
A Process Specification Formalism

SjoukeMauw

PSF - A PROCESS SPECIF/CATION FORMALISM

ACADEMISCH PROEFSCHRIFr

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,

op gezag van de Rector Magnificus
prof.dr. P.W.M. de Meijer

in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),

op woensdag 18 december 1991 te 10.30 uur

door
Sjouke Mauw

geboren te Amsterdam

Vakgroep Programmatuur
Universiteit van Amsterdam

1991

Promotor:
Co-promotor:
Faculteit:

prof.dr. J.A. Bergstra
prof.dr. J.C.M. Baeten
Wiskunde en Informatica

© 1991, S. Mauw.
Cover: Van Herwijnen Design

This work was partially sponsored by ESPRIT contract no. 432, An integrated
formal approach to industrial software development (METEOR) and by ESPRIT
BRA contract 3006, Theories of concurrency: Extension and Unification
(CONCUR).
Chapter 2 is reproduced with permission of Elsevier Science Publishers, chapter
5 is reproduced with permission of Cambridge University Press and chapter 6 is
reproduced with permission of Springer Verlag.

voor Marjan

vii

PREFACE

Since 1985, when I started my research in the field of algebraic techniques for
software specification, I developed the ambition to make process algebra
operational. In the process algebra group at the University of Amsterdam and
the Center for Mathematics and Computer Science (CWI), this was an
unexplored subject. A first attempt was to catch process algebra in an algebraic
specification formalism. This worked out quite well, but the resulting
specification was not executable (see (82]) . This was mainly a consequence of the
undecidable character of most notions in process algebra.

In spite of this undecidability, it seemed that software development using
process algebra could benefit from a series of tools that could be an aid in
specification, simulation, verification and implementation, or even automate
it. The writing of a simple prototype of a process simulation tool made it clear
to me that the first thing to do was the design of an input language for such a
tool. This language was called PSF, and now it is the basis of all implementa­
tion directed work on process algebra in our group.

This specification language, together with a number of implementation
issues and case studies was the topic of the research of which this thesis reports.
The finishing of this thesis does not imply that the work on the toolkit and
related aspects is also finished . It just provides a snapshot of a project that is
still going on.

ACKNOWLEDGEMENTS

Of the various people who influenced the contents and preparation of this
thesis, my promotor Jan Bergstra and co-promotor Jos Baeten take a special
position. Jan, with his symbiotic view on the combination of science and
management created an encouraging environment for scientific research. His
optimism and richness of ideas stimulated me a lot in the preparation of this
thesis .

I thank Jos for his friendly though critical guidance. His comments were
always very thorough and useful. He showed a good eye for detail by reading
and debugging the boring proofs and lengthy specifications I came up with.

Parts of this thesis were written in fruitful co-operation with Gert Veltink
and Freek Wiedijk. I thank Gert for his efficient and constructive way of
working and Freek for sharing both his enthusiasm and contempt with respect
to computer science. His presence as well as his regular absence stimulated me
in writing this thesis.

Thanks are due to Hans Mulder because he never failed in pointing out the
weakness in the algebraic approach towards software specification. He eagerly

viii

showed his knowledge of computer operation and skillfulness in close reading
by finding bugs in computer programs and in papers.

At the weekly Process Algebra Meetings I always enjoyed the open atmo­
sphere of critical co-operation. Internal reviews and brain-storms as at this
seminar are necessary conditions to keep the work of a group of researchers
focussed and up to date. Therefore I thank the participants of the Process
Algebra Meetings, among whom Wiet Bouma, Nicolien Drost, Rob van
Glabbeek, Henk Goeman, Jan Friso Groote, Jan Willem Klop, Karst Koymans,
Alban Ponse, Gerard Renardel, Piet Rodenburg, Frits Vaandrager, Chris
Verhoef, Jos Vrancken, Fer-Jan de Vries, Peter Weijland and Han Zuidweg.

I thank the members of the GIPE group for their assistance in using ASF and
SDF: Paul Hendriks, Emma van der Meulen, Jan Rekers, Pum Walters and
especially Paul Klint whose suggestions on practical issues were of great value
and Wilco Koorn for programming a prototype of the PSF type checker.

I thank Casper Dik for keeping the machines running, Bob Diertens for his
skillful programming and Madelon Drolsbach for secretarial assistance.

Furthermore a number of master's students from the University of
Amsterdam helped by performing case studies and writing software: Firoez
Azarhoosh, Duncan Barrow, Jeroen Brouwer, Felix Croes, Henrik Jacobsson,
and Arnout Oldenburger.

I thank the promotion committee, consisting of Jan Bergstra, Jos Baeten,
Paul Klint, Scott Smolka, Martin Rem and Karst Koymans, for their comments.

Finally, my special thanks go to Hans van Herwijnen who designed the
cover .

TABLE OF CONTENTS

Preface vi i

Acknowledgernents vii

Table of Contents ix

1 Introduction 1

2 A Process Specification Forrnalisrn 5

3 Extending PSF 73

4 A Tool Interface Language for PSF 103

5 Specification and Verification of CIM-Architectures 123

6 Specification of the Transit Node in PSF 161

References 185

Nederlandse Sarnenvatting 193

Chapter 1

/ NTRODUCTION

1. SPECIFICATION

The recognition that in the construction of software a number of different
phases can be distinguished, led to the formulation of the classical life cycle
model for software development, as described e.g. by Sommerville [97]. In this
model, the actual coding of the software only starts after a thorough analysis of
the problems involved and a design of the solutions for these problems. The
result of this design phase is the specification, a complete description of the way
in which the problems are to be solved.

For this purpose, several specification techniques have been developed.
These techniques range from the use of (structured) natural languages and
informal drawings, to formal specification techniques. Often the resulting
computer program itself is considered as the specification of the system. The
main problem with informal specification techniques is that they allow
ambiguities, inconsistencies and incompleteness, while on the other hand a
formal approach enables formal verification. These are the main reasons that
there is an increased interest in formal specification techniques by software
developers . If the specification technique allows to write executable specifica­
tions, it can be used as a method for rapid prototyping. This type of software
development is emphasized in the spiral model of Boehm [31].

Formal techniques comprise wide spectrum languages, such as COLD [41]
and VDM [102], as well as dedicated techniques for small domains, such as SDL
[44] for telecommunication applications and LOTOS [67] for concurrent systems.
The formal description technique described in this thesis is designed for the
domain of concurrent, or parallel, systems.

2 Introduction

2. CONCURRENT SYSTEMS

Due to their non-deterministic nature, concurrent sys tems are even harder to
program correctly than sequential ones. Since testing and debugging concurrent
systems is hard, the need for formal verification and thus formal techniques
becomes clear. The occurrence of a deadlock, for example, may be difficult to
reproduce, and thus the source of such an error might be difficult to localize.
Only a formal verification can ensure deadlock freedom for all possible
scenarios.

A number of formal techniques for parallel systems are gathered in the term
process algebra . The main members of this family are CCS [90], CSP [61] and
ACP [22]. ACP, the Algebra of Communicating Processes will be the starting
point for this thesis. It allows one to specify a concurrent system algebraically
and to produce an algebraic verification of correctness.

3. PSF

ACP has been used in practice for a number of relatively small case studies (as
in [4]). Already in these simple examples the need was felt for computer
support in the specification and verification process. This resulted in the
development of a number of ad-hoc computer-tools which remained in the
prototype phase.

The first step towards the construction of an integrated toolset for ACP is
described in this thesis. That is the description of an ACP based specification
language with a fixed syntax and semantics, named PSF (Process Specification
Formalism).

A number of reasons prevents the use of ACP itself as a specification
language. First of all, the syntax of ACP is not fixed and contains non-ASCII
symbols. The second reason is that the data objects involved in ACP specifica­
tions have no form,al status. The third reason is that in order to produce more
complex and extensive examples, a mechanism for structuring specifications is
needed.

The specification language PSF, as described in chapter 2 of this thesis, deals
with these shortcomings. PSF has a fixed syntax in which, for example, the sets
and communication function occurring in a specification have an explicit
definition, rather than an informal description. Furthermore, data objects in
PSF are defined using the technique of algebraic specifications and finally, PSF
supports modularization and parameterization of specifications. Beside a
motivation for the PSF language, this chapter also contains a comparison of
PSF with other languages for parallelism.

Since the extension of ACP with new operators and constants is being
studied comprehensively, the choice had to be made of what features to
include in PSF. We chose to include only the basic and well understood ACP
constants and operators. The practical use of PSF will indicate what extensions
are to be incorporated in a possible update of PSF. The issue of extending PSF is
discussed in chapter 3 of this thesis.

Introduction 3

4. TOWARDS TOOLS

When actually building tools for ACP, it is desirable to make the tools
independent of the actual specification language as much as possible. This
reduces the risks related to a possible misdesign of the language. Another
reason why PSF itself should not be used as the core language of the toolkit is
that, although features such as modularization, parameterization and
overloading are useful and even necessary for writing specifications, they do
not allow for easy parsing and manipulation by computer-tools. Furthermore,
the process of normalizing a specification, that is removing all modular
structure, is quite costly (see [103]).

These observations led to the design of a format for the internal
representation of specifications. This Tool Interface Language (TIL) is described
in chapter 4. The free format feature of TIL provides the tools with a means to
insert their own tool dependent information in order to communicate it to
other tools.

TIL also allows for input from other sources or other specification languages
for parallel systems.

The current status of the toolkit is described in [104] . It contains a parser and
a syntax and type checker for PSF, a compiler from PSF to TIL which makes use
of a library manager, a term-rewriting tool, a simulation tool and a proof
assistant (as described in [88]). The work on other tools is continuing, such as a
tool for deciding bisimulation equivalence for regular processes, based on work
from [53] and (81] .

5. CASE STUDIES

Application of PSF to practical case studies is a test for its usefulness. The
purpose of case studies is to provide insight in the possibilities and limitations
of the formalism. Not only concerning the expressiveness and the concrete
syntax, but also concerning the role that the formalism may play in the
specification phase of the life cycle model. This means that we investigate if it
is possible to provide a functional specification starting with a requirements
specification in either a formal or an informal language, if it is suited for
formal verification and validation and if it is a clear starting point for
implementation.

The case studies provided in this thesis are of two hypothetical systems, a
computer integrated manufacturing system (chapter 5) and a transit node
(chapter 6) . The CIM case study is based on a specification in the language
LOTOS (30] and is supplied with a verification in ACP of the correctness of the
specification. The case study of the transit node is an exercise to design a
specification based on a requirement study which was both formally and
informally expressed.

Other case studies in the PSF language are in (69], [84], [91] and [33].

4 Introduction

6. PRELIMINARIES

This thesis will not contain a detailed introduction to the theory of ACP.
Chapter 2 contains a quick overview. The textbook [14] gives a thorough
treatment of all relevant concepts. Other overview papers on ACP are [23] and
[22].

We will not provide a formal proof-theory for ACP with abstract data types.
This means that, although PSF has a formal operational semantics, verification
of PSF specifications are still in an informal ACP-like format. A formal proof-

theory for the PSF related language µ-CRL is developed in [52] .
Also the theory of algebraic specification is not elaborated extensively. Refer

to [40] or [20] for more details on this subject. Chapter 2 contains a short
introduction to the algebraic specification language ASF and the syntax
definition formalism SDF [56].

7. ORGANIZATION Of THIS THESIS

This thesis, consisting of a number of papers, can be divided into three parts.
The first part deals with the definition of the specification language PSF (in
some papers referred to as PSFd). Chapter 2 (appeared as [87]) contains the
description of the syntax and semantics of PSF and demonstrates the use of the
language by a number of simple examples. It concludes with a comparison of
PSF with related languages. An introduction to PSF is presented in [85]. Chapter
3 considers possible extensions of PSF. The need for a stable language somehow
contradicts the practice to enhance ACP with some operators needed for a
special application. Guide-lines and examples are given on how to enhance
PSF without making all existing tools and specifications obsolete. The
extensions considered include conditional choices, operators for disabling,
interrupts and priorities, and constructions for state manipulation.

The second part (chapter 4) describes a~ implementation directed issue. It
contains the definition of the Tool Interface Language TIL, which appeared as
[86]. It discusses the criteria for the design of TIL and its syntax and semantics.

The third part comprises two case studies. The first case study (chapter 5)
contains a specification of two CIM-architectures, which is a revised version of
[83]. This case study contains two protocols for co-operating machines in a
factory environment, which are both proven correct. The first protocol is based
on [30]. The second protocol is derived from the first one by adding more
capabilities. The specification of the transit node in chapter 6 was published as
[89]. It is the common case study in the METEOR project. The transit node is a
hypothetical device (or cluster of devices) which can be used to route data from
one location to another. The specification is based on a requirements analysis
in the ERAE language [55] and contains a description of the method which lead
to this specification.

All complete specifications in this thesis have been checked with the PSF
and SDF type checkers.

Chapter 2

A PROCESS SPECIF/CATION

FORMALISM
(with G.}. Veltink)

Traditional methods for programming sequential machines are inadequate for specifying
parallel systems. Because debugging of parallel programs is hard, due to e.g. non­
deterministic execution, verification of program correctness becomes an even more important
issue. The Algebra of Communicating Processes (ACP) is a formal theory which emphasizes
verification and can be applied to a large domain of problems ranging from electronic circuits
to CAM architectures. The manual verification of specifications of small size has already
been achieved, but this cannot easily be extended to the verification of larger industrially
relevant systems. To deal with this problem we need computer tools to help with the
specification, simulation, verification and implementation. The first requirement for
building such a set of tools is a specification language. In this chapter we introduce PSF
(Process Specification Formalism) which can be used to formally express processes in ACP. In
order to meet the modern requirements of software engineering, such as reusability of
software, PSF supports the modular construction of specifications and parameterization of
modules. To be able to deal with the notion of data, ASF (Algebraic Specification
Formalism) is embedded in our formalism. As semantics for PSF a combination of initial
algebra semantics for the data types and operational semantics for concurrent processes is
used. A comparison with programming languages and other formal description techniques for
the specification of concurrent systems is included.

1. MOTIVATION

The last decade has shown yet another revolution in computer technology:
parallel computers. And with this progression in hardware ought to come a
progression in the development of software. Though software development

5

6 A Process Specification Formalism

has come a long way, since the days that Alan Turing fed machine code
programs written in Baudot code into the Colossus [62], through assemblers,
higher level languages like FORTRAN and later Pascal and even Adat, it still
finds itself in the midst of the so-called software crisis. With the introduction of
parallel computers things tend to become even worse.

1.1. PROBLEMS WITH SOFTWARE

It seems that developers of software were not yet ready for this next step. It is a
well-known fact that large programs, though being used in every day services,
have the nasty property of still containing software errors or bugs as they are
called in the vernacular. That programmers have become used to this fact is
evidenced by the UNIX+ reference manuals [16], wherein, in the standard
format for describing programs, there is a special section devoted to the known
bugs. Construction of large programs may be difficult, but maintaining and
tailoring programs to new needs is far more complex. In many cases it is better
to rewrite the whole program from scratch than to try and adapt it.

1.2. BUILDING BETTER PROGRAMS

Of course there have been attempts to develop methods to help programmers
in constructing software and excluding errors. One of the most formal
approaches, using mathematical techniques, is the proving of program
correctness. See for example the work by Dijkstra [37] and Hoare [60] . Though
these formal methods do well for small programs, they have never really
found their way to the programming-in-the-large. Other methods use data flow
charts and different kinds of graphical representations of the program to help
the programmer.

Yet another method to support program development is the use of
programming environments. A programming environment consists of a large
number of tools and an environment that help the programmer in
constructing programs. Some examples of these tools, currently available, are
(syntax-directed) editors, debuggers, compilation aids (like the make program
on UNIX machines) and so on, but also hierarchical file systems and facilities to
communicate with other programmers on the same computer, or even on a
network. In designing a new programming language more and more attention
is being paid to such an environment. See for example Ada [100], where a set of
requirements has been defined that a programming environment should meet
to be called an Ada Program Support Environment (APSE).

An example of an even more integrated system is the IOTA programming
system [92] that offers a set of programs consisting of a syntax-directed editor,
compiler, debugger and a correctness prover, that all work on a huge database
in which program modules are being represented in some internal

+ Acta® is a trademark of the United States Government, Ada Joint Program Office
+ UNJXTM is a trademark of Bell Laboratories, Incorporated

Motivation 7

representation. In this way the cooperation between programmers and the
reusability of software modules is highly improved.

1.3. PARALLEL PROGRAMMING

With the introduction of parallelism in programming two main approaches
can be seen in the field of programming languages. On the one hand, existing
programming languages have been extended to incorporate features that deal
with parallelism like Concurrent Pascal (32], on the other hand new languages
have been developed that are suitable for writing parallel programs from the
start, like OCCAM [65] and Ada [15] . We think that with the introduction of
concurrency in programming languages, programmers have to start thinking of
solving problems in a parallel way, as opposed to the sequential way of
thinking imposed by the Von Neumann computers. Therefore we are in
favour of programming languages especially designed to support concurrency.
Such programming languages will be the first step towards real parallel
programming.

1.4. MATHEMATICAL CONCURRENCY THEORIES

ACP (Algebra of Communicating Processes, (24]), or more informal process
algebra, is one of the many mathematical theories for concurrency. Other
examples from this family of theories are: CSP, CCS, Petri nets, trace theory,
temporal logic and denotational semantics. Specifications in ACP have been
applied to a large domain of problems ranging from communication protocols
(25], [4], algorithms for systolic systems (109] and electronic circuits (13] up to CIM
architectures (83] . The manual verification of specifications of small size has
already been achieved, but for industrially relevant problems we feel the need
for a set of computer tools to help us with the specification, simulation,
verification and implementation. These tools will together form a
programming or specification environment. The first requirement for building
such a set of tools is a specification language that is based on ACP.

1.5. MOTIVATION FOR PSF

A first attempt has been made in (82] to give an algebraic specification of ACP.
In this paper it is concluded that the transformation of process algebra into an
algebraic specification is quite easy, but that the transformation of an
application of process algebra into an algebraic specification takes more effort. It
was also stated in this paper, that in specifying process algebra applications in
some formal language, one has to be more accurate with respect to the
specification of the data types and the ports at which processes communicate.
Another disadvantage of specifying process algebra applications by means of
algebraic specifications is that the specifications do not have the same
appearance as the ones we are used to.

8 A Process Specification Formalism

To deal with these problems we have decided to start the development of a
new specification formalism called PSF (Process Specification Formalism) that
would be based on two concepts. Firstly, the specification of the data types must
be performed in some algebraic specification formalism and secondly, the
specification of the behaviour of processes must be performed in some
formalism especially designed for this need. Another example of such a project
is LOTOS [67] in which ACT ONE [40] has been combined with CCS [90]. We
have chosen ASF (20] as the algebraic specification formalism and ACP as the
base for the formalism as presented in this chapter. For a short explanation of
ASF, see section 2.3 and for a short explanation of ACP, see the following
section.

2. DEFINITION & DESCRIPTION

2.1. EXPLANATION OF ACP

ACP is a theory that deals with concurrent, communicating processes. These
processes can be the execution of an algorithm by a computer as well as the
description of a drinks dispenser or actions of human beings. However the
current interest focuses mainly on distributed systems and communication
protocols .

2 .1.1. General Setting
The development of ACP started in 1982, at the Centre for Mathematics and
Computer Science in Amsterdam, by J.A. Bergstra and J.W. Klop. Compared
with other concurrency theories, ACP is most closely related to CCS. There is,
however, one important difference; the starting point of CCS, like CSP and Petri
nets, is some model of concurrency whereas the starting point of ACP is a
system of axioms. In the first approach, an algebraic structure is obtained by
abstracting from certain aspects of processes. There are usually some basic
objects or atoms and ways of constructing more complex expressions from these
basic objects. Next, equivalences in this model are investigated and general
rules are formulated .

In ACP, on the contrary, a set of rules is defined first. These rules hold in
most models that have been proposed. This way we get a more common
algebraic theory, such that whenever a new rule is introduced we can find out
in which class of models it holds and in which it does not. We can try to
describe a model just by rules and we can find out which operators can be
defined in a model and which ones cannot. Because of this approach we are
able to compare theories of concurrency and the pros and cons of, say, CSP and
CCS can be discussed. See for example [46].

Definition & Description 9

2.1.2. An Introduction

In this section we will give a brief introduction to ACP. This introduction is by
no means intended to be complete, but merely gives an intuitive notion of
what we are dealing with. For a complete introduction to ACP we refer to [24]
and [14] .

ACP starts from a set of objects, called atomic actions, atoms or steps. Atomic
actions are the basic and indivisible elements of ACP and will be represented in
the sequel by the symbols a,b,c. In ACP all atoms are constants. Moreover, we
have two extra constants:

• 8, deadlock.
deadlock is the acknowledgement that there is no possibility to
proceed.

• ,, silent action.

, represents the process terminating after some time, without
performing observable actions.

Processes, which will be denoted by the symbols x,y, are generated from the
constants by means of operators. A few examples of such operators are:

• · , sequential composition or product.
x·y is the process that executes x first and continues with y upon
termination of x.

• +, alternative composition or sum.
x+y is the process that first makes a choice between its summands x
and y, and then proceeds with the execution of the chosen

summand. In the presence of an alternative, 8 is never chosen.

• 11, parallel composition or merge.
x II y is the process that represents the interleaved execution of x and y.

• aH, encapsulation.

aH(x) is the process x without the possibility of performing actions
from the set of atomic actions H. Algebraically this is achieved by

renaming all atomic actions from Hin x into 8.

• ,r, abstraction.

, 1(x) is the process x without the possibility of observing actions from
the set of atomic actions I. This is achieved by renaming all atomic

actions from I in x into ,.
There are many more operators and predicates on processes, but we will not
present them here. As stated earlier ACP is capable of dealing with several
models, generated by different sets of axioms. The simplest of these axiom
systems is called Basic Process Algebra (BPA) that only deals with + and •. Its
axioms are:

10 A Process Specification Formalism

1 . x+y=y+x

2 . (x + y) + z = x + (y + z)
3. X+X=X

4 . (x + y)z = xz + yz

5 . (xy)z = x(yz)

figure 2.1 Basic Process Algebra.

As in regular algebra • binds stronger than +. Furthermore we leave out
brackets and the ·. Thus (x • y) + z becomes xy + z.

One might think that the axiom x(y + z) = xy + xz is missing. However, this
axiom was left out on purpose, because x(y + z) represents something else than
xy + xz, i.e. we want to consider models of the theory where they are different.
The difference originates from the moment of choice. An example, due to Peter
Weijland [14], will explain this difference.

Suppose we are playing a game of Russian roulette. We start with putting
just one bullet in the revolver's container and then swing the container. At
this moment the system, in this case the revolver, 'knows' whether it will fire
or not when the trigger is pulled. The outside world, however cannot tell the
difference. The atomic actions involved in the sequel of this game are:

trigger the act of pulling the trigger of the revolver.
- bang the sound of the bullet that gets fired.
- click the sound of the revolver when the hammer hits an empty

chamber.
Now there is a big difference between trigger • bang+ trigger · click and trigger ·

(bang + click). The first expression models the actual situation. The outside
world is only able to perform a trigger action and does not know what the result
of this action will be. The second example models a situation in which we first
pull the trigger and then let the system make a choice between bang and click,
as if the container has to be swung again.

2.1.3. Axiomatization of ACP't

For completeness, we will list the axiomatization of the theory ACP't in the
following table. In order to define the merge operator, we need two auxiliary
operators. The first one is the left-merge, which is equal to the merge operator
but has the constraint that the left argument must start with executing an
action. The second one is the communication merge (I), which has the
constraint that the first actions of the two arguments must communicate.

Definition & Description 11

x+ y=y +x A1 X't =X T1

(x + y) + z = x + (y + z) A2 'tX = 'tX+ X T2

X+ X=X A3 a(-rx + y) = a(-rx + y) +ax T3

(x + y)z = xz + yz A4

(xy)z = x(yz) AS
X+ 6= X A6
6x = 6 A7

alb = bla C1

(alb)lc = al(blc) C2
6ia = 6 C3

xll y =x!L y+y \Lx + xly CM1
a\Lx = ax CM2 -r \LX ='tX TM1
ax \L y = a(xll y) CM3 -rx \L y = 't(X II y) TM2
(x + y)\L z = x\Lz + y \L z CM4 Tix = 6 TC1

ax!b = (aJb)x CMS xJ-r= 6 TC2

albx = (aJb)x CM6 -rxJy = xJy TC3
axlby = (alb)(x II y) CM? xl'tY = xly TC4

(x + Y)lz = xlz + ylz CMS

xl(y+z) = xly + xJz CM9 d!-t('t) ='t DT

'ti('t) = 't Tl1

d!-t(a) = a if at H D1 TJ(a) = a if aEI Tl2

UH(a) = 6 if aeH D2 TJ(a) ='t if ael Tl3

VH(X+y) = VH(X) + d!-t(Y) D3 -r1(x+y) = -r1(x) + -r1(y) Tl4

dH(Xy) = dH(X)·dH(Y) D4 -r1(xy) = -r1(x) ·-r1(Y) TIS

figure 2.2 ACP-r .

2.2. EXPLANATION OF SDF

In this section we will give a short introduction to SDF, the formalism we have
u sed to define the syntax of PSF.

2.2.1. General Aspects

SDF, as introduced in [56], stands for : 'Syntax Definition Formalism' . It is a
language to specify the lexical syntax, context-free syntax and abstract syntax of
programming languages in a formal way and can be seen as an alternative to
LEX [76] and YACC [70] . It is possible to generate a lexical scanner and parser
from such an SDF-definition. These parse tables together with a universal
parser form a parser for the specified language. It is also possible to generate a
so-called syntax directed editor from a description of the layout and the parse
tables. This whole system is being implemented in LISP as part of ESPRIT

12 A Process Specification Formalism

Project 2177: GIPE II (Generation of Interactive Programming Environments).
We will use the SDF language from [56] with the additions and changes as
described in [58] .

2.2.2. SDF Syntax
An SDF definition contains the description of the lexical syntax and of the
context-free syntax of a language. The notion sort corresponds to non-terminals
and the function declared in the other sections correspond to production rules
as used in BNP grammars [1] .

Following is an adaptation of an example taken from [20].

module example
export•

aorta
Digit Letter Int Id Id-tail Comment-char

lexical ayntax
[a-z)
[0-9)
Digit+
[a-z0-9)
Letter Id-tail*
[\n\t)
~ [{ I l
" { " Comment -char*

aorta
Expr

"}"

context-free syntax

- > Letter
-> Digit
-> Int
-> Id-tail
- > Id
- > LAYOUT
-> Comment-char
-> LAYOUT

Expr "+" Expr -> Expr assoc
Expr "*" Expr -> Expr assoc
" (" Expr ") " -> Expr bracket
Id -> Expr

figure 2.3 A small SDF example.

We will point out some of the SDF constructions that appear in this example.
The sorts section contains the names of the non-terminals of the grammar
which can be derived from an SDF-specification. The lexical syntax section spe­
cifies part of the regular grammar which is used to generate a lexical analyzer.
Elements of the context-free syntax may be interspersed with strings belonging
to the predefined sort LAYOUT. The latter will be skipped by the lexical analy­
zer generated from the SDF definition. The function declaration may be com­
posed of other lexical sorts, (negated) character classes, terminals and list ex­
pressions. In the lexical syntax section two kinds of list expressions are allowed:

S * zero or more occurrences of sort S
S + one or more occurrences of sort S

In the context-free syntax section lexical sorts are used as terminals of the
grammar, though terminals may also be introduced directly, like "+" and "*" in
the example. Moreover two more list expressions are allowed in this section:

{S t}*
{St}+

zero or more occurrences of sort S, separated by the terminal t.
one or more occurrences of sort S, separated by the terminal t.

Definition & Description 13

The associativity of functions may be declared by means of the attributes assoc,
left, right and non-assoc, while the attribute bracket can be added to the
function declaration to state that the function may be surrounded by
parentheses of the given form, in order to change its priority.

2.3. EXPLANATION OF ASF

ASF is an algebraic specification formalism that emerged from the so-called
'PICO-formalism' [19] and which is fully described in [20] . An implementation
of ASF is described in [57] .

We are using ASF as the basis for the modularization concepts of PSF and for
the specification of abstract data types in PSF. Because most aspects of ASF
specifications will appear in the description of PSF we will not discuss them
here. For specific information we refer to [20] .

2.4. AN INFORMAL DESCRIPTION OF PSF

In this section we will give a description of all the features of PSF. These
features are divided into three sections: modularization, specification of data
types and specification of processes.

2.4.1. Modules

A PSF specification consists of a sequence of modules each one of which is
either a data module or a process module. The data modules are used to define
the properties of the data types and the process modules define the behaviour
of the processes. Each module is given a unique name. PSF modules can be
combined by parameter binding and importing only.

A module consists of a number of sections which are listed below.

DATA MODULE

parameter section
export section
import section
sort section
function section
variable section
equation section

PROCESS MODULE

parameter section
export section
import section
atom section
process section
set section
communication section
variable section
(process) definition section

figure 2.4 The different sections in modules.

In the next paragraphs we will explain the function of each section.

14 A Process Specification Formalism

2.4.2. Lexical Syntax

In this paragraph we will describe the lexical syntax of PSF in an informal way.

• Layout:
Possible layout characters are:
- space
- horizontal tabulation
- carriage return
- line feed

• Comments:
Comments follow a layout character and begin with two hyphens
and end with either an end of line (i.e. carriage return or line feed) or
another pair of hyphens.

• Identifiers:
Identifiers consist of a non-empty sequence of letters, digits or single
quote characters, possibly with embedded hyphens.
- examples : i, me, type-writer, prime', 'quotation', double--hyphen
- non-examples: -x, -, x-

• Keywords:
The following identifiers are reserved keywords:

atoms exports
begin for
bound functions
by hide
communications imports
data in
definitions merge
encaps module
end of
equations parameters

process
processes
renamed
sets
skip
sorts
sum
to
variables
when

The names hidden and export are also forbidden as names for a
parameter section.

• Operators:
Operators are denoted by either a nonempty sequence of operator
symbols or an identifier surrounded by dots. Possible operator
symbols are: ! @ $ % " & + - * ; ? - / I \
Some examples: &&, -?-, .push., %"@$

Layout characters and comments may separate identifiers in PSF but may
never occur embedded in a lexical token. In cases of ambiguity, the longest
token is preferred. For detailed information on the lexical syntax of ASF we
refer to [20] .

Definition & Description 15

2.4.3. Modularization

There are some constructs in PSF that help to make specifications in a modular
fashion. The three sections that deal with this feature are the export, import
and parameter section. Along with a short description of each modularization
concept we will give the associated structure diagrams, as introduced in [20].

Module A is represented by a rectangular box.

figure 2.5 Structure diagram of a module.

2.4.3.1. Export
All definitions that are listed in the export section are visible outside the
module. A data module may define sorts and functions, while a process
module may define atoms, processes and sets. All sorts, functions, atoms,
processes and sets that are declared outside the export section are called hidden
and are only visible inside the module in which they were declared. When a
module A imports a module B, all the names in the export section of B are
automatically exported by A too. This feature is called inheritance.

2.4.3.2. Import
The basic way to combine modules is by way of import. In the import section
we define which modules have to be imported, possibly perform some
renamings on the imported items and possibly bind parameters (see next
section) of the imported module. By importing module A in module B, all
exported objects in A become visible to B. The declaration of the importing
module must be preceded by the declaration of the imported module in order
to avoid cycles in the import graph. It is not allowed to import a process
module in a data module.

Module A is imported by module B:

B

figure 2.6 Structure diagram of an import.

16 A Process Specification Formalism

2.4.3.3. Parameters
To be able to exploit the reusability of specifications, a parameterization concept
is included in PSF. Parameterization is described in the parameters section and
takes the form of a sequence of formal parameters. Each parameter is a block
that lists some formal objects and each block has a name. Parameters in a data
module may only consist of sorts and functions, whereas parameters in a
process module may in addition consist of atoms, processes and sets. Whenever
a parameterized module is imported into another module each parameter of
the former module may become bound to a third module while all objects
listed in the parameter are bound to actual sorts, functions, atoms, processes
and sets from this third module. Not all parameters have to be bound when a
module is imported . The unbound parameters are inherited by the importing
module and are indistinguishable from the parameters defined in its own
parameter section. Because parameter names cannot be renamed in PSF
implicitly, all name clashes between a module's own and inherited parameters
should be resolved by explicitly giving unique names to the parameters
involved.

Parameters of a module are represented by ellipses carrying the name of the
parameter. In the next example module B has a parameter P.

figure 2.7 Structure diagram of module with a parameter.

2.4.4. Module Expressions

Module expressions are used inside the import section to rename visible names
of the imported module and to bind formal to actual parameters.

2.4.4.1. Renaming
The visible names of a module can be renamed by use of the renamed by
construct, which specifies a renaming by giving a list of pairs of renamings in
the form of an old visible name and a new visible name. It is not possible to
rename just one of the instances of an overloaded name. So if a renaming is
applied to an overloaded name, all instances of this name will be renamed.

2.4.4.2. Parameter Binding
The bound by construct is used to bind parameters and specifies the name of a
parameterized module, a parameter name, a list of bindings (pairs consisting of
a formal name and an actual name), and the name of an actual module. As a
result of parameter binding, a parameter is replaced by a name from the actual

Definition & Description 17

module as specified by the list of bindings. Therefore a parameter can only be
bound once. Parameter binding should obey the following rules:

• The actual names must be visible outside the actual module.

• Formal names and actual names must be of the same kind, i.e., they
both should be atoms, sorts etc. Furthermore their input type and
output type should be the same.

• All names in a parameter should be bound to a name of the actual
module.

Binding of parameters is indicated by a line connecting the parameter and the
actual module to which the parameter is bound. Parameter P of module B is
bound to module A.

A

figure 2.8 Structure diagram of parameter binding.

2.4.5. Data Specification
There are some sections that are specific for the specification of data types.
These sections are explained below. For more specific information about the
specification of the data types we refer to [20] .

2.4.5.1. Sorts & Functions, Signatures
As we have seen, the declaration of sorts and functions can occur in two places.
Declarations can occur in the export section of a module, so that they are
visible, or they can be declared as being hidden . In the sorts section we define
which sorts are introduced. The functions are declared within the functions
section along with their input type (the type of the arguments) and their output
type. The combination of an input type and an output type is simply called the
type of a function . Functions without arguments will be called constants .
Declarations of sorts and functions over these sorts are called signatures. See,
for instance, [40] for a description of the notion of signatures.

2.4.5.2. Equations
To complete a data module we need a set of variables and a set of equations.
The variables in a data module are typed with one of the sorts of the signature.
With a set of typed variables and a signature it is possible to construct well-

18 A Process Specification Formalism

typed terms, i.e., terms that are constructed by type-wise correct composition of
functions and variables .

An (unconditional) equation has the following form:

[tag] t1 = tr
where t1 and tr are well-typed terms of the same type.

Conditional equations can have two (equivalent) forms:

[tag] t11 = tri, ... , tin= trn ==> t1 = tr or

[tag] t1 = tr when t11 = tr11 ••• , tin= trn

All equations occurring in a conditional equation must be made up of
well-typed terms of the same type.

Variables in equations are implicitly universally quantified.

2.4.6. Process Specification
In this section we will describe the features of PSF that deal with the
specification of processes. We will look at the definition of atomic actions,
communication between atomic actions, processes and sets.

2.4.6.1. Sets
We introduce sets as a special feature in PSF in order to make specifications
compact. A set is a collection of well-formed terms of the same sort, the sort
associated with the set. Each set is given a unique name and is d efined in the
following way:

set -name = set-expression
There are several ways to construct a set-expression, which are listed below:

• Just the name of a sort denotes the set of all well-formed terms that are
typed with the specified sort. Sorts do not have to be declared as sets.

• We are able to construct sets by enumerating terms: { t1, t2, ... , tn). The
empty set is denoted by{}.

• Because it is impossible to enumerate infinite sets we need some weak
form of replacement in which the variables can only range over the
domain of a given set. So we introduce the so-called placeholder
construction which is used in the next example to define a set A that
consists of the terms that can be obtained by applying a certain function f
to all elements of S: In this example t is the variable, which we will call
a placeholder in the sequel.

A= { f(t) I tin S)

In general the definition of a set by means of placeholders looks like:

A = { t1(!f), tz(g), . .. , tn<0 I u1 in D1 1 u2 in D2, , Um in Dm)

Definition & Description 19

where t;(g) means that all free variables oft; are among u1, u2, ... ,Um, D;
may be either a sort or the name of a set, already declared in the sets
section, and u; acts as a placeholder for an arbitrary term or element of
D;.

The enumeration construction, as introduced above, can be looked
upon as a special form of the placeholder construction in which the
terms t; do not contain any free variables. In this case we do not use any
placeholders so the vertical bar disappears .

• Finally, there are three binary operators on sets of the same type:
- Union: s1 + s2.
- Intersection: s1 . s2.
- Difference: SJ \ s2.

The + and . operator are associative and the \ operator is left­
associative. All operators have the same precedence, however
precedence can be forced using parentheses.

2.4.6.2. Atomic Actions
The atomic actions that are used to describe a process are listed in the atoms
section. The atomic actions resemble the functions from the data section in
some respects. They possibly have some arguments but they do not have an
output type, as functions do.

An example of the declaration of some atomic actions where a; stands for the
name of an atomic action and s; stands for a sort:

a 1, a2 : s1

a3

a4 : s2# s3

To be more specific, we will not call a construction an atomic action until all
arguments are substituted by a term. So a4 : s2 # s3 is in fact the mere definition
of a scheme to generate atomic actions rather than an atomic action itself.

There is one implicitly defined sort called: atoms. This sort is only available
in the process specification part and can be used in constructing sets of atoms as
in the next example:

sets
of atoms

H = [send(n) , read(n) In in NATURAL}

figure 2.9 Example of the use of the predefined sort atoms.

2.4.6.3. Communication
Communication in PSF can occur between atomic actions only. In such a
communication exactly three atomic actions are involved. Two atomic actions

20 A Process Specification Formalism

which communicate and one that is the resulting communication action. We
have handshaking communication, which means that such a resulting
communication action can not participate in any further communication. In
the communications section we define which atoms can communicate and
what the result of this communication will be.

An example of such a communication definition in which a,b,c stand for
atomic actions:

a I b = c
Communication is commutative so the definition of a I b '-= c implies b I a = c.

In the next example we want to express the fact that the communication of an a
action and a b action which both operate on elements of the set S results in a c
action. We will use the placeholder again:

a(d) I b(d) = c(d) for d in S
Beware of the difference between this example, where each a(d) action

communicates with one specific b(d) action and where d stands for the same
term in both actions, and the next example:

a(d) I b(e) = c(d) ford in S, e in S
A communication definition should be given for all atomic actions that are

visible within a module. Whenever a communication is not listed in the
communications section, it is thought of as being a communication resulting in
deadlock (see [24]).

2.4.6.4. Variables
The variables in a process module can range over a sort or a set. The scope of a
variable is the whole definitions section, unless a variable is temporarily
overridden due to the use of a placeholder with the same name. Each variable
in the variables section should have a unique name.

2.4.6.5. Processes
Processes have to be declared in the processes section along with the type of
their possible arguments.

An example in which P; stands for a process name and s; stands for a sort:

P1
P2 : s1 # s2

In the definitions section the behaviour of the processes, that have been
declared in the processes section first, is defined. An example of such a
definition in which P stands for a process name, a; stands for an argument and
PE stands for a process-expression:

P(a1,t12, .. . , an)= PE
Each argument is a term of the right type, possibly containing variables

which are defined in the variables section. The process name with possibly a list
of arguments is called the process definition head.

Process expressions are defined by means of induction:

• Each atomic action is a process-expression.

Definition & Description 21

• There is one predefined process-expression called skip that represents
the pre-abstraction from ACP. This feature was introduced in [5] where
the atomic action t is used.

• There are three binary operators on process-expressions:
- sequential composition : PE1 . PE2
- alternative composition or choice : PE1 + PE2
- parallel composition or merge : PE1 I I PE2

These operators are all associative. Sequential composition has
precedence over parallel composition which in turn has precedence
over alternative composition.

• There are two constructions that use the placeholder:
- summation : sum(v in S, PE(v))

which generalizes alternative composition.
For a finite set S, where S = {v1, ... , vnl, this is an abbreviation of:

PE(v1) + PE(v2) + ... + PE(vn)
- merge : merge(v in S, PE(v))

which generalizes parallel composition.
For a finite set S, where S = {v1, ... , vnl, this is an abbreviation of:

PE(v1) I I PE(v2) I I . . . I I PE(vn)

• Finally, there are two constructions that operate on a set of atoms and a
process-expression:
- encapsulation : encaps(S, PE)

- pre-abstraction : hide(S, PE)

Note that we will not need the ACP constant S or the (auxiliary)
operators I, lL (as in [14]).

2.4.6.6. Scope of Placeholders
We have pointed out the use of placeholders in some of the constructions we
mentioned earlier. As of yet, we have not defined the scope of the placeholder.
In the following examples the placeholder along with its scope are underlined.

• Sets : The scope is limited to the enclosing braces.
A={[ill I fin SJ

• Communication : The scope is limited to the communication definition
preceding the placeholder definition.

!!J_@__J_g_z(d) = b(d) for 4 in S

• Processes : The scope is limited to the enclosing parentheses and can be
overridden by a placeholder definition on a lower level.

X = x + y · sum(d. in S, r(d) · z + ... merge(g in D, Y(d)) =)

22 A Process Specification Formalism

2.5. DEFINITION OF PSF IN SDF

2.5.1. Why Use SDF?

In this section we will give the definition of the PSF formalism in SDF. The
reason that we have chosen to use SDF instead of, for instance, a BNF grammar
is that we found the former to be much more formal and that we had the
possibility to check the PSF grammar during the development by means of the
error messages generated by the parser generator described in [20] . Moreover, we
could easily build a prototype parser that was able to check our PSF
specifications for any grammatical inconsistencies.

2.5.2. Definition of PSF

This definition of PSF does not contain the syntax of the data modules. We
refer to [20] for a description of the syntax of the algebraic specifications in ASF.
Nevertheless, the syntax for the modularization concepts, which is borrowed
from ASF, is included. Note that the constraint that comments must follow a
layout character is not expressed in the following definition.

module PSF
export•

aorta
Id-char Id-body Ident
Op-symbol Operator
Com-char Com-end

lexical syntax
[0-9a-zA-Z']
[0-9a-zA-Z '\ -]
Id-char
Id-char Id-body* Id-char

[!@$ %\A&+\-*;? ~/1\\]
Op-symbol+
"." Ident

\n\t]

~ [\n\ -]
"-" ~ [\ n \ -]

"\n"
"-\n"
11

- -
11 Com-char* Com-end

aorta

- > Id-char
-> Id-body
-> Ident
-> Ident

-> Op-symbol
-> Operator
- > Operator

-> LAYOUT

-> Com-char
-> Com-char
- > Com-end
-> Com-end
-> Com-end
- > LAYOUT

Specification Process-module Parameters Parameter Exports
Imports Module-expression Modifier Renamed
Renamings Renaming Binding Bound Psf-sorts
Psi-functions Psi-function At oms Atom-declaration Processes
Process-dee! Sets Set-defs Set-definit ion Sets-param
Set-param-defs Set-exp Placeholder
Set -item Variables Vars
Communicat i ons Communication Communication- def

Atom-exp Definitions
Process-def Process-def-head
Process-exp Predef-process Set-operator
Identifier Ident-or-op
Term Primary

context-free ayntax
Ident
Process-module+
11 process" "module" Identifier

"begin"
Parameters
Exports
Imports
Atoms
Processes
Sets
Communications
variables
Definitions

''end'' Identifier

"parameters" { Parameter

Identifier
"begin"

Psf-sorts
Psf-functions
Atoms
Processes
Sets-param

''end'' Identifier

"exports"
"begin"

Atoms
Processes
Sets

"end"

}+

11 imports" {Module-expression","}+
Identifier
Identifier"{" Modifier"}"
Renamed
Bound
Renamed Bound
Bound Renamed

"renamed" "by" Renamings
"["{Renaming","}+"]"
Ident-or-op "->" Ident-or-op

Identifier
"_" Operator
Operator

Binding+

Definition & Description 23

-> Identifier
-> Specification

-> Process-module

-> Parameters
-> Parameters

-> Parameter

-> Exports
-> Exports

-> Imports
-> Imports
-> Module-expression
-> Module-expression
-> Modifier
-> Modifier
-> Modifier
-> Modifier

-> Renamed
-> Renamings
-> Renaming

-> I dent-or-op
-> I dent-or-op
-> I dent-or-op

-> Bound

24 A Process Specification Formalism

Identifier "bound" "by" Renamings "to" Identifier
-> Binding

"sorts" {Identifier","}+ -> Psf-sorts
-> Psf-sorts

''functions'' Psf-function+ -> Psf-functions
-> Psf-functions

Identifier":" {Identifier"#")* "->" {Identifier"#")+
-> Psf-function

Operator "_11

Operator
Identifier"->" Identifier -> Psf-function
"·" Identifier"#" Identifier

"->" {Identifier "#")+ -> Psf-function

"atoms" Atom-declaration+

{ Identifier ", ") +
{Identifier",")+":" {Identifier"#"}+

"processes" Process-dee!+

{Identifier","}+
{Identifier","}+

"sets" Set-defs+

{Identifier"#"}+

"of" Identifier Set-definition+
"of" "atoms" Set-definition+
Identifier"=" Set-exp

"sets" Set-pararn-defs+

"of" Identifier Identifier+
"of" "atoms" Identifier+

Identifier
"{" { Set-item"," }* "}"
"(" Set-exp '')"
Set-exp"+" Set-exp
Set-exp"." Set-exp
Set-exp"\\" Set-exp
"{" {Set-item","}+ "I" {Placeholder",")+

Identifier
Identifier"(" {Term","}+")"

Identifier "in" Identifier

"variables" Vars+

{ Identifier"," }+ ":" "->" Identifier

"communications 11 Communication-def+

Communication
Communication "for" {Placeholder","}+
Atom-exp "I" Atom-exp "-" Atom-exp

-> Atoms
-> Atoms
-> Atom-declaration
-> Atom-declaration

-> Processes
-> Processes
-> Process-decl
-> Process-decl

-> Sets
-> Sets

-> Set-defs
-> Set-defs
-> Set-definition

-> Sets-param
-> Sets-param
-> Set-param-defs
-> Set-param-defs

-> Set-exp
-> Set-exp
-> Set-exp bracket
-> Set-exp assoc
-> Set-exp assoc
-> Set-exp

")"

-> Set-exp

-> Set-item
-> Set-item

-> Placeholder

-> Variables
-> Variables
-> Vars

-> Communications
-> Communications
-> Communication-def
-> Communication-def
-> Communication

Definition & Description 25

Identifier
Identifier"(" {Term","}+")"

"definitions" Process-def+

Process-def-head"=" Process-exp
Identifier
Identifier''('' { Term)+ ")"

Predef-process
Process-def-head
"("Process-exp")"
Process-exp ". 11 Process-exp
Process-exp"+" Process-exp
Process-exp "I I" Process-exp

Primary
Term Operator Primary
Identifier
Identifier"(" {Term","}+")"
Operator Primary
"(" Term ")"

"sum" " (" Placeholder ", " Process-exp ") "
"merge" 11

(" Placeholder ", 11 Process-exp ")"
Set-operator"(" Identifier , Process-exp

"skip"
"encaps 11

"hide"

figure 2.10 Specification of PSF.

2.6. SEMANTICAL CONSTRAINTS

-> Atom-exp
-> Atom-exp

-> Definitions
-> Definitions
-> Process-def
-> Process-def-head
-> Process-def-head

-> Process-exp
-> Process-exp
-> Process-exp bracket
-> Process-exp assoc
-> 1:-'rocess-exp assoc
-> Process-exp assoc

-> Term
-> Term
-> Primary
-> Primary
-> Primary
-> Primary

-> Process-exp
-> Process-exp

")"

-> Process-exp

-> Predef-process
-> Set-operator
-> Set-operator

There are some constraints imposed on PSF specifications that we are not able
to express in SDF. This concerns overloading, restriction on communication
and binding of variables.

2.6.1. Overloading

It is allowed to overload the names of functions, atoms and processes. This
means that the same name can be used to denote different functions, atoms or
processes. An example for a function f:

f: s1#s2->s3
f: s3 -> s3

A similar example can be constructed for atoms and processes, though the
latter do not have an output-type. When the function name f occurs in a
certain term we will have to determine which function f was meant by looking
at the types of the arguments f is applied to. It is possible to disambiguate each
overloaded name by postfixing it with its input-type, i.e. its arguments. The

26 A Process Specification formalism

names used in the sequel for functions, atoms and processes will be disambi­
guated names.

Overloaded functions, atoms and processes should have unique input types.
This restriction forbids overloaded constants and multiple declaration of names
with the same type. Thus the following is not allowed.

f : sl -> s2
f: sl -> s3 --not allowed

Variables and sets cannot be overloaded. This restriction forbids multiple
declaration of variable names and set names within one module.

2.6.2. Typing of Terms

Type assignment of a term is performed by inside-out typing. This can be
achieved by first determining the type of the constants and variables in a term
and thereafter propagating this type information outward to the enclosing
terms until the type of the complete term has been determined. The
uniqueness of types in each stage of this process is guaranteed by the restriction
that the sets of names of as well constants and variables as sorts and sets must
be disjoint, and by the restrictions placed on overloaded functions and
variables.

2.6.3. Communication

There are three restrictions imposed on the definition of communications. The
first is firm handshaking, the second considers the consistency of export of
atoms involved in communication actions and the third deals with the
consistency of communications when combining modules.

2.6.3.1. Firm Handshaking
All communications must satisfy handshaking . This means that no atomic
action that is the result of a communication is able to communicate itself with
some other atomic action. To be able to check this property we demand that an
atomic action a(:e), with a possibly empty list of arguments v; may not occur on
the left as well as the right hand side of the equation sign in a list of
communication definitions. We call this firm handshaking because it is more
restrictive than handshaking. It forbids, for instance, the following definition:

atoms
r,s ,c : NATURAL

communications
r(O) I s(O) = c(O)

c(1) I s(1) = r(1)

figure 2.11 A violation of firm handshaking.

However, we think of this as bad programming style anyway.

Definition & Description 27

2.6.3.2. Consistency of Export
The second restriction on communications deals with visibility, outside a
module, of the atoms involved in a communication. Whenever two atoms
that are able to communicate with each other are exported from a module, the
atom that is the result of this communication must be exported too. This
restriction forbids the situation in which it is possible to have a communication
between two (visible) atomic actions, but subsequently not being able to see the
result of this communication.

2.6.3.3. Consistency of Communications
The definition, in separate modules, of the result of a communication may lead
to inconsistencies when putting these modules together. We call two modules
inconsistent with respect to their communications whenever there exists a
communication between two atomic actions that is defined in both modules
and yields two different atomic actions. It is not allowed to combine two
inconsistent modules. To be more precise, the following situations are not
allowed:

!-~~ -~---------- ---~~·------~·------------~~~~~

1 1~0 1 l,,D I ~
figure 2.12 Three ways of illegally combining inconsistent modules.

Whenever two modules are inconsistent they may not be
- imported into a third module.
- imported into each other.
- bound to each other's parameters.

In figure 2.13 two examples of such an inconsistency are shown: In the first
example modules A and B are inconsistent with respect to their commu­
nications, because A defines r Is to be c and B defines r Is to bed. In determining
whether two modules are consistent we should not only consider the explicitly
defined communications, but also the assumption that all communications,
between atomic actions that are visible in a module, that have not been defined
in the communications section, are implicitly defined to be deadlock. The
second example in figure 2.13 illustrates this situation. Module P does not list a
communication between a and d, and so this communication is defined to yield
deadlock. However, module Q tries to re-define this communication by a Id = e,
which is illegal.

28 A Process Specification Formalism

process module C
begin

imports
A, B

end C

process module A
begin

imports
R, S

atoms
C

communications
rls = c

end A

process module R
begin

exports
begin

atoms
r

end

end R

process module B
begin

imports
R, S

atoms
d

communications
rls = d

end B

process module S
begin

exports
begin

atoms
s

end

end S

figure 2.13 Two possible sources of inconsistency.

2.6.4. Variables

process module Q
begin

imports
p

communications
aid= e

endQ

process module P
begin

exports
begin

atoms
a,b,c,d,e

end

communications
alb= c

end P

All variables that occur in a process-expression, i.e. on the right hand side of the
equation sign in a process definition, should be bound. This binding can be
obtained in one of two ways:

• the variable belongs to a placeholder construction in which this variable
was introduced.

Definition & Description 29

• the variable already occurred in one of the arguments of the process
definition head, i.e. on the left hand side of the equation sign.

~X~•~l-l
.......... . !

figure 2.14 Binding of variables in a process expression.

3. SEMANTICS

3.1. SEMANTICS FOR PSF

Due to the nature of PSF, being a mixture of two different formalisms, it is not
possible to assign one uniform semantics to the language and so its definition
will break up into four sections.

First, we have to define the semantics for the data specification part. It is
quite natural to choose the same semantics as the one chosen for ASF, i.e. the
initial algebra semantics as in [40] and [48]. Ideally, the set of equations takes the
form of a complete term rewriting system [71], so that equality of terms can be
determined by reducing to normal form, and the set of normal forms is
isomorphic to the initial algebra. For the section that defines the processes it is
convenient to use another kind of semantics because, by nature, it has more in
common with transition networks. (Note, on the other hand, that in [82] we
find an attempt to give an algebraic specification of ACP using initial algebra
semantics.) For this process section we use an operational semantics that is
defined with the aid of action relations [95], which will be presented in section
3.7.3. Action relations for ACP have been introduced in [47] . On top of these
action relations we can define a semantics, such as bisimulation semantics or
failure semantics. Finally we also give a semantics for the sets and the atomic
actions, which will both be derived from the initial algebra semantics. The
dependencies among the semantics of the different parts of PSF are expressed by
the following picture:

30 A Process Specification Formalism

data
initial algebra

processes
semantics

figure 3.1 Dependencies among different semantical domains.

We will discuss the semantics in order of dependency starting with the
semantics for data types. However, we have to make sure that modules are in
some kind of normal form before we can treat the semantics, so we treat the
origin rule and normalization in the next two paragraphs.

3.2. THE ORIGIN RULE

Because a PSF specification may consist of several modules, there may arise
some problems with multiple declarations of the same name when putting
these modules together in case of import. We don't want any unintended and
unexpected name identifications, so we introduce the so-called origin rule, in a
similar way as is done in ASF (20] to locate the defining position of each
occurrence of an identifier. In contrast with ASF, the origin rule in PSF is also
defined for parameters. This extension is due to Hans Mulder.

To each name a of an identifier we encounter in a module we assign an
origin in the form of a tuple <t,m,s,c,n> which gives information about the
textual position where a certain name n, to which a 'owes its existence', has
been declared. The parameters in the tuple stand for:

•t: The type of the module in which the declaration of n occurs:
t = data for a data module
t = process for a process module

•m: The name of the module in which the declaration of n occurs;

Semantics 31

•s: The section of the module in which the declaration of n occurs:
s = <p-name> for a parameter section with name p-name,
s = par if the object is a parameter,
s = export for the export section,
s = hidden for the sort, function, atom, process, set and variable

sections outside the export section.

•c: The subcategory to which n belongs:
c = par for a parameter,
c = sort for a sort name,
c = function for a function name,
c = atom for an atom name,
c = process for a process name,
c = set for a set name,
c = variable for a a variable name.

•n: The name as introduced by the declaration. This name is extended by
the input type for functions, atoms and processes. For parameters it is
extended by the signature of the objects belonging to the parameter.
(This signature consists of a collection of names plus origins.)

The origin of a certain name propagates in the following way:

• Declaration: When a name a is declared, it obtains origin <t,m,s,c,n>,
where t, m, sand c are determined from the context of the declaration
and initially n = a.

• Import: Import of a name does not affect its origin. All hidden objects
are implicitly renamed after importing, in order to avoid name clashes.

• Renaming: A name introduced by a renaming inherits the origin of the
name it replaces.

• Parameter binding: The origin of an actual name does not change by
binding it to a formal name. The origin of the formal name disappears
along with the formal name itself.

The origin rule:

• Two visible sorts, functions, atoms, processes or sets are identical if they
both have the same name and the same origin. For functions we also
require that they have the same output sort and for sets we require that
they are of the same sort. Visible sorts, functions, atoms, processes and
sets having the same name but different origin are forbidden. Functions
with the same name and the same origin, but with different output type
are forbidden. Sets with the same name and the same origin, but of a
different type are also forbidden.

• Two hidden sorts or hidden sets are identical if they have the same
origin.

32 A Process Specification Formalism

• Two variables are identical if they have the same ongm and if the
corresponding types (sorts) can be identified using the aforementioned
rules.

• Two hidden functions, atoms and processes are identical if they have
the same origin and if the two corresponding types have equal structure
and can be identified componentwise using the first two rules given
above.

• Two parameters are identical if they both have the same name and the
same origin. Parameters having the same name but different origin are
forbidden.

• A set and a sort may not have identical names (possibly after the
implicit renaming for imported hidden objects). The same holds for a
variable together with a function without input. In the same way, an
atomic action and a process may not have the same name if they have
identical input type.

Due to the origin rule multiple import of the same module, via different
routes, is allowed, but clashes of identical (disambiguated) names originating
from different modules are forbidden. When two modules are combined, the
hidden names of the modules are implicitly renamed to avoid name clashes.

3.3. NORMALIZATION

In order to be able to assign a semantics to a PSF specification we have to assign
a semantics to each module. The semantics of a module can only be determined
in its context, being the total specification. This evaluation of a module in its
context leaves us with a so-called normal form.

In evaluating a module, as many imports and parameter bindings as possible
are eliminated. Because each PSF specification consists of two types of modules,
it is quite natural to extend this division into the notion of the normal form of
a module . This means that after evaluating a module each normal form
consists of one process module and one data module which is imported in the
former .

How this normalization should be performed, is described in (103] .

3.4. SEMANTICS FOR DATA TYPES

As the semantics for the data types we use the initial algebra semantics as
defined in (40] and (48]. We assume that all modularization concepts from the
data modules have been removed by the normalization procedure, thus
leaving a flat algebraic specification. To define this initial algebra we first need
to introduce some other notions.

• A signature I is a collection of names of sorts and functions . To each
function name we associate a list of sort names that represent the input
type and one sort name for the output type. Functions with an empty
input type are constants of the specified output type.

Semantics 33

• The set V consists of variables. To each variable a sort is associated.

• A term is a construction of functions and variables with correctly typed
arguments, defined inductively:
- Each variable associated with sort S, is a term of sort S.

- If t1 ... tn are terms of sort 51 ... Sn, and function f has input type 51 x ...
x Sn and output type T, then f(t1 ,. .. ,tn) is a term of sort T.

A term containing no variables is called a closed term, as opposed to an
open term which may contain variables.

• An equation is a pair of two terms of the same sort. For example: t1 = t2 .
Variables in equations are universally quantified.

• An equational specification CLE) consists of a signature I and a set of
equations E.

• Derivability, of an equality of two terms of an algebraic specification,
(I,,E) f- t1 = t2 , is inductively defined by:

- (I,,E) f- t1 = t2 if t1 = t2 E E.
- (I,,E) f- t = I.
- (I,,E) f- t1 = t2 if (I,,E) f- t2 = t1 .
- (I,,E) f- t1 = t3 if (I,,E) f- t1 = t2 and (I,,E) f- t2 = t3 .
- (I,,E) f- 0(t1)= 0(t2) if (I,,E) f- t1 = t2

variables.
if (I,,E) f- t1 = t2

single hole.

, with 0 a substitution of

, with C[...] a context with a

• A I-algebra is a structure with an interpretation of every sort and
function from I. The interpretation of a sort is a set and an interpreta­
tion of a function is a correctly typed function defined on these sets. The
interpretation of a closed term is defined using the following:

ff-ti, ... ,tJ] =[fl< lt1J,. . . JtnD

• An equation of two terms is true in a I-algebra A, whenever the
interpretation of both terms denotes the same element.

A F t; = t2 <=> [ti] =A [t2l

If all equations, t1 = t2, in E, are valid in the I-algebra A, we write A F E.

• The class of I,-algebras A with A F E. is denoted by Alg(I,,E). This class
contains one special algebra called the initial algebra of (I,,E), l(I,,E).

The initial algebra is the algebra that satisfies two requirements, namely:

- No junk. This means that each element in the I-algebra is the
interpretation of some closed term over the signature, so there are no
unnamed elements of the I-algebra.

- No confusion . This means that equations between closed terms in
l(I,,E) are only valid when they can be derived from the specification E.

l(I,,E) F t1 = t2 ⇒ (I,,E) f- t1 = t2

34 A Process Specification Formalism

3.5. SET SEMANTICS

Because we have defined a very simple notion of sets, it is both intuitively and
formally simple to give a meaning to it. The initial algebra generated by the sort
associated with the set is considered to be the basis. Sets are given a meaning by
interpreting them as parts of the initial algebra . Every sort by itself defines the
set of all elements in its initial algebra . The set constructed by enumerating
some terms over the signature of a sort S is just the set of equivalence classes of
these terms. In the same way one can define the union, intersection and
difference operators by applying these operations to the sets of corresponding
elements in the initial algebra.

Formally: Let S be a sort, and let for every term t over the signah1re of S, [t]5
be defined as the corresponding element in the initial algebra of S. Thus ltls (or
for short [t]) is the equivalence class of all terms equal to t. For each element a in
the initial algebra we can find a representative t (such that [t] = a). For each
subset D of the initial algebra we will denote a set of representatives of all
elements in D by Repr(D).

Then we define the interpretation of a set of sort S in the initial algebra (IA)
inductively by:

• [SJ= IA;

• [{t1, ... , tn)J = {[t1], ... , [tnll for terms t 1, ... , tn over the signature of S;

• [s1 + s2] = [s1] u [s2],

[s1 . s2] = [s1] n [s2],

[s1 \ s2] = [s1] \ [s2] for sets s1 and s2 of sort S;

• W1(!!.), • . . , tn(g) I U1 E D1, ... , Um E Dn,}] =

[{t1(w I u1 E D1, . . . , Um E Dmll U ... U Wn(!!.) I Uj E Di, ... , Um E Dmll;

• [{t(g) I u1 E D1, . . . , Um E D111}] = {[t(g)] I u1 E Repr(D1), . .. , Um E Repr(Dm)l.

3.6. SEMANTICS FOR ATOMIC ACTIONS

The atomic actions resemble the functions from the data modules, though
atomic actions do not have an output type. Because of this similarity we want
to define the semantics of the atomic actions in the same way as the functions,
namely by means of the initial algebra semantics. We define an equivalence
relation on atomic actions in the following way:

a(v1, Vz, ... , Vn) = b(u1, 112, ... , u,,,) whenever
• the name a is equd.l to the name b
• m=n
• the input types of a and b are equal

• Vi, 1 ::::; i ::::; n: v ; = u ; , in the initial algebra of the sort of v; and u; .

Semantics 35

This construction corresponds with the initial algebra obtained by extending the
algebraic specification of the data types with a new sort atom and adding for
each name of an atom, a corresponding function.

3.7. OPERATIONAL SEMANTICS

3.7.1. Action Rules

In this section we will define the operational semantics for the process
definition part of PSF with the aid of so-called action rules. These action rules
have been used already in other concurrency theories, see for example [95) in
which Plotkin gives the operational semantics for CSP [61]. Action rules in ACP
are introduced in [47]. But first we will have a look at what a process definition
stands for.

3.7.2. Process Definitions

A process definition in general looks like:

• X(t1(:Q), ... , tn(p)) = y(p) ;

:Q. is a list of variables declared in the variables section.t; is a term
from the data specification part, possibly containing some variables
from the list :g. X is a process name from the process definition part.
y is a process expression.

All closed data terms occurring in a process definition should be looked upon
as a notation for the corresponding equivalence class of this term, in the initial
algebra. It would have been more accurate if we would have written a term t as
[t]. However, we leave out the brackets for reasons of simplicity.

There are no differences between the process expressions in figure 3.2. These
are just different ways of writing: send([0]).X([0]):

send(0).X(0)
send(0+0) .X(0)
send(0).X(0+0)

figure 3.2 Three different representations of the same process expression.

All process definitions that contain variables, which must be bound properly,
are an abbreviation of a possibly infinite series of process definitions in which
all variables have been eliminated. This series is constructed by replacing all
occurrences of a certain variable v, of sort S, with a representative of each
equivalence class of the initial algebra of S.

36 A Process Specification Formalism

The next example will clarify this notion. Suppose we have the following
fragment of a specification :

processes
X, Y: BOOLEAN# NATURAL

variables
b : -> BOOLEAN
n: -> NATURAL

definitions
X(b,n) = send(n) . Y(b,n)

figure 3.3 An abbreviation of process definitions.

Then the definitions section represents, a.o.:

X([true],[O]) = send([O]) . Y([true].[O])
X([true],[s(O)]) = send([s(O)]) . Y([true].[s(O)])
X([true],[s(s(O))]) = send([s(s(Oi)]) . Y([true].[s(s(O))])

X([false],[O]) = send([O]) . Y([false].[O])
X([false].[s(O)]) = send([s(O)]) . Y([false],[s(O)))

figure 3.4 Part of the expanded definitions section .

Though we are writing process definitions as equations such as X = a, X = b, we
merely mean that X has a summand a and a summand b. So whenever the
same left-hand side of an equation occurs more than once, possibly due to
expanding the definitions sections as described above, we consider the
corresponding right-hand sides as alternatives. In this way we can make a non­
deterministic choice between the alternative right-hand sides, just like applying
the +-operator.

Note that an alternative decision could have been to forbid this situation and
to rename alternative definitions into deadlock, indicating an error. It is
possible that a future implementation of a simulator would support both
modes of execution and would let the user choose between them.

Whenever a process name with closed terms for all its arguments does not
occur in a expanded specification as a left-hand side, it is considered to be equal

to deadlock. We recall that o is the neutral element for alternative composition.

Semantics 37

3.7.3. Action Rules for PSF

In the following section we present the action rules for PSF.
For each element [a] of the initial algebra of atomic actions we define a binary

relation ~ and a unary relation ~ v' on closed process expressions. If a is an

atomic action, and [a] its equivalence class (so [a] E IA), we write~ instead of~-

x ~ y means that the process expression r epresented by x can evolve into
y, by executing the atomic action [a].

x ~ v' means that the process expression represented by x can terminate
successfully after having executed the atomic action [a]. The special
symbol -v' can be looked upon as a symbol indicating successful
termination of a process.

The relations ~ are generated by the rules in the following tables, i.e. x ~ y
only holds if this can be derived using these rules.

In the following tables we will use some symbols that have a special
meaning. These symbols are:

• a,b,c : atomic actions or skip .

• x,y,x',y' : variables on processes, i.e. we can substitute any process for
these variables.

Along with some of the rules we will give an explanation:

• R.I I
- a I b = c means that the communication between a and b has been

defined to be c.

• R.encaps :
- H : the set of atomic actions that have to be encapsulated.

• R.hide:
- I : the set of atomic actions that have to be renamed into skip.

• R.rec:

- J!E!2 means U1ED1, UzEDz, ... , UnEDn
- !!. = (u 1, u 2, . . . , Un)
- Q = (D1, D2, ... , Dn)
- D; is a sort.

- y(y_) : a process expression with a list of terms J!E Q__ as parameters.
- X : a process name declared as X : D1 # D2 # ... # Dn
- X(y_) = y(M) : an equation from the definitions section.

• R .sum:
- D: a set.

- uE D: u is an element of repr(D).
- d in D : dis a variable over the sort associated with the set D.

• R.merge:
- ID I : the number of elements in set D.

38 A Process Specification Formalism

R.a a~ ✓

X ~ X' X ~ ✓
R.+I

x+y ~ x'
R .+2

x+y ~ ✓

y ~ y' y ~ ✓
R.+3

x+y ~ y'
R.+4

x+y ~ ✓

X ~ x' X ~ ✓
R.·1

x·y ~ x'·y
R.·2 a x·y ➔ y

X ~ X' X ~ ✓
R.111

xllY ~ x'IIY
R.112

xllY ~ y

y ~ y' y ~ ✓
R.113

xllY ~ xllY'
R.114

xllY ~ x

x ~ x'; y ~ y' ; alb=C x ~ ✓: y ~ y'; alb=c
R.115

xllY ~ x'lly'
R.116

xllY~ y '

x ~ x'; y ~ ✓; a lb=c x ~ ✓: y ~ ✓ : a lb=c
R.117

xllY~ x'
R.118

xllY~ ✓

x ~ x·; a11 H x ~ ✓: a11 H
R.encapsl

encaps{H ,x) ~ encaps(H ,x')
R.encaps2

encaps{H ,x) ~➔ ✓

x ~ x'; ae I x ~ ✓; ae I
R.hidcl

hide(l,x) ~i.e➔ hide(l ,x')
R.hidc2

hide{l ,x) skip ✓

x ~ x'; a11 I x ~ ✓; a11 I
R.hide3

hide(l, x) ~ hide (l,x')
R .hide4

hide{l ,x) ~ ✓

!J.eQ_; Y(l.!.) ~ y'; X (.u.) = Y(!J.) l,!_e D ; y(.u.) ~ ✓; X(.u,) = y(.u..)
R.recl

X(!.!.)~ y'
R.rec2

X(JJ.)~ ✓

ue D; x(u) ~ x' ue D; x(u) ~ ✓
R.suml

sum(d in D , x(d)) ~ x'
R.sum2

sum(d in D, x(d)) ~ ✓

R.mergel

R.mcrge2

R.merge3

R.merge4

IDl>1; LIED ;x(LI)~ x'

merge(d In D, x(d)) ~ merge(d In D\ {LI}, x(d)) II x'

ID I>1; LIED ; x(LI) ~ ✓
merge(d in D, x(d)) ~ merge(d In D\ {LI}, x(d))

IDI=1; LIED; x(LI) ~ x'

merge(d in D, x(d)) ~ x'

IDI=1; LIED ; x(LI) ~ ✓

merge(d in D, x(d)) ~ ✓

a b
IDI>2; LIED ; VE D; LI;tcv ; x(LI) ➔ y; x(v) ➔ z; a lb=c

Semantics 39

R.merge5
merge(d In D, x(d)) ~ (merge(d In Dl {LI,v }, x(d)) II y) II z

R.merge6

R.merge7

R.merge8

R.merge9

R.mergelO

a b ✓ 1DI>2 ; LIED; VE D; LI;tcv ; x(LI) ➔ y; x(v) ➔ ; a lb=c

merge(d in D, x(d)) ~ merge(d In D\ {LI,v}, x(d)) II y

IDI>2; LIED ; VE D; LI;tcv ; x(LI) ~ ✓; x(v) ~ ✓; alb=C

merge(d In D, x(d)) ~ merge(d in D\ {LI,v}, x(d))

IDl:52; LIED; VE D; wv; x(LI) ~ y; x(v) ~ z ; a lb=c

merge(d In D, x(d)) ~ y 11 z

a b ✓ IDl:52; LIED; VE D; LI;tcv; x(LI) ➔ y; x(v) ➔ ; a lb=C

merge(d in D, x(d)) ~ y

ID l:52; LIED; VE D; LI;tcv ; x(LI) ~ ✓; x(v) ~ ✓; a lb=c

merge(d In D, x(d)) ~ ✓

figure 3.6 Table of action relations .

3.7.4. Process Semantics
Now that we have defined the action relations for PSF we are able to assign a

semantics to processes. In this case we define bisimulation [94) on top of these
action relations.

A bisimulation is a binary relation R on process expressions, satisfying:

• if pRq and p -4 p', then 3q': q -4 q' and p'Rq' ([a] E IA)

• if pRq and q -4 q', then 3p': p -4 p' and p'Rq' ([a] E IA)

• if pRq then p -4 V, if and only if q -4 Y ([a] E IA)

40 A Process Specification Formalism

If there exists a bisimulation R on process expressions with pRq, then p and q
are called bisimilar, notation p tlq.

ti is a congruence on process expressions. See [12] for a proof.

3.7.5. An Example
Suppose we have the following definition of a certain process X: N is the sort of
the naturals and B is the sort of the booleans.

X = sum(d in N, sum (e in 8N, r(d,e) ·Y(d,not(e))))
Y(d,true) = s(d) ·s(true) ·X

Y(d,false) = s(false) ·s(d) ·X

figure 3.7 Definition of process X.

Now we want to know what actions process X can perform. See the following
example for the derivation of:

• X r(S,false) Y(S,not(false)) s(S)) s(not(false))·X s(true) X

R.a : r(5,false) r(5 ,false) ✓

r(5 ,false) r(5 ,false) ✓
R .· 2:

R.suml :

r(5,false)·Y(5,not(false)) r(S,false) Y(5,not(false))

r(5,false) ·Y(5,not(false)) r(S,false) Y(S ,not(false))

sum(e in 8 , r(5,e)·Y(5 ,not(e))) r(S,false) Y(S,not(false))

sum (e in 8 , r(S,e) ·Y(S,not(e))) r(S,false) Y(S,not(false))
R.suml: -------------------------

R.recl:

sum(d In N, sum (e in 8 , r(d ,e) ·Y(d ,not(e)))) r(S,false) Y(S,not(false))

X = sum (d in N, sum (e In 8 , r(d,e)·Y(d,not(e))));

sum(d in N, sum (e in B, r(d ,e)·Y(d ,not(e)))) ~~ Y(S,not(false))

X r(S,false) Y(S,not(false))

figure 3.8 The derivation of a transition.

Semantics 41

Now we have proved that it is possible to have a transition labeled with the
atomic action r(5,false) from X to Y(5,not(false)). The next step is to show a
possible atomic action to be performed by Y(5,not(false)) .

R.a: s(5) ~(~ ✓

s(5) s(5) ✓
R. ·2:

R.· l:

R.recl:

s(S)·s(not(false)) s(S) s(not(false))

s(5)·s(not(false)) ~ s(not(false))

s(5)·s(not(false))·X s(
5
) s(not(false))X

Y(5,not(false)) = s(S)·s(not(false))X;

s(S)·s(not(false))·X --3~ s(not(false))·X

Y(5,not(false)) s(5) s(not(false))·X

figure 3.9 The derivation of a transition.

R.a: s(not(false)) -3!.".!:!~ ✓

R.·2 :
s(not(false)) ~ ✓

s(not(false))·X s(true) X

figure 3.1 O The derivation of a transition .

3.8. OTHER PROCESS SEMANTICS

In the previous section we have defined an operational semantics for process­
expressions by means of action relations. These action relations are suitable as a
base for the development of simulation tools. It can be used to define a
semantic domain, i.e . the graph model, on which most of the known
equivalence relations on processes can be defined.

42 A Process Specification Formalism

We assign a graph to each process expression.
• Such a graph is rooted (i.e. there is just one root node)
• Each node is labeled with a closed process-expression possibly

containing elements [t1L- .. ,[tnl of the initial algebra of the data types.

• Each edge is labeled with elements (a] of the initial algebra of atomic
actions or skip.

Before we are able to define the graph of a certain process x, we have to define
the set of all subprocesses of x. The definition of this set Sub (x) is done
recursively.

• x E Sub(x)

• if y E Sub(x) and y ~ z can be derived from the action relations (for

some a), then z E Sub(x)
The graph of a certain process-expression x is constructed as follows:

• For each element y of Sub(x), we generate a node labeled with y.
Moreover there is one node that will be used as a termi nal node, labeled
with v.

• The node labeled with x is the root of the graph we are looking for.

• Next we add an edge, labeled with a, from node p to node q, whenever

the corresponding transition p ~ q can be derived from the action
relations.

Now that we have given a way of constructing graphs, it is possible to define a
wide variety of semantics on this graph domain. These semantics include for
example: trace semantics, failure semantics ((26], (10]) . We can also define strong
observational congruence (90] on this graph domain, which is in fact equal to
our bisimulation semantics as defined in section 3.7.3.

4. EXAMPLES

In this section we give three examples of a specification in PSF, which illustrate
the use of simple data types, process definitions and the concept of
parameterization. The examples d eal with a landing control system for an
airport, the alternating bit protocol and a palindrome recognizer.

4.1. A LANDING CONTROL SYSTEM

4.1.1. The Problem

In the first example we specify a hypothetical landing control system for an
airport. It is designed to handle the landing of a number of airplanes on a
number of landing strips. Since the actual names of the airplanes and the strips

Examples 43

can be considered as conditions local to some specific airport, we specify a
control system which is parameterized with these items. The system consists of
a number of parallel operating subsystems, first of which is the Distribution
process. The other processes, the Strip-Controllers, all have the same
behaviour. Each of them has control over exactly one landing strip.

,------- ------

North

East

South

I ______ -- --------------

figure 4.1 Timbuktu Airport .

4.1.2. The Implementation

The process module Landing-Control has a parameter Airport-Conditions,
which consists of the two sorts STRIPS, containing the names of the landing
strips, and PLANE-IDS, containing the id's of all planes potentially willing to
land. The module exports an atom receive-req-to-land, which enables the
system to communicate with arriving airplanes, and the process Control, which
is the name of the overall process being specified. Internal to this module are a
number of atomic actions. The atoms read, send and communicate are used to
model the communication between the process Distribution and each of the
Strip-Controllers . The STRIPS argument determines which Strip-Controller is
involved, and the PLANE-IDS argument indicates the plane that should be
landed. As is indicated in the communications section, placing the atoms send
and read in parallel yields the atom communicate. The set H, containing the
read and send actions will be used to encapsulate unsuccessful communication.
This happens when the read and send actions do not have a partner to
communicate with. The other atomic actions, land and disembark, are not
intended to take part in a communication.

Apart from the Control process we define three processes. The process
Distribution receives a request to land from some plane and sends its id to one
of the Strip-Controllers, which is willing to communicate with the
Distribution. After that, the Distribution process starts all over again. The
process Strip-Control is indexed with the name of some STRIP. In fact it defines
a new process for each STRIP . It starts by receiving a message from the
Distribution to handle a plane with a given id. After handling this plane, as
defined by the process Handle, the Strip-Controller starts all over and is again

44 A Process Specification Formalism

able to receive a plane-id. The process Handle serves as a sub-process of the
process Strip-Control. The second argument determines the plane and the first
one determines the STRIP the plane must land on. This process stops after
landing and disembarking the plane.

Finally the overall process Control is defined as the concurrent operation of
the Distribution and all Strip-Controllers. The encapsulation operator removes
unsuccessful communications.

4.1.3. The Specification

proceaa module Landing-Control
begin

parameter a
Airport-Conditions

begin
aorta

STRIPS, PLANE-IDS
end Airport-Conditions

exports
begin

atoms
receive-req-to-land

proc•••••
Control

end

atoms
read, send, communicate
land
disembark

STRIPS

PLANE-IDS

STRIPS# PLANE-IDS
STRIPS# PLANE-IDS
PLANE-IDS

proceaaea
Distribution
Strip-Control
Handle STRIPS# PLANE-IDS

aeta
of atoms

H = { read (s, id) , send (s, id) I s in STRIPS, id in PLANE-IDS)

communications
send(s,id} I read(s,id} c ommunicate(s,id)

for sin STRIP S , id in PLANE-IDS

variables
s : -> STRIPS
i d :-> PLANE-IDS

Examples 45

definitions
Distribution aum(id in PLANE-IDS, receive-req-to-land(id).

aum(s in STRIPS, send(s,id))
) . Distribution

Strip-Control(s) = aum(id in PLANE-IDS, read(s,id) .Handle(s,id)
) . Strip-Control(s)

Handle (s, id) = land (s, id) . disembark (id)
Control= encaps(H, Distribution I I

merge(s in STRIPS, Strip-Control(s)))

end Landing-Control

figure 4.2 Specification of a generic landing control system.

This specification can be used as a generic specification for Landing-Controllers.
A Landing-Control at for instance Timbuktu-Airport can be constructed by
binding a module which defines the landing strips and the planes that
potentially land at Timbuktu-Airport to the parameter of Landing-Control. A
graphical representation is given in figure 4.4.

data module Timbuktu-Airport
begin

exports
begin

aorta
Timbuktu-STRIPS, Timbuktu-PLANE-IDS

functions
North -> Timbuktu-STRIPS
East -> Timbuktu-STRIPS
South -> Timbuktu-STRIPS
West -> Timbuktu-STRIPS
KL204 -> Timbuktu-PLANE-IDS
SQ001 -> Timbuktu-PLANE-IDS
JL403 -> Timbuktu-PLANE-IDS
PA666 -> Timbuktu-PLANE-IDS
HA345 -> Timbuktu-PLANE-IDS

end

end Timbuktu-Airport

process module Timbuktu-Landing-Control
begin

imports
Landing-Control

{Airport-Conditions bound by
[STRIPS-> Timbuktu-STRIPS,
PLANE-IDS-> Timbuktu-PLANE-IDS)

to Timbuktu-Airport)

end Timbuktu-Landing-Control

figure 4.3 Timbuktu Airport definition.

46 A Process Specification Formalism

Timbuklu
Airport

Timbuktu-landlng-Control

figure 4.4 Timbuktu Airport structure diagram.

4.2. ALTERNATING BIT PROTOCOL

4.2.1. The Problem

One of the most famous communication protocols is the Alternating Bit
Protocol (ABP). It has been used many times to serve as a test case for a new
formalism. Our specification emanates from the ABP specification in ACP as
described in (25] .

We can represent the Alternating Bit Protocol by a picture as follows:

s R

K

3 4
input

6 L 5

~---------- ------- ----··---

figure 4.5 Graphical representation of the Alternating Bit Protoco l.

It consists of four components:

• S : The sender.

• R : The receiver.

• K : A channel connecting the sender and the receiver.

• L : A channel connecting the receiver and the sender.
The goal of the Alternating Bit Protocol is to transport data items from a certain
set D from the input port to the output port. In the next paragraphs we give a
description of each component.

Examples 47

4.2.1.1. The Sender
First, component S reads a message at the input port. This message is extended
by a control boolean to form a so-called frame and this frame is sent along
channel K. The sending of the frame proceeds until component S receives an
acknowledgement of a successful transmission at channel L. After a successful
transmission component S flips the control boolean and starts all over.

4.2.1.2. Communication Channel K
Component K transmits frames from the sender to the receiver. There are two
situations that can occur when sending information along channel K.

• The frame is properly transmitted.

• The frame is corrupted during the transmission.
We assume channel K to be fair, i.e, it will not produce an infinite stream of
corrupted data.

4.2.1.3. The Receiver
The receiver R reads a frame from channel K . We assume that R is able to tell,
e.g. by performing a checksum control, whether or not the frame has been
corrupted. When the frame is correct R checks the control boolean in the frame.
If this control boolean matches the internal control boolean of K, the message
in the frame is sent to the output port, K flips its internal boolean and starts
waiting for the next frame to arrive. In all other cases R sends the complement
of its own control boolean along channel L and waits for the retransmission of
the frame.

4.2.1.4. Communication Channel L
Component L is used to transmit receive acknowledgements from the receiver
to the sender. Like channel K, channel Lis able to corrupt data. We will assume
that the sender S can tell whether an acknowledgement has been corrupted. We
assume that channel L is fair too.

4.2.2. The Specification

data module Booleans
begin

exports
begin

aorta
BOOLEAN

functions
true
false
and BOOLEAN
or BOOLEAN
not BOOLEAN

end

-> BOOLEAN
-> BOOLEAN

ii BOOLEAN -> BOOLEAN

* BOOLEAN -> BOOLEAN
-> BOOLEAN

48 A Process Specification Formalism

variables
x : - > BOOLEAN

equations
[Bl] and(true,x) = x
[B2] and(false,x) = false
[B3] or(true,x) = true
[B4] or(false,x) = x
[BS] not(true) = false
[BG] not(false) = true

end Booleans

data module ABP-Ports
begin

exports
begin

sorta
ABP-PORT

functions

end

p3 - > ABP-PORT
p4 - > ABP-PORT
p5 - > ABP-PORT
p6 - > ABP-PORT

end ABP-Ports

data module Errors
begin

exports
begin

sorta
ERROR

functions
ce : - > ERROR

end

end Errors

data module Bits
begin

exports
begin

aorta
BIT

functions
0 - > BIT
1 : - > BIT

end

end Bits

process module Producer
begin

parameters
Ext-Ports

begin
atoms

output : BIT
end Ext-Ports

exports
begi n

process ea
PROD

end

imports
Bits

definit i ons
PROD = (ski p . output (0) + skip . output (1)) . PROD

end Producer

process module Consumer
begin

parameters
Data-Items

begi n
aor ta

DATA
end Data-Items,

Ext-Ports
begin

atoma
input : DATA

end Ext-Ports

export•
begin

proc•••••
CONS

end

definit i on•
CONS= sum (d i n DATA, input(d)) . CONS

end Consumer

Examples 49

50 A Process Specification Formal ism

process module ABP
begin

parameters
Data- Items

begin
aorta

DATA
end Data-Items,

Ext-Ports
begin

atolllll
input : DATA
output : DATA

end Ext-Ports

exports
begin

proceasea
ABP

end

import•
Booleans, ABP-Ports, Errors

atom•
r,s,c
r,s,c
r,s,c

ABP - PORT f DATA f BOOLEAN
ABP-PORT f BOOLEAN
ABP-PORT f ERROR

proceaaes
S,K,L,R
RM
SF,RA,K,SM
L,RF , SA

set•
of ABP-PORT

BOOLEAN
DATA f BOOLEAN
BOOLEAN

FRAME - PORT= {p3,p4}
ACK-PORT= {p5,p6}
ERROR-PORT= (p4,p6)

of atoms
H = s (p,d,b), r(p,d,b)

p in FRAME-PORT, d in DATA, b in BOOLEAN} +
s(p,b), r(p,b) \p in ACK-PORT, b in BOOLEAN}+
s(p,e), r(p,e) \p in ERROR-PORT, e in ERROR)

communi cation ■

s(p,d,b) I r(p,d,b) = c(p,d,b)

s(p,b)
s (p , e)

variables

for p in FRAME-PORT, d in DATA, b in BOOLEAN
r(p,b) c(p,b) for p in ACK-PORT, b in BOOLEAN
r(p,e) = c(p,e) for p in ERROR-PORT, e in ERROR

b -> BOOLEAN
d : -> DATA

definitions
s = RM(false)
RM(b) = aum(d in DATA, input(d) . SF(d,b))
SF(d,b) s(p3,d,b) . RA(d,b)
RA(d,b) (r(p6,not(b)) + r(p6,ce)) . SF(d,b) +

r(p6,b) RM(not(b))

Examples 51

K = aum(d in DATA, sum(b in BOOLEAN, r(p3,d,b) . K(d,b)))
K(d,b) =(skip. s(p4,ce) +skip. s(p4,d,b)) . K

R = RF (false)
RF(b) aum(d in DATA, r(p4,d,not(b)) + r(p4,ce))

SA(b)
SM(d,b)

aum(d in DATA, r(p4,d,b) . SM(d,b))
s(p5,b) . RF(not(b))

output(d) . SA(b)

L = aum(b in BOOLEAN, r(p5,b) L(b))
L(b) =(skip. s(p6,ce) +skip. s(p6,b)) . L

ABP = encapa (H, S 11 K 11 R I I L)

end ABP

proc••• module Communication-Ports
begin

parameter a
Data-Items

begin
aorta

DATA
end Data-Items

exports
begin

atoms
prod-out,abp-in,abp-out,cons-in,

prod-abp-comm,abp-cons-comm: DATA
■eta of atom■

. SA(not(b)) +

H prod-out(d),abp-in(d),abp-out(d),cons-in(d)
din DATA}

end

communication■

prod-out (d) I abp-in(d)
abp-out(d) I cons-in(d)

end Communication-Ports

prod-abp-comm(d) ford in DATA
abp-cons-comm(d) ford in DATA

52 A Process Specification Formalism

proceaa module System-Ports
begin

import•
Communication-Ports

{Data-Items bound by
[DATA -> BIT]

to Bits}

end System-Ports

proceaa module System
begin

export•
begin

proceaaea
SYS

end

import•
Producer

{Ext-Ports bound by
[output-> prod-out]

to System-Ports},
Consumer

{Data-Items bound by
[DATA -> BIT]

to Bits
Ext-Ports bound by

[input-> cons-in]
to System-Ports},

ABP
{Data-Items bound by

[DATA -> BIT]
to Bits
Ext-Ports bound by
[input-> abp-in,
output-> abp-out]

to System-Ports}

definitions
SYS = encapa (H, (PROD I I ABP I I CONS))

end System

figure 4.6 PSF specification of the Alternating Bit Protocol.

In this solution the module that is dealing with the Alternating Bit Protocol, is
part of a bigger system that also contains a producer of (random) data elements
and a consumer. The interconnection of modules is established by
communications as defined in System-Ports. This solution is an example of
how modularization and parameterization is achieved in PSF. To point out the
constitution of module System, figure 4.7 shows the visualization of the
imports, at the top level.

Examples 53

figure 4.7 Structure diagram of the ABP specification .

4.3. A PALINDROME RECOGNIZER

4.3.1. The Problem

The algorithm for a palindrome recognizer was introduced in (74). In [59) the
first proof of correctness is given and in [109) we find the ACP version of this
proof. The algorithm stems from a class of algorithms for systolic systems.
Systolic systems are systems that are constructed from a large number of small
cells so that the behaviour of the whole system resembles the behaviour of an
individual cell. In this case we will define the behaviour of a cell that will be
able to tell whether a string of length two, or less, is a palindrome. Then we
construct a true palindrome recognizer by putting many of these cells together
in the form of a long chain. A typical cell is shown in figure 4.8.

~----------------------

boolean

t+l
r-------1

symboll

symbol2

figure 4.8 One cell of the palindrome recognizer.

The ith cell has two communication ports, i and i+l . It has two locations to
store a symbol and one location to store a boolean. A cell can be in one of three
states:

54 A Process Specification Formalism

1. This is the initial state in which the cell contains no symbols. It
represents the empty word in this state and because the empty word is a
palindrome it can always write the boolean true at port i. If a symbol is
read at port i it is stored in symbol2 . Then, the boolean value true is
written to channel i because a word consisting of just one symbol is
always a palindrome. After this, the cell is in state 2.

2. In this state, another symbol is read from i and a boolean from i+l, in
arbitrary order, and stored in symboll and boolean, respectively. Next,
the cell is in state 3 .

3. In state 3 the cell contains two symbols and it computes whether the
two symbols form a palindrome (i.e. are equal). The result of the
calculation : ((symboll = symbol2) and boolean) is written at port i and
the symbol in symboll is written at port i+l leaving room for a new
symbol to be read from i. The cell is now in state 2 once more.

4.3.2. The Specification
Now we want to specify this palindrome recognizer in PSF. Though this
example may seem rather complex, there are only two process modules in it.
The rest of the specification deals with the data types. The two process modules
define the palindrome recognizer from a different point of view. The first
process module defines the external behaviour of the process and here we need
a rather complicated predicate is-pal to determine whether a string is a
palindrome. The second specification defines the nature of the cells from which
the recognizer is constructed.

data module Booleans
begin

exports
begin

aorta
BOOLEAN

functions
true
false
and BOOLEAN
or BOOLEAN
not BOOLEAN

end

variables
x : - > BOOLEAN

equations
[Bl] and(true,x) = x

BOOLEAN
BOOLEAN

[B2] and(false, x) = false
[B3] or(true,x) = true
[B4] or(false,x) = x
[BS] not(true) = false
[B6] not(false) = true

end Booleans

- > BOOLEAN
- > BOOLEAN
- > BOOLEAN
-> BOOLEAN
- > BOOLEAN

data module Naturals
begin

exports
begin

aorta
NATURAL

function•
zero
s NATURAL

+ NATURAL j/

* NATURAL j/

equal NATURAL * end

imports
Booleans

variab1ea
x, y: -> NATURAL

equations
[Pl) X + zero X

[P2] X + S (y) S(x+y)
[Ml] X * zero zero
[M2] X * S(y) (x*y) +
[Nl] equal(zero,zero) =
[N2] equal(zero, S(x))
[N3) equal(S (x), zero
(N4) equal(S(x), S(y)

end Naturals

data module Symbols
begin

exports
begin

aorta
SYMBOL

function•
'a ->
'b ->
'c ->
'd ->
'e ->
'f ->
'g ->
'h ->
'i ->
'j - >
'k ->
'1 - >
'm ->
'n ->
'o ->
'p - >

SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

Examples 55

- > NATURAL
-> NATURAL

NATURAL -> NATURAL
NATURAL -> NATURAL
NATURAL -> BOOLEAN

X

true
- false

false
= equal(x,y)

56 A Process Specification Formalism

'q -> SYMBOL
'r -> SYMBOL
's -> SYMBOL
't -> SYMBOL
'u -> SYMBOL
'v -> SYMBOL
'w -> SYMBOL
'x -> SYMBOL
'y -> SYMBOL
'z -> SYMBOL
equal SYMBOL# SYMBOL-> BOOLEAN

end

imports
Booleans, Na.turals

£unction•
ord: SYMBOL-> NATURAL

variables
sl,s2 : -> SYMBOL

equations
[Sl] ord('a) = zero
[S2] ord('b) S(ord('a))
[S3] ord('c) S(ord('b))
[S4] ord('d) • S(ord('c))
[SS] ord('e) S(ord('d))
[S6] ord('f) S(ord('e))
[S7] ord('g) S(ord('f))
[SB] ord('h) S (ord('g))
[S9] ord('i) S(ord('h))
[Sl0] ord('j) S(ord('i))
[Sll] ord('k) S(ord('j))
[S12] ord('l) S(ord('k))
[Sl3] ord('m) S (ord('1))
[S14] ord('n) = S(ord('m))
[SlS] ord('o) S(ord('n))
[S16) ord('p) = S(ord('o))
[S17) ord('q) S(ord('p))
[S18] ord('r) = S (ord('q))
[S19] ord('s) - S(ord('r))
[S20] ord('t) S(ord('s))
[S21) ord('u) =S(ord('t))
[S22] ord('v) S(ord('u))
[S23) ord('w) =S(ord('v))
[S24) ord('x) = S(ord('w))
[S25] ord('y) S(ord('x))
[S26) ord('z) S(ord('y))
[El] equal (sl, s2) = equal (ord(sl), ord(s2))

end Symbols

data module Strings
begin

exports
begin

sorts
STRING

functions
empty

equal
length
reverse
add-back
is-pal

end

imports

SYMBOL
STRING
STRING
STRING
SYMBOL
STRING

t STRING
STRING

t STRING

Symbols, Booleans, Naturals

variable•
sl, s2, s3
syml, sym2

equations

-> STRING
-> SYMBOL

->
->
->
->
->
->
->

[El] equal(empty, empty) = true

STRING
STRING
BOOLEAN
NATURAL
STRING
STRING
BOOLEAN

[E2] equal(empty, sym2 - s2) = false
[E3] equal(syml ~ sl , empty) = false
[E4] equal(syml ~ sl, sym2 - s2) =

and(equal(syml, sym2), equal(sl,s2))
[Ll] length(empty) = zero
[L2] length(syml ~ sl) = S(length(sl))
[Rl] reverse(empty) = empty
[R2] reverse(syml - sl) = add-back(syml,reverse(sl))
[Al] add-back(syml, empty) = syml ~ empty

Examples 57

[A2] add-back(syml, sym2 - s2) = sym2 - add-back(syml,s 2)
[Il] is-pal(sl) = equal(sl, reverse(sl))

end Strings

proceaa module Palindrome-Behaviour
begin

imports
Booleans, Strings, Symbols

atoms
r SYMBOL
s : BOOLEAN

proceaaes
PAL
PAL: STRING

variable a
w : -> STRING

58 A Process Specification Formalism

definitions
PAL s(true} .PAL + sum(x in SYMBOL, r(x} .s(true) .PAL(x ~ empty}}
PAL(w} = eum(x in SYMBOL, r(x} . s(is-pal(x ~ w}} .PAL(x ~ w))

end Palindrome-Behaviour

data module Ports
begin

export•
begin

■ort ■

PORT
function•

port-nr
equal
pred

NATURAL -> PORT
PORT# PORT-> BOOLEAN
PORT -> PORT

end

import•
Naturals, Booleans

variables
x, y: - > NATURAL

equations
[El] equal(port-nr(x), port-nr(y)) = equal(x,y)
[Bl] pred(port-nr(S(x}}) port-nr(x}
[B2] pred(port-nr(zero)) = port-nr(zero)

end Ports

procese module Palindrome
begin

imports
Booleans, Symbols, Ports

atoms
r, s, C

r, S, C

proceeees
C PORT

PORT# SYMBOL
PORT fl BOOLEAN

C PORT f SYMBOL
C PORT# SYMBOL f SYMBOL# BOOLEAN
p

sete
of PORT

CELL= PORT \ (port-nr(zero}}
of atom•

H s(p,s}, r(p,s) Ip in CELL, sin SYMBOL)+
(s(p,b}, r(p,b} Ip in CELL, bin BOOLEAN

I c(p,s} I p in CELL, sin SYMBOL)+
{ c(p,b} Ip in CELL, bin BOOLEAN)

communications
s(p,s) I r(p,s)
s (p,b) I r(p,b)

variables
x,y - > SYMBOL
v - > BOOLEAN
i - > PORT

definitions

c(p,s) for pin CELL, sin SYMBOL
c(p,b) for pin CELL, bin BOOLEAN

C(i) s(pred(i),true).C(i) +

Examples 59

sum(x in SYMBOL, r(pred(i),x) . s(pred(i),true) .C(i,x))
C (i, x) sum(y in SYMBOL,

r(pred(i),y).sum(v in BOOLEAN, r(i,v) .C(i,x,y,v))) +
sum(v in BOOLEAN,

r(i,v).sum (y in SYMBOL, r(pred(i),y) .C(i,x,y,v)))
C(i,x,y,v) = (s(pred(i),and(equal(x,y), v)) II s(i,y)). C(i,x)
P = hide (I,encaps (H, (merge (k in CELL, C (k)))))

end Palindrome

figure 4.9 PSF specification of the palindrome recognizer.

In [109] it has been proven that P=PAL.

5. CONSIDERATIONS & COMPARISONS

5.1. A COMPARISON WITH OTHER FORMAL DESCRIPTION TECHNIQUES

In this section we will compare PSF with some other Formal Description
Techniques. We will mainly focus on the comparison with LOTOS.

5.1.1. LOTOS

LOTOS (Language of Temporal Ordering Specification, [67]) is one of the two
Formal Description Techniques, developed within ISO (International Organi­
zation for Standardization) for the formal specification of open distributed
systems, in particular for those related to the Open Systems Interconnection
(OSI) computer network architecture.

5.1.1.1. Similarities
Like PSF, LOTOS is a combination of two formalisms, namely a variation on
ACT ONE [40] to describe data types and a process description part based on CCS
[90] . As opposed to PSF, which was designed to be as close to ACP as possible,
the distance between LOTOS and CCS is much greater. Many differences
between LOTOS and PSF originate from the differences between ACT ONE and
ASF, and CCS and ACP. We will start off with a list of constructions that are
available in both languages:

60 A Process Specification Formalism

LOTOS

i
81 □ 82
choice x:O D B(x)
par gin [91, ... , Qn] <parallel-op> 8

hide 91, ... , Qn in 8

PSF

skip
81 + 82
sum(x in 0, B(x))
merge(gin G, BJ where G = {g1, ... , gnl
hide(G, BJ where G = lg1, .. . , gnl

figure 5.1 Similarities between L0T0S and PSF.

From this table it is clear that in LOTOS one has to specify a set of gates in the
hide and par operation by summing up all elements, whereas in PSF it is
possible to construct such a set with more powerful operators and subsequently
attach a name to it.

5.1.1.2. Action Prefix vs. Sequential Composition
One of the major differences between LOTOS and PSF is the way in which
sequential composition is expressed. In ACP processes can be linked together by
means of the · -operator. CCS, however, only considers action prefix. This
means that it is only possible to put an atomic action in front of a process or
behaviour expression. In order to have a sequential composition on behaviour
expressions a new operator, the enable operator; had to be introduced.

LOTOS PSF

g; 8 g · 8
81 » 82 81 · 82

figure 5.2 Action prefix vs. sequential composition.

5.1.1.3. Concurrency
Yet another difference occurs when expressing that processes have to be
executed concurrently. In LOTOS there are three operators to express
concurrency.

• Bl I [g1, .. . ,gnl I B2
This is the most general operator. It states that two processes Bl and
B2 have to synchronize at gates g1, .. . , gn.

• Bl II B2
The actions from Bl and B2 have to synchronize in each step.

• Bl Ill B2
There is no synchronization between Bl and B2 at all. This is called
interleaving

Considerations & Comparisons 61

Synchronization means that both processes have to be willing to execute a g,
from the given set, simultaneously. So in LOTOS synchronization is only
possible between identical actions as opposed to PSF where communication is
settled by the definition of a communication function which leads to a more
general concept of communication. To force communication in PSF the encaps
operator is used.

LOTOS PSF

81 1(91 , ... , 9n]I B2 encaps(G, B1 II B2}
where G = {gi'', ... , gn ", g{', . .. , gn")

g;* I g;" =g;
81 II 82 encaps(A, B1 II B2')

where A= {a1", .. . ,an",a1", ... ,an")
a;" I a;" = a; for all atomic actions
in the alphabets of Bl and B2.

B1 Ill B2 B1 II B2

5.1.1.4. Communication

where no atomic action from the
alphabet of Bl can communicate
with any atomic action from the
alphabet of B2 .

figure 5.3 Concurrency constructs .

In LOTOS all communication takes place at gates. We have already shown that
an action/gate can synchronize with an identical action/gate. However, it is
also possible to transfer data from one process to another by means of
synchronization. This is achieved by two constructions:

• value declaration !E, where E is a value expression, i.e. a LOTOS
expression describing a data value.

examples: !TRUE, !(3+5), !(x+l), !'example', !min(x,y)

• variable declaration : ?x:t, where x stands for a variable of type t.
examples: ?x:integer, ?switch:boolean

A gate can be coupled with one of these constructions so that the expression
g?x :integer describes the set of all actions g<v> where v is an instance of sort
integer .

LOTOS

g!au-j
g? x:t

figure 5.4

PSF

senct;a(.0)
sum(x in t, receive(_ x))

Communication constructs .

62 A Process Specification Formalism

5.1.1.5. Features Supported by LOTOS but not by PSF
There are some features in LOTOS that PSF (currently) does not support. Two
of these features use conditional constructs . Conditional constructs are
expressed as an equation between two value expressions or boolean
expressions. In the former case, the condition is met if the two expressions
evaluate to exactly the same value. Conditional constructs are used in
synchronization as a selection predicate to impose a restriction on the values
that may be transferred, and as guards in guarded expressions . PSF does not
support conditional constructs, but has nevertheless the same expressive
power. This is achieved by using sets, however we admit that this is carried out
in a rather cumbersome way. In chapter 3 several extensions of PSF are
considered.

LOTOS PSF

g? x:integer[x<3] sum(xin /, receive(_ x))
I is the set representing the integers
smaller than 3.

[X> 3] ➔ processt X(g) = processt

where g E Integer \ (0, ... , 3)
O [x = 5] ➔ process2 X(5) = process2

O [X< 9] ➔ process3 X(~ = process3 where IE (0, ... , 9)

figure 5.5 Conditional constructs and their translations in PSF.

Another feature that is not present in PSF is the disabling operator. The LOTOS
expression: Bl [> B2, means that as long as Bl is active B2 can take over the
execution at any time, resulting in the disappearance of Bl .

In LOTOS each behaviour expression has a functionality. This functionality
is used whenever one process, upon successful termination, enables another
process and wants to send some data to the enabled process. When combining
behaviour expressions by means of an operator, the functionality of the total
expression depends on the functionality of the operands. There are three main
types of functionality:

• noexit:
• exit :
• E1, ... ,En:

no successful termination. Deadlock or explicit stop.
successful termination.
a list of value expressions. Successful termination with value
passing.

In PSF there is no such thing as value passing. All processes coexist and
exchange information by communication, although a lot of them may be held
up, waiting to take part in a communication. The chaining operator, which is
merely an abbreviation of two renamings, a merge and an abstraction, in ACP
[101] resembles the enabling operator but has a slightly different semantics.

Considerations & Comparisons 63

5 .1.1.6. Data Specification
As stated earlier LOTOS uses a variation on ACT ONE for the specification of
the data types. Though the syntax of the data specification parts of LOTOS and
PSF differs, they look very much like each other. This includes parameteri­
zation and renaming of imported sorts and functions. The only difference is,
that it is not possible to define a hidden signature in LOTOS. This would be the
same as defining all sorts and all functions in the exports section in PSF.

5.1.1.7. Modularization
Though modularization is possible when defining data types, LOTOS does not
support such a powerful concept of importing and exporting process
definitions . We think of this as a serious shortcoming in LOTOS. The only way
to have some abstraction is by writing a specification in a stringent top-down
manner using the where construction. An example will clarify this notion.

process Sender[ConReq, ConCnf, DatReq, DisReq] :;
Connection-Phase[ConReq, ConCn~ " Data-Phase[DatReq,DisReq)

where
process Connection-Phase[ConReq, ConCnf) :;

ConReq; ConCnf; exit
endproc
process Data-Phase[DatReq, DisReq) :;

(DatReq; Data-Phase[DatReq, DisReq]
D DisReq; stop)

endproc
endproc

figure 5.6 Example of a LOTOS specification.

We claim that such an approach does not support the reusability of
specifications and we think that it will lead to monolithic specifications that are
harder to understand due to the lack of a proper abstraction mechanism.

5.1.2. Estelle

Estelle [66] is the other Formal Description Technique developed by the ISO.
Estelle is based upon an extended finite state machine model.

Finite state machines are a class of theoretical automata and have been
widely used in the field of compiler design for string recognition in the lexical
analysis and parsing of programming languages. Finite state machines are often
depicted by graphs with the nodes representing states and the edges
representing a transition from one state to another. The labels connected to the
edges identify the input that causes the transition from one node to another.

A specification in Estelle consists of a set of modules which can communi­
cate with each other. Modules represent finite state machines and are defined
by using a number of primitives which are extensions to ISO Pascal. So a
specification in Estelle looks like a Pascal program with some extra facilities.

64 A Process Specification Formalism

Being based on Pascal, there are no abstract data types and verification of
specifications is hindered.

5.1.3. COLD
COLD [41) is a series of languages developed in the framework of ESPRIT
project 432 (METEOR). COLD is defined by means of a translation of its
grammatical constructs to the constructs of a three layered formal language.
The top layer of this kernel is a special version of lambda calculus, which is
called A7t, and is used for modelling parameterization. Expressions in this
lambda calculus contain terms from a special many-sorted algebra, called CA,
which is used for modelling modularization constructs. This algebra constitutes
the middle layer. The constants used in the terms of this algebra are
presentations of logical theories. The logical language used at the bottom level
is based on a special infinitary logic, called MPL00 • Every construct in a COLD
specification corresponds to an expression in the kernel of formal languages
with a well-defined semantics. COLD specifications are translated by means of
attribute grammars to the kernel.

COLD focuses very strongly on the mathematical basis of the language,
which guarantees a nice framework for verification. The current version of
COLD, i.e. COLD-K, does not support concurrency. Research in this area is
currently being carried out.

5.2. A COMPARISON WITH PARALLEL PROGRAMMING LANGUAGES

There are some programming languages that allow the writing of concurrent
programs. In this section we will discuss some of these programming languages
and compare them with PSF.

5.2.1. Extended Programming Languages

By extended programming languages we mean languages that have been
extended afterwards to include features to support concurrent programming.
Two examples of these languages are Concurrent Pascal [32) and Concurrent
Euclid [63). Both languages have some extra features, such as processes to define
concurrently executable pieces of the program and monitors to guarantee
(mutual) exclusive access to variables. Communication between processes is
established by means of shared variables.

5.2.2. Modula, CHILL, Ada

Modula, CHILL and Ada are all based on Pascal. Though they have been
designed to be able to deal with concurrent programming, they use essentially
the same constructs as the languages from the previous section. All three
languages allow the description of sequential pieces of program that can be
executed concurrently. In Modula and CHILL these constructs are called:
processes and in Ada: tasks . There are some different solutions to the inter­
process communication.

Considerations & Comparisons 65

In Modula communication between two processes is either established by
sharing data through an interface module (=monitor), or by synchronization.
Synchronization means that one process waits until another process has
reached a certain state. This is achieved by the sending of and waiting for
signals.

In CHILL there are three ways for processes to communicate with each other.
The first way is by means of regions, which can be compared with Modula's
interface modules . Next come the buffers which operate like some kind of
mailbox in which one process leaves a message of a certain type that can be
picked up by another process . The last way of communicating is by means of
signals. Signals can be sent directly from one process to another process and it is
possible to specify to which processes a signal is restricted. Any intermediate
buffering is taken care of by the underlying system.

In Ada there is only one way in which two tasks can communicate, the
rendez-vous. A task that wants to communicate with another task, starts
waiting until the other task wants to communicate too. When both are willing
to communicate they exchange information and go on with the execution of
their own instructions.

The rendez-vous communication resembles the communication in PSF the
most. In PSF a process is not able to proceed until the other party wants to
perform the complementary communication action. There is however still a
difference. In Ada there is an asymmetry in the communication. There is one
task that accepts a communication and as such controls the communication.
The other task does an entry call to this specific task. Whenever two tasks are
willing to communicate, the called task executes the sequence of statements of
the accept statement while the calling task remains suspended. Such an
asymmetry does not exist in PSF where all processes are equal partners in
communication and both supply one half of the communication. Moreover
PSF processes do not state with which specific process they want to
communicate. This is an advantage when constructing specifications in a
bottom-up fashion.

A feature that is lacking in PSF but present in Ada is: time. It is possible in
Ada to delay a process for a while by means of the delay statement. In the
context of a select statement, that implements the idea of choosing non­
deterministically between guarded commands (see [38]), a delay develops into a
time-out, when used as a guard. This means that only after a certain period of
time one branch of a select statement becomes active, i.e. the guard becomes
true, when all the guards of the other branches remain false. There is strong
need for such mechanisms in real-time applications. The notion of real time
was introduced in ACP in [6].

An important difference between PSF and the aforementioned languages is,
that, being based on Pascal, these languages are all imperative languages and
PSF is not. The architecture of conventional machines has influenced the
development of programming languages tremendously. Three characteristics of
imperative languages show this influence:

66 A Process Specification Formalism

• Variables.
A major component of a computer is the memory, which comprises
a large number of memory cells. The reflection of these memory cells
in a programming language are variables.

• Assignment Operation
Closely tied to the memory architecture is the notion that everything
that has been computed must be stored, i.e., assigned to a cell. This
accounts for the assignment operation in imperative programming
languages.

• Repetition
A program in an imperative language usually accomplishes its task
by executing a sequence of elementary steps repeatedly. The von
Neumann architecture forces this way of solving problems.

In PSF we think of the execution of a large program as being merely a bunch
of processes floating around and sometimes communicating with each other,
having no relation with the architecture on which the program is executed.

All three languages mentioned, support some kind of information hiding by
allowing the definition of abstract data types. This is achieved by defining a data
type and some functions that operate on this type that are grouped together in
some construct. The representation of the abstract data types and the
implementation of the functions is defined within this construct, but is hidden
for the outside world. In this way the outside world gets only an abstract view
of the data types involved. Information hiding is provided by modules in
Modula and CHILL and by packages in Ada. In PSF, data abstraction and
procedural abstraction is provided by data and process modules and the import
and export constructions. There are some differences however. In PSF an
imported object automatically appears in the export section of the importing
module. This is not the case in any of the three programming languages. Nor is
there something like the origin rule as in PSF, allowing multiple imports of the
same module.

Another important feature in new programming languages is the generic
module. A generic module can be looked upon as a template for a module, in
which one or more types used in the module are parameterized. This can be
used in, e.g., specifying a queue, for which it is possible to define the actions that
can be performed on the data objects, whereas the type of the objects is not
known in advance. Ada and PSF support generic modules, the latter by means
of the parameters section, while Modula and CHILL do not. Two other features
that both Ada and PSF provide, but CHILL and Modula lack, are overloading
and renaming of objects.

5.2.3. POOL 2

POOL (Parallel Object-Oriented Language) [2] is a programming language
designed to integrate object oriented programming with parallelism. All objects
in a POOL program may execute in parallel, so this resembles the notion of
processes in PSF.

Considerations & Comparisons 67

Each object is an instance of a class and can be looked upon as a process
containing some internal data and some methods that can operate on these
data. The internal information of an object cannot be accessed by other objects
directly, but objects exchange information by sending messages. Upon receiving
a message an object executes the appropriate method and the object that is the
result of this method execution is sent back to the original sender. In this way
information hiding and abstraction is achieved. This communication is again,
like in Ada, asymmetrical.

Units consist of two parts; the specification unit and the implementation
unit. A unit is the building block for modularization. An implementation unit
consists of a set of class definitions. Which classes, from the implementation
unit, are visible to the outside world is defined in the specification unit (cf.
PSF's exports). In both the implementation unit and specification unit classes
en methods from other units can be made visible by means of the use construct
(cf. PSF's import). It is possible to have generic classes in POOL and renaming of
class names and names of globals is possible. POOL supports no overloading.

In [107] we can find a study of how to implement ACP specifications in POOL
and a more extensive comparison between POOL and ACP.

5.2.4. Occam 2

Occam [65] is a programming language based on CSP [61]. It has been designed by
INMOS and serves as a programming language for the INMOS transputer,
which in turn can be considered an Occam machine. The transputer is a single
processor with some internal memory and has four channels with which it can
be connected to neighbouring transputers. It is expected that a set of such
transputers will form an easily extendible parallel computer.

Occam, being closely related to the architecture of the transputer, is a rather
low-level programming language. The data types are very simple: booleans,
bytes, integers, reals and arrays of the aforementioned. Characters are represen­
ted by bytes and strings by arrays of bytes. Occam allows no user-defined types
and it has no modularization concepts like the imports/exports mechanism in
PSF. It allows the construction of a larger process from three primitive
processes:

• assignment
• input
• output

In constructing larger processes the programmer states which parts of the
program may be executed in parallel and which parts must be executed
sequentially. Communication of values between processes is achieved by
channels . The format and data type of these values is specified by the channel
protocol. The channel protocol may consist of a list of data types and
consequently each communication along this channel must match this
protocol exactly, both at the side of the sender as well as the receiver.
Communication in Occam is again asymmetrical.

Occam does include one feature that is not present in PSF, namely the timer.
A timer is some kind of clock that supplies integer values and is incremented at

68 A Process Specification Formalism

regular intervals. Again, such a feature is of course very important for real-time
applications.

5.2.5. PARLOG

P ARLOG [34] is a parallel logic programming language that is characterized by
the use of the concepts of guards and committed choice nondeterminism as in
Dijkstra's procedural language of guarded commands [38] . It is a member of a
family of languages that further consists of Concurrent Prolog [96] and GHC [99] .

P ARLOG offers parallel evaluation of and- and or-clauses. Shared variables,
used by clauses evaluated concurrently, act as communication channels. Both
synchronous and asynchronous communication can be used by the program­
mer.

P ARLOG does not provide any means for specifying abstract data types, all
data types have to be represented by the programmer, by means of lists, nor
does it incorporate any modularization concepts. PARLOG is of interest
however, because it has been used to translate LOTOS specifications into an
executable PARLOG program [45] .

5.3. CURRENT STATE AND FUTURE DEVELOPMENTS

As we stated in the introduction; PSF is the base for a set of tools to help in
writing specifications in ACP. A lot of work still needs to be carried out. In this
section the plans for developments in the near future are presented.

5.3.1. Tools

The structure of the PSF toolkit under development is displayed in figure 5.7.
On top is the PSF formalism and at the centre is the Tool Interface Language as
described in chapter 4. The lower part contains the tools.
The compiler from PSF into TIL consists of a parser, a library manager and a
normalizer. Starting from a modular PSF specification and a library of
previously compiled modules they produce a flat specification in TIL. This
specification is used as input for the tools.

The simulator enables the user to walk through a process by displaying its
behaviour step by step. The user can control the execution by choosing one of
the alternatives in case of a non-deterministic choice. In order to provide long
test-runs, the choice of the alternative can be delegated to a random generator.
Breakpoints may be used to control this process.

The proof assistant makes it possible to interactively manipulate process
expressions using a collection of axioms and some built in tactics . A proof of
equivalence of two processes, by means of a transformation of one into the
other, can be seen as a verification that the given process obeys a specified
behaviour.

Algebraic specifications are implemented by interpreting them as term
rewriting systems. The term rewriting tool is a general tool, which may be used
by the other tools. It can also be used on its own for testing algebraic
specifications.

Considerations & Comparisons 69

Other tools, for example for deciding bisimulation equivalence, and
interfaces to external tools are under development.

The tools are being developed and are executed on a SUN workstation under
the UNIX operating system using the windows system X. All programs are
written in the programming language C and tools that come with UNIX, such
as Lex and Yacc. This guarantees both performance and portability.

An overview of the system is in [104] and parts of the toolkit are described in
more detail in [103] and [88].

figure 5.7 The PSF Toolkit

5.3.2. Comparison with Other Tools
Although the subject of this thesis is not the PSF toolkit, we will indicate briefly
how it relates to tools from the same area of application.

The first step in concurrent system design is the construction of a
specification. The input formats for the various tools range from ad hoc input
formats to standardized languages such as LOTOS [67] and Estelle [66]. Some
tools support graphical or hierarchical design [43]. The main input language of
the PSF toolkit is, of course, PSF. However, the construction of the toolkit
allows for any input language to be used, as long as it is based on ACF-like
process specifications and algebraic data type specification. Two experiments
with other input formats show this. The first experiment is the tabular viewer
for specifications [93], which indicates how a more module based design can be
supported, and the second experiment is the construction of a compiler from
the language XP [105] to TIL. An interesting development is the design of

70 A Process Specification Formalism

common formats, which allow independent tools to communicate with each
other [78].

Simulation of the behaviour of a specification is the basic way to test for
possible errors. Most tools for FDT's are provided with such a simulation
mode. Some tools, like the PSF toolkit, allow only for textual simulation, but
others also support graphical animation of the specified system [79].

Most tools for concurrent system verification are based on finite systems.
This means that the involved processes are represented by finite structures,
such as transition graphs. Two transition graphs can be tested for equality with
respect to some equivalence relation. Tools based on this approach are described
in [35], [79] and [42]. In general, these methods suffer from the, so called, state
explosion problem.

The PSF toolkit, however, focuses on ACP-style verification. This means that
concurrent systems are verified by algebraic manipulation of process
expressions. Another system which uses this approach is the process algebra
manipulator PAM [77]. This tool allows users to define their own calculi. Other
verification tools also include techniques such as model checking [75) .

In our opinion, the most useful approach towards computer aided
verification will show to be a combination of the approaches listed above.
Algebraic manipulation is used to split a proof into a number of sub-proofs,
each of which can be delegated to an automatic verification tool based on
equivalence testing.

5.3.3. The language

Though PSF as presented in this report is already a rather powerful
specification language, yet we are thinking of some enhancements. There are
still some ACP constructions that have not been implemented in PSF. These
constructions are, e.g. chaining, (dynamic) process creation, renaming (of
atoms), interrupts, priorities and mode transfer. We will have to examine
which constructions can be incorporated in PSF without affecting the
semantical model as yet defined. Chapter 3 describes a number of possible
extensions of PSF.

Furthermore it is possible that some constructions currently available in PSF
have to be redesigned to match future requirements. One of these constructions
is the communication between atoms. In this version of PSF we have imposed
three semantical constraints on the definition of communication. Due to the
fact that we only consider communication satisfying handshaking, it might be
possible that some of these restrictions can be dropped when using a different
syntax.

It is also possible that one of the three main building blocks of PSF (data
specification, process specification, modularization) is exchanged for another
formalism in the future. lt has been one of the design criteria for PSF to let
these building blocks interfere with each other as little as possible, to guarantee
interchangeability.

The choice of algebraic specification techniques for the description of the data
types may be subject of discussion. Clearly, without additional features such as

Considerations & Comparisons 71

modularization and special constructs, algebraic specification is too weak for the
specification of large software systems. See e.g. [28] for a discussion of the
complexity of defining finite sorts with equality. However, we believe that in
the context of process specification, the data types which are needed are of a
quite simple nature . Several case studies have indicated that algebraic
specification is appropriate for the data types which were involved.
Furthermore, the specification language will benefit from the clear and simple
semantics of algebraic specifications and the elegant way of prototyping them by
means of a term rewriting system.

The semantics of the modularization concepts from PSF are defined by
means of a normalization procedure which is quite complex. A more algebraic
approach, such as in the module algebra [21], would be cleaner.

Another point of discussion if the fact that imported objects automatically
belong to the external signature of the importing module. In some cases this
contradicts the principle of information hiding, so an explicit hiding
mechanism of objects will show to be useful.

5.4. CONCLUSIONS

In this chapter we have presented PSF, a new formalism to describe process
behaviour. We have shown that it is possible to integrate a formal approach
towards data types in this formalism, as opposed to the informal way in which
data types are generally treated in ACP. We hope that PSF will be a contribution
to the construction of more reliable software for concurrent systems.

Chapter 3

EXTENDING PSF

Extensions of PSF (a Process Specification Formalism) are proposed. These extensions include
facilities for making conditional choices, operators for disabling, interrupts and priorities,
and constructions for state manipulation.

1. INTRODUCTION

The specification language PSF is developed to facilitate the specification and
verification of parallel systems using the concurrency theory ACP. Whereas
PSF only supports the basic features of ACP, many extensions of ACP have been
proposed, such as priorities [7], the state operator [SJ, renamings [5] and process
creation [18] . In this chapter suggestions are made on how to add new features
to PSF, in order to be able to make more concise and realistic specifications.

The problem with extending an existing language is that every extension
leads to a new language. Tools have to be rewritten and special care has to be
taken to keep the new version downwardly compatible, in the sense that old
specifications remain correct. Extensions of PSF can take place at three levels. At
the level of the modular structure, at the level of the specification of data types
and at the level of process description. Since this chapter studies the embedding
of extensions of ACP into PSF, we will focus on the last level. We try to develop
the extensions in such a way that the structure of a module remains
unchanged, and that no special data types or functions are needed. This way,
modifications are localized to the process specification part of PSF.

Of course we have to cope with the problem that most extensions of ACP
deal with additional data structures. The priority operator for example needs a
partial ordering on the atomic actions and the state operator is defined using

73

74 Extending PSF

the notion of a state and functions acting on states (the so called action and
effect functions). As a result of the requirement that only new process operators
may be introduced, the need emerges for a restyling or simplification of these
extensions of ACP.

In this chapter we give three examples of how to extend PSF. The first one
introduces conditional choices, a mechanism to specify the flow of control
more easily. A simple predecessor of this operator is the guarded command
operator from [11], a feature which is also present in the LOTOS specification
language [67]. The second example shows how to handle interrupts and
disabling of processes. Disruption, which is also present in LOTOS, was
introduced into ACP in [17] . In order to handle interrupts directly after being

raised, a priority operator is introduced, which is based on the 0 operator from
[7].

Finally, the extension of PSF with an explicit notion of a state is considered.
For this purpose, so called state variables are introduced, which behave
similarly to variables in an imperative programming language. A related
mechanism, the state operator, was introduced into ACP in [5] . An application
of the use of state variables is given, where they are used to model
asynchronous communication between processes.

2. CONDITIONAL CHOICES

2.1. GENERAL

In PSF there exists no explicit mechanism that, depending on the value of some
data object, determines the control flow of a process. This can only be done by
introduction of a new process, which has that data element as index. Choices
are made by adding for each condition a new entry in the list of process
definitions, followed by the appropriate actions . This way auxiliary process
names are needed only to control choices.

As an example look at the following specification of a buffer. This PSF
fragment defines the process Buffer, indexed with its contents, a queue of
elements from some data type D. The behaviour of this buffer depends on its
contents. We presume a data type Queues given, having appropriate
definitions of the functions which are used in this example.

Buffer{ernpty-queue) =
aum{d in D, input{d) Buffer{add-back{d, empty-queue)))

Buffer{add{e,q)) =
aum{d in D, input{d) Buffer{add-back{d, add{e,q)))) +
output(e) . Buffer{q)

A more concise specification could be obtained using a case construction.

Conditional Choices 75

Buffer (q} sum(d in D, input(d} . Buffer(add-back(d, q})} +
case is-empty(q} = false

do output(top(q)} . Buffer(pop(q}) od

The option to send an item from the buffer to the output is only enabled if the
queue is not empty.

The condition in a case construction with one alternative is an equation of
terms of the same sort. If the two terms are equal, the expression between do
and od will be enabled. If the two terms are not equal the expression equals
deadlock.

The following example shows the use of a conditional choice with more
alternatives. It defines the process Distribution, which plays a role in interpret­
ing signals from a remote control of a television set. The incoming messages
are distributed over the various components, which will handle the messages.

Distribution=
sum(m in messages, receive (m} .

case m
volume-up, volume-down do s(sound-control, m) od
brightness-up, brightness-down do s(display-control, m} od
optimal do s(sound-control, m} .

s(display-control, m} od}

The semantics of the case operator are given by the following laws. We use the
auxiliary guarded command operator as defined in [I l]. The definition of the
guarded command is given in the second part of the following table. Let s and
tk,1 (1kn, l$/$ik, ik2::1, n2::l) be data terms over some given signature. Let x;
(1 ::; i::;n) be processes. We require that the left and right hand-side of the
conditions are of the same type.

Axioms GCl and GC2 can be used to eliminate the guarded command
operator if the guard can be evaluated. Axioms GC3 and GC4 allow logic
manipulation of formulas. Substitution of variables is handled by GCS. GC6 up
to GC13 deal with the combination of the guarded command with other
operators.

From the definitions it follows that the case operator can be eliminated from
closed process expressions, under the assumption that the conditions can be
decided and the expression does not contain the generalized sum or merge
construct.

CASE case s
= 11, 1, ... ,t1 ,; 1 do x1 od (s=IJ, 1) :➔x 1 + ... + (s=tJ ,i 1) :➔x1 +
= 12, 1, ... ,12,;2 do x2 od

... +

= tn, 1, ... ,tn,in do Xn od (s=ln, 1) :➔xn + .. . + (s=tn,in) :➔xn

76 Extending PSF

GCl
GC2
GC3

GC4
GCS
GC6
GC7
GCB

GC9
GClO
GCll
GC12

GC13

<j) ⇒ (<j) :➔ p=p)

--,<j> ⇒ (<j) :➔ p = ◊)
<j) :➔ (\jl :➔ p) = (<j) /\ \j/) :➔ p

(<j) V \j/) :➔ p = (<j) :➔ p) + (\j/ :➔ p)

(v=t) :➔ p = (v=t) :➔ p[v:=t]

<j) :➔ (x · y) = (<j) :➔ X) · y

<j) :➔ (x + y) = (<j) :➔ X) + (<j) :➔ y)

(<j) :➔ x) lL y = <j) :➔ (x IL y)

(<j) :➔ x) I y = <j) :➔ (x I y)

x I (<j):➔ y)= <j):➔ (x I y)

dH(<J> :➔ x) = <j) :➔ dff(x)

t1(<j) :➔ x) = <j) :➔ t1(x)

<j) :➔ (x · y) = (<j) :➔ X) · (<j) :➔ y)

table 1 Algebraic laws for Conditional Choice

2.2. TRANSITION RULES

Since the conditional choice operators can be viewed as a shorthand notation,
we only give the operational semantics for the guarded command.

GCl
x~x',<j)

(<j):➔ x)~x'
GC2

x~ ✓,<j)

(<j):➔ x)~ ✓

table 2 Transition rules for Conditional Choice

3. INTERRUPTS AND DISABLING

In this section three new operators are introduced in PSF. The priority operator
is used to give some actions higher priority than others, e.g. actions denoting an
interrupt. The interrupt and disruption operator are used to express the
possibility that a process is always willing to perform a special interrupt or
disabling action.

Interrupts and Disabling 77

3.1. PRIORITIES

3.1.1. General

In [7] an interrupt mechanism for ACP was introduced. This mechanism used

the priority operator 0 for filtering out all actions with highest priority. The
hierarchy of atomic actions is defined by a fixed partial ordering. We introduce
a new operator which has as a parameter a set of atomic actions that have
priority over all other actions. Thus if an expression has an alternative that
starts with an atom with high priority, alternatives that start with an atom with
low priority will be suppressed. If the expression has no alternatives starting
with an atom with high priority, all alternatives are still enabled.

So for c~a and c~b, the expression prio((a}, a + b) equals a and prio((c), a + b)
equals a + b. Note that the priotity operator is not monotonic with respect to the
alternative composition.

In this way we can define the two levels of high and low priority, but by
repeatedly applying the prio operator we can introduce more levels. The
innermost set defines the atoms with highest priority, as is shown by the
following examples.

prio((a,b}, prio((c}, a+ b + c + d)) = prio((a,b}, c) = c, while
prio({a,b}, prio((c}, a+ b + d)) = prio({a,b}, a+ b + d) =a+ b

3.1.2. Semantics

The semantics of the prio operator are given by the following equations. The
atomic action a may not be equal to skip and the set S may not contain skip.

PRll prio(S, x) = x <ls o
PRl2 a <ls b = a if aE S v be: S

PRl3 a <ls b = o otherwise

PRl4

PRIS

PRl6

PRl7

PRl8

PRl9

PRll 0

PRll 1

PRl12

PRll 3

a <ls o = a

0 <ls X = 0

a <ls skip= a

skip <ls x = skip

x <ls y.z = x <ls y

x <ls (y+z) = (x <ls y) <ls z

x.y <ls z = (x <ls z).(y<ls o)

(x+y) <ls z = (x <ls y) <ls z + (y <ls x) <ls z

x <ls (<)>:->y) = <j> :->(x <ls y) + ---4>:->(x<ls o)
(<t>:->x) <ls Y = <t>:->(x <ls y)

table 3 Algebraic laws for the priority operator

78 Extending PSF

In the definition of the priority operator we use an auxiliary operator <lg. This
operator is parameterized with a set of actions . It serves to calculate the context
of the first actions of its left-hand side. This context, that is the collection of all
alternative actions, is being built up in the right-hand side. If some action has
low priority and its context can do an action with high priority, this low priority
action is blocked. From rule PRl12 it follows that we need negation of guards if
we combine priorities with the guarded command.

The 0 operator in a process expression can be replaced by a finite series of prio
operators if two conditions are met. The first one is that the ordering of the
atoms must be total and the second condition is that the number of classes in
the equivalence relation induced by the total ordering must be finite. Of course
in the setting of PSF, every class, except for the one with lowest priority should
be expressible using the operators defined in PSF to construct sets.

Conversely, it is always possible to replace a prio operator, or a series of them,

by a 0 with appropriate ordering on the atomic actions. This ordering however

should be a parameter of the 0 operator and not of the specification as a whole,
as proposed in [7] .

3.1.3. Transition Rules

The transition rules for the prio operator are straightforward. A process can
perform a certain action unless it can do an action with higher priority. The

notation x ~ is used to indicate a negative condition. It means that process x
cannot do a b-transition to ✓ or another process.

x~x', aeS x~ ✓, aeS
priol

prio(S,x) ~ prio(S,x')
prio2

prio(S,x) ~ x'

x~ x', aeS, Vbes x ~ x ~ ✓, aeS, VbeS x ~
prio3

prio(S,x) ~ prio(S,x')
prio4

prio(S,x) ~ ✓

table 4 Transition rules for the priority operator

Using techniques from [SO] it can be shown that these rules, which involve
negative premises, in combination with the rules of chapter 2, section 3.7,
define a transition relation.

3.2. PRIORITIES, INTERRUPTS AND DISABLING

3.2.1 . General

The priority operator introduced above enables us to force the action with
highest priority to be performed. For modelling interrupts and disabling how-

Interrupts and Disabling 79

ever, this operator is not enough. A process that is able to accept an interrupt
should be willing to accept this interrupt at any instant. After every execution
of an atomic action the alternative to do the interrupt action must be present.

If we want to extend the process expression a.b.c.d.e so that it can be disabled
by the action i we would have to add this option at any position:

i + a(i + b(i + c(i + d(i + e)))).
Adding an interrupt i followed by interrupt handler I costs even more

overhead. It would result in the following system of equations:
x1 = i.I.x1 + a.x2
x2 = i.I.x2 + b.x3
X3 = i.l.X3 + C.X4
X4 = i.l.x4 + d .x5
xs = i.I.xs + e

It is useful to have a shorthand for these constructions. We use the mode
transfer operator from [17] to handle disruption and we define a new opera.tor
to handle interrupts. We will not use the same notational convention as in [17] .
The expression dis(x,y) is used to express the fact that process x can be disrupted
at any time by process y. If y is called and is finished, then the whole process is
finished. The expression int(x,y) means that process x can be interrupted at any
time by process y . After y has finished, x resumes. Both int(x,y) and dis(x,y)
finish if x finishes.

3.2.2. Semantics

The semantics for disruption and interrupts are given by the following
algebraic laws. In the definition of the interrupt operator we need the auxiliary
delayed interrupt operator, which is denoted by dint. This operator behaves
exactly as the interrupt operator, with the restriction that it cannot start with
the interrupting process. The second extra operator is called enable. The first
argument can only be executed if the second one is not equal to deadlock.

INT int(x, y) = dint(x, y) + enable(y.int(x, y)),x)

DINT1 dint(a, x) = a

DINT2 dint(a.x, y) = a.int(x, y)

DINT3 dint(x+y, z) = dint(x, z) + dint(y, z)

DINT4 dint(8, x) = 8

DINTS dint(q>:->x, y) = q>:->dint(x, y)

EN1 enable(x, a)= x

EN2 enable(x, y.z) = enable(x, y)

EN3 enable(x, y+z) = enable(x, y) + enable(x, z)

EN4 enable(x, 8) = 8

ENS enable(x, q,:->y) = q,:->enable(x, y)

80 Extending PSF

D1S1

D1S2

D1S3

D1S4

DISS

table 5

dis(a, x) = a+x

dis(a.x, y) = a.dis(x, y) + y

dis(x+y, z) = dis(x, z) + dis(y, z)

dis(o, x) = o

dis(q>:- >x, y) = q>:->dis(x, y)

Algebraic laws for disruption and interrupts

Axioms D1S1 to D1S4 are from [17]. The equation INT is of another nature than
the rest of the laws. It should be interpreted as follows. The process int(x,y) is a
solution of the recursive specification

P = dint(x,y) + enable(y.P,x)
If specifications are guarded, existence and uniqueness of a solution is

provided by the Recursive Definition Principle and the Recursive Specification
Principle (see [24] or [14] for definitions of these principles). It is easy to see that
if the int operator is used in a guarded recursive specification, the definition of
this operator with rule INT will also be a guarded specification.

We have made the choice that int(x,y) is an infinite process, even if x and y
are finite. This is motivated by the idea that an interrupt can occur an
unspecified number of times before the interrupted process is granted time to
resume its normal operation.

The reason for introducing the delayed interrupt operator is that simply
setting

int(x+y, z) = int(x,z) + int(y,z)
would result in

int(a+b, c) = int(a,c) + int(b,c) = a + c.int(a,x) + b + c.int(b,x)
instead of

int(a+b, c) = dint(a+b, c) + c.int(a+b, c) = a + b + c.int(a+b,x)
The first expression implies that the choice between a and b can be forced by
executing one of the two possible c actions.

An interpretation of the disruption operator in the graph model is given in
[17]. Let G be the graph of process x and let H be the graph of process y. We may
assume that the root of H has no incoming edges (see e.g . [14] for a
rootunwinding procedure which preserves bisimulation equivalence). The
graph of dis(x,y) is now constructed by taking the disjoint union of G and H . For
every transition with label a from the root of H to node h of H add to every
non-terminal node of G a transition with label a to h.

The interrupt operator can be interpreted similarly. The graph of int(x,y) is
constructed from the graphs of x and y by creating for every non-terminal node
g of G a disjoint copy H g of H . Then identify the root of Hg and the terminal
nodes of Hg with node g.

We can easily show that the domain of finite and acyclic process graphs is not
closed under application of the interrupt operator. The process int(a,b) has an

infinite trace bW and thus is not finite . The class of regular process graphs
however is closed under application of the interrupt operator. This holds

Interrupts and Disabling 81

because if process x has n states and process y has m states, the construction of
int(x,y) yields at most n*m states.

As a consequence we do not have an elimination theorem for finite process
expressions, which states that every finite expression without variables can be
rewritten in an equivalent expression which is only built up of atomic actions,
sums and prefix multiplication. We do have an elimination theorem for
processes defined by means of systems of guarded recursive equations. Every
process defined by a guarded recursive specification involving the int operator
can be defined by a specification without the int operator. This specification can
be obtained from the original one by using the algebraic laws for the int
operator. The proof is by induction on the structure of the expressions.

Note that in contrast with the disruption operator, the interrupt operator is
not associative for closed terms. The process int(int(a,b),c) has a trace ca, while
int(a,int(b,c)) does not.

3.2.3. Transition Rules

x~x' x~x•
disl

dis(x,y) ~ dis(x',y)
intl

int(x,y) ~ int(x',y)

x~ ✓ x~ ✓
dis2

dis(x,y)~ ✓
int2

int(x,y)~ ✓

x~ ✓ y~y' x~ ✓ y~y'
dis3

dis(x,y)~y'
int3

int(x,y) ~ y'.int(x,y)

x~x• y~y' x~x' y~y'
dis4

dis(x,y) ~ y'
int4

int(x,y) ~ y'.int(x,y)

x~ ✓ y~ ✓ x~ ✓ y~ ✓
disS dis(x,y)~ ✓ intS

int(x,y) ~ int(x,y)

x~x' y~ ✓ x~x' y~ ✓
dis6 dis(x,y) ~ ✓ int6

int(x,y) ~ int(x,y)

table 6 Transition rules for interrupt and disabling

82 Extending PSF

3.3. AN EXAMPLE

As an example of the use of these operators we specify a skeleton of a very
simple operating system. This operating system is inspired by the Commodore
64 basic operating system [36]. Only the top-level operations are specified. Other
processes and data types are assumed to be imported.

If the computer is switched on it does a ColdStart. After doing a memory test
the Hot Start sequence is activated, which resets all jump vectors (MemTest and
ResetVectors are imported processes). Then the Normal-Operation starts which
has the possibility to either be disrupted by a reset-signal, which forces a
HotStart, or it can be interrupted by an alarm from the clock. This alarm
indicates that it is time to execute the regular interrupt routine, which scans
both keyboard and serial port for activities. If one of them has incoming data,
this will be read and stored in the keyboard buffer and serial port buffer. After
an interrupt, normal operation is resumed, which consists of reading and
interpreting tokens from the user program stored in memory (GetNextToken
and Interpret are imported processes).

The overall system consists of the processor, initialized with a ColdStart,
together with a number of devices which are not specified in this example. An
alarm action has priority over all other actions, except for a reset, which has
highest priority.

proc••• module C64
begin

export ■

begin
proc•••••

ColdStart, HotStart, Normal-Operation, Interrupt-Sequence,
ScanKeyBoard, ScanSerialPort, Reset-Sequence, System

atom■

end

aeta of atom■

IntSet {alarm)
DisSet = {reset)

communications
rec-alarm I send-alarm= alarm
rec-reset-signal I send-reset-signal

import ■

definitions
ColdStart = MemTest . HotStart
HotStart = ResetVectors .

dis (

reset

int(Normal-Operation, Interrupt-Sequence),
Reset-Sequence)

Normal-Operation= aum(t in token, GetNextToken(t) . Interpret(t))
Normal-Operation

Interrupt-Sequence= rec-alarm . ScanKeyBoard. ScanSerialPort

ScanKeyBoard =
sum(b in BOOL, key-pressed(b) .
case b

Interrupts and Disabling 83

= true do sum(k in key, get-key(k) . put(KbdBuffer, k)) od
= false do skip od)

ScanSerialPort
sum(b in BOOL, data-arrival(b)
case b

= true do aum(d in data, get-datum(d)
put(SerBuffer, d)) od

= false do skip od)
Reset-Sequence= rec-reset-signal

System= prio(DisSet, prio(IntSet,

Hot Start

ColdStart I I KeyBoard I I SerialPort I I Display I I Clock))
end C64

4. STATES

4.1. GENERAL

The explicit notion of a state and functions controlling the state of a process
were introduced in ACP in [5]. With the state operator the functional approach
to specifying in ACP was enriched (or polluted as some say) with imperative
aspects.

In spite of these discussions, in many cases explicit manipulation of states
can be very useful. In [108], for example, it was demonstrated that an expression
like the following seems to be very natural.

(Ix rl(x) I I Ly r2(y) I I Lz r3(z)) . s4(x+y+z)
The intention is to read in three values, in an order which is immaterial,
followed by an operation depending on these values. Plausible as this seems,
the scope rules for the variables bound by the sum constructs are disobeyed.
Thus the x, y and z variables from the atomic action s4(x+y+z) are not bound,
making this an illegal expression.

In [3] this problem was resolved by expanding the merge to an expression
containing every order of execution of the read actions, with the use of the ACP
axioms. Due to the exponential growth of the length of such an expression, this
is not satisfactory. The state operator (as defined in [5]) offers a simple solution
to this problem by explicitly adding the values read in to the state of the process,
and making it possible to inspect and use the values at any instant.

Adding the state operator to PSF would imply that also action and effect
functions should be defined. These are functions acting on states and atoms,
thus adding this operator imposes a number of predefined data types and
functions on them. Since this is not in accordance with the view on extending
PSF exposed in the introduction, we will propose a simpler construction with
implicitly defined action and effect functions .

84 Extending PSF

In [106] also a variation on the state operator is described. This operator is
called the register operator. It considers an infinite number of registers, labeled
with the natural numbers, each of which can contain a value of some data
domain. Every domain is enriched with a special value undefined, indicating
that a register contains no value.

The approach taken here makes use of state variables, which are similar to
these registers, but are more tailored to PSF.

4.2. STATE VARIABLES

In addition to the static type of variables that already exists in PSF, we introduce
state variables, whose value can change dynamically. The static variables in a
process expression are fixed at binding time, and serve as a sort of shorthand. So
if a static variable once has been assigned a value, it will remain unchanged
within the entire scope of the variable.

The value of a state variable may change during "execution" of the process by
using an assignment action.

4.2.1. Basics

Let V be a collection of state variables. To every variable we assign a type. We
extend the collection of data terms in a straightforward way by allowing data
terms to contain state variables in a correctly typed manner. This collection of
extended data terms is called Dy. Likewise, the collection of atomic actions is
extended to Av by allowing extended data terms as index. Furthermore
assignments of the form [v:=t] will be considered atomic actions, where vis a
state variable and t is an extended data term of the same type. The extended
collection of atomic actions is called Av,Ass· Except for the left hand-side of an
assignment and in a declaration, state variables are always referred to by placing
the name within square brackets.

The var operator serves to introduce state variables in a process expression.
This operator declares the name and type of a state variable, and optionally
gives the variable an initial value. In the following example we define a process
which declares a variable v of sort D, assigns the value d0 to it, performs action
a(do), assigns value f(d0) to v and executes action a(f(do)*f(do)).

var(v in D, [v:=dol. a([v]). [v:=f([v])] . a([v]*[v]))
Using initialization of v, the example looks as follows:

var(v:=do in D, a([v]) . [v:=f([v])] . a([v]*[v]))
Note that these examples are similar, but they do not represent the same

process. This is because the assignment in the first example is an atomic action,
while the initialization in the second example is not. The first expression will
equal the following:

skip . a(d0) • skip . a(f(do)*f(do)),
while the second expression equals

a(do) . skip . a(f(do)*f(do)).
After "execution" an assignment becomes the internal action skip.

States 85

4.2.2. Semantics

We use the special symbol i to indicate that a state variable has no value

assigned yet. For conciseness, in the following tables we will write var(v:= 1 in
D, x) instead of var(v in D, x).

Let v and w (v;tw) be state variables of type D and D' respectively, and let r, s
and t be data terms of type D', D and D respectively, or let r, sand t denote the

special symbol i. For data terms s and t the expression t([v]/s) is the data term t

in which all occurrences of [v] are replaced bys . We define t([v]/1) by i if [v]
occurs int or by t if [v] does not occur int. Likewise for an atomic action a from
Av we define a([v]/s) as the action in which all occurrences of [v] are replaced by

sand a([v]/1) by o if [v] occurs in a or by a if this is not the case. Furthermore a
is an element of Av,Ass·

VAR1 var(v:=S in D, x) = var(v' :=s in D, x([vV[v'])) if [v'] not in sand not in x

VAR2

VAR3

VAR4

VARS

VAR6

VAR7

var(v:=s in D, a) = a([v]/s)

var(v:=s in D, [v:=t)) = skip

var(v:=s in D, [w:=r)) = [w:=r([vVs)]

var(v:=S in D, a.x) = a([vVs) . var(v:=s in D, x)

var(v:=s in D, [v:=t) .x) =skip. var(v:=t([v]/s) in D, x)

var(v:=s in D, [w:=r].x) =

[w:=r([vVs)]. var(v:=S in D, x) if (w] not ins

sum(d in D', [w]=d :-> [w:=r([v)/s)] . var(v:=s([w]/d) in D, x)

otherwise

VA RB var(v:=s in D, x+y) = var(v:=S in D, x) + var(v:=S in D, y)

VAR9 var(v:=s in D, O) = o
VAR 1 0 var(v:=s in D, <f>:->x) = <P(lvVs):-> var(v:=S in D, x)

VAR11 a([v)) = sum(d in D, [v)=d :-> a([v]/d))

VAR 1 2 v'(H, [v:=S)) = [v:=s)

VAR 1 3 v'(H, [v:=S] .x) = [v:=s) . v'(H, x)

VAR 1 4 [v:=s] I a = 8

VAR 1 5 [v:=tl <ls x = [v:=t]

VAR16 a <ls [v:=t) = a

v' is encaps or hide

v' is encaps or hide

table 7 Algebraic laws for state variables

86 Extending PSF

Notes
• Since the collection of atomic actions is extended, we have to reformulate

all algebraic laws for other process operators, which involve atomic actions. In
most of the cases the axioms hold for extended atoms and assignments as well.
This is not the case if a closed action is needed because membership of a set has
to be tested, such as in the axioms for the encaps and the hide operator. Axiom
V AR11 is used in these cases to obtain closed atomic actions in expressions.
From axioms VAR12 through VAR16 it follows that an assignment is always
treated like skip. The axioms for interrupts and disruption are valid only for
assignments and closed actions. The axioms for the priority operator hold only
for closed actions.

• Standard scope rules apply. The first occurrence of v in var(v:=s, x) is the
binding occurrence of variable v. The scope of this variable is expression x. The
term s is not in its scope, so references to v in s are not bound.

• From the equations above it follows that a reference to a variable which is
not initialized yet, leads only to a deadlock if this reference occurs in a normal
action, that is, not in an assignment. Such a reference in an assignment or in
the initialization part of a var operator is not considered harmful.

• In VAR7 we have the condition that [w] does not occur in s to overcome
the following problem. Applying this equation without the condition to the
expression

var(w:=0 in D. var(v:=[w] in D, [w:=1]. a([v])))
results in skip . a(1) instead of the intended meaning skip . a(O).

4.2.3. Operational Semantics

The transition rules for state variables are defined with the use of an explicit

state, which contains all variables and their current values. So a state <I> is a
function from V to the collection of all closed data terms plus the special
symbol i, with the requirement that q,([v]) has the same type as v if it is not
equal to i .

Now, if P is the class of process expressions and S the class of states, the

transition relation ➔ is not a relation on P #A# P, but a relation on (S # P) #

A# (S # P). We also consider the termination relation ➔✓ on (S # P) #A# S.
We will present only the relevant rules concerning state variables. All other
rules extend in a straightforward way to the case with states appended.

In the obvious way we extend the domain of the function <P to the class of all
data terms, with the addition that ¢,(t) = lift contains [v] such that ¢,([v]) = l. An
atomic action a is defined in state <I>, notation J(¢>,a), if a contains no [v] such that

¢,([v]) = l. If J(q,,a) holds, we define ¢,(a) as the function that applies <I> to all data
terms in a.

SVl

SV2

SV3

SV4

J,(qi,a)

<q>,a> ~) <q>,✓>

<4>, [v :=t]> ~p <q>([v]/q>(t)), ✓>

<q>([v]/q>(s)),x> ~ <<!>',✓>

<q>,var(v:=s in D, x)> ~ <q>'([v]/<j>([v])), ✓>

<q>([v]/q>(s)),x> ~ <4>',x'>

<q>,var(v:=s in D, x)> ~ <q>'([vVqi([v])),var(v:=q>'([vl) in D, x')>

table 8 Transition rules for state variables

4.2.4. Recursion

States 87

Together with recursion, state variables make it possible to use process call"
with output parameters. This enables a better modularization, by facilitating the
division of processes into subprocesses.

We consider two kinds of indexing of a process: value and reference
indexing. Value indexing is the standard way of indexing in PSF. This means
that the index of the defining occurrence of a process (that is: in the left-hand
side of a process definition) consists of a data term which may contain static
variables but no state variables. A calling occurrence may consist of a data term
containing both static and state variables . When the process call is evaluated,
the actual values of the state variables in the calling process will be used. The
following specification shows an example of value indexing.

P = var(w:=0 in D, b([w]) . X(3, [w], [w]+l) . b([w])) .
X(p, q, r) = a(p, q, r),

Process P equals the following expression.
b(O) . a(3,0,1). b(O)

The second way of indexing will be called reference indexing. This is the case if
the defining occurrence of a process is indexed with a state variable. The scope
of this variable ranges over the entire right-hand side of the defining equation.
A calling occurrence may consist only of a state variable.

The intuition is that the formal state variable in the definition is identified
with the actual state variable from the calling process. So, if X is defined as
follows:

X([v]) = a([v]). [v:=v+l] . a([v]),
then a call to X with argument [w] occurs in the following expression:

var(w:=0 in D, b([w]) . X([w]) . b([w])).
This process equals the following:

b(O) . a(O) . skip . a(l) . b(l)

88 Extending PSF

Note that the state variable v in the defintion of process X is bound, and thus

subject to a-conversion.
Of course we allow both value indexing and reference indexing in one

process definition, as long as the definitions are left linear and consistent. This
means that a state variable may only occur once in each left-hand side and that
all definitions of the same process name and the same type of arguments agree
on which indices are value type and which are reference type. So the
definitions of processes X and Y are not allowed in the following example.

X([v],[v]) = --not allowed, since not left linear
Y([v]) = ...
Y(O) = ... --not allowed, since the index of Y is not consistent

A call Z(O) is not allowed if Z is defined by
Z([v]) = ...

On the other hand it is allowed to call Z([v]) if Z is defined by
Z(O) = ...

In this case the actual value of variable v will be matched with 0.
Since an index of a defining occurrence may only be a state variable or a term

without state variables, the following definition of P is correct, while the
definition of Q is not.

P(s(x)) = ... --allowed
Q(s([v])) = .. . --not allowed

4.2.5. Semantics of Recursion
The algebraic properties of state variables as arguments of a process name deal
with the two cases of indexing. The first rule tells how to replace state variables
by their value if the variable is in a value index position. The second rule
handles substitution of variables in a reference index position. Let X be a
process name, indexed with both reference and value indices. For ease of
notation we assume that the initial indices of X are reference indices ['Q] and
that the final indices t(['!Q]) are all value indices, that is data terms, possibly
containing state variables ['IQ]. The first state variable in t([!Q]) is [wol- Let r be a

list of data terms without state variables and c; be a substitution of variables.
The expression xq is used to denote that y is a subprocess of x, that is, the
equation x=x+y holds.

VARREC1 X([y], !([~])) = sum(d in D, [wo]=d :-> X([y], !([wo]/d)))

if d is not in!

VARREC2 X([y], rl 2'. cr(P(~]/(y]))

if there is a definition X([w], ~ = P(~]), such that c;~) = r

table 9 Algebraic laws for state variables and recursion

States 89

The first rule states that we may substitute all state variables occurring in a
value reference by a constant value. This is done from left to right, thus
introducing a number of sum-constructs. The second rule states that if we
encounter an indexed process name, which matches some process definition,
we may conclude that its defintion is a subexpression. We use the ~-operator
instead of equality, since the process might match with more than one
definition.

The operational semantics are given in the following table. let X be a process
name, indexed with a list of state variables ['Q] and a list of (extended) data terms
t- The rules state the following. if X is defined by process y and process y can do
an a action then X can do the same action. We require that the formal state
variables [Y!) in y are replaced by the actual state variables ['Q}, ,Of course
variables from ['Q] which occur already in y have to be renamed into a list of
fresh variables fr_J.

R.VREC1

R.VREC2

<cj>,y([y]/[y'])([Y!]/[y]) ~ <<1>',y'>; X([Y!],<P(!)) = y

<cj>,X([Yl,!)> ~ <<P',y'>

<cj>,y([y]/[y'])([Y!]/[y]) ~ <cj>',✓>; X([Y!],cj>(!)) = y

<cj>,X(lYl,!)> ~ <<P',✓>

table 10 Transition rules for state variables and recursion

4.2.6. Input of Data
The feature of state variables can be used to introduce a shorthand notation for
the summation construction which is used for reading in data. If the index of
an atomic action is a state variable prefixed with a question mark, we interpret
this as a summation over all possible values of this variable. So a(?[d]) is
shorthand for sum(e in D, a(e) .[d:=e]), where d is of type D and e is some new
static variable. Now there is a very elegant solution of the parallel input
problem from (108]:

P = var(x in D, var(y in D, var(z in D,
(rl (? [x]) 11
r2 (? [yl) 11
r3(?[z])) . s4(x+y+z))))

So we have the following semantics of this abbreviation.

INP a(?[v1l, ... , ?[vnD =

sum(Wn in Dn, ... sum(w1 in D1, a(w1, ... , Wn), [v1 :=w,J - [vn:=Wn])

table 11 The input operator

90 Extending PSF

For reasons of clarity the arguments of action a not starting with a question
mark are left out. The general case follows easily from this definition.

If two input variables are equal, it follows that the value read in for the
rightmost occurrence will be the final value of that variable.

4.2.7. Remarks

Note that the use of state variables makes it possible to define (sub)processes
with output parameters. This way a process can be split into subprocesses more
easily, resulting in better support of information hiding principles.

After having introduced state variables it is also possible to define other
imperative constructs like while loops. In the following example the process X
is defined by repeatedly executing Y, as long as the equation s=t holds. The data
term b is a boolean expression, which may contain state variables.

X = while b do Y od
A possible definition which makes use of an additional skip action could be

X = case b = true do Y . X od
= false do skip od

Extensions of this kind will not be considered in more detail.

4.2.8. Relation with the State Operator

We can relate the var-operator easily to the state operator (A) from [S] in the
case that all data terms involved are closed. Every var operator relates to one
application of the state operator, with the variable as object and its sort united

with i as domain. The action and effect functions result directly from the
axioms above.

In the context of recursion and open data terms, the notion of a state variable

provides more than a useful abbreviation scheme for the A-opera tor.
Occurrence of a state variable as index of a process name now can be used to see
a recursive process call as a procedure call with output parameters.

4.3. AN APPLICATION: ASYNCHRONOUS COMMUNICATION

Communication between processes in PSF is synchronous in the sense that
both parties have to take part in the communication at the same instant. In
some cases this might not be the desired situation, if for example the sending
party only wants to deliver a message, without waiting for synchronisation
with the receiver.

Asynchronous communication in ACP was first discussed in [27], where a
mechanism was defined that used some newly introduced operators. In [14] the
state operator was used for this purpose. In the following section we study the
use of state variables to model asynchronous communication between
processes.

The basic idea is that messages can be passed asynchronously by using shared
state variables. The type of the shared variable indicates which kind of
queueing mechanism is used. This leads to a flexible definition of a message

States 91

queue. Consider for example a regular FIFO-queue to store incoming messages,
as defined in the following algebraic specification.

data module Queues
begin

parameters Data
begin

aorta
Data

functions
default -> Data

end Data

exports
begin

aorta
Queue

functions
empty
add Data

end

enq
top
pop
empty

imports
Booleans

variables

Data
Queue
Queue
Queue

d,e -> data
q : - > Queue

equations

ii Queue
Queue

-> Queue
-> Queue
-> Queue
-> Data
-> Queue
-> BOOL

[1] enq(d, empty) = add(d, empty)

--enqueue

[2] enq(d, add(e, q)) = add(e, enq(d, q))
[3] top(empty) = default
[4] top(add(d,q)) = d
[5] pop(empty) = empty
(6] pop(add(d,q)) = q
[7] empty(empty) = true
[8] empty(add(d,q)) = false

end Queues

at the back

Using this queue we define a system consisting of a producer and a consumer.
The producer reads some data element from its input channel and enqueues
this element in the queue. The consumer checks whether the queue is empty
and if this is not the case, the top element is processed, that is, sent to the
output channel. Although it looks as if the consumer deadlocks when the
queue is empty, the overall system can make progress because the producer can
do an input action.

92 Extending PSF

process module Asynchronous-Communicati on-with-Queue
begin

exports
begin

processes
Prod Queue
Cons Queue
System Queue

atom■

input Data
output Data

end

imports
Queues

variable a
q: -> Queue

definitions
Prod([q]) aum(d in Data, input(d) . [q:=enq(d, [q])] . Prod([q]))
Cons([q]) = case empty([q])=false

do output(top([q])) . [q:=pop([q])] . Cons([q]) od
System= var(q:=empty in Queue, Prod([q]) 11 Cons([q]))
end Asynchronous-Communication-with-Queue

Note that the semantics of the conditional choice and the parallel composition
lead to the observation that between testing whether the queue is not empty
and sending the top of the queue to the output, there is no possibility for the
producer to alter the contents of the queue. Thus we have an implicit locking
mechanism which is necessary for correct operation of the system.

In this way any queueing mechanism which can be expressed in an algebraic
specification can be used, such as bounded queues, priority queues and stacks.
As straightforward as this seems, there is a problem in locking the queue. This
occurs if we replace the queue in the previous example by a stack, as defined in
the following module.

data module Stacks
begin

parameters Data
begin

aorta
Data

functions
default -> Data

end Data

exports
begin

aorta
Stack

functions
empty - > Stack
add : Data t Stack-> Stack

enq
top
pop
empty

end

imports
Booleans

variables

Data
Stack
Stack
Stack

d,e -> data
q : -> Stack

equations

Stack

[1'] enq(d, q) = add(d, q)
[3] top(empty) = default
[4] top(add(d,q)) = d
[5] pop[(empty) = empty
[6] pop(add(d,q)) = q
[7] empty(empty) = true
[8] empty(add(d,q)) = false

end Stacks

-> Stack
-> Data
-> Stack
-> BOOL

process module Asynchronous-Communication-with-Stack
begin

exports
begin

proc•••••
Prod Stack
Cons Stack
System Stack

atoma
input Data
output Data

end

imports
Stacks

variables
q: -> Stack

definitions

States 93

Prod([q]) aum(d in Data, input(d) . [q:=enq(d, [q))] . Prod([q]))
Cons([q]) = case empty([q])=false

do output(top([q])) . [q:=pop([q])] . Cons([q]) od
System= var (q:=empty in Stack, Prod([q)) 11 Cons([q]))

end Asynchronous-Communication-with-Stack

Now the producer can add a new element just after the consumer reads the top
of the stack and just before the consumer removes it from the stack. An
example of an incorrect execution is the following (the skip actions are suffixed
with the actions they originate from):

94 Extending PSF

input {d) . skip [q=add {d, empty) J • output {d) . input {e) .
skip[q=add(e,add(d,empty))) . skip[q=add{d,empty)) . output{d)
skip[q=empty]

The source of this problem is that reading the top of the stack and removing it
are two separate atomic actions, which allow other actions to happen in
between. A possible solution to this problem is to give the queue a more
complex structure, which we will call a buffer. This buffer consists of the queue
itself and the most recently popped data element.

data module Buffers
begin

exports
begin

aorta
Buffer

functions
pair Stack f Data-> Buffer
enq Data f Buffer-> Buffer
top Buffer-> Data
pop
empty

end

imports
Stacks

variables

Buffer-> Buffer
Buffer-> BOOL

d, e : -> data
q : -> Stack

equations
(1) enq{d, pair{q,e)) = pair(enq{d,q), e)
(2) pop{pair{q,e)) = pair{pop{q),top{q))
(3) top{pair{q,e)) = e
(4) empty{pair{q,e)) = empty(q)

end Buffers

The specification of the system now looks as follows:

Prod{ [q]) = aum{d in Data, input {d) . [q:=enq{d, [q]) J • Prod{ [q]))
Cons{[q]) = case empty{[q))=false

do [q:=pop{[q))) . output{top{[q])) . Cons{[q)) od
System var{q:=pair{empty, default) in Buffer,

Prod{ [q)) 11 Cons { [q)))

One can come up with another solution which consists of a generalization of
assignment actions. The idea is based on the observation that the queue is not
locked while the consumer is in its critical region. This locking is easily
established if we group multiple assignments into one atomic action. In this
setting, the following specification of the consumer would suffice.

Cons ([q)) case empty([q))=false
do var(temp in Data,

od

[temp:= top([q)}; q:= pop([q)))
output ([temp))) . Cons ([q))

States 95

Here the semicolon is used to separate the assignments and the intended
semantics is the obvious semantics.

It is worthwile to note that this treatment of asynchronous communication
does not reflect the situation in most object-oriented programming languages
where every object claims a queue as its own property. In the setting described
above, the producer, and, in fact, any other process that shares the queueing
variable, has the possibility to alter the contents of the queue other than by
means of enqueing a message. Exactly the same problem holds for the setting
with synchronous communication, where a communication channel does not
belong to a pair of two processes that want to communicate along that channel,
but to any process willing to write or read on the channel. Still a setting where
each object has a clear identification and a private message queue might be
desirable.

5. AN EXAMPLE

In the following example we will use the new features introduced in this
chapter. This example shows the operation of a television control. The
behaviour was reconstructed using reverse engineering on an existing tv set.

We start with a specification of the Booleans with values true and false.

data module Booleans
begin

exports
begin

aorta
BOOL

functions
true -> BOOL
false : -> BOOL

end

end Booleans

The state of some properties can be on or off. States are toggled by applying the
not function.

data module Status
begin

exports
begin

aorta
Status

96 Extending PSF

function•
on
off

-> Status
-> Status

not
end

Status-> Status

equation•
[1] not(on) = off
[2] not(off) - on

end Status

Volume and brightness can have a value in a subrange of the naturals. The
minimum value is O and the maximum value is 20. The optimal adjustment
med is at 10. Within its range, a value can be incremented and decremented.

data m.odul.e Values
begin

export•
begin

aorta
Val

function•

end

0
s Val
inc Val
dee Val
max
med

import•
Booleans

function•

->
->
->
->
->
->

Val
Val
Val
Val
Val
Val

lt : Val f Val-> BOOL

variabl.ea
x, y: -> Val

equations
[1] max s (s (s (s (s (s (s (s (s (s (

s (s (s (s (s (s (s (s (s (s (0)))))))))))))))))))) --20
[2] med s(s(s(s(s(s(s(s(s(s(0)))))))))) --10
[3] inc(x) = s(x) when lt(x, max) true
[4] inc(x) = x when lt(x, max) = false
[5] dec(s(x)) =x
[6] dec(0) - 0
[7] lt(0, s(y)) true
[8] lt(x, 0) = false
[9] lt(s(x), s(y)) = lt(x, y)

end Values

There are a number of keys to control volume, brightness, channel and teletext.
The quiet key toggles between no volume and the current volume, the optimal

An Example 97

key resets all values, toggle-tt switches teletext on and off. The keys O up to 9 are
used to select a channel. The number of the selected channel is of type Val and
can be computed by the function val.

data module Keys
begin

exports
begin

sorta
Key

function■

up-vol - > Key
dwn-vol -> Key
up-bri -> Key
dwn-bri -> Key
quiet -> Key
optimal -> Key
toggle-tt: -> Key
suspend -> Key
0-key -> Key
1-key - > Key
2-key -> Key
3-key -> Key
4-key -> Key
5-key -> Key
6-key -> Key
7-key -> Key
8-key -> Key
9-key -> Key

val
end

Key-> Val

imports
Values

equations
[1] val(up-vol)
[2] val(dwn-vol)
[3] val (up-bri)
[4J val(dwn-bri)
[SJ val (quiet)
[6] val(optimal)
[7J val(toggle-tt)
[BJ val(suspend)
[9J val(0-key)
[l0J val(l-key)
[11] val(2-key)
[12J val (3-key)
[13] val(4-key)
[14] val(S-key)
[15] val(6-key)
[16J val(7-key)
[17] val(B-key)
[18] val (9-key)

end Keys

0
0

= 0
0

= 0
0
0

- 0
0

= s (0)
= s (s (0))

s (s (s (0)))

- s(s(s(s(0))))
s (s (s (s (s (0)))))

= s(s(s(s(s(s(0))))))
= s(s(s(s(s(s(s(0)))))))
= s(s(s(s(s(s(s(s(0))))))))

s (s (s (s (s (s (s (s (s (0)))))))))

98 Extending PSF

A television set consists of a number of components. These components are
not specified, but their names are used for addressing messages. We assume
controls for powering down (parts of) the television set, for sound, display,
teletext and channel selection. Furthermore there is a small light to give user
feedback and a memory to store status information when the television is
switched off.

data module Components
begin

export ■

begin
aorta

Component
function■

and

power-control
sound-control
display-control
tt-control
chan-control
led
mem

and Components

- > Component
-> Component
-> Component
-> Component
- > Component
- > Component
- > Component

Messages that are sent to the various components consist of a value or a status.
The LED can receive a flash message.

data module Messages
begin

export ■

begin
aorta

Message
function■

msg Val - > Message
msg
flash

Status-> Message
-> Message

and

import■

Values, Status

end Messages

The process TV-Control starts with a power-on action, followed by reading in
the stored values of channel, volume and brightness. Then it continues with
the process Control, initialized with these values, while ttstat, suspend and
qstat are off and the oldvolume is 0. This means that teletext is not active, the
television is not suspended and that the sound is not switched off.

An Example 99

Operation of the TV-Control can be disrupted by a power-off action at any
instant. Before actually quitting, there is some time left to store the current
values of channel, volume and brightness in memory for later use.

The Control process starts by receiving a key press. Then, depending on
whether the television is suspended or not, this key is interpreted. After
suspension, operation can only be resumed if a number key is pressed. This
then becomes the active channel.

If operation is not suspended, the keys have the following result. Pressing
the suspend key forces suspension. The volume and brightness controls
determine the values of vol and bri. Sound can be turned off temporarily by
pressing the quiet key. Pressing it a second time restores the old volume.
Standard values for volume and brightness can be set using the optimal key.
Toggling teletext on and off is done with the toggle-tt key. If teletext is on, the
keys O up to 9 control the displayed page. Otherwise they control the channel.

process module TV-Control
begin

exports
begin

atoms
r : Component# Message
s : Component t Message
receive : Key
power-on, power-off

proc•••••
TV-Control
Control : Val t Val t Val f Status t Status t Status t Val

end

imports
Status, Keys, Messages, Components

variable•
chn, vol, bri, col, oldvol : -> Val
ttstat, susp, qstat : -> Status

definitions
TV-Control=

var(chn in Val, var(vol in Val, var(bri in Val,
var(ttstat:=off in Status, var(susp :=off in Status,
var(qstat:=off in Status, var(oldvol:=O in Val,

power-on.
dis(r(mem, msg(?[chn]))

r(mem, msg(?[vol]))
r(mem, msg(?[bri]))
Control([chn], [vol], [bri], [ttstat],

power-off .
s (mem, msg ([chn]))
s(mem, msg([vol]))

[susp], [qstat], [oldvol]),

s (mem, msg ([bri J))))))))))

100 Extending PSF

Control ([chn], [vol), [bri), [ttstat], [susp), [qstat], [oldvol))
var (k in Key,

receive(?[k))
ca••
[susp) = off

do
s(led, flash)
case [kl

suspend

up-vol

dwn-vol

up-bri

dwn-bri

= quiet

optimal

do [susp:=on) .
s(power-control, msg([susp))) od

do [vol :=inc ([vol))) .
s(sound-control, msg([vol])) od

do [vol:=dec([vol))).
s(sound-control, msg([vol])) od

do [bri :=inc ([bri))) .
s(display-control, msg([bri))) od

do [bri :=dee ([bri])] .
s(display-control, msg([bri])) od

do case qstat
off do [oldvol:=[vol]).

[vol:=OJ. [qstat:=on] od
= on do [vol:=[oldvol]) .

[qstat:=off] od
s(sound-control, msg([vol))) od

do [vol: =med] .
s(sound-control, msg([vol)))
[bri:=med) .
s(display-control, msg([bri])) od

toggle-tt do [ttstat:=not ([ttstat])) .
s(tt-control, msg([ttstat))) od

0,1,2,3,4,5,6,7,8,9
do case ttstat

od .

on
do s(tt-control, msg(val([k)))) od
off
do [chn:-val([k])).

s(sound-control, msg(O))
s(chan-control, msg([chn)))
s(sound-control, msg([vol))) od

Control([chn], [vol), [bri], [ttstat],
[susp], [qstat), [oldvol))

on
do case k

0,1,2,3,4,5,6,7,8,9

od
end TV-Control

do s (led, flash) . [susp:=off) .
[ttstat:=off) . [oldvol:=OJ .
s(power-control, msg([susp)))
[chn:-val([k))) . s(chan-control, msg([chn))) .
s (sound-control, msg ([vol))) .
s(display-control, msg([bri])) .
Control([chn], [vol], [bri), [ttstat),

[susp], [qstat], [oldvol]) od
suspend, up-vol, dwn-vol, up-bri,

dwn-bri, quiet, optimal, toggle-tt
do Control ([chn), [vol), [bri), [ttstat),

[susp), [qstat), [oldvol)) od

Conclusion 101

6. CONCLUSION

The orientation of PSF on ACP and the fact that PSF is meant to be a computer
manageable formalism seem to be in contradiction. New operators are
continuously added to ACP, in order to increase the expressiveness, to obtain
more concise specifications or to make verification easier. In contradiction with
this, a computer formalism should remain stable and new releases of such a
language should be scarce and backwardly compatible.

The best way to manoeuvre through this contradiction is to find a
compromise between stability and extendability. New features should only be
added if they have proven to be very useful, or even to be necessary, for
specification or verification purposes. This is to be established in case studies.

A requirement for such extensions will also be that the impact on the
specification language will be as small as possible. Thus the addition of a new
operator should result only in the addition of new syntax for this operator.
Addition of a new process operator will only influence the definition of process
operators, without altering the modularization concept or the way in which
data types are specified. This requirement sometimes makes it necessary to
make a redesign of the operators involved, instead of simply copying them.
This could be the case for example if a newly introduced process operator makes
assumptions on the structure of the data types, such as the existence of
predefined functions or sorts.

As a last requirement it is stated that newly introduced process operators
have a semantics which can be defined using transition rules, in such a way
that these rules can be composed with the existing rules without altering
previously defined operators.

Now let us have a look at the three candidates for extending PSF which are
considered in this chapter. Conditional choices seem to be very useful for
making the control structure of a process execution more visible. It helps to
avoid unnecessary process definitions, which are only added to sum up all
choice alternatives. As a side-effect, the use of conditional choices makes it
possible to consider the subset of PSF which only allows variables as arguments
of the process names at the left hand side of a process definition. The advantage
of this subset is that the equality sign in a process definition does not have to be
interpreted as a summand sign, which resolves some intuitive as well as some
computational problems related to this interpretation.

The second extension studied consists of three operators, which together
enable the specification of interruptable systems. These are the interrupt and
disabling operator, which add the possibility of a process to be interrupted or
disabled at any time, and the modified priority operator which assures that an
interrupting action occurs whenever possible. Instead of introducing the notion
of a partial order on atoms (which is used in the priority operator as defined for
ACP) we modify this operator and use the already existing notion of sets.

The third example, state variables, is a revision of the state operator, for
which the definition of an action and effect function is assumed. State variables
behave as variables in a regular programming language, thus introducing
imperative aspects in the PSF language. They are useful for specifying processes

102 Extending PSF

with parallel input, processes with output parameters and to keep track of the
state of a process.

We may conclude that without major difficulties many extensions of ACP
can be added to PSF at the cost of a simple redesign of the operators involved.
The question which features must be added in a new release of PSF is not
answered yet. Other extensions which are candidate to be part of PSF are real
time process algebra, probabilistic choices and process creation.

To overcome the problems with extending PSF, it might be argued that a real
ACP based specification language should not fix the set of admissible process
operators. Such a language, and of course all its tools, should have this set as a
parameter. Thus the user will have to specify for each use the operators to work
with, their syntax, the axioms which they obey and the transition rules defining
their behaviour. This idea is implemented in the Process Algebra Manipulator
[77].

A drawback of this approach is that tools can only use the information
provided through this parameter, which can have considerable consequences
for the speed of execution of the tools. In the current implementation for PSF
heuristics are used which for example handle combinations of several
operators.

For the moment we restrict ourselves to a language with a predefined set of
process operators.

Chapter 4

A TOOL INTERFACE LANGUAGE

FOR PSF
(with C.}. Veltink)

Syntax and semantics of a Tool Interface Language (named TIL) for PSF (a Process
Specification Language) are defined. TIL is meant to be an intermediate language between
the various tools under development for PSF, such as tools for simulation, verification and
implementation.

1. INTRODUCTION

When creating a programming environment for a specification language for
concurrent systems, there are several reasons not to let the interaction between
the various tools take place at the specification language level. An interface
language can be used to make a layered design, such that tools act on a low
level, while humans can inspect a high level representation. If the structure of
such high level language does not allow for easy parsing and type checking, a
translation to a language that is simpler to parse could be beneficial for the
complexity of the tools. The effort of writing a complex parser and type checker
has to be done only once, while the other tools only need a simple parser to
read the intermediate language.

If the high level language is a member of a set of similar languages with
comparable functionality, the toolkit can easily be adapted for another member
of this group by only writing a new front-end to the intermediate language.

103

104 A Tool Interface Language for PSF

These are the reasons for choosing to use a Tool Interface Language (TIL) for
the toolkit under development for the PSF language.

This approach is similar to the one taken in the RACE project SPECS. There
CRL (Common Representation Language) (98) is used as the greatest common
divisor of several specification languages. Though TIL and CRL differ in the
sense that they both have features that cannot be expressed in the other
language, the main difference is a difference in style. We expect that a
translation from one language into the other will be easy, when (and if) the
missing features are added.

As in CRL, TIL features the notion of a hook, in order to make links to the
high level representation of the specification. This is done using a so called free
format field.

The concept of a tool interface language is not new. The standard Ada
programming support environment is often built around the Diana language
(49), which is an attributed notation for Ada programs. This intermediate
language also allows the tools to store local information and helps in reducing
the overhead in parsing.

In this chapter we present syntax and semantics of TIL. A specification in TIL
consists of a number of tuples, each declaring or defining one item. The
semantics of TIL are defined using initial algebra semantics and action
relations. An example is included, showing a PSF specification and the
corresponding TIL text. A first proposal for the language TIL is in [68), on which
parts of this chapter are based.

1.1. DESIGNING TIL

A Tool Interface Language for PSF has to meet several criteria. First of all from
a semantical point of view it must have the expressiveness of process algebra
(ACP) and algebraic specifications. This will make it possible to give a mapping
from PSF specifications to TIL specifications having the same meaning. Since
the way a PSF specification is split up into modules is immaterial for the
semantics, TIL should not cover these modularization features . Other features
from PSF that are not supported by TIL are: overloading of names, renaming,
parameterization, user-defined operators and tuples of terms over data types.

In contrast to PSF, which should be easily readable for humans, TIL should
be easily accessible by computer tools. Parsing TIL should be easy, while
readability is of minor importance. In many respects TIL can be compared to an
assembler language.

Because TIL is an interface between several computer tools, not known in
advance, it must have a mechanism to allow the tools to insert information of
a type and in a format that is not dictated by TIL. Such free format information
is dependent on the tools themselves.

Altough TIL is used as an interface language for PSF tools, TIL is meant to be
a language not dependent on PSF. It is defined in such a way that simple
extensions will make it suitable for other high level specification languages,
such as LOTOS (67) and µ-CRL [51) .

Syntax ofTIL 105

2. SYNTAX OF TIL

In the following sections the syntax of the Tool Interface Language will be
described . We also explain the use of free formats.

2.1. GENERAL

A specification in TIL consists of a series of tuples. The order in which the
tuples appear is immaterial. A tuple can be viewed as the declaration or
definition of one item, for example a sort name, an equation or a process
definition. (These tuples should not be confused with the data structuring
m echanism of the same name in ASF.)

2.2. TUPLE LAYOUT

For each kind of item we have defined a tuple layout. In general a tuple looks
like:

key definition fr ee-format
The key is the name by which we can refer to the item defined by its definition
throughout the entire specification. The definition field may sometimes be
empty. All keys should be unique in the entire specification. In the free-format
section information concerning the defined item can be recorded, which can be
used to exchange information between the tools. The contents of the free­
format fields are disregarded when determining the semantics of the
specification. We will elaborate on the use of the free formats later.

The general form of a key is the following:
[X.Y]

where X identifies the type of item, and Y is an identifier, used to generate
unique keys. The value of Y must be a natural number. The value of X can be
one of the following:

0 administration
1 sort declaration
2 function declaration
3 atomic action declaration
4 process declaration
5 set declaration and definition
6 communication definition
7 variable declaration
8 equational specification
9 process specification

figure 2.1 Types of a tuple

The meaning of these items and their format are defined below.

106 A Tool Interface language for PSF

Operators (on sets or processes) and predefined processes are denoted by
<id,#arg> or <id>. Here id is an identifier, determining the operation, and #arg
is a natural number, denoting the number of arguments. The following
operators are defined.

<:,n>
<+,n>
<.,n>
<\,n>

<alt,n>
<seq,n>
<par,n>
<sum>
<merge>

<encaps>
<hide>

<skip>
<delta>

<if>
<case>

enumeration of set elements
union of sets
intersection of sets
difference of sets (left associative)

alternative composition of processes (+)
sequential composition of processes (.)
parallel composition of processes (II)
generalized alternative composition (sum)
generalized parallel composition (merge)

encapsulation of atomic actions (encaps)
hiding of atomic actions (hide)

internal action (pre-abstraction)
deadlock action (delta)

conditional expression
multiple conditional expression

figure 2.2 Operators on sets and processes.

There is no precedence defined on the operators. If brackets are omitted,
expressions are associated from left to right.

In the following examples we already include free format fields . These fields
give an example of their use but are not essential for the tuple definition.

Comments A comment starts with a double-hyphen (--) and ends with an
end-of-line. Comments may contain any character but the end-of-line
character.

0 Administration This tuple can be used to store tool dependent informa­
tion about the specification. See the section on free formats for a more
thorough treatment of this kind of information.

[0.1] {<date> 19890811) --This is a comment
This defines an administration tuple with key [0.1], expressing the fact that
the specification was created on a certain date.

1 Sort declaration Declaration of a sort, an abstract data type.
[1.1] { <n> Bool}

This tuple declares a sort which can be referred to by [1.1] . In the free
format section the intended name of the sort is added: Bool. This is
indicated by the <n> expression.

Syntax ofTIL 107

2 Function declaration A function declaration contains the type of the
arguments and the result. The input type may consist of zero or more sort
references, while the output type consists of one sort. The arity (number of
arguments) is also part of the declaration.

[2.1] 2 [1.1] [1.1] [1 .1] {<n> and}
The boolean function and is declared, having two booleans as input and
one boolean as output.

3 Atomic action declaration An atomic action is treated similarly as a
function, but only has an input type.

[3.1] 2 [1.2] [1.1] {<n> read}
The read action has two arguments, the first of which is a sort identified by
[1.2] (a channel for example). The second one is a boolean.

4 Process declaration A process declaration has the same format as the
declaration of an atomic action.

[4.1] 0 { <n> Start}
The process Start has no arguments.

5 Set declaration and definition Sets are used to define a subset of some
previously defined sort. Each set has a sort assigned to it. This sort is given
in the first part of the definition. The second part determines the members
of the set. Sets can be constructed by enumeration and by applying set
operators (union, intersection, difference).

[5.1] [1.3] <:,2> ([2.16] [2.17]) {<n> weekend}
Although for parsing the parentheses in the example are redundant, in
TIL they are demanded for reasons of readability.
Given a sort [1.3] (days of the week) and constant functions of this sort
[2.11] - [2.17] (monday through sunday), we define the set [5.1] (weekend)
containing saturday and sunday only.

[5.2] [1.3] <\,2> ([1.3] [5.11) {<n> working-days}
This defines the complement of weekend.
When enumerating terms, also terms containing variables (ranging over a
sort or a set) may be used. This means that all terms resulting from
substituting closed terms for these variables are member of the set.

[5.3] [1.4] <:,l> ([2.2] ([7.1])) {<n> even-naturals}
Let [1.4] denote the sort integer, [2.2] denote the function double, and let
[7.1] be a variable over sort integer. Now (5.3] defines the set of even­
naturals. Note that variables are implicitely bound by the <:,n> operator.
To be able to create sets of atomic actions, the special "sort" [I.OJ can be used
as the sort associated to such a set.

[5.4] [1.0] <:,3> ([3.2] [3.3] [3.41) {<n> internal-actions}
This defines the set [5.41, containing the actions [3.2] [3.3] [3.4].

6 Communication definition These tuples define the so called communica­
tion function . When two actions are performed in parallel, they can
communicate, which results in a new atomic action. The atomic actions
may contain variables.

[6.1] [3.3] [3.4] [3.5] {<n> Cl}

108 A Tool Interface language for PSF

The result from communication between actions [3.3] and [3.4] is action
[3.5].

7 Variable declaration Variables can be used in tuples of type 5, 6, 8 and 9. A
variable ranges over a sort or a set.

[7.1] [1.41 { <n> m}
A variable of sort [1.4] (integers) with name m is declared .

8 Equational specification In this kind of tuple data types can be defined
using conditional equations. Equations consist of a pair of terms of the
same sort, possibly succeeded by a list of conditions. Variables occurring in
equations are universally quantified.
The following example shows a line from a PSF specification and its
equivalent in TIL.

[BI] and(false,b) = false
[8.1] [2.1] ([2.9] [7.21) = [2.9] {<n> Bl}

Conditions are specified using the <= symbol, followed by the number of
conditions.

[B6] and(b,c) = false when b=true, c=false
[8.2] [2.1] ([7.2][7 3]) = [2.9] <= 2 [7.2] = [2.8], [7.3] = [2.9] {<n> B6}

9 Process specification A process specification consists of two parts. First the
process name, having an appropriate number of terms as arguments. Free
variables in these terms are universally quantified. The second part is the
definition of the process, consisting of a process term without unbound
variables.
The following example shows a line from a PSF specification and its
equivalent in TIL.

X(b) = (skip.send(b) + skip.error) . sum(c in Bool, read(c).X(c))
(9.1] (4.2] ((7.2]) = <seq,2> (<alt,2> (

2.3. CONTEXT-FREE SYNTAX

<seq,2> (<skip> [3.6] ([7.2])) <seq,2> (<skip> [3.9])
<sum> ([7.3] <seq,2> ([3.8] ([7.3])) [4.2] ([7.3])))) 0

In this section we will give the definition of TIL in SDF (Syntax Definition
Formalism) (see [56]). This is a language to specify the lexical syntax, context-free
syntax and abstract syntax of programming languages in a formal way and can
be seen as an alternative to LEX (76] and YACC [70].

module TIL
export•

sorts
Free-Format Free-Format-Char Comment-Char Digit Natural
Id-First-Char Id-Char Id

lexical syntax
[\ n \ t]
- [\ n]
"--" Comment-Char * "\ n"
- [I l
" {" Free-Format-Char* "}"

- > LAYOUT
-> Comment-Char
- > LAYOUT
- > Free-Format-Char
- > Free-Fo rmat

(0-9]
Digit+
[0-9a-zA-Z]
[0-9a-zA-Z'\-]
Id-First-Char Id-Char*

sorts

->
->
->
->
->

Syntax ofTIL

Digit
Natural
Id-First-Char
Id-Char
Id

Specification Entry Administration-Entry Sort-Entry
Function-Entry Atom-Entry Process-Entry Set-Entry
Communication-Entry Variable-Entry Equation-Entry
Definition-Entry Administration-Index Sort-Index
Function-Index Atom-Index Process-Index Set-Index
Communication-Index Variable-Index Equation-Index
Definition-Index Variable-Type Set-Expr Enumeration-Item
Atom-Term Term Equation Equation-Expr Definition-Expr
Process-Head Case-Pair Process-Expr

context-free syntax
11 specification'1 Id Entry* 1'end''

Administration-Entry
Sort-Entry
Function-Entry
Atom-Entry
Process-Entry
Set-Entry
Communication-Entry
Variable-Entry
Equation-Entry
Definition-Entry

-> Specification

-> Entry
-> Entry
-> Entry
-> Entry
-> Entry
-> Entry
-> Entry
-> Entry
-> Entry
-> Entry

109

Administration-Index Free-Format
Sort-Index Free-Format

-> Administration-Entry
-> Sort-Entry

Function-Index Natural Sort-Index* Free-Format
-> Function-Entry

Atom-Index Natural Sort-Index* Free-Format -> Atom-Entry
Process-Index Natural Sort-Index* Free-Format

Set-Index Sort-Index Set-Expr Free-Format
Communication-Index
Atom-Term Atom-Term Atom-Term Free-Format
Variable-Index Variable-Type Free-Format
Equation-Index Equation-Expr Free-Format
Definition-Index Definition-Expr Free-Format

"(0." Natural "]"
"(1." Natural "]"
"(2." Natural "]"
"(3." Natural "]"
II [4 • II Natural "]"
"(5." Natural "]"
"(6." Natural "]"
"[7 • n Natural "]"
"(8." Natural "]"
"(9." Natural "]"

Sort-Index
Set-Index

-> Process-Entry
-> Set-Entry

-> Communication-Entry
-> Variable-Entry
-> Equation-Entry

-> Definition-Entry

-> Administration-Index
-> Sort-Index
-> Function-Index
-> Atom-Index
-> Process-Index
-> Set-Index
-> Communication-Index
-> Variable-Index
-> Equation-Index
-> Definition-Index

-> Variable-Type
-> Variable-Type

110 A Tool Interface Language for PSF

Set-Index
"<:, II Natural
"<+," Natural
"<., " Natural
"<\, II Natural

Term
Atom-Term

Atom-Index

">("
">("
">("
">("

Enumeration-Item+")"
Set-Expr+ ")"
Set-Expr+ ")"
Set-Expr+ ")"

Atom-Index " (·• Term+ ") "

Variable-Index
Function-Inde:<
Function-Index"(" Term+")"

Term"=" Term
Equation
Equation"<=" Natural {Equation","}+

Process-Head"=" Process-Expr

Process-Index
Process-Index "(" Term+ ")"

"=" Term Process-Expr

Process-Head
Atom-Term
"<skip>"
"<delta>"
"<encaps>(" Set-Index Process-Expr ")"
"<hide>(" Set-Index Process-Expr ")"
"<sum>(" Variable-Index Process-Expr ")"
"<merge>(" Variable-Index Process-Expr ")"
"<alt," Natural">(" Process-Expr+ ")"
"<seq," Natural">(" Process-Expr+ ")"
"<par," Natural 11 >(" Process-Expr+ ")"
''<if>('' Term Case-Pair")"
"<case," Natural">(" Term Case-Pair+")"

2.4. CONTEXT-SENSITIVE SYNTAX

- > Set-Expr
-> Set-Expr
-> Set-Expr
-> Set-Expr
-> Set-Expr

- > Enumeration-Item
-> Enumeration-Item

-> Atom-Term
-> Atom-Term

-> Term
-> Term
-> Term

-> Equation
-> Equation-Expr
-> Equation-Expr

-> Definition-Expr

-> Process-Head
-> Process-Head

-> Case-Pair

-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr
-> Process-Expr

A syntactically correct TIL text has to meet some extra conditions, in order to
have a semantical meaning.

• Distinct tuples must have different keys.

• All objects occurring in a specification must be declared and must have
correctly typed arguments (if they have any).

• The communication function defined in the communications section
should be associative and commutative.The atomic actions <skip> and
<delta> cannot take part in any communication action.

• The part of an operator indicating the number of arguments must match
the actual number of arguments.

Syntax of TIL 111

• Variables over sets may only occur in a set definition (5), a communica­
tion definition (6) or in a generalized sum or merge in a process
specification (9).

• The left-hand side and the right-hand side of an equation must have the
same type.

• There should be exactly one binding occurrence of a variable in a process
specification (9). All other occurrences of this variable in that process
specification must be within the scope of the binding occurrence. The
scope of a variable is defined as in PSF in a straightforward way.

• Operators of the form <id,#arg> must have at least two arguments, except
for <:,#arg> and <case,#arg>, which must have at least one argument.

• Set definitions may not contain cyclic references to the set being defined.

• The second number in a key may be any natural number but zero, except
in the definition of a set where the key [1.0] is used to indicate that the set
being defined consists of atomic actions.

2.5. FREE FORMATS

A tuple in a TIL specification may contain a so called free format field. The
contents of a free format field are not subject to syntactical rules defined in this
chapter. We give however a suggestion of how the free format field could be
structured and show how we intend to store information about names and
origin of objects. (Origins are introduced in [201).

The use of the free format field is to allow the exchange of specific
information between the various tools acting on a TIL specification. Take as an
example the information that a specification defines a regular process, which
might be the outcome of a process classification tool. This information can be
used by a verification tool to select a proper algorithm.

Other examples are the fact that the data type specification determines a
confluent term rewriting system or that a data type is defined using a certain set
of constructor functions.

In order to avoid interference of the various kinds of information added by
several tools, we propose some structure on the free format field. We adopt the
convention that the parts of information are preceeded by a tag indicating the
type of information. A tag consists of an identifier enclosed by angle brackets.

The following example shows a free format used to indicate that the
processes defined in the specification are regular.

[0.1] {<class> regular}
The tools acting on a TIL specification all may know of a set of tags, indicat­

ing information relevant to this tool. Of course these sets may overlap if two
tools want to exchange information. The documentation of a tool should
indicate which tags are used for what kind of information. Special care should
be taken that in the complete tool environment all tags have an unambiguous
meaning.

112 A Tool Interface Language for PSF

The free format field in a tuple defining an item can be used to store infor­
mation about that special item. General information about the specification can
be stored in a free format field of an administration tuple.

The following tuple can be inserted by a typechecking tool that succeeded in
checking the typing information in the specification.

[0.2] {<type-check> ok}
As a more complicated example we will demonstrate the use of free formats

to construct so called hooks. A hook is a way to refer to the original
specification from which the TIL specification is derived. This is a way to make
the intermediate TIL level transparant to a regular user of PSF and PSF-tools.
Information generated by a tool acting on TIL in general uses the names of the
items as defined in TIL. These names however do not correspond with the
names in the original specification, so the original names should be
remembered when translating PSF to TIL. The names of the items as they are
known in the outside world are stored in the free formats using a name-tag
<n>. The following PSF fragment

data module junk
begin

export•
begin

aorta
foo

function•
bar: foo - > foo

end
end junk

results in

(1.1] {<n>foo}
[2 . 1 l 1 [1. 1 l [1. 1 l { <n>bar}

Since the name does not uniquely identify an object in PSF (think of hidden
objects), we also need information about the origin of an object. This origin
consists of (a reference to) the name of a module, using an origin-tag <o>. The
names of modules can be stored using module-tags <m>. If we add origin
information, the previous example expands to:

[0.1] {<m>l junk}
[1.1] {<n > foo < o > l}
[2 .1] 1 [1.1] [1.1] {<n>bar <o>l]

In case the top-level name of the object is not the same as the name of that
object in its origin module we can also add the original name, using the <on>
tag. This situation occurs when applying a renaming or when binding a
parameter.

data module top
begin

imports junk
{renamed by

[foo -> A,
bar-> bl

end top

[0.1] {<m>l junk)
[0.2] {<m>2 top)
[1 . 1] {<n>A <o> l <on>foo)
[2.1] 1 [1.1] [1.1] {<n>b <o>l <on>bar]

Syntax of TIL 113

Note that we also included the possibility to add comments to a specification.
These comments are different from free formats, since they are intended to
contain information for a human reader. Just as free formats, they have no
semantical meaning.

3. SEMANTICS

The semantics for TIL are constructed from the semantics of PSF. Note that
there is a canonical mapping of TIL specifications into PSF. Every TIL
specification corresponds to a flat PSF specification, that is a specification
consisting of exactly one data module and one process module. The semantics
of the corresponding PSF specification is equal to the semantics of the TIL
specification.

See the appendix for a list of action rules for TIL.

4. AN EXAMPLE

In this section we give an example of a PSF specification and the corresponding
TIL specification. In the PSF text we used almost all modular constructs in PSF
which are not in TIL. The TIL specification could only be constructed after
normalizing the original specification, that is, flattening the specification until
only one data module and one process module remains.

4.1. RUSSIAN ROULETTE IN PSF

We specify a deadly game in PSF. In the module Booleans the constants true
and false and the functions and and or are defined. The next module contains
the Naturals, including an equality function on the Naturals. The module
Russ ian-Roulette has a parameter Counter, in which the sort COUNT and the
function tick are presumed. The process roulette has one argument of sort
COUNT and behaves as follows. It has the choice of performing a skip action
followed by a click (no bullet) and a restart of the game having the next
chamber active, or it can choose to do a skip, followed by a bang (indeed a

114 A Tool Interface language for PSF

bullet) leading to extermination. Since both possibilities start with a skip action,
the choice is non-deterministic.

In the next module we make a game of the roulette process. This is done by
binding the parameter of Russian-Roulette to the Naturals, renaming some
items and placing a process in parallel that keeps the score as the number of
tries before extermination. This number is the argument of the exterminate
action which is renamed to game-over. If placed in parallel, the game-over
action and the wait action can communicate, which results in a result action.
This way the score is communicated. In order to avoid unsuccessful
communications, all actions from set H are encapsulated. This way they can
only occur in a communication. Since we are only interested in the result of the
game, all internal actions are hidden.

data module Booleans
begin

export•
begin

aorta
BOOL

function•
true -> BOOL
false: -> BOOL
and BOOL f BOOL -> BOOL
or BOOL # BOOL -> BOOL

end

function•
not : BOOL -> BOOL

variables
x, y -> BOOL

equations

[Bl] not (true) false
[B2] not(false) true
[B3] and(x,true) = x
[B4] and(x,false) false
[BS] or(x,y) - not(and(not(x),not(y)))

end Booleans

data module Naturals
begin

exports
begin

aorta
NAT

functions
zero - > NAT
succ
equal

NAT - > NAT
NAT j/ NAT - > BOOL

end

imports
Booleans

variable a
x, y

equations

-> NAT

[Nl] equal(zero,zero)
[N2) equal (zero, succ (y))
(N3] equal(succ(x),zero)
(N4) equal(succ(x),succ(y))

end Naturals

true
false
false
equal(x,y)

process module Russian-Roulette
begin

parameter a
Counter

begin
aorta

COUNT
functions

tick COUNT
end Counter

exports
begin

atoms

-> COUNT

exterminate : COUNT
proc•••••

roulette : COUNT
aeta of atoms

Internals= { click, bang)
end

atoms
click, bang

variables
c : -> COUNT

definitions

roulette(c) skip
skip

end Russian-Roulette

click . roulette(tick(c)) +
bang. exterminate(c)

An Example 11 5

116 A Tool Interface language for PSF

process module Game
begin

import•
Russian-Roulette

Counter
bound by

[COUNT -> NAT,
tick -> succ l

to Naturals
renamed by

[exterminate-> game-over,
roulette ->game] }

atoms
wait, result NAT

processes
play

sets of atoms
H ~ { game-over (score) I score in NAT}

+ { wait (score) I score in NAT }

communications
game-over (score) I wait (score) result(score) for score in NAT

definition•
play= hide(Internals, encap■ (H,

game(zero) II aum(score in NAT, wait(score)))}

end Game

4.2. RUSSIAN ROULETTE IN Tll

This time the specification is written down in TIL. The items are grouped by
sort, but the order is immaterial. In the free formats references are added to the
original PSF specification.

[0 .1] { <m> l Booleans }

[0 . 2] { <m>2 Naturals }
[0. 3] { <m>3 Russian-Roulette}
[O. 4 l { <m>4 Game }

[1.1] <n>BOOL <o>l}
[1. 2] { <n>NAT <o>2}
[2. l] 0 [1.1] { <n>true <o>l}
[2. 2 l 0 [1.1] { <n>false <o>l}
[2. 3] 2 [1.1] [1.1] [1.1] { <n>and <o>l}
[2. 4] 2 [1.1] [1.1] [1.1] { <n>or <o>l}
[2.5] 1 [1.1] [1.1] { <n>not <o>l}
[2. 6] 0 [1.2] { <n>zero <o>2)
[2. 7 l 1 [l. 2] [l. 2 l { <n>succ <o>2}
[2. 8] 2 [1. 2] [1. 2] [1.1) { <n>equal <o>2}
[3 .1] 1 [1.2] { <n>game-ove r <on>exterminate <o>3}
[3.2] 0 { <n>c lick <o>3}
[3.3] 0 { <n>bang <o>3}

An Example 11 7

(3.4] 1 (1.2]
(3.5] 1 (1.2]
(4 .1] 1 (1.2]
(4 .2 l o

{ < n>wait
<n>result

{ <n>game <on>roulette
{ <n>play

<o>4)
<o>4)
<o>3)
<o>4)
<o>3) (5.1]

(5.2]

(6 .1]
[7 .1]
[7 .2 l
[7 .3]
[7. 4 l
[7 .5]
[7.6)
[7. 7]

(7. 8]
[7. 9]
[8.1]
[8.2]
[8.3]
[8. 4 l
[8.5]

[8. 6]
(8.7)
[8. 8]
[8.9]

[9 .1]

[9.2]

(1.0] <:,2>([3.2] (3.3]) { <n>Internals
[1.0] <+,2>(<:,1>([3.1] ([7.6])) < :,1>((3.4] ([7.7])))

[3.1]([7.8]) (3.4]([7.8]) (3.5]([7.8])
[1.1]
[1.1]
[l. 2]
[l. 2]
[1. 2]
[l. 2]
[1.2]
[1.2]
[1.2]
(2.5] ((2.1]) = (2.2]

{ <n>H <o>4)
<o>4)

<n>x <o>l)
<n>y <o>l)
<n >x <o>2)
<n>y <o>2)
<n>c <o>3)

{ <n>score <o>4)
{ <n>score <o>4)
{ <n>score <o>4)
{ <n>score <o>4)

I <n>[Bl] <o>l)
{ <n>[B2] <o>l) [2.5] ([2.2]) = [2.1]

[2.3] ([7.1] [2.1])
[2.3]([7.1] [2.2])
[2.4] ([7.1] [7.2]) =

[7.1] { <n>[B3] <o>l)
[2.2] { <n>[B4] <o>l}
[2.5] ([2.3] ([2.5] ([7.1]) [2.5] ([7.2])))

[2.8] ([2.6] [2.6]) = [2.1]
(2.8] ([2.6] [2.7] ((7.4])) = [2.2]
[2.8] ([2.7] ([7.3]) [2.6]) = [2.2]
[2.8] ([2.7] ([7.3]) [2.7] ([7.4]))

[4.1] ([7.5]) = <alt,2>(

I <n>[B5] <o>l)
{ <n>[Nl] <o>2)
{ <n>[N2] <o>2)
{ <n>[N3] <o>2)

[2.8] ([7.3] [7.4])
{ <n>[N4] <o>2)

<seq,3>(<skip> [3.2] [4.1] ([2.7] ([7.5])))
<seq,3>(<skip> [3.3] [3.1] ([7.5])))

{ <o>3)
[4.2] <hide>([5.1] <encaps>([5.2] <par,2>([4.1] ([2.6])

<sum>([7.9] (3.4] ([7.9])))))
{ <o>4)

5. CONCLUSION

We have defined a language meeting the criteria given for an intermediate
language.

The language has the expressive power of PSF and provides the notion of
free formats to include tool dependent information. This feature can be
especially useful for creating so called hooks to the source language.

TIL is already being used as the core-language of the PSF toolkit. An interface
to the ACP tools developed at PTT-research [110] is implemented, while
interfaces to other tools are under construction.

We claim that other languages based on a combination of algebraic
specification and process algebra can easily be translated to TIL. Of course we
should extend the TIL language with the specific process operators used in
other languages, however this can easily be done. Thus we reveal the

possibilities of the PSF toolkit for languages as LOTOS [67], PSF/C [11] andµ­
CRL [51].

118 A Tool Interface language for PSF

APPENDIX A. ACTION RULES

In this appendix we will define the operational semantics for the process
definition part of TIL with the aid of so-called action rules . Action rules in ACP
are introduced in [47] .

A.1. PROCESS DEFINITIONS

A process definition in general looks as follows:

• X(t1(:0, ... , tn(:Q)) = y(-y) ;

:1Z. is a list of variables declared in the variables tuples.
t; is a term from the data specification part, possibly containing some
variables from the list Q..
X is a process name.
y is a process expression.

All closed data terms occurring in a process definition should be looked upon
as a notation for the corresponding equivalence class of this term, in the initial
algebra. It would have been more accurate if we would have written a term t as
[t]. However, we leave out the brackets for reasons of readability.

A.2. ACTION RULES FOR TIL

For each element [a] of the initial algebra of atomic actions we define a binary

relation ~ and a unary relation ~ V on closed process expressions. If a is an

atomic action, and [a] its equivalence class (so [a] E IA), we write~ instead of~-

x ~ y means that the process expression represented by x can evolve into
y, by executing the atomic action [a] .

x ~ V means that the process expression represented by x can terminate
successfully by executing the atomic action [a]. The special symbol v
can be looked upon as a symbol indicating successful termination of
a process. It is not a process expression.

The relations ~ are generated by the rules in the following tables, i.e. x ~ y
only holds if this can be derived using these rules.

In the following tables we will use some symbols that have a special meaning.
These symbols are:

• a,b,c : atomic actions or <skip>.

• x,y,x',y' : variables on processes, i.e. we can substitute any process for
these variables.

Action Rules 119

• !: : a list of process variables (x1 . . . Xn).
;tit/x;]: a substitution of term t at position i in list,!_.
,!_\x; : the list obtained by deleting the element at position i from list,!_.

• Dom(d) : the set associated with variable d, as defined in the variable
declaration of d.

I Dom(d) I : the number of elements in the domain of d.
Along with some of the rules we will give an explanation:

• <par>
- a I b = c means that the communication between a and b has been

defined to be c.

• <encaps>
- H : the set of atomic actions that have to be encapsulated.

• <hide>
- I : the set of atomic actions that have to be renamed into skip.

• rec .

- Y.E 12. means u1E D1, UzE D2, . . . , UnE Dn
- g = (u1, u2, ... , Un)
- J2. = (D1, D2, ... , Dn)
- D; is a sort.

- y(g) : a process expression with a list of terms :!:fE J2.. as parameters.
- X : a process name declared in a process declaration tuple as X n D1

D2 ... Dn
- X(:!:f) = y(:!:f) : an equation from a definition tuple.

• <sum>
- dis a variable.

a ✓ atom a ➔

Xj ~ X' (15i5n}
<alt> 1

... Xn) ~ x' <8,0>(X1

Xj ~ ✓ (15i5n)
<alt> 2

. .. Xn) ~ ✓ <8,0>(X1

x1 ~ x'
<seq> 1

<S,n>(X1 ... Xn) ~ <S, n>(X' x2 . .. Xn)

x1 ~ ✓ (n>2)
<seq> 2

<S, n>(X1 ... Xn) ~ <S ,n-1>(x2 . .. Xn)

120 A Tool Interface language for PSF

<seq> 3

<par> 1

<par> 2

<par> 3

<par> 4

<par> 5

<par> 6

<par> 7

<par> 8

<par> 9

<encaps> 1

<encaps> 2

<hide> 1

Xj ~ ✓

<S,2>(x1 x2) ~ x2

x; ~ x' (15i5n)

<p,n>(X1 ... xn) ~ <p,n>(is.[x'/x;l)

x; ~ ✓ (15i5n ; n>2)
a

<P,n>(x1 ... Xn) ➔ <P,n>(lS.\xj)

Xj ~ ✓ (15i,j52; i~j)
a

<P,2>(x1 x2) ➔ Xj

x; ~ x'; x; ~ x"; alb=c (15i5n; 15j5n; i~j)

<p,n>(x1 ... Xn) ~ <p,n>{ll.(x'/x;](x"/xjl)

x; ~ x'; x; ~ ✓; a lb=C (15i5n; 15j5n; n>2; i~j)
C

<p,n>(X1 ... Xn) ➔ <p,n-1>{ll.(x'/x;]\Xj)

x; ~ x'; x; ~ ✓; alb=c (15i5n; 15j5n; i~j)

<p,2>(x1 x2) ~ x'

x; ~ ✓; x; ~ ✓; alb=c (15i5n; 15j5n; i~j; n>3)
C

<p,n>(x1 ... xn) ➔ <p,n-2>(is.\x;\xj)

x; ~ ✓: x; ~ ✓; alb=c (15i53; 15j53; i~j)
C

<P,3>(x1 x2 x3) ➔ is_\x;l xj

x; ~ ✓; x; ~ ✓; alb=c (15i52; 15j52; i~j)

<p,n>(x1 ... Xn) ~ ✓

x ~ x'; ai H

<encaps>(H x) ~ <encaps>(H x')

x ~ ✓; ai H

<encaps>(H x) ~ ✓

x ~ x'; ae I

<hide>(I x) <Skip> <hide>(I x')

<hide> 2

<hide> 3

<hide> 4

rec. 1

rec. 2

<sum> 1

<sum> 2

<merge> 1

<merge> 2

<merge> 3

<merge> 4

<merge> 5

<merge> 6

<merge> 7

<hide>(l x) <Skip> ✓

x ~ x'; ae I

<hide>(! x) ~ <hide>(I x')

x ~ ✓; ae I

<hide>(l x) ~ ✓

Y(J.l) ~ y' (J.L e 0 ; X (.!J.) = y(.!J.))

X(J.t)~ y'

Y(JJ.) ~ ✓ (JJ.e D; X(.!J.) = y(.!J.))

X(JJ.) ~ ✓

x(u) ~ x' (ue Oom(d))

<SUm>(d x(d)) ~ x'

x(u) ~ ✓ (ue Dom(d))

<SUm>(d x(d)) ~ ✓

x(u) ~ x' (/Dom(d)/> 1; ue Oom(d) ; Oom(d')=Dom(d) \{u))

<merge>(d x(d)) ~ <P,2>(x' <merge>(d' x(d')))

x(u) ~ ✓ (/Oom(d)/> 1; ue Dom(d) ; Dom(d')=Dom(d) \{u})

<merge>(d x(d)) ~ <merge>(d ' x(d'))

x(u) ~ x' (Dom(d)={u})

<merge>(d x(d)) ~ x'

x(u) ~ ✓ (Oom(d)={u})

<merge>(d x(d)) ~ ✓

Action Rules 121

a b
x(u) ➔ x'; x(v) ➔ x"; alb=c (/Dom(d)/>2; u,veDom(d); Dom(d')=Dom(d)\{u,v})

<merge >(d x(d)) ~ <P,3>(x' x" <merge>(d' x(d')))

x(u) ~ x'; x(v) ~ { alb=c QDom(d)/>2; u,veDom(d) ; Oom(d')=Dom(d)\{u,v})

<merge>(d x(d)) ~ <P,2>(x' <merge>(d' x(d ')))

x(u) ~ ✓; x(v) ~ { alb=c (/Dom(d)/>2; u, ve Dom(d); Dom(d')=Dom(d)\{u, v})

<merge>(d x(d)) ~ <merge>(d' x(d'))

122 A Tool Interface language for PSF

<merge> 8

<merge> 9

<merge> 10

<if> 1

<if> 2

<case> 1

<case> 2

a b
x(u) ➔ x'; x(v) ➔ x"; alb=c (Dom(d)={u, v})

<merge>(d x(d)) ~ <P,2>(x' x")

a b ✓ x(u) ➔ x'; x(v) ➔ ; alb=c (Dom(d)={u, v})

<merge>(d x(d)) ~ x'

x(u) ~ ✓; x(v) ~ ✓; alb=c (Dom(d)={u, v})

<merge>(d x(d)) ~ ✓

X ~ X' (S=f}

<if>(S=I x) ~ x'

X ~ ✓ (S=f}

<if>{S=I x) ~ ✓

Xi ~ x'; S=li (1 sisn)

<Case,n>(S 11 x1 .. . In Xn) ~ x'

Xi ~ ✓; S=li (1Si5n}

<Case,n>(S 11 x1 ... In Xn) ~ ✓

figure A.1 Table of action relations.

A.3. PROCESS SEMANTICS

Now that we have defined the action relations for TIL we are able to assign a
semantics to processes. In this case we define bisimulation [94] on top of these
action relations.

A bisimulation is a binary relation R on process expressions, satisfying:

• if pRq and p ~ p', then 3q': q ~ q' and p'Rq' ([a] E IA)

• if pRq and q ~ q', then 3p': p ~ p' and p'Rq' ([a] E IA)

• if pRq then p ~ ,I, if and only if q ~ V ([a] E IA)
If there exists a bisimulation R on process expressions with pRq, then p and q
are called bisimilar, notation p ttq. Bisimulation is an equivalence relation.

Process terms are interpreted in the semantic domain that is obtained by
taking process expressions modulo bisimulation.

Chapter 5

SPECIFICATION AND VERIFICATION

OF CIM-ARCHITECTURES

Flexibility of a manufacturing system implies that it must be possible to reorganise the
configuration of the system's components efficiently and correctly. To avoid costly redesign,
we have the need for a formal description technique for specifying the (co)operation of the
components. Process algebra will be shown to be expressive enough to specify, and even
verify, the correct functioning of such a system. This will be demonstrated by formally
specifying and verifying two workcells, which can be viewed as units of a small number of
cooperating machines. The specifications will be provided in PSF, while the verifications
will take place in the framework of ACP.

1. INTRODUCTION

One can speak of Computer Integrated Manufacturing (CIM) if the computer is
used in all phases of the production of some industrial product. In this chapter
we will focus on the design of the product-flow and the information-flow,
which occurs when products are actually produced. Topics like product­
development, marketing and management are beyond the scope of this chapter.
The technique used in this chapter is based on a theory for concurrency, called
process algebra (see [14]). It can be used to describe the total phase of
manufacturing, from the ordering of raw materials up to the shipping of the
products which are made from these materials. During this process many
machines are used, which can operate independently, but often depend on the
correct operation of each other. Providing a correct functioning of the total of

123

124 Specification and Verification of CIM-Architectures

all machines, computers and transport-services is not a trivial exercise. Before
actually building such a system (a CIM-architecture) there must be some design.
Such a specification, when validated, describes a properly functioning system.
The current trend towards Flexible Manufacturing Systems (PMS) introduces
the need for a tool, able to validate a new design of a plant, before
implementing it. The possibilities to use methods developed in process algebra
for specification and verification of concurrent systems are described in this
chapter.

From a high level of view, a plant can be seen as constructed from several
concurrently operating workcells (Wl-WS in figure 1). Every workcell is
responsible for some well-defined part of the manufacturing process, e.g. filling
and capping a number of milk bottles. The various workcells are connected to
each other via some transport-service, which manages input and output of
goods for the workcells (the logistics) .

shipping

supply

Figure 1 A sample architecture of a plant

Of course some supervisor (control) must keep track of the (co)operation of all
workcells. This control has connections to all other components of the plant,
along which commands and status-reports are transmitted. The components
labeled supply and shipping are used to store raw materials and processed
goods. Seen from a lower level, each workcell is constructed from a number of
basic components which can perform one function, e.g. drilling a hole or
assembling two parts. For controlling the communication with the outside and
to instruct the various components of the workcell, each workcell has a
workcell-controller. Also some simple transport-system must be present to
transport the products within the workcell (see figure 2).

The description of the components of some workcell can be given using PSF.
When abstracting from the internal actions of that workcell, it is possible to

Introduction 125

determine its external behaviour. At the high level view on the flow of
products, we are only interested in the products which enter the workcell and
the products leaving it. Also at the high level view on the flow of information,
we only look at the commands we give a workcell to produce or process a
number of products and the status-reports sent back.

The simple two level view on a manufacturing process expressed above, can
be refined into a multi layered model, as is done in e.g. [29].

As an illustration of the technique we specify two workcells in the
specification formalism PSF and verify their correctness with the theory ACP,
(see [23]) . The first workcell is a very simple one, able to produce and process
one kind of product. The second one is more involved. It has the possibility to
process some input product either correctly or faultily. Part of the workcell is a
quality-check tool, which decides upon rejecting the product or not.

One should notice that in process algebra as we use it here, no real-time
aspects are captured. So the important notions of efficiency (maximal
productivity of the machines) and tuning (synchronization of the speed of the
machines) cannot be modeled. For real time extensions of process algebra, see
[6].

This chapter is partially based on discussions with F. Biemans, and inspired
by his article [30], who used the specification language LOTOS (see [67]) to
describe CIM-architectures. Other applications of theories for concurrency to
CIM can be found in [72] and [73] .

2. A SIMPLE WORKCELL

In this section a simple workcell will be specified and verified, which consists of
four components. This workcell is identical to the one described in [30] .

2.1. SPECIFICATION

2.1.1. Basic Datatypes
The following modules are needed for the specification of both workcells. They
define booleans, naturals, bounded naturals and queues. In the module
bounded-naturals a set of naturals is defined, containing all naturals up to
some upper bound N. This upper bound is a parameter of the specification. It
determines the maximum number of products the workcell can produce in one
drive. The module queues also has a parameter, which determines the type of
items to be queued.

126 Specification and Verification of CIM-Architectures

data module booleans
begin

exports
begin

aorta BOOL
£unctions

true -> BOOL
false : -> BOOL

end

end booleans

data module naturals
begin

export•
begin

aorta nat
functions

0
nat

- > nat
- > nat s

add nat ii nat -> nat
end

import•
booleans

variabl.ea
n, rn: -> nat

equation•
n [l] add(O, n)

[2] add(s(n), m) = s(add(n, m))

end naturals

proceaa modul.e bounded-naturals
begin

parameter a
max

begin
functions

N: -> nat
end max

export•
begin

■eta of nat
bounded-nat

end

imports
naturals

end bounded-naturals

nat \ {add(n, s (N)) I n in nat}

data module queues
begin

parameters
items

begin
sorts item

end items

exports
begin

sorts queue
functions

empty- queue
add
a dd-back

end

variables
i , j : - > item
q : - > queue

equations

- > queue
item # queue-> queue
item # queu e -> queue

A Simple Workcell 127

[1] add-back (i, empt y - queue) = add(i, empty- queue)
[2] a dd-back(i , add (j, q)) = add(j, add-back(i, q))

end queu e s

2.1.2 . General Description
The Workcell consists of four components (see figure 2) .

10

Figure 2 A simple workcell

Workstation A (WA) produces a product (pl) and offers this to the Transport
service (T) . Then the product is transported to Workstation B (WB), which
processes the product and outputs it to the environment. The Workcell
Controller (WC) receives a command from the environment to produce a
number of products, then controls the operating of the other components and

128 Specification and Verification of CIM-Architectures

reports a ready-status back to the environment. So the total of the four
components can be viewed as one workcell, producing and processing a
number of products. The aim is to specify the components in such a way that
the workcell behaves as desired.

2.1.3. Datatypes Specific to the Workcell
The four components are connected by 11 ports. Some ports are used to
transmit data (the ports O through 7), while others are used to exchange
products (the ports 8 through 10). Three ports are connected to the
environment (the ports 0, 1 and 10).

data module ports
begin

exports
begin

aorta data-ports, product-ports
function•

portO -> data-ports
portl -> data-ports
port2 -> data-port s
port3 -> data-ports
port4 -> data-ports
ports -> data-ports
port6 -> data-ports
port? -> data-ports
port8 -> product-ports
port9 -> product-ports
portlO -> product-ports

end

end ports

The sort products contains all products that are produced and processed within
the workstation (or the complete factory). It is a parameter of the system and
contains at least the products productl (pl) and the processed productl
(proc(pl)) .

data module products
begin

parameter a
products

begin
aorta products
functions

pl -> products
proc : product s-> products

end products

end products

A Simple Workcell 129

Several kinds of data have to be transmitted throughout the workcell. Via the
ports 1, 2 and 4 a non-negative integer (produce(n)) can be sent to indicate that
the receiver has to produce (or process) n products . A ready message (ready) is
sent back over the ports 0, 3 and 5 to indicate that the corresponding component
has fulfilled its task. Over port 6 the Workcell Controller can send a transport
command (transport) to the Transport Service, indicating tha l one product has
to be transported from WA to WB . If this is done, an arrival-message (arrival)
is sent back via port 7. These messages are all collected in the sort messages.

data module me s sag es
begin

exports
begin

sorta me s sag es
functions

end

produce nat
read y
transpo rt
arrival

imports
naturals

end messages

-> messages
- > messages
- > messages
- > messages

The product-ports are used to transport products, whereas the data-ports are
used to transmit messages. For both kinds of exchange, we use read-send
communication. Furthermore we construct sets for encapsulation and
abstraction, containing all actions along internal ports.

process module c ommunication
begin

exports
begin

atoms
r product-ports# products
s product-ports# products
c product-ports# products
r data-po rts f messages
s data-ports# messages
c data-ports# messages

sets of data-ports
internal-data-ports=

(port2, port3, port4, ports, port6, port?}
of product-ports

internal-product - p orts= {port8, port9}
of atom•

I= { c(dp,m) , c{pp,p)
dp in internal-data-ports, min messages,
pp in internal-product-ports, pin products

130 Specification and Verification of OM-Architectures

H = { r(dp,m), s(dp,m), r(pp,p), s(pp,p)
dp in internal-data-ports, min messages,
pp in internal-product-ports, pin products

end

imports
ports, products, messages

communications
r (dp, m) I s (dp, m) = c (dp, m)

for dp in data-ports, min messages
r (pp, p) I s (pp, p) = c (pp, p)

for pp in product-ports, pin products

end communication

2.1.4. Workstation A

The first component to be described is Workstation A. It receives via port 2 the
command to produce n times product pl. The range of the summation is the
set bounded-nat, which contains the naturals up to N. This bound determines
the maximum number of products the workcell can deal with in one drive.
Then it executes this command by producing n products (XA(n)) and sends a
ready-status message at port 3. Then WA starts all over. If WA was commanded
to produce zero products, XA(O) just ends after doing the internal action skip. If
a positive number of products has to be produced (XA(s(n))), this is done by
producing one product, followed by the production of n products.

proceaa modul.e Workstation-A
begin

exports
begin

proceaaea
WA

end

imports
communication, bounded-naturals

proc•••••
XA: nat

variable a
n : -> nat

definitions
WA aum(n in bounded-nat,

r(port2, produce{n)) XA(n). s(port3, ready). WA)
XA(O) akip
XA(s(n)) = s(port8, pl) . XA(n)

end Workstation-A

A Simple Workcell 131

2 .1 .5. Workstation B

Workstation B has almost the same definition as Workstation A It accepts the
command to process n products via port 4, processes n products (XB(n)), sends a
ready-status message and starts all over. The processing of n products is
achieved by repeatedly receiving an arbitrary product pat port 9 and sending
the processed version of this product to port 10.

process module Workstation-B
begin

exports
begin

processes
WB

end

imports
communication, bounded-naturals

processes
XB : nat

variables
n : -> nat

definitions
WB

XB(O)
XB(s (n))

sum(n in bounded-nat,
r(port4, produce(n)) . XB(n) . s(port5, ready) . WB)
skip
sum(p in products,

r(port9, p) . s(portlO, proc(p)) . XB(n))

end Workstation-B

2.1.6. Transport Service
The Transport service (T) can be seen as a FIFO-queue. It is indexed with its
contents, a queue of products. The transport system either has an empty queue,
or contains elements. If the queue is empty, T can receive a transport-command
via port 6 and then it receives some product via port 8. Next the transport
service behaves as the transport service with one element in its queue. It is also
possible to receive the product first and then receive the transport-command. ff
the queue was not empty, the Transport service has both options as mentioned
for the empty queue, but it also has the option to send an element out of the
queue at port 9. Then the arrival of this element is reported to the Workcell
Controller and the element is deleted from the queue.

132 Specification and Verification of CIM-Architectures

process module Transport-Service
begin

exports
begin

processes
T : product-queue

end

imports
communication,
queues

{items bound by
[item-> products]

to products
renamed by

[queue-> product-queue)}

variables
q: -> product-queue
r : -> products

definition•
T(empty-queue) = r(port6, transport) .

sum(p in products,
r(port8, p) . T(add-back(p, empty-queue)))+

sum(p in products,
r (ports, p) . r (port 6, transport)
T(add-back(p, empty-queue)))

T(add(r, q)) r(port6, transport) .
sum(p in products,

r(port8, p) . T(add-back(p , add(r, q)))) +
sum(p in products,

r(port8, p) . r(port6, transport) .
T(add-back(p, add(r, q)))) +

s(port9, r) . s(port7, arrival) . T(q)

end Transport-Service

2.1.7. Workcell Controller

The Workcell Controller (WC) controls the communication with the
environment and the interaction of the other components. It receives via port
1 the command to produce and process n products. Then it commands
Workstation B via port 4 to process n products and goes into state D(n) were n
times productl is produced and transported. Then finally it receives a ready­
status message from WB via port 5 and sends ready to the environment,
returning to its initial state. The production and transport of n products is done
in D(n). It repeatedly commands via port 2 Workstation A to produce one
single product. If this is done a ready message is received at port 3 and a
transport command is sent at port 6. If the product has arrived at Vvorkstation
B, an arrival message is received at port 7.

process module Workcell-Controller
begin

export•
begin

processes
we

end

imports
communication, bounded-naturals

processes
D : nat

variables
n : -> nat

definitions
we sum(n in bounded-nat,

A Simple Workcell 133

r (port 1, produce (n)) . s (port4, produce (n)) . D (n) .
r(portS, ready) . s(portO, ready) . WC)

0(0)
D(s (n))

skip
s(port2, produce(s(O))) . r(port3, ready)

s(port6, transport) . r(port7, arrival) D(n)

end Workcell-Controller

2.1.8. The Workcell

The concurrent operation of these four components can be considered as the
specification of the whole workcell. Notice that the Transport service has to
start with an empty queue.

process module Workcell
begin

exports
begin

proc•••••
w

end

imports
Workstation-A, Workstation-B,
Transport-Service, Workcell-Controller

definitions
W = hide(I , encapa(H , WC 11 T(empty-queue) 11 WA 11 WB))

end Workcell

134 Specification and Verification of CIM-Architectures

2.2. CORRECTNESS

2.2.1. Preliminaries

In order to prove correctness of the protocol we will need some extra proof
rules from (14] . The first one is RDP, the Recursive Definition Principle, which
states that every recursive specification has a solution. The rule RSP, the
Recursive Specification Principle, states that every guarded specification has at
most one solution. Together they provide uniqueness of the solution of a
guarded recursive specification.

The Expansion Theorem is used to expand a merge into its subterms. For n~3
it reads:

x1 II ... II Xn = L Xill. (II Xj) + L (xjlXj)ll. (II Xk)
1:Si:Sn 1s·sn · i l:Si<j:Sn 1:Sk:Sn k;,i, ·

2.2.2. Intended Behaviour

When designing the workcell, we had in mind some idea about its external
behaviour. It receives a command at port 1, which indicates the number of
products that has to be produced, then these products are produced and offered
at port 10 and finally a ready message is offered at port O and we return to the
starting state. This intended behaviour is specified in the following module.

proceaa module Workcell-Behaviour
begin

exports
begin

proceaaea
V

end

imports
communication, bounded-naturals

proceaaea
E : nat

variable a
n : -> nat

definitions
V - aum (n in bounded-nat, r(portl, produce(n)) . E(n) . V)
E(O) = s(portO, ready)
E(s(n)) = s(po rtlO, proc(pl)) . E(n)

end Workcell-Behaviour

Now, using RDP, let v and w be solutions of the specifications of V and W. A
proof that the processes v and w are equal can be seen as a verification that the
specification of W is correct with respect to its intended external behaviour.

2.2.3. The Workcell is Correct

We prove the following theorem.
THEOREM 1 The specification of the workcell is correct .

ACF-.+ RDP + RSP + ET I- v=w
PROOF

A Simple Workcell 135

The proof consists of a series of successive expansions. All atoms that do not
communicate y ield deadlock, because they are encapsulated. The atoms that do
communicate are underlined. All actions that are not abstracted from are
boldfaced .

Some shorthands are used to obtain a more concise verification. For example
the expression l:rl(n) ... is an abbreviation of sum(n in bounded-nat, r(portl,

produce(n) ...) . Abstraction is denoted by 'tJ and encapsulation by cltt . We

interpret the internal action skip by the silent step 't from process algebra. The

empty queue is denoted by 'A, and adding to a queue is done with the • operator.

w = t 1 cltt <wcllT'A llwAllwB)
= 'tI cltt ((Lrl.lll . s4(n) . Dn . rS(r) . sO(r) . WC) II

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II
(Ir2(n). XAn . s3(r) . WA) II
(Ir4(n) . XBn . sS(r) . WB))

= Irl(n) . tI cltt ((s4(n) . Dn . rS(r) . sO(r) . WC) II
(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II
(Ir2(n) . XAn . s3(r) . WA) II
(~. xBn . sS(r) . WB))

= Irl(n) .tI (c4(n) . cltt ((Dn . rS(r) . sO(r) . WC) II
(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II
(Ir2(n) . XAn . s3(r) . WA) II
(XBn . sS(r) . WB)))

Now let, for nE N
Kn = tJcltt ((Dn . rS(r) . sO(r) . WC) II

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II
(Ir2(n) . XAn . s3(r). WA) II
(XBn . sS(r) . WB)), then

KO = t1cltt ((t . rS(r) . sO(r) . WC) II
(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II
(Ir2(n) . XAn . s3(r) . WA) II
(t . sS(r) . WB))

136 Specification and Verification of OM-Architectures

= t. -r1aH ((sO(r) . WC) II
(r6(t) . L,(r8(p) . TP) + I,(r8(p) . r6(t) . TP)) II
(I,r2(n) . XAn . s3(r). WA) II
(WB))

= t. sO(r). W

KS(n) = -r1aH ((s2(1) . r3(r) . s6(t) . r7(ar) . on . rS(r) . sO(r) . WC) II
(r6(t) . I,(r8(p) . TP) + L,(r8(p) . r6(t) . TP)) II
(Lilln)_.)(AS(n). s3(r). WA) II
(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB))

= tI (c2(1) . aH ((r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r) . WC) II
(r6(t) . I,(r8(p) . TP) + L,(~. r6(t). TP)) II

(fillliill. XAO. s3(r) . WA) II
(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB)))

= t . tI (c8(pl) . aH ((r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r) . WC) II
(r6(t) . TP1) II
(t . s3(r) . WA) II
(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB)))

= t. tI (c3(r) . aH ((s6(t) . r7(ar) . on . rS(r) . sO(r) . WC) II
(r6(t) . TP1

) II
(WA)II

(I,r9(p) . slO(proc(p)) . XBn . s5(r) . WB)))

= t. tI (c6(t) . aH ((r7(ar) . on. rS(r) . sO(r) . WC) II (**)

(r6(t) . I,(r8(p) .Tp•pl) + I,(r8(p).r6(t) .Tp•pl) + ~ -s7(ar) . TA) II
(WA)II

(.l!2.<Ju . slO(proc(p)) . XBn . sS(r) . WB)))

= t. tI (c9(pl). aH ((r7(ar) . on . r5(r). sO(r). WC) II
(s7(ar). TA) II
(WA)II

(slO(proc(pl)) . XBn . s5(r) . WB)))

= t . (t1 (c7(ar) . aH ((on. rS(r) . sO(r) . WC) II
(TA)II
(WA)II

(slO(proc(pl)) . xsn . s5(r) . WB))) +
slO(proc(pl)) . Kn)

Now let, for n E N
Ln = 'tJ cltt ((on. rS(r) . sO(r) . WC) II

(TA) II
(WA) II
(slO(proc(pl)) . XBn . sS(r) . WB)), then

LO = 'tl cltt (('t. rS(r) . sO(r). WC) II

(TA) II
(WA)II

(s10(proc(pl)) . t . sS(r) . WB))

= slO(proc(pl)) . 'tl cltt (('t . rS(r) . sO(r) . WC) II

(TA) II
(WA)II

('t . sS(r) . WB)) +
't . slO(prodpl)) . 'tl cltt ((rS(r) . sO(r) . WC) II

(TA) II
(WA)II

('t. sS(r) . WB))

A Simple Workcell 137

= 't. slO(proc(pl)) . 'tJ (cS(r) . cltt ((sO(r) . WC) II [using T2]

(TA) II
(WA)II
(WB)))

= 't . slO(proc(pl)) . sO(r) . W

Ls(n) = 'tJ dH ((s2(1) . r3(r) . s6(t) . r7(ar) . on . rS(r) . sO(r) . WC) II

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II
(Ir2(n) . XAn . s3(r) . WA) II
(slO(proc(pl)) . XBS(n) . sS(r) . WB))

= 'tJ (c2(1) . dH ((r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r) . WC) II

(r6(t) . I(r8(p) . TP) + I(rfilp)_ . r6(t) . TP)) II

(§filiill . XAO . s3(r) . WA) II
(s10(proc(p1)) . XBS(n) . sS(r) . WB))) +

slO(proc(pl)) . 'tJ dH ((s2(1) . r3(r) . s6(t) . r7(ar) . on. rS(r) . sO(r). WC) II

(r6(t) . I(r8(p) . TP) + I(r8(p) . r6(t) . TP)) II
(Ir2(n) . XAn . s3(r) . WA) II
(XBS(n) . sS(r) . WB))

138 Specification and Verification of CIM-Architectures

= T . TI (c8(pl) . aH ((r3(r) . s6(t) . r7(ar) . I)Il . rS(r) . sO(r). WC) II
(r6(t). TP1) II
(XAO. s3(r) . WA) II
(slO(proc(pl)) . XBS(n) . sS(r) . WB))) +

T. slO(proc(pl)) . TJaH ((r3(r) . s6(t) . r7(ar) . I)Il. r5(r) . sO(r) . WC) II

(r6(t) . I,(r8(p) . TP) + I,(!filcl . r6(t) . TP)) II
(~.XAO . s3(r). WA)II
(XBS(n) . sS(r) . WB)) +

slO(proc(pl)) . TI (c2(1) . aH ((r3(r) . s6(t) . r7(ar) . I)Il . r5(r) . sO(r) . WC) II

(r6(t) . I,(r8(p) . TP) + I,(!filcl . r6(t) . TP)) II

~.XAO .s3(r). WA)II
(XBS(n) . sS(r) . WB))

(The first two summands in this expression come from the first summand in
the previous expression. Axiom T2 states that the summation of the second
and third summand equals the second summand.)

= T. TI (c8(pl) . aH ((r3(r). s6(t) . r7(ar) . Dn. r5(r) . sO(r) . WC) II

(r6(t) . TP1) II
(T. s3(r). WA) II
(slO(proc(pl)) . XBS(n) . s5(r) . WB))) +

T. slO(proc(pl)) . TiaH ((r3(r) . s6(t) . r7(ar) . Dn . rS(r) . sO(r) . WC) II

(r6(t) . I.<r8(p) . TP) + I.(!filcl . r6(t) . TP)) II
(~. XAO .s3(r). WA)II
(XBs(n) . sS(r) . WB))

= T. 'tI (c3(r). aH ((§Q(tl. r7(ar) . Dn. rS(r) . sO(r) . WC) II

(r6(t) . TP1) II
(WA)II
(slO(proc(pl)) . XBS(n) . s5(r) . WB))) +

't . slO(proc(pl)) . TI (c8(pl) .aH ((r3(r) . s6(t) . r7(ar) . Dn . rS(r) . sO(r) . WC) II
(r6(t) . TP1) II
('t. s3(r) . WA) II
(XBS(n) . sS(r) . WB)))

= T. 'ti (c6(t) . aH ((r7(ar) . Dn . rS(r) . sO(r) . WC) II

(TPl) II
(WA)II
(slO(proc(pl)) . XBs(n) . sS(r). WB))) +

A Simple Workcell 139

1 . slO(prodpl)) . t1 (c3(r) .aH (~. r7(ar) . Dn. rS(r) . sO(r) . WC) II
(!fil!)_ . TP1)11
(WA)II
(xas(n) . sS(r) . WB)))

= 't . slO(proc(pl)) . 11 dH ((r7(ar) . on . rS(r) . sO(r) . WC) II

(TP1) II
(WA) II
(2:,r9(p) . slO(proc(p)) . xan . sS(r) . WB))

= "C . slO(proc(pl)) . KS(n) [see (**)]

So the process w is a solution of the following system:

= I,rl(n) .Kn

= 't . sO(r) . W

= t . ('t . Ln + slO(proc(pl)) . Kn)

= t . slO(proc(pl)) . sO(r) . W

= 't . slO(proc(pl)) . Ks(n)

Specification 1

Now observe that w e can replace the two equations for L by the following
definition.

= 't . slO(proc(pl)) . Kn

Substitution of L" gives the following system.

W = I,rl(n) .Kn

KO = 1 . sO(r) . W

KS(n) = t. (,. "C . slO(proc(pl)) . Kn +
slO(proc(pl)) . Kn)

After applying T2 we get.

W = I,rl(n) .Kn

KO = 1 . sO(r) . W

KS(n) = 1 . slO(proc(pl)) . Kn)

Specification 2

140 Specification and Verification of CIM-Architectures

Now look at the specification of the process V in the module Workcell­
Behaviour, which specifies the intended behaviour. From RDP it follows that a
solution (v, en) exists. Now, if v is also a solution of the specification for W,
RSP can be used to infer that v equals w.
Define kn by:

kn = 't . en. v,
then we can derive

v = Irl(n) . ell . v = Irl(n) . kn
ko = 't . eO . V = 't . sO(r) . V

kS(n) = 't . e5(n) . v = 't . slO(proc(pl)) . ell . v
So (v,k") is a solution of specification 2.

2.3. REDUNDANCY

Note that the specification of the workcell contains some redundancy.
Although the transport service has the capability to store any number of
products in the queue, this feature is not used in the workcell. At any moment
not more than one product is stored in the buffer. So a one-item buffer would
have functioned in the same way. Also, the option of receiving first a transport
command and then a product is not used.

The capability of workstation A to receive a command to produce more than
one product is also not used.

3. A WORKCELL WITH QUALITY CHECK

In this section a more complex workcell will be defined, having the possibility
of checking the quality of the produced goods. The basic modules from the
previous paragraphs are imported.

3.1. SPECIFICATION

3.1.1. Global Description
The workcell consists of four components:

WA Workstation A. The workstation accepts a product, processes it and
returns either a good product or a faulty product.

T Transport service. A queue, at the one end accepting and at the other
end sending products.

Q Quality check. After receiving a product, the quality check determines
whether it is a good product or not. A good product will be passed
along, while a rejected product will be removed . The latter
occurrence is signaled to the workcell controller.

A Workcell with Quality Check 141

WC Workcell Controller. This part controls the workcell. It receives the
number of products that have to be processed, and instructs the
workcell to do so. While the processing is going on, it will count the
number of rejected products. At the end the workcell is instructed to
process again an amount of products, equal to the number of
rejections .

The workcell is graphically depicted in figure 3.

11 ►
~------ --------------------- ---·

Figure 3 A workcell with quality check.

3 .1.2. Datatypes Specific to the Workcell

The four components are connected to each other by 11 ports. The ports 0
through 7 are used to transmit data and the ports 8 through 11 are used to
exchange products. The ports 0, 1, 8 and 11 are connected to the environment.

data module p o rt s
begin

exports
begin

sorta data-po rts, product-po rts
functions

p o r tO - > data-ports
p o rtl - > data-po rts
port 2 - > data-ports
port 3 - > data-ports
p o rt4 - > data-ports
p orts - > data- p o rts
p ort6 - > data-ports
port ? - > data-port s
p o rts - > product-ports
p o rt 9 - > product-ports
portlO - > product-ports
p o rtll - > product-ports

and

and ports

142 Specification and Verification of CIM-Architectures

The system has the set of products that can be produced or processed within the
workstation as a parameter. The sort products contains at least productl (pl)
and the product pl after processing (proc(pl)). A quality (ok or faulty) can be
added to a product using the function prod. This quality information can be
revealed again by applying the function qua/. These functions apply to normal
products as well as to processed products. The sort of products which have a
quality attached is called qual-products.

Note that the information about the quality of a product is attached to the
product itself, and one can only become aware of it by explicitly using the qua[
funcion. As an example consider drilling a hole in some product. After drilling,
the hole is in the right position or not, but one can only become aware of this
after applying some measuring tool, which reveals the quality.

data module products
begin

parameters
products

begin
sorta products
function•

pl -> products
proc : products-> products

end products

exports
begin

aorta qual-products
functions

end

prod products# quality
qual : qual-products

imports
booleans

{renamed by
[BOOL -> quality,
true -> ok,
false-> fault))

variables
p : -> products
q : -> quality

equations
[1) qual{prod(p, q)) q

end products

-> qual-products
-> quality

Along ports 1, 2, 4 and 6 a non-negative integer (produce(n)) can be sent to
indicate that the receiver has to cope with n products. A ready message (ready)
is sent back over the ports 0, 3, 5 and 7 to indicate that the component has
fulfilled its task. Port 5 is also used to indicate that a product has been rejected
(reject). These messages are declared in the following module.

A Workcell with Quality Check 143

data module messages
begin

exports
begin

sorts messages
functions

end

produce
ready
reject

nat

imports naturals

end messages

-> messages
-> messages
-> messages

In the module communication all atomic actions, the communication function
and the sets of atoms to be encapsulated and abstracted from are defined.

process module communication
begin

exports
begin

atoms
r product-ports# qual-products
s product-ports# qual-products
c product-ports# qual-products
r data-ports t messages
s data-ports f messages
c data-ports t messages

sets of data-ports
internal-data-ports=

{port2, port3, port4, ports, port6, port7)
of product-ports

internal-product-ports
of atoms

I = { c{dp,m), c{pp,p)

{port9, portlO)

dp in internal-data-ports, min

H
pp in internal-product-ports, p

r{dp,m), s{dp,m), r(pp,p), s{pp,p)

messages,
in qual-products
I

dp in internal-data-ports, min messages,
pp in internal-product-ports, pin qual-products

end

imports
ports, products, messages

communication■

r(dp,m) I s(dp,m) = c(dp,m)
for dp in data-ports, min messages

r(pp,p) I s(pp,p) = c(pp,p)
for pp in product-ports, pin qual-products

end communication

144 Specification and Verification of CIM-Architectures

3.1.3. Workstation A

Workstation A is a machine able to process a specified number of products.
This number is received over port 2. Then it executes its function n times
(XA(n)). The process XA(0) simply sends a ready message via port 3 and starts
the workstation all over. The process XA(s(n)) is able to receive some product
which has to be processed. The possibility of either doing a good job or making
an error while processing, is modeled by using the nondeterministic choice
operator. By prefixing the actions with the internal atom skip, a choice is made
which cannot be influenced by the environment.

proceaa module Workstati on-A
begin

exports
begin

proceaaea
WA

end

import•
communication, bounded-naturals

proceaaea
XA: nat

variable a
n: -> nat

definition•
WA = aum(n in bounded-nat,

r(port2, produce(n)) . XA(n))
XA (0) s (port 3, ready) . WA
XA(s(n)) aum(p in products, r(port8, prod(p, ok))

(akip s(port9, prod(proc(p), ok)) +
akip. s(port9, prod(proc(p), fault)))

end Workstation-A

3.1.4. Transport Service

XA(n))

The transport service can best be seen as a bounded FIFO-queue. First it receives
the number of products that have to be transported. Then it behaves like the
t>mpty queue with bound n. After transporting n products (T(0, empty-queue)) a
ready message is sent to the controller and it starts all over. The process T(n, q)
is intended to model a queue with contents q, where n denotes the number of
products that still have to be read in to the queue. T(s(n), empty-queue) has an
empty buffer, so it can only read in products. T(0, add(r, q)) can only output the
contents of its buffer. The process T(s(n), add(r, q)) can either accept some
product or it can send a queued item. This transport service differs from the
one defined in the previous section in the sense that it needs less external
control and that the capability of buffering more than one product is being used.
Also, its specification has less redundancy.

process modu1e Transport-Service
begin

exports
begin

processes
T

end

import•
communication, bounded-naturals,
queues

{ i terns bound by
[item-> qual-products]

to products
renamed by

[queue-> product-queue])

processes
T : nat t product-queue

variables
q -> product-queue
r : -> qual-products
n : -> nat

definitions
T = aum(n in bounded-nat,

A Workcell with Quality Check 145

r(port6, produce(n)) T(n, empty-queue))
T(O, empty-queue) = s(port7, ready) . T
T(s(n), empty-queue) =

eum(p in qual-products,
r(port9, p) . T(n, add-back(p, empty-queue)))

T(O, add(r, q)) = s(portlO, r) . T(O, q)
T(s(n), add(r, q)) =

sum(p in qual-products,
r(port9, p) . T(n, add-back(p, add(r, q)))) +

s(portlO, r) . T(s(n), q)

end Transport-Service

3.1.5. Quality Check

The quality of the processed product is tested by the process Q. It receives the
command to test n products. Then the n tests are performed (XQ(n)). If there are
no tests left to do (XQ(O)) a ready message is sent back and the quality check
returns to its initial state. The checks are done by accepting some product p at
port 10 and determining the quality of that product (XQ(n, p, qual(p))). If the
quality is ok then the product can continue on its way. If the quality is fault
then a rejection message is sent to the workcell controller and the product is
rejected (i.e. discarded).

146 Specification and Verification of CIM-Architectures

process module Quality-Check
begin

exports
begin

proceaaea
Q

end

import ■
communication, bounded-naturals

processes
XQ nat
XQ : nat t qual-products # quality

variable ■

n : -> nat
p: -> qual-products

definition■

Q

XQ(O)
XQ(s (n))

XQ(n, p, ok)
XQ(n, p, fault)

end Quality-Check

3.1.6. Workcell Controller

= ■um(n in bounded-nat,
r(port4, produce(n))

= s (ports, ready) . Q
= aum(p in qual-products,

r(portlO, p) .XQ(n, p,
s(portll, p) . XQ(n)
s (ports, reject) . XQ (n)

XQ(n))

qual (p)))

The workcell is controlled by the Workcell Controller . It receives the message
to process n products. When this is done (D(O)), a ready message is reported to
the environment and the controller starts all over. The process D(s(n)) handles
the processing of n+l products . It sends the number of products that have to be
processed to Workstation A, the Transport service and the Quality check. Then
it starts to count the number of rejections, starting with O (RC(O)). The Rejection
Counter will be incremented when it receives a rejection message. When the
Quality check, the Transport service and Workstation A respectively send their
ready messages, the controller again commands the workcell to process some
number of products (D(n)) . This new number of products is equal to the
P.umber of rejections encountered up to that moment.

proceaa module Work c ell-Contro ller
begin

export•
begin

processes
WC

end

imports
communicati o n, bounded-nat urals

proceaaea
D nat
RC : nat

variables
n : -> nat

definitions
WC = sum(n in bounded-nat,

A Workcell with Quality Check 147

D (0)
r(portl, produce(n)) D(n))

s(portO, ready) . WC
D (s (n)) s(port4, produce(s(n))) s(port6, produce(s(n))) .

s(port2, produce(s(n))) . RC(O)
RC(n) r(portS, ready) . r(port7, ready). r(port3, ready) .

D(n) +
r(portS, reject). RC(s(n))

end Workcell-Controller

Note that the order in which the ready messages are received is of importance.
If e.g. the ready message of WA can be received first, it is still possible for Q to
contain faulty products. But then, since WC is not able to receive any rejection
messages from Q, a deadlock would occur.

3.1.7. The Workcell

Now we are interested in the parallel operation of the four components as
described above.

process module Workcell
begin

exports
begin

proceaaes
w

end

imports
Workstation-A, Quality-Check,
Transport-Service, Workcell-Controller

definitions
W = hide(I, encaps(H, WC 11 T 11 WA 11 Q))

end Workcell

3.2. CORRECTNESS

3.2.1. Preliminaries

For the verification of this workcell we will need some more proof techniques.,
the Cluster Fair Abstraction Rule (CFAR) and the conditional axioms (see [4]).

148 Specification and Verification of CIM-Architectures

The conditional axioms deal with distributing the encapsulation, hiding and
merge operators.

a(x) I (a(y)nH)kH ⇒ im(x lly) = oH(xll im(y))

a(x) I (a(y)nl)=0 ⇒ 'tJ(x II y) = t1(x II t1(y))

a(x)nH=0 ⇒ OH(x) = x

a(x)nl=0 ⇒ ty(x) = x

H=H1uH2 ⇒ OH(x) = OH1°oH2(x)

l=l1ul2 ⇒ 'tJ(x) = t11°-c12(x)

Hnl=0 ⇒ t1°im(x) = OH 0 t1(x)

table 1 Conditional Axioms

The a(x) operator determines the alphabet of a process, and is defined by

a(8) = 0
a(t) = 0

a(a) = (a}

a(tx) = a(x)

(if a;c8)

a(ax) = (a}ua(x) (if a;c8)

a(x+y) = a(x)ua(y)

a(x) = U~1 a(7tn(x))

a(t1(x)) = a(x)-1

table 2 The Alphabet function

For the Cluster Fair Abstraction rule we need some definitions. Suppose E is
a recursive specification over variables V, and suppose I is the set of atomic
actions to be abstracted from. We call a subset C of Va cluster of I in E if for all X
in C the equation for X in E has the form

m n

X= L, ik.Xk + L, Y1,
k=l 1=1

where m;?l, n2'.0, i1, ... ,imElu{t}, X1, ... ,Xn,EC, Y1,..-,YnEV-C. The variables in Care

called cluster variables. For variables X, YE V we write X-+ Y if Y occurs in the
right-hand side of the equation of X. Then, the exits of the cluster are those
variables outside C, that can be reached from C, i.e.

exits(C) = (YEV-C I X➔Y for some XEC}.

Let-+* be the transitive and reflexive closure of ➔ . We call a cluster C of I in E
conservative if every exit van be reached from every cluster variable, i.e. for all

XEC and all YEexits(C) we have X-+*Y. Now we can formulate the rule CFAR
as follows.

A Workcell with Quality Check 149

Let E be a guarded recursive specification; let IcA be such that I I I~; let C be a

finite conservative cluster of I in E; and let XEC. Then

1:r(X) = 1: · L 1:r(Y)

YEexits(C)

3.2.2. Intended Behaviour

Now we have to define some criterion for correctness of the specification. It is
not enough to require that for any command produce(n) along port 1 the
workcell processes n products correctly and reports a ready message. The
problem is that if there is not enough supply of products along port 8, the
workcell can reach a deadlock situation, waiting for more products. So we will
only consider the behaviour of the workcell in an environment, supplying an
unlimited number of products. Thus we define the supplier S, which is
repeatedly sending product pl along port 8.

Of course we have to encapsulate unsuccessful communications over port 8
and abstract from successful communications over this port.

process module System
begin

exports
begin

processes
W2

end

import ■

Workcell

procesaes
s

■eta of atom■

IO = { c (port8,p) I p in qual-products)
HO= { r(port8,p), s(port8,p) pin qual-products

definition■

S = s(port8, prod(pl, ok)) S
W2 = hide(IO , encapa(HO, S I I W))

end System

The extended configuration is depicted in figure 4.

150 Specification and Verification of CIM-Architectures

J r----------------------
1

I

Figure 4 Adding a supplier to the workcell.

11 ►

The intended behaviour can be specified by the following specification. A
command to process n products correctly will be received, then the n processed
products will be delivered and a ready message will be reported.

proce■■ module Workcell-Behaviour
begin

export ■

begin
proce■ se■

V

end

imports
communication, bounded-naturals

proc•••••
E : nat

variable ■

n : -> nat
definitions

V sum(n in bounded-nat, r(portl, produce(n)) . E(n) . V)
E (0) - s (portO, ready)
E{s(n)) s(portll, prod(proc(pl), ok)) . E(n)

end Workcell-Behaviour

Now a verification of the correctness of the specification of the workcell will
consist of a proof that the specification of W2 and the specification of V define
the same process. So if w' and v are solutions of the two specifications, we have
to prove v=w'

3.2.3. The Workcell is Correct

THEOREM 2 The specification of the workcell is correct.
ACP-r + RDP + RSP +ET+ CFAR + CA 1-- v=w'

A Workcell with Quality Check 151

PROOF
The proof consists of three s teps. In step 1 we reduce the number of
components, in step 2 we remove the parallelism and in step three we obtain
the desired result by applying CFAR.

3.2.3.1. Step 1
First we reduce the number of components by aggregating the supplier S and
Workstation A. The resulting process (K) can be seen as being a supplier of
either good or bad processed products (See figure 5).

Figure 5 Aggregating Sand WA.

Let the process K be specified by

K = I,r2(n) . XKn

= s3(r) . K

11

XKO
XKS(n) = (-r . s9(prod(proc(pl), ok)) + -r . s9(prod(proc(pl), fault))) . XKn

And let the encapsulation set and the abstraction set be defined by

Hl = {rp(d), sp(d) I p=port8 A dE qual-products}

11 = {cp(d) I p=port8 A dE qual-products}

then the following proposition holds:

PROPOSITION

K =-rn aHl (SIIWA)

PROOF Let the process L be defined by

L =-rn aHl (SIIWA)

= -rn aHl (S II I.r2(n) . XAn)

= I.r2(n) . -rn aHl (S II xAn)

152 Specification and Verification of CIM-Architectures

Let Ln be defined by

Ln = 'tll aHl (S II xAn), then

LO = 'tll am (s II s3(r). WA)
= s3(r). L

Ls(n) = 'tll dHl (s8(prod(pl,ok)) . S II
Lpeproduct5(r8(prod(p,ok)) . (skip . s9(prod(proc(p), ok)) +

skip . s9(prod(proc(p), fault)))) . XAn)

= 'tll (c8(prod(pl,ok)) .

dHI (S II (skip . s9(prod(proc(pl), ok)) +
skip . s9(prod(proc(pl), fault)))) . XAn)

= 't . ('t. s9(prod(proc(pl), ok)) + 't . s9(prod(proc(pl), fault)))) . Ln

Thus we have
L = I,r2(n) . Ln
LO = s3(r). L
Ls(n) = 't . ('t . s9(prod(proc(pl), ok)) + 't. s9(prod(proc(p1), fault)))) . Ln

Now it is easy to see that K and L define the same process . Use RSP to prove
that a solution of K is also a solution of system L.

As a consequence of this proposition we can replace the two components S
and WA by one simpler component K. This technique is called local
replacement and was introduced in [4]. In order to actually replace the two
components in the specification of the workcell, we need the conditional
axioms (see [8]).

W2 ='tJ'dH'(SIIW)

= 'tJ' dH' (S II 'tJ dH (WA IITII Q IIWC))

= 'tJ'uI aH'uH csllwAIITIIQIIWC)

= 'tJ'uI aH'uH ('tll am (S II WA) II T II Q II WC)

= 'tJ'uI dH'u H (K II T II Q II WC)

= 'tJdH(K II T II Q II WC)

3.2.3.2. Step 2
In the second step we will remove the parallelism in the specification by
expanding the merges. This will result in a complex process, which describes all
states that the workcell has.

First we define a new abstraction set, 12, obtained by deleting the
communication of the rejection message from the old one. This will be useful
when applying CFAR in step 3.

I2 = I \ {cS(reject)}

A Workcell with Quality Check 153

If w e define

U = ,12 dH (K II T II Q II WC), then we have

W 2 = 'lc5(reject))(U)

For U we can derive

u ='CJ2 aH<K IIT II Qllwc)

= Irl(n) . 1:i2 dH (K II T II Q II Dn)

Let un be defined by ,12 aH (K II T II Q II Dn), then

uO =,12clH(KIITIIQlloO)=sO(r).U

us(n) = ,12 dH (K II T II Q II os(n))

= '12 (c4(s(n)) . c6(s(n)) . c2(s(n)). dH (XKS(n) II Ts(n)"--11 XQS(n) II RCo))

The process un denotes the total workcell, which has just received a command
to produce a certain number of products. After distributing this command, the
workcell enters the state in which the products will be produced. In the process
of producing the products, there are several intermediate states. These states are
determined by e.g. the number of products that still have to be produced, and
the contents of the buffer of the transport service. The quality-check can also
contain some product, i.e. the product which is read in and will be checked. All
values that determine the actual state the workcell is in, are listed below:

choice The choice made in K about processing· correctly or faulty. The
choice can be ok or fault . If no choice has been made yet, the value

of this variable is x

count The number of products that still have to be produced (not
considering the number of rejected products) .

buffer The contents of the buffer in the transport service. The value is A if
the buffer is empty.

Qcont The contents of the quality-check part. The value is 11. if Q contains
no product.

re The rejection counter, counting the number of rejected products.
All states can be described using these five variables. Now it is possible to define
the process U, indexed by these five variables, which describes the behaviour of
the workcell during the production of the products.
Define

uchoice, count, buffer, Qcont, re

154 Specification and Verification of CIM-Architectures

as the composition of the four components K, T, Q and WC, where the indices
determine the state of the four components as follows:

If choi ce= x then K is in state XKcount , otherwise K is in state
s9(prod(proc(p1), choice)).XKCount-1.

T is in state T couniuffer.

If Qcont=A then Q is in state XQCOunt + I buffer I, otherwise Q is in state

XQQcont , qual(Qcontfount + I buffer I.
WC is in state RCcount·

For every combination of values we can calculate the behaviour of the system.

Note that the choice can only be unequal to x if the count is positive. Let ch be

some quality (i.e. either ok or fault), let n and re be natural numbers, let a be a
series of qual-products and let q be a qual-product.

uch, s(n), cr, prod(proc(pl),ok), re

= 'tl OH (s9(prod(proc(pl),ch)).Xl(Il II Ts(n)cr II XQp,oks(n)+ I cr I II RCrc>

= 't! (c9(prod(proc(p1),ch)).

OH (XKn II T prod(proc(pl),ch)"cr II XQ ks(n)+ I cr I II RC) + n p~ rr

sl l(p). OH (s9(prod(proc(p1),ch)).Xl(Il II Ts(n)cr II XQS(n)+ I cr I II RCrc>)

= 't . u x, n, prod(proc(pl),ch)"cr, prod(proc(pl),ok), re+

s11(prod(proc(p1),ok)) . uch, s(n), cr, 'A, re

uch, s(n), cr, prod(proc(pl),fault), re

= 'tl cltt (s9(prod(proc(pl),ch)).XKn II Ts(n)cr II XQp,faults(n)+ I <JI II RCrc>

= 'tl (c9(prod(proc(pl),ch)).

OH (Xl(Il II Tnprod(proc(pl),ch)"cr II XQp,faults(n)+ I cr I II RCrc> +

cS(rej). OH (s9(prod(proc(pl),ch)).Xl(Il II Ts(n)cr II XQS(n)+ I <JI II RCs(rc)))

= 't . u x, n, prod(proc(pl),ch)"cr, prod(proc(pl),fault), re+

cS(rej) . uch, s(n), cr, 'A, s(rc)

uch, s(n), cr"q, 'A, re

= 'tl OH (s9(prod(proc(p1),ch)).XKn II Ts(n)<J"q II XQn+2+ I cr I II RCrc>

= 'tl (c9(prod(proc(pl),ch)) .

dH (XKn II T nprod(proc(pl),ch)"cr"q II xQn+2+ I cr I II RCrc> +

clO(q). dH (s9(prod(proc(pl),ch)).XKn II Ts(n)cr II
XQq,qual(q)s(n)+ I cr I II RCrc>)

= 't. u x, n, prod(proc(pl),ch)"cr"q, 'A, re+

A Workcell with Quality Check 155

1 . uch, s(n), CJ, q, re

ueh, s(n), "-,"-,re

= 11 aH (s9(prod(proe(p1),eh)).XKn II Ts(n)"- II XQS(n) II RCre>

= 11 (c9(prod(proe(pl),eh)). aH (XKil II T nprod(proe(pl),eh) II xos(n) II RCre>)

= 1 . u x, n, prod(proe(pl),eh), 'A., re

u x, s(n), CT, prod(proc(pl),ok), re

= 11 aH (XKs(n) II Ts(n)CT II XQp,oks(n)+ 1 CT I II RCre>

= 11 (1 . clH (s9(prod(proe(pl),ok)) XKn II Ts(n)cr II XQp,oks(n)+ I cr I II RCre) +

1. dH (s9(prod(proe(pl),fault)) XKn II Ts(n)cr II XQp,oks(n)+ I cr I II RCre) +

s1 l(p). clH (XKS(n) II Ts(n)CT II XQS(n)+ I CT I II RCre>)

= 1 . uok, s(n), CT, prod(proe(pl),ok), re +

1 . ufault, s(n), CT, prod(proe(pl),ok), re +

s1 l(prod(proe(pl),ok)) . u x, s(n), CT, A, re

u x, s(n), CT, prod(proe(pl),fault), re

= 11 clH (XKS(n) II Ts(n)CT II XQp,faults(n)+ I CT I II RCre>

= 11 (

1 . dH (s9(prod(proc(p1),ok)) XKn II Ts(n)CT II XQp,faults(n)+ 1 CT I II RCre) +

1 . aH (s9(prod(proe(pl),fault)) XKn II Ts(n)CT II XQp,faults(n)+ I CT I II RCre) +

eS(rej). dH (XKS(n) II Ts(n)CT II xos(n)+ I CT I II RCs(re)))

= 1 . uok, s(n), cr, prod(proe(pl),fault), re +

1 . ufault, s(n), CT, prod(proe(pl),fault), re +

eS(rej) . u x, s(n), CT, 'A., s(re)

u x, s(n), CT*q, 'A., re

= 11 aH (XKS(n) II Ts(n)cr*q llxon+2+ I CJ I II RCre>

= 11 (1 . aH (s9(prod(proe(p1),ok)) XKil II Ts(n)CT*q II xon+2+ I CT I II RCre) +

1. dH (s9(prod(proe(pl),fault)) xKn II Ts(nP*q II xon+2+ I CT I II RCre) +

clO(q). aH (XKS(n) II T s(n)CT II XQq,qual(q>8(n)+ I CT I II RCre>)

= 1 . uok, s(n), CT*q, A, re + 1 . ufault, s(n), CT*q, A, re + 1 . u x, s(n), CT, q, re

u x, s(n), A, A, re

= 11 dH (XKS(n) II Ts(n)"- II XQS(n) II RCre>

= 11 (1 . dH (s9(prod(proe(pl),ok)) XKn II Ts(n)"- II XQS(n) II RCre) +

1 . aH (s9(prod(proe(pl),fault)) XKil II Ts(n)"- II XQS(n) II RCre)

156 Specification and Verification of CIM-Architectures

= -c. uok, s(n), 'A., 'A., re + -c. ufault, s(n), 'A., 'A., re

u x, 0, cr, prod(proe(pl),ok), re

= 'tf aH (Xr<O II To<i II XQp,ok I (j I II RCre>

= 'tf (sll(p). aH (xr<O II To(j II XQ I (j I II RCre))

= sll(prod(proe(pl),ok)). u x, 0, cr, 'A., re

ux, 0, cr, prod(proe(pl),fault), re

= 'tf aH (W II To<i II XQp,fault I (j I II RCre>

= 'tf (cS(rej). aH (xr<O II To<i II XQ I (j I II RCs(re)))

= eS(rej) . ux, 0, cr, 'A., s(re)

u x, 0, cr"q, 'A., re

= 'tf aH (Xr<O II T0cr"q II XQ I cr I +111 RCre)

= 'tf (clO(q). aH (xr<O II To(j II XQq,qual(q) I (j I II RCre))

= 't. ux, 0, cr, q, re

ux, 0, 'A., 'A., re

= 'tf aH (XK0 II ToA II xQD II RCre>

= 'tf (e5(r).e7(r).c3(r). aH (K II T II Q II I)I"e))

='t. ure

Thus we have the following system:

1) U = I,rl(n) . un
2) uO = sO(r) . U

3) us(n) = -r . u x, s(n), 'A., 'A., 0

4) uch, s(n), cr, prod(proe(pl),ok), re=

't. u x, n, prod(proe(pl),eh)"cr, prod(proe(pl),ok), re+

sll(prod(proe(pl),ok)) . ueh, s(n), cr, 'A., re

5) ueh, s(n), cr, prod(proe(pl),fault), re=

't. u x, n, prod(proe(pl),eh)"cr, prod(proe(pl),fault), re+

eS(rej) . ueh, s(n), cr, 'A., s(re)

6) ueh, s(n), cr"q, 'A., re=

't. u x, n, prod(proe(pl),eh)"cr"q, 'A., re+

-r . ueh, s(n), cr, q, re

7) ueh, s(n), 'A., 'A., re= 't . u x, n, prod(proc(pl),eh), 'A., re

A Workcell with Quality Check 15 7

8) u x, s(n), <J, prod(proc(pl),ok), re=

,: . uok, s(n), <J, prod(proc(pl),ok), re +

,: . ufault, s(n), <J, prod(proc(pl),ok), re +

sl l(prod(proc(pl),ok)) . u x, s(n), <J, "A, re

9) ux, s(n), <J, prod(proc(pl),fault), re=

,: . uok, s(n), cr, prod(proc(pl),fault), re +

,: . ufault, s(n), <J, prod(proc(pl),fault), re +

cS(rej) . u x, s(n), <J, A, s(rc)

10) u x, s(n), cr*q, "A, re=

,: . uok, s(n), cr*q, "A, re +

, . ufault, s(n), cr*q, "A, re +

,: . u x, s(n), <J, q, re

11) u x, s(n), "A, "A, re=,: . uok, s(n), "A, "A, re +,: . ufault, s(n), "A, "A, re

12) u x, 0, <J, prod(proc(pl),ok), re= sl l(prod(proc(pl),ok)). u x, 0, cr, "A, re

13) u x, 0, <J, prod(proc(pl),fault), re= cS(rej) . u x, 0, <J, A, s(rc)

14) u x, 0, cr*q, "A, re=,. u x, 0, <J, q, re

15) u x, 0, "A, "A, re=,. urc

specification 2

3.2.3.3. Step 3
In the final part of the proof we use CFAR (see [4]) and RSP to prove that the
system derived in step 2 can be reduced to the desired specification V.

Some observations about the specification above can be made. The number
of products that still have to be produced correctly (m) can be determined from
the values of the indices of the process:

m = count+ I buffer I + I Qcont I +re
So we must prove the equality

, . EID= ' ·'!cS(reject))(UChoice, count, buffer, Qcont, re)

We must also prove

,.Em= t.t {cS(reject)} (UID).

Comparing the two processes one easily notes that um has the possibility to
produce only faulty products, hence it can loop forever, sending rejection
messages. The process Em however does not have this possibility. Thus we
must make the assumption that workstation WA is not completely broken. It
now and then must process some product correctly. This fairness assumption
can be modeled in process algebra with the Cluster Fair Abstraction Rule.

158 Specification and Verification of CIM-Architectures

The only cases in which it is possible to never process a product correctly are
the processes which are indexed such that (i) choice;rok, (ii) the buffer contains
no correctly processed products and (iii) Qcont;cprod(proc(p1),ok). This
observation leads us to consider clusters of processes which satisfy these
conditions and have to produce the same number of products. Thus cluster m
(for m>O) is defined by:

CL(m) = {lJIIl}u { uchoice, count, buffer, Qcont, re I

choice;oeok /\ prod(proc(pl),ok) ebuffer /\ Qcont;oeprod(proc(pl),ok) "
count+ I buffer I + I Qcont I +re = m}

This defines a conservative cluster from {c5(reject)J in the specification of
uchoice, count, buffer, Qcont, re (using terminology of [4]). The Workcell can
choose to loop forever in such a cluster, or it can choose to process some
product correctly. This will be indicated by setting the choice-index to ok. After
some time, this choice leads to a correctly processed product leaving the
workcell. In the meantime the workcell has to make new choices. If they are all
negative, we again enter a cluster that permits infinite loops. If a choice was
made to produce one or more correct products, we are still in a state in which
progress can be made.

Now we can determine the exits of such a cluster. These are all states which
can be reached from the cluster, but are no member of it. Thus there are no
correctly processed products in the buffers and the choice has been made to
process the next product correctly.

EXITS(m) = {UOk, s(n), cr, prod(proc(pl),fault),rc I

s(n)+ I cr I +l+rc = m /\ 1tpo3(proc(p1),ok) e cr }u

1uok, s(n), cr*q, 'A., re I

s(n)+ I cr I +l+rc = m " prod(proc(pl),ok) e cr*q }u

1uok, s(n), 'A., 'A., re I s(n)+rc = m)

Applying CFAR to the specification derived in step 2 leads to a new
specification. This specification is equal to the old one for states which contain
some correctly processed product and is modified for states which only contain
faulty products.

Now set

W' = 1 {c5(reject)J(U)

wn = 1 {c5(reject))(Un)
wchoice, count, buffer, Qcont, re=

•{cS(reject)j(UChoice, count, buffer, Qcont, re)

In the first part of the following specification we assume that there are correctly
processed products in the buffer cr, or in Qcont, or ch=ok . The numbers
correspond to the numbers in the specification of U.

A Workcell with Quality Check 159

1) W' = L.n<!Orl(n) . wn
2) w0 = s0(r) . W'

4) weh, s(n), 0 , prod(proe(pl),ok), re=

1 . w x, n, prod(proe(pl),eh)*0, prod(proe(pl),ok), re+

sl l(prod(proe(pl),ok)) . weh, s(n), 0, A., re

5) weh, s(n), 0, prod(proe(pl),fault), re=

1 . w x, n, prod(proe(pl),eh)*0, prod(proe(pl),fault), re+

1 . weh, s(n), cr, A., s(rc)

6) weh, s(n), 0*q, A., re=

1 . w x, n, prod(proc(pl),eh)*0*q, A., re+

1 . weh, s(n), 0, q, re

7) weh, s(n), A., 11., re= 1 . w x, n, prod(proc(pl),eh), 11., re

8) w x, s(n), 0, prod(proe(pl),ok), re=

1 . wok, s(n), cr, prod(proc(pl),ok), re +

1 . wfault, s(n), 0, prod(proe(pl),ok), re +

sll(prod(proe(pl),ok)) . w x, s(n), cr, 11., re

9) w x, s(n), 0, prod(proe(pl),fault), re=

1 . wok, s(n), 0, prod(proe(pl),fault), re +

1 . wfault, s(n), 0, prod(proc(pl),fault), re +

1 . w x, s(n), 0, 11., s(re)

10) w x, s(n), 0*q, A., re=

1 . wok, s(n), 0*q, 11., re +

1 . wfault, s(n), cr*q, 11., re +

1 . w x, s(n), 0, q, re

12) w x, 0, cr, prod(proc(pl),ok), re= sll(prod(proc(pl),ok)). w x, 0, cr, 11., re

13) w x, 0, 0, prod(proc(pl),fault), re= 1 . w x, 0, 0, 11., s(rc)

14) w x, 0, cr*q, 11., re= ,. w x, 0, 0 , q, re

specification 3 part 1

In the second part we assume that there are no correct products in the workcell,
so we are in a cluster. The expression I. EXITS(m) is shorthand for

I. pE EXITS(m) 1 {c5(reject))(p).

160 Specification and Verification of CIM-Architectures

3) ws(n) =, . I EXITS(s(n))

Sa) wch, s(n), cr, proc(pl,fault), re= 't. I, EXITS(s(n)+ I cr I +l+rc)

6a) wch, s(n), cr*q, "-, re = 't . I, EXITS(s(n)+ I cr I+ 1 +re)

7a) wch, s(n), "-,"-,re= 't . I, EXITS(s(n)+rc)

9a) w x, s(n), cr, proc(pl,fault), re= 't . r, EXITS(s(n)+ J cr J + l+rc)

10a) w x, s(n), cr*q, "-,re= 't . I, EXITS(s(n)+ I cr I +l+rc)

11) w x, s(n), "-, "-,re= 't . I, EXITS(s(n)+rc)

13a) w x, 0, cr, proc(pl,fault), re=,. I, EXITS(I cr I +l+rc)

14a) w x, 0, cr*q, "-, re = 't . I, EXITS(I cr I+ 1 +re)

15) w x, 0, "-, "-, re = 't . I, EXITS(rc)

specification 3 part 2

This specification now describes exactly the same process as the specification of
V from the module Workvcell-Behaviour. This can be easily verified by

substituting V for W', Eo .v for wO, r .Es(n) for w s(n) and the process
r.Ecount+ I buffer I+ I Qcont I +re for wch ,count,buffer,Qcont,rc_ Note that the

only equation not starting with a 'tis equation 12. So we must substitute EI al +1

for w x,0,a,proc(pl,ok)_ So we see that Vis a solution of the system defining W',
and thus we can use RSP to conclude that v equals w'.

Note that RSP is only applicable if the specifications are guarded. A proof of
the guardedness of specification 3 is straightforward.

4. FINAL REMARKS

The techniques introduced in this chapter seem to be powerful enough to aid in
the specification and verification of CIM-architectures. Although two workcells
were considered of low complexity, the basic concepts of the technique are well
illustrated. Now, due to the compositionality of the specifications, one can
build a large plant consisting of a number of workcells which are already prov­
ed to function correctly. Thus, increasing the scale of the system will be possible.

It is also possible to add new features to the workcell and model them in
process algebra. Possible features are: interrupts (modeled by the priority­
operator, see [7]), detailed reports on the functioning of a machine, changing the
tools of a machine, etc. Most of these features are not more complex than
adding quality checks to a workcell.

Since a wide range of proof-rules and proof-techniques are developed in
process algebra, the specification of a CIM-architecture in process algebra has
advantages over specification in e .g. LOTOS. To name one, in LOTOS there is
no equivalent of the fairness assumption.

Chapter 6

SPECIFICATION OF THE TRANSIT

NooE1NPSF
(with F. Wiedijk)

The specification language PSF is used to give a formal specification of a transit node, a
common case study in ESPRIT project METEOR. The design of the specification derived from
the informal text and the ERAE specification is included. A short discussion on the relation
to the specification in ERAE is provided .

1. INTRODUCTION

This chapter contains a case study in the formal description technique PSF. We
specify a transit node, which is the common case study for several formalisms
in the ESPRIT project nr. 432, METEOR. The PSF specification is derived
partially from an informal text and partially from the ERAE specification in [54) .
The design of the specification is included, from which a general method can be
derived for specifying similar problems in PSF. In [80) the transit node is
specified in the algebraic specification language PLUSS.

The PSF specification can be viewed as a more implementation directed
specification than the one in ERAE. Certain design decisions are made, for
example in identifying the separate objects that act in parallel. Thus the PSF
specification, viewed as an implementation of the ERAE specification, must be
verified or validated. A short discussion is devoted to this topic.

161

162 Specification of the Transit Node in PSF

2. THE TRANSIT NODE

The Transit Node is a case study, which was defined in the RACE project 1046
(SPECS). An informal description of the Transit Node and the ERAE
specification of it can be found in (54] . The informal specification reads as
follows:

"The system to be specified consists of a transit node with:

• 1 Control Port-In

• 1 Control Port-Out

• N Data Ports-In

• N Data Ports-Out

• M Routes Through

(The limits of N and M are not specified.)

Each port is serialized. All ports are concurrent to all others . The ports
should be specified as separate, concurrent entities . Messages arrive
from the environment only when a Port-In is abe to treat them.

The node is "fair" . All messages are equally likely to be treated, when a
selection must be made, and all messages will eventually transit the
node, or be placed in the collection of faulty messages.

Initial State: 1 Control Port-In, 1 Control Port-Out.

The Control Port-In accepts and treats the following three messages:

• Add-Data-Port-In-&-Out(n)

gives the node knowledge of a new port-in(n) and a new port-out(n).
The node commences to accept and treat messages sent to the port-in,
as indicated below on Data Port-In .

• Add-Route((m),n(i) ,n(j) , ...))

gives the node knowledge of a route associating route m with Data
Port-Out(n(i) ,n(j) , .. .) .

• Send-Faults

routes all saved faulty messages, if any to Control-Port-Out. The order
in which the faulty messages are transmitted is not specified.

A Data Port-In accepts and treats only messages of the type:

• Route(m) .Data

The Port-In routes the message, unchanged, to any one (non­
determinate) of the Data Ports-Out associated with route m. (Note that
a Data Port-Out is serialized - the message has to be buffered until the
Data Port-Out can process it). The message becomes a faulty message if

The Transit Node 163

its transit time through the node (from initial receipt by a Data Port-In
to transmission by a Data Port-Out) is greater than a constant time T .

Data Ports-Out and Control Port-Out accept messages of any type and
will transmit the message out of the node. Messages may leave the
node in any order.

All faulty messages are saved until a Send-Faults command message
causes them to be routed to Control Port-Out. Faulty messages are
messages on the Control Port-In that are not one of the three
commands listed, messages on a Data Port-In that indicate an unknown
route, or messages whose transit time through the node is greater than
T . Messages that exceed the transit time of T become faulty as soon as
the time T is exceeded. It is permissible for a faulty message to not be
routed to Control Port-Out (because, for example, it has just become
faulty, but has not yet been placed in a faulty message collection), but all
faulty messages must eventually be sent to Control Port-Out with a
succession of Send-Faults commands.

It may be assumed that a source of time (time-of-day or a signal each
time interval) is available in the environment and need not be
modeled with the specification."

3. DESIGN OF THE SPECIFICATION

3.1. GENERAL

The specification was designed using a mixed top-down and bottom-up
approach. It was based on the informal text, while using the interpretation of
the text in the ERAE specification when needed to fill in omissions or solve
ambiguities.

Several design decisions were made, which did not follow directly from the
informal description of the case study (for example, the decision to let the
Control Port-in keep control of the table containing all routes through the
node).

3.2. DESIGN

We first identify all parameters of the system, that are objects which are -and
should be- unspecified. Since "it may be assumed that a source of time is
available in the environment", we postulate the existence of a process that
behaves like a clock. This can be done by specifying a parameter containing this
clock process. The second parameter is formed by the time that a message may
be inside the node without getting faulty, the maximal transit time. The exact
length of this duration should be decided upon at the implementation phase.

164 Specification of the Transit Node in PSF

Then we identify all (concurrent) components in the system. We have a
Control-Port-In, a Control-Port-Out, a number of Data-Ports-in and a number of
Data-Ports-Out. Note that we will not consider the Routes as components, since
these are static objects without temporal behaviour. Because all Data-Ports-In
have the same behaviour, we can specify just one process, indexed with the
actual name of the port. The same holds for the Data-Ports Out.

Now we make the decision that the routes and the information about the
ports that exist are handled by the Control-Port-In, so this process is indexed
with a route-table and with a port-set. Furthermore we see that the Control­
Port-Out must contain a number of faulty messages that should be flushed and
that every Data-Port-Out must contain a number of messages that should be
sent to the environment. So both processes are indexed with a message-bag.
The signature of the top-level objects now looks like:

proc•••••
control-port-in : route-table# port-set
control-port-out : message-bag
data-port-in : port-name
data-port-out : port-name# message-bag

From the informal text and the ERAE specification we can now define the
initial state of the node. It consists of the concurrent operation of the contra/­
port-in and the control-port-out, indexed with the empty-route-table, the
empty-port-set and the empty-message-bag. Of course we must add the
parameter process clock in parallel and we must abstract from the internal
actions and encapsulate unsuccessful communications.

transit-node= hide(I, encaps(H,
clock 11
control-port-in(empty-route-table, empty-port-set) 11
control-port-out(empty-message- bag)))

Now we can proceed in a bottom up way by defining the data types route-table
(an instance of the parameterized module table with the data type routes), port­
set (sets instantiated with ports), message-bag (bags instantiated with messages)
and port-name.

The top-down approach is continued by defining the behaviour of the four
processes, each in a separate module. This leads to the question which objects
are connected, in order to communicate to each other. We see that there is a
link between the control-port-in and the control-port-out . Every data-port-in is
linked to the control-port-in for route information and to the control-port-out
for sending faulty messages. All data-ports-in are connected to all data-ports-out
to transmit messages . And finally all ports have a connection to the
environment for either accepting or transmitting messages.

As can be seen in the specification, the behaviour of the objects is specified by
determining all initial communication actions. Every action is then followed by
the corresponding behaviour, such as a transmission or a state change. This can
possibly be specified by using subprocesses.

Design of the Specification 165

The control-port-in e.g. can accept one of the following messages:

• add-datum-port(p), followed by the subprocess that handles adding a
data-port-in and a data-port-out;

• add-route(r), followed by a state change where the route-table is updated;

• send-faults, followed by forwarding this message to control-port-out;

• request-route(rn), followed by sending appropriate information about
the route back.

After having identified all atomic actions (i.e. communication attempts) we can
define the communication function and the set of atoms that has to be
encapsulated and abstracted.

3.3. TOPOLOGY OF THE TRANSIT NODE

We can visualize the structure of the transit node with the following picture.

control-input

data-input(p1)

control-port-in

data-port-in(p1)

:♦
I I
I I

f !

control-in-to-out

I
I
I
I
I
I

I \

ata-tn-'6-out(pl ,pl'!"i

control-port-out

data-port-out(p 1)

/ I
I \ '--------' '-< ,- I

I ', .,,. ,,, \
I ' .,

I ...,"', l

/ .,........ \

control-output

data-output(p 1)

.," '--------
-------1.___r--------► -".____.II _____ _..

figure 1 The transit node

166 Specification of the Transit Node in PSF

4. THE SPECIFICATION

The specification that resulted from the design as described in the previous
paragraph will now be given. Note that the linear structure of the specification
does not comply with the way the specification was designed. This is because
the formalism forces us to write down the specification in a bottom-up way.

We first give all basic data types needed in the specification, then we define
the data types specific to the transit node, then we define all processes involved
and finally we give an example of an instantiation of the clock parameter.

4.1. BASIC DATA TYPES

The basic data types consist of the simple types booleans and natural numbers,
and the parameterized types bags, sets and tables. The difference between bags
and sets is that in a set duplicates are removed. A table can be used to look up
an item corresponding to the value of a certain key.

data module booleans
begin

exports
begin

aorta BOOL
functions

true
false
or
and

end

variables
b: -> BOOL

equations

BOOL
BOOL

[l] or(true, b)
[2] or(false, b)
[3] and(true, b)
[4] and(false, b)

end booleans

t BOOL
f BOOL

= true
= b

b
= false

-> BOOL
-> BOOL
-> BOOL
- > BOOL

data modul e natural-numbers
beg i n

exports
begi n

sorts nat
f unct i ons

0
s
eq
lt

+

e nd

imports booleans

variable a

nat
nat
nat
nat
nat

n, nl, n2 : -> nat
equat i ons

eq(0, 0)

ii nat
nat
ii nat
nat

[1]
[2]
[3]
[4]
[5]
[6]
(7)
[8]
[9]

eq(O, s(n))
eq(s(n), 0)
eq(s(nl), s(n2))
lt(O, s(n))

(10]
(11]
[12)

lt (n, 0)
lt(s(nl), s(n2))
n + 0
nl + s (n2)
0 - n
n - 0
s(nl) - s(n2)

end natural-numbers

data module bags
begin

parameters
items

begin
aorta item

end items

exports
begin

-> nat
-> nat
-> BOOL
-> BO0L
-> nat
-> nat

true
false

= fal s e
eq(nl , n2)
true
false
lt (nl, n2)
n
s(nl + n2)
0
n
nl - n2

aorta bag
functions

empty- bag
add

-> b a g
item ii bag-> bag

end

variables
il, i2 : -> item
b - > bag

equation•
[l] add(il, add(i2, b)) = a dd (i2 , add(il, b))

end bags

Discussion 16 7

168 Specification of the Transit Node in PSf

data module set
begin

parameter a
equality

begin
function■

eq: item# item-> BOOL
end equality

exports
begin

functions
eq
element

end

set# set -> BOOL
item# set-> BOOL

import•
bags

{ renamed by
-> set, [bag

empty-bag
},

-> empty-set]

booleans

variable■

i, il, i2 -> item
s -> set

equation■

[l] add{i, add(i, s))
[2] element(i, empty-set}
[3] element(il, add(i2, s))

add(i, s)
false
or(eq(il, i2), element(il, s))

end set

data module tables
begin

parameter•
items

begin
aorta key, value
functions

eq
default-value

end items

export ■

begin

key# key-> BOOL
-> value

aorta table
functions

empty-table
add
look-up

-> table
key t value# table-> table
key# table - > value

end

import• booleans

Discussion 169

variables
k, kl, k2 -> key
V -> value
t -> table

equations
[1] look-up(k, empty-table) = default-value
[2] look-up(kl, add(k2, v, t)) = v

when eq(kl, k2) = true
[3] look-up(kl, add(k2, v, t)) = look-up(kl, t)

when eq(kl, k2) = false

end tables

4.2. DATA TYPES SPECIFIC TO THE TRANSIT NODE

The module time supplies functions to deal with timing information. To the
outside the sort time is built up from the constant initial-time, using the +­
function to add durations. A duration is either the constant tick-duration, or
the difference of two times. Internally we use the naturals and auxiliary
functions to define the exported functions.

data module time
begin

exports
begin

aorta time, duration
functions

initial-time
tick-duration

-> time
- > duration

lt
+

duration# duration
time# duration

-> BOOL
-> time

time# time
end

imports natural-numbers

nat -> time
functions

time
duration nat -> duration

variables
nl, n2 : -> nat

equations
[1] initial-time
[2] tick-duration
[3] lt(duration(nl), duration(n2))
[4] time(nl) + duration(n2)
[5] time(nl) - time(n2)

end time

-> duration

time(O)
- duration (s (0))

lt (nl, n2)
time (nl + n2)
duration(nl - n2)

The type of information that can be transmitted through the transit node is
defined in the module datum .

170 Specification of the Transit Node in PSF

data module datum
begin

export•
begin

aorta datum
end

imports natural-numbers

function•
datum: nat -> datum

end datum

The transit nodes contains a number of ports for input and output. These ports
are named with natural numbers. Port names can be collected into sets by
binding the parameter of the basic module set to port-name.

data module port-name
begin

exports
begin

sorta
port-name

functions
eq : port-name# port-name-> BOOL

end

import■ natural-numbers
function■

port-name: nat - > port-name

variable ■

nl, n2 : - > nat
equations

[1] eq(port-name(nl), port-name(n2))

end port-name

data module port-sets
begin

imports
set

renamed by
set
empty-set

items bound by
[item

-> port-set,
- > empty-port-set

- > p o rt-name]
to p o rt-name

equality bound by
[eq -> eq l
to port-name

end port-sets

eq(nl, n2)

Discussion 171

A route consists of a route-name and a set of output ports associated with this
route. Routes are collected into tables in order to look up the port-set
corresponding to the name of a previously created route.

data module route-names
begin

exports
begin

sorta
route-name

functions
eq : rou te-name# route-name-> BOOL

end

imports natural-numbers
functions

route-name : nat -> route-name

variables
nl, n2 : - > nat

equations
[l] eq(route-name(nl), route-name(n2))

end route-names

data module r o utes
begin

export11
begin

sorts route
functions

route
name-of
ports-of
eq

end

route-name j/ port-set
route
route
route j/ route

imports b ooleans, port-sets, route-names

variable11
nl, n2
psl, ps2

- > route-name
-> port-set

equation11
[l] name-of(route(nl,
[2] ports-of(route(nl,
[3] eq(route(nl, psl),

psl))
psl))
route(n2, ps2))

->
->
->
->

eq(nl, n2)

route
route-name
port-set
BOOL

nl
psl

and(eq(nl, n2), eq(psl, ps2))

end routes

172 Specification of the Transit Node in PSF

data module route-tables
begin

import•
tables

{renamed by
[table

empty-table
items bound by

-> route-table,
-> empty-route-table]

[key -> route-name,
value -> port-set,
eq -> eq,
default-value-> empty-port-set]

to routes)

end route-tables

If components communicate to the outside world or to each other, messages are
exchanged. Most of the messages are indexed with a value of some data type.
Messages can be collected in bags.

data module messages
begin

exports
begin

aorta message
functions

end

add-datum-port
add-route
send-faults
routed-datum
req-route
available-ports
timed-message
datum

port-name
route

route-name # datum
route-name
port-set
time # datum
datum

imports datum, time, port-name, routes

end messages

data module message-bags
begin

import•
bags

{ renamed by
bag
empty-bag

items bound by

-> message-bag,
- > empty-message-bag

item - > message]
to messages

end message-bags

-> message
-> message
-> message
-> message
-> message
-> message
-> message
-> message

Discussion 173

The various components of the transit node are connected to each other with
channels. There are also channels to the environment.

data module channels
begin

exports
begin

aorta channel
functions

end

control -input
control-output
control -in-to-out
control-to-data
data-to-contro l
rejection
data-in-to-out
data-input
data-output

imports port-name

end channels

4.3. THE PROCESSES

4.3.1. Communication

-> channel
-> channel
- > channe l

port-name -> channel
port-name - > channel

-> channel
port-name ii port-name -> channel
port-name -> channel
port-name -> channel

The module communication defines the atomic actions that can be executed by
the various components, when trying to communicate. The communication
function is defined such that a read action (r) and a send action (s) can be
combined into a communication action (c). These actions are indexed with the
channel used to communicate and the message to be transmitted. In the same
way timing information can be communicated.

The set of internal actions (I) and the set of actions to be encapsulated in
order to get only successful communication (H) are also defined.

process module communication
begin

exports
begin

atoms
r
s
C

read-time
send-time
comm-time

channel t message
channel * message
channel • message
time
time
time

174 Specification of the Transit Node in PSF

sets of channel
internal-channels

control-in-to-out, rejection,
data-to-control(pnl), control-to-data(pnl),
data-in-to-out(pnl, pn2) I pnl in port-name, pn2 in port-name }

of atoms
I c (c, m), comm-time (t) I

tin time, c in internal-channels, min message
H r(c, m), s(c, m), send-time(t), read-time(t)

tin time, c in internal-channels, min message
end

imports
channels ,
messages ,.
time

communications
r(c, m) I s(c, m) = c(c, m)

for c in channel, min message
read-time(t) I send-time(t) = comm-time(t)

for t in time

end communication

4.3.2. Data-ports-in

For every port-name a process data-port-in is defined. Every data-port-in
behaves as follows . First it reads from its input channel the message to send
some datum along some route. Then it reads the current time and asks the
control-port-in for the port set attached to the requested route. Then a transit
attempt is made. If the route-name was faulty, an empty-port-set was returned
and the incoming message is routed to the rejection channel, thus becoming
faulty. If the port-set was not empty, one port is selected randomly and after
adding a time stamp the incoming message is routed to that port. The process
transit-datum is not defined in case the port-set is empty. This means that it
equals deadlock.

process module data-ports-in
begin

exports
begin

proc•••••
data-port-in

end

imports
port-sets,
route-names,
time,
communication

port-name

Discussion 175

processes
transit-attempt

port-set# port-name# time # route-name t datum
transit-datum : p ort-set# port-name# time# datum

variables
tl , t2 -> time
pl, p2 -> port-name
rn -> route-name
ps -> port-set
d -> datum

definitions
data-port-in(pl)

aum{d in datum,
aum(rn in route-name,
r(data-input(pl), routed-datum(rn, d)) .
aum(tl in time,
read-time (tl) . s (data-to-control (pl), reg-route (rn))
sum(ps in port-set,

r(control-to-data(pl), available-ports(ps))
transit-attempt (ps, pl, tl, rn, d) .
data-port-in(pl)))))

transit-attempt(empty-port-set, pl, tl, rn, d)
s(rejection, routed-datum(rn, d))

transit-attempt(add(p2, ps), pl, tl, rn, d)
transit-datum(add(p2, ps), pl, tl, d)

transit-datum(add(p2, ps), pl, tl, d) =
s(data-in-to-out(pl, p2), timed-message(tl, d)) +
transit-datum(ps, pl, tl, d)

end data-ports-in

4.3.3. Data-ports-out

The following module is parameterized with a duration, max-transit-time, that
determines the maximum time a message may stay within the transit node.

For every port-name a process data-port-out is defined. Every data-port-out is
indexed with a bag of messages that must be sent to the environment. Initially
this bag is empty. It starts by reading a timed message from one of the data­
input-ports. This message is added to the bag and the process starts again. If the
bag is not empty, the process also has the possibility to output some message
from the bag. If the max-transit-time is expired, then the message becomes
faulty and will be sent to the rejection channel. Otherwise, the message is sent
to the environment.

176 Specification of the Transit Node in PSF

process module data-ports-out
begin

parameter a
max-transit-time

begin
functions

max-transit-time
end max-transit-time

exports
begin

-> duration

processes
data-port-out

end
port-name# message-bag

imports
port-name,
message-bags,
communication

processes
handle-message-out BOOL #datum# port-name

variables
t, tl, t2
pl, p2

-> time
-> port-name

mb -> message-bag
d, e -> datum

definitions
data-port-out(p2, empty-message-bag)

sum(pl in port-name,
sum(tl in time,

aum(d in ciatum,
r(data-in-to-out(pl, p2), timed-message(tl, d))
data-port-out(p2, add(timed-message(tl, d),

empty-message-bag)))))
data-port-out(p2, add(timed-message(t2, e), mb)) =

sum(pl in port-name,
sum(tl in time,

sum(d in datum,
r(data-in-to-out(pl, p2), timed-message(tl, d))
data-port-out(p2, add(timed-message(tl, d),

add(timed-message(t2, e), mb)))))) +
sum(t in time,
read-time(t)
handle-message-out(lt(t - t2, max-transit-time), e, p2)
data-port-out(p2, mb))

handle-message-out(false, d, p2)
s(rejection, datum(d))

handle-message-out(true, d, p2) =
s(data-output(p2), datum(d))

end data-ports-out

Discussion 177

4.3.4. Control-port-in

The process control-port-in keeps track of all defined routes and all existing
ports, so it is indexed with a route-table and a port-set. It is connected to the
environment with the control-input channel. Via this channel it can receive
the message to add a datum-port, to add a route, or to flush all faulty messages.
As a last option it can receive a request from some data-port-in to send the
routing information belonging to some route-name. All these incoming
messages are treated separately. The request to add a datum port is handled
using a subprocess. This handler checks wether the data port already exists.
Then it either rejects the message or adds the port to the port-set and creates
two new parallel processes: a data-port-in and a data-port-out.

If a request is made to add a route, it simply adds the route information to
the route-set. A send-faults request is simply passed on to the control-port-out.
A request for route information is answered by looking up the requested
information and sending it back.

process module control-port-in
begin

exports
begin

processes
control-port-in

end

imports

route-table# port-set

route-tables, communication, data-ports-in, data-ports-out

processes
handle-add-port

variables
p -> port-name

route-table# port-set# port-name# BOOL

rt -> route-table
ps - > port-set

definitions
control-port-in(rt, ps) =

sum(p in port-name,
r(control-input, add-datum-port(p))
handle-add-port(rt, ps, p, element(p, ps)))

+ sum(r in route,
r(control-input, add-route(r)) .
control-port-in(add(name-of(r), ports-of(r), rt), ps))

+ r(control-input, send-faults) .
s(control-in-to-out, send-faults)
control -port-in(rt, ps)

+ sum(p in port-name,
aum(rn in route-name,
r(data-to-control(p), req-route(rn)) .
s(control-to-data(p),

available-ports (look-up (rn, rt))))) .
control-port-in(rt, ps)

178 Specification of the Transit Node in PSF

handle-add-port(rt, ps, p, true) =
s(rejection, add-datum-port(p))
control-port-in(rt, ps)

handle-add-port(rt, ps, p, false) =
control-port-in(rt, add(p, ps)) 11

data-port-in(p) I I data-port-out(p, empty-message-bag)

end control-port-in

4.3.5. Control-port-out

The process control-port-out is indexed with the message-bag containing all
faulty messages. It has a simple behaviour. It can receive the message to send all
faulty messages to the environment, which is handled by the subprocess flush,
or it can receive faulty message via the rejection channel.

proce•• module control-port-out
begin

export•
begin

proc••••s
control-port-out

end

imports
message-bags,
communication

proceaaea
flush : message-bag

variables
m -> message
mb: -> message-bag

definition•
control-port-out(mb) =

message-bag

r(control-in-to-out, send-faults) . flush(mb)
+ aum(m in message, r(rejection, m)

control-port-out(add(m, mb)))

flush(empty-message-bag) = control-port-out(empty-message-bag)
flush(add(m, mb)) = s(control-output, m) . flush(mb)

end control-port-out

4.3.6. Transit-node

Finally the transit node is specified by the concurrent operation of the clock
process, which is a parameter of the system, the control-port-in and the control­
port-out. These ports are initialized with an empty table, set and bag. In order to

Discussion 1 79

hide internal actions and to get only successful communication, we add the
hiding operator and the encapsulation operator.

Note that apart from the parameter clock, we also inherit the parameter max­
transit-time from the imported module data-ports-out .

process module transit-node
begin

parameters
time

begin
processes

clock
end time

exports
begin

proces•••
transit-node

end

import ■

control-port-in,
control-port-out

definitions
transit-node= hide (I, encapa(H,

clock I I
control-port-in (empty-route-table, empty-port-set) I I
control-port - out(empty-message-bag)))

end transit-node

4.4. EXAMPLE OF A CLOCK

In this section we give an example of how the clock parameter of the transit
node can be initialized. The process clock starts at the initial-time. Then it can
do a tick, followed by an increment of the current time with a tick-duration, or
it can send the time to anyone willing to read it. Note that in this version of a
clock the action of sending the time will not cost any time.

180 Specification of the Transit Node in PSF

process module a-clock
begin

exports
begin

end

proc•••••
clock

imports
time,
communication

atoms
tick

processes
clock: time

variables
t : -> time

definitions
clock clock(initial-time)
clock(t) = tick . clock(t + tick-duration) +

send-time (t) . clock (t)

end a-clock

process module transit-node-with-a-clock
begin

imports
transit-node

{time bound by
[clock-> clock]

to a-clock)

end transit-node-with-a-clock

4.5. GRAPHICAL REPRESENTATION OF THE IMPORT RELATION

Using the IDEAS tool developed within the METEOR project [64] we can give
the following picture, see figure 2), representing the import relation between all
modules of the specification of the transit node. Rectangular boxes are used for
data modules and boxes with rounded corners gre used for process modules.
An arrow from a module to another module means that the former is
imported into the latter. Note that not all textual imports are present in the
picture. We used a tool to compute the minimal import relation having the
same transitive closure as the textual one.

Discussion 181

transit-node.psf

transit-node-with-a-clock.psf

figure 2 The import relation

182 Specification of the Transit Node in PSF

5. RELATION TO THE ERAE SPECIFICATION

In this section we will give a brief discussion of the relation between the ERAE
specification and the PSF specification of the transit node. It is clear that, since
ERAE was designed for requirements specification, the former is closer to the
textual specification, whereas in the PSF specification some design decisions
had to be made. As an example look at the routing information that is treated
as a separate entity in ERAE, while in PSF it is part of the state of the control­
port-in.

The ERAE language is based on temporal logic. Its formal semantics can be
found in [55], and [39] contains an introduction to the use of ERAE.

In order to validate that a PSF specification is correct with respect to an ERAE
specification, a formal treatment of this notion of validation would be needed.
Since this chapter does not focus on this subject, we only give some informal
reasoning about the relation between the two specifications.

Such a validation is made up of two parts. First we must give a relation
between the entities declared in the ERAE specification and the ones declared in
the PSF specification, and then we must provide an interpretation of the
temporal statements in ERAE into PSF.

5.1. ENTITIES

A quick inspection learns that, apart from some design decisions and detail
implementations, the entities in ERAE relate to the entities in PSF having the
same name. So where ERAE contains messages such as Add-route msgs
indexed with a route nr and a series of out port-nr, PSF has a data type
messages, containing a function add-route, indexed with rout e which is a
combination of a route-name and a port-set.

As an other example look at the entity Data port-in which is indexed with a
nr, and is able to receive Data msgs via a port. In PSF this translates to a process
data-port-in, indexed with a port-name, having a channel to the environment
called data-input, via which it can receive a routed-datum.

5.2. TEMPORAL STATEMENTS

Naively speaking the interpretation of a temporal statement in ERAE into PSF
consists of an interpretation of all events involved into atomic actions,
followed by a verification that every possible trace of the specification in PSF
satisfies all temporal statements about events given in the ERAE specification.
Unfortunately this approach is too simple since not only temporal information
is involved but also information about the state space of the system.

As an example of how to informally validate the PSF specification, we will
give some ERAE statements and their informal interpretation in the PSF
specification.

Relation to the ERAE Specification 183

initially ⇒ -,3 dpi: is-in(dpi, Data-ports-in)

/\ -,3 dpo: is-in(dpo, Data-ports-out)

/\ -,3r: is-in(r, Routes)

/\ -,3 wm,dm: faulty(wm) v faulty(dm)

This can be interpreted as the statement that there are no data ports in the
definition of the process transit-node, and that the port-set, route-table and
(faulty) message-bag are empty:

transit-node= hide(I, encaps(H,
clock 11
control-port-in(empty-route-table, empty-port-set) I I
control-port-out(empty-message-bag)))

A number of statements are about the behaviour of the environment of the
transit node. These statements are not explicitly met by the PSF specification,
since it only specifies the behaviour of the transit node without restricting its
environment. As an example look at the statement

occurs (dm) ⇒ • exists (port (dm))

which states that messages only arrive at existing input ports (the symbol •
means "true in the previous state"). This assumption about the environment is
not stated in the PSF specification.

As a last example look at the statement about state changes concerning data­
ports-in:

exists (dpi) /\ • -, exists (dpi)

⇒ 3 apm: occurs(apm) /\ nr(dpi)=port-nr(apm)

This states that if a data-port-in is created, an add-port-message must have been
occurred. In the PSF specification this is verified by looking at all places where a
data-port-in is created. This can only happen in the subprocess handle-add-port
of the process control-port-in . This subprocess is only invoked after the atomic
action c(control-input, add-datum-port(p)) has occurred for some appropriate
port-name p.

It is clear that this reasoning is very informal. This is because the existence of
a data-port-in is easy to check at the textual level of the specification, but not at
the level of the semantics of PSF. The semantics is a labeled transition graph,
which in no way contains information about the number of processes that it is
constructed from, but only about the actions that can be performed by the
system. Also the actual value of the indexes of the processes involved is not
part of the semantics.

6. DISCUSSION

Since some design decisions were needed, the specification of the transit node
in PSF is more specific than the specification in ERAE. There is no easy
transformation from an ERAE specification to a PSF specification, however

184 Specification of the Transit Node in PSF

when having an ERAE specification, the informal text can be interpreted more
easily.

We can only give an informal validation of the PSF specification when
relating it to the ERAE specification. This is due to the fact that in some cases
ERAE statements relate to the state of the system, which is not part of the
formal semantics of PSF. We can however look at the textual level of the
specification and give an informal reasoning. Also restrictions to the
environment can not be expressed in PSF.

The design of the specification can be generalized to the following method:

• Identify the parameters of the system.

• Identify all concurrent components.

• Add indexes to the process names of each component to keep track of
state information and to create more instances of the object.

• Define the abstract data types needed for these indexes.

• Specify how the components are connected.

• Define the initial state of the system.

• Define the behaviour of each component.

Of course the last step of this method can be very involved. Each component in
turn can then be divided into subcomponents, in such a way that the method
recursively applies to these subcomponents.

REFERENCES

[1) A.V. Aho & J.D. Ullman, Principles of compiler design, Addison-Wesley,
Reading, Massachusetts, 1977.

[2) P. America, Definition of POOL 2, a parallel object-oriented language,
Esprit project 415, Doc. Nr. 0364, Philips Research Laboratories,
Eindhoven, 1988.

[3) R. Azarhoosh, A PSF specification for triangular systems of equations,
Master's thesis, Programming Research Group, University of Amsterdam,
1991.

[4] J.C.M. Baeten (ed.), Applications of process algebra, Cambridge Tracts in
Theoretical Computer Science 17, Cambridge University Press, 1990.

[SJ J.C.M. Baeten & J.A. Bergstra, Global renaming operators in concrete
process algebra, Information & Computation 78, pp. 205-245, 1988.

[6) J.C.M. Baeten & J.A. Bergstra, Real time process algebra, Formal Aspects of
Computing 3 (2), pp.142-188, 1991.

[7] J.C.M. Baeten, J.A. Bergstra & J.W . Klop, Syntax and defining equations for
an interrupt mechanism in process algebra, Fundamenta Informaticae IX
(2), pp. 127-168, 1986.

[8) J.C.M. Baeten, J.A. Bergstra & J.W. Klop, Conditional axioms and a/{3
calculus in process algebra, Proc. IFIP Conf. on Formal Description of
Programming Concepts - III, Ebberup 1986, (M. Wirsing, ed.), North­
Holland, Amsterdam, pp. 53-75, 1987.

[9] J.C.M. Baeten, J.A. Bergstra & J.W. Klop, On the consistency of Koomen's
Fair Abstraction Rule, Theoretical Computer Science 51 (1/2), pp.129-176,
1987.

[10) J.C.M. Baeten, J .A. Bergstra & J.W. Klop, Ready trace semantics for concrete
process algebra with priority operator, in: British Computer Journal 30 (6),
pp. 498-506, 1987.

[11) J.C.M. Baeten, J.A. Bergstra, S. Mauw & G.J. Veltink, A process
specification formalism based on static COLD, in: Algebraic Methods II:

185

186 References

Theory, Tools and Applications (J.A. Bergstra & L.M.G. Feijs, eds.),
Springer LNCS 490, pp. 303-335, 1991.

(12] J,C.M. Baeten & R.J. van Glabbeek, Merge and termination in process
algebra, in: Proc. 7th Conf. on Foundations of Software Technology &
Theoretical Computer Science, Pune, India (K.V. Nori, ed.), Springer
LNCS 287, pp. 153-172, 1987.

(13] J.C.M. Baeten & F.W. Vaandrager, Specification and verification of a
circuit in ACP, report P8821, Programming Research Group, University of
Amsterdam, 1988.

(14] J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press, 1990.

[15] J.G.P. Barnes, Programming in Ada, Addison-Wesley, 1982.

(16] Bell Telephone Laboratories, UNIX Programmer's Manual, 1979.

(17] J.A. Bergstra, A mode transfer operator in process algebra, report P8808,
Programming Research Group, University of Amsterdam, 1988.

(18] J .A. Bergstra, A process creation mechanism in process algebra, in:
Applications of process algebra (J .C.M. Baeten, ed.), in [4], pp. 81-88, 1990.

(19] J.A. Bergstra, J. Heering & P. Klint, Algebraic definition of a simple
programming language, report CS-R8504, CWI, Amsterdam, 1985.

[20] J.A. Bergstra, J. Heering & P. Klint (eds.), Algebraic specification, ACM
Press Frontier Series, Addison-Wesley, 1989.

[21] J.A. Bergstra, J. Heering & P. Klint, Module algebra, Journal of the
Association for Computing Machinery 37(2), pp. 335-372, 1990.

[22] J.A. Bergstra & J.W. Klop, Process algebra for synchronous
communication, Information & Control 60 (1/3), pp. 109-137, 1984.

(23] J.A. Bergstra & J.W. Klop, Algebra of communicating processes with
abstraction, TCS 37 (1), pp. 77-121, 1985.

(24] J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in
bisimulation semantics, in: Math. & Comp. Sci. II, (M. Hazewinkel, J.K.
Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, pp 61-94, North­
Holland, Amsterdam, 1986.

(25] J.A .' Bergstra & J.W . Klop, Verification of an alternating bit protocol by
means of process algebra, in: Math. Methods of Spec. & Synthesis of
Software Systems '85, (W. Bibel & K.P. Jantke, eds.), Math. Research 31,
Akademie-Verlag Berlin, pp 9-23, 1986.

[26] J.A. Bergstra, J.W. Klop & E.-R. Olderog, Readies and failures in the algebra
of communicating processes, in: SIAM J. of Comp. 17(6), pp. 1134-1177,
1988.

[27] J.A. Bergstra, J.W. Klop & J.V. Tucker, Process algebra with asynchronous
communication mechanisms, in: Proc. Seminar on Concurrency (S.D.
Brookes, A.W. Roscoe & G. Winskel, eds.), LNCS 197, Springer Verlag, pp.
76-95, 1985.

References 187

[28] J.A. Bergstra, S. Mauw & F. Wiedijk, Uniform algebraic specifications of
finite sets with equality, Int. J. of Foundations of Computer Science 2 (1),
pp. 43-65, 1991.

[29] F. Biemans, Reference model of production control systems, Proc. of the
!ECON 86, Milwaukee, 1986.

[30] F. Biemans & P . Blonk, On the formal specification and verification of
CIM architectures using LOTOS, Computers in Industry 7(6), pp. 491-504,
1986.

[31] B.W. Boehm, A spiral model of software development and enhancement,
IEEE Computer 21 (5), pp. 61-72, 1988.

[32] P. Brinch Hansen, The programming language Concurrent Pascal, in: IEEE
Transactions on Software Engineering, Volume SE-1, pp 199-207, 1975.

[33] J .J. Brunekreef, A formal specification of three sliding window protocols,
report P9102, Programming Research Group, University of Amsterdam,
1991.

[34] KL. Clark & S. Gregory, Notes on systems programming in PARLOG,
Fifth generation computer systems 1984, pp. 299-306, North Holland, 1984.

[35] R. Cleaveland, J.G. Parrow & B. Steffen, The concurrency workbench, in:
Proc. Workshop on Automatic Verification Methods for Finite-State
Systems, LNCS 407, Springer -Verlag, Berlin, pp. 24-37, 1989.

[36] Commodore business machines Inc., Commodore 64 programmer's
reference guide, 1982.

[37] E.W . Dijkstra, Guarded commands, nondeterminacy and formal
derivation of programs, in: CACM Vol. 18, pp 453-457, 1975.

[38] E.W. Dijkstra, A discipline of programming, Prentice Hall, 1976.

[39] E. Dubois, J. Hagelstein & A. Rifaut, Formal requirements engineering
with ERAE, Philips Journal of Research 43, nos. 3/ 4, pp. 393-414, 1988.

[40] H . Ehrig & B. Mahr, Fundamentals of algebraic specifications, Vol. I,
Equations and Initial Semantics, Springer-Verlag, 1985.

[41] L.M.G. Feijs, H .B.M. Jonkers, C.P.J. Koymans & G.R. Renardel de Lavalette,
Formal definition of the design language COLD-K, Technical Report
METEOR/t7 /PRLE/7, 1987.

[42] J.C. Fernandez, Aldebaran, a tool set for deciding bisimulation
equivalences,, in: Proc. CONCUR '91, (J.C.M. Baeten & J.A. Bergstra, eds.),
Amsterdam, 1991.

[4.3] P. Franchi-Zannettacci & A. Zarli, An incremental and graphical structure­
oriented editor for G-LOTOS, FORTE '90, Third Int. Conf. on Formal
Description Techniques, Madrid, 1990.

[44] Functional Specification and Description Language (SDL), CCITT,
Recommendation Z.100-Z.104, Geneva, 1984.

188 References

[45] D. Gilbert, Executable LOTOS: Using PARLOG to implement an FDT, in:
Protocol Specification, Testing, and Verification,VII, (H. Rudin & C.H.
West eds.), pp 281-294, North-Holland, Amsterdam, 1987.

[46] R.J. van Glabbeek, Notes on the methodology of CCS and CSP, report CS­
R8624, CWI, Amsterdam, 1986

[47] R.J. van Glabbeek, Bounded nondeterminism and the approximation
induction principle in process algebra, in: Proc. STACS 87 (F.J.
Brandenburg, G. Vidal-Naquet & M. Wirsing, eds.), LNCS 247, pp. 336-347,
Springer Verlag, 1987.

[48] J.A. Goguen & J. Meseguer, Initiality, induction and computability, in:
Algebraic Methods in Semantics (M. Nivat & J.C. Reynolds eds.), pp. 460-
541, Cambridge University Press, 1985.

[49] G. Goos, W.A. Wulf, A. Evans & K.J. Butler (eds.), DIANA, an
intermediate language for Ada, LNCS 161, Springer-Verlag, 1983.

[SO] J.F. Groote, Transition systems with negative premises, report CS-R8950,
CWI, Amsterdam, extended abstract in Proc. CONCUR 90, (J.C.M. Baeten
& J.W. Klop, eds.), Amsterdam, LNCS 458, pp. 332-341, Springer-Verlag,
1990.

[51] J.F. Groote & A. Ponse, The syntax and semantics of µ-CRL, report CS­
R9076, CWI, Amsterdam, 1990.

[52] J.F. Groote & A. Ponse, Proof theory for µCRL, report CS-R9138, CWI,
Amsterdam, 1991.

[53] J.F. Groote & F.W. Vaandrager, An efficient algorithm for branching
bisimulation and stuttering equivalence, in: Proc. 17th ICALP, (M.S.
Paterson, ed.),Warwick, LNCS 443, pp. 626-638, Springer-Verlag, 1990.

[54] J. Hagelstein, The transit node - ERAE specification, METEOR report,
Philips Research Laboratory Brussels, 1988.

[55] J. Hagelstein & A. Rifaut, The semantics of ERAE, Philips Research
Laboratory Brussels Manuscript, Belgium, 1989.

[56] J. Heering, P.R.H. Hendriks, P. Klint & J. Rekers, The syntax definition
formalism SDF - reference manual, SIGPLAN Notices 24 (11), pp. 43-75,
1989.

[S7] P.R.H. Hendriks, ASF system user's guide, report CS-R8823, CWI,
Amsterdam, 1988, Extended abstract in: Conference Proceedings of
Computing Science in the Netherlands, CSN'88 1, pp. 83-94, SION, 1988.

[58] P.R.H. Hendriks, Implementation of modular algebraic specificatins, Ph.D.
thesis, University of Amsterdam, 1991.

[59] M. Hennessy, Proving systolic systems correct, TOPLAS 8 (3), pp. 344-387,
1986.

[60] C.A.R. Hoare, Proof of correctness of data representations, in: Acta
Informatica 1, pp 271-281, 1972.

References 189

[61] C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, 1985.

[62] A . Hodges, Alan Turing, The enigma of intelligence, Burnett Books
Limited, 1983.

[63] R.C. Holt, Concurrent Euclid, The UNIX system and Tunis, Addison­
Wesley, Reading, Massachusetts, 1983.

[64] IDEAS interface user guide, Centre de Recherches de la C.G.E., Marcoussis
1988.

[65] INMOS Limited, Occam® 2 reference manual, Prentice Hall, 1988.

[66] International Organization for Standardization, Information processing
systems - Open systems interconnection - Estelle - A formal description
technique based on an extended state transition model, ISO /TC 97 /SC 21
N DP9074, 1986.

[67] International Organization for Standardization, Information processing
systems - Open systems interconnection - LOTOS - A formal description
technique based on the temporal ordering of observational behaviour, IS
8807, 1989.

[68] H . Jacobsson, Proposal for TIL, Master's thesis, Programming Research
Group, University of Amsterdam, 1989.

[69] H. Jacobsson & S. Mauw, A Token ring network in PSFd, report P8914,
Programming Research Group, University of Amsterdam, 1989.

[70] S.C. Johnson, YACC : yet another compiler-compiler, in: UNIX
Programmer's Manual, Volume 2B, pp. 3-37, Bell Laboratories, 1979.

[71] J.W. Klop, Term rewriting systems, to appear in: Handbook of Logic in
Computer Science, Vol. 1 (S. Abramsky, D. Gabbay and T. Maibaum, eds.),
Oxford University Press, 1992.

[72] H. Kodate, K. Fujii & K. Yamanoi, Representation of FMS with petrinet
graph and its application to simulation of system operation, Robotics and
Computer-Integrated Manufacturing 3(3), pp. 275-283, 1987.

[73] N . Komoda, K. Kera & T. Kubo, An autonomous, decentralized control
system for factory automation, IEEE Trans. Comput. 17(12), pp. 73-83, 1984.

[74] K.T. Kung, Let's design algorithms for VLSI systems, in: Proc. Conf. VLSI:
Architecture, Design, Fabrication, California Institute of Technology, 1979.

(75] K.G. Larsen, J .C. Godskesen & M . Zeeberg, TAV, tools for automatic
verification, user manual, technical report R 90-19, Department of
Mathematics and Computer Science, Aalborg University, 1989.

[76] M.E. Lesk & E. Schmidt, LEX - A lexical analyzer generator, in: UNIX
Programmer's Manual, Volume 2B, pp. 39-51, Bell Laboratories, 1979.

[77] H. Lin, Pam: a process algebra manipulator, Proc. Third Workshop on
Computer Aided Verification (K.G. Larsen & A. Skou, eds.), Aalborg, 1991.

190 References

(78] E. Madelaine, J.C. Fernandez & R. De Simone, FC: A common format
representation for automata (version 2), deliverable D3.2.3, ESPRIT Basic
Research Action 3006 CONCUR, 1991.

[79] J. Malhotra, S.A. Smolka, A. Giacalone & R. Shapiro, Winston, a tool for
hierarchical design and simulation of concurrent systems, in: Proc.
Workshop on Specification and Verification of Concurrent Systems,
University of Stirling, Scotland, 1988.

[80] A. Mauboussin, H . Perdrix, M. Bidoit, M.-C. Caudel & J. Hagelstein, From
an ERAE requirements specification to a PLUSS algebraic specification: A
case study, in: .Algebraic Methods II: Theory, Tools and Applications (J.A.
Bergstra & L.M.G. Feijs, eds.), Springer LNCS 490, pp. 395-431, 1991.

[81] S. Mauw, A constructive version of the approximation induction
principle, in: Proc. SION Conf. CSN 87, Amsterdam, pp.235-252, 1987.

[82] S. Mauw, An algebraic specification of process algebra, including two
examples, in: Algebraic Methods: Theory, Tools & Applications,
Workshop Passau 1987 (M. Wirsing & J.A. Bergstra, eds.), Springer LNCS
394, pp. 507-554, 1989.

[83] S. Mauw, Process algebra as a tool for the specification and verification of
CIM-architectures, in [4], pp. 53-80, 1990.

[84] S. Mauw & Gy. Max, A formal specification of the Ethernet protocol,
report P9007, Programming Research Group, University of Amsterdam,
1990.

[85] S. Mauw & G.J. Veltink, An introduction to PSFd, in: Proc. International
Joint Conference on Theory and Practice of Software Development,
TAPSOFT '89, (J. Diaz, F. Orejas, eds.) LNCS 352, pp. 272-285, Springer
Verlag, 1989.

[86] S. Mauw & G.J. Veltink, A tool interface language for PSF, report P8912,
Programming Research Group, University of Amsterdam, 1989.

[87] S. Mauw & G.J. Veltink, A process specification formalism, Fundamenta
Informaticae XIII, pp. 85-139, 1990.

[88] S. Mauw & G.J. Veltink, A proof assistant for PSF, Proc. Third Workshop
on Computer Aided Verification (KG. Larsen & A. Skou, eds.), Aalborg,
1991.

[89] S. Mauw & F. Wiedijk, Specification of the transit node in PSFd, in:
Algebraic Methods II: Theory, Tools and Applications (J .A. Bergstra &
L.M.G. Feijs, eds.), Springer LNCS 490, pp. 341-361, 1991.

[90] R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.

[91] J.C. Mulder, Case studies in process specification and verification, Ph.D.
thesis, University of Amsterdam, 1990.

[92] R. Nakajima & T. Yuasa, eds., The JOT A programming system, A modular
Programming Environment, Springer LNCS 160, 1983.

References 191

[93] H. A. Oldenburger, Tabular viewer for PSF, Master's Thesis, University of
Amsterdam, 1991.

[94] D.M.R. Park, Concurrency and automata on infinite sequences, in: Proc.
5th GI Conf. (P. Deussen, ed.), Springer LNCS 104, pp. 167-183, 1981.

[95] G.D. Plotkin, An operational semantics for CSP, in: Proc. Conf. Formal
Description of Programming Concepts II, Garmisch 1982 (E. Bj0rner, ed.),
pp. 199-225, North-Holland, 1982.

[96] E.Y. Shapiro, A subset of Concurrent Prolog and its interpreter, Technical
report TR-003, !COT, Tokyo, 1983.

[97] I. Sommerville, Software engineering, Academic Service/ Addison
Wesley, 1989.

[98] SPECS, Definition of MR, Version 1, D.WPS.2, The SPECS Consortium,
1989.

[99] K. Ueda, Guarded Horn Clauses, Technical report TR-103, !COT, Tokyo,
1985.

[100] U.S. Department of Defense, Requirements for the Ada Programming
Support Environment, STONEMAN, 1980.

[101] F.W . Vaandrager, Process algebra semantics of POOL, in [4], pp. 173-236,
1990.

[102] VDM specification language proto-standard, draft, BS! !ST /5/50,
Document N-40, 1988.

(103] G.J. Veltink, From PSF to TIL, report P9009, Programming Research
Group, University of Amsterdam, 1990.

[104] G.J. Veltink, The PSF toolkit, report P9107, Programming Research Group,
University of Amsterdam, 1991, to appear in: Computer Networks and
ISDN Systems, special issue on Tools for FDT's.

[105] G.J . Veltink, XP, an experiment in modular specification, to appear in:
FORTE '91, Fourth Int. Conf. on Formal Description Techniques, Sydney,
1991.

[106] C. Verhoef, On the register operator, report P9003, Programming Research
Group, University of Amsterdam, 1990.

[107] J.L.M. Vrancken, The implementation of process algebra specifications in
POOL-T, Ph.D. thesis, University of Amsterdam, 1991.

[108] W .P. Weijland, Synchrony and asynchrony in process algebra, Ph.D.
Thesis, University of Amsterdam, 1989.

[109) W .P. Weijland, Verification of a systolic algorithm in process algebra,
Cambridge Tracts in Theoretical Computer Science 10, pp. 139-158, 1990.

[110] J. Zuidweg, Concurrent system verification with process algebra, Ph.D .
thesis, University of Leiden, 1990.

Nederlandse Samenvatting

PSF - E EN PROCES SPECIF/KA TIE

fORMALISME

Deze samenvatting is bedoeld voor de lezer die niet ge1nteresseerd is in de technische
details, maar wel benieuwd naar de sleutelbegrippen die een rol spelen in dit proefschrift, te
weten paral/cllisme en specificeren.

1. PARALLELLISME

Vanaf het prille begin van de studie van computers en hun programmering
werd de oplossing van een probleem gepresenteerd als een reeks van
handelingen, die, een voor een uitgevoerd, tot een oplossing van het totale
probleem leiden. Later zag men in dat grotere problemen beter konden worden
opgedeeld in kleinere deelproblemen. Deze deelproblemen moesten echter in
een strikt vastgelegde volgorde opgelost worden. Deze nai:eve methode van
probleemoplossen leidt meestal tot een werkend programma en sluit goed aan
bij het menselijk onvermogen om grote aantallen aspekten tegelijk te
overzien.

Het idee dat er ook opsplitsingen van een probleem in deelproblemen
bestaan die niet per se strikt geordend in de tijd moeten worden opgelost, heeft
pas in de laatste jaren post gevat. Dit ten onrechte grotendeels door het

193

194 Nederlandse Samenvatting

beschikbaar komen van parallelle computerarchitekturen. De relatie tussen de
onderscheiden deelproblemen is dan niet meer een relatie in tijdsvolgorde,
maar bijvoorbeeld in gegevensafhankelijkheid. Deelproblemen die niet in de
tijd gerelateerd zijn kunnen dan gelijktijdig (parallel) worden opgelost.

Zoals zo vaak in het vakgebied van de konstruktie van komputerpro­
gramma's, dat Software Engineering wordt genoemd, wordt gegrepen naar een
metafoor om de situatie te verduidelijken. Het parallel oplossen van
problemen heeft bijvoorbeeld in de bouw een natuurlijk analogon. Aan een
projekt zijn vaak grote groepen bouwvakkers bezig, die allen hun eigen
taakstelling hebben en dus parallel hun taak kunnen uitvoeren. Alleen de
inherente tijdsafhankelijkheden, zoals de eis dat de fundering eerder dan de
bovenliggende verdiepingen moet zijn gerealiseerd, zorgen voor een
gedeeltelijk sequentiele ordening. Ook in de bouw is het streven deze
tijdsordening te minimaliseren, bijvoorbeeld door het gebruik van
geprefabriceerde komponenten. Hierbij worden delen van een woning al in de
fabriek gekonstrueerd. In tegenstelling tot de hardware fabricage (chips e.d.)
lijkt de fabricage van software minder eenvoudig af te stemmen op het gebruik
(en hergebruik) van vooraf gebouwde komponenten.

1 .1. WAAROM PARALLEL REKEN EN

Er kunnen twee redenen worden onderscheiden waarom het parallel oplossen
van een probleem in de informatica een rol kan spelen. De eerste is dat parallel
redeneren aansluit bij de aard van het probleem en de tweede is dat
parallellisme tijdwinst oplevert bij het oplossen van het probleem.

In het eerste geval is uit de probleemstelling af te leiden dat er een aantal
tijdsonafhankelijke deelproblemen zijn, die geen expliciete tijdsrelatie tot
elkaar hebben. Het ligt dan voor de hand om ook geen tijdsvolgorde aan de
oplossing van de deelproblemen op te leggen. Het herkennen van
parallellisme hangt natuurlijk sterk van de cultuur van de probleemoplosser
af. Als iemand gewend is alle problemen in termen van "control-flow" te zien,
zal niet direkt duidelijk zijn dat er ook een parallelle of een "object-oriented"
oplossing te formuleren is. Een voorbeeld van makkelijk te herkennen
parallellisme is een probleem waarbij steeds gelijkvormige bewerkingen
moeten worden uitgevoerd, zoals het kwadrateren van een lange lijst getallen.
Het enige argument dat er bij het oplossen van dit probleem een sequentieel
algoritme gebruikt zou moeten worden is het feit dat de invoer in een lijst
geordend is. Deze ordening is echter niet essentieel voor het gegeven probleem.
Een antler voorbeeld waarbij de beschrijving van het probleem al een opdeling
in parallelle objekten geeft is een kommunikatieprotokol. Bij kommunikatie
wordt al een fysiek onderscheid gemaakt tussen de diverse komponenten, zoals
de zender, de ontvanger en het kommunikatiemedium. In het geval dat de
diverse komponenten zich niet in elkaars direkte nabijheid bevinden, wordt er
ook wel gesproken van gedistribueerde gegevensverwerking.

Parallellisme 1 9 5

Een tweede reden om parallellisme te willen gebruiken is snelheidswinst.
Als je een aantal taken parallel uitvoert kost het in totaal minder tijd dan bij
sequentieel oplossen. Sommige "real-time" toepassingen zijn alleen mogelijk
dankzij het gebruik van parallelle systemen, zoals bijvoorbeeld het detecteren
van subatomaire deeltjes in de huidige generatie versnellers. Zonder parallelle
faciliteiten is de grote hoeveelheid meetgegevens niet te verwerken. Een
voorbeeld waarbij versnelling van de gegevensverwerking leidt tot een
kwalitatief beter resultaat is de weersvoorspelling. Vergroting van het aantal
verwerkte meetwaarden en dus van de nauwkeurigheid van de voorspelling
kan alleen bij een vergroting van de verwerkingskapaciteit. Recente
wiskundige inzichten echter voorspellen <lat zelfs bij een onbeperkte toename
van de rekenkapaciteit de nauwkeurigheid van de weersvoorspelling
nauwelijks toe zal nemen.

1.2. PROBLEMEN MET PARALLELLISME

Introduktie van parallellisme kan dan een toepassing lijken te vinden in
bepaalde probleemgebieden, het introduceert echter ook een nieuwe klasse van
problemen. In de praktijk is het maar zelden het geval dat een verdubbeling
van het aantal computers leidt tot een halvering van de rekentijd. Het
rendement hangt zeer sterk af van het soort taak dat uitgevoerd moet worden.
Bij een taak die op perfecte manier op te delen is in subtaken zal het toevoegen
van extra computers een hoog rendement opleveren. Denk bijvoorbeeld aan de
lijst getallen die gekwadrateerd moet worden. Als je hier een extra komputer
aan toevoegt hoef je er slechts voor te zorgen <lat de lijst in een aantal ongeveer
even grote delen wordt opgesplitst. Bij een ondeelbare taak zal toevoegen van
meerdere computers juist geen enkele snelheidswinst opleveren. Hierbij wordt
in de literatuur meestal de metafoor van een zwangere vrouw gebruikt. De
draagtijd zal negen maanden zijn, onafhankelijk van het feit of er meerdere
personen zijn die bereid zijn in de zwangerschap te delen. In sommige
toepassingen zal het gebruik van meerdere komputers zelfs een
snelheidsverlies tot gevolg hebben. Dit wordt veroorzaakt door de burokratie
die nodig is om taken te verdelen en koordineren .

In de praktijk laat een probleem zich vaak opsplitsen in deelproblemen,
maar moeten de oplossers van de deelproblemen toch in enige mate
samenwerken om tot het juiste antwoord te komen. De mate van
samenwerking kan worden gemeten aan de hand van de hoeveelheid
kommunikatie die tussen de komponenten gevoerd wordt. Bij veel problemen
weegt de tijdwinst die verkregen wordt door het werk over meerdere
komponenten te verdelen op tegen deze extra kommunikatie-overlast. Soms
echter levert de extra kommunikatie zoveel tijdverlies op dat het resultaat van
het parallel rekenen juist langzamer tot stand komt dan bij de klassieke,
sequentiele manier. In het vakgebied van de software engineering, <lat de
konstruktie van programmatuur bestudeert, wordt een vergelijkbaar probleem
kernachtig aangeduid door de stelling "adding more manpower to a late
software project, makes the project later". Doe! is dus tot een zodanige

196 Nederlandse Samenvatting

opsplitsing in deelproblemen te komen dat er een minimum aan kommuni­
katie nodig is.

Een antler fenomeen dat zich voordoet bij het parallel oplossen van
problemen is het verschijnsel "deadlock". Een deadlock is een situatie waarbij
een komponent zit te wachten op informatie van een andere komponent,
terwijl die antler zelf weer zit te wachten op informatie van de eerste
komponent. Deze situatie zal bij menselijke kommunikatie niet vaak
voorkomen, maar bij komputers maar al te vaak. Een deadlock is een gevolg
van het feit dat de kommunikatie tussen de komponenten niet korrekt is
uitgedacht.

Een dergelijke deadlock-situatie zal zich niet elke keer dat het systeem werkt
openbaren. Het zou zich pas na een heleboel suksesvolle bedrijfsjaren kunnen
voordoen, als toevallig dan beide komponenten op (vrijwel) hetzelfde
moment informatie van elkaar willen hebben. Dit onvoorspelbare gedrag is
kenmerkend voor parallel werkende systemen. Als een parallel programma
meerdere keren wordt gestart met invoergegcvens die precies identiek zijn,
kunnen er toch verschillende resultaten uitkomen. Dit wordt veroorzaakt
doordat een komponent soms een fraktie sneller is en soms een fraktie
langzamer dan een andere komponent, waardoor de interaktie net iets anders
kan verlopen. Dit verschijnsel, dat het resultaat niet alleen bepaald wordt door
het programma en zijn invoer, maar ook door toevallige omstandigheden,
noemen we "non-determinisme".

Beide verschijnselen, kommunikatie met deadlock-mogelijkheid en non­
determinisme zorgen, ervoor dat het niet eenvoudig is om in te zien of een
parallel programma ook korrekt zal funktioneren . Aangezien het in veel
gevallen noodzakelijk is om dit te weten, zal in een theorie over parallel
programmeren in ieder geval aan deze aspekten aandacht moeten worden
besteed. De wiskundige theorie die de basis vormt voor <lit proefschrift heet
"procesalgebra".

2. SPECIFICEREN

2.1. SPECIFICEREN VAN PARALLELLE SYSTEMEN

Is er eenmaal een opsplitsing van een probleem in deelproblemen uitgedacht
dan doet zich nog de vraag voor hoe het op te schrijven. De meest voor de
hand liggende manier om parallelle programma's te beschrijven is gebruik te
maken van een parallelle programmeertaal. Het probleem echter is dat de
weinige bestaande programmeertalen met voorzieningen voor parallellisme
zich niet goed lenen voor het analyseren van de erin beschrcven programma's.

Een dergelijke analyse is vaak wel mogelijk in procesalgebra. Met zuiver
wiskundige methoden is het mogelijk om te verifieren of een in procesalgebra
beschreven programma aan de vooraf opgestelde wensen voldoet. Proces­
algebra is echter, door de wiskundige notatie en door de mogelijkheid om

Specificeren 197

informeel over sommige details heen te stappen, niet geschikt om per
komputer te worden verwerkt. De wens om toch procesalgebra te kunnen
bedrijven leidt ertoe dat er een taal wordt ontworpen die naadloos aansluit bij
de terminologie uit de procesalgebra, maar deze bezwaren niet kent. De in dit
proefschrift voor dit doel ontworpen taal wordt PSF genoemd, hetgeen staat
voor "Process Specification Formalism".

2 .2. PROCESSEN EN GEGEVENS

PSF leent zich zowel voor het beschrijven van parallelle systemen, als voor het
analyseren daarvan, waarbij eventueel van de komputer gebruik kan worden
gemaakt.

Bij het beschrijven van een parallel systeem worden twee zaken onder­
scheiden. In de eerste plaats dient aangegeven te worden wat de struktuur van
het systeem is, hoe de onderlinge verbindingen lopen en hoe de diverse
komponenten met elkaar kommuniceren. Dit laatste komt tot uiting in de
beschrijving van het gedrag van de afzonderlijke komponenten, ook wel
processen genoemd. Het specificeren van dit gedrag vindt plaats in de
zogenaamde "proces-modulen" van PSF.

In de tweede plaats moeten de gegevens beschreven worden die door de
diverse komponenten verwerkt worden. De struktuur van deze gegevens en
de verschillende bewerkingen op die gegevens worden gedefinieerd in de
zogenaamde "data-modulen" van PSF.

Een specifikatie in PSF beschrijft dus welke processen er een rol spelen en
met welke gegevens ze omgaan.

2.3. MODULEN

Behalve voor het maken van onderscheid tussen processen en gegevens dient
de opdeling van een specifikatie in een aantal modulen nog een ander doel.
Door middel van het opdelen van een groot probleem in kleinere problemen is
het mogelijk om struktuur in het probleem aan te brengen. Deze struktuur zal
bij een goede specifikatie tot gevolg hebben dat er een hierarchie van modulen
ontstaat, die op een in de specifikatie vastgelegde, wijze samenhangen. Deze
techniek maakt het mogelijk om komplexe problemen op te splitsen in
eenvoudiger deelproblemen die onafhankelijk van elkaar kunnen worden
bestudcerd en opgelost. Bovendien wordt het hierdoor mogelijk om reeds
bekende deelproblemen af te splitsen en de eerder hiervoor gevonden
oplossingen opnieuw te gebruiken.

3. ANAL YSEREN

Vaak is men niet alleen gei:nteresseerd in een beschrijving van een systeem,
maar wil men ook het inzicht hebben dat het gespecificeerde systeem voldoet

198 Nederlandse Samenvatting

aan de vooraf opgestelde wensen. Men wil bijvoorbeeld voorkomen <lat er ooit
een deadlock zal optreden.

Een vermoeden <lat het systeem korrekt zal funktioneren verkrijgt men
door het te testen. Dit testen van een specifikatie wordt simuleren genoemd.
Met behulp van de komputer worden een aantal mogelijke executiepaden
bekeken. Aan de hand van de aldus verkregen gegevens kan men -met een
geringe mate van waarschijnlijkheid- konkluderen <lat het systeem goed in
elkaar zit.

Meer zekerheid biedt een verifikatie van het systeem. Dit houdt in <lat er een
bewijs wordt gegeven dat de specifikatie in alle omstandigheden het juiste
gedrag vertoont. Bij het verifieren wordt het gespecificeerde gedrag vergeleken
met het gewenste gedrag. Als beiden, na een reeks van wiskundige
manipulaties, identiek blijken, is het gespecificeerde systeem korrekt. Ook hier
kan dankbaar gebruik worden gemaakt van de komputer.

4. DIT PROEFSCHRIFT

In <lit proefschrift worden bovenstaande aspekten op een grondiger manier
beschreven. In het eerste hoofdstuk wordt kort ingegaan op de redenen voor
het ontstaan van PSF. Vervolgens wordt in hoofdstuk 2 de specifikatietaal PSF
beschreven, waarna in hoofdstuk 3 mogelijke uitbreidingen van deze taal aan
de orde komen.

In hoofdstuk 4 wordt de taal TIL (Tool Interface Language) beschreven. Deze
zogenaamde tussen-taal maakt het eenvoudiger om komputerprogramma's te
schrijven die PSF-specifikaties analyseren. Met behulp van TIL wisselen de
verschillende programma's informatie uit, in het bijzonder de specifikatie zelf.

Tot slot wordt een tweetal voorbeelden gegeven waarin het gebruik van PSF
wordt toegelicht. In het eerste voorbeeld (hoofdstuk 5) wordt een bewijs
gepresenteerd <lat een gegeven specifikatie van een fabrieksarchitektuur
korrekt is. In het tweede voorbeeld (hoofdstuk 6) wordt geschetst hoe men
uitgaande van een beschrijving van het probleem van de transit-node tot een
PSF-specifikatie kan komen.

