modelling parameterization. Expressions in this 
lambda calculus contain terms from a special many-sorted algebra, called CA, 
which is used for modelling modularization constructs. This algebra constitutes 
the middle layer. The constants used in the terms of this algebra are 
presentations of logical theories. The logical language used at the bottom level 
is based on a special infinitary logic, called MPL00 • Every construct in a COLD 
specification corresponds to an expression in the kernel of formal languages 
with a well-defined semantics. COLD specifications are translated by means of 
attribute grammars to the kernel. 

COLD focuses very strongly on the mathematical basis of the language, 
which guarantees a nice framework for verification. The current version of 
COLD, i.e. COLD-K, does not support concurrency. Research in this area is 
currently being carried out. 

5.2. A COMPARISON WITH PARALLEL PROGRAMMING LANGUAGES 

There are some programming languages that allow the writing of concurrent 
programs. In this section we will discuss some of these programming languages 
and compare them with PSF. 

5.2.1. Extended Programming Languages 

By extended programming languages we mean languages that have been 
extended afterwards to include features to support concurrent programming. 
Two examples of these languages are Concurrent Pascal [32) and Concurrent 
Euclid [63). Both languages have some extra features, such as processes to define 
concurrently executable pieces of the program and monitors to guarantee 
(mutual) exclusive access to variables. Communication between processes is 
established by means of shared variables. 

5.2.2. Modula, CHILL, Ada 

Modula, CHILL and Ada are all based on Pascal. Though they have been 
designed to be able to deal with concurrent programming, they use essentially 
the same constructs as the languages from the previous section. All three 
languages allow the description of sequential pieces of program that can be 
executed concurrently. In Modula and CHILL these constructs are called: 
processes and in Ada: tasks . There are some different solutions to the inter­
process communication. 
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In Modula communication between two processes is either established by 
sharing data through an interface module (=monitor), or by synchronization. 
Synchronization means that one process waits until another process has 
reached a certain state. This is achieved by the sending of and waiting for 
signals. 

In CHILL there are three ways for processes to communicate with each other. 
The first way is by means of regions, which can be compared with Modula's 
interface modules . Next come the buffers which operate like some kind of 
mailbox in which one process leaves a message of a certain type that can be 
picked up by another process . The last way of communicating is by means of 
signals. Signals can be sent directly from one process to another process and it is 
possible to specify to which processes a signal is restricted. Any intermediate 
buffering is taken care of by the underlying system. 

In Ada there is only one way in which two tasks can communicate, the 
rendez-vous. A task that wants to communicate with another task, starts 
waiting until the other task wants to communicate too. When both are willing 
to communicate they exchange information and go on with the execution of 
their own instructions. 

The rendez-vous communication resembles the communication in PSF the 
most. In PSF a process is not able to proceed until the other party wants to 
perform the complementary communication action. There is however still a 
difference. In Ada there is an asymmetry in the communication. There is one 
task that accepts a communication and as such controls the communication. 
The other task does an entry call to this specific task. Whenever two tasks are 
willing to communicate, the called task executes the sequence of statements of 
the accept statement while the calling task remains suspended. Such an 
asymmetry does not exist in PSF where all processes are equal partners in 
communication and both supply one half of the communication. Moreover 
PSF processes do not state with which specific process they want to 
communicate. This is an advantage when constructing specifications in a 
bottom-up fashion. 

A feature that is lacking in PSF but present in Ada is: time. It is possible in 
Ada to delay a process for a while by means of the delay statement. In the 
context of a select statement, that implements the idea of choosing non­
deterministically between guarded commands (see [38]), a delay develops into a 
time-out, when used as a guard. This means that only after a certain period of 
time one branch of a select statement becomes active, i.e. the guard becomes 
true, when all the guards of the other branches remain false. There is strong 
need for such mechanisms in real-time applications. The notion of real time 
was introduced in ACP in [6]. 

An important difference between PSF and the aforementioned languages is, 
that, being based on Pascal, these languages are all imperative languages and 
PSF is not. The architecture of conventional machines has influenced the 
development of programming languages tremendously. Three characteristics of 
imperative languages show this influence: 
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• Variables. 
A major component of a computer is the memory, which comprises 
a large number of memory cells. The reflection of these memory cells 
in a programming language are variables. 

• Assignment Operation 
Closely tied to the memory architecture is the notion that everything 
that has been computed must be stored, i.e., assigned to a cell. This 
accounts for the assignment operation in imperative programming 
languages. 

• Repetition 
A program in an imperative language usually accomplishes its task 
by executing a sequence of elementary steps repeatedly. The von 
Neumann architecture forces this way of solving problems. 

In PSF we think of the execution of a large program as being merely a bunch 
of processes floating around and sometimes communicating with each other, 
having no relation with the architecture on which the program is executed. 

All three languages mentioned, support some kind of information hiding by 
allowing the definition of abstract data types. This is achieved by defining a data 
type and some functions that operate on this type that are grouped together in 
some construct. The representation of the abstract data types and the 
implementation of the functions is defined within this construct, but is hidden 
for the outside world. In this way the outside world gets only an abstract view 
of the data types involved. Information hiding is provided by modules in 
Modula and CHILL and by packages in Ada. In PSF, data abstraction and 
procedural abstraction is provided by data and process modules and the import 
and export constructions. There are some differences however. In PSF an 
imported object automatically appears in the export section of the importing 
module. This is not the case in any of the three programming languages. Nor is 
there something like the origin rule as in PSF, allowing multiple imports of the 
same module. 

Another important feature in new programming languages is the generic 
module. A generic module can be looked upon as a template for a module, in 
which one or more types used in the module are parameterized. This can be 
used in, e.g., specifying a queue, for which it is possible to define the actions that 
can be performed on the data objects, whereas the type of the objects is not 
known in advance. Ada and PSF support generic modules, the latter by means 
of the parameters section, while Modula and CHILL do not. Two other features 
that both Ada and PSF provide, but CHILL and Modula lack, are overloading 
and renaming of objects. 

5.2.3. POOL 2 

POOL (Parallel Object-Oriented Language) [2] is a programming language 
designed to integrate object oriented programming with parallelism. All objects 
in a POOL program may execute in parallel, so this resembles the notion of 
processes in PSF. 
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Each object is an instance of a class and can be looked upon as a process 
containing some internal data and some methods that can operate on these 
data. The internal information of an object cannot be accessed by other objects 
directly, but objects exchange information by sending messages. Upon receiving 
a message an object executes the appropriate method and the object that is the 
result of this method execution is sent back to the original sender. In this way 
information hiding and abstraction is achieved. This communication is again, 
like in Ada, asymmetrical. 

Units consist of two parts; the specification unit and the implementation 
unit. A unit is the building block for modularization. An implementation unit 
consists of a set of class definitions. Which classes, from the implementation 
unit, are visible to the outside world is defined in the specification unit (cf. 
PSF's exports). In both the implementation unit and specification unit classes 
en methods from other units can be made visible by means of the use construct 
(cf. PSF's import). It is possible to have generic classes in POOL and renaming of 
class names and names of globals is possible. POOL supports no overloading. 

In [107] we can find a study of how to implement ACP specifications in POOL 
and a more extensive comparison between POOL and ACP. 

5.2.4. Occam 2 

Occam [65] is a programming language based on CSP [61]. It has been designed by 
INMOS and serves as a programming language for the INMOS transputer, 
which in turn can be considered an Occam machine. The transputer is a single 
processor with some internal memory and has four channels with which it can 
be connected to neighbouring transputers. It is expected that a set of such 
transputers will form an easily extendible parallel computer. 

Occam, being closely related to the architecture of the transputer, is a rather 
low-level programming language. The data types are very simple: booleans, 
bytes, integers, reals and arrays of the aforementioned. Characters are represen­
ted by bytes and strings by arrays of bytes. Occam allows no user-defined types 
and it has no modularization concepts like the imports/exports mechanism in 
PSF. It allows the construction of a larger process from three primitive 
processes: 

• assignment 
• input 
• output 

In constructing larger processes the programmer states which parts of the 
program may be executed in parallel and which parts must be executed 
sequentially. Communication of values between processes is achieved by 
channels . The format and data type of these values is specified by the channel 
protocol. The channel protocol may consist of a list of data types and 
consequently each communication along this channel must match this 
protocol exactly, both at the side of the sender as well as the receiver. 
Communication in Occam is again asymmetrical. 

Occam does include one feature that is not present in PSF, namely the timer. 
A timer is some kind of clock that supplies integer values and is incremented at 
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regular intervals. Again, such a feature is of course very important for real-time 
applications. 

5.2.5. PARLOG 

P ARLOG [34] is a parallel logic programming language that is characterized by 
the use of the concepts of guards and committed choice nondeterminism as in 
Dijkstra's procedural language of guarded commands [38] . It is a member of a 
family of languages that further consists of Concurrent Prolog [96] and GHC [99] . 

P ARLOG offers parallel evaluation of and- and or-clauses. Shared variables, 
used by clauses evaluated concurrently, act as communication channels. Both 
synchronous and asynchronous communication can be used by the program­
mer. 

P ARLOG does not provide any means for specifying abstract data types, all 
data types have to be represented by the programmer, by means of lists, nor 
does it incorporate any modularization concepts. PARLOG is of interest 
however, because it has been used to translate LOTOS specifications into an 
executable PARLOG program [45] . 

5.3. CURRENT STATE AND FUTURE DEVELOPMENTS 

As we stated in the introduction; PSF is the base for a set of tools to help in 
writing specifications in ACP. A lot of work still needs to be carried out. In this 
section the plans for developments in the near future are presented. 

5.3.1. Tools 

The structure of the PSF toolkit under development is displayed in figure 5.7. 
On top is the PSF formalism and at the centre is the Tool Interface Language as 
described in chapter 4. The lower part contains the tools. 
The compiler from PSF into TIL consists of a parser, a library manager and a 
normalizer. Starting from a modular PSF specification and a library of 
previously compiled modules they produce a flat specification in TIL. This 
specification is used as input for the tools. 

The simulator enables the user to walk through a process by displaying its 
behaviour step by step. The user can control the execution by choosing one of 
the alternatives in case of a non-deterministic choice. In order to provide long 
test-runs, the choice of the alternative can be delegated to a random generator. 
Breakpoints may be used to control this process. 

The proof assistant makes it possible to interactively manipulate process 
expressions using a collection of axioms and some built in tactics . A proof of 
equivalence of two processes, by means of a transformation of one into the 
other, can be seen as a verification that the given process obeys a specified 
behaviour. 

Algebraic specifications are implemented by interpreting them as term 
rewriting systems. The term rewriting tool is a general tool, which may be used 
by the other tools. It can also be used on its own for testing algebraic 
specifications. 
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Other tools, for example for deciding bisimulation equivalence, and 
interfaces to external tools are under development. 

The tools are being developed and are executed on a SUN workstation under 
the UNIX operating system using the windows system X. All programs are 
written in the programming language C and tools that come with UNIX, such 
as Lex and Yacc. This guarantees both performance and portability. 

An overview of the system is in [104] and parts of the toolkit are described in 
more detail in [103] and [88]. 

figure 5.7 The PSF Toolkit 

5.3.2. Comparison with Other Tools 
Although the subject of this thesis is not the PSF toolkit, we will indicate briefly 
how it relates to tools from the same area of application. 

The first step in concurrent system design is the construction of a 
specification. The input formats for the various tools range from ad hoc input 
formats to standardized languages such as LOTOS [67] and Estelle [66]. Some 
tools support graphical or hierarchical design [43]. The main input language of 
the PSF toolkit is, of course, PSF. However, the construction of the toolkit 
allows for any input language to be used, as long as it is based on ACF-like 
process specifications and algebraic data type specification. Two experiments 
with other input formats show this. The first experiment is the tabular viewer 
for specifications [93], which indicates how a more module based design can be 
supported, and the second experiment is the construction of a compiler from 
the language XP [105] to TIL. An interesting development is the design of 
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common formats, which allow independent tools to communicate with each 
other [78]. 

Simulation of the behaviour of a specification is the basic way to test for 
possible errors. Most tools for FDT's are provided with such a simulation 
mode. Some tools, like the PSF toolkit, allow only for textual simulation, but 
others also support graphical animation of the specified system [79]. 

Most tools for concurrent system verification are based on finite systems. 
This means that the involved processes are represented by finite structures, 
such as transition graphs. Two transition graphs can be tested for equality with 
respect to some equivalence relation. Tools based on this approach are described 
in [35], [79] and [42]. In general, these methods suffer from the, so called, state 
explosion problem. 

The PSF toolkit, however, focuses on ACP-style verification. This means that 
concurrent systems are verified by algebraic manipulation of process 
expressions. Another system which uses this approach is the process algebra 
manipulator PAM [77]. This tool allows users to define their own calculi. Other 
verification tools also include techniques such as model checking [75) . 

In our opinion, the most useful approach towards computer aided 
verification will show to be a combination of the approaches listed above. 
Algebraic manipulation is used to split a proof into a number of sub-proofs, 
each of which can be delegated to an automatic verification tool based on 
equivalence testing. 

5.3.3. The language 

Though PSF as presented in this report is already a rather powerful 
specification language, yet we are thinking of some enhancements. There are 
still some ACP constructions that have not been implemented in PSF. These 
constructions are, e.g. chaining, (dynamic) process creation, renaming (of 
atoms), interrupts, priorities and mode transfer. We will have to examine 
which constructions can be incorporated in PSF without affecting the 
semantical model as yet defined. Chapter 3 describes a number of possible 
extensions of PSF. 

Furthermore it is possible that some constructions currently available in PSF 
have to be redesigned to match future requirements. One of these constructions 
is the communication between atoms. In this version of PSF we have imposed 
three semantical constraints on the definition of communication. Due to the 
fact that we only consider communication satisfying handshaking, it might be 
possible that some of these restrictions can be dropped when using a different 
syntax. 

It is also possible that one of the three main building blocks of PSF (data 
specification, process specification, modularization) is exchanged for another 
formalism in the future. lt has been one of the design criteria for PSF to let 
these building blocks interfere with each other as little as possible, to guarantee 
interchangeability. 

The choice of algebraic specification techniques for the description of the data 
types may be subject of discussion. Clearly, without additional features such as 
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modularization and special constructs, algebraic specification is too weak for the 
specification of large software systems. See e.g. [28] for a discussion of the 
complexity of defining finite sorts with equality. However, we believe that in 
the context of process specification, the data types which are needed are of a 
quite simple nature . Several case studies have indicated that algebraic 
specification is appropriate for the data types which were involved. 
Furthermore, the specification language will benefit from the clear and simple 
semantics of algebraic specifications and the elegant way of prototyping them by 
means of a term rewriting system. 

The semantics of the modularization concepts from PSF are defined by 
means of a normalization procedure which is quite complex. A more algebraic 
approach, such as in the module algebra [21], would be cleaner. 

Another point of discussion if the fact that imported objects automatically 
belong to the external signature of the importing module. In some cases this 
contradicts the principle of information hiding, so an explicit hiding 
mechanism of objects will show to be useful. 

5.4. CONCLUSIONS 

In this chapter we have presented PSF, a new formalism to describe process 
behaviour. We have shown that it is possible to integrate a formal approach 
towards data types in this formalism, as opposed to the informal way in which 
data types are generally treated in ACP. We hope that PSF will be a contribution 
to the construction of more reliable software for concurrent systems. 





Chapter 3 

EXTENDING PSF 

Extensions of PSF (a Process Specification Formalism) are proposed. These extensions include 
facilities for making conditional choices, operators for disabling, interrupts and priorities, 
and constructions for state manipulation. 

1. INTRODUCTION 

The specification language PSF is developed to facilitate the specification and 
verification of parallel systems using the concurrency theory ACP. Whereas 
PSF only supports the basic features of ACP, many extensions of ACP have been 
proposed, such as priorities [7], the state operator [SJ, renamings [5] and process 
creation [18] . In this chapter suggestions are made on how to add new features 
to PSF, in order to be able to make more concise and realistic specifications. 

The problem with extending an existing language is that every extension 
leads to a new language. Tools have to be rewritten and special care has to be 
taken to keep the new version downwardly compatible, in the sense that old 
specifications remain correct. Extensions of PSF can take place at three levels. At 
the level of the modular structure, at the level of the specification of data types 
and at the level of process description. Since this chapter studies the embedding 
of extensions of ACP into PSF, we will focus on the last level. We try to develop 
the extensions in such a way that the structure of a module remains 
unchanged, and that no special data types or functions are needed. This way, 
modifications are localized to the process specification part of PSF. 

Of course we have to cope with the problem that most extensions of ACP 
deal with additional data structures. The priority operator for example needs a 
partial ordering on the atomic actions and the state operator is defined using 
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the notion of a state and functions acting on states (the so called action and 
effect functions). As a result of the requirement that only new process operators 
may be introduced, the need emerges for a restyling or simplification of these 
extensions of ACP. 

In this chapter we give three examples of how to extend PSF. The first one 
introduces conditional choices, a mechanism to specify the flow of control 
more easily. A simple predecessor of this operator is the guarded command 
operator from [11], a feature which is also present in the LOTOS specification 
language [67]. The second example shows how to handle interrupts and 
disabling of processes. Disruption, which is also present in LOTOS, was 
introduced into ACP in [17] . In order to handle interrupts directly after being 

raised, a priority operator is introduced, which is based on the 0 operator from 
[7]. 

Finally, the extension of PSF with an explicit notion of a state is considered. 
For this purpose, so called state variables are introduced, which behave 
similarly to variables in an imperative programming language. A related 
mechanism, the state operator, was introduced into ACP in [5] . An application 
of the use of state variables is given, where they are used to model 
asynchronous communication between processes. 

2. CONDITIONAL CHOICES 

2.1. GENERAL 

In PSF there exists no explicit mechanism that, depending on the value of some 
data object, determines the control flow of a process. This can only be done by 
introduction of a new process, which has that data element as index. Choices 
are made by adding for each condition a new entry in the list of process 
definitions, followed by the appropriate actions . This way auxiliary process 
names are needed only to control choices. 

As an example look at the following specification of a buffer. This PSF 
fragment defines the process Buffer, indexed with its contents, a queue of 
elements from some data type D. The behaviour of this buffer depends on its 
contents. We presume a data type Queues given, having appropriate 
definitions of the functions which are used in this example. 

Buffer{ernpty-queue) = 
aum{d in D, input{d) Buffer{add-back{d, empty-queue))) 

Buffer{add{e,q)) = 
aum{d in D, input{d) Buffer{add-back{d, add{e,q)))) + 
output(e) . Buffer{q) 

A more concise specification could be obtained using a case construction. 
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Buffer (q} sum(d in D, input(d} . Buffer(add-back(d, q})} + 
case is-empty(q} = false 

do output(top(q)} . Buffer(pop(q}) od 

The option to send an item from the buffer to the output is only enabled if the 
queue is not empty. 

The condition in a case construction with one alternative is an equation of 
terms of the same sort. If the two terms are equal, the expression between do 
and od will be enabled. If the two terms are not equal the expression equals 
deadlock. 

The following example shows the use of a conditional choice with more 
alternatives. It defines the process Distribution, which plays a role in interpret­
ing signals from a remote control of a television set. The incoming messages 
are distributed over the various components, which will handle the messages. 

Distribution= 
sum(m in messages, receive (m} . 

case m 
volume-up, volume-down do s(sound-control, m) od 
brightness-up, brightness-down do s(display-control, m} od 
optimal do s(sound-control, m} . 

s(display-control, m} od} 

The semantics of the case operator are given by the following laws. We use the 
auxiliary guarded command operator as defined in [I l]. The definition of the 
guarded command is given in the second part of the following table. Let s and 
tk,1 (1$k$n, l$/$ik, ik2::1, n2::l) be data terms over some given signature. Let x; 
(1 ::; i::;n) be processes. We require that the left and right hand-side of the 
conditions are of the same type. 

Axioms GCl and GC2 can be used to eliminate the guarded command 
operator if the guard can be evaluated. Axioms GC3 and GC4 allow logic 
manipulation of formulas. Substitution of variables is handled by GCS. GC6 up 
to GC13 deal with the combination of the guarded command with other 
operators. 

From the definitions it follows that the case operator can be eliminated from 
closed process expressions, under the assumption that the conditions can be 
decided and the expression does not contain the generalized sum or merge 
construct. 

CASE case s 
= 11, 1, ... ,t1 ,; 1 do x1 od (s=IJ, 1) :➔x 1 + ... + (s=tJ ,i 1) :➔x1 + 
= 12, 1, ... ,12,;2 do x2 od 

... + 

= tn, 1, ... ,tn,in do Xn od (s=ln, 1) :➔xn + .. . + (s=tn,in) :➔xn 
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GCl 
GC2 
GC3 

GC4 
GCS 
GC6 
GC7 
GCB 

GC9 
GClO 
GCll 
GC12 

GC13 

<j) ⇒ (<j) :➔ p=p) 

--,<j> ⇒ ( <j) :➔ p = ◊ ) 
<j) :➔ ( \jl :➔ p ) = ( <j) /\ \j/) :➔ p 

( <j) V \j/ ) :➔ p = ( <j) :➔ p ) + ( \j/ :➔ p ) 

(v=t) :➔ p = (v=t) :➔ p[v:=t] 

<j) :➔ (x · y) = ( <j) :➔ X) · y 

<j) :➔ (x + y) = ( <j) :➔ X ) + ( <j) :➔ y) 

(<j) :➔ x) lL y = <j) :➔ (x IL y) 

(<j) :➔ x) I y = <j) :➔ (x I y) 

x I (<j):➔ y)= <j):➔ (x I y) 

dH(<J> :➔ x) = <j) :➔ dff(x) 

t1(<j) :➔ x) = <j) :➔ t1(x) 

<j) :➔ (x · y) = ( <j) :➔ X) · ( <j) :➔ y) 

table 1 Algebraic laws for Conditional Choice 

2.2. TRANSITION RULES 

Since the conditional choice operators can be viewed as a shorthand notation, 
we only give the operational semantics for the guarded command. 

GCl 
x~x',<j) 

(<j):➔ x)~x' 
GC2 

x~ ✓,<j) 

(<j):➔ x)~ ✓ 

table 2 Transition rules for Conditional Choice 

3. INTERRUPTS AND DISABLING 

In this section three new operators are introduced in PSF. The priority operator 
is used to give some actions higher priority than others, e.g. actions denoting an 
interrupt. The interrupt and disruption operator are used to express the 
possibility that a process is always willing to perform a special interrupt or 
disabling action. 
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3.1. PRIORITIES 

3.1.1. General 

In [7] an interrupt mechanism for ACP was introduced. This mechanism used 

the priority operator 0 for filtering out all actions with highest priority. The 
hierarchy of atomic actions is defined by a fixed partial ordering. We introduce 
a new operator which has as a parameter a set of atomic actions that have 
priority over all other actions. Thus if an expression has an alternative that 
starts with an atom with high priority, alternatives that start with an atom with 
low priority will be suppressed. If the expression has no alternatives starting 
with an atom with high priority, all alternatives are still enabled. 

So for c~a and c~b, the expression prio((a}, a + b) equals a and prio((c), a + b) 
equals a + b. Note that the priotity operator is not monotonic with respect to the 
alternative composition. 

In this way we can define the two levels of high and low priority, but by 
repeatedly applying the prio operator we can introduce more levels. The 
innermost set defines the atoms with highest priority, as is shown by the 
following examples. 

prio((a,b}, prio((c}, a+ b + c + d)) = prio((a,b}, c) = c, while 
prio({a,b}, prio((c}, a+ b + d)) = prio({a,b}, a+ b + d) =a+ b 

3.1.2. Semantics 

The semantics of the prio operator are given by the following equations. The 
atomic action a may not be equal to skip and the set S may not contain skip. 

PRll prio(S, x) = x <ls o 
PRl2 a <ls b = a if aE S v be: S 

PRl3 a <ls b = o otherwise 

PRl4 

PRIS 

PRl6 

PRl7 

PRl8 

PRl9 

PRll 0 

PRll 1 

PRl12 

PRll 3 

a <ls o = a 

0 <ls X = 0 

a <ls skip= a 

skip <ls x = skip 

x <ls y.z = x <ls y 

x <ls (y+z) = (x <ls y) <ls z 

x.y <ls z = (x <ls z).(y<ls o) 

(x+y) <ls z = (x <ls y) <ls z + (y <ls x) <ls z 

x <ls (<)>:->y) = <j> :->(x <ls y) + ---4>:->(x<ls o) 
(<t>:->x) <ls Y = <t>:->(x <ls y) 

table 3 Algebraic laws for the priority operator 
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In the definition of the priority operator we use an auxiliary operator <lg. This 
operator is parameterized with a set of actions . It serves to calculate the context 
of the first actions of its left-hand side. This context, that is the collection of all 
alternative actions, is being built up in the right-hand side. If some action has 
low priority and its context can do an action with high priority, this low priority 
action is blocked. From rule PRl12 it follows that we need negation of guards if 
we combine priorities with the guarded command. 

The 0 operator in a process expression can be replaced by a finite series of prio 
operators if two conditions are met. The first one is that the ordering of the 
atoms must be total and the second condition is that the number of classes in 
the equivalence relation induced by the total ordering must be finite. Of course 
in the setting of PSF, every class, except for the one with lowest priority should 
be expressible using the operators defined in PSF to construct sets. 

Conversely, it is always possible to replace a prio operator, or a series of them, 

by a 0 with appropriate ordering on the atomic actions. This ordering however 

should be a parameter of the 0 operator and not of the specification as a whole, 
as proposed in [7] . 

3.1.3. Transition Rules 

The transition rules for the prio operator are straightforward. A process can 
perform a certain action unless it can do an action with higher priority. The 

notation x ~ is used to indicate a negative condition. It means that process x 
cannot do a b-transition to ✓ or another process. 

x~x', aeS x~ ✓, aeS 
priol 

prio(S,x) ~ prio(S,x') 
prio2 

prio(S,x) ~ x' 

x~ x', aeS, Vbes x ~ x ~ ✓, aeS, VbeS x ~ 
prio3 

prio(S,x) ~ prio(S,x') 
prio4 

prio(S,x) ~ ✓ 

table 4 Transition rules for the priority operator 

Using techniques from [SO] it can be shown that these rules, which involve 
negative premises, in combination with the rules of chapter 2, section 3.7, 
define a transition relation. 

3.2. PRIORITIES, INTERRUPTS AND DISABLING 

3.2.1 . General 

The priority operator introduced above enables us to force the action with 
highest priority to be performed. For modelling interrupts and disabling how-
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ever, this operator is not enough. A process that is able to accept an interrupt 
should be willing to accept this interrupt at any instant. After every execution 
of an atomic action the alternative to do the interrupt action must be present. 

If we want to extend the process expression a.b.c.d.e so that it can be disabled 
by the action i we would have to add this option at any position: 

i + a(i + b(i + c(i + d(i + e)))). 
Adding an interrupt i followed by interrupt handler I costs even more 

overhead. It would result in the following system of equations: 
x1 = i.I.x1 + a.x2 
x2 = i.I.x2 + b.x3 
X3 = i.l.X3 + C.X4 
X4 = i.l.x4 + d .x5 
xs = i.I.xs + e 

It is useful to have a shorthand for these constructions. We use the mode 
transfer operator from [17] to handle disruption and we define a new opera.tor 
to handle interrupts. We will not use the same notational convention as in [17] . 
The expression dis(x,y) is used to express the fact that process x can be disrupted 
at any time by process y. If y is called and is finished, then the whole process is 
finished. The expression int(x,y) means that process x can be interrupted at any 
time by process y . After y has finished, x resumes. Both int(x,y) and dis(x,y) 
finish if x finishes. 

3.2.2. Semantics 

The semantics for disruption and interrupts are given by the following 
algebraic laws. In the definition of the interrupt operator we need the auxiliary 
delayed interrupt operator, which is denoted by dint. This operator behaves 
exactly as the interrupt operator, with the restriction that it cannot start with 
the interrupting process. The second extra operator is called enable. The first 
argument can only be executed if the second one is not equal to deadlock. 

INT int(x, y) = dint(x, y) + enable(y.int(x, y)),x) 

DINT1 dint(a, x) = a 

DINT2 dint(a.x, y) = a.int(x, y) 

DINT3 dint(x+y, z) = dint(x, z) + dint(y, z) 

DINT4 dint(8, x) = 8 

DINTS dint(q>:->x, y) = q>:->dint(x, y) 

EN1 enable(x, a)= x 

EN2 enable(x, y.z) = enable(x, y) 

EN3 enable(x, y+z) = enable(x, y) + enable(x, z) 

EN4 enable(x, 8) = 8 

ENS enable(x, q,:->y) = q,:->enable(x, y) 
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D1S1 

D1S2 

D1S3 

D1S4 

DISS 

table 5 

dis(a, x) = a+x 

dis(a.x, y) = a.dis(x, y) + y 

dis(x+y, z) = dis(x, z) + dis(y, z) 

dis(o, x) = o 

dis(q>:- >x, y) = q>:->dis(x, y) 

Algebraic laws for disruption and interrupts 

Axioms D1S1 to D1S4 are from [17]. The equation INT is of another nature than 
the rest of the laws. It should be interpreted as follows. The process int(x,y) is a 
solution of the recursive specification 

P = dint(x,y) + enable(y.P,x) 
If specifications are guarded, existence and uniqueness of a solution is 

provided by the Recursive Definition Principle and the Recursive Specification 
Principle (see [24] or [14] for definitions of these principles). It is easy to see that 
if the int operator is used in a guarded recursive specification, the definition of 
this operator with rule INT will also be a guarded specification. 

We have made the choice that int(x,y) is an infinite process, even if x and y 
are finite. This is motivated by the idea that an interrupt can occur an 
unspecified number of times before the interrupted process is granted time to 
resume its normal operation. 

The reason for introducing the delayed interrupt operator is that simply 
setting 

int(x+y, z) = int(x,z) + int(y,z) 
would result in 

int(a+b, c) = int(a,c) + int(b,c) = a + c.int(a,x) + b + c.int(b,x) 
instead of 

int(a+b, c) = dint(a+b, c) + c.int(a+b, c) = a + b + c.int(a+b,x) 
The first expression implies that the choice between a and b can be forced by 
executing one of the two possible c actions. 

An interpretation of the disruption operator in the graph model is given in 
[17]. Let G be the graph of process x and let H be the graph of process y. We may 
assume that the root of H has no incoming edges (see e.g . [14] for a 
rootunwinding procedure which preserves bisimulation equivalence). The 
graph of dis(x,y) is now constructed by taking the disjoint union of G and H . For 
every transition with label a from the root of H to node h of H add to every 
non-terminal node of G a transition with label a to h. 

The interrupt operator can be interpreted similarly. The graph of int(x,y) is 
constructed from the graphs of x and y by creating for every non-terminal node 
g of G a disjoint copy H g of H . Then identify the root of Hg and the terminal 
nodes of Hg with node g. 

We can easily show that the domain of finite and acyclic process graphs is not 
closed under application of the interrupt operator. The process int(a,b) has an 

infinite trace bW and thus is not finite . The class of regular process graphs 
however is closed under application of the interrupt operator. This holds 
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because if process x has n states and process y has m states, the construction of 
int(x,y) yields at most n*m states. 

As a consequence we do not have an elimination theorem for finite process 
expressions, which states that every finite expression without variables can be 
rewritten in an equivalent expression which is only built up of atomic actions, 
sums and prefix multiplication. We do have an elimination theorem for 
processes defined by means of systems of guarded recursive equations. Every 
process defined by a guarded recursive specification involving the int operator 
can be defined by a specification without the int operator. This specification can 
be obtained from the original one by using the algebraic laws for the int 
operator. The proof is by induction on the structure of the expressions. 

Note that in contrast with the disruption operator, the interrupt operator is 
not associative for closed terms. The process int(int(a,b),c) has a trace ca, while 
int(a,int(b,c)) does not. 

3.2.3. Transition Rules 

x~x' x~x• 
disl 

dis(x,y) ~ dis(x',y) 
intl 

int(x,y) ~ int(x',y) 

x~ ✓ x~ ✓ 
dis2 

dis(x,y)~ ✓ 
int2 

int(x,y)~ ✓ 

x~ ✓ y~y' x~ ✓ y~y' 
dis3 

dis(x,y)~y' 
int3 

int(x,y) ~ y'.int(x,y) 

x~x• y~y' x~x' y~y' 
dis4 

dis(x,y) ~ y' 
int4 

int(x,y) ~ y'.int(x,y) 

x~ ✓ y~ ✓ x~ ✓ y~ ✓ 
disS dis(x,y)~ ✓ intS 

int(x,y) ~ int(x,y) 

x~x' y~ ✓ x~x' y~ ✓ 
dis6 dis(x,y) ~ ✓ int6 

int(x,y) ~ int(x,y) 

table 6 Transition rules for interrupt and disabling 
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3.3. AN EXAMPLE 

As an example of the use of these operators we specify a skeleton of a very 
simple operating system. This operating system is inspired by the Commodore 
64 basic operating system [36]. Only the top-level operations are specified. Other 
processes and data types are assumed to be imported. 

If the computer is switched on it does a ColdStart. After doing a memory test 
the Hot Start sequence is activated, which resets all jump vectors (MemTest and 
ResetVectors are imported processes). Then the Normal-Operation starts which 
has the possibility to either be disrupted by a reset-signal, which forces a 
HotStart, or it can be interrupted by an alarm from the clock. This alarm 
indicates that it is time to execute the regular interrupt routine, which scans 
both keyboard and serial port for activities. If one of them has incoming data, 
this will be read and stored in the keyboard buffer and serial port buffer. After 
an interrupt, normal operation is resumed, which consists of reading and 
interpreting tokens from the user program stored in memory (GetNextToken 
and Interpret are imported processes). 

The overall system consists of the processor, initialized with a ColdStart, 
together with a number of devices which are not specified in this example. An 
alarm action has priority over all other actions, except for a reset, which has 
highest priority. 

proc••• module C64 
begin 

export ■ 

begin 
proc••••• 

ColdStart, HotStart, Normal-Operation, Interrupt-Sequence, 
ScanKeyBoard, ScanSerialPort, Reset-Sequence, System 

atom■ 

end 

aeta of atom■ 

IntSet {alarm) 
DisSet = {reset) 

communications 
rec-alarm I send-alarm= alarm 
rec-reset-signal I send-reset-signal 

import ■ 

definitions 
ColdStart = MemTest . HotStart 
HotStart = ResetVectors . 

dis ( 

reset 

int(Normal-Operation, Interrupt-Sequence), 
Reset-Sequence) 

Normal-Operation= aum(t in token, GetNextToken(t) . Interpret(t)) 
Normal-Operation 

Interrupt-Sequence= rec-alarm . ScanKeyBoard. ScanSerialPort 



ScanKeyBoard = 
sum(b in BOOL, key-pressed(b) . 
case b 
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= true do sum(k in key, get-key(k) . put(KbdBuffer, k)) od 
= false do skip od) 

ScanSerialPort 
sum(b in BOOL, data-arrival(b) 
case b 

= true do aum(d in data, get-datum(d) 
put(SerBuffer, d)) od 

= false do skip od) 
Reset-Sequence= rec-reset-signal 

System= prio(DisSet, prio(IntSet, 

Hot Start 

ColdStart I I KeyBoard I I SerialPort I I Display I I Clock)) 
end C64 

4. STATES 

4.1. GENERAL 

The explicit notion of a state and functions controlling the state of a process 
were introduced in ACP in [5]. With the state operator the functional approach 
to specifying in ACP was enriched (or polluted as some say) with imperative 
aspects. 

In spite of these discussions, in many cases explicit manipulation of states 
can be very useful. In [108], for example, it was demonstrated that an expression 
like the following seems to be very natural. 

(Ix rl(x) I I Ly r2(y) I I Lz r3(z) ) . s4(x+y+z) 
The intention is to read in three values, in an order which is immaterial, 
followed by an operation depending on these values. Plausible as this seems, 
the scope rules for the variables bound by the sum constructs are disobeyed. 
Thus the x, y and z variables from the atomic action s4(x+y+z) are not bound, 
making this an illegal expression. 

In [3] this problem was resolved by expanding the merge to an expression 
containing every order of execution of the read actions, with the use of the ACP 
axioms. Due to the exponential growth of the length of such an expression, this 
is not satisfactory. The state operator (as defined in [5]) offers a simple solution 
to this problem by explicitly adding the values read in to the state of the process, 
and making it possible to inspect and use the values at any instant. 

Adding the state operator to PSF would imply that also action and effect 
functions should be defined. These are functions acting on states and atoms, 
thus adding this operator imposes a number of predefined data types and 
functions on them. Since this is not in accordance with the view on extending 
PSF exposed in the introduction, we will propose a simpler construction with 
implicitly defined action and effect functions . 
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In [106] also a variation on the state operator is described. This operator is 
called the register operator. It considers an infinite number of registers, labeled 
with the natural numbers, each of which can contain a value of some data 
domain. Every domain is enriched with a special value undefined, indicating 
that a register contains no value. 

The approach taken here makes use of state variables, which are similar to 
these registers, but are more tailored to PSF. 

4.2. STATE VARIABLES 

In addition to the static type of variables that already exists in PSF, we introduce 
state variables, whose value can change dynamically. The static variables in a 
process expression are fixed at binding time, and serve as a sort of shorthand. So 
if a static variable once has been assigned a value, it will remain unchanged 
within the entire scope of the variable. 

The value of a state variable may change during "execution" of the process by 
using an assignment action. 

4.2.1. Basics 

Let V be a collection of state variables. To every variable we assign a type. We 
extend the collection of data terms in a straightforward way by allowing data 
terms to contain state variables in a correctly typed manner. This collection of 
extended data terms is called Dy. Likewise, the collection of atomic actions is 
extended to Av by allowing extended data terms as index. Furthermore 
assignments of the form [v:=t] will be considered atomic actions, where vis a 
state variable and t is an extended data term of the same type. The extended 
collection of atomic actions is called Av,Ass· Except for the left hand-side of an 
assignment and in a declaration, state variables are always referred to by placing 
the name within square brackets. 

The var operator serves to introduce state variables in a process expression. 
This operator declares the name and type of a state variable, and optionally 
gives the variable an initial value. In the following example we define a process 
which declares a variable v of sort D, assigns the value d0 to it, performs action 
a(do), assigns value f(d0) to v and executes action a(f(do)*f(do)). 

var(v in D, [v:=dol. a([v]). [v:=f([v])] . a([v]*[v])) 
Using initialization of v, the example looks as follows: 

var(v:=do in D, a([v]) . [v:=f([v])] . a([v]*[v])) 
Note that these examples are similar, but they do not represent the same 

process. This is because the assignment in the first example is an atomic action, 
while the initialization in the second example is not. The first expression will 
equal the following: 

skip . a(d0) • skip . a(f(do)*f(do)), 
while the second expression equals 

a(do) . skip . a(f(do)*f(do)). 
After "execution" an assignment becomes the internal action skip. 
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4.2.2. Semantics 

We use the special symbol i to indicate that a state variable has no value 

assigned yet. For conciseness, in the following tables we will write var(v:= 1 in 
D, x) instead of var(v in D, x). 

Let v and w (v;tw) be state variables of type D and D' respectively, and let r, s 
and t be data terms of type D', D and D respectively, or let r, sand t denote the 

special symbol i. For data terms s and t the expression t([v]/s) is the data term t 

in which all occurrences of [v] are replaced bys . We define t([v]/1) by i if [v] 
occurs int or by t if [v] does not occur int. Likewise for an atomic action a from 
Av we define a([v]/s) as the action in which all occurrences of [v] are replaced by 

sand a([v]/1) by o if [v] occurs in a or by a if this is not the case. Furthermore a 
is an element of Av,Ass· 

VAR1 var(v:=S in D, x) = var(v' :=s in D, x([vV[v'])) if [v'] not in sand not in x 

VAR2 

VAR3 

VAR4 

VARS 

VAR6 

VAR7 

var(v:=s in D, a) = a([v]/s) 

var(v:=s in D, [v:=t)) = skip 

var(v:=s in D, [w:=r)) = [w:=r([vVs)] 

var(v:=S in D, a.x) = a([vVs) . var(v:=s in D, x) 

var(v:=s in D, [v:=t) .x) =skip. var(v:=t([v]/s) in D, x) 

var(v:=s in D, [w:=r].x) = 

[w:=r([vVs)]. var(v:=S in D, x) if (w] not ins 

sum(d in D', [w]=d :-> [w:=r([v)/s)] . var(v:=s([w]/d) in D, x) 

otherwise 

VA RB var(v:=s in D, x+y) = var(v:=S in D, x) + var(v:=S in D, y) 

VAR9 var(v:=s in D, O) = o 
VAR 1 0 var(v:=s in D, <f>:->x) = <P(lvVs):-> var(v:=S in D, x) 

VAR11 a([v)) = sum(d in D, [v)=d :-> a([v]/d)) 

VAR 1 2 v'(H, [v:=S) ) = [v:=s) 

VAR 1 3 v'(H, [v:=S] .x ) = [v:=s) . v'(H, x) 

VAR 1 4 [v:=s] I a = 8 

VAR 1 5 [v:=tl <ls x = [v:=t] 

VAR16 a <ls [v:=t) = a 

v' is encaps or hide 

v' is encaps or hide 

table 7 Algebraic laws for state variables 
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Notes 
• Since the collection of atomic actions is extended, we have to reformulate 

all algebraic laws for other process operators, which involve atomic actions. In 
most of the cases the axioms hold for extended atoms and assignments as well. 
This is not the case if a closed action is needed because membership of a set has 
to be tested, such as in the axioms for the encaps and the hide operator. Axiom 
V AR11 is used in these cases to obtain closed atomic actions in expressions. 
From axioms VAR12 through VAR16 it follows that an assignment is always 
treated like skip. The axioms for interrupts and disruption are valid only for 
assignments and closed actions. The axioms for the priority operator hold only 
for closed actions. 

• Standard scope rules apply. The first occurrence of v in var(v:=s, x) is the 
binding occurrence of variable v. The scope of this variable is expression x. The 
term s is not in its scope, so references to v in s are not bound. 

• From the equations above it follows that a reference to a variable which is 
not initialized yet, leads only to a deadlock if this reference occurs in a normal 
action, that is, not in an assignment. Such a reference in an assignment or in 
the initialization part of a var operator is not considered harmful. 

• In VAR7 we have the condition that [w] does not occur in s to overcome 
the following problem. Applying this equation without the condition to the 
expression 

var(w:=0 in D. var(v:=[w] in D, [w:=1]. a([v]))) 
results in skip . a(1) instead of the intended meaning skip . a(O). 

4.2.3. Operational Semantics 

The transition rules for state variables are defined with the use of an explicit 

state, which contains all variables and their current values. So a state <I> is a 
function from V to the collection of all closed data terms plus the special 
symbol i, with the requirement that q,([ v ]) has the same type as v if it is not 
equal to i . 

Now, if P is the class of process expressions and S the class of states, the 

transition relation ➔ is not a relation on P #A# P, but a relation on (S # P) # 

A# (S # P). We also consider the termination relation ➔✓ on (S # P) #A# S. 
We will present only the relevant rules concerning state variables. All other 
rules extend in a straightforward way to the case with states appended. 

In the obvious way we extend the domain of the function <P to the class of all 
data terms, with the addition that ¢,(t) = lift contains [v] such that ¢,([v]) = l. An 
atomic action a is defined in state <I>, notation J( ¢>,a), if a contains no [v] such that 

¢,([v]) = l. If J(q,,a) holds, we define ¢,(a) as the function that applies <I> to all data 
terms in a. 



SVl 

SV2 

SV3 

SV4 

J,(qi,a) 

<q>,a> ~) <q>,✓> 

<4>, [v :=t]> ~p <q>( [v]/q>(t)), ✓> 

<q>( [v]/q>(s)),x> ~ <<!>',✓> 

<q>,var(v:=s in D, x)> ~ <q>'( [v]/<j>( [v])), ✓> 

<q>( [v]/q>(s)),x> ~ <4>',x'> 

<q>,var(v:=s in D, x)> ~ <q>'( [vVqi( [v])),var(v:=q>'([vl) in D, x')> 

table 8 Transition rules for state variables 

4.2.4. Recursion 
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Together with recursion, state variables make it possible to use process call" 
with output parameters. This enables a better modularization, by facilitating the 
division of processes into subprocesses. 

We consider two kinds of indexing of a process: value and reference 
indexing. Value indexing is the standard way of indexing in PSF. This means 
that the index of the defining occurrence of a process (that is: in the left-hand 
side of a process definition) consists of a data term which may contain static 
variables but no state variables. A calling occurrence may consist of a data term 
containing both static and state variables . When the process call is evaluated, 
the actual values of the state variables in the calling process will be used. The 
following specification shows an example of value indexing. 

P = var(w:=0 in D, b([w]) . X(3, [w], [w]+l) . b([w])) . 
X(p, q, r) = a(p, q, r), 

Process P equals the following expression. 
b(O) . a(3,0,1). b(O) 

The second way of indexing will be called reference indexing. This is the case if 
the defining occurrence of a process is indexed with a state variable. The scope 
of this variable ranges over the entire right-hand side of the defining equation. 
A calling occurrence may consist only of a state variable. 

The intuition is that the formal state variable in the definition is identified 
with the actual state variable from the calling process. So, if X is defined as 
follows: 

X([v]) = a([v]). [v:=v+l] . a([v]), 
then a call to X with argument [w] occurs in the following expression: 

var(w:=0 in D, b([w]) . X([w]) . b([w])). 
This process equals the following: 

b(O) . a(O) . skip . a(l) . b(l) 
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Note that the state variable v in the defintion of process X is bound, and thus 

subject to a-conversion. 
Of course we allow both value indexing and reference indexing in one 

process definition, as long as the definitions are left linear and consistent. This 
means that a state variable may only occur once in each left-hand side and that 
all definitions of the same process name and the same type of arguments agree 
on which indices are value type and which are reference type. So the 
definitions of processes X and Y are not allowed in the following example. 

X([v],[v]) = --not allowed, since not left linear 
Y([v]) = ... 
Y(O) = ... --not allowed, since the index of Y is not consistent 

A call Z(O) is not allowed if Z is defined by 
Z([v]) = ... 

On the other hand it is allowed to call Z([v]) if Z is defined by 
Z(O) = ... 

In this case the actual value of variable v will be matched with 0. 
Since an index of a defining occurrence may only be a state variable or a term 

without state variables, the following definition of P is correct, while the 
definition of Q is not. 

P(s(x)) = ... --allowed 
Q(s([v])) = .. . --not allowed 

4.2.5. Semantics of Recursion 
The algebraic properties of state variables as arguments of a process name deal 
with the two cases of indexing. The first rule tells how to replace state variables 
by their value if the variable is in a value index position. The second rule 
handles substitution of variables in a reference index position. Let X be a 
process name, indexed with both reference and value indices. For ease of 
notation we assume that the initial indices of X are reference indices ['Q] and 
that the final indices t(['!Q]) are all value indices, that is data terms, possibly 
containing state variables ['IQ]. The first state variable in t([!Q]) is [wol- Let r be a 

list of data terms without state variables and c; be a substitution of variables. 
The expression xq is used to denote that y is a subprocess of x, that is, the 
equation x=x+y holds. 

VARREC1 X([y], !([~])) = sum(d in D, [wo]=d :-> X([y], !([wo]/d))) 

if d is not in! 

VARREC2 X([y], rl 2'. cr(P(~]/(y])) 

if there is a definition X([w], ~ = P(~]), such that c;~) = r 

table 9 Algebraic laws for state variables and recursion 



States 89 

The first rule states that we may substitute all state variables occurring in a 
value reference by a constant value. This is done from left to right, thus 
introducing a number of sum-constructs. The second rule states that if we 
encounter an indexed process name, which matches some process definition, 
we may conclude that its defintion is a subexpression. We use the ~-operator 
instead of equality, since the process might match with more than one 
definition. 

The operational semantics are given in the following table. let X be a process 
name, indexed with a list of state variables ['Q] and a list of (extended) data terms 
t- The rules state the following. if X is defined by process y and process y can do 
an a action then X can do the same action. We require that the formal state 
variables [Y!) in y are replaced by the actual state variables ['Q}, ,Of course 
variables from ['Q] which occur already in y have to be renamed into a list of 
fresh variables fr_J. 

R.VREC1 

R.VREC2 

<cj>,y([y]/[y'])([Y!]/[y]) ~ <<1>',y'>; X([Y!],<P(!)) = y 

<cj>,X([Yl,!)> ~ <<P',y'> 

<cj>,y([y]/[y'])([Y!]/[y]) ~ <cj>',✓>; X([Y!],cj>(!)) = y 

<cj>,X(lYl,!)> ~ <<P',✓> 

table 10 Transition rules for state variables and recursion 

4.2.6. Input of Data 
The feature of state variables can be used to introduce a shorthand notation for 
the summation construction which is used for reading in data. If the index of 
an atomic action is a state variable prefixed with a question mark, we interpret 
this as a summation over all possible values of this variable. So a(?[d]) is 
shorthand for sum(e in D, a(e) .[d:=e]), where d is of type D and e is some new 
static variable. Now there is a very elegant solution of the parallel input 
problem from (108]: 

P = var(x in D, var(y in D, var(z in D, 
(rl (? [x]) 11 
r2 (? [yl) 11 
r3(?[z]) ) . s4(x+y+z)))) 

So we have the following semantics of this abbreviation. 

INP a(?[v1l, ... , ?[vnD = 

sum( Wn in Dn, ... sum( w1 in D1, a(w1, ... , Wn), [v1 :=w,J .... - [vn:=Wn]) 

table 11 The input operator 
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For reasons of clarity the arguments of action a not starting with a question 
mark are left out. The general case follows easily from this definition. 

If two input variables are equal, it follows that the value read in for the 
rightmost occurrence will be the final value of that variable. 

4.2.7. Remarks 

Note that the use of state variables makes it possible to define (sub)processes 
with output parameters. This way a process can be split into subprocesses more 
easily, resulting in better support of information hiding principles. 

After having introduced state variables it is also possible to define other 
imperative constructs like while loops. In the following example the process X 
is defined by repeatedly executing Y, as long as the equation s=t holds. The data 
term b is a boolean expression, which may contain state variables. 

X = while b do Y od 
A possible definition which makes use of an additional skip action could be 

X = case b = true do Y . X od 
= false do skip od 

Extensions of this kind will not be considered in more detail. 

4.2.8. Relation with the State Operator 

We can relate the var-operator easily to the state operator (A) from [S] in the 
case that all data terms involved are closed. Every var operator relates to one 
application of the state operator, with the variable as object and its sort united 

with i as domain. The action and effect functions result directly from the 
axioms above. 

In the context of recursion and open data terms, the notion of a state variable 

provides more than a useful abbreviation scheme for the A-opera tor. 
Occurrence of a state variable as index of a process name now can be used to see 
a recursive process call as a procedure call with output parameters. 

4.3. AN APPLICATION: ASYNCHRONOUS COMMUNICATION 

Communication between processes in PSF is synchronous in the sense that 
both parties have to take part in the communication at the same instant. In 
some cases this might not be the desired situation, if for example the sending 
party only wants to deliver a message, without waiting for synchronisation 
with the receiver. 

Asynchronous communication in ACP was first discussed in [27], where a 
mechanism was defined that used some newly introduced operators. In [14] the 
state operator was used for this purpose. In the following section we study the 
use of state variables to model asynchronous communication between 
processes. 

The basic idea is that messages can be passed asynchronously by using shared 
state variables. The type of the shared variable indicates which kind of 
queueing mechanism is used. This leads to a flexible definition of a message 
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queue. Consider for example a regular FIFO-queue to store incoming messages, 
as defined in the following algebraic specification. 

data module Queues 
begin 

parameters Data 
begin 

aorta 
Data 

functions 
default -> Data 

end Data 

exports 
begin 

aorta 
Queue 

functions 
empty 
add Data 

end 

enq 
top 
pop 
empty 

imports 
Booleans 

variables 

Data 
Queue 
Queue 
Queue 

d,e -> data 
q : - > Queue 

equations 

ii Queue 
# Queue 

-> Queue 
-> Queue 
-> Queue 
-> Data 
-> Queue 
-> BOOL 

[1] enq(d, empty) = add(d, empty) 

--enqueue 

[2] enq(d, add(e, q)) = add(e, enq(d, q)) 
[3] top(empty) = default 
[4] top(add(d,q)) = d 
[5] pop(empty) = empty 
(6] pop(add(d,q)) = q 
[7] empty(empty) = true 
[8] empty(add(d,q)) = false 

end Queues 

at the back 

Using this queue we define a system consisting of a producer and a consumer. 
The producer reads some data element from its input channel and enqueues 
this element in the queue. The consumer checks whether the queue is empty 
and if this is not the case, the top element is processed, that is, sent to the 
output channel. Although it looks as if the consumer deadlocks when the 
queue is empty, the overall system can make progress because the producer can 
do an input action. 
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process module Asynchronous-Communicati on-with-Queue 
begin 

exports 
begin 

processes 
Prod Queue 
Cons Queue 
System Queue 

atom■ 

input Data 
output Data 

end 

imports 
Queues 

variable a 
q: -> Queue 

definitions 
Prod([q]) aum(d in Data, input(d) . [q:=enq(d, [q])] . Prod([q])) 
Cons([q]) = case empty([q])=false 

do output(top([q])) . [q:=pop( [q])] . Cons([q]) od 
System= var(q:=empty in Queue, Prod([q]) 11 Cons([q])) 
end Asynchronous-Communication-with-Queue 

Note that the semantics of the conditional choice and the parallel composition 
lead to the observation that between testing whether the queue is not empty 
and sending the top of the queue to the output, there is no possibility for the 
producer to alter the contents of the queue. Thus we have an implicit locking 
mechanism which is necessary for correct operation of the system. 

In this way any queueing mechanism which can be expressed in an algebraic 
specification can be used, such as bounded queues, priority queues and stacks. 
As straightforward as this seems, there is a problem in locking the queue. This 
occurs if we replace the queue in the previous example by a stack, as defined in 
the following module. 

data module Stacks 
begin 

parameters Data 
begin 

aorta 
Data 

functions 
default -> Data 

end Data 

exports 
begin 

aorta 
Stack 

functions 
empty - > Stack 
add : Data t Stack-> Stack 



enq 
top 
pop 
empty 

end 

imports 
Booleans 

variables 

Data 
Stack 
Stack 
Stack 

d,e -> data 
q : -> Stack 

equations 

# Stack 

[1'] enq(d, q) = add(d, q) 
[3] top(empty) = default 
[4] top(add(d,q)) = d 
[5] pop[(empty) = empty 
[6] pop(add(d,q)) = q 
[7] empty(empty) = true 
[8] empty(add(d,q)) = false 

end Stacks 

-> Stack 
-> Data 
-> Stack 
-> BOOL 

process module Asynchronous-Communication-with-Stack 
begin 

exports 
begin 

proc••••• 
Prod Stack 
Cons Stack 
System Stack 

atoma 
input Data 
output Data 

end 

imports 
Stacks 

variables 
q: -> Stack 

definitions 
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Prod([q]) aum(d in Data, input(d) . [q:=enq(d, [q))] . Prod([q])) 
Cons([q]) = case empty([q])=false 

do output(top([q])) . [q:=pop([q])] . Cons([q]) od 
System= var (q:=empty in Stack, Prod([q)) 11 Cons([q])) 

end Asynchronous-Communication-with-Stack 

Now the producer can add a new element just after the consumer reads the top 
of the stack and just before the consumer removes it from the stack. An 
example of an incorrect execution is the following (the skip actions are suffixed 
with the actions they originate from): 
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input {d) . skip [q=add {d, empty) J • output {d) . input {e) . 
skip[q=add(e,add(d,empty))) . skip[q=add{d,empty)) . output{d) 
skip[q=empty] 

The source of this problem is that reading the top of the stack and removing it 
are two separate atomic actions, which allow other actions to happen in 
between. A possible solution to this problem is to give the queue a more 
complex structure, which we will call a buffer. This buffer consists of the queue 
itself and the most recently popped data element. 

data module Buffers 
begin 

exports 
begin 

aorta 
Buffer 

functions 
pair Stack f Data-> Buffer 
enq Data f Buffer-> Buffer 
top Buffer-> Data 
pop 
empty 

end 

imports 
Stacks 

variables 

Buffer-> Buffer 
Buffer-> BOOL 

d, e : -> data 
q : -> Stack 

equations 
(1) enq{d, pair{q,e)) = pair(enq{d,q), e) 
(2) pop{pair{q,e)) = pair{pop{q),top{q)) 
(3) top{pair{q,e)) = e 
(4) empty{pair{q,e)) = empty(q) 

end Buffers 

The specification of the system now looks as follows: 

Prod{ [q]) = aum{d in Data, input {d) . [q:=enq{d, [q]) J • Prod{ [q])) 
Cons{[q]) = case empty{[q))=false 

do [q:=pop{[q))) . output{top{[q])) . Cons{[q)) od 
System var{q:=pair{empty, default) in Buffer, 

Prod{ [q)) 11 Cons { [q))) 

One can come up with another solution which consists of a generalization of 
assignment actions. The idea is based on the observation that the queue is not 
locked while the consumer is in its critical region. This locking is easily 
established if we group multiple assignments into one atomic action. In this 
setting, the following specification of the consumer would suffice. 



Cons ( [q)) case empty([q))=false 
do var( temp in Data, 

od 

[temp:= top([q)}; q:= pop([q))) 
output ([temp))) . Cons ( [q)) 
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Here the semicolon is used to separate the assignments and the intended 
semantics is the obvious semantics. 

It is worthwile to note that this treatment of asynchronous communication 
does not reflect the situation in most object-oriented programming languages 
where every object claims a queue as its own property. In the setting described 
above, the producer, and, in fact, any other process that shares the queueing 
variable, has the possibility to alter the contents of the queue other than by 
means of enqueing a message. Exactly the same problem holds for the setting 
with synchronous communication, where a communication channel does not 
belong to a pair of two processes that want to communicate along that channel, 
but to any process willing to write or read on the channel. Still a setting where 
each object has a clear identification and a private message queue might be 
desirable. 

5. AN EXAMPLE 

In the following example we will use the new features introduced in this 
chapter. This example shows the operation of a television control. The 
behaviour was reconstructed using reverse engineering on an existing tv set. 

We start with a specification of the Booleans with values true and false. 

data module Booleans 
begin 

exports 
begin 

aorta 
BOOL 

functions 
true -> BOOL 
false : -> BOOL 

end 

end Booleans 

The state of some properties can be on or off. States are toggled by applying the 
not function. 

data module Status 
begin 

exports 
begin 

aorta 
Status 
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function• 
on 
off 

-> Status 
-> Status 

not 
end 

Status-> Status 

equation• 
[1] not(on) = off 
[2] not(off) - on 

end Status 

Volume and brightness can have a value in a subrange of the naturals. The 
minimum value is O and the maximum value is 20. The optimal adjustment 
med is at 10. Within its range, a value can be incremented and decremented. 

data m.odul.e Values 
begin 

export• 
begin 

aorta 
Val 

function• 

end 

0 
s Val 
inc Val 
dee Val 
max 
med 

import• 
Booleans 

function• 

-> 
-> 
-> 
-> 
-> 
-> 

Val 
Val 
Val 
Val 
Val 
Val 

lt : Val f Val-> BOOL 

variabl.ea 
x, y: -> Val 

equations 
[ 1 ] max s ( s ( s ( s ( s ( s ( s ( s ( s ( s ( 

s (s (s (s (s (s (s (s (s (s (0)))))))))))))))))))) --20 
[2] med s(s(s(s(s(s(s(s(s(s(0)))))))))) --10 
[3] inc(x) = s(x) when lt(x, max) true 
[4] inc(x) = x when lt(x, max) = false 
[5] dec(s(x)) =x 
[6] dec(0) - 0 
[7] lt(0, s(y)) true 
[8] lt(x, 0) = false 
[9] lt(s(x), s(y)) = lt(x, y) 

end Values 

There are a number of keys to control volume, brightness, channel and teletext. 
The quiet key toggles between no volume and the current volume, the optimal 
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key resets all values, toggle-tt switches teletext on and off. The keys O up to 9 are 
used to select a channel. The number of the selected channel is of type Val and 
can be computed by the function val. 

data module Keys 
begin 

exports 
begin 

sorta 
Key 

function■ 

up-vol - > Key 
dwn-vol -> Key 
up-bri -> Key 
dwn-bri -> Key 
quiet -> Key 
optimal -> Key 
toggle-tt: -> Key 
suspend -> Key 
0-key -> Key 
1-key - > Key 
2-key -> Key 
3-key -> Key 
4-key -> Key 
5-key -> Key 
6-key -> Key 
7-key -> Key 
8-key -> Key 
9-key -> Key 

val 
end 

Key-> Val 

imports 
Values 

equations 
[1] val(up-vol) 
[2] val(dwn-vol) 
[3] val (up-bri) 
[4J val(dwn-bri) 
[SJ val (quiet) 
[6] val(optimal) 
[7J val(toggle-tt) 
[BJ val(suspend) 
[9J val(0-key) 
[l0J val(l-key) 
[11] val(2-key) 
[12J val (3-key) 
[13] val(4-key) 
[14] val(S-key) 
[15] val(6-key) 
[16J val(7-key) 
[17] val(B-key) 
[18] val (9-key) 

end Keys 

0 
0 

= 0 
0 

= 0 
0 
0 

- 0 
0 

= s (0) 
= s (s (0)) 

s (s (s (0))) 

- s(s(s(s(0)))) 
s (s (s (s (s (0))))) 

= s(s(s(s(s(s(0)))))) 
= s(s(s(s(s(s(s(0))))))) 
= s(s(s(s(s(s(s(s(0)))))))) 

s (s (s (s (s (s (s (s (s (0))))))))) 
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A television set consists of a number of components. These components are 
not specified, but their names are used for addressing messages. We assume 
controls for powering down (parts of) the television set, for sound, display, 
teletext and channel selection. Furthermore there is a small light to give user 
feedback and a memory to store status information when the television is 
switched off. 

data module Components 
begin 

export ■ 

begin 
aorta 

Component 
function■ 

and 

power-control 
sound-control 
display-control 
tt-control 
chan-control 
led 
mem 

and Components 

- > Component 
-> Component 
-> Component 
-> Component 
- > Component 
- > Component 
- > Component 

Messages that are sent to the various components consist of a value or a status. 
The LED can receive a flash message. 

data module Messages 
begin 

export ■ 

begin 
aorta 

Message 
function■ 

msg Val - > Message 
msg 
flash 

Status-> Message 
-> Message 

and 

import■ 

Values, Status 

end Messages 

The process TV-Control starts with a power-on action, followed by reading in 
the stored values of channel, volume and brightness. Then it continues with 
the process Control, initialized with these values, while ttstat, suspend and 
qstat are off and the oldvolume is 0. This means that teletext is not active, the 
television is not suspended and that the sound is not switched off. 
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Operation of the TV-Control can be disrupted by a power-off action at any 
instant. Before actually quitting, there is some time left to store the current 
values of channel, volume and brightness in memory for later use. 

The Control process starts by receiving a key press. Then, depending on 
whether the television is suspended or not, this key is interpreted. After 
suspension, operation can only be resumed if a number key is pressed. This 
then becomes the active channel. 

If operation is not suspended, the keys have the following result. Pressing 
the suspend key forces suspension. The volume and brightness controls 
determine the values of vol and bri. Sound can be turned off temporarily by 
pressing the quiet key. Pressing it a second time restores the old volume. 
Standard values for volume and brightness can be set using the optimal key. 
Toggling teletext on and off is done with the toggle-tt key. If teletext is on, the 
keys O up to 9 control the displayed page. Otherwise they control the channel. 

process module TV-Control 
begin 

exports 
begin 

atoms 
r : Component# Message 
s : Component t Message 
receive : Key 
power-on, power-off 

proc••••• 
TV-Control 
Control : Val t Val t Val f Status t Status t Status t Val 

end 

imports 
Status, Keys, Messages, Components 

variable• 
chn, vol, bri, col, oldvol : -> Val 
ttstat, susp, qstat : -> Status 

definitions 
TV-Control= 

var(chn in Val, var(vol in Val, var(bri in Val, 
var(ttstat:=off in Status, var(susp :=off in Status, 
var(qstat:=off in Status, var(oldvol:=O in Val, 

power-on. 
dis(r(mem, msg(?[chn])) 

r(mem, msg(?[vol])) 
r(mem, msg(?[bri])) 
Control([chn], [vol], [bri], [ttstat], 

power-off . 
s (mem, msg ( [chn])) 
s(mem, msg([vol])) 

[susp], [qstat], [oldvol]), 

s (mem, msg ( [bri J)))))))))) 
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Control ( [chn], [vol), [bri), [ttstat], [susp), [qstat], [oldvol)) 
var (k in Key, 

receive(?[k)) 
ca•• 
[susp) = off 

do 
s(led, flash) 
case [kl 

suspend 

up-vol 

dwn-vol 

up-bri 

dwn-bri 

= quiet 

optimal 

do [susp:=on) . 
s(power-control, msg([susp))) od 

do [vol :=inc ([vol))) . 
s(sound-control, msg([vol])) od 

do [vol:=dec([vol))). 
s(sound-control, msg([vol])) od 

do [bri :=inc ( [bri))) . 
s(display-control, msg([bri))) od 

do [bri :=dee ( [bri])] . 
s(display-control, msg([bri])) od 

do case qstat 
off do [oldvol:=[vol]). 

[vol:=OJ. [qstat:=on] od 
= on do [vol:=[oldvol]) . 

[qstat:=off] od 
s(sound-control, msg([vol))) od 

do [vol: =med] . 
s(sound-control, msg([vol))) 
[bri:=med) . 
s(display-control, msg([bri])) od 

toggle-tt do [ttstat:=not ( [ttstat])) . 
s(tt-control, msg([ttstat))) od 

0,1,2,3,4,5,6,7,8,9 
do case ttstat 

od . 

on 
do s(tt-control, msg(val([k)))) od 
off 
do [chn:-val([k])). 

s(sound-control, msg(O)) 
s(chan-control, msg([chn))) 
s(sound-control, msg([vol))) od 

Control([chn], [vol), [bri], [ttstat], 
[susp], [qstat), [oldvol)) 

on 
do case k 

0,1,2,3,4,5,6,7,8,9 

od 
end TV-Control 

do s (led, flash) . [susp:=off) . 
[ttstat:=off) . [oldvol:=OJ . 
s(power-control, msg([susp))) 
[chn:-val([k))) . s(chan-control, msg([chn))) . 
s (sound-control, msg ([vol))) . 
s(display-control, msg([bri])) . 
Control([chn], [vol], [bri), [ttstat), 

[susp], [qstat], [oldvol]) od 
suspend, up-vol, dwn-vol, up-bri, 

dwn-bri, quiet, optimal, toggle-tt 
do Control ( [chn), [vol), [bri), [ttstat), 

[susp), [qstat), [oldvol)) od 
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6. CONCLUSION 

The orientation of PSF on ACP and the fact that PSF is meant to be a computer 
manageable formalism seem to be in contradiction. New operators are 
continuously added to ACP, in order to increase the expressiveness, to obtain 
more concise specifications or to make verification easier. In contradiction with 
this, a computer formalism should remain stable and new releases of such a 
language should be scarce and backwardly compatible. 

The best way to manoeuvre through this contradiction is to find a 
compromise between stability and extendability. New features should only be 
added if they have proven to be very useful, or even to be necessary, for 
specification or verification purposes. This is to be established in case studies. 

A requirement for such extensions will also be that the impact on the 
specification language will be as small as possible. Thus the addition of a new 
operator should result only in the addition of new syntax for this operator. 
Addition of a new process operator will only influence the definition of process 
operators, without altering the modularization concept or the way in which 
data types are specified. This requirement sometimes makes it necessary to 
make a redesign of the operators involved, instead of simply copying them. 
This could be the case for example if a newly introduced process operator makes 
assumptions on the structure of the data types, such as the existence of 
predefined functions or sorts. 

As a last requirement it is stated that newly introduced process operators 
have a semantics which can be defined using transition rules, in such a way 
that these rules can be composed with the existing rules without altering 
previously defined operators. 

Now let us have a look at the three candidates for extending PSF which are 
considered in this chapter. Conditional choices seem to be very useful for 
making the control structure of a process execution more visible. It helps to 
avoid unnecessary process definitions, which are only added to sum up all 
choice alternatives. As a side-effect, the use of conditional choices makes it 
possible to consider the subset of PSF which only allows variables as arguments 
of the process names at the left hand side of a process definition. The advantage 
of this subset is that the equality sign in a process definition does not have to be 
interpreted as a summand sign, which resolves some intuitive as well as some 
computational problems related to this interpretation. 

The second extension studied consists of three operators, which together 
enable the specification of interruptable systems. These are the interrupt and 
disabling operator, which add the possibility of a process to be interrupted or 
disabled at any time, and the modified priority operator which assures that an 
interrupting action occurs whenever possible. Instead of introducing the notion 
of a partial order on atoms (which is used in the priority operator as defined for 
ACP) we modify this operator and use the already existing notion of sets. 

The third example, state variables, is a revision of the state operator, for 
which the definition of an action and effect function is assumed. State variables 
behave as variables in a regular programming language, thus introducing 
imperative aspects in the PSF language. They are useful for specifying processes 
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with parallel input, processes with output parameters and to keep track of the 
state of a process. 

We may conclude that without major difficulties many extensions of ACP 
can be added to PSF at the cost of a simple redesign of the operators involved. 
The question which features must be added in a new release of PSF is not 
answered yet. Other extensions which are candidate to be part of PSF are real 
time process algebra, probabilistic choices and process creation. 

To overcome the problems with extending PSF, it might be argued that a real 
ACP based specification language should not fix the set of admissible process 
operators. Such a language, and of course all its tools, should have this set as a 
parameter. Thus the user will have to specify for each use the operators to work 
with, their syntax, the axioms which they obey and the transition rules defining 
their behaviour. This idea is implemented in the Process Algebra Manipulator 
[77]. 

A drawback of this approach is that tools can only use the information 
provided through this parameter, which can have considerable consequences 
for the speed of execution of the tools. In the current implementation for PSF 
heuristics are used which for example handle combinations of several 
operators. 

For the moment we restrict ourselves to a language with a predefined set of 
process operators. 



Chapter 4 

A TOOL INTERFACE LANGUAGE 

FOR PSF 
(with C.}. Veltink) 

Syntax and semantics of a Tool Interface Language (named TIL) for PSF (a Process 
Specification Language) are defined. TIL is meant to be an intermediate language between 
the various tools under development for PSF, such as tools for simulation, verification and 
implementation. 

1. INTRODUCTION 

When creating a programming environment for a specification language for 
concurrent systems, there are several reasons not to let the interaction between 
the various tools take place at the specification language level. An interface 
language can be used to make a layered design, such that tools act on a low 
level, while humans can inspect a high level representation. If the structure of 
such high level language does not allow for easy parsing and type checking, a 
translation to a language that is simpler to parse could be beneficial for the 
complexity of the tools. The effort of writing a complex parser and type checker 
has to be done only once, while the other tools only need a simple parser to 
read the intermediate language. 

If the high level language is a member of a set of similar languages with 
comparable functionality, the toolkit can easily be adapted for another member 
of this group by only writing a new front-end to the intermediate language. 
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These are the reasons for choosing to use a Tool Interface Language (TIL) for 
the toolkit under development for the PSF language. 

This approach is similar to the one taken in the RACE project SPECS. There 
CRL (Common Representation Language) (98) is used as the greatest common 
divisor of several specification languages. Though TIL and CRL differ in the 
sense that they both have features that cannot be expressed in the other 
language, the main difference is a difference in style. We expect that a 
translation from one language into the other will be easy, when (and if) the 
missing features are added. 

As in CRL, TIL features the notion of a hook, in order to make links to the 
high level representation of the specification. This is done using a so called free 
format field. 

The concept of a tool interface language is not new. The standard Ada 
programming support environment is often built around the Diana language 
(49), which is an attributed notation for Ada programs. This intermediate 
language also allows the tools to store local information and helps in reducing 
the overhead in parsing. 

In this chapter we present syntax and semantics of TIL. A specification in TIL 
consists of a number of tuples, each declaring or defining one item. The 
semantics of TIL are defined using initial algebra semantics and action 
relations. An example is included, showing a PSF specification and the 
corresponding TIL text. A first proposal for the language TIL is in [68), on which 
parts of this chapter are based. 

1.1. DESIGNING TIL 

A Tool Interface Language for PSF has to meet several criteria. First of all from 
a semantical point of view it must have the expressiveness of process algebra 
(ACP) and algebraic specifications. This will make it possible to give a mapping 
from PSF specifications to TIL specifications having the same meaning. Since 
the way a PSF specification is split up into modules is immaterial for the 
semantics, TIL should not cover these modularization features . Other features 
from PSF that are not supported by TIL are: overloading of names, renaming, 
parameterization, user-defined operators and tuples of terms over data types. 

In contrast to PSF, which should be easily readable for humans, TIL should 
be easily accessible by computer tools. Parsing TIL should be easy, while 
readability is of minor importance. In many respects TIL can be compared to an 
assembler language. 

Because TIL is an interface between several computer tools, not known in 
advance, it must have a mechanism to allow the tools to insert information of 
a type and in a format that is not dictated by TIL. Such free format information 
is dependent on the tools themselves. 

Altough TIL is used as an interface language for PSF tools, TIL is meant to be 
a language not dependent on PSF. It is defined in such a way that simple 
extensions will make it suitable for other high level specification languages, 
such as LOTOS (67) and µ-CRL [51) . 
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2. SYNTAX OF TIL 

In the following sections the syntax of the Tool Interface Language will be 
described . We also explain the use of free formats. 

2.1. GENERAL 

A specification in TIL consists of a series of tuples. The order in which the 
tuples appear is immaterial. A tuple can be viewed as the declaration or 
definition of one item, for example a sort name, an equation or a process 
definition. (These tuples should not be confused with the data structuring 
m echanism of the same name in ASF.) 

2.2. TUPLE LAYOUT 

For each kind of item we have defined a tuple layout. In general a tuple looks 
like: 

key definition fr ee-format 
The key is the name by which we can refer to the item defined by its definition 
throughout the entire specification. The definition field may sometimes be 
empty. All keys should be unique in the entire specification. In the free-format 
section information concerning the defined item can be recorded, which can be 
used to exchange information between the tools. The contents of the free­
format fields are disregarded when determining the semantics of the 
specification. We will elaborate on the use of the free formats later. 

The general form of a key is the following: 
[X.Y] 

where X identifies the type of item, and Y is an identifier, used to generate 
unique keys. The value of Y must be a natural number. The value of X can be 
one of the following: 

0 administration 
1 sort declaration 
2 function declaration 
3 atomic action declaration 
4 process declaration 
5 set declaration and definition 
6 communication definition 
7 variable declaration 
8 equational specification 
9 process specification 

figure 2.1 Types of a tuple 

The meaning of these items and their format are defined below. 
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Operators (on sets or processes) and predefined processes are denoted by 
<id,#arg> or <id>. Here id is an identifier, determining the operation, and #arg 
is a natural number, denoting the number of arguments. The following 
operators are defined. 

<:,n> 
<+,n> 
<.,n> 
<\,n> 

<alt,n> 
<seq,n> 
<par,n> 
<sum> 
<merge> 

<encaps> 
<hide> 

<skip> 
<delta> 

<if> 
<case> 

enumeration of set elements 
union of sets 
intersection of sets 
difference of sets (left associative) 

alternative composition of processes (+) 
sequential composition of processes (.) 
parallel composition of processes (II) 
generalized alternative composition (sum) 
generalized parallel composition (merge) 

encapsulation of atomic actions (encaps) 
hiding of atomic actions (hide) 

internal action (pre-abstraction) 
deadlock action (delta) 

conditional expression 
multiple conditional expression 

figure 2.2 Operators on sets and processes. 

There is no precedence defined on the operators. If brackets are omitted, 
expressions are associated from left to right. 

In the following examples we already include free format fields . These fields 
give an example of their use but are not essential for the tuple definition. 

Comments A comment starts with a double-hyphen (--) and ends with an 
end-of-line. Comments may contain any character but the end-of-line 
character. 

0 Administration This tuple can be used to store tool dependent informa­
tion about the specification. See the section on free formats for a more 
thorough treatment of this kind of information. 

[0.1] {<date> 19890811) --This is a comment 
This defines an administration tuple with key [0.1], expressing the fact that 
the specification was created on a certain date. 

1 Sort declaration Declaration of a sort, an abstract data type. 
[1.1] { <n> Bool} 

This tuple declares a sort which can be referred to by [1.1] . In the free 
format section the intended name of the sort is added: Bool. This is 
indicated by the <n> expression. 
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2 Function declaration A function declaration contains the type of the 
arguments and the result. The input type may consist of zero or more sort 
references, while the output type consists of one sort. The arity (number of 
arguments) is also part of the declaration. 

[2.1] 2 [1.1] [1.1] [1 .1] {<n> and} 
The boolean function and is declared, having two booleans as input and 
one boolean as output. 

3 Atomic action declaration An atomic action is treated similarly as a 
function, but only has an input type. 

[3.1] 2 [1.2] [1.1] {<n> read} 
The read action has two arguments, the first of which is a sort identified by 
[1.2] (a channel for example). The second one is a boolean. 

4 Process declaration A process declaration has the same format as the 
declaration of an atomic action. 

[4.1] 0 { <n> Start} 
The process Start has no arguments. 

5 Set declaration and definition Sets are used to define a subset of some 
previously defined sort. Each set has a sort assigned to it. This sort is given 
in the first part of the definition. The second part determines the members 
of the set. Sets can be constructed by enumeration and by applying set 
operators (union, intersection, difference). 

[5.1] [1.3] <:,2> ([2.16] [2.17]) {<n> weekend} 
Although for parsing the parentheses in the example are redundant, in 
TIL they are demanded for reasons of readability. 
Given a sort [1.3] (days of the week) and constant functions of this sort 
[2.11] - [2.17] (monday through sunday), we define the set [5.1] (weekend) 
containing saturday and sunday only. 

[5.2] [1.3] <\,2> ([1.3] [5.11) {<n> working-days} 
This defines the complement of weekend. 
When enumerating terms, also terms containing variables (ranging over a 
sort or a set) may be used. This means that all terms resulting from 
substituting closed terms for these variables are member of the set. 

[5.3] [1.4] <:,l> ([2.2] ([7.1])) {<n> even-naturals} 
Let [1.4] denote the sort integer, [2.2] denote the function double, and let 
[7.1] be a variable over sort integer. Now (5.3] defines the set of even­
naturals. Note that variables are implicitely bound by the <:,n> operator. 
To be able to create sets of atomic actions, the special "sort" [I.OJ can be used 
as the sort associated to such a set. 

[5.4] [1.0] <:,3> ([3.2] [3.3] [3.41) {<n> internal-actions} 
This defines the set [5.41, containing the actions [3.2] [3.3] [3.4]. 

6 Communication definition These tuples define the so called communica­
tion function . When two actions are performed in parallel, they can 
communicate, which results in a new atomic action. The atomic actions 
may contain variables. 

[6.1] [3.3] [3.4] [3.5] {<n> Cl} 
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The result from communication between actions [3.3] and [3.4] is action 
[3.5]. 

7 Variable declaration Variables can be used in tuples of type 5, 6, 8 and 9. A 
variable ranges over a sort or a set. 

[7.1] [1.41 { <n> m} 
A variable of sort [1.4] (integers) with name m is declared . 

8 Equational specification In this kind of tuple data types can be defined 
using conditional equations. Equations consist of a pair of terms of the 
same sort, possibly succeeded by a list of conditions. Variables occurring in 
equations are universally quantified. 
The following example shows a line from a PSF specification and its 
equivalent in TIL. 

[BI] and(false,b) = false 
[8.1] [2.1] ([2.9] [7.21) = [2.9] {<n> Bl} 

Conditions are specified using the <= symbol, followed by the number of 
conditions. 

[B6] and(b,c) = false when b=true, c=false 
[8.2] [2.1] ([7.2][7 3]) = [2.9] <= 2 [7.2] = [2.8], [7.3] = [2.9] {<n> B6} 

9 Process specification A process specification consists of two parts. First the 
process name, having an appropriate number of terms as arguments. Free 
variables in these terms are universally quantified. The second part is the 
definition of the process, consisting of a process term without unbound 
variables. 
The following example shows a line from a PSF specification and its 
equivalent in TIL. 

X(b) = (skip.send(b) + skip.error) . sum(c in Bool, read(c).X(c)) 
(9.1] (4.2] ((7.2]) = <seq,2> (<alt,2> ( 

2.3. CONTEXT-FREE SYNTAX 

<seq,2> (<skip> [3.6] ([7.2])) <seq,2> (<skip> [3.9]) 
<sum> ([7.3] <seq,2> ([3.8] ([7.3])) [4.2] ([7.3])))) 0 

In this section we will give the definition of TIL in SDF (Syntax Definition 
Formalism) (see [56]). This is a language to specify the lexical syntax, context-free 
syntax and abstract syntax of programming languages in a formal way and can 
be seen as an alternative to LEX (76] and YACC [70]. 

module TIL 
export• 

sorts 
Free-Format Free-Format-Char Comment-Char Digit Natural 
Id-First-Char Id-Char Id 

lexical syntax 
[ \ n \ t] 
- [ \ n ] 
"--" Comment-Char * "\ n" 
- [ I l 
" {" Free-Format-Char* "}" 

- > LAYOUT 
-> Comment-Char 
- > LAYOUT 
- > Free-Format-Char 
- > Free-Fo rmat 



(0-9] 
Digit+ 
[0-9a-zA-Z] 
[0-9a-zA-Z'\-] 
Id-First-Char Id-Char* 

sorts 

-> 
-> 
-> 
-> 
-> 
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Digit 
Natural 
Id-First-Char 
Id-Char 
Id 

Specification Entry Administration-Entry Sort-Entry 
Function-Entry Atom-Entry Process-Entry Set-Entry 
Communication-Entry Variable-Entry Equation-Entry 
Definition-Entry Administration-Index Sort-Index 
Function-Index Atom-Index Process-Index Set-Index 
Communication-Index Variable-Index Equation-Index 
Definition-Index Variable-Type Set-Expr Enumeration-Item 
Atom-Term Term Equation Equation-Expr Definition-Expr 
Process-Head Case-Pair Process-Expr 

context-free syntax 
11 specification'1 Id Entry* 1'end'' 

Administration-Entry 
Sort-Entry 
Function-Entry 
Atom-Entry 
Process-Entry 
Set-Entry 
Communication-Entry 
Variable-Entry 
Equation-Entry 
Definition-Entry 

-> Specification 

-> Entry 
-> Entry 
-> Entry 
-> Entry 
-> Entry 
-> Entry 
-> Entry 
-> Entry 
-> Entry 
-> Entry 
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Administration-Index Free-Format 
Sort-Index Free-Format 

-> Administration-Entry 
-> Sort-Entry 

Function-Index Natural Sort-Index* Free-Format 
-> Function-Entry 

Atom-Index Natural Sort-Index* Free-Format -> Atom-Entry 
Process-Index Natural Sort-Index* Free-Format 

Set-Index Sort-Index Set-Expr Free-Format 
Communication-Index 
Atom-Term Atom-Term Atom-Term Free-Format 
Variable-Index Variable-Type Free-Format 
Equation-Index Equation-Expr Free-Format 
Definition-Index Definition-Expr Free-Format 

"(0." Natural "]" 
"(1." Natural "]" 
"(2." Natural "]" 
"(3." Natural "]" 
II [4 • II Natural "]" 
"(5." Natural "]" 
"(6." Natural "]" 
"[7 • n Natural "]" 
"(8." Natural "]" 
"(9." Natural "]" 

Sort-Index 
Set-Index 

-> Process-Entry 
-> Set-Entry 

-> Communication-Entry 
-> Variable-Entry 
-> Equation-Entry 

-> Definition-Entry 

-> Administration-Index 
-> Sort-Index 
-> Function-Index 
-> Atom-Index 
-> Process-Index 
-> Set-Index 
-> Communication-Index 
-> Variable-Index 
-> Equation-Index 
-> Definition-Index 

-> Variable-Type 
-> Variable-Type 
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Set-Index 
"<:, II Natural 
"<+," Natural 
"<., " Natural 
"<\, II Natural 

Term 
Atom-Term 

Atom-Index 

">(" 
">(" 
">(" 
">(" 

Enumeration-Item+")" 
Set-Expr+ ")" 
Set-Expr+ ")" 
Set-Expr+ ")" 

Atom-Index " ( ·• Term+ ") " 

Variable-Index 
Function-Inde:< 
Function-Index"(" Term+")" 

Term"=" Term 
Equation 
Equation"<=" Natural {Equation","}+ 

Process-Head"=" Process-Expr 

Process-Index 
Process-Index "(" Term+ ")" 

"=" Term Process-Expr 

Process-Head 
Atom-Term 
"<skip>" 
"<delta>" 
"<encaps>(" Set-Index Process-Expr ")" 
"<hide>(" Set-Index Process-Expr ")" 
"<sum>(" Variable-Index Process-Expr ")" 
"<merge>(" Variable-Index Process-Expr ")" 
"<alt," Natural">(" Process-Expr+ ")" 
"<seq," Natural">(" Process-Expr+ ")" 
"<par," Natural 11 >(" Process-Expr+ ")" 
''<if>('' Term Case-Pair")" 
"<case," Natural">(" Term Case-Pair+")" 

2.4. CONTEXT-SENSITIVE SYNTAX 

- > Set-Expr 
-> Set-Expr 
-> Set-Expr 
-> Set-Expr 
-> Set-Expr 

- > Enumeration-Item 
-> Enumeration-Item 

-> Atom-Term 
-> Atom-Term 

-> Term 
-> Term 
-> Term 

-> Equation 
-> Equation-Expr 
-> Equation-Expr 

-> Definition-Expr 

-> Process-Head 
-> Process-Head 

-> Case-Pair 

-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 
-> Process-Expr 

A syntactically correct TIL text has to meet some extra conditions, in order to 
have a semantical meaning. 

• Distinct tuples must have different keys. 

• All objects occurring in a specification must be declared and must have 
correctly typed arguments (if they have any). 

• The communication function defined in the communications section 
should be associative and commutative.The atomic actions <skip> and 
<delta> cannot take part in any communication action. 

• The part of an operator indicating the number of arguments must match 
the actual number of arguments. 
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• Variables over sets may only occur in a set definition (5), a communica­
tion definition (6) or in a generalized sum or merge in a process 
specification (9). 

• The left-hand side and the right-hand side of an equation must have the 
same type. 

• There should be exactly one binding occurrence of a variable in a process 
specification (9). All other occurrences of this variable in that process 
specification must be within the scope of the binding occurrence. The 
scope of a variable is defined as in PSF in a straightforward way. 

• Operators of the form <id,#arg> must have at least two arguments, except 
for <:,#arg> and <case,#arg>, which must have at least one argument. 

• Set definitions may not contain cyclic references to the set being defined. 

• The second number in a key may be any natural number but zero, except 
in the definition of a set where the key [1.0] is used to indicate that the set 
being defined consists of atomic actions. 

2.5. FREE FORMATS 

A tuple in a TIL specification may contain a so called free format field. The 
contents of a free format field are not subject to syntactical rules defined in this 
chapter. We give however a suggestion of how the free format field could be 
structured and show how we intend to store information about names and 
origin of objects. (Origins are introduced in [201). 

The use of the free format field is to allow the exchange of specific 
information between the various tools acting on a TIL specification. Take as an 
example the information that a specification defines a regular process, which 
might be the outcome of a process classification tool. This information can be 
used by a verification tool to select a proper algorithm. 

Other examples are the fact that the data type specification determines a 
confluent term rewriting system or that a data type is defined using a certain set 
of constructor functions. 

In order to avoid interference of the various kinds of information added by 
several tools, we propose some structure on the free format field. We adopt the 
convention that the parts of information are preceeded by a tag indicating the 
type of information. A tag consists of an identifier enclosed by angle brackets. 

The following example shows a free format used to indicate that the 
processes defined in the specification are regular. 

[0.1] {<class> regular} 
The tools acting on a TIL specification all may know of a set of tags, indicat­

ing information relevant to this tool. Of course these sets may overlap if two 
tools want to exchange information. The documentation of a tool should 
indicate which tags are used for what kind of information. Special care should 
be taken that in the complete tool environment all tags have an unambiguous 
meaning. 
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The free format field in a tuple defining an item can be used to store infor­
mation about that special item. General information about the specification can 
be stored in a free format field of an administration tuple. 

The following tuple can be inserted by a typechecking tool that succeeded in 
checking the typing information in the specification. 

[0.2] {<type-check> ok} 
As a more complicated example we will demonstrate the use of free formats 

to construct so called hooks. A hook is a way to refer to the original 
specification from which the TIL specification is derived. This is a way to make 
the intermediate TIL level transparant to a regular user of PSF and PSF-tools. 
Information generated by a tool acting on TIL in general uses the names of the 
items as defined in TIL. These names however do not correspond with the 
names in the original specification, so the original names should be 
remembered when translating PSF to TIL. The names of the items as they are 
known in the outside world are stored in the free formats using a name-tag 
<n>. The following PSF fragment 

data module junk 
begin 

export• 
begin 

aorta 
foo 

function• 
bar: foo - > foo 

end 
end junk 

results in 

(1.1] {<n>foo} 
[ 2 . 1 l 1 [ 1. 1 l [ 1. 1 l { <n>bar} 

Since the name does not uniquely identify an object in PSF (think of hidden 
objects), we also need information about the origin of an object. This origin 
consists of (a reference to) the name of a module, using an origin-tag <o>. The 
names of modules can be stored using module-tags <m>. If we add origin 
information, the previous example expands to: 

[0.1] {<m>l junk} 
[1.1] {<n > foo < o > l} 
[ 2 .1] 1 [1.1] [1.1] {<n>bar <o>l] 

In case the top-level name of the object is not the same as the name of that 
object in its origin module we can also add the original name, using the <on> 
tag. This situation occurs when applying a renaming or when binding a 
parameter. 



data module top 
begin 

imports junk 
{renamed by 

[ foo -> A, 
bar-> bl 

end top 

[0.1] {<m>l junk) 
[0.2] {<m>2 top) 
[1 . 1] {<n>A <o> l <on>foo) 
[2.1] 1 [1.1] [1.1] {<n>b <o>l <on>bar] 
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Note that we also included the possibility to add comments to a specification. 
These comments are different from free formats, since they are intended to 
contain information for a human reader. Just as free formats, they have no 
semantical meaning. 

3. SEMANTICS 

The semantics for TIL are constructed from the semantics of PSF. Note that 
there is a canonical mapping of TIL specifications into PSF. Every TIL 
specification corresponds to a flat PSF specification, that is a specification 
consisting of exactly one data module and one process module. The semantics 
of the corresponding PSF specification is equal to the semantics of the TIL 
specification. 

See the appendix for a list of action rules for TIL. 

4. AN EXAMPLE 

In this section we give an example of a PSF specification and the corresponding 
TIL specification. In the PSF text we used almost all modular constructs in PSF 
which are not in TIL. The TIL specification could only be constructed after 
normalizing the original specification, that is, flattening the specification until 
only one data module and one process module remains. 

4.1. RUSSIAN ROULETTE IN PSF 

We specify a deadly game in PSF. In the module Booleans the constants true 
and false and the functions and and or are defined. The next module contains 
the Naturals, including an equality function on the Naturals. The module 
Russ ian-Roulette has a parameter Counter, in which the sort COUNT and the 
function tick are presumed. The process roulette has one argument of sort 
COUNT and behaves as follows. It has the choice of performing a skip action 
followed by a click (no bullet) and a restart of the game having the next 
chamber active, or it can choose to do a skip, followed by a bang (indeed a 
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bullet) leading to extermination. Since both possibilities start with a skip action, 
the choice is non-deterministic. 

In the next module we make a game of the roulette process. This is done by 
binding the parameter of Russian-Roulette to the Naturals, renaming some 
items and placing a process in parallel that keeps the score as the number of 
tries before extermination. This number is the argument of the exterminate 
action which is renamed to game-over. If placed in parallel, the game-over 
action and the wait action can communicate, which results in a result action. 
This way the score is communicated. In order to avoid unsuccessful 
communications, all actions from set H are encapsulated. This way they can 
only occur in a communication. Since we are only interested in the result of the 
game, all internal actions are hidden. 

data module Booleans 
begin 

export• 
begin 

aorta 
BOOL 

function• 
true -> BOOL 
false: -> BOOL 
and BOOL f BOOL -> BOOL 
or BOOL # BOOL -> BOOL 

end 

function• 
not : BOOL -> BOOL 

variables 
x, y -> BOOL 

equations 

[Bl] not (true) false 
[B2] not(false) true 
[B3] and(x,true) = x 
[B4] and(x,false) false 
[BS] or(x,y) - not(and(not(x),not(y))) 

end Booleans 

data module Naturals 
begin 

exports 
begin 

aorta 
NAT 

functions 
zero - > NAT 
succ 
equal 

NAT - > NAT 
NAT j/ NAT - > BOOL 

end 



imports 
Booleans 

variable a 
x, y 

equations 

-> NAT 

[Nl] equal(zero,zero) 
[N2) equal (zero, succ (y)) 
(N3] equal(succ(x),zero) 
(N4) equal(succ(x),succ(y)) 

end Naturals 

true 
false 
false 
equal(x,y) 

process module Russian-Roulette 
begin 

parameter a 
Counter 

begin 
aorta 

COUNT 
functions 

tick COUNT 
end Counter 

exports 
begin 

atoms 

-> COUNT 

exterminate : COUNT 
proc••••• 

roulette : COUNT 
aeta of atoms 

Internals= { click, bang) 
end 

atoms 
click, bang 

variables 
c : -> COUNT 

definitions 

roulette(c) skip 
skip 

end Russian-Roulette 

click . roulette(tick(c)) + 
bang. exterminate(c) 

An Example 11 5 
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process module Game 
begin 

import• 
Russian-Roulette 

Counter 
bound by 

[ COUNT -> NAT, 
tick -> succ l 

to Naturals 
renamed by 

[exterminate-> game-over, 
roulette ->game] } 

atoms 
wait, result NAT 

processes 
play 

sets of atoms 
H ~ { game-over ( score) I score in NAT} 

+ { wait (score) I score in NAT } 

communications 
game-over (score) I wait (score) result(score) for score in NAT 

definition• 
play= hide(Internals, encap■ (H, 

game(zero) II aum(score in NAT, wait(score)))} 

end Game 

4.2. RUSSIAN ROULETTE IN Tll 

This time the specification is written down in TIL. The items are grouped by 
sort, but the order is immaterial. In the free formats references are added to the 
original PSF specification. 

[0 .1] { <m> l Booleans } 

[0 . 2] { <m>2 Naturals } 
[0. 3] { <m>3 Russian-Roulette} 
[O. 4 l { <m>4 Game } 

[1.1] <n>BOOL <o>l} 
[1. 2] { <n>NAT <o>2} 
[2. l] 0 [1.1] { <n>true <o>l} 
[2. 2 l 0 [1.1] { <n>false <o>l} 
[2. 3] 2 [1.1] [1.1] [1.1] { <n>and <o>l} 
[2. 4] 2 [1.1] [1.1] [1.1] { <n>or <o>l} 
[2.5] 1 [1.1] [1.1] { <n>not <o>l} 
[2. 6] 0 [1.2] { <n>zero <o>2) 
[2. 7 l 1 [l. 2] [l. 2 l { <n>succ <o>2} 
[2. 8] 2 [1. 2] [1. 2] [1.1) { <n>equal <o>2} 
[3 .1] 1 [1.2] { <n>game-ove r <on>exterminate <o>3} 
[3.2] 0 { <n>c lick <o>3} 
[3.3] 0 { <n>bang <o>3} 
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(3.4] 1 (1.2] 
(3.5] 1 (1.2] 
(4 .1] 1 (1.2] 
(4 .2 l o 

{ < n>wait 
<n>result 

{ <n>game <on>roulette 
{ <n>play 

<o>4) 
<o>4) 
<o>3) 
<o>4) 
<o>3) (5.1] 

(5.2] 

(6 .1] 
[7 .1] 
[7 .2 l 
[7 .3] 
[7. 4 l 
[7 .5] 
[7.6) 
[7. 7] 

(7. 8] 
[7. 9] 
[8.1] 
[8.2] 
[8.3] 
[8. 4 l 
[8.5] 

[8. 6] 
(8.7) 
[8. 8] 
[8.9] 

[ 9 .1] 

[9.2] 

(1.0] <:,2>([3.2] (3.3]) { <n>Internals 
[1.0] <+,2>(<:,1>([3.1] ([7.6])) < :,1>((3.4] ([7.7]))) 

[3.1]([7.8]) (3.4]([7.8]) (3.5]([7.8]) 
[1.1] 
[1.1] 
[l. 2] 
[l. 2] 
[1. 2] 
[l. 2] 
[1.2] 
[1.2] 
[1.2] 
(2.5] ((2.1]) = (2.2] 

{ <n>H <o>4) 
<o>4) 

<n>x <o>l) 
<n>y <o>l) 
<n >x <o>2) 
<n>y <o>2) 
<n>c <o>3) 

{ <n>score <o>4) 
{ <n>score <o>4) 
{ <n>score <o>4) 
{ <n>score <o>4) 

I <n>[Bl] <o>l) 
{ <n>[B2] <o>l) [2.5] ([2.2]) = [2.1] 

[2.3] ([7.1] [2.1]) 
[2.3]([7.1] [2.2]) 
[2.4] ([7.1] [7.2]) = 

[7.1] { <n>[B3] <o>l) 
[2.2] { <n>[B4] <o>l} 
[2.5] ([2.3] ([2.5] ([7.1]) [2.5] ([7.2]))) 

[2.8] ([2.6] [2.6]) = [2.1] 
(2.8] ([2.6] [2.7] ((7.4])) = [2.2] 
[2.8] ([2.7] ([7.3]) [2.6]) = [2.2] 
[2.8] ([2.7] ([7.3]) [2.7] ([7.4])) 

[4.1] ([7.5]) = <alt,2>( 

I <n>[B5] <o>l) 
{ <n>[Nl] <o>2) 
{ <n>[N2] <o>2) 
{ <n>[N3] <o>2) 

[2.8] ([7.3] [7.4]) 
{ <n>[N4] <o>2) 

<seq,3>(<skip> [3.2] [4.1] ([2.7] ([7.5]))) 
<seq,3>(<skip> [3.3] [3.1] ([7.5]))) 

{ <o>3) 
[4.2] <hide>([5.1] <encaps>([5.2] <par,2>([4.1] ([2.6]) 

<sum>([7.9] (3.4] ([7.9]))))) 
{ <o>4) 

5. CONCLUSION 

We have defined a language meeting the criteria given for an intermediate 
language. 

The language has the expressive power of PSF and provides the notion of 
free formats to include tool dependent information. This feature can be 
especially useful for creating so called hooks to the source language. 

TIL is already being used as the core-language of the PSF toolkit. An interface 
to the ACP tools developed at PTT-research [110] is implemented, while 
interfaces to other tools are under construction. 

We claim that other languages based on a combination of algebraic 
specification and process algebra can easily be translated to TIL. Of course we 
should extend the TIL language with the specific process operators used in 
other languages, however this can easily be done. Thus we reveal the 

possibilities of the PSF toolkit for languages as LOTOS [67], PSF/C [11] andµ­
CRL [51]. 
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APPENDIX A. ACTION RULES 

In this appendix we will define the operational semantics for the process 
definition part of TIL with the aid of so-called action rules . Action rules in ACP 
are introduced in [47] . 

A.1. PROCESS DEFINITIONS 

A process definition in general looks as follows: 

• X(t1(:0, ... , tn(:Q)) = y(-y) ; 

:1Z. is a list of variables declared in the variables tuples. 
t; is a term from the data specification part, possibly containing some 
variables from the list Q.. 
X is a process name. 
y is a process expression. 

All closed data terms occurring in a process definition should be looked upon 
as a notation for the corresponding equivalence class of this term, in the initial 
algebra. It would have been more accurate if we would have written a term t as 
[t]. However, we leave out the brackets for reasons of readability. 

A.2. ACTION RULES FOR TIL 

For each element [a] of the initial algebra of atomic actions we define a binary 

relation ~ and a unary relation ~ V on closed process expressions. If a is an 

atomic action, and [a] its equivalence class (so [a] E IA), we write~ instead of~-

x ~ y means that the process expression represented by x can evolve into 
y, by executing the atomic action [a] . 

x ~ V means that the process expression represented by x can terminate 
successfully by executing the atomic action [a]. The special symbol v 
can be looked upon as a symbol indicating successful termination of 
a process. It is not a process expression. 

The relations ~ are generated by the rules in the following tables, i.e. x ~ y 
only holds if this can be derived using these rules. 

In the following tables we will use some symbols that have a special meaning. 
These symbols are: 

• a,b,c : atomic actions or <skip>. 

• x,y,x',y' : variables on processes, i.e. we can substitute any process for 
these variables. 
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• !: : a list of process variables (x1 . . . Xn). 
;tit/x;]: a substitution of term t at position i in list,!_. 
,!_\x; : the list obtained by deleting the element at position i from list,!_. 

• Dom(d) : the set associated with variable d, as defined in the variable 
declaration of d. 

I Dom(d) I : the number of elements in the domain of d. 
Along with some of the rules we will give an explanation: 

• <par> 
- a I b = c means that the communication between a and b has been 

defined to be c. 

• <encaps> 
- H : the set of atomic actions that have to be encapsulated. 

• <hide> 
- I : the set of atomic actions that have to be renamed into skip. 

• rec . 

- Y.E 12. means u1E D1, UzE D2, . . . , UnE Dn 
- g = (u1, u2, ... , Un) 
- J2. = (D1, D2, ... , Dn) 
- D; is a sort. 

- y(g) : a process expression with a list of terms :!:fE J2.. as parameters. 
- X : a process name declared in a process declaration tuple as X n D1 

D2 ... Dn 
- X(:!:f) = y(:!:f) : an equation from a definition tuple. 

• <sum> 
- dis a variable. 

a ✓ atom a ➔ 

Xj ~ X' (15i5n} 
<alt> 1 

... Xn) ~ x' <8,0>(X1 

Xj ~ ✓ (15i5n) 
<alt> 2 

. .. Xn) ~ ✓ <8,0>(X1 

x1 ~ x' 
<seq> 1 

<S,n>(X1 ... Xn) ~ <S, n>(X' x2 . .. Xn) 

x1 ~ ✓ (n>2) 
<seq> 2 

<S, n>(X1 ... Xn) ~ <S ,n-1>(x2 . .. Xn) 
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<seq> 3 

<par> 1 

<par> 2 

<par> 3 

<par> 4 

<par> 5 

<par> 6 

<par> 7 

<par> 8 

<par> 9 

<encaps> 1 

<encaps> 2 

<hide> 1 

Xj ~ ✓ 

<S,2>(x1 x2) ~ x2 

x; ~ x' (15i5n) 

<p,n>(X1 ... xn) ~ <p,n>(is.[x'/x;l) 

x; ~ ✓ (15i5n ; n>2) 
a 

<P,n>(x1 ... Xn) ➔ <P,n>(lS.\xj) 

Xj ~ ✓ ( 15i,j52; i~j) 
a 

<P,2>(x1 x2) ➔ Xj 

x; ~ x'; x; ~ x"; alb=c (15i5n; 15j5n; i~j) 

<p,n>(x1 ... Xn) ~ <p,n>{ll.(x'/x;](x"/xjl) 

x; ~ x'; x; ~ ✓; a lb=C (15i5n; 15j5n; n>2; i~j) 
C 

<p,n>(X1 ... Xn) ➔ <p,n-1>{ll.(x'/x;]\Xj) 

x; ~ x'; x; ~ ✓; alb=c (15i5n; 15j5n; i~j) 

<p,2>(x1 x2) ~ x' 

x; ~ ✓; x; ~ ✓; alb=c (15i5n; 15j5n; i~j; n>3) 
C 

<p,n>(x1 ... xn) ➔ <p,n-2>(is.\x;\xj) 

x; ~ ✓: x; ~ ✓; alb=c (15i53; 15j53; i~j) 
C 

<P,3>(x1 x2 x3) ➔ is_\x;l xj 

x; ~ ✓; x; ~ ✓; alb=c (15i52; 15j52; i~j) 

<p,n>(x1 ... Xn) ~ ✓ 

x ~ x'; ai H 

<encaps>(H x) ~ <encaps>(H x') 

x ~ ✓; ai H 

<encaps>(H x) ~ ✓ 

x ~ x'; ae I 

<hide>(I x) <Skip> <hide>(I x') 



<hide> 2 

<hide> 3 

<hide> 4 

rec. 1 

rec. 2 

<sum> 1 

<sum> 2 

<merge> 1 

<merge> 2 

<merge> 3 

<merge> 4 

<merge> 5 

<merge> 6 

<merge> 7 

<hide>(l x) <Skip> ✓ 

x ~ x'; ae I 

<hide>(! x) ~ <hide>(I x') 

x ~ ✓; ae I 

<hide>( l x) ~ ✓ 

Y(J.l) ~ y' (J.L e 0 ; X (.!J.) = y(.!J.)) 

X(J.t)~ y' 

Y(JJ.) ~ ✓ (JJ.e D; X(.!J.) = y(.!J.)) 

X(JJ.) ~ ✓ 

x(u) ~ x' (ue Oom(d)) 

<SUm>(d x(d)) ~ x' 

x(u) ~ ✓ (ue Dom(d)) 

<SUm>(d x(d)) ~ ✓ 

x(u) ~ x' (/Dom(d)/> 1; ue Oom(d) ; Oom(d')=Dom(d) \{u)) 

<merge>(d x(d)) ~ <P,2>(x' <merge>(d' x(d'))) 

x(u) ~ ✓ (/Oom(d)/> 1; ue Dom(d) ; Dom(d')=Dom(d) \{u}) 

<merge>(d x(d)) ~ <merge>(d ' x( d')) 

x(u) ~ x' (Dom(d)={u}) 

<merge>(d x(d)) ~ x' 

x(u) ~ ✓ (Oom(d)={u}) 

<merge>(d x(d)) ~ ✓ 
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a b 
x(u) ➔ x'; x(v) ➔ x"; alb=c (/Dom(d)/>2; u,veDom(d); Dom(d')=Dom(d)\{u,v}) 

<merge >(d x(d)) ~ <P,3>(x' x" <merge>(d' x(d'))) 

x(u) ~ x'; x(v) ~ { alb=c QDom(d)/>2; u,veDom(d) ; Oom(d')=Dom(d)\{u,v}) 

<merge>(d x(d)) ~ <P,2>(x' <merge>(d' x(d ') )) 

x(u) ~ ✓; x( v) ~ { alb=c (/Dom(d)/>2; u, ve Dom(d); Dom(d')=Dom(d)\{u, v}) 

<merge>(d x(d)) ~ <merge>(d' x(d')) 
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<merge> 8 

<merge> 9 

<merge> 10 

<if> 1 

<if> 2 

<case> 1 

<case> 2 

a b 
x(u) ➔ x'; x(v) ➔ x"; alb=c (Dom(d)={u, v}) 

<merge>(d x(d)) ~ <P,2>(x' x") 

a b ✓ x(u) ➔ x'; x(v) ➔ ; alb=c (Dom(d)={u, v}) 

<merge>(d x(d)) ~ x' 

x(u) ~ ✓; x(v) ~ ✓; alb=c (Dom(d)={u, v}) 

<merge>(d x(d)) ~ ✓ 

X ~ X' (S=f} 

<if>(S=I x) ~ x' 

X ~ ✓ (S=f} 

<if>{S=I x) ~ ✓ 

Xi ~ x'; S=li (1 sisn) 

<Case,n>(S 11 x1 .. . In Xn) ~ x' 

Xi ~ ✓; S=li (1Si5n} 

<Case,n>(S 11 x1 ... In Xn) ~ ✓ 

figure A.1 Table of action relations. 

A.3. PROCESS SEMANTICS 

Now that we have defined the action relations for TIL we are able to assign a 
semantics to processes. In this case we define bisimulation [94] on top of these 
action relations. 

A bisimulation is a binary relation R on process expressions, satisfying: 

• if pRq and p ~ p', then 3q': q ~ q' and p'Rq' ([a] E IA) 

• if pRq and q ~ q', then 3p': p ~ p' and p'Rq' ([a] E IA) 

• if pRq then p ~ ,I, if and only if q ~ V ([a] E IA) 
If there exists a bisimulation R on process expressions with pRq, then p and q 
are called bisimilar, notation p ttq. Bisimulation is an equivalence relation. 

Process terms are interpreted in the semantic domain that is obtained by 
taking process expressions modulo bisimulation. 



Chapter 5 

SPECIFICATION AND VERIFICATION 

OF CIM-ARCHITECTURES 

Flexibility of a manufacturing system implies that it must be possible to reorganise the 
configuration of the system's components efficiently and correctly. To avoid costly redesign, 
we have the need for a formal description technique for specifying the (co)operation of the 
components. Process algebra will be shown to be expressive enough to specify, and even 
verify, the correct functioning of such a system. This will be demonstrated by formally 
specifying and verifying two workcells, which can be viewed as units of a small number of 
cooperating machines. The specifications will be provided in PSF, while the verifications 
will take place in the framework of ACP. 

1. INTRODUCTION 

One can speak of Computer Integrated Manufacturing (CIM) if the computer is 
used in all phases of the production of some industrial product. In this chapter 
we will focus on the design of the product-flow and the information-flow, 
which occurs when products are actually produced. Topics like product­
development, marketing and management are beyond the scope of this chapter. 
The technique used in this chapter is based on a theory for concurrency, called 
process algebra (see [14]). It can be used to describe the total phase of 
manufacturing, from the ordering of raw materials up to the shipping of the 
products which are made from these materials. During this process many 
machines are used, which can operate independently, but often depend on the 
correct operation of each other. Providing a correct functioning of the total of 

123 
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all machines, computers and transport-services is not a trivial exercise. Before 
actually building such a system (a CIM-architecture) there must be some design. 
Such a specification, when validated, describes a properly functioning system. 
The current trend towards Flexible Manufacturing Systems (PMS) introduces 
the need for a tool, able to validate a new design of a plant, before 
implementing it. The possibilities to use methods developed in process algebra 
for specification and verification of concurrent systems are described in this 
chapter. 

From a high level of view, a plant can be seen as constructed from several 
concurrently operating workcells (Wl-WS in figure 1). Every workcell is 
responsible for some well-defined part of the manufacturing process, e.g. filling 
and capping a number of milk bottles. The various workcells are connected to 
each other via some transport-service, which manages input and output of 
goods for the workcells (the logistics) . 

shipping 

supply 

Figure 1 A sample architecture of a plant 

Of course some supervisor (control) must keep track of the (co)operation of all 
workcells. This control has connections to all other components of the plant, 
along which commands and status-reports are transmitted. The components 
labeled supply and shipping are used to store raw materials and processed 
goods. Seen from a lower level, each workcell is constructed from a number of 
basic components which can perform one function, e.g. drilling a hole or 
assembling two parts. For controlling the communication with the outside and 
to instruct the various components of the workcell, each workcell has a 
workcell-controller. Also some simple transport-system must be present to 
transport the products within the workcell (see figure 2). 

The description of the components of some workcell can be given using PSF. 
When abstracting from the internal actions of that workcell, it is possible to 
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determine its external behaviour. At the high level view on the flow of 
products, we are only interested in the products which enter the workcell and 
the products leaving it. Also at the high level view on the flow of information, 
we only look at the commands we give a workcell to produce or process a 
number of products and the status-reports sent back. 

The simple two level view on a manufacturing process expressed above, can 
be refined into a multi layered model, as is done in e.g. [29]. 

As an illustration of the technique we specify two workcells in the 
specification formalism PSF and verify their correctness with the theory ACP, 
(see [23]) . The first workcell is a very simple one, able to produce and process 
one kind of product. The second one is more involved. It has the possibility to 
process some input product either correctly or faultily. Part of the workcell is a 
quality-check tool, which decides upon rejecting the product or not. 

One should notice that in process algebra as we use it here, no real-time 
aspects are captured. So the important notions of efficiency (maximal 
productivity of the machines) and tuning (synchronization of the speed of the 
machines) cannot be modeled. For real time extensions of process algebra, see 
[6]. 

This chapter is partially based on discussions with F. Biemans, and inspired 
by his article [30], who used the specification language LOTOS (see [67]) to 
describe CIM-architectures. Other applications of theories for concurrency to 
CIM can be found in [72] and [73] . 

2. A SIMPLE WORKCELL 

In this section a simple workcell will be specified and verified, which consists of 
four components. This workcell is identical to the one described in [30] . 

2.1. SPECIFICATION 

2.1.1. Basic Datatypes 
The following modules are needed for the specification of both workcells. They 
define booleans, naturals, bounded naturals and queues. In the module 
bounded-naturals a set of naturals is defined, containing all naturals up to 
some upper bound N. This upper bound is a parameter of the specification. It 
determines the maximum number of products the workcell can produce in one 
drive. The module queues also has a parameter, which determines the type of 
items to be queued. 
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data module booleans 
begin 

exports 
begin 

aorta BOOL 
£unctions 

true -> BOOL 
false : -> BOOL 

end 

end booleans 

data module naturals 
begin 

export• 
begin 

aorta nat 
functions 

0 
nat 

- > nat 
- > nat s 

add nat ii nat -> nat 
end 

import• 
booleans 

variabl.ea 
n, rn: -> nat 

equation• 
n [l] add(O, n) 

[2] add(s(n), m) = s(add(n, m)) 

end naturals 

proceaa modul.e bounded-naturals 
begin 

parameter a 
max 

begin 
functions 

N: -> nat 
end max 

export• 
begin 

■eta of nat 
bounded-nat 

end 

imports 
naturals 

end bounded-naturals 

nat \ {add(n, s (N)) I n in nat} 



data module queues 
begin 

parameters 
items 

begin 
sorts item 

end items 

exports 
begin 

sorts queue 
functions 

empty- queue 
add 
a dd-back 

end 

variables 
i , j : - > item 
q : - > queue 

equations 

- > queue 
item # queue-> queue 
item # queu e -> queue 
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[1 ] add-back (i, empt y - queue ) = add(i, empty- queue ) 
[2 ] a dd-back(i , add ( j, q ) ) = add(j, add-back(i, q)) 

end queu e s 

2.1.2 . General Description 
The Workcell consists of four components (see figure 2) . 

10 

Figure 2 A simple workcell 

Workstation A (WA ) produces a product (pl) and offers this to the Transport 
service (T) . Then the product is transported to Workstation B (WB), which 
processes the product and outputs it to the environment. The Workcell 
Controller (WC) receives a command from the environment to produce a 
number of products, then controls the operating of the other components and 
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reports a ready-status back to the environment. So the total of the four 
components can be viewed as one workcell, producing and processing a 
number of products. The aim is to specify the components in such a way that 
the workcell behaves as desired. 

2.1.3. Datatypes Specific to the Workcell 
The four components are connected by 11 ports. Some ports are used to 
transmit data (the ports O through 7), while others are used to exchange 
products (the ports 8 through 10). Three ports are connected to the 
environment (the ports 0, 1 and 10). 

data module ports 
begin 

exports 
begin 

aorta data-ports, product-ports 
function• 

portO -> data-ports 
portl -> data-ports 
port2 -> data-port s 
port3 -> data-ports 
port4 -> data-ports 
ports -> data-ports 
port6 -> data-ports 
port? -> data-ports 
port8 -> product-ports 
port9 -> product-ports 
portlO -> product-ports 

end 

end ports 

The sort products contains all products that are produced and processed within 
the workstation (or the complete factory). It is a parameter of the system and 
contains at least the products productl (pl) and the processed productl 
(proc(pl)) . 

data module products 
begin 

parameter a 
products 

begin 
aorta products 
functions 

pl -> products 
proc : product s-> products 

end products 

end products 
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Several kinds of data have to be transmitted throughout the workcell. Via the 
ports 1, 2 and 4 a non-negative integer (produce(n)) can be sent to indicate that 
the receiver has to produce (or process) n products . A ready message (ready) is 
sent back over the ports 0, 3 and 5 to indicate that the corresponding component 
has fulfilled its task. Over port 6 the Workcell Controller can send a transport 
command (transport) to the Transport Service, indicating tha l one product has 
to be transported from WA to WB . If this is done, an arrival-message (arrival) 
is sent back via port 7. These messages are all collected in the sort messages. 

data module me s sag es 
begin 

exports 
begin 

sorta me s sag es 
functions 

end 

produce nat 
read y 
transpo rt 
arrival 

imports 
naturals 

end messages 

-> messages 
- > messages 
- > messages 
- > messages 

The product-ports are used to transport products, whereas the data-ports are 
used to transmit messages. For both kinds of exchange, we use read-send 
communication. Furthermore we construct sets for encapsulation and 
abstraction, containing all actions along internal ports. 

process module c ommunication 
begin 

exports 
begin 

atoms 
r product-ports# products 
s product-ports# products 
c product-ports# products 
r data-po rts f messages 
s data-ports# messages 
c data-ports# messages 

sets of data-ports 
internal-data-ports= 

(port2, port3, port4, ports, port6, port?} 
of product-ports 

internal-product - p orts= {port8, port9} 
of atom• 

I= { c(dp,m) , c{pp,p) 
dp in internal-data-ports, min messages, 
pp in internal-product-ports, pin products 
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H = { r(dp,m), s(dp,m), r(pp,p), s(pp,p) 
dp in internal-data-ports, min messages, 
pp in internal-product-ports, pin products 

end 

imports 
ports, products, messages 

communications 
r (dp, m) I s (dp, m) = c (dp, m) 

for dp in data-ports, min messages 
r (pp, p) I s (pp, p) = c (pp, p) 

for pp in product-ports, pin products 

end communication 

2.1.4. Workstation A 

The first component to be described is Workstation A. It receives via port 2 the 
command to produce n times product pl. The range of the summation is the 
set bounded-nat, which contains the naturals up to N. This bound determines 
the maximum number of products the workcell can deal with in one drive. 
Then it executes this command by producing n products (XA(n)) and sends a 
ready-status message at port 3. Then WA starts all over. If WA was commanded 
to produce zero products, XA(O) just ends after doing the internal action skip. If 
a positive number of products has to be produced (XA(s(n))), this is done by 
producing one product, followed by the production of n products. 

proceaa modul.e Workstation-A 
begin 

exports 
begin 

proceaaea 
WA 

end 

imports 
communication, bounded-naturals 

proc••••• 
XA: nat 

variable a 
n : -> nat 

definitions 
WA aum(n in bounded-nat, 

r(port2, produce{n)) XA(n). s(port3, ready). WA) 
XA(O) akip 
XA(s(n)) = s(port8, pl) . XA(n) 

end Workstation-A 
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2 .1 .5. Workstation B 

Workstation B has almost the same definition as Workstation A It accepts the 
command to process n products via port 4, processes n products (XB(n)), sends a 
ready-status message and starts all over. The processing of n products is 
achieved by repeatedly receiving an arbitrary product pat port 9 and sending 
the processed version of this product to port 10. 

process module Workstation-B 
begin 

exports 
begin 

processes 
WB 

end 

imports 
communication, bounded-naturals 

processes 
XB : nat 

variables 
n : -> nat 

definitions 
WB 

XB(O) 
XB(s (n)) 

sum(n in bounded-nat, 
r(port4, produce(n)) . XB(n) . s(port5, ready) . WB) 
skip 
sum(p in products, 

r(port9, p) . s(portlO, proc(p)) . XB(n)) 

end Workstation-B 

2.1.6. Transport Service 
The Transport service (T) can be seen as a FIFO-queue. It is indexed with its 
contents, a queue of products. The transport system either has an empty queue, 
or contains elements. If the queue is empty, T can receive a transport-command 
via port 6 and then it receives some product via port 8. Next the transport 
service behaves as the transport service with one element in its queue. It is also 
possible to receive the product first and then receive the transport-command. ff 
the queue was not empty, the Transport service has both options as mentioned 
for the empty queue, but it also has the option to send an element out of the 
queue at port 9. Then the arrival of this element is reported to the Workcell 
Controller and the element is deleted from the queue. 
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process module Transport-Service 
begin 

exports 
begin 

processes 
T : product-queue 

end 

imports 
communication, 
queues 

{items bound by 
[item-> products] 

to products 
renamed by 

[queue-> product-queue)} 

variables 
q: -> product-queue 
r : -> products 

definition• 
T(empty-queue) = r(port6, transport) . 

sum(p in products, 
r(port8, p) . T(add-back(p, empty-queue)))+ 

sum(p in products, 
r (ports, p) . r (port 6, transport) 
T(add-back(p, empty-queue))) 

T(add(r, q)) r(port6, transport) . 
sum(p in products, 

r(port8, p) . T(add-back(p , add(r, q)))) + 
sum(p in products, 

r(port8, p) . r(port6, transport) . 
T(add-back(p, add(r, q)))) + 

s(port9, r) . s(port7, arrival) . T(q) 

end Transport-Service 

2.1.7. Workcell Controller 

The Workcell Controller (WC) controls the communication with the 
environment and the interaction of the other components. It receives via port 
1 the command to produce and process n products. Then it commands 
Workstation B via port 4 to process n products and goes into state D(n) were n 
times productl is produced and transported. Then finally it receives a ready­
status message from WB via port 5 and sends ready to the environment, 
returning to its initial state. The production and transport of n products is done 
in D(n). It repeatedly commands via port 2 Workstation A to produce one 
single product. If this is done a ready message is received at port 3 and a 
transport command is sent at port 6. If the product has arrived at Vvorkstation 
B, an arrival message is received at port 7. 



process module Workcell-Controller 
begin 

export• 
begin 

processes 
we 

end 

imports 
communication, bounded-naturals 

processes 
D : nat 

variables 
n : -> nat 

definitions 
we sum(n in bounded-nat, 
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r (port 1, produce (n)) . s (port4, produce (n)) . D (n) . 
r(portS, ready) . s(portO, ready) . WC ) 

0(0) 
D(s (n)) 

skip 
s(port2, produce(s(O))) . r(port3, ready) 

s(port6, transport) . r(port7, arrival) D(n) 

end Workcell-Controller 

2.1.8. The Workcell 

The concurrent operation of these four components can be considered as the 
specification of the whole workcell. Notice that the Transport service has to 
start with an empty queue. 

process module Workcell 
begin 

exports 
begin 

proc••••• 
w 

end 

imports 
Workstation-A, Workstation-B, 
Transport-Service, Workcell-Controller 

definitions 
W = hide(I , encapa(H , WC 11 T(empty-queue) 11 WA 11 WB)) 

end Workcell 
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2.2. CORRECTNESS 

2.2.1. Preliminaries 

In order to prove correctness of the protocol we will need some extra proof 
rules from (14] . The first one is RDP, the Recursive Definition Principle, which 
states that every recursive specification has a solution. The rule RSP, the 
Recursive Specification Principle, states that every guarded specification has at 
most one solution. Together they provide uniqueness of the solution of a 
guarded recursive specification. 

The Expansion Theorem is used to expand a merge into its subterms. For n~3 
it reads: 

x1 II ... II Xn = L Xill. ( II Xj) + L (xjlXj)ll. ( II Xk) 
1:Si:Sn 1s·sn · i l:Si<j:Sn 1:Sk:Sn k;,i, · 

2.2.2. Intended Behaviour 

When designing the workcell, we had in mind some idea about its external 
behaviour. It receives a command at port 1, which indicates the number of 
products that has to be produced, then these products are produced and offered 
at port 10 and finally a ready message is offered at port O and we return to the 
starting state. This intended behaviour is specified in the following module. 

proceaa module Workcell-Behaviour 
begin 

exports 
begin 

proceaaea 
V 

end 

imports 
communication, bounded-naturals 

proceaaea 
E : nat 

variable a 
n : -> nat 

definitions 
V - aum (n in bounded-nat, r(portl, produce(n)) . E(n) . V) 
E(O) = s(portO, ready) 
E(s(n)) = s(po rtlO, proc(pl)) . E(n) 

end Workcell-Behaviour 

Now, using RDP, let v and w be solutions of the specifications of V and W. A 
proof that the processes v and w are equal can be seen as a verification that the 
specification of W is correct with respect to its intended external behaviour. 



2.2.3. The Workcell is Correct 

We prove the following theorem. 
THEOREM 1 The specification of the workcell is correct . 

ACF-.+ RDP + RSP + ET I- v=w 
PROOF 
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The proof consists of a series of successive expansions. All atoms that do not 
communicate y ield deadlock, because they are encapsulated. The atoms that do 
communicate are underlined. All actions that are not abstracted from are 
boldfaced . 

Some shorthands are used to obtain a more concise verification. For example 
the expression l:rl( n) ... is an abbreviation of sum(n in bounded-nat, r(portl, 

produce(n) ... ) . Abstraction is denoted by 'tJ and encapsulation by cltt . We 

interpret the internal action skip by the silent step 't from process algebra. The 

empty queue is denoted by 'A, and adding to a queue is done with the • operator. 

w = t 1 cltt <wcllT'A llwAllwB) 
= 'tI cltt ((Lrl.lll . s4(n) . Dn . rS(r) . sO(r) . WC) II 

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II 
(Ir2(n). XAn . s3(r) . WA) II 
(Ir4(n) . XBn . sS(r) . WB)) 

= Irl(n) . tI cltt ((s4(n) . Dn . rS(r) . sO(r) . WC) II 
(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II 
(Ir2(n) . XAn . s3(r) . WA) II 
(~. xBn . sS(r) . WB)) 

= Irl(n) .tI (c4(n) . cltt ((Dn . rS(r) . sO(r) . WC) II 
(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II 
(Ir2(n) . XAn . s3(r) . WA) II 
(XBn . sS(r) . WB))) 

Now let, for nE N 
Kn = tJcltt ((Dn . rS(r) . sO(r) . WC) II 

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II 
(Ir2(n) . XAn . s3(r). WA) II 
(XBn . sS(r) . WB)), then 

KO = t1cltt ((t . rS(r) . sO(r) . WC) II 
(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II 
(Ir2(n) . XAn . s3(r) . WA) II 
(t . sS(r) . WB)) 
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= t. -r1aH ((sO(r) . WC) II 
(r6(t) . L,(r8(p) . TP) + I,(r8(p) . r6(t) . TP)) II 
(I,r2(n) . XAn . s3(r). WA) II 
(WB)) 

= t. sO(r). W 

KS(n) = -r1aH ((s2(1) . r3(r) . s6(t) . r7(ar) . on . rS(r) . sO(r) . WC) II 
(r6(t) . I,(r8(p) . TP) + L,(r8(p) . r6(t) . TP)) II 
(Lilln)_. )(AS(n). s3(r). WA) II 
(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB)) 

= tI (c2(1) . aH ((r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r) . WC) II 
(r6(t) . I,(r8(p) . TP) + L,(~. r6(t). TP)) II 

(fillliill. XAO. s3(r) . WA) II 
(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB))) 

= t . tI ( c8(pl) . aH ((r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r) . WC) II 
(r6(t) . TP1) II 
(t . s3(r) . WA) II 
(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB))) 

= t. tI ( c3(r) . aH ((s6(t) . r7(ar) . on . rS(r) . sO(r) . WC) II 
(r6(t) . TP1

) II 
(WA)II 

(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB))) 

= t. tI ( c6(t) . aH ((r7(ar) . on. rS(r) . sO(r) . WC) II (**) 

(r6(t) . I,(r8(p) .Tp•pl ) + I,(r8(p).r6(t) .Tp•pl) + ~ -s7(ar) . TA) II 
(WA)II 

(.l!2.<Ju . slO(proc(p)) . XBn . sS(r) . WB))) 

= t. tI ( c9(pl). aH ((r7(ar) . on . r5(r). sO(r). WC) II 
(s7(ar). TA) II 
(WA)II 

(slO(proc(pl)) . XBn . s5(r) . WB))) 

= t . (t1 ( c7(ar) . aH ((on. rS(r) . sO(r) . WC) II 
(TA)II 
(WA)II 

(slO(proc(pl)) . xsn . s5(r) . WB))) + 
slO(proc(pl)) . Kn) 



Now let, for n E N 
Ln = 'tJ cltt ((on. rS(r) . sO(r) . WC) II 

(TA) II 
(WA) II 
(slO(proc(pl)) . XBn . sS(r) . WB)), then 

LO = 'tl cltt (('t. rS(r) . sO(r). WC) II 

(TA) II 
(WA)II 

(s10(proc(pl)) . t . sS(r) . WB)) 

= slO(proc(pl)) . 'tl cltt (('t . rS(r) . sO(r) . WC) II 

(TA) II 
(WA)II 

('t . sS(r) . WB)) + 
't . slO(prodpl)) . 'tl cltt ((rS(r) . sO(r) . WC) II 

(TA) II 
(WA)II 

('t. sS(r) . WB)) 
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= 't. slO(proc(pl)) . 'tJ ( cS(r) . cltt ((sO(r) . WC) II [using T2] 

(TA) II 
(WA)II 
(WB))) 

= 't . slO(proc(pl)) . sO(r) . W 

Ls(n) = 'tJ dH ((s2(1) . r3(r) . s6(t) . r7(ar) . on . rS(r) . sO(r) . WC) II 

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II 
(Ir2(n) . XAn . s3(r) . WA) II 
(slO(proc(pl)) . XBS(n) . sS(r) . WB)) 

= 'tJ (c2(1) . dH ((r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r) . WC) II 

(r6(t) . I(r8(p) . TP) + I(rfilp)_ . r6(t) . TP)) II 

(§filiill . XAO . s3(r) . WA) II 
(s10(proc(p1)) . XBS(n) . sS(r) . WB))) + 

slO(proc(pl)) . 'tJ dH ((s2(1) . r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r). WC) II 

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II 
(Ir2(n) . XAn . s3(r) . WA ) II 
(XBS(n) . sS(r) . WB)) 
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= T . TI (c8(pl) . aH ((r3(r) . s6(t) . r7(ar) . I)Il . rS(r) . sO(r). WC) II 
(r6(t). TP1) II 
(XAO. s3(r) . WA) II 
(slO(proc(pl)) . XBS(n) . sS(r) . WB))) + 

T. slO(proc(pl)) . TJaH ((r3(r) . s6(t) . r7(ar) . I)Il. r5(r) . sO(r) . WC) II 

(r6(t) . I,(r8(p) . TP) + I,(!filcl . r6(t) . TP)) II 
(~.XAO . s3(r). WA)II 
(XBS(n) . sS(r) . WB)) + 

slO(proc(pl)) . TI (c2(1) . aH ((r3(r) . s6(t) . r7(ar) . I)Il . r5(r) . sO(r) . WC) II 

(r6(t) . I,(r8(p) . TP) + I,(!filcl . r6(t) . TP)) II 

~.XAO .s3(r). WA)II 
(XBS(n) . sS(r) . WB)) 

(The first two summands in this expression come from the first summand in 
the previous expression. Axiom T2 states that the summation of the second 
and third summand equals the second summand.) 

= T. TI (c8(pl) . aH ((r3(r). s6(t) . r7(ar) . Dn. r5(r) . sO(r) . WC) II 

(r6(t) . TP1) II 
(T. s3(r). WA) II 
(slO(proc(pl)) . XBS(n) . s5(r) . WB))) + 

T. slO(proc(pl)) . TiaH ((r3(r) . s6(t) . r7(ar) . Dn . rS(r) . sO(r) . WC) II 

(r6(t) . I.<r8(p) . TP) + I.(!filcl . r6(t) . TP)) II 
(~. XAO .s3(r). WA)II 
(XBs(n) . sS(r) . WB)) 

= T. 'tI (c3(r). aH ((§Q(tl. r7(ar) . Dn. rS(r) . sO(r) . WC) II 

(r6(t) . TP1) II 
(WA)II 
(slO(proc(pl)) . XBS(n) . s5(r) . WB))) + 

't . slO(proc(pl)) . TI (c8(pl) .aH ((r3(r) . s6(t) . r7(ar) . Dn . rS(r) . sO(r) . WC) II 
(r6(t) . TP1) II 
('t. s3(r) . WA) II 
(XBS(n) . sS(r) . WB))) 

= T. 'ti (c6(t) . aH ((r7(ar) . Dn . rS(r) . sO(r) . WC) II 

(TPl) II 
(WA)II 
(slO(proc(pl)) . XBs(n) . sS(r). WB))) + 
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1 . slO(prodpl)) . t1 (c3(r) .aH (~. r7(ar) . Dn. rS(r) . sO(r) . WC) II 
(!fil!)_ . TP1)11 
(WA )II 
(xas(n) . sS(r) . WB))) 

= 't . slO(proc(pl)) . 11 dH ((r7(ar) . on . rS(r) . sO(r) . WC) II 

(TP1) II 
(WA) II 
(2:,r9(p) . slO(proc(p)) . xan . sS(r) . WB)) 

= "C . slO(proc(pl)) . KS(n) [see (**)] 

So the process w is a solution of the following system: 

= I,rl(n) .Kn 

= 't . sO(r) . W 

= t . ('t . Ln + slO(proc(pl)) . Kn) 

= t . slO(proc(pl)) . sO(r) . W 

= 't . slO(proc(pl)) . Ks(n) 

Specification 1 

Now observe that w e can replace the two equations for L by the following 
definition. 

= 't . slO(proc(pl)) . Kn 

Substitution of L" gives the following system. 

W = I,rl(n) .Kn 

KO = 1 . sO(r) . W 

KS(n) = t. (,. "C . slO(proc(pl)) . Kn + 
slO(proc(pl)) . Kn) 

After applying T2 we get. 

W = I,rl(n) .Kn 

KO = 1 . sO(r) . W 

KS(n) = 1 . slO(proc(pl)) . Kn) 

Specification 2 
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Now look at the specification of the process V in the module Workcell­
Behaviour, which specifies the intended behaviour. From RDP it follows that a 
solution (v, en) exists. Now, if v is also a solution of the specification for W, 
RSP can be used to infer that v equals w. 
Define kn by: 

kn = 't . en. v, 
then we can derive 

v = Irl(n) . ell . v = Irl(n) . kn 
ko = 't . eO . V = 't . sO(r) . V 

kS(n) = 't . e5(n) . v = 't . slO(proc(pl)) . ell . v 
So (v,k") is a solution of specification 2. 

2.3. REDUNDANCY 

Note that the specification of the workcell contains some redundancy. 
Although the transport service has the capability to store any number of 
products in the queue, this feature is not used in the workcell. At any moment 
not more than one product is stored in the buffer. So a one-item buffer would 
have functioned in the same way. Also, the option of receiving first a transport 
command and then a product is not used. 

The capability of workstation A to receive a command to produce more than 
one product is also not used. 

3. A WORKCELL WITH QUALITY CHECK 

In this section a more complex workcell will be defined, having the possibility 
of checking the quality of the produced goods. The basic modules from the 
previous paragraphs are imported. 

3.1. SPECIFICATION 

3.1.1. Global Description 
The workcell consists of four components: 

WA Workstation A. The workstation accepts a product, processes it and 
returns either a good product or a faulty product. 

T Transport service. A queue, at the one end accepting and at the other 
end sending products. 

Q Quality check. After receiving a product, the quality check determines 
whether it is a good product or not. A good product will be passed 
along, while a rejected product will be removed . The latter 
occurrence is signaled to the workcell controller. 
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WC Workcell Controller. This part controls the workcell. It receives the 
number of products that have to be processed, and instructs the 
workcell to do so. While the processing is going on, it will count the 
number of rejected products. At the end the workcell is instructed to 
process again an amount of products, equal to the number of 
rejections . 

The workcell is graphically depicted in figure 3. 

11 ► 
~------ --------------------- ---· 

Figure 3 A workcell with quality check. 

3 .1.2. Datatypes Specific to the Workcell 

The four components are connected to each other by 11 ports. The ports 0 
through 7 are used to transmit data and the ports 8 through 11 are used to 
exchange products. The ports 0, 1, 8 and 11 are connected to the environment. 

data module p o rt s 
begin 

exports 
begin 

sorta data-po rts, product-po rts 
functions 

p o r tO - > data-ports 
p o rtl - > data-po rts 
port 2 - > data-ports 
port 3 - > data-ports 
p o rt4 - > data-ports 
p orts - > data- p o rts 
p ort6 - > data-ports 
port ? - > data-port s 
p o rts - > product-ports 
p o rt 9 - > product-ports 
portlO - > product-ports 
p o rtll - > product-ports 

and 

and ports 
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The system has the set of products that can be produced or processed within the 
workstation as a parameter. The sort products contains at least productl (pl) 
and the product pl after processing (proc(pl)). A quality (ok or faulty) can be 
added to a product using the function prod. This quality information can be 
revealed again by applying the function qua/. These functions apply to normal 
products as well as to processed products. The sort of products which have a 
quality attached is called qual-products. 

Note that the information about the quality of a product is attached to the 
product itself, and one can only become aware of it by explicitly using the qua[ 
funcion. As an example consider drilling a hole in some product. After drilling, 
the hole is in the right position or not, but one can only become aware of this 
after applying some measuring tool, which reveals the quality. 

data module products 
begin 

parameters 
products 

begin 
sorta products 
function• 

pl -> products 
proc : products-> products 

end products 

exports 
begin 

aorta qual-products 
functions 

end 

prod products# quality 
qual : qual-products 

imports 
booleans 

{renamed by 
[BOOL -> quality, 
true -> ok, 
false-> fault)) 

variables 
p : -> products 
q : -> quality 

equations 
[1) qual{prod(p, q)) q 

end products 

-> qual-products 
-> quality 

Along ports 1, 2, 4 and 6 a non-negative integer (produce(n)) can be sent to 
indicate that the receiver has to cope with n products. A ready message (ready) 
is sent back over the ports 0, 3, 5 and 7 to indicate that the component has 
fulfilled its task. Port 5 is also used to indicate that a product has been rejected 
(reject). These messages are declared in the following module. 
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data module messages 
begin 

exports 
begin 

sorts messages 
functions 

end 

produce 
ready 
reject 

nat 

imports naturals 

end messages 

-> messages 
-> messages 
-> messages 

In the module communication all atomic actions, the communication function 
and the sets of atoms to be encapsulated and abstracted from are defined. 

process module communication 
begin 

exports 
begin 

atoms 
r product-ports# qual-products 
s product-ports# qual-products 
c product-ports# qual-products 
r data-ports t messages 
s data-ports f messages 
c data-ports t messages 

sets of data-ports 
internal-data-ports= 

{port2, port3, port4, ports, port6, port7) 
of product-ports 

internal-product-ports 
of atoms 

I = { c{dp,m), c{pp,p) 

{port9, portlO) 

dp in internal-data-ports, min 

H 
pp in internal-product-ports, p 

r{dp,m), s{dp,m), r(pp,p), s{pp,p) 

messages, 
in qual-products 
I 

dp in internal-data-ports, min messages, 
pp in internal-product-ports, pin qual-products 

end 

imports 
ports, products, messages 

communication■ 

r(dp,m) I s(dp,m) = c(dp,m) 
for dp in data-ports, min messages 

r(pp,p) I s(pp,p) = c(pp,p) 
for pp in product-ports, pin qual-products 

end communication 
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3.1.3. Workstation A 

Workstation A is a machine able to process a specified number of products. 
This number is received over port 2. Then it executes its function n times 
(XA(n)). The process XA(0) simply sends a ready message via port 3 and starts 
the workstation all over. The process XA(s(n)) is able to receive some product 
which has to be processed. The possibility of either doing a good job or making 
an error while processing, is modeled by using the nondeterministic choice 
operator. By prefixing the actions with the internal atom skip, a choice is made 
which cannot be influenced by the environment. 

proceaa module Workstati on-A 
begin 

exports 
begin 

proceaaea 
WA 

end 

import• 
communication, bounded-naturals 

proceaaea 
XA: nat 

variable a 
n: -> nat 

definition• 
WA = aum(n in bounded-nat, 

r(port2, produce(n)) . XA(n)) 
XA (0) s (port 3, ready) . WA 
XA(s(n)) aum(p in products, r(port8, prod(p, ok)) 

(akip s(port9, prod(proc(p), ok)) + 
akip. s(port9, prod(proc(p), fault))) 

end Workstation-A 

3.1.4. Transport Service 

XA(n)) 

The transport service can best be seen as a bounded FIFO-queue. First it receives 
the number of products that have to be transported. Then it behaves like the 
t>mpty queue with bound n. After transporting n products (T(0, empty-queue)) a 
ready message is sent to the controller and it starts all over. The process T(n, q) 
is intended to model a queue with contents q, where n denotes the number of 
products that still have to be read in to the queue. T(s(n), empty-queue) has an 
empty buffer, so it can only read in products. T(0, add(r, q)) can only output the 
contents of its buffer. The process T(s(n), add(r, q)) can either accept some 
product or it can send a queued item. This transport service differs from the 
one defined in the previous section in the sense that it needs less external 
control and that the capability of buffering more than one product is being used. 
Also, its specification has less redundancy. 



process modu1e Transport-Service 
begin 

exports 
begin 

processes 
T 

end 

import• 
communication, bounded-naturals, 
queues 

{ i terns bound by 
[item-> qual-products] 

to products 
renamed by 

[queue-> product-queue]) 

processes 
T : nat t product-queue 

variables 
q -> product-queue 
r : -> qual-products 
n : -> nat 

definitions 
T = aum( n in bounded-nat, 
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r(port6, produce(n)) T(n, empty-queue)) 
T(O, empty-queue) = s(port7, ready) . T 
T(s(n), empty-queue) = 

eum(p in qual-products, 
r(port9, p) . T(n, add-back(p, empty-queue))) 

T(O, add(r, q)) = s(portlO, r) . T(O, q) 
T(s(n), add(r, q)) = 

sum(p in qual-products, 
r(port9, p) . T(n, add-back(p, add(r, q)))) + 

s(portlO, r) . T(s(n), q) 

end Transport-Service 

3.1.5. Quality Check 

The quality of the processed product is tested by the process Q. It receives the 
command to test n products. Then the n tests are performed (XQ(n)). If there are 
no tests left to do (XQ(O)) a ready message is sent back and the quality check 
returns to its initial state. The checks are done by accepting some product p at 
port 10 and determining the quality of that product (XQ(n, p, qual(p))). If the 
quality is ok then the product can continue on its way. If the quality is fault 
then a rejection message is sent to the workcell controller and the product is 
rejected (i.e. discarded). 
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process module Quality-Check 
begin 

exports 
begin 

proceaaea 
Q 

end 

import ■ 
communication, bounded-naturals 

processes 
XQ nat 
XQ : nat t qual-products # quality 

variable ■ 

n : -> nat 
p: -> qual-products 

definition■ 

Q 

XQ(O) 
XQ(s (n)) 

XQ(n, p, ok) 
XQ(n, p, fault) 

end Quality-Check 

3.1.6. Workcell Controller 

= ■um(n in bounded-nat, 
r(port4, produce(n)) 

= s (ports, ready) . Q 
= aum(p in qual-products, 

r(portlO, p) .XQ(n, p, 
s(portll, p) . XQ(n) 
s (ports, reject) . XQ (n) 

XQ(n)) 

qual (p))) 

The workcell is controlled by the Workcell Controller . It receives the message 
to process n products. When this is done (D(O)), a ready message is reported to 
the environment and the controller starts all over. The process D(s(n)) handles 
the processing of n+l products . It sends the number of products that have to be 
processed to Workstation A, the Transport service and the Quality check. Then 
it starts to count the number of rejections, starting with O (RC(O)). The Rejection 
Counter will be incremented when it receives a rejection message. When the 
Quality check, the Transport service and Workstation A respectively send their 
ready messages, the controller again commands the workcell to process some 
number of products (D(n)) . This new number of products is equal to the 
P.umber of rejections encountered up to that moment. 

proceaa module Work c ell-Contro ller 
begin 

export• 
begin 

processes 
WC 

end 

imports 
communicati o n, bounded-nat urals 



proceaaea 
D nat 
RC : nat 

variables 
n : -> nat 

definitions 
WC = sum(n in bounded-nat, 
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D (0) 
r(portl, produce(n)) D(n)) 

s(portO, ready) . WC 
D (s (n)) s(port4, produce(s(n))) s(port6, produce(s(n))) . 

s(port2, produce(s(n))) . RC(O) 
RC(n) r(portS, ready) . r(port7, ready). r(port3, ready) . 

D(n) + 
r(portS, reject). RC(s(n)) 

end Workcell-Controller 

Note that the order in which the ready messages are received is of importance. 
If e.g. the ready message of WA can be received first, it is still possible for Q to 
contain faulty products. But then, since WC is not able to receive any rejection 
messages from Q, a deadlock would occur. 

3.1.7. The Workcell 

Now we are interested in the parallel operation of the four components as 
described above. 

process module Workcell 
begin 

exports 
begin 

proceaaes 
w 

end 

imports 
Workstation-A, Quality-Check, 
Transport-Service, Workcell-Controller 

definitions 
W = hide(I, encaps(H, WC 11 T 11 WA 11 Q)) 

end Workcell 

3.2. CORRECTNESS 

3.2.1. Preliminaries 

For the verification of this workcell we will need some more proof techniques., 
the Cluster Fair Abstraction Rule (CFAR) and the conditional axioms (see [4]). 
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The conditional axioms deal with distributing the encapsulation, hiding and 
merge operators. 

a(x) I (a(y)nH)kH ⇒ im(x lly) = oH(xll im(y)) 

a(x) I (a(y)nl)=0 ⇒ 'tJ(x II y) = t1(x II t1(y)) 

a(x)nH=0 ⇒ OH(x) = x 

a(x)nl=0 ⇒ ty(x) = x 

H=H1uH2 ⇒ OH(x) = OH1°oH2(x) 

l=l1ul2 ⇒ 'tJ(x) = t11°-c12(x) 

Hnl=0 ⇒ t1°im(x) = OH 0 t1(x) 

table 1 Conditional Axioms 

The a(x) operator determines the alphabet of a process, and is defined by 

a(8) = 0 
a(t) = 0 

a(a) = (a} 

a( tx) = a(x) 

(if a;c8) 

a(ax) = (a}ua(x) (if a;c8) 

a(x+y) = a(x)ua(y) 

a(x) = U~1 a(7tn(x)) 

a(t1(x)) = a(x)-1 

table 2 The Alphabet function 

For the Cluster Fair Abstraction rule we need some definitions. Suppose E is 
a recursive specification over variables V, and suppose I is the set of atomic 
actions to be abstracted from. We call a subset C of Va cluster of I in E if for all X 
in C the equation for X in E has the form 

m n 

X= L, ik.Xk + L, Y1, 
k=l 1=1 

where m;?l, n2'.0, i1, ... ,imElu{t}, X1, ... ,Xn,EC, Y1,..-,YnEV-C. The variables in Care 

called cluster variables. For variables X, YE V we write X-+ Y if Y occurs in the 
right-hand side of the equation of X. Then, the exits of the cluster are those 
variables outside C, that can be reached from C, i.e. 

exits(C) = (YEV-C I X➔Y for some XEC}. 

Let-+* be the transitive and reflexive closure of ➔ . We call a cluster C of I in E 
conservative if every exit van be reached from every cluster variable, i.e. for all 

XEC and all YEexits(C) we have X-+*Y. Now we can formulate the rule CFAR 
as follows. 
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Let E be a guarded recursive specification; let IcA be such that I I I~; let C be a 

finite conservative cluster of I in E; and let XEC. Then 

1:r(X) = 1: · L 1:r(Y) 

YEexits(C) 

3.2.2. Intended Behaviour 

Now we have to define some criterion for correctness of the specification. It is 
not enough to require that for any command produce(n) along port 1 the 
workcell processes n products correctly and reports a ready message. The 
problem is that if there is not enough supply of products along port 8, the 
workcell can reach a deadlock situation, waiting for more products. So we will 
only consider the behaviour of the workcell in an environment, supplying an 
unlimited number of products. Thus we define the supplier S, which is 
repeatedly sending product pl along port 8. 

Of course we have to encapsulate unsuccessful communications over port 8 
and abstract from successful communications over this port. 

process module System 
begin 

exports 
begin 

processes 
W2 

end 

import ■ 

Workcell 

procesaes 
s 

■eta of atom■ 

IO = { c (port8,p) I p in qual-products ) 
HO= { r(port8,p), s(port8,p) pin qual-products 

definition■ 

S = s(port8, prod(pl, ok)) S 
W2 = hide(IO , encapa(HO, S I I W)) 

end System 

The extended configuration is depicted in figure 4. 



150 Specification and Verification of CIM-Architectures 

J r----------------------
1 

I 

Figure 4 Adding a supplier to the workcell. 

11 ► 

The intended behaviour can be specified by the following specification. A 
command to process n products correctly will be received, then the n processed 
products will be delivered and a ready message will be reported. 

proce■■ module Workcell-Behaviour 
begin 

export ■ 

begin 
proce■ se■ 

V 

end 

imports 
communication, bounded-naturals 

proc••••• 
E : nat 

variable ■ 

n : -> nat 
definitions 

V sum(n in bounded-nat, r(portl, produce(n)) . E(n) . V) 
E (0) - s (portO, ready) 
E{s(n)) s(portll, prod(proc(pl), ok)) . E(n) 

end Workcell-Behaviour 

Now a verification of the correctness of the specification of the workcell will 
consist of a proof that the specification of W2 and the specification of V define 
the same process. So if w' and v are solutions of the two specifications, we have 
to prove v=w' 

3.2.3. The Workcell is Correct 

THEOREM 2 The specification of the workcell is correct. 
ACP-r + RDP + RSP +ET+ CFAR + CA 1-- v=w' 
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PROOF 
The proof consists of three s teps. In step 1 we reduce the number of 
components, in step 2 we remove the parallelism and in step three we obtain 
the desired result by applying CFAR. 

3.2.3.1. Step 1 
First we reduce the number of components by aggregating the supplier S and 
Workstation A. The resulting process (K) can be seen as being a supplier of 
either good or bad processed products (See figure 5). 

Figure 5 Aggregating Sand WA. 

Let the process K be specified by 

K = I,r2(n) . XKn 

= s3(r) . K 

11 

XKO 
XKS(n) = (-r . s9(prod(proc(pl), ok)) + -r . s9(prod(proc(pl), fault))) . XKn 

And let the encapsulation set and the abstraction set be defined by 

Hl = {rp(d), sp(d) I p=port8 A dE qual-products} 

11 = {cp(d) I p=port8 A dE qual-products} 

then the following proposition holds: 

PROPOSITION 

K =-rn aHl (SIIWA) 

PROOF Let the process L be defined by 

L =-rn aHl (SIIWA) 

= -rn aHl ( S II I.r2(n) . XAn) 

= I.r2(n) . -rn aHl ( S II xAn ) 
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Let Ln be defined by 

Ln = 'tll aHl ( S II xAn ), then 

LO = 'tll am ( s II s3(r). WA) 
= s3(r). L 

Ls(n) = 'tll dHl ( s8(prod(pl,ok)) . S II 
Lpeproduct5(r8(prod(p,ok)) . (skip . s9(prod(proc(p), ok)) + 

skip . s9(prod(proc(p), fault)))) . XAn ) 

= 'tll (c8(prod(pl,ok)) . 

dHI (S II (skip . s9(prod(proc(pl), ok)) + 
skip . s9(prod(proc(pl), fault)))) . XAn ) 

= 't . ( 't. s9(prod(proc(pl), ok)) + 't . s9(prod(proc(pl), fault)))) . Ln 

Thus we have 
L = I,r2(n) . Ln 
LO = s3(r). L 
Ls(n) = 't . ( 't . s9(prod(proc(pl), ok)) + 't. s9(prod(proc(p1), fault)))) . Ln 

Now it is easy to see that K and L define the same process . Use RSP to prove 
that a solution of K is also a solution of system L. 

As a consequence of this proposition we can replace the two components S 
and WA by one simpler component K. This technique is called local 
replacement and was introduced in [4]. In order to actually replace the two 
components in the specification of the workcell, we need the conditional 
axioms (see [8]). 

W2 ='tJ'dH'(SIIW) 

= 'tJ' dH' (S II 'tJ dH (WA IITII Q IIWC)) 

= 'tJ'uI aH'uH csllwAIITIIQIIWC) 

= 'tJ'uI aH'uH ( 'tll am (S II WA) II T II Q II WC) 

= 'tJ'uI dH'u H ( K II T II Q II WC) 

= 'tJdH( K II T II Q II WC) 

3.2.3.2. Step 2 
In the second step we will remove the parallelism in the specification by 
expanding the merges. This will result in a complex process, which describes all 
states that the workcell has. 

First we define a new abstraction set, 12, obtained by deleting the 
communication of the rejection message from the old one. This will be useful 
when applying CFAR in step 3. 

I2 = I \ {cS(reject)} 
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If w e define 

U = ,12 dH (K II T II Q II WC), then we have 

W 2 = 'lc5(reject))(U) 

For U we can derive 

u ='CJ2 aH<K IIT II Qllwc) 

= Irl(n) . 1:i2 dH (K II T II Q II Dn) 

Let un be defined by ,12 aH (K II T II Q II Dn), then 

uO =,12clH(KIITIIQlloO)=sO(r).U 

us(n) = ,12 dH (K II T II Q II os(n)) 

= '12 (c4(s(n)) . c6(s(n)) . c2(s(n)). dH (XKS(n) II Ts(n)"--11 XQS(n) II RCo)) 

The process un denotes the total workcell, which has just received a command 
to produce a certain number of products. After distributing this command, the 
workcell enters the state in which the products will be produced. In the process 
of producing the products, there are several intermediate states. These states are 
determined by e.g. the number of products that still have to be produced, and 
the contents of the buffer of the transport service. The quality-check can also 
contain some product, i.e. the product which is read in and will be checked. All 
values that determine the actual state the workcell is in, are listed below: 

choice The choice made in K about processing· correctly or faulty. The 
choice can be ok or fault . If no choice has been made yet, the value 

of this variable is x 

count The number of products that still have to be produced (not 
considering the number of rejected products) . 

buffer The contents of the buffer in the transport service. The value is A if 
the buffer is empty. 

Qcont The contents of the quality-check part. The value is 11. if Q contains 
no product. 

re The rejection counter, counting the number of rejected products. 
All states can be described using these five variables. Now it is possible to define 
the process U, indexed by these five variables, which describes the behaviour of 
the workcell during the production of the products. 
Define 

uchoice, count, buffer, Qcont, re 
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as the composition of the four components K, T, Q and WC, where the indices 
determine the state of the four components as follows: 

If choi ce= x then K is in state XKcount , otherwise K is in state 
s9(prod(proc(p1), choice)).XKCount-1. 

T is in state T couniuffer. 

If Qcont=A then Q is in state XQCOunt + I buffer I, otherwise Q is in state 

XQQcont , qual(Qcontfount + I buffer I. 
WC is in state RCcount· 

For every combination of values we can calculate the behaviour of the system. 

Note that the choice can only be unequal to x if the count is positive. Let ch be 

some quality (i.e. either ok or fault), let n and re be natural numbers, let a be a 
series of qual-products and let q be a qual-product. 

uch, s(n), cr, prod(proc(pl),ok), re 

= 'tl OH (s9(prod(proc(pl),ch)).Xl(Il II Ts(n)cr II XQp,oks(n)+ I cr I II RCrc> 

= 't! (c9(prod(proc(p1),ch)). 

OH (XKn II T prod(proc(pl),ch)"cr II XQ ks(n)+ I cr I II RC ) + n p~ rr 

sl l(p). OH ( s9(prod(proc(p1),ch)).Xl(Il II Ts(n)cr II XQS(n)+ I cr I II RCrc>) 

= 't . u x, n, prod(proc(pl),ch)"cr, prod(proc(pl),ok), re+ 

s11(prod(proc(p1),ok)) . uch, s(n), cr, 'A, re 

uch, s(n), cr, prod(proc(pl),fault), re 

= 'tl cltt (s9(prod(proc(pl),ch)).XKn II Ts(n)cr II XQp,faults(n)+ I <JI II RCrc> 

= 'tl (c9(prod(proc(pl),ch)). 

OH (Xl(Il II Tnprod(proc(pl),ch)"cr II XQp,faults(n)+ I cr I II RCrc> + 

cS(rej). OH ( s9(prod(proc(pl),ch)).Xl(Il II Ts(n)cr II XQS(n)+ I <JI II RCs(rc))) 

= 't . u x, n, prod(proc(pl),ch)"cr, prod(proc(pl),fault), re+ 

cS(rej) . uch, s(n), cr, 'A, s(rc) 

uch, s(n), cr"q, 'A, re 

= 'tl OH (s9(prod(proc(p1),ch)).XKn II Ts(n)<J"q II XQn+2+ I cr I II RCrc> 

= 'tl (c9(prod(proc(pl),ch)) . 

dH (XKn II T nprod(proc(pl),ch)"cr"q II xQn+2+ I cr I II RCrc> + 

clO(q). dH ( s9(prod(proc(pl),ch)).XKn II Ts(n)cr II 
XQq,qual(q)s(n)+ I cr I II RCrc> ) 

= 't. u x, n, prod(proc(pl),ch)"cr"q, 'A, re+ 
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1 . uch, s(n), CJ, q, re 

ueh, s(n), "-,"-,re 

= 11 aH (s9(prod(proe(p1),eh)).XKn II Ts(n)"- II XQS(n) II RCre> 

= 11 (c9(prod(proe(pl),eh)). aH (XKil II T nprod(proe(pl),eh) II xos(n) II RCre>) 

= 1 . u x, n, prod(proe(pl),eh), 'A., re 

u x, s(n), CT, prod(proc(pl),ok), re 

= 11 aH (XKs(n) II Ts(n)CT II XQp,oks(n)+ 1 CT I II RCre> 

= 11 ( 1 . clH ( s9(prod(proe(pl),ok)) XKn II Ts(n)cr II XQp,oks(n)+ I cr I II RCre ) + 

1. dH ( s9(prod(proe(pl),fault)) XKn II Ts(n)cr II XQp,oks(n)+ I cr I II RCre ) + 

s1 l(p). clH (XKS(n) II Ts(n)CT II XQS(n)+ I CT I II RCre>) 

= 1 . uok, s(n), CT, prod(proe(pl),ok), re + 

1 . ufault, s(n), CT, prod(proe(pl),ok), re + 

s1 l(prod(proe(pl),ok)) . u x, s(n), CT, A, re 

u x, s(n), CT, prod(proe(pl),fault), re 

= 11 clH (XKS(n) II Ts(n)CT II XQp,faults(n)+ I CT I II RCre> 

= 11 ( 

1 . dH ( s9(prod(proc(p1),ok)) XKn II Ts(n)CT II XQp,faults(n)+ 1 CT I II RCre) + 

1 . aH ( s9(prod(proe(pl),fault)) XKn II Ts(n)CT II XQp,faults(n)+ I CT I II RCre) + 

eS(rej). dH (XKS(n) II Ts(n)CT II xos(n)+ I CT I II RCs(re))) 

= 1 . uok, s(n), cr, prod(proe(pl),fault), re + 

1 . ufault, s(n), CT, prod(proe(pl),fault), re + 

eS(rej) . u x, s(n), CT, 'A., s(re) 

u x, s(n), CT*q, 'A., re 

= 11 aH (XKS(n) II Ts(n)cr*q llxon+2+ I CJ I II RCre> 

= 11 ( 1 . aH ( s9(prod(proe(p1),ok)) XKil II Ts(n)CT*q II xon+2+ I CT I II RCre) + 

1. dH ( s9(prod(proe(pl),fault)) xKn II Ts(nP*q II xon+2+ I CT I II RCre) + 

clO(q). aH (XKS(n) II T s(n)CT II XQq,qual(q>8(n)+ I CT I II RCre> ) 

= 1 . uok, s(n), CT*q, A, re + 1 . ufault, s(n), CT*q, A, re + 1 . u x, s(n), CT, q, re 

u x, s(n), A, A, re 

= 11 dH (XKS(n) II Ts(n)"- II XQS(n) II RCre> 

= 11 ( 1 . dH ( s9(prod(proe(pl),ok)) XKn II Ts(n)"- II XQS(n) II RCre) + 

1 . aH ( s9(prod(proe(pl),fault)) XKil II Ts(n)"- II XQS(n) II RCre ) 
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= -c. uok, s(n), 'A., 'A., re + -c. ufault, s(n), 'A., 'A., re 

u x, 0, cr, prod(proe(pl),ok), re 

= 'tf aH (Xr<O II To<i II XQp,ok I (j I II RCre> 

= 'tf ( sll(p). aH ( xr<O II To(j II XQ I (j I II RCre)) 

= sll(prod(proe(pl),ok)). u x, 0, cr, 'A., re 

ux, 0, cr, prod(proe(pl),fault), re 

= 'tf aH (W II To<i II XQp,fault I (j I II RCre> 

= 'tf ( cS(rej). aH ( xr<O II To<i II XQ I (j I II RCs(re) ) ) 

= eS(rej) . ux, 0, cr, 'A., s(re) 

u x, 0, cr"q, 'A., re 

= 'tf aH (Xr<O II T0cr"q II XQ I cr I +111 RCre) 

= 'tf ( clO(q). aH ( xr<O II To(j II XQq,qual(q) I (j I II RCre)) 

= 't. ux, 0, cr, q, re 

ux, 0, 'A., 'A., re 

= 'tf aH (XK0 II ToA II xQD II RCre> 

= 'tf ( e5(r).e7(r).c3(r). aH ( K II T II Q II I)I"e) ) 

='t. ure 

Thus we have the following system: 

1) U = I,rl(n) . un 
2) uO = sO(r) . U 

3) us(n) = -r . u x, s(n), 'A., 'A., 0 

4) uch, s(n), cr, prod(proe(pl),ok), re= 

't. u x, n, prod(proe(pl),eh)"cr, prod(proe(pl),ok), re+ 

sll(prod(proe(pl),ok)) . ueh, s(n), cr, 'A., re 

5) ueh, s(n), cr, prod(proe(pl),fault), re= 

't. u x, n, prod(proe(pl),eh)"cr, prod(proe(pl),fault), re+ 

eS(rej) . ueh, s(n), cr, 'A., s(re) 

6) ueh, s(n), cr"q, 'A., re= 

't. u x, n, prod(proe(pl),eh)"cr"q, 'A., re+ 

-r . ueh, s(n), cr, q, re 

7) ueh, s(n), 'A., 'A., re= 't . u x, n, prod(proc(pl),eh), 'A., re 
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8) u x, s(n), <J, prod(proc(pl),ok), re= 

,: . uok, s(n), <J, prod(proc(pl),ok), re + 

,: . ufault, s(n), <J, prod(proc(pl),ok), re + 

sl l(prod(proc(pl),ok)) . u x, s(n), <J, "A, re 

9) ux, s(n), <J, prod(proc(pl),fault), re= 

,: . uok, s(n), cr, prod(proc(pl),fault), re + 

,: . ufault, s(n), <J, prod(proc(pl),fault), re + 

cS(rej) . u x, s(n), <J, A, s(rc) 

10) u x, s(n), cr*q, "A, re= 

,: . uok, s(n), cr*q, "A, re + 

, . ufault, s(n), cr*q, "A, re + 

,: . u x, s(n), <J, q, re 

11) u x, s(n), "A, "A, re=,: . uok, s(n), "A, "A, re +,: . ufault, s(n), "A, "A, re 

12) u x, 0, <J, prod(proc(pl),ok), re= sl l(prod(proc(pl),ok)). u x, 0, cr, "A, re 

13) u x, 0, <J, prod(proc(pl),fault), re= cS(rej) . u x, 0, <J, A, s(rc) 

14) u x, 0, cr*q, "A, re=,. u x, 0, <J, q, re 

15) u x, 0, "A, "A, re=,. urc 

specification 2 

3.2.3.3. Step 3 
In the final part of the proof we use CFAR (see [4]) and RSP to prove that the 
system derived in step 2 can be reduced to the desired specification V. 

Some observations about the specification above can be made. The number 
of products that still have to be produced correctly (m) can be determined from 
the values of the indices of the process: 

m = count+ I buffer I + I Qcont I +re 
So we must prove the equality 

, . EID= ' ·'!cS(reject))(UChoice, count, buffer, Qcont, re) 

We must also prove 

,.Em= t.t {cS(reject)} (UID). 

Comparing the two processes one easily notes that um has the possibility to 
produce only faulty products, hence it can loop forever, sending rejection 
messages. The process Em however does not have this possibility. Thus we 
must make the assumption that workstation WA is not completely broken. It 
now and then must process some product correctly. This fairness assumption 
can be modeled in process algebra with the Cluster Fair Abstraction Rule. 
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The only cases in which it is possible to never process a product correctly are 
the processes which are indexed such that (i) choice;rok, (ii) the buffer contains 
no correctly processed products and (iii) Qcont;cprod(proc(p1),ok). This 
observation leads us to consider clusters of processes which satisfy these 
conditions and have to produce the same number of products. Thus cluster m 
(for m>O) is defined by: 

CL(m) = {lJIIl}u { uchoice, count, buffer, Qcont, re I 

choice;oeok /\ prod(proc(pl),ok) ebuffer /\ Qcont;oeprod(proc(pl),ok) " 
count+ I buffer I + I Qcont I +re = m} 

This defines a conservative cluster from {c5(reject)J in the specification of 
uchoice, count, buffer, Qcont, re (using terminology of [4]). The Workcell can 
choose to loop forever in such a cluster, or it can choose to process some 
product correctly. This will be indicated by setting the choice-index to ok. After 
some time, this choice leads to a correctly processed product leaving the 
workcell. In the meantime the workcell has to make new choices. If they are all 
negative, we again enter a cluster that permits infinite loops. If a choice was 
made to produce one or more correct products, we are still in a state in which 
progress can be made. 

Now we can determine the exits of such a cluster. These are all states which 
can be reached from the cluster, but are no member of it. Thus there are no 
correctly processed products in the buffers and the choice has been made to 
process the next product correctly. 

EXITS(m) = {UOk, s(n), cr, prod(proc(pl),fault),rc I 

s(n)+ I cr I +l+rc = m /\ 1tpo3(proc(p1),ok) e cr }u 

1uok, s(n), cr*q, 'A., re I 

s(n)+ I cr I +l+rc = m " prod(proc(pl),ok) e cr*q }u 

1uok, s(n), 'A., 'A., re I s(n)+rc = m) 

Applying CFAR to the specification derived in step 2 leads to a new 
specification. This specification is equal to the old one for states which contain 
some correctly processed product and is modified for states which only contain 
faulty products. 

Now set 

W' = 1 {c5(reject)J(U) 

wn = 1 {c5(reject))(Un) 
wchoice, count, buffer, Qcont, re= 

•{cS(reject)j(UChoice, count, buffer, Qcont, re) 

In the first part of the following specification we assume that there are correctly 
processed products in the buffer cr, or in Qcont, or ch=ok . The numbers 
correspond to the numbers in the specification of U. 
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1) W' = L.n<!Orl(n) . wn 
2) w0 = s0(r) . W' 

4) weh, s(n), 0 , prod(proe(pl),ok), re= 

1 . w x, n, prod(proe(pl),eh)*0, prod(proe(pl),ok), re+ 

sl l(prod(proe(pl),ok)) . weh, s(n), 0, A., re 

5) weh, s(n), 0, prod(proe(pl),fault), re= 

1 . w x, n, prod(proe(pl),eh)*0, prod(proe(pl),fault), re+ 

1 . weh, s(n), cr, A., s(rc) 

6) weh, s(n), 0*q, A., re= 

1 . w x, n, prod(proc(pl),eh)*0*q, A., re+ 

1 . weh, s(n), 0, q, re 

7) weh, s(n), A., 11., re= 1 . w x, n, prod(proc(pl),eh), 11., re 

8) w x, s(n), 0, prod(proe(pl),ok), re= 

1 . wok, s(n), cr, prod(proc(pl),ok), re + 

1 . wfault, s(n), 0, prod(proe(pl),ok), re + 

sll(prod(proe(pl),ok)) . w x, s(n), cr, 11., re 

9) w x, s(n), 0, prod(proe(pl),fault), re= 

1 . wok, s(n), 0, prod(proe(pl),fault), re + 

1 . wfault, s(n), 0, prod(proc(pl),fault), re + 

1 . w x, s(n), 0, 11., s(re) 

10) w x, s(n), 0*q, A., re= 

1 . wok, s(n), 0*q, 11., re + 

1 . wfault, s(n), cr*q, 11., re + 

1 . w x, s(n), 0, q, re 

12) w x, 0, cr, prod(proc(pl),ok), re= sll(prod(proc(pl),ok)). w x, 0, cr, 11., re 

13) w x, 0, 0, prod(proc(pl),fault), re= 1 . w x, 0, 0, 11., s(rc) 

14) w x, 0, cr*q, 11., re= ,. w x, 0, 0 , q, re 

specification 3 part 1 

In the second part we assume that there are no correct products in the workcell, 
so we are in a cluster. The expression I. EXITS(m) is shorthand for 

I. pE EXITS(m) 1 {c5(reject))(p). 
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3) ws(n) =, . I EXITS(s(n)) 

Sa) wch, s(n), cr, proc(pl,fault), re= 't. I, EXITS(s(n)+ I cr I +l+rc) 

6a) wch, s(n), cr*q, "-, re = 't . I, EXITS(s(n)+ I cr I+ 1 +re ) 

7a) wch, s(n), "-,"-,re= 't . I, EXITS(s(n)+rc) 

9a) w x, s(n), cr, proc(pl,fault), re= 't . r, EXITS(s(n)+ J cr J + l+rc) 

10a) w x, s(n), cr*q, "-,re= 't . I, EXITS(s(n)+ I cr I +l+rc) 

11) w x, s(n), "-, "-,re= 't . I, EXITS(s(n)+rc) 

13a) w x, 0, cr, proc(pl,fault), re=,. I, EXITS( I cr I +l+rc) 

14a) w x, 0, cr*q, "-, re = 't . I, EXITS( I cr I+ 1 +re) 

15) w x, 0, "-, "-, re = 't . I, EXITS(rc) 

specification 3 part 2 

This specification now describes exactly the same process as the specification of 
V from the module Workvcell-Behaviour. This can be easily verified by 

substituting V for W', Eo .v for wO, r .Es(n) for w s(n) and the process 
r.Ecount+ I buffer I+ I Qcont I +re for wch ,count,buffer,Qcont,rc_ Note that the 

only equation not starting with a 'tis equation 12. So we must substitute EI al +1 

for w x,0,a,proc(pl,ok)_ So we see that Vis a solution of the system defining W', 
and thus we can use RSP to conclude that v equals w'. 

Note that RSP is only applicable if the specifications are guarded. A proof of 
the guardedness of specification 3 is straightforward. 

4. FINAL REMARKS 

The techniques introduced in this chapter seem to be powerful enough to aid in 
the specification and verification of CIM-architectures. Although two workcells 
were considered of low complexity, the basic concepts of the technique are well 
illustrated. Now, due to the compositionality of the specifications, one can 
build a large plant consisting of a number of workcells which are already prov­
ed to function correctly. Thus, increasing the scale of the system will be possible. 

It is also possible to add new features to the workcell and model them in 
process algebra. Possible features are: interrupts (modeled by the priority­
operator, see [7]), detailed reports on the functioning of a machine, changing the 
tools of a machine, etc. Most of these features are not more complex than 
adding quality checks to a workcell. 

Since a wide range of proof-rules and proof-techniques are developed in 
process algebra, the specification of a CIM-architecture in process algebra has 
advantages over specification in e .g. LOTOS. To name one, in LOTOS there is 
no equivalent of the fairness assumption. 



Chapter 6 

SPECIFICATION OF THE TRANSIT 

NooE1NPSF 
(with F. Wiedijk) 

The specification language PSF is used to give a formal specification of a transit node, a 
common case study in ESPRIT project METEOR. The design of the specification derived from 
the informal text and the ERAE specification is included. A short discussion on the relation 
to the specification in ERAE is provided . 

1. INTRODUCTION 

This chapter contains a case study in the formal description technique PSF. We 
specify a transit node, which is the common case study for several formalisms 
in the ESPRIT project nr. 432, METEOR. The PSF specification is derived 
partially from an informal text and partially from the ERAE specification in [54) . 
The design of the specification is included, from which a general method can be 
derived for specifying similar problems in PSF. In [80) the transit node is 
specified in the algebraic specification language PLUSS. 

The PSF specification can be viewed as a more implementation directed 
specification than the one in ERAE. Certain design decisions are made, for 
example in identifying the separate objects that act in parallel. Thus the PSF 
specification, viewed as an implementation of the ERAE specification, must be 
verified or validated. A short discussion is devoted to this topic. 

161 
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2. THE TRANSIT NODE 

The Transit Node is a case study, which was defined in the RACE project 1046 
(SPECS). An informal description of the Transit Node and the ERAE 
specification of it can be found in (54] . The informal specification reads as 
follows: 

"The system to be specified consists of a transit node with: 

• 1 Control Port-In 

• 1 Control Port-Out 

• N Data Ports-In 

• N Data Ports-Out 

• M Routes Through 

(The limits of N and M are not specified.) 

Each port is serialized. All ports are concurrent to all others . The ports 
should be specified as separate, concurrent entities . Messages arrive 
from the environment only when a Port-In is abe to treat them. 

The node is "fair" . All messages are equally likely to be treated, when a 
selection must be made, and all messages will eventually transit the 
node, or be placed in the collection of faulty messages. 

Initial State: 1 Control Port-In, 1 Control Port-Out. 

The Control Port-In accepts and treats the following three messages: 

• Add-Data-Port-In-&-Out(n) 

gives the node knowledge of a new port-in(n) and a new port-out(n). 
The node commences to accept and treat messages sent to the port-in, 
as indicated below on Data Port-In . 

• Add-Route((m),n(i) ,n(j) , ... )) 

gives the node knowledge of a route associating route m with Data 
Port-Out( n(i) ,n(j) , .. .) . 

• Send-Faults 

routes all saved faulty messages, if any to Control-Port-Out. The order 
in which the faulty messages are transmitted is not specified. 

A Data Port-In accepts and treats only messages of the type: 

• Route(m) .Data 

The Port-In routes the message, unchanged, to any one (non­
determinate) of the Data Ports-Out associated with route m. (Note that 
a Data Port-Out is serialized - the message has to be buffered until the 
Data Port-Out can process it). The message becomes a faulty message if 
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its transit time through the node (from initial receipt by a Data Port-In 
to transmission by a Data Port-Out) is greater than a constant time T . 

Data Ports-Out and Control Port-Out accept messages of any type and 
will transmit the message out of the node. Messages may leave the 
node in any order. 

All faulty messages are saved until a Send-Faults command message 
causes them to be routed to Control Port-Out. Faulty messages are 
messages on the Control Port-In that are not one of the three 
commands listed, messages on a Data Port-In that indicate an unknown 
route, or messages whose transit time through the node is greater than 
T . Messages that exceed the transit time of T become faulty as soon as 
the time T is exceeded. It is permissible for a faulty message to not be 
routed to Control Port-Out (because, for example, it has just become 
faulty, but has not yet been placed in a faulty message collection), but all 
faulty messages must eventually be sent to Control Port-Out with a 
succession of Send-Faults commands. 

It may be assumed that a source of time (time-of-day or a signal each 
time interval) is available in the environment and need not be 
modeled with the specification." 

3. DESIGN OF THE SPECIFICATION 

3.1. GENERAL 

The specification was designed using a mixed top-down and bottom-up 
approach. It was based on the informal text, while using the interpretation of 
the text in the ERAE specification when needed to fill in omissions or solve 
ambiguities. 

Several design decisions were made, which did not follow directly from the 
informal description of the case study (for example, the decision to let the 
Control Port-in keep control of the table containing all routes through the 
node). 

3.2. DESIGN 

We first identify all parameters of the system, that are objects which are -and 
should be- unspecified. Since "it may be assumed that a source of time is 
available in the environment", we postulate the existence of a process that 
behaves like a clock. This can be done by specifying a parameter containing this 
clock process. The second parameter is formed by the time that a message may 
be inside the node without getting faulty, the maximal transit time. The exact 
length of this duration should be decided upon at the implementation phase. 
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Then we identify all (concurrent) components in the system. We have a 
Control-Port-In, a Control-Port-Out, a number of Data-Ports-in and a number of 
Data-Ports-Out. Note that we will not consider the Routes as components, since 
these are static objects without temporal behaviour. Because all Data-Ports-In 
have the same behaviour, we can specify just one process, indexed with the 
actual name of the port. The same holds for the Data-Ports Out. 

Now we make the decision that the routes and the information about the 
ports that exist are handled by the Control-Port-In, so this process is indexed 
with a route-table and with a port-set. Furthermore we see that the Control­
Port-Out must contain a number of faulty messages that should be flushed and 
that every Data-Port-Out must contain a number of messages that should be 
sent to the environment. So both processes are indexed with a message-bag. 
The signature of the top-level objects now looks like: 

proc••••• 
control-port-in : route-table# port-set 
control-port-out : message-bag 
data-port-in : port-name 
data-port-out : port-name# message-bag 

From the informal text and the ERAE specification we can now define the 
initial state of the node. It consists of the concurrent operation of the contra/­
port-in and the control-port-out, indexed with the empty-route-table, the 
empty-port-set and the empty-message-bag. Of course we must add the 
parameter process clock in parallel and we must abstract from the internal 
actions and encapsulate unsuccessful communications. 

transit-node= hide(I, encaps(H, 
clock 11 
control-port-in(empty-route-table, empty-port-set) 11 
control-port-out(empty-message- bag))) 

Now we can proceed in a bottom up way by defining the data types route-table 
(an instance of the parameterized module table with the data type routes ), port­
set (sets instantiated with ports), message-bag (bags instantiated with messages) 
and port-name. 

The top-down approach is continued by defining the behaviour of the four 
processes, each in a separate module. This leads to the question which objects 
are connected, in order to communicate to each other. We see that there is a 
link between the control-port-in and the control-port-out . Every data-port-in is 
linked to the control-port-in for route information and to the control-port-out 
for sending faulty messages. All data-ports-in are connected to all data-ports-out 
to transmit messages . And finally all ports have a connection to the 
environment for either accepting or transmitting messages. 

As can be seen in the specification, the behaviour of the objects is specified by 
determining all initial communication actions. Every action is then followed by 
the corresponding behaviour, such as a transmission or a state change. This can 
possibly be specified by using subprocesses. 
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The control-port-in e.g. can accept one of the following messages: 

• add-datum-port(p), followed by the subprocess that handles adding a 
data-port-in and a data-port-out; 

• add-route(r), followed by a state change where the route-table is updated; 

• send-faults, followed by forwarding this message to control-port-out; 

• request-route(rn), followed by sending appropriate information about 
the route back. 

After having identified all atomic actions (i.e. communication attempts) we can 
define the communication function and the set of atoms that has to be 
encapsulated and abstracted. 

3.3. TOPOLOGY OF THE TRANSIT NODE 

We can visualize the structure of the transit node with the following picture. 

control-input 

data-input(p1) 

control-port-in 

data-port-in(p1) 

:♦ 
I I 
I I 

f ! 

control-in-to-out 

I 
I 
I 
I 
I 
I 

I \ 

ata-tn-'6-out(pl ,pl'!"i 

control-port-out 

data-port-out(p 1) 

/ I 
I \ '--------' '-< ,- I 

I ', .,,. ,,, \ 
I ' ., 

I ...,"', l 

/ .,........ ............ \ 

control-output 

data-output(p 1) 

.," '--------
-------1.___r--------► -".____.II _____ _.. 

figure 1 The transit node 
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4. THE SPECIFICATION 

The specification that resulted from the design as described in the previous 
paragraph will now be given. Note that the linear structure of the specification 
does not comply with the way the specification was designed. This is because 
the formalism forces us to write down the specification in a bottom-up way. 

We first give all basic data types needed in the specification, then we define 
the data types specific to the transit node, then we define all processes involved 
and finally we give an example of an instantiation of the clock parameter. 

4.1. BASIC DATA TYPES 

The basic data types consist of the simple types booleans and natural numbers, 
and the parameterized types bags, sets and tables. The difference between bags 
and sets is that in a set duplicates are removed. A table can be used to look up 
an item corresponding to the value of a certain key. 

data module booleans 
begin 

exports 
begin 

aorta BOOL 
functions 

true 
false 
or 
and 

end 

variables 
b: -> BOOL 

equations 

BOOL 
BOOL 

[l] or(true, b) 
[2] or(false, b) 
[3] and(true, b) 
[4] and(false, b) 

end booleans 

t BOOL 
f BOOL 

= true 
= b 

b 
= false 

-> BOOL 
-> BOOL 
-> BOOL 
- > BOOL 



data modul e natural-numbers 
beg i n 

exports 
begi n 

sorts nat 
f unct i ons 

0 
s 
eq 
lt 

+ 

e nd 

imports booleans 

variable a 

nat 
nat 
nat 
nat 
nat 

n, nl, n2 : -> nat 
equat i ons 

eq(0, 0) 

ii nat 
# nat 
ii nat 
# nat 

[1] 
[2] 
[3] 
[ 4] 
[5] 
[6] 
(7) 
[8] 
[ 9] 

eq(O, s(n)) 
eq(s(n), 0) 
eq(s(nl), s(n2)) 
lt(O, s(n)) 

(10] 
(11] 
[12) 

lt (n, 0) 
lt(s(nl), s(n2)) 
n + 0 
nl + s (n2) 
0 - n 
n - 0 
s(nl) - s(n2) 

end natural-numbers 

data module bags 
begin 

parameters 
items 

begin 
aorta item 

end items 

exports 
begin 

-> nat 
-> nat 
-> BOOL 
-> BO0L 
-> nat 
-> nat 

true 
false 

= fal s e 
eq(nl , n2) 
true 
false 
lt (nl, n2) 
n 
s(nl + n2) 
0 
n 
nl - n2 

aorta bag 
functions 

empty- bag 
add 

-> b a g 
item ii bag-> bag 

end 

variables 
il, i2 : -> item 
b - > bag 

equation• 
[l] add(il, add(i2, b)) = a dd (i2 , add( il, b) ) 

end bags 

Discussion 16 7 
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data module set 
begin 

parameter a 
equality 

begin 
function■ 

eq: item# item-> BOOL 
end equality 

exports 
begin 

functions 
eq 
element 

end 

set# set -> BOOL 
item# set-> BOOL 

import• 
bags 

{ renamed by 
-> set, [ bag 

empty-bag 
}, 

-> empty-set] 

booleans 

variable■ 

i, il, i2 -> item 
s -> set 

equation■ 

[l] add{i, add(i, s)) 
[2] element(i, empty-set} 
[3] element(il, add(i2, s)) 

add(i, s) 
false 
or(eq(il, i2), element(il, s)) 

end set 

data module tables 
begin 

parameter• 
items 

begin 
aorta key, value 
functions 

eq 
default-value 

end items 

export ■ 

begin 

key# key-> BOOL 
-> value 

aorta table 
functions 

empty-table 
add 
look-up 

-> table 
key t value# table-> table 
key# table - > value 

end 

import• booleans 
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variables 
k, kl, k2 -> key 
V -> value 
t -> table 

equations 
[1] look-up(k, empty-table) = default-value 
[2] look-up(kl, add(k2, v, t)) = v 

when eq(kl, k2) = true 
[3] look-up(kl, add(k2, v, t)) = look-up(kl, t) 

when eq(kl, k2) = false 

end tables 

4.2. DATA TYPES SPECIFIC TO THE TRANSIT NODE 

The module time supplies functions to deal with timing information. To the 
outside the sort time is built up from the constant initial-time, using the +­
function to add durations. A duration is either the constant tick-duration, or 
the difference of two times. Internally we use the naturals and auxiliary 
functions to define the exported functions. 

data module time 
begin 

exports 
begin 

aorta time, duration 
functions 

initial-time 
tick-duration 

-> time 
- > duration 

lt 
+ 

duration# duration 
time# duration 

-> BOOL 
-> time 

time# time 
end 

imports natural-numbers 

nat -> time 
functions 

time 
duration nat -> duration 

variables 
nl, n2 : -> nat 

equations 
[1] initial-time 
[2] tick-duration 
[3] lt(duration(nl), duration(n2)) 
[4] time(nl) + duration(n2) 
[5] time(nl) - time(n2) 

end time 

-> duration 

time(O) 
- duration (s (0)) 

lt (nl, n2) 
time (nl + n2) 
duration(nl - n2) 

The type of information that can be transmitted through the transit node is 
defined in the module datum . 
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data module datum 
begin 

export• 
begin 

aorta datum 
end 

imports natural-numbers 

function• 
datum: nat -> datum 

end datum 

The transit nodes contains a number of ports for input and output. These ports 
are named with natural numbers. Port names can be collected into sets by 
binding the parameter of the basic module set to port-name. 

data module port-name 
begin 

exports 
begin 

sorta 
port-name 

functions 
eq : port-name# port-name-> BOOL 

end 

import■ natural-numbers 
function■ 

port-name: nat - > port-name 

variable ■ 

nl, n2 : - > nat 
equations 

[1] eq(port-name(nl), port-name(n2)) 

end port-name 

data module port-sets 
begin 

imports 
set 

renamed by 
set 
empty-set 

items bound by 
[ item 

-> port-set, 
- > empty-port-set 

- > p o rt-name ] 
to p o rt-name 

equality bound by 
[ eq -> eq l 
to port-name 

end port-sets 

eq(nl, n2) 
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A route consists of a route-name and a set of output ports associated with this 
route. Routes are collected into tables in order to look up the port-set 
corresponding to the name of a previously created route. 

data module route-names 
begin 

exports 
begin 

sorta 
route-name 

functions 
eq : rou te-name# route-name-> BOOL 

end 

imports natural-numbers 
functions 

route-name : nat -> route-name 

variables 
nl, n2 : - > nat 

equations 
[l] eq(route-name(nl), route-name(n2)) 

end route-names 

data module r o utes 
begin 

export11 
begin 

sorts route 
functions 

route 
name-of 
ports-of 
eq 

end 

route-name j/ port-set 
route 
route 
route j/ route 

imports b ooleans, port-sets, route-names 

variable11 
nl, n2 
psl, ps2 

- > route-name 
-> port-set 

equation11 
[l] name-of(route(nl, 
[2] ports-of(route(nl, 
[3] eq(route(nl, psl), 

psl)) 
psl)) 
route(n2, ps2)) 

-> 
-> 
-> 
-> 

eq(nl, n2) 

route 
route-name 
port-set 
BOOL 

nl 
psl 

and(eq(nl, n2), eq(psl, ps2)) 

end routes 
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data module route-tables 
begin 

import• 
tables 

{renamed by 
[ table 

empty-table 
items bound by 

-> route-table, 
-> empty-route-table] 

[ key -> route-name, 
value -> port-set, 
eq -> eq, 
default-value-> empty-port-set] 

to routes) 

end route-tables 

If components communicate to the outside world or to each other, messages are 
exchanged. Most of the messages are indexed with a value of some data type. 
Messages can be collected in bags. 

data module messages 
begin 

exports 
begin 

aorta message 
functions 

end 

add-datum-port 
add-route 
send-faults 
routed-datum 
req-route 
available-ports 
timed-message 
datum 

port-name 
route 

route-name # datum 
route-name 
port-set 
time # datum 
datum 

imports datum, time, port-name, routes 

end messages 

data module message-bags 
begin 

import• 
bags 

{ renamed by 
bag 
empty-bag 

items bound by 

-> message-bag, 
- > empty-message-bag 

item - > message] 
to messages 

end message-bags 

-> message 
-> message 
-> message 
-> message 
-> message 
-> message 
-> message 
-> message 
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The various components of the transit node are connected to each other with 
channels. There are also channels to the environment. 

data module channels 
begin 

exports 
begin 

aorta channel 
functions 

end 

control -input 
control-output 
control -in-to-out 
control-to-data 
data-to-contro l 
rejection 
data-in-to-out 
data-input 
data-output 

imports port-name 

end channels 

4.3. THE PROCESSES 

4.3.1. Communication 

-> channel 
-> channel 
- > channe l 

port-name -> channel 
port-name - > channel 

-> channel 
port-name ii port-name -> channel 
port-name -> channel 
port-name -> channel 

The module communication defines the atomic actions that can be executed by 
the various components, when trying to communicate. The communication 
function is defined such that a read action (r) and a send action (s) can be 
combined into a communication action (c). These actions are indexed with the 
channel used to communicate and the message to be transmitted. In the same 
way timing information can be communicated. 

The set of internal actions (I) and the set of actions to be encapsulated in 
order to get only successful communication (H) are also defined. 

process module communication 
begin 

exports 
begin 

atoms 
r 
s 
C 

read-time 
send-time 
comm-time 

channel t message 
channel * message 
channel • message 
time 
time 
time 
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sets of channel 
internal-channels 

control-in-to-out, rejection, 
data-to-control(pnl), control-to-data(pnl), 
data-in-to-out(pnl, pn2) I pnl in port-name, pn2 in port-name } 

of atoms 
I c (c, m), comm-time (t) I 

tin time, c in internal-channels, min message 
H r(c, m), s(c, m), send-time(t), read-time(t) 

tin time, c in internal-channels, min message 
end 

imports 
channels , 
messages ,. 
time 

communications 
r(c, m) I s(c, m) = c(c, m) 

for c in channel, min message 
read-time(t) I send-time(t) = comm-time(t) 

for t in time 

end communication 

4.3.2. Data-ports-in 

For every port-name a process data-port-in is defined. Every data-port-in 
behaves as follows . First it reads from its input channel the message to send 
some datum along some route. Then it reads the current time and asks the 
control-port-in for the port set attached to the requested route. Then a transit 
attempt is made. If the route-name was faulty, an empty-port-set was returned 
and the incoming message is routed to the rejection channel, thus becoming 
faulty. If the port-set was not empty, one port is selected randomly and after 
adding a time stamp the incoming message is routed to that port. The process 
transit-datum is not defined in case the port-set is empty. This means that it 
equals deadlock. 

process module data-ports-in 
begin 

exports 
begin 

proc••••• 
data-port-in 

end 

imports 
port-sets, 
route-names, 
time, 
communication 

port-name 
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processes 
transit-attempt 

port-set# port-name# time # route-name t datum 
transit-datum : p ort-set# port-name# time# datum 

variables 
tl , t2 -> time 
pl, p2 -> port-name 
rn -> route-name 
ps -> port-set 
d -> datum 

definitions 
data-port-in(pl) 

aum{d in datum, 
aum(rn in route-name, 
r(data-input(pl), routed-datum(rn, d)) . 
aum(tl in time, 
read-time (tl) . s (data-to-control (pl), reg-route (rn)) 
sum(ps in port-set, 

r(control-to-data(pl), available-ports(ps)) 
transit-attempt (ps, pl, tl, rn, d) . 
data-port-in(pl))))) 

transit-attempt(empty-port-set, pl, tl, rn, d) 
s(rejection, routed-datum(rn, d)) 

transit-attempt(add(p2, ps), pl, tl, rn, d) 
transit-datum(add(p2, ps), pl, tl, d) 

transit-datum(add(p2, ps), pl, tl, d) = 
s(data-in-to-out(pl, p2), timed-message(tl, d)) + 
transit-datum(ps, pl, tl, d) 

end data-ports-in 

4.3.3. Data-ports-out 

The following module is parameterized with a duration, max-transit-time, that 
determines the maximum time a message may stay within the transit node. 

For every port-name a process data-port-out is defined. Every data-port-out is 
indexed with a bag of messages that must be sent to the environment. Initially 
this bag is empty. It starts by reading a timed message from one of the data­
input-ports. This message is added to the bag and the process starts again. If the 
bag is not empty, the process also has the possibility to output some message 
from the bag. If the max-transit-time is expired, then the message becomes 
faulty and will be sent to the rejection channel. Otherwise, the message is sent 
to the environment. 
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process module data-ports-out 
begin 

parameter a 
max-transit-time 

begin 
functions 

max-transit-time 
end max-transit-time 

exports 
begin 

-> duration 

processes 
data-port-out 

end 
port-name# message-bag 

imports 
port-name, 
message-bags, 
communication 

processes 
handle-message-out BOOL #datum# port-name 

variables 
t, tl, t2 
pl, p2 

-> time 
-> port-name 

mb -> message-bag 
d, e -> datum 

definitions 
data-port-out(p2, empty-message-bag) 

sum(pl in port-name, 
sum(tl in time, 

aum(d in ciatum, 
r(data-in-to-out(pl, p2), timed-message(tl, d)) 
data-port-out(p2, add(timed-message(tl, d), 

empty-message-bag))))) 
data-port-out(p2, add(timed-message(t2, e), mb)) = 

sum(pl in port-name, 
sum(tl in time, 

sum(d in datum, 
r(data-in-to-out(pl, p2), timed-message(tl, d)) 
data-port-out(p2, add(timed-message(tl, d), 

add(timed-message(t2, e), mb)))))) + 
sum(t in time, 
read-time(t) 
handle-message-out(lt(t - t2, max-transit-time), e, p2) 
data-port-out(p2, mb)) 

handle-message-out(false, d, p2) 
s(rejection, datum(d)) 

handle-message-out(true, d, p2) = 
s(data-output(p2), datum(d)) 

end data-ports-out 
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4.3.4. Control-port-in 

The process control-port-in keeps track of all defined routes and all existing 
ports, so it is indexed with a route-table and a port-set. It is connected to the 
environment with the control-input channel. Via this channel it can receive 
the message to add a datum-port, to add a route, or to flush all faulty messages. 
As a last option it can receive a request from some data-port-in to send the 
routing information belonging to some route-name. All these incoming 
messages are treated separately. The request to add a datum port is handled 
using a subprocess. This handler checks wether the data port already exists. 
Then it either rejects the message or adds the port to the port-set and creates 
two new parallel processes: a data-port-in and a data-port-out. 

If a request is made to add a route, it simply adds the route information to 
the route-set. A send-faults request is simply passed on to the control-port-out. 
A request for route information is answered by looking up the requested 
information and sending it back. 

process module control-port-in 
begin 

exports 
begin 

processes 
control-port-in 

end 

imports 

route-table# port-set 

route-tables, communication, data-ports-in, data-ports-out 

processes 
handle-add-port 

variables 
p -> port-name 

route-table# port-set# port-name# BOOL 

rt -> route-table 
ps - > port-set 

definitions 
control-port-in(rt, ps) = 

sum(p in port-name, 
r(control-input, add-datum-port(p)) 
handle-add-port(rt, ps, p, element(p, ps))) 

+ sum(r in route, 
r(control-input, add-route(r)) . 
control-port-in(add(name-of(r), ports-of(r), rt), ps)) 

+ r(control-input, send-faults) . 
s(control-in-to-out, send-faults) 
control -port-in(rt, ps) 

+ sum(p in port-name, 
aum(rn in route-name, 
r(data-to-control(p), req-route(rn)) . 
s(control-to-data(p), 

available-ports (look-up (rn, rt))))) . 
control-port-in(rt, ps) 
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handle-add-port(rt, ps, p, true) = 
s(rejection, add-datum-port(p)) 
control-port-in(rt, ps) 

handle-add-port(rt, ps, p, false) = 
control-port-in(rt, add(p, ps)) 11 

data-port-in(p) I I data-port-out(p, empty-message-bag) 

end control-port-in 

4.3.5. Control-port-out 

The process control-port-out is indexed with the message-bag containing all 
faulty messages. It has a simple behaviour. It can receive the message to send all 
faulty messages to the environment, which is handled by the subprocess flush, 
or it can receive faulty message via the rejection channel. 

proce•• module control-port-out 
begin 

export• 
begin 

proc••••s 
control-port-out 

end 

imports 
message-bags, 
communication 

proceaaea 
flush : message-bag 

variables 
m -> message 
mb: -> message-bag 

definition• 
control-port-out(mb) = 

message-bag 

r(control-in-to-out, send-faults) . flush(mb) 
+ aum(m in message, r(rejection, m) 

control-port-out(add(m, mb))) 

flush(empty-message-bag) = control-port-out(empty-message-bag) 
flush(add(m, mb)) = s(control-output, m) . flush(mb) 

end control-port-out 

4.3.6. Transit-node 

Finally the transit node is specified by the concurrent operation of the clock 
process, which is a parameter of the system, the control-port-in and the control­
port-out. These ports are initialized with an empty table, set and bag. In order to 
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hide internal actions and to get only successful communication, we add the 
hiding operator and the encapsulation operator. 

Note that apart from the parameter clock, we also inherit the parameter max­
transit-time from the imported module data-ports-out . 

process module transit-node 
begin 

parameters 
time 

begin 
processes 

clock 
end time 

exports 
begin 

proces••• 
transit-node 

end 

import ■ 

control-port-in, 
control-port-out 

definitions 
transit-node= hide (I, encapa(H, 

clock I I 
control-port-in (empty-route-table, empty-port-set) I I 
control-port - out(empty-message-bag))) 

end transit-node 

4.4. EXAMPLE OF A CLOCK 

In this section we give an example of how the clock parameter of the transit 
node can be initialized. The process clock starts at the initial-time. Then it can 
do a tick, followed by an increment of the current time with a tick-duration, or 
it can send the time to anyone willing to read it. Note that in this version of a 
clock the action of sending the time will not cost any time. 
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process module a-clock 
begin 

exports 
begin 

end 

proc••••• 
clock 

imports 
time, 
communication 

atoms 
tick 

processes 
clock: time 

variables 
t : -> time 

definitions 
clock clock(initial-time) 
clock(t) = tick . clock(t + tick-duration) + 

send-time (t) . clock (t) 

end a-clock 

process module transit-node-with-a-clock 
begin 

imports 
transit-node 

{time bound by 
[clock-> clock] 

to a-clock) 

end transit-node-with-a-clock 

4.5. GRAPHICAL REPRESENTATION OF THE IMPORT RELATION 

Using the IDEAS tool developed within the METEOR project [64] we can give 
the following picture, see figure 2), representing the import relation between all 
modules of the specification of the transit node. Rectangular boxes are used for 
data modules and boxes with rounded corners gre used for process modules. 
An arrow from a module to another module means that the former is 
imported into the latter. Note that not all textual imports are present in the 
picture. We used a tool to compute the minimal import relation having the 
same transitive closure as the textual one. 
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transit-node.psf 

transit-node-with-a-clock.psf 

figure 2 The import relation 



182 Specification of the Transit Node in PSF 

5. RELATION TO THE ERAE SPECIFICATION 

In this section we will give a brief discussion of the relation between the ERAE 
specification and the PSF specification of the transit node. It is clear that, since 
ERAE was designed for requirements specification, the former is closer to the 
textual specification, whereas in the PSF specification some design decisions 
had to be made. As an example look at the routing information that is treated 
as a separate entity in ERAE, while in PSF it is part of the state of the control­
port-in. 

The ERAE language is based on temporal logic. Its formal semantics can be 
found in [55], and [39] contains an introduction to the use of ERAE. 

In order to validate that a PSF specification is correct with respect to an ERAE 
specification, a formal treatment of this notion of validation would be needed. 
Since this chapter does not focus on this subject, we only give some informal 
reasoning about the relation between the two specifications. 

Such a validation is made up of two parts. First we must give a relation 
between the entities declared in the ERAE specification and the ones declared in 
the PSF specification, and then we must provide an interpretation of the 
temporal statements in ERAE into PSF. 

5.1. ENTITIES 

A quick inspection learns that, apart from some design decisions and detail 
implementations, the entities in ERAE relate to the entities in PSF having the 
same name. So where ERAE contains messages such as Add-route msgs 
indexed with a route nr and a series of out port-nr, PSF has a data type 
messages, containing a function add-route, indexed with rout e which is a 
combination of a route-name and a port-set. 

As an other example look at the entity Data port-in which is indexed with a 
nr, and is able to receive Data msgs via a port. In PSF this translates to a process 
data-port-in, indexed with a port-name, having a channel to the environment 
called data-input, via which it can receive a routed-datum. 

5.2. TEMPORAL STATEMENTS 

Naively speaking the interpretation of a temporal statement in ERAE into PSF 
consists of an interpretation of all events involved into atomic actions, 
followed by a verification that every possible trace of the specification in PSF 
satisfies all temporal statements about events given in the ERAE specification. 
Unfortunately this approach is too simple since not only temporal information 
is involved but also information about the state space of the system. 

As an example of how to informally validate the PSF specification, we will 
give some ERAE statements and their informal interpretation in the PSF 
specification. 
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initially ⇒ -,3 dpi: is-in(dpi, Data-ports-in) 

/\ -,3 dpo: is-in(dpo, Data-ports-out) 

/\ -,3r: is-in(r, Routes) 

/\ -,3 wm,dm: faulty(wm) v faulty(dm) 

This can be interpreted as the statement that there are no data ports in the 
definition of the process transit-node, and that the port-set, route-table and 
(faulty) message-bag are empty: 

transit-node= hide(I, encaps(H, 
clock 11 
control-port-in(empty-route-table, empty-port-set) I I 
control-port-out(empty-message-bag))) 

A number of statements are about the behaviour of the environment of the 
transit node. These statements are not explicitly met by the PSF specification, 
since it only specifies the behaviour of the transit node without restricting its 
environment. As an example look at the statement 

occurs (dm) ⇒ • exists (port (dm)) 

which states that messages only arrive at existing input ports (the symbol • 
means "true in the previous state"). This assumption about the environment is 
not stated in the PSF specification. 

As a last example look at the statement about state changes concerning data­
ports-in: 

exists (dpi) /\ • -, exists (dpi) 

⇒ 3 apm: occurs(apm) /\ nr(dpi)=port-nr(apm) 

This states that if a data-port-in is created, an add-port-message must have been 
occurred. In the PSF specification this is verified by looking at all places where a 
data-port-in is created. This can only happen in the subprocess handle-add-port 
of the process control-port-in . This subprocess is only invoked after the atomic 
action c(control-input, add-datum-port(p)) has occurred for some appropriate 
port-name p. 

It is clear that this reasoning is very informal. This is because the existence of 
a data-port-in is easy to check at the textual level of the specification, but not at 
the level of the semantics of PSF. The semantics is a labeled transition graph, 
which in no way contains information about the number of processes that it is 
constructed from, but only about the actions that can be performed by the 
system. Also the actual value of the indexes of the processes involved is not 
part of the semantics. 

6. DISCUSSION 

Since some design decisions were needed, the specification of the transit node 
in PSF is more specific than the specification in ERAE. There is no easy 
transformation from an ERAE specification to a PSF specification, however 
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when having an ERAE specification, the informal text can be interpreted more 
easily. 

We can only give an informal validation of the PSF specification when 
relating it to the ERAE specification. This is due to the fact that in some cases 
ERAE statements relate to the state of the system, which is not part of the 
formal semantics of PSF. We can however look at the textual level of the 
specification and give an informal reasoning. Also restrictions to the 
environment can not be expressed in PSF. 

The design of the specification can be generalized to the following method: 

• Identify the parameters of the system. 

• Identify all concurrent components. 

• Add indexes to the process names of each component to keep track of 
state information and to create more instances of the object. 

• Define the abstract data types needed for these indexes. 

• Specify how the components are connected. 

• Define the initial state of the system. 

• Define the behaviour of each component. 

Of course the last step of this method can be very involved. Each component in 
turn can then be divided into subcomponents, in such a way that the method 
recursively applies to these subcomponents. 
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Nederlandse Samenvatting 

PSF - E EN PROCES SPECIF/KA TIE 

fORMALISME 

Deze samenvatting is bedoeld voor de lezer die niet ge1nteresseerd is in de technische 
details, maar wel benieuwd naar de sleutelbegrippen die een rol spelen in dit proefschrift, te 
weten paral/cllisme en specificeren. 

1. PARALLELLISME 

Vanaf het prille begin van de studie van computers en hun programmering 
werd de oplossing van een probleem gepresenteerd als een reeks van 
handelingen, die, een voor een uitgevoerd, tot een oplossing van het totale 
probleem leiden. Later zag men in dat grotere problemen beter konden worden 
opgedeeld in kleinere deelproblemen. Deze deelproblemen moesten echter in 
een strikt vastgelegde volgorde opgelost worden. Deze nai:eve methode van 
probleemoplossen leidt meestal tot een werkend programma en sluit goed aan 
bij het menselijk onvermogen om grote aantallen aspekten tegelijk te 
overzien. 

Het idee dat er ook opsplitsingen van een probleem in deelproblemen 
bestaan die niet per se strikt geordend in de tijd moeten worden opgelost, heeft 
pas in de laatste jaren post gevat. Dit ten onrechte grotendeels door het 
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beschikbaar komen van parallelle computerarchitekturen. De relatie tussen de 
onderscheiden deelproblemen is dan niet meer een relatie in tijdsvolgorde, 
maar bijvoorbeeld in gegevensafhankelijkheid. Deelproblemen die niet in de 
tijd gerelateerd zijn kunnen dan gelijktijdig (parallel) worden opgelost. 

Zoals zo vaak in het vakgebied van de konstruktie van komputerpro­
gramma's, dat Software Engineering wordt genoemd, wordt gegrepen naar een 
metafoor om de situatie te verduidelijken. Het parallel oplossen van 
problemen heeft bijvoorbeeld in de bouw een natuurlijk analogon. Aan een 
projekt zijn vaak grote groepen bouwvakkers bezig, die allen hun eigen 
taakstelling hebben en dus parallel hun taak kunnen uitvoeren. Alleen de 
inherente tijdsafhankelijkheden, zoals de eis dat de fundering eerder dan de 
bovenliggende verdiepingen moet zijn gerealiseerd, zorgen voor een 
gedeeltelijk sequentiele ordening. Ook in de bouw is het streven deze 
tijdsordening te minimaliseren, bijvoorbeeld door het gebruik van 
geprefabriceerde komponenten. Hierbij worden delen van een woning al in de 
fabriek gekonstrueerd. In tegenstelling tot de hardware fabricage (chips e.d.) 
lijkt de fabricage van software minder eenvoudig af te stemmen op het gebruik 
(en hergebruik) van vooraf gebouwde komponenten. 

1 .1. WAAROM PARALLEL REKEN EN 

Er kunnen twee redenen worden onderscheiden waarom het parallel oplossen 
van een probleem in de informatica een rol kan spelen. De eerste is dat parallel 
redeneren aansluit bij de aard van het probleem en de tweede is dat 
parallellisme tijdwinst oplevert bij het oplossen van het probleem. 

In het eerste geval is uit de probleemstelling af te leiden dat er een aantal 
tijdsonafhankelijke deelproblemen zijn, die geen expliciete tijdsrelatie tot 
elkaar hebben. Het ligt dan voor de hand om ook geen tijdsvolgorde aan de 
oplossing van de deelproblemen op te leggen. Het herkennen van 
parallellisme hangt natuurlijk sterk van de cultuur van de probleemoplosser 
af. Als iemand gewend is alle problemen in termen van "control-flow" te zien, 
zal niet direkt duidelijk zijn dat er ook een parallelle of een "object-oriented" 
oplossing te formuleren is. Een voorbeeld van makkelijk te herkennen 
parallellisme is een probleem waarbij steeds gelijkvormige bewerkingen 
moeten worden uitgevoerd, zoals het kwadrateren van een lange lijst getallen. 
Het enige argument dat er bij het oplossen van dit probleem een sequentieel 
algoritme gebruikt zou moeten worden is het feit dat de invoer in een lijst 
geordend is. Deze ordening is echter niet essentieel voor het gegeven probleem. 
Een antler voorbeeld waarbij de beschrijving van het probleem al een opdeling 
in parallelle objekten geeft is een kommunikatieprotokol. Bij kommunikatie 
wordt al een fysiek onderscheid gemaakt tussen de diverse komponenten, zoals 
de zender, de ontvanger en het kommunikatiemedium. In het geval dat de 
diverse komponenten zich niet in elkaars direkte nabijheid bevinden, wordt er 
ook wel gesproken van gedistribueerde gegevensverwerking. 
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Een tweede reden om parallellisme te willen gebruiken is snelheidswinst. 
Als je een aantal taken parallel uitvoert kost het in totaal minder tijd dan bij 
sequentieel oplossen. Sommige "real-time" toepassingen zijn alleen mogelijk 
dankzij het gebruik van parallelle systemen, zoals bijvoorbeeld het detecteren 
van subatomaire deeltjes in de huidige generatie versnellers. Zonder parallelle 
faciliteiten is de grote hoeveelheid meetgegevens niet te verwerken. Een 
voorbeeld waarbij versnelling van de gegevensverwerking leidt tot een 
kwalitatief beter resultaat is de weersvoorspelling. Vergroting van het aantal 
verwerkte meetwaarden en dus van de nauwkeurigheid van de voorspelling 
kan alleen bij een vergroting van de verwerkingskapaciteit. Recente 
wiskundige inzichten echter voorspellen <lat zelfs bij een onbeperkte toename 
van de rekenkapaciteit de nauwkeurigheid van de weersvoorspelling 
nauwelijks toe zal nemen. 

1.2. PROBLEMEN MET PARALLELLISME 

Introduktie van parallellisme kan dan een toepassing lijken te vinden in 
bepaalde probleemgebieden, het introduceert echter ook een nieuwe klasse van 
problemen. In de praktijk is het maar zelden het geval dat een verdubbeling 
van het aantal computers leidt tot een halvering van de rekentijd. Het 
rendement hangt zeer sterk af van het soort taak dat uitgevoerd moet worden. 
Bij een taak die op perfecte manier op te delen is in subtaken zal het toevoegen 
van extra computers een hoog rendement opleveren. Denk bijvoorbeeld aan de 
lijst getallen die gekwadrateerd moet worden. Als je hier een extra komputer 
aan toevoegt hoef je er slechts voor te zorgen <lat de lijst in een aantal ongeveer 
even grote delen wordt opgesplitst. Bij een ondeelbare taak zal toevoegen van 
meerdere computers juist geen enkele snelheidswinst opleveren. Hierbij wordt 
in de literatuur meestal de metafoor van een zwangere vrouw gebruikt. De 
draagtijd zal negen maanden zijn, onafhankelijk van het feit of er meerdere 
personen zijn die bereid zijn in de zwangerschap te delen. In sommige 
toepassingen zal het gebruik van meerdere komputers zelfs een 
snelheidsverlies tot gevolg hebben. Dit wordt veroorzaakt door de burokratie 
die nodig is om taken te verdelen en koordineren . 

In de praktijk laat een probleem zich vaak opsplitsen in deelproblemen, 
maar moeten de oplossers van de deelproblemen toch in enige mate 
samenwerken om tot het juiste antwoord te komen. De mate van 
samenwerking kan worden gemeten aan de hand van de hoeveelheid 
kommunikatie die tussen de komponenten gevoerd wordt. Bij veel problemen 
weegt de tijdwinst die verkregen wordt door het werk over meerdere 
komponenten te verdelen op tegen deze extra kommunikatie-overlast. Soms 
echter levert de extra kommunikatie zoveel tijdverlies op dat het resultaat van 
het parallel rekenen juist langzamer tot stand komt dan bij de klassieke, 
sequentiele manier. In het vakgebied van de software engineering, <lat de 
konstruktie van programmatuur bestudeert, wordt een vergelijkbaar probleem 
kernachtig aangeduid door de stelling "adding more manpower to a late 
software project, makes the project later". Doe! is dus tot een zodanige 
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opsplitsing in deelproblemen te komen dat er een minimum aan kommuni­
katie nodig is. 

Een antler fenomeen dat zich voordoet bij het parallel oplossen van 
problemen is het verschijnsel "deadlock". Een deadlock is een situatie waarbij 
een komponent zit te wachten op informatie van een andere komponent, 
terwijl die antler zelf weer zit te wachten op informatie van de eerste 
komponent. Deze situatie zal bij menselijke kommunikatie niet vaak 
voorkomen, maar bij komputers maar al te vaak. Een deadlock is een gevolg 
van het feit dat de kommunikatie tussen de komponenten niet korrekt is 
uitgedacht. 

Een dergelijke deadlock-situatie zal zich niet elke keer dat het systeem werkt 
openbaren. Het zou zich pas na een heleboel suksesvolle bedrijfsjaren kunnen 
voordoen, als toevallig dan beide komponenten op (vrijwel) hetzelfde 
moment informatie van elkaar willen hebben. Dit onvoorspelbare gedrag is 
kenmerkend voor parallel werkende systemen. Als een parallel programma 
meerdere keren wordt gestart met invoergegcvens die precies identiek zijn, 
kunnen er toch verschillende resultaten uitkomen. Dit wordt veroorzaakt 
doordat een komponent soms een fraktie sneller is en soms een fraktie 
langzamer dan een andere komponent, waardoor de interaktie net iets anders 
kan verlopen. Dit verschijnsel, dat het resultaat niet alleen bepaald wordt door 
het programma en zijn invoer, maar ook door toevallige omstandigheden, 
noemen we "non-determinisme". 

Beide verschijnselen, kommunikatie met deadlock-mogelijkheid en non­
determinisme zorgen, ervoor dat het niet eenvoudig is om in te zien of een 
parallel programma ook korrekt zal funktioneren . Aangezien het in veel 
gevallen noodzakelijk is om dit te weten, zal in een theorie over parallel 
programmeren in ieder geval aan deze aspekten aandacht moeten worden 
besteed. De wiskundige theorie die de basis vormt voor <lit proefschrift heet 
"procesalgebra". 

2. SPECIFICEREN 

2.1. SPECIFICEREN VAN PARALLELLE SYSTEMEN 

Is er eenmaal een opsplitsing van een probleem in deelproblemen uitgedacht 
dan doet zich nog de vraag voor hoe het op te schrijven. De meest voor de 
hand liggende manier om parallelle programma's te beschrijven is gebruik te 
maken van een parallelle programmeertaal. Het probleem echter is dat de 
weinige bestaande programmeertalen met voorzieningen voor parallellisme 
zich niet goed lenen voor het analyseren van de erin beschrcven programma's. 

Een dergelijke analyse is vaak wel mogelijk in procesalgebra. Met zuiver 
wiskundige methoden is het mogelijk om te verifieren of een in procesalgebra 
beschreven programma aan de vooraf opgestelde wensen voldoet. Proces­
algebra is echter, door de wiskundige notatie en door de mogelijkheid om 
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informeel over sommige details heen te stappen, niet geschikt om per 
komputer te worden verwerkt. De wens om toch procesalgebra te kunnen 
bedrijven leidt ertoe dat er een taal wordt ontworpen die naadloos aansluit bij 
de terminologie uit de procesalgebra, maar deze bezwaren niet kent. De in dit 
proefschrift voor dit doel ontworpen taal wordt PSF genoemd, hetgeen staat 
voor "Process Specification Formalism". 

2 .2. PROCESSEN EN GEGEVENS 

PSF leent zich zowel voor het beschrijven van parallelle systemen, als voor het 
analyseren daarvan, waarbij eventueel van de komputer gebruik kan worden 
gemaakt. 

Bij het beschrijven van een parallel systeem worden twee zaken onder­
scheiden. In de eerste plaats dient aangegeven te worden wat de struktuur van 
het systeem is, hoe de onderlinge verbindingen lopen en hoe de diverse 
komponenten met elkaar kommuniceren. Dit laatste komt tot uiting in de 
beschrijving van het gedrag van de afzonderlijke komponenten, ook wel 
processen genoemd. Het specificeren van dit gedrag vindt plaats in de 
zogenaamde "proces-modulen" van PSF. 

In de tweede plaats moeten de gegevens beschreven worden die door de 
diverse komponenten verwerkt worden. De struktuur van deze gegevens en 
de verschillende bewerkingen op die gegevens worden gedefinieerd in de 
zogenaamde "data-modulen" van PSF. 

Een specifikatie in PSF beschrijft dus welke processen er een rol spelen en 
met welke gegevens ze omgaan. 

2.3. MODULEN 

Behalve voor het maken van onderscheid tussen processen en gegevens dient 
de opdeling van een specifikatie in een aantal modulen nog een ander doel. 
Door middel van het opdelen van een groot probleem in kleinere problemen is 
het mogelijk om struktuur in het probleem aan te brengen. Deze struktuur zal 
bij een goede specifikatie tot gevolg hebben dat er een hierarchie van modulen 
ontstaat, die op een in de specifikatie vastgelegde, wijze samenhangen. Deze 
techniek maakt het mogelijk om komplexe problemen op te splitsen in 
eenvoudiger deelproblemen die onafhankelijk van elkaar kunnen worden 
bestudcerd en opgelost. Bovendien wordt het hierdoor mogelijk om reeds 
bekende deelproblemen af te splitsen en de eerder hiervoor gevonden 
oplossingen opnieuw te gebruiken. 

3. ANAL YSEREN 

Vaak is men niet alleen gei:nteresseerd in een beschrijving van een systeem, 
maar wil men ook het inzicht hebben dat het gespecificeerde systeem voldoet 
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aan de vooraf opgestelde wensen. Men wil bijvoorbeeld voorkomen <lat er ooit 
een deadlock zal optreden. 

Een vermoeden <lat het systeem korrekt zal funktioneren verkrijgt men 
door het te testen. Dit testen van een specifikatie wordt simuleren genoemd. 
Met behulp van de komputer worden een aantal mogelijke executiepaden 
bekeken. Aan de hand van de aldus verkregen gegevens kan men -met een 
geringe mate van waarschijnlijkheid- konkluderen <lat het systeem goed in 
elkaar zit. 

Meer zekerheid biedt een verifikatie van het systeem. Dit houdt in <lat er een 
bewijs wordt gegeven dat de specifikatie in alle omstandigheden het juiste 
gedrag vertoont. Bij het verifieren wordt het gespecificeerde gedrag vergeleken 
met het gewenste gedrag. Als beiden, na een reeks van wiskundige 
manipulaties, identiek blijken, is het gespecificeerde systeem korrekt. Ook hier 
kan dankbaar gebruik worden gemaakt van de komputer. 

4. DIT PROEFSCHRIFT 

In <lit proefschrift worden bovenstaande aspekten op een grondiger manier 
beschreven. In het eerste hoofdstuk wordt kort ingegaan op de redenen voor 
het ontstaan van PSF. Vervolgens wordt in hoofdstuk 2 de specifikatietaal PSF 
beschreven, waarna in hoofdstuk 3 mogelijke uitbreidingen van deze taal aan 
de orde komen. 

In hoofdstuk 4 wordt de taal TIL (Tool Interface Language) beschreven. Deze 
zogenaamde tussen-taal maakt het eenvoudiger om komputerprogramma's te 
schrijven die PSF-specifikaties analyseren. Met behulp van TIL wisselen de 
verschillende programma's informatie uit, in het bijzonder de specifikatie zelf. 

Tot slot wordt een tweetal voorbeelden gegeven waarin het gebruik van PSF 
wordt toegelicht. In het eerste voorbeeld (hoofdstuk 5) wordt een bewijs 
gepresenteerd <lat een gegeven specifikatie van een fabrieksarchitektuur 
korrekt is. In het tweede voorbeeld (hoofdstuk 6) wordt geschetst hoe men 
uitgaande van een beschrijving van het probleem van de transit-node tot een 
PSF-specifikatie kan komen. 




