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Notes 

Section 2.1 has been published (under the title 'A conceptual model for inexact 
reasoning in rule-based systems') in the International Journal of Approximate 
Reasoning, vol. 3, no. 3, pp. 239 - 258, 1989. 

An extended abstract of the Sections 4.2 and 4.3 has been excepted for publi­
cation (under the ti.tel 'Computing probability intervals under independency 
constraints') in the Proceedings of the Sixth Conference on Uncertainty in 
Artificial Intelligence, Cambridge, Massachusetts, 1990. 
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Chapter 1 

Introduction 

During the past decade the interest in the results of artificial intelligence has 
been growing to an increasing extent. Especially the area of knowledge-based 
systems, one of the first areas of artificial intelligence to be commercially 
fruitful, has received a lot of attention. The phrase knowledge-based system is 
generally employed to denote systems in which some symbolic representation 
of human knowledge is incorporated and applied. Of these knowledge-based 
systems, the so-called expert systems have been the most successful at present. 
Expert systems are systems which are capable of offering solutions and advice 
concerning a specific real-life problem domain at a level comparable to that of 
experts in the same field (in this thesis, we do not consider an expert system an 
explicit model of human problem solving behaviour). The problems 
encountered in the fields for which expert systems are being developed are 
characterized by requiring considerable human expertise for their solution; 
examples of such domains are medical diagnosis, financial advice, product 
design etc. Expert systems therefore usually need large amounts of detailed 
expert knowledge to arrive at a performance comparable to that of human 
experts in the field. 

When building expert systems it becomes evident that in many real-life 
domains expert knowledge is not precisely defined, but instead is of an 
imprecise nature. Yet, human experts typically are able to form judgments 
and take decisions from uncertain, incomplete and sometimes even 
contradictory information. In order to be useful in an environment in which 
only such imprecise knowledge is available, an expert system has to capture 
and exploit not only the highly-specialized expert knowledge, but the 
uncertainties that go with the represented pieces of knowledge as well. 
Researchers in artificial intelligence therefore have sought methods for 
representing uncertainty and have developed reasoning procedures for 
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manipulating uncertain knowledge. These efforts have grown into a major 
research topic in artificial intelligence called inexact reasoning or plausible 
reasoning. 

Probability theory is one of the oldest mathematical theories concerning 
uncertainty. It is no wonder therefore that this formal theory was chosen as 
the first point of departure in the pioneering work on automated reasoning 
with uncertainty. During the 1960s several research efforts on probabilistic 
reasoning were undertaken, see for example [WARN61,GORR68,DOMB72]. The 
systems constructed in this period were primarily for (medical) diagnosis. 
These systems may be viewed as precursors of the diagnostic expert systems 
developed in the seventies. We take a closer look at the task of diagnosis for a 
better understanding of the problems the researchers were confronted with. 
For further information the reader is referred to [HORV88]. 

Let H = { h 1, ••• , hn}, n ;.. l, be a set of n possible hypotheses, and let 
E = { e 1, ••• , em}, m ;a, l, be a set of pieces of evidence which may be 
observed. For ease of exposition, we assume that each of the hypotheses is 
either true or false for a given case; equally, we assume that each of the pieces 
of evidence is either true (that is, actually observed for the given case) or false. 
In real-life applications the relationships between the hypotheses and the 
evidence generally are uncertain. The diagnostic task then is to find a set of 
hypotheses h <;;;; H, called the diagnosis, which most likely accounts for the 
observed evidence. Now, let Pr be a probability distribution on the discerned 
sample space. If we have observed a set of pieces of evidence e <;;;; E, then, 
from a decision-theoretic, probabilistic point of view, we can simply compute 
the conditional probabilities Pr(h I e) for each subset h <;;;; H, and select the set 
h' <;;;; H with the highest probability. Since for real-life applications the 
conditional probabilities Pr(e I h) often are easier to come by than the 
conditional probabilities Pr(h I e), generally Bayes' Theorem is used for 
computing Pr(h I e): 

Pr(h I e) = Pr(e I h)Pr(h) 
Pr(e) 

It will be evident that the task of diagnosis in this form is computationally 
complex: because a diagnosis may comprise more than one hypothesis out of n 
possible ones, the number of diagnoses to be investigated, that is, the number 
of probabilities to be computed, equals 2n. A simplifying assumption generally 
made in the systems for probabilistic reasoning developed in the 1960s, is that 
the hypotheses in H are mutually exclusive and collectively exhaustive. With 
this assumption we only have to consider as possible diagnoses the n singleton 
hypothesis sets { h;}. So, we have to compute the probabilities (writing h; 
instead of { h;}) 

Pr(e I h;) Pr(h;) 
Pr(h;j e) = --P,-(-e)--

Pr(e I h;) Pr(h;) 
n 

~ Pr(e I hk) Pr(hk) 
k=l 
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for each h; E H only. For a successful application of Bayes' Theorem in this 
form several conditional and prior probabilities are required. Note that in 
general the conditional probabilities Pr(e I hk) cannot be computed from their 
'component' conditional probabilities Pr(ej I hk), ej E e. Therefore, 
conditional probabilities Pr(e I hk) for every combination of pieces of evidence 
e ~ E have to be available, that is, exponentially many probabilities have to 
be known. Since it is hardly likely that all these probabilities can be obtained, 
generally a second simplifying assumption is made: it is assumed that the 
pieces of evidence ej E E are conditionally independent given any hypothesis 
hk E H. Under this assumption Bayes' Theorem reduces to 

Pr(h; I ej,, ... , ej,) = 
Pr(ej, I h;) · · · Pr(ej, I h;) Pr(h;) 

n 

~ Pr(ej, I hk) · · · Pr(ej, I hk) Pr(hk) 
k=I 

for the observed evidence e = { ej,, ... , ej,}, 1 :,;;;; p ..;; m. It will be evident 
that with the two assumptions mentioned above only mn conditional 
probabilities and n - 1 prior ones suffice for a successful use of Bayes' 
Theorem; for a more elaborate analysis, the reader is referred to (SZOL 78]. 

The pioneering systems for probabilistic reasoning constructed in the 1960s 
were rather small-scaled: they were devised for clear-cut problem domains with 
only a small number of hypotheses and restricted evidence. For these small 
systems, all probabilities necessary for applying Bayes' Theorem were acquired 
from a statistical analysis of the empirical data of several hundred sample 
cases. In spite of the (over-)simplifying assumptions underlying these systems 
they performed considerably well, see for example (DOMB74]. Nevertheless, 
interest in this decision-theoretic probabilistic approach to reasoning with 
uncertainty faded in the late 1960s and early 1970s, although it should be 
mentioned that this type of research is still pursued on a moderate scale, see 
for example [MALC86]. One of the reasons for this decline in interest is that 
the method is only feasible for highly restricted problem domains: for larger 
domains or domains in which the above-mentioned simplifying assumptions 
are seriously violated, the method inevitably becomes demanding, either 
computationally or from an assessment point of view. 

At this stage, the first diagnostic expert systems began to emerge from the 
early artificial intelligence research efforts. These systems mostly used 
production rules, which in concept resembled logical implications, as a 
formalism for representing expert knowledge in a modular form and employed 
some heuristic reasoning method for applying the rules. These so-called rule­
based expert systems exhibited an 'intelligent' reasoning behaviour as a 
consequence of their concentrating only on those hypotheses which were 
suggested by the evidence. In such systems, the production rules typically are 
used in selectively gathering evidence and heuristically pruning the search 
space of possible diagnoses. This pruning rendered the rule-based systems 
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capable of dealing with larger and complexer problem domains than the early 
decision-theoretic probabilistic systems were. 

As we have mentioned before, to be useful for real-life applications the 
originally deterministic rule-based systems had to be extended with some 
notion of uncertainty. The two best-known systems developed in the 1970s 
which incorporated some method for dealing with uncertainty are the MYCIN 
system for assisting physicians in the diagnosis and treatment of bacterial 
infections, developed by B.G. Buchanan and E.H. Shortliffe, [BUCH84], and 
the PROSPECTOR system by R.O. Duda, P.E. Hart and others, [DUDA 79], 
for aiding non-expert geologists in the identification of mineral deposits. For a 
probabilistic approach based on Bayes' Theorem such as employed in the 
systems of the 1960s a large number of conditional and prior probabilities was 
necessary, thus requiring enormous amounts of experimental data. In practice, 
the required data simply were not available; the necessary probabilities 
therefore could not be obtained from statistical analysis. In devising a 
probabilistic reasoning component to be incorporated in a rule-based system, 
the researchers therefore had to depend on subjective probabilities which had 
been assessed by human experts in the field. 

The subjectivist or persona/isl Bayesian view to probability theory is opposed 
to the frequentist point of view generally adhered to from the beginning of this 
century. Although at present the subjectivist point of view is not (yet) popular 
with statisticians, it is becoming increasingly important in artificial intelligence 
research for the representation of uncertainty. Informally speaking, the 
subjectivist view to probability theory is the one 'the man in the street' takes. 
The central idea is that probabilistic statements may be made concerning any 
(potentially) verifiable proposition, independent of whether it is a statement 
concerning a repeatable experiment or not: a subjectivist views the probability 
of an event as a measure of a person's belief in the occurrence of the event, 
given the information that person has. The (philosophical) foundation for this 
approach to probability theory was established mainly by L.J. Savage, 
[SAVA54], and B. de Finetti, [FINE70]. From a subjectivist viewpoint, it is in 
principle possible for a domain expert to assess a probability for any 
proposition even if he knows little about it. Nevertheless, in practice an expert 
often is uncertain and uncomfortable about the probabilities he is providing. 
The difficulty of assessing probabilities is well-known as a result of research on 
human decision making and judgment under uncertainty, see for example 
[KAHN82]. In the present thesis, we do not discuss this issue any further; we 
merely build on the observation that domain experts generally are unable to 
fully specify a probability distribution on the problem domain, and 
furthermore, that the subjective assessments obtained from the experts are 
likely to be inconsistent. 

To return again to rule-based expert systems, it will be evident that a 
probabilistic reasoning component to be integrated into such a system should 
be able to deal with a partial and often even an inconsistent specification of a 
probability distribution. In a rule-based context, an expert typically is asked 
to associate probabilities only with the production rules he has provided. We 
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have mentioned before that these production rules are used in pruning the 
search space of possible diagnoses; in this pruning process heuristical as well 
as probabilistic criteria are employed. It therefore becomes necessary to 
compute the probabilities of all intermediate results derived using the 
production rules. However, these probabilities generally cannot be computed 
from the probabilities associated with the rules only. To overcome these 
problems, in the 1970s several modifications of probability theory for efficient 
application in a rule-based environment were developed. These models offered 
computation rules which did not always accord with the axioms of probability 
theory but which rendered the models to some extent insensitive to partial 
specification and inconsistency of a probability distribution. None of these 
modifications, however, presents a theoretically well-founded solution to the 
above-mentioned problems: the models mostly have an ad hoc character. This 
observation inspired us to use the phrase quasi-probabilistic models to denote 
such models for dealing with uncertainty in rule-based expert systems. The 
two most well-known quasi-probabilistic models are the certainty factor model, 
[SHOR84], originally designed for dealing with uncertainty in the MYCIN 
system, and the subjective Bayesian method, [DUDA 76], developed for the 
PROSPECTOR system we mentioned before. Especially the certainty factor 
model has since its introduction enjoyed widespread use in rule-based expert 
systems built after MYCIN. Even though the model is not well-founded from 
a mathematical point of view, in practice it seems to behave 'satisfactorily', see 
for example [SHOR84]. The relative success of the model can further be 
accounted for by its computational simplicity. 

Since research on plausible reasoning has not yet yielded alternative models 
which are at the same time mathematically correct, computationally feasible 
and semantically clear, the early quasi-probabilistic models are still employed 
frequently in present-day rule-based expert systems. We feel that the frequent 
use of these models justifies an in-depth study. In Chapter 2 we introduce a 
conceptual model for plausible reasoning in a rule-based expert system 
showing the syntactical requirements an actual (quasi-probabilistic) model has 
to meet; this conceptual model is subsequently employed in studying the 
certainty factor model. The chapter discusses several results of an analysis of 
the probabilistic foundation of the certainty factor model; for example, it is 
shown that in the model rather strong independency assumptions are made 
implicitly. Even though it has been known since the late 1970s that the 
certainty factor model is mathematically flawed, most of the detailed results 
presented are new. 

Although the quasi-probabilistic models on the one hand met with 
considerable success in the artificial intelligence community, they were 
criticized severely because of their ad hoc character on the other hand. The 
incorrectness of these models from a mathematical point of view and an 
analysis of the problems their developers were confronted with, even led to a 
world-wide discussion concerning the appropriateness of probability theory for 
handling uncertainty in a knowledge-based context. Two often-cited papers 
taking opposite positions are [CHEE85] and [ZADE86]. 
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The adversaries of probability theory argue that it is not expressive enough 
to cope with the different kinds of uncertainty that are encountered in real-life 
situations and therefore have to be dealt with in expert systems. As a 
consequence several other (more or less) mathematical models for dealing with 
uncertainty have been proposed. A major trend in plausible reasoning has 
arisen from the claim that probability theory is not able to capture imprecision 
or vagueness, notions of uncertainty which are salient in natural language 
representations. The name of L.A. Zadeh is inseparable from this trend: he 
was the first to propose fuzzy set theory as the point of departure for the 
development of models which are able to cope with vague information. 
Dempster-Shafer theory is the other major trend in plausible reasoning. The 
theory has mainly been developed by G. Shafer, [SHAF76], out of earlier work 
by A.P. Dempster, [DEMP68]. It has evolved from the observation that 
probability theory is not able to discern between uncertainty and ignorance 
due to incompleteness of information. The two mentioned approaches are 
based on numerical assessments just like probability theory is. Some non­
numerical methods for dealing with uncertainty have been proposed as well, 
see for example [COHE85,McDE80]. 

The advocates of probability theory claim that it is provable that probability 
theory is the only correct way of dealing with uncertainty and that anything 
that in this context can be done with non-probabilistic techniques, can be done 
equally well using a probability-based method, see for example [HORV86, 
CHEE88]; for this claim often an argument by R.T. Cox is cited, [Cox79], 
which states a simple set of intuitive properties a measure of uncertainty has to 
satisfy and subsequently shows that the (standard) axioms of probability 
theory follow. In addition it is often pointed out that probability theory is a 
mathematically well-founded theory having a long and outstanding tradition of 
research and experience. Concerning this point, we feel that giving up on 
probability theory for plausible reasoning just on account of the 
mathematically disappointing quasi-probabilistic models indeed is giving up 
too easily. In this thesis, we do not enter into the heated debate concerning 
the appropriateness of probability theory for handling uncertainty in a 
knowledge-based setting. For a wide range of diverging opinions, the reader is 
referred to [KANA86,LEMM88,KANA89]; also [LAUR88a] and [CHEE88] with 
their respective discussions are worth reading. 

Although the above-mentioned discussion has not in the least subdued, in 
the mid-eighties a new trend in probabilistic reasoning in an artificial 
intelligence context became discernable: several models have been proposed 
departing from a graphical representation of a problem domain, see for 
example [SHAc86,PEAR88,SPIE86b]. Hereafter such a graphical representation 
will be called a belief network. Informally speaking, a belief network is a map 
of the statistical variables discerned in the problem domain and the 
probabilistic independency relationships holding between them. These 
interrelationships are quantified by means of 'local' conditional probabilities 
together defining a joint probability distribution on the variables. Associated 
with a belief network are a method for propagating the impact of evidence and 
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a method for computing the probabilities of interest for diagnosis. These 
methods employ the belief network as an architecture for performing certain 
probabilistic computations which involve small subsets of variables only. In 
Chapter 3 we present a formal description of the notion of a belief network, 
which in the relevant literature often is introduced only informally. We 
further discuss the work on belief networks by S.L. Lauritzen and 
D.J. Spiegelhalter, [LAUR88a). In this thesis, we do not address the problem of 
constructing a belief network for a given domain; for information on this 
subject, the reader is referred to [HENR89,REBA89]. 

If we compare the work on belief networks with the pioneering work on 
probabilistic reasoning from the 1960s on the one hand and the quasi­
probabilistic models from the 1970s on the other hand, then the belief network 
models in a sense are 'closer' to the former than to the latter. The belief 
network models again require a total and consistent specification of a joint 
probability distribution on the variables discerned in the problem domain. 
However, instead of making the oversimplifying general assumption of 
conditional independence, distinguished independency relationships between 
the variables are represented explicitly in the belief network. As has been 
mentioned before, the belief network is further exploited for restricting the 
necessary probabilistic computations to local ones on small sets of variables. 
However, only if many independency relationships hold between the variables 
is the method feasible. Just like the early decision-theoretic systems of the 
1960s the systems employing a belief network model therefore are able to deal 
with rather restricted problem domains only. For larger domains again the 
problem arises that for application of a belief network model a large number 
of conditional and prior probabilities is necessary, with all the unpleasant 
consequences we have encountered before in the quasi-probabilistic models; 
for example, if the probabilities required for exact probabilistic reasoning 
cannot be obtained from statistical analysis, we once more have to rely on 
subjective probabilities assessed by human experts in the field. In their present 
form, the belief network models are not capable of dealing with a partial 
specification of a joint probability distribution, nor with an inconsistent one. 
To overcome part of this problem, we propose in Chapter 4 a method for 
computing upper and lower bounds on probabilities of interest from a partially 
quantified belief network; informally speaking, a partially quantified belief 
network is a kind of belief network in which all independency relationships 
between the statistical variables discerned are known or are assessed by a 
domain expert, but in which the initially given probabilities do not give rise to 
a unique joint probability distribution on the variables. The general idea of 
our method is to take the subjective probabilities assessed by the domain 
experts as defining constraints on a yet unknown joint probability distribution. 
Unfortunately, we have not been able to supplement our method for 
computing probability intervals with a method for propagating the impact of 
evidence. The method for computing lower and upper bounds on 
probabilities, however, may be used as a help in assessing the probabilities 
required for a fully specified belief network. 
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Although we are aware that many problems still remain to be solved, we 
hope to bring the belief network models with our method one step closer to 
exploitation in expert systems for real-life applications. 
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Chapter 2 

Quasi-Probabilistic Models 

In the early years of artificial intelligence research on plausible reasoning, 
efforts were concentrated on the application of probability theory in rule-based 
expert systems. As we have discussed in Chapter 1, it soon became evident 
that this mathematical theory could not be applied in such a context in a 
straightforward manner. The researchers were confronted with several 
problems, such as: 

• It often is not possible to obtain a fully specified probability function on 
the domain of concern: only a few probabilities are known or can be 
estimated by an expert in the field, that is, often only a partial specification 
of a probability function is available. 

• In case an expert has assessed many of the required probabilities, the thus 
obtained partial specification of a probability function is likely to be 
inconsistent in the sense that there is not an 'underlying' actual probability 
function. 

• Probability theory does not provide explicit computation rules for computing 
probabilities from a partial specification of a probability function for all 
(intermediate) results derived from applying the production rules during an 
actual consultation of the system. 

For a short period of time, research centered around the development of 
modifications of probability theory that should overcome these problems and 
that could be applied efficiently in a rule-based environment. The quasi­
probabilistic models which resulted from these efforts are the topic of this 
chapter. 

A model for reasoning with uncertainty has to exhibit a number of 
characteristics before it is applicable in a knowledge-based system using 
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production rules for knowledge representation. In Section 2.1 we introduce a 
conceptual model for plausible reasoning in a rule-based top-down reasoning 
expert system, showing the syntactical requirements an actual model has to 
meet. This syntactical model is used to examine the well-known certainty 
factor model. We show that our model has enabled us to elucidate some 
syntactical inadequacies in the original notation used by its developers. From 
these observations we arrive at a syntactically correct reformulation of the 
model without affecting its intended meaning. In the three subsequent sections 
we use this reformulation as a point of departure for an analysis of the model 
given its probabilistic foundation. We show for example that in the model 
several rather strong assumptions are implicitly made. 

2.1. A SYNTACTICAL MODEL FOR RULE-BASED PLAUSIBLE REASONING 

In this section, we show that a model for rule-based reasoning with uncertainty 
has to meet a number of syntactical requirements. A syntactical model 
explicitly stating these requirements is proposed, providing us with a 
conceptual framework for examining and comparing quasi-probabilistic 
models. 

Although we assume that the reader is acquainted with production rules and 
top-down inference, we start with a brief description of these notions in order 
to introduce some terminology. For a more elaborate introduction, the reader 
is referred to [BUCH83,LUCA90]. In a rule-based top-down reasoning expert 
system applying the certainty factor model for the manipulation of uncertainty, 
three major components are discerned: 

(1) Production rules and associated certainty factors. Basically, an expert in 
the domain in which the expert system is to be used, models his 
knowledge of the field in a set of production rules of the form e ➔ h, 
which closely resemble logical implications. The left-hand side e of a 
production rule is a positive Boolean combination of conditions, that is, 
e does not contain any negation symbols. Without loss of generality we 
assume that e is a conjunction of disjunctions of conditions. Throughout 
this chapter, e as well as its constituting parts will be called (pieces of) 
evidence. In general, the right-hand side h of a production rule is a 
conjunction of conclusions. In the sequel, we restrict ourselves to 
single-conclusion production rules; note that this restriction is not an 
essential one from a logical point of view. From now on, a conclusion 
will be called a hypothesis. A production rule has the following meaning: 
if evidence e has been observed, then the hypothesis h is true. 
An expert associates with the hypothesis h of each production rule e ➔ h 
a (real) number CF(h,e,e ➔ h), quantifying the degree to which the 
observation of evidence e confirms the hypothesis h. The values 
CF(x,y,z) of the (partial) function CF are called certainty factors; 
CF(x,y,z) should be read as 'the certainty factor of x, given y and the 
derivation z of x from y'. In the sequel we will use the more suggestive 
notation CF(x --; y,z). (In [SHOR84], the developers of the certainty 
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factor model, E.H. Shortliffe and B.G. Buchanan, use for certainty 
factors the two-argument notation CF(h,e); as will be discussed shortly, 
it is necessary to introduce the notion of a derivation in the notational 
convention.) Certainty factors range from - 1 to + 1. A certainty factor 
greater than zero is associated with a hypothesis h given some evidence e 
if the hypothesis is confirmed to some degree by the observation of this 
evidence; the certainty factor + 1 indicates that the occurrence of 
evidence e completely proves the hypothesis h. A negative certainty 
factor is suggested if the observation of evidence e disconfirms the 
hypothesis h. A certainty factor equal to zero is suggested by the expert 
if the observation of evidence e does not influence the confidence in the 
hypothesis h. 

(2) User-supplied data and associated certainty factors. During a 
consultation of the expert system, the user is asked to supply actual case 
data. We assume that the user is not allowed to retract or modify earlier 
provided data; furthermore, we assume that in supplying data the user 
adheres to the same 'world view' throughout the consultation. The user 
attaches a certainty factor CF(e -, u,u ➔ e) to every piece of evidence e 
he supplies the system with. In order to be able to treat production rules 
and user-supplied data uniformly, we assume the set of production rules 
supplied by the expert to be augmented with a set of fictitious 
production rules u ➔ e for every piece of user-supplied evidence e, where 
u is taken to represent the user's de facto knowledge. 

(3) A (top-down) inference engine and a (bottom-up) scheme for propagating 
uncertainty. Top-down inference is a goal-directed reasoning technique 
in which the production rules are applied exhaustively to prove one or 
more goal hypotheses. A production rule is said to succeed if each of its 
conditions is fulfilled; otherwise, the rule is said to fail. Due to the 
application of production rules, several intermediate hypotheses will be 
confirmed to some degree during the inference process. The certainty 
factor to be associated with such an intermediate hypothesis h is 
calculated from the certainty factors associated with the production rules 
that were used in deriving h. For the purpose of thus propagating 
uncertainty, several functions for combining certainty factors are defined. 

For those readers who are already familiar with the certainty factor model it is 
noted that in the sequel we abstract from several pragmatical issues involved in 
the model such as for example the discontinuity of the evaluation of the left­
hand side of a production rule (that is, the 0.2 threshold). 

2.1.1. Rule-Based Derivations and Derivation Trees 

In the foregoing we have discussed the basic notions of the certainty factor 
model in an informal manner. In this section some formal definitions are 
provided. 
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DEFINITION 2.1. Let ~ denote a set of atomic propositions. Let cf denote the set 
of conjunctions of disjunctions of elements of .SI( that is, cf contains elements of the 

n m, 

form I\ ( V a;), a;J· E .SI( n, m;;;;;,, I, i = I, ... ,n. 
i = I j = I 

A hypothesis is an element h E sf. A piece of evidence is an element e E cf. 

Let u be a fixed element of .SI( representing the user's de facto knowledge. 

A production rule is an expression e ➔ h where e is a piece of evidence and h is 
a hypothesis. 

In the sequel, we will omit parenthesis from elements of cf as long as ambiguity 
cannot occur. 

We have informally introduced the certainty factor function having three 
arguments; recall that the 'third' argument of a certainty factor CF(x --t y,z) 
represents a derivation of the hypothesis x from y with respect to a given set 
of production rules. The notion of a derivation is defined formally in the 
following definition. 

DEFINITION 2.2. Let cf be defined as above. Furthermore, let fJJ be a finite, non­
empty set of production rules. A derivation D iJ of j from i, i, j E ~ with respect 
to fJJ is defined recursively as follows: 

(1) 

(2) 

e ➔ h is a derivation of h from e with respect to 9 if e ➔ h E fJJ. 

If D u,e is a derivation of e from u with respect to 9 and e ➔ h is a 
derivation of h from e with respect to 9, then (D"·e) 0 (e ➔ h) is a 
derivation of h from u with respect to 9 ; (D"'e) 0 (e ➔ h) is called the 
sequential composition of the derivations nu,e and e ➔ h. 

(3) If Du,e, is a derivation of e 1 from u with respect to fJJ and Du,e, is a 
derivation of e2 from u with respect to 9, then (Du,e,) & (Du,e,) is a 
derivation of e1 I\ e2 from u with respect to fJJ; (D"'e') & (Du.e,) is called 
the conjunction of the derivations Du,e, and Du,e,_ 

(4) If Du,e, is a derivation of e 1 from u with respect to fJJ and n•~e, is a 
derivation of e2 from u with respect to fJJ and if e 1 V e2 E ~ then 
(D"'e') I (D"'e') is a derivation of e 1 V e2 from u with respect to fJJ; 
(D u,e,) I (D u,e,) is called the disjunction of the derivations D u,e, and D u,e,. 

(5) If Df h and D~·h are derivations of h from u with respect to 9, then 
(D¥·h) II (Dth) is a derivation of h from u with respect to 9 ; 
(Dfh) II (D~·h) is called the parallel composition of the derivations D¥·h 
and D~·h. 

The set of all derivations with respect to fJJ will be denoted by Ji)_ 

We remark that the notion of sequential composition is defined 
asymmetrically. Although a symmetrical definition (D"·e) 0 (De,h) would be 
more appealing, it does not reflect the notion of a derivation as it occurs in 
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top-down inference. In the sequel, we will omit parentheses from elements of 
f!) as long as ambiguity cannot occur. 

ExAMPLE 2.3. Let 9' be the set consisting of the following production rules: 

U ➔ O 

u ➔ b 

u ➔ f 

Then, nu,d = (u ➔ a) 0 (a ➔ d) is a derivation of d from u, and 
nu.; = (((u ➔ b) II ((((u ➔ a) 0 (a ➔ d))& (u ➔ f)) 0 (d I\ f ➔ b))) 0 (b ➔ i)) 
is a derivation of i from u. ■ 

We conclude this subsection by introducing a graphical representation for 
derivations. A graphical representation of a derivation is called a derivation 
tree. Since our notion of a derivation tree is rather straightforward, we will 
confine ourselves to loosely introducing the basic building blocks for derivation 
trees. 

Let p(D) denote the graphical representation of the derivation D. We define 

(I) for the representation of a production rule u ➔ h, 

p(u ➔ h)= u h 

(2) for the representation of the sequential composition of two derivations, 

p((D"•e) o (e ➔ h)) = h 

(3) for the representation of the conjunction of two derivations, 
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(4) for the representation of the disjunction of two derivations, 

(5) and for the representation of the parallel composition of two different 
derivations of the same hypothesis h, 

T1,k, 

~ 
p((D'th) II (D2·h)) = h 

~ T2, 1 

where k 1, k 2 ;;;;,, 1, and for i = 1,2, 

T;,1 

h 

T;,k, 

that is, we simply join the two derivation trees p(DV·h) and p(D2·h)_ 
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A derivation tree for a derivation D is built by recursively using these basic 
representations. 

ExAMPLE 2.4. Consider the set of production rules from Example 2.3 once 
more. The derivation tree p(Du·b) of the derivation 
nu,b = ((u ➔ b) II ((((u ➔ a) 0 (a ➔ d)) & (u ➔ f)) 0 (d /\ f ➔ b))) is 
shown in Figure 2.1. ■ 

u 

u a d b 

u f 

FIGURE 2.1. A derivation tree. 

2.1.2. Rule-Based Inference and Inference Networks 

In this subsection we show with the help of an example that an expert system 
with a fixed set of production rules applying the MYCIN top-down reasoning 
strategy determines a derivation in the set of all derivations with respect to this 
set of production rules. We assume that a backward-chaining strategy is used, 
that is, the production rules are applied in the order in which they have been 
specified; equally, the conditions in a production rule are evaluated in the 
specified order. Furthermore, we assume that the user is asked to confirm or 
disconfirm to some degree each piece of evidence that cannot be derived from 
the production rules. 

ExAMPLE 2.5. Consider the set of production rules consisting of the following 
six elements: 

e ➔ h 

a/\ (b V c) ➔ h 

d /\f ➔ b 

fVg ➔ h 

a ➔ d 

b ➔ i 

Note that the set of rules has not yet been supplemented with the fictitious 
production rules representing the user-supplied evidence. We suppose for the 
moment that h is the goal hypothesis of the consultation. First, the rule e ➔ h 
is selected for application; e now becomes the next goal hypothesis to be 
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confirmed. As there are no production rules concluding on e, the user is asked 
to confirm or disconfirm e. We assume that he disconfirms e, in which case 
the production rule e ➔ h fails. Subsequently, the user is asked to confirm or 
disconfirm a. When a is confirmed, f will be asked, and so on. We assume 
that a, c, f and g are confirmed by the user. So, the production rules 
a /\ (b v c) ➔ h, d /\ f ➔ b, f v g ➔ hand a ➔ d succeed. Note that the 
production rule b ➔ i is not used in the derivation of h. ■ 

A top-down inference process as discussed in the preceding example may be 
depicted in a so-called inference network. An inference network is built from 
the representations of those production rules that actually succeeded during 
the inference process. In depicting inference networks we use building blocks 
similar to the ones introduced in Section 2.1.1 for the graphical representation 
of derivations. 

EXAMPLE 2.6. Consider the top-down inference process described in Example 
2.5 once more. The inference network corresponding with this inference 
process is shown in Figure 2.2. Note that the figure does not show the 
production rule e ➔ h which has failed during the inference process nor the 
production rule b ➔ i which has not even been selected for application. 
Furthermore, the figure does not depict as yet the user-supplied evidence. ■ 

a 

I 
d 

f 

h 

g 

FIGURE 2.2. An inference network. 
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An inference network is subsequently extended with (fictitious) production 
rules u ➔ e for each piece of user-supplied evidence e relevant to the 
production rules that actually succeeded during the consultation of the system 
in deriving one or more goal hypotheses. Recall that u represents the user's de 
facto knowledge. 

ExAMPLE 2.7. The inference network of Figure 2.2 is extended with the 
production rules u ➔ a, u ➔ c, u ➔ f and u ➔ g since the user confirmed a, 
c, f and g. The thus extended inference network is depicted in Figure 2.3. 

u ---a 

I 

u 

h 

u 

u 

FIGURE 2.3. The extended inference network. 

Now, consider the production rule a A. (b v c) ➔ h once more. Up till now 
we have assumed that a and c were both confirmed by the user and that b was 
derived by applying some of the other rules. The reader can easily verify that 
the mentioned rule also succeeds in the case in which b has been derived like 
before, and in which the user has confirmed a but has disconfirmed c. In this 
case, the inference network will be exactly the same as the one shown in 
Figure 2.2. In the sequel, we like to treat the different instances of success of a 
production rule specifying a disjunction in its left-hand side uniformly. 
Therefore, in all such instances, an inference network comprising the rule is 
extended in the same way. So, even though the user has supplied negative 



18 Quasi-Probabilistic Models 

information on c in our example, the inference network after extension is the 
same as the one shown in Figure 2.3. Notice the difference between the 
treatment of the disconfirmation of c and the disconfirmation of e which led to 
the failure of the production rule e - h. ■ 

u a 

u 

u f 

u C h 

u f 

u g 

FIGURE 2.4. The transformed inference network. 

It is noted that when using the MYCIN top-down reasoning strategy, each 
production rule may be applied at most once during an inference process. 
Furthermore, the inference networks composed of only those production rules 
that actually succeeded during a consultation are guaranteed to be acyclic 
since the reasoning mechanism prevents cyclic reasoning chains. From the 
latter observation we have that each extended inference network can be 
transformed in such a way that from each vertex representing an element from 
sf either one arrow of type --e or one arrow of type ~ departs; this may be 
achieved by duplicating certain vertices and arrows. So, an inference network 
may be transformed into a tree-like structure. 
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ExAMPLE 2.8. Figure 2.4 shows the inference network resulting from the 
transformation of the extended inference network depicted in Figure 2.3. 
Notice the duplication of the vertices a and/. ■ 

A transformed inference network now equals a derivation tree representing an 
element of the set of all derivations with respect to the given set of production 
rules. 

2.1.3. Modelling the Propagation of Uncertainty 

In the preceding subsections we have shown that an instance of a rule-based 
top-down reasoning inference process can be represented graphically as an 
inference network which after extension and transformation corresponds with a 
derivation tree. In this section, we use such extended and transformed tree­
like inference networks to model the propagation of uncertainty during an 
inference process. Henceforth, the phrase 'inference network' will be used to 
denote an extended and transformed inference network. 

Recall that an expert has attached a certainty factor CF(h ---J e,e ➔ h) to the 
conclusion h of each production rule e ➔ h, and that the user has associated a 
certainty factor CF(e ---J u,u ➔ e) with the conclusion e of each fictitious 
production rule u ➔ e representing the fact that he has supplied the system 
with the factual information e. In an inference network, a certainty factor 
assigned to the hypothesis of a production rule will be attached to the arrow in 
the representation of the rule. So, if an expert has associated the certainty 
factor CF(h ---J e 1 /\ e2,e 1 I\ e2 ➔ h) with the hypothesis h in the rule 
e 1 /\ e2 ➔ h, this is represented as shown below: 

h 

The aim of the certainty factor model is to calculate the certainty factor 
CF(h ---J u,D"'h) for each goal hypothesis h where nu.h is the derivation of h 
from u with respect to a fixed set of production rules which are applied 
exhaustively in a top-down reasoning fashion; it will be evident that this 
certainty factor is dependent upon the certainty factors attached to the arrows 
in the inference network as well as on the structure of the inference network 
itself. 
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The way the certainty factor CF(h ---1 u,D"·h) for a goal hypothesis h is 
calculated from other certainty factors is modelled with the help of the 
inference network. We define a number of basic compression steps that are 
used to compress an inference network in a finite number of steps to 

u h 

for each goal hypothesis h. As we will describe shortly, in each compression 
step the number of arrows (and certainty factors) in the network decreases. 
The certainty factors that disappear in a compression step are combined into a 
new certainty factor. For that purpose a so-called combination function is 
associated with each compression step. There are four basic compression 
steps: 

(I) The inference network 

u e 
CF(h ---1 e,e ➔ h) 

h 

representing the sequential composition of the derivations D u,e and 
e ➔ h is compressed yielding: 

u 
CF(h ---1 u,(D"·e) 0 (e ➔ h)) 

h 

With this compression step, a combination function f. is associated such 
that 

CF(h ---1 u,(D"'e) 0 (e ➔ h)) = J.(CF(e ---1 u,D"·e),CF(h ---1 e,e ➔ h)) 

(2) The inference network 

u 

u > 
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representing the conjunction of the derivations Du,e, and D"·e2 is 
compressed yielding: 

u 

With this compression step, a combination function f & is associated 
such that 

(3) The inference network 

u 

u > 
representing the disjunction of the derivations Du,e, and D"'e2 is 
compressed yielding: 

u 

With this compression step, a combination function f I is associated such 
that 

( 4) The inference network 

u 

u 

~u,DY·h) 

h 

4u,D~·h) 
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representing the parallel composition of the derivations DY·h and D~·h is 
compressed yielding: 

u h 

With this compression step, a combination function f 11 is associated such 
that 

Since application of each of these four compression steps reduces the number 
of arrows (and certainty factors) in an inference network, termination of the 
compression is guaranteed. 

ExAMPLE 2.9. The inference network of Figure 2.4 is compressed to 

u h 

where nu.h = (((u ➔ a)&(((((u ➔ a) 0 (a ➔ d))&(u ➔J)) 0 (d A.f ➔ b)) I 
I (u ➔ c))) 0 (a A. (b V c) ➔ h)) II (((u ➔ f) I (u ➔ g)) 0 (f V g ➔ h)). ■ 

In the foregoing, we have introduced the basic compression steps and their 
associated combination functions relative to inference networks that had been 
extended and transformed. Recall that we transformed an inference network 
after extension to arrive at a tree-like structure equalling a derivation tree 
representing an element of the set of all derivations with respect to the given 
set of production rules. In actually using the combination functions in 
implementations of the modeL however, certainty factors are only computed 
once; so in practice, the extended yet not transformed inference network is 
employed. 

2.1. 4. Some Desirable Properties of the Combination Functions 

In the preceding subsection we have modelled the propagation of uncertainty 
during an inference process by means of compression of the corresponding 
inference network. We have defined four basic compression steps and have 
introduced combination functions corresponding with these compression steps. 
In this section we discuss these combination functions and indicate some 
desirable properties for each of them. 

Recall that the certainty factor CF(h -1 e,e ➔ h) quantifies the degree to 
which the occurrence of evidence e confirms the hypothesis h. However, the 
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truth of a piece of evidence e (that is, whether or not e has actually been 
observed) may not always be determined with absolute certainty: with every 
piece of evidence e supplied by the user, a certainty factor is associated not 
necessarily equal to + 1. Furthermore, when using production rules 
intermediate hypotheses are confirmed to some degree and may in turn be 
used as evidence in other production rules concluding on new hypotheses. The 
basic compression step (1) describing the composition of derivations, and its 
associated combination function f o deal with this situation. From now on, we 
will call the function f o the combination function for (propagating) uncertain 
evidence. 

The evidence e in a production rule e ➔ h may be an intermediate 
hypothesis which has been confirmed to some degree. If a certainty factor 
CF(e --1 u,D"•e) for the evidence e given some derivation of e from u is known, 
the combination function for propagating uncertain evidence can handle this 
situation. However, the evidence e in a rule e ➔ h may be a conjunction of 
disjunctions of pieces of evidence. In order to be able to apply the 
combination function f O for uncertain evidence, the certainty factor 
CF(e --1 u,D"·e) of the positive Boolean combination e has to be computed 
from the certainty factors of its constituting parts. The basic compression 
steps (2) and (3) dealing with the conjunction and disjunction of derivations, 
and their associated combination functions f & and f 1 , respectively, refer to 
this situation. From now on, the function f & will be called the combination 
function for a conjunction of hypotheses, and the function f I the combination 
function for a disjunction of hypotheses. When referring to the two functions 
together, we will call them the combination functions for composite hypotheses. 

From a mathematical point of view, it is desirable that application of the 
combination functions for composite hypotheses render the resulting certainty 
factor for a conjunction of disjunctions of pieces of evidence independent of 
the order in which the constituting parts of each of the disjunctions and the 
order in which the constituting parts of each of the conjunctions are specified. 
For example, the production rules e 1 A e2 ➔ h and e2 A e 1 ➔ h should yield 
the same result. Furthermore, the certainty factor of a positive Boolean 
combination of pieces of evidence has to be independent of the way in which 
the constituting parts of each of the disjunctions and of the way in which the 
constituting parts of the conjunction are taken together to be combined. 
Therefore, the combination functions for composite hypotheses f & and f 1 

have to respect the property of commutativity 

f &(x,y) = f&(y,x), and 

f 1 (x,y) = f 1 (y,x) 

for all certainty factors x and y, and the property of associativity 

f&(f&(x,y),z) = /&(x,f&(y,z)), and 

f 1 (f 1 (x,y),z) = f 1 (x,f 1 (y,z)) 
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for all certainty factors x, y and z. Furthermore, specifying a hypothesis more 
than once in a conjunction or disjunction should not influence the resulting 
certainty factor. So, the combination functions for composite hypotheses have 
to respect the property of idempotency 

f &(x,x) = x, and 

J 1(x,x)=x 

for all certainty factors x. Note that assuming the mathematical properties of 
commutativity, associativity and idempotency in an explicit model of human 
problem solving behaviour under uncertainty might not be realistic from a 
psychological point of view. 

When different successful production rules e; ➔ h (that is, rules with 
different left-hand sides e;) conclude on the same hypothesis h, a certainty 
factor CF(h ---1 u,(Du,e,) 0 (e; ➔ h)) is derived from the application of each of 
these production rules. The net certainty factor for h is dependent upon each 
of these partial certainty factors. Toe basic compression step ( 4) describing 
the parallel composition of derivations, and its associated combination 
function f 11 deal with such co-concluding production rules. From now on, we 
will call the function f 11 the combination function for ( combining the results of) 
co-concluding production rules. 

Again, it is desirable that application of the function f II renders the 
resulting certainty factor for a hypothesis h independent of the order in which 
the different production rules concluding on h are applied. Furthermore, it is 
desirable that the resulting certainty factor is independent of the way in which 
the results of the different rules are taken together to be combined. Therefore, 
the combination function f II has to respect the property of commutativity 

fu(x,y) = f11(y,x) 

for all certainty factors x and y, and the property of associativity 

fu(f 11(x,y),z) = fu(x.f 11(y,z)) 

for all certainty factors x, y and z, as well. In addition, the combination 
function for co-concluding production rules should respect the property of 
idem potency 

fu(x,x) = x 

for all certainty factors x. 
Finally, we want the four combination functions to be monotonic increasing. 
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Therefore, the combination functions f o, f &, f I and Ju have to respect the 
following property: 

if x ;;;;,, x' and y ;;;;,, y', then 

Jo(x,y);;;;,, Jo(x',y'), and 

f &(x,y) ;;;;,, f &(x',y'), and 

f 1 (x,y) ;;;;,: f 1 (x', y'), and 

fu(x,y) ;;;;,, fu(x',y') 

2.1.5. The Actual Combination Fwictions 

In [SHOR84], E.H. Shortliffe and B.G. Buchanan have introduced four 
functions for combining certainty factors. In this section we discuss these 
functions and show their correspondence with our combination functions f o, 
f &, f I and Ju. 

The Combination Function for Propagating Uncertain Evidence. 

In the case in which the evidence e in a production rule e ➔ h is an 
intermediate hypothesis which has been confirmed to some degree, the 
certainty factor CF(e ---l u,nu,e) of the intermediate hypothesis e given some 
derivation of e from u is used as a weighting factor for the certainty factor 
CF(h ---J e,e ➔ h) associated with the hypothesis of the rule. Adapted to our 
notational convention, the combination · function for propagating uncertain 
evidence proposed by Shortliffe and Buchanan reads as follows: 

CF(h ---J u,(nu,e) 0 (e ➔ h)) = CF(h ---J e,e ➔ h) · max{O,CF(e ---J u,nu,e)} 

or using the function f o, 

Jo(x,y) = y · max{O,x} 

where x denotes the certainty factor CF(e ---J u,nu,e) of the intermediate 
hypothesis e, and y denotes the certainty factor CF (h ---J e, e ➔ h) associated 
with the hypothesis h of the production rule e ➔ h. In general, this 
combination function does not respect the property of monotony; however, in 
case only non-negative certainty factors have been associated with the 
hypotheses of the rules, the function is monotonic increasing. 

Shortliffe and Buchanan proposed the following formulation for the 
combination function for propagating uncertain evidence (although the 
function is not explicitly stated in their original work, it is the straightforward 
analogy of the corresponding functions for their basic measures of uncertainty 
which will be discussed in Section 2.2): 

CF(h,e) = CF'(h,e) · max{O,CF(e,e')} 
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where CF'(h,e) is the certainty factor associated with the hypothesis h given 
that the evidence e is observed with absolute certainty, that is, the certainty 
factor the expert has associated with the hypothesis h in the production rule 
e ➔ h. The certainty factor CF(e,e') denotes the actual certainty factor of e 
given some prior evidence e'; similarly CF(h,e) is the actual certainty factor of 
h after the application of the rule e ➔ h. In our opinion, the actual certainty 
factor of h after the application of the production rule e ➔ h, expressed in the 
left-hand side of the formulation given above, is not only dependent upon h 
and e, but upon the prior evidence e' as well. This dependency on e' is not 
expressed in the original formulation of the combination function. It is this 
inadequacy that caused the necessity of introducing the seemingly strange 
quoted function CF'. Our observation that the actual certainty factor of the 
hypothesis h is dependent upon all intermediate hypotheses that were used in 
deriving h has led to the introduction of the notion of a derivation with respect 
to a fixed set of production rules into our formulation of the certainty factor 
function. Note that we have not affected the intended meaning of the original 
formulation of the combination function for propagating uncertain evidence. 

The Combination Functions for Composite Hypotheses. 

If the evidence e in the production rule e ➔ h is a conjunction of disjunctions 
of pieces of evidence, the certainty factors of each of the constituting pieces of 
evidence are combined into a single certainty factor for e. Recall that for this 
purpose we have introduced the combination functions f & and f 1 • Toe 
combination function proposed by Shortliffe and Buchanan for a conjunction 
of hypotheses reads as follows: 

CF(e1 /\ e2 -j u,(Du,e,) & (D"'e')) = 
= min{CF(e1 -j u,D"'e'),CF(e2 -j u,D"'e')} 

For a combination function for a disjunction of hypotheses they have chosen: 

CF(e1 V e2 -j u,(Du,e,) I (D"'e')) = 
= max{CF(e1 -j u,D"'e'),CF(e2 -j u,D"'e')} 

Using the functions f & and f I we have: 

f &(x,y) = min{x,y}, and 

J 1(x,y) = max{x,y} 

where x denotes the certainty factor CF(e 1 -j u,Du,e,) and y denotes the 
certainty factor CF(e2 -j u,Du.e'). From this formulation it should be evident 
that these combination functions respect the properties of commutativity, 
associativity, idempotency and monotony. 
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Shortliffe and Buchanan proposed the following formulation for these 
combination functions: 

CF(h 1 /\ h 2,e) = min{CF(h 1,e),CF(h 2,e)} 

CF(h 1 V h 2,e) = max{CF(h 1,e),CF(h 2,e)} 

These combination functions may be used only to combine the certainty 
factors of several hypotheses given the same evidence. In practice, however, 
the certainty factors of the hypotheses to be combined are generally derived 
along different inference paths, and differ in their second argument due to the 
original formulation of the combination function for propagating uncertain 
evidence. The reader can verify that our reformulation of the combination 
functions for composite hypotheses has the same meaning as the original 
formulation. 

The Combination Function for Co-Concluding Production Rules. 

The combination function which remains to be discussed concerns several 
different production rules concluding on the same hypothesis, that is, our 
function f 11. The following combination function is given to deal with this 
situation: 

(1) CF11(h --l u,DY·h II D2·h) = CF(h --1 u,DY·h) + CF(h --1 u,D2·h) · 

(2) 

· (1 - CF(h --1 u,DY·h)), if CF(h --1 u,DY·h) > 0 and CF(h --1 u,D2•h) > 0, 

and 

CF(h --1 u,DY·h) + CF(h --1 u,D2·h) 
CF11(h --1 u,DY·h II D2·h) = -----------------

1 - min{ I CF(h --1 u,D~h) I, I CF(h --1 u,D2·h) I}' 
if - 1 < CF(h --l u,ny,h) . CF(h --l u,D2·h) :,;;;; 0, and 

(3) CF 11 (h --1 u,DY·h II D2·h) = CF(h --1 u,DY•h) + CF(h --1 u,Dl'h) · 

· (1 + CF(h --1 u,DY·h)), if CF(h --1 u,DY·h) < 0 and CF(h --1 u,D2·h) < 0. 

Note that CF 11 (h --1 u,DY·h II D 2·h) is not defined for the case where 
CF(h --1 u,DY·h) · CF(h --1 u,Dl'h) = -1. In fact, it is not even possible to 
find a continuous extension of the function CF11 for this case. The fill-in for 
the combination function f II employed in the certainty factor model therefore 
is not a total function. 

Using our function / 11 we obtain the following more perspicuous 
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formulation of the actual combination function for co-concluding production 
rules: 

!
x + y - xy if x, y > 0 

fn(x,y) = 1 _ m~{~ x 7, I y I} if -1 < x · y ,,;;;; 0 

X + J + XJ if X, J < 0 

where x denotes the certainty factor CF(h -1 u,Dfh) and y denotes the 
certainty factor CF(h -1 u,D~·h). This combination function respects the 
properties of commutativity and associativity, as shown in [SPIE86a]. 
Furthermore, the function is monotonic increasing. However, it does not 
respect the property of idempotency. 

In [SHOR84], the following formulation for this combination function is 
given: 

(I) CF(h,e 1 I\ e2) = CF(h,e 1) + CF(h,e2)(1 - CF(h,e 1)), 

if CF(h,e 1) > 0 and CF(h,e 2) > 0, and 

(2) 
CF(h,e 1) + CF(h,e 2) 

CF(h,e1 /\ei) = ------------, 
I - min{ I CF(h,e 1) I, I CF(h,e2) I} 

if one of CF(h,e;) < 0, i = 1,2, and 

(3) CF(h,e1 I\ e2) = CF(h,e 1) + CF(h,e2)(l + CF(h,e 1)), 

if CF(h,e 1) < 0 and CF(h,e 2) < 0. 

It is noted that this function (mistakenly) is not defined if at least one of 
CF(h,e 1) and CF(h,e 2) equals 0. Furthermore, the case in which 
CF(h,e 1) · CF(h,e2) = -1 should be excluded explicitly since the 
combination function is undefined in this case. A more serious criticism is 
that in this formulation of combining the results of production rules 
concluding on the same hypothesis, the same symbol /\ is used as in describing 
a conjunction of two hypotheses or pieces of evidence. Shortliff e and 
Buchanan seem to assume that the success of a production rule e1 I\ e2 ➔ his 
equivalent to the success of the two production rules e 1 ➔ h and e2 ➔ h. As 
such an equivalence is apt to be violated due to inconsistent function values 
given by the expert (and the user), we have introduced another notational 
convention. Again, our reformulation does not change the original meaning of 
the combination function. 

To conclude with, we demonstrate the application of the combination 
functions by means of a numerical example. 
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ExAMPLE 2.10. Consider the following three production rules: 

d l\ f ➔ h 

a ➔ h 

b l\ c ➔ h 

The expert has provided the following certainty factors: 

CF(b --i d I\ f,d I\ f ➔ b) = 0.80 

CF(h --i a,a ➔ h) = 0.70 

CF(h --i b I\ c,b I\ c ➔ h) = 0.50 

29 

We assume that h is the goal hypothesis. The user of the system supplies 
during the consultation the following information: 

CF(a --i u,u ➔ a) = 0.50 

CF(c --i u,u ➔ c) = 0.40 

CF(d --i u,u ➔ d) = 1.00 

CF(/ --i u,u ➔ f) = 0.90 

Then, it takes the following computations to arrive at a certainty factor for h: 

(I) CF(h --i u,(u ➔ a) 0 (a ➔ h)) = 0.70 · 0.50 = 0.35 

(2) CF(d l\ f --i u,(u ➔ d)& (u ➔ /)) = min{l.00,0.90} = 0.90 

(3) CF(b --i u,((u ➔d)& (u ➔ f)) 0 (d A/ ➔ h)) = 0.80·0.90 = 0.72 

(4) CF(b l\ c --i u,(((u ➔ d)& (u ➔ f)) 0 (d l\ f ➔ b))& (u ➔c)) = 
= min{0.40,0.72} = 0.40 

(5) CF(h --i u,((((u ➔ d)& (u ➔ f)) 0 (d l\ f ➔ h))& (u ➔ c)) 0 (b I\ c ➔ h)) = 
= 0.50 · 0.40 = 0.20 

(6) CF(h --i u,(((u ➔ a) 0 (a ➔ h)) II ((((u ➔ d) & (u ➔ /)) 0 (d /\ f ➔ b)) & 
& (u ➔ c)) 0 (b I\ c ➔ h))) = 0.35 + 0.20 ·0.65 = 0.48 

■ 

2.2. THE PROBABILISTIC BASIS OF THE CERTAINTY FACTOR MODEL 

In the preceding section we have presented a syntactical model for handling 
uncertainty in a rule-based top-down reasoning expert system. This model has 
been used to exainine the certainty factor model as it was proposed by 
E.H. Shortliffe and B.G. Buchanan: we have arrived at a syntactically correct 
reformulation of the model. This new formulation will now be the point of 
departure for a discussion of some of the probabilistic issues involved in the 
certainty factor model. 

In (SHOR84], Shortliffe and Buchanan have suggested a mathematical 
foundation for their model in probability theory. The certainty factor function 
we have introduced in the preceding section is not the basic notion of 
uncertainty employed in the certainty factor model: this function is defined in 
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terms of two basic measures of uncertainty, the measures of belief and disbelief, 
which in turn have been defined in terms of probability theory. In this 
section, we introduce this probabilistic foundation of the certainty factor 
model. It should be noted that although Shortliffe and Buchanan have 
suggested a mathematical foundation for their model, they have not provided a 
thorough justification for it. In the Sections 2.3 and 2.4, we present a detailed 
analysis of this foundation. 

2.2.1. Elementary Probability Theory 

This section presents a brief introduction to elementary probability theory, 
thus providing a point of departure for the remaining sections of this chapter. 
We chose [HOGG78] as a basis for our introduction although any other 
introductory textbook will suffice. 

Many kinds of investigations may be characterized in part by conceptually 
repeated experimentation under essentially the same conditions. Each 
experiment terminates in an outcome which cannot be predicted with certainty 
prior to the performance of the experiment. The non-empty collection of all 
possible outcomes of an experiment is called its sample space and is usually 
denoted by ~- In this chapter, we take a sample space ~ to be a finite set. A 
subset e of a sample space Q is called an event. If upon the performance of 
the experiment the outcome is in e, it is said that event e has occurred. The 
event that the outcome is not in e is denoted by e and is called the complement 
of e. So, e = Q \ e. The event that occurs if and only if both the events e 1 

and e2 occur, is called the intersection of e 1 and e2, denoted by e 1 n e2. The 
event occurring if e 1 occurs, e2 occurs or both e 1 and e2 occur, is called the 
union of e 1 and e2, denoted by e 1 U e2 • 

DEFINITION 2.11. Let ~ denote a sample space. The sets e 1, ... , en ~ ~ 
n ~ 1, are called disjoint if e; n ej = 0, 1 ..;; i, j ..;; n, i =I= j. The events 
corresponding with disjoint sets are called mutually exclusive events. 

We now define a set function Pr on a sample space Q such that if e is a subset 
of~. then Pr(e) is a real number indicating the 'probability' that the outcome 
of the experiment is an element of e; the function Pr is defined axiomatically 
in Definition 2.12. 

DEFINITION 2.12. Let~ denote a sample space. If a number Pr(e) is associated 
with each subset e C ~ such that 

(1) Pr(e) ~ 0, and 

(2) Pr(~) = 1, and 

(3) Pr(e1 U e2 U · · · ) = Pr(e 1) + Pr(e 2) + · · · , 
where e;, i = 1,2, . .. , are mutually exclusive events, 

then Pr is called a probability function on ~- For each subset e ~ ~ the 
number Pr(e) is called the probability that event e will occur. 
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The following lemma states some properties of a probability function. The 
lemma is presented without proof; its statements, however, can easily be 
proven using Definition 2.12. 

LEMMA 2.13. Let Q denote a sample space. Let Pr be a probability function on 
Q. Then, the following properties hold: 

(1) For each e C Q, we have Pr(e) = 1 - Pr(e). 

(2) Pr(0) = 0. 

(3) For each e1, e1 C Q such that e 1 C ei, we have Pr(e 1) .;;;; Pr(e1). 

(4) For each e 1, e1 C Q such that e 1 C ei, if Pr(e 1) = Pr(e2) then for each 
e 3 C Q we have that Pr(e 1 n e3) = Pr(e1 n e 3) . 

In some cases we are interested only in outcomes which are in a given 
nonempty subset e of a sample space Q, for instance when several pieces of 
information concerning the final outcome become known in the course of the 
actual performance of the experiment. These pieces of information are called 
pieces of evidence. Let h be an event, called the hypothesis. Given that an 
event e occurs, that is, given that the evidence e has been observed, we are 
interested in the degree to which this information influences Pr(h), the prior 
probability of the hypothesis h. The probability of h given e is defined in the 
following definition. 

DEFINITION 2.14. Let Q denote a sample space, and let Pr be a probability func ­
tion on Q. For each h, e C Q with Pr(e) > 0, the conditional probability of h 
given e, denoted by Pr(h I e), is defined as 

Pr(h I e) = Pr(h n e) 
Pr(e) 

In the sequel, when writing Pr(h I e) we will implicitly assume Pr(e) > 0 
unless stated otherwise. The following lemma can easily be proven using the 
Definitions 2.12 and 2.14. 

LEMMA 2.15. Let Q denote a sample space, let Pr be a probability function on Q 
and let e be a subset of Q such that Pr(e) > 0. The conditional probabilities 
given e define a probability function on Q. 

Note that Lemma 2.15 allows us to state properties of a conditional 
probability function given some evidence e, analogous to the properties stated 
in Lemma 2.13. 

Let Pr be a probability function on Q. Furthermore, let h, e C Q. It seems 
natural to name the event h independent of the event e when 
Pr(h I e) = Pr(h): the prior probability of event h is not influenced by the 
knowledge that event e has occurred. However, this intuitive notion of 
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independency is asymmetric in its arguments and is not applicable in case 
Pr(e) = 0. Therefore, a slightly modified definition is given. 

DEFINITION 2.16. Let n be a sample space and let Pr be a probability fwiction 
on n. The events e 1, .•• , en C n, n ;;.,, 1, are called (mutually) independent if 

Pr(e;, n · · · n e;.) = Pr(e;) · · · · · Pr(e;.) 

for each subset {i1, ... ,ik} C {1, ... ,n}, 1:,;;;; k ~ n. The events e1, ... ,en 
are called conditionally independent given a hypothesis h C n if 

Pr(e;, n · · · n e;. lh) = Pr(e;, lh) · · · · · Pr(e;. lh) 

for each subset {i 1, ... , ik} C {1, . .. , n }. 

Note that if the events hand e are independent and if Pr(e) > 0, we have that 
the earlier mentioned, intuitively more appealing notion of independency 

Pr(h I e) = Pr(h n e) 
Pr(e) 

is satisfied. 

Pr(h)Pr(e) = Pr(h) 
Pr(e) 

The following theorem is known as Bayes' Theorem. 

THEOREM 2.17. Let Pr denote a probability fwiction on a sample space n. For 
each h, e C n with Pr(e) > 0, Pr(h) > 0, we have 

Pr(h le)= Pr(e lh)Pr(h) 
Pr(e) 

Note that Bayes' Theorem may be used to reverse the 'direction' of 
probabilities. 

In the preceding we have presented a frequentist view to probability theory. 
We have mentioned in Chapter 1, however, that artificial intelligence 
researchers generally take the subjectivist view to probability theory. Recall 
that a subjectivist views the probability of an event as a measure of a person's 
belief in the occurrence of the event, given the information that person has. 
Note that, according to this point of view, a probability not necessarily is a 
statement concerning repeated experimentation: a subjectivist is also willing to 
assess a probability for a unique event that cannot be considered to be an 
outcome of a repeatable experiment. However, subjective probabilities comply 
with the same set of axioms as probabilities from a frequentist viewpoint do. 
In the sequel, we will, like many artificial intelligence researchers before us, 
adhere to the subjectivist point of view and take the preceding definitions and 
lemmas to apply to subjective probabilities which have been assessed by a 
domain expert. 
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2.2.2. A Probabilistic Interpretation for Propositions and Derivations 

In the following subsections we will discuss the probabilistic foundation of the 
certainty factor model as it has been suggested by Shortliffe and Buchanan. 
Now, recall that production rules are statements concerning atomic 
propositions and positive Boolean combinations of atomic propositions. 
Furthermore, the certainty factor function we have introduced in Section 2.1 
involves propositions and derivations. Probabilities on the other hand are 
statements concerning sets. In order to be able to discuss the certainty factor 
model in a probabilistic setting, we have to construct a sample space which is 
expressive enough to discern between all elements of t.f; from now on, we 
simply assume that we are given a fixed sample space O meeting the mentioned 
requirement (in Chapter 3 in Proposition 3.12 we will discuss a method for 
obtaining a 'canonical' choice of such a sample space). Furthermore, we have 
to define interpretation mappings from <ff into 2° and from P} into 2°. 

We define an interpretation mapping t,r: <ff ➔ 2° by first associating with 
each atomic proposition a E J<I a specific nonempty subset t,r(a) of the sample 
space 0. For ease of exposition in the sequel we assume that for each a E J<I 
we have t,r(a) =I= 0. The logical conjunction then translates into the 
intersection set operation; the logical disjunction translates into the union set 
operation. We assume that the mapping ts is injective (modulo logical 
equivalence). It will be evident that this assumption is not a restrictive one. 
In Figure 2.5 the basic idea of this mapping is shown. 

FIGURE 2.5. The interpretation mapping ~ from <!into 2° . 

Now, note that although we did not allow negations in production rules, each 
subset of O corresponding with a proposition nevertheless has a complement 
due to the properties of sets and set operations. 
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Similarly, each derivation D iJ with respect to a set of production rules fJJ is 
taken to identify a subset of the sample space Q dependent upon the 
intermediate hypotheses that were used in deriving the hypothesis j from i . To 
this end, we will introduce in Definition 2.18 an interpretation mapping 
t!!d: ~ ➔ 2°. The reader should bear in mind that in the foregoing we have 
added the notion of a derivation to the original formulation of the certainty 
factor model. As a consequence, in the subsequent sections our analysis of the 
probabilistic foundation of the model will involve the interpretation mapping 
'!!d· It will be evident that this mapping was not present in the probabilistic 
foundation as it was suggested for their model by Shortliffe and Buchanan in 
[SHOR84]. All results shown in the following therefore should be taken relative 
to the choice of this interpretation mapping. The mapping t!!d however has 
been chosen after due consideration of the combination functions and the way 
they are applied in actual implementations of the model so as to closely fit 
their intended meaning. 

DEFINITION 2.18. Let cS; u and fJJ be as before and let ~ be defined according to 
Definition 2.2. Let the interpretation mapping t,r from ~ into 2° be as described 
above. Then, an interpretation of elements of!!) is a mapping ~: !!) ➔ 2° such 
that 

(1) for each u ➔ h E 9, we have t!!d(u ➔ h) = 0, and 

(2) for each e ➔ h E &where e =fo u, we have t!!d(e ➔ h) = t,r(e), and 

(3) foreachD1,D2 E 24 wehave~(D 1°D 2) = ~(D 1) U ~(D 2), and 

(4) foreachD 1, D 2 E24wehave~(D 1 &D2) = Lf!o(D 1) n Lf!o(D 2),and 

(5) for each D 1, D 2 E 24 we have t!!d (DI I D 2) = t.r» (D 1) U ~ (D 2), and 

(6) foreachDi,D 2 E 24 wehavet!!d(D 1 IID2) = t.r»(D1) n ~(D2)-

The basic idea of this mapping t.r» is to identify with a derivation a subset of Q 
representing all information that has been concluded by the system in the 
course of the derivation, except for its final conclusion. So, with a derivation 
u ➔ h the empty set is associated since the system has not reached any 
conclusions during this derivation except for h. Note that from the system's 
point of view a derivation u ➔ h is a kind of 'empty' derivation in which no 
inference is applied. The interpretation of the conjunction and the disjunction 
of derivations as the set operations intersection and union respectively, is 
rather straightforward. The interpretation of the parallel composition of 
derivations as the intersection of the separate derivations, that is, the idea of 
taking the intersection of all evidence that is used in deriving a hypothesis, 
should be intuitively appealing. The proposed interpretation of the sequential 
composition of two derivations as the union of the sets identified by these 
derivations is less straightforward; it comes forth from the idea that an expert 
system should have the ability to extend its focus as evidence becomes 
available. Note that this choice renders a kind of learning behaviour of the 
system. In the sequel we will see that in calculating a measure of uncertainty 
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for a hypothesis, the set corresponding with the derivation of this hypothesi.s is 
intersected with the set identified by u. From this it will be evident that the 
system is not allowed to focus on hypotheses contradictory to the user's de 
facto knowledge. 

EXAMPLE 2.19. Consider the derivation DY·h = ((u - e) 0 (e - h)). We have 
t~(DY·h) =t~(u - e) U t~(e - h) = 0 U ts(e) = t,r(e). Now, consider the 
derivation D~·h = (((u - a) 0 (a - h)) II ((u - e) 0 (e - h))). We have 
t~(D~·h) = (0 u ts(a)) n (0 u ,.,(e)) = ts(a) n t,r(e). ■ 

In the following, we will assume proper application of the interpretation 
mappings ts and,~ implicitly as long as ambiguity cannot occur. For i!!5tance, 
we will write Pr(DiJ) instead of Pr(t~(DiJ)); for ts(h) we will write h where 
appropriate. 

2.2.3. The Basic Measures of Uncertainty 

In developing the certainty factor model Shortliffe and Buchanan have chosen 
two basic measures of uncertainty: the measure of belief expressing the degree 
to which an observed piece of evidence increases the belief in a certain 
hypothesis, and the measure of disbelief expressing the degree to which an 
observed piece of evidence decreases the belief in a hypothesis. These new 
notions of uncertainty were devised to capture the intuitive concepts of 
confirmation and disconfirmation, and have been inspired to a large extent by 
confirmation theory, [CARN50]. We will soon see that the measures of belief 
and disbelief have been defined in terms of probability theory; to be able to do 
so, Shortliffe and Buchanan have assumed the existence of a probability 
function Pr on their sample space. From now on, we take Pr to be a fixed 
probability function on ~-

Before stating the formal definitions of the basic measures of uncertainty, we 
quote the intuitive account Shortliffe and Buchanan have given for the measure 
of belief (see also Figure 2.6). 

Pr(h I e) 

0 Pr(h) 

FIGURE 2.6. The degree of increased belief. 

"In accordance with subjective probability theory, it may be argued that the 
expert's personal probability Pr(h) reflects his or her belief in h at any given 
time. Thus, 1 - Pr(h) can be viewed as an estimate of the expert's disbelief 
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regarding the truth of h. If Pr(h I e) is greater than Pr(h) the observation of e 
increases the expert's belief in h while decreasing his or her disbelief regarding 
the truth of h. In fact the proportionate decrease in disbelief is given by the 
following ratio: 

Pr(h I e) - Pr(h) 
I - Pr(h) 

This ratio is called the measure of increased belief in h resulting from the 
observation of e." 

"The above definition may now be specified formally in terms of conditional 
and a priori probabilities: 

MB(h,e) = {~ax{Pr(h j e),Pr(h)} - Pr(h) 
max{l,O} - Pr(h) 

([SHOR84], pp. 247, 248) 

ifPr(h)= 1 

otherwise 

Note that the ratio mentioned in the first quotation is equal to 

Pr(h I e) - Pr(h) = 
1 

_ Pr(h I e) 
I - Pr(h) Pr(h) 

Shortliffe and Buchanan use a similar argument to account for their measure 
of disbelief 

Pr(h) - Pr(h I e) = 1 _ Pr(h I e) 
Pr(h) Pr(h) 

In the following definition, we (re)define the measures of belief and disbelief 
using our notational convention so as to capture the notion of derivation 
(recall that we use Pr(h I e n ne,h) as an abbreviation for 
Pr(t8 (h)lt.r(e) n L[j(De,h))). We feel that we have not affected the intended 
meanings of these basic measures of uncertainty. 

DEFINITION 2.20. Let <ff and fl} be as before. Let h, e E <ff and D e,h E fl}_ The 
measure of (increased) belief MB is a partial function MB : <ff X <ff X fl} ➔ [O, I] 
such that 

MB(h-, e,De,h) = 
{

1 if Pr(h) = 1 

{
o Pr(h I en ne,h) - Pr(h)} h . 

max , 1 _ Pr (h) ot erwzse 
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The measure of (increased) disbelief MD is a partial function 
MD: <ff X <ff X ~ ➔ [0, l] such that 

{

l if Pr(h) = 0 

MD (h -, e,De,h) = { Pr(h) - Pr(h I en De,h)} . 
max 0, Pr(h) othe,w1se 

Note that in the previous definition the measures of belief and disbelief for 
user-supplied evidence u ➔ h are not defined since in this case the conditional 
probability Pr(h I u n Ltf(u ➔ h)) is not defined. However, the definition of 
the measure of belief can easily be extended by taking 

{

l if Pr(h) = 1 

MB(h -rn,u ➔ h) = {o Pr(h I u) - Pr(h)} h . 
max , 1 _ Pr (h) ot e,wise 

for the fictitious production rule u ➔ h; similarly, the definition of the 
measure of disbelief can be extended to provide for user-supplied evidence. In 
the following definition, we will implicitly assume that the definitions of the 
measures of belief and disbelief have been extended as indicated. However, 
the lemmas and propositions stated will not be proven separately for user­
supplied evidence. We have chosen to do so in order to avoid obscuring the 
discussion by a profusion of mathematical detail. The reader may verify, 
however, that the results proven are not affected when user-supplied evidence 
is included. 

Furthermore, it is noted that Shortliffe and Buchanan neither account for 
their choice for the measure of belief in the case Pr(h) = l nor for their 
choice for the measure of disbelief in the case Pr(h) = O; their choices render 
the functions discontinuous. 

According to Shortliffe and Buchanan the need for new notions of 
uncertainty arose from their observation that a domain expert often was 
unwilling to accept the logica!_ implications of his probabilistic statements, such 
as: if Pr(h I e) = x then Pr(h I e) = 1 - x. They state that in the mentioned 
case an expert would claim that 'evidence e in favor of hypothesis h should not 
be construed as evidence against ~e hypothesis as well'. The reason that the 
logical implication concerning Pr(h I e) may seem counterintuitive is explained 
by J. Pearl as follows, [PEAR85]. The phrase 'evidence e in favor of hypothesis 
h' is interpreted as stating an increase in the probability of the hypothesis from 
Pr(h) to Pr(h I e), with Pr(h I e) > Pr(h): Pr(h I e) is viewed relative to 
Pr('!_). On the other hand, in the argument of Shortliffe and Buchanan 
Pr('!_!_ I e) seems to be taken as an absolute probability irr~spective of the prior 
Pr(h). This somehow conveys the false i~a that Pr(h) in~reases by some 
positive factor. However if for example Pr(h) = 0.9 and Pr(h I e) = 0.5, then 
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no expert will construe this considerable decrease in the probability of h as 
supporting the negation of h! 

Anyhow, the measures of belief and disbelief explicitly capture the notion 
that a single piece of evidence cannot both favor and disfavor a single 
hypothesis. This property is stated more formally in the following lemma. 

LEMMA 2.21. Let~ f:J'J and !!J be as before. Furthermore, let the functions MB 
and MD be defined according to Definition 2.20. Leth, e E <ff and let De,h E 2J. 
Then, the following properties hold: 

(1) If e - h E 9'J and Pr(h I e) = Pr(h) with O < Pr(h) < 1, then 
MB(h ---1 e,e - h) = MD(h ---1 e,e - h) = 0. 

(2) If MB(h ---1 e,De,h) > 0, then MD(h ---1 e,De,h) = 0. 

(3) If MD(h ---1 e,De,h) > 0, then MB(h ---1 e,De,h) = 0. 

PROOF. We only prove the properties mentioned in the parts (I) and (2); the 
proof of part (3) is analogous to the one of part (2). Recall that we have 
chosen not to prove the lemma for the case of user-supplied evidence 
separately. 

ad (I) We assume Pr(h I e) = Pr(h) with 0 < Pr(h) < 1. From Definition 
2.20 we have 

{ 
Pr(h le n t~(e-h))- Pr(h)} 

MB(h---1e,e-h) = max 0,--'--------- = 
I - Pr(h) 

= max{o Pr(h I e) - Pr(h)} = 0 
' 1-Pr(h) 

The property MD(h -, e,e - h) = 0 follows by symmetry. 

ad (2) We assume MB(h -, e,De·h) > 0. From Definition 2.20 we have 

{

I if Pr(h) = 1 

MB(h---1e,De,h)= { Pr(hJenDe,h)-Pr(h)} . 
max 0, 1 _ Pr(h) otherwise 

We distinguish two cases: Pr(h) = I and Pr(h) =I=- 1. 

In case Pr(h) = I we have that 

MD(h ---1 e De·h) = max{o Pr(h) - Pr(h Jen De·h)} = O 
' ' Pr(h) 

Now suppose that Pr(h) =I=- I. From MB(h ---1 e,De·h) > 0, we have 
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that Pr(h I e n De,h) > Pr(h). Note that it follows that Pr(h) > 0. 
From these observations we have that 

Part (I) of Lemma 2.21 shows that neither the belief nor the disbelief in a 
hypothesis h is increased by the observation of a piece of evidence independent 
of h. Parts (2) and (3) state that a single derivation of a hypothesis h cannot 
both confirm and disconfirm h. 

2.2.4. The Combination Functions for the Basic Measures of Uncertainty 

Employing the measures of belief and disbelief, and leaving the notion of 
certainty factors aside for the moment, an expert associates with the conclusion 
h of a production rule e ➔ h a measure of belief MB(h -1 e,e ➔ h) and a 
measure of disbelief MD (h -1 e, e ➔ h ); equally, a user associates with every 
piece of evidence e he feeds the system with, a measure of belief 
MB(e -1 u,u ➔ e) and a measure of disbelief MD(e -1 u,u ➔ e). 

In terms of these measures of uncertainty, the objective of applying the 
certainty factor model in a rule-based top-down reasoning expert system is to 
calculate function values MB(h -1 u,D"·h) and MD(h -1 u,Du,h) for each goal 
hypothesis h. If the probability function Pr on the sample space ~ is known, 
then these function values MB(h -1 u,Du,h) and MD(h -1 u,Du,h) can be 
computed simply by using the probabilistic definitions of MB and MD. In 
many of the domains in which expert systems are employed, however, a 
probability function is rarely available. In the case where a probability 
function is not known, the function values MB(h -1 u,Du,h) and 
MD (h -1 u, D "·h) we are interested in cannot be calculated from the 
probabilistic foundation of the measures of uncertainty MB and MD. On the 
other hand, the expert and the user have supplied function values of MB and 
MD for only a few arguments: these functions have only been specified 
partially. It will be evident that the required function values MB (h -1 u,Du,h) 
and MD(h -1 u,Du,h) will in general not be among the specified ones. 

The certainty factor model now provides approximation functions for 
calculating certain function values of MB and MD from the function values 
which are actually known to the system. We will see that these approximation 
functions fulfil the role of combination functions for MB and MD. In this 
subsection, we redefine the approximation functions given by Shortliffe and 
Buchanan for our measures of belief and disbelief: once more we add the 
notion of a derivation to the original formulation. 

Note that it is only necessary to compute function values of MB having the 
form MB(h -1 u,D"·h), that is, with u for a second argument; a similar 
observation is made concerning MD. For calculating such function values, the 
approximation functions for MB and MD make use of the given derivation 
D 11,h of the hypothesis h. 
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DEFINITION 2.22. Let ~ u and !?JJ be as before and let {I) be defined according to 
Definition 2.2. Furthermore, let the functions MB and MD be defined according 
to Definition 2.20 and let the functions MB., MD., MB 1, MD 1, MB~ MD~ 
MB II and MD II be as in the subsequent definitions. Let h, e E <ff and let 
Du,h = D 1 0 D 2 E £) where 0 E {0, &. I, II}. MB is a partial function 
MB: <ff X <ff X {I) - [O, 1] such that 

(1) MB(h ., e,e - h) = MB(h ., e,e - h), if e - h E &, and 

(2) MB(h., u,D 1 0 D 2) = MB 0 (h., u,D 1 0 D 2), otherwise. 

MD is a partial function MD: <ff X <ff X {I) - [O, 1] such that 

(1) MD(h ., e,e - h) = MD(h ., e,e - h), if e - h E &, and 

(2) MD(h ., u,D 1 0 D 2) = MD 0 (h ., u,D 1 0 D 2), otherwise. 

In Definition 2.22 we have mentioned several new functions. In the remainder 
of this section before each of these functions is formally defined, its intended 
meaning is discussed in the light of rule-based top-down reasoning expert 
systems. 

As has been mentioned before, an expert has associated the function values 
MB(h ., e,e - h) and MD(h ., e,e - h) with the conclusion h of a 
production rule e - h. Recall that these function values express the degree to 
which the actual occurrence of evidence e influences the belief and disbelief in 
the hypothesis h, respectively. When using production rules, however, an 
intermediate hypothesis e may be confirmed to some degree MB(e ., u,Du·e) 
not necessarily equalling + 1, and disconfirmed to some degree 
MD (e ., u,Du,e) not always equal to 0, that is, it may be the case that the 
truth of e is not known with certainty. After application of the production 
rule e - h described above therefore, we are interested in the function values 
MB(h ., u,Du,e o (e - h)) and MD(h ., u,Du,e o (e - h)). 

The mentioned function values now are approximated from the measures of 
belief and disbelief attached to the production rule and the function values 
MB(e ., u,Du·e) and MD(e ., u,Du.e) computed for the intermediate 
hypothesis e. In the functions for dealing with the situation that the truth of a 
piece of evidence is not known with certainty, the (approximated) measures of 
belief and disbelief of the intermediate hypothesis e are used as part of a 
weighting factor for the measures of belief and disbelief associated with the 
hypothesis h in the production rule. Note that these approximation functions 
act as the combination functions for uncertain evidence. These functions are 
denoted by MB. and MD. analogous to the notational convention introduced 
in the previous section; they will be called the combination functions for 
propagating uncertain evidence. 
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DEFINITION 2.23. Let ~ u and 9 be as before and let I!J be defined according to 
Definition 2.2. Furthermore, let the functions MB and MD be defined according 
to Definition 2.22. Leth, e E ~ D"·e E I!J and e ➔ h E 9. MB. is a partial 
function MB .: <ff X <ff X I!J ➔ [O, 1] such that 

MB . (h --1 u,D"•e 0 (e ➔ h)) = 

= MB(h h)· O MB(e --1 u,D"·e) - MD(e ---1 u,D"·e) { - - } 
---1 e,e ➔ max , _ _ 

1 - min{MB(e ---1 u,D"·e),MD(e ---1 u,D"·e)} 

MD . is a partial function MD .: <ff X <ff X I!J ➔ [O, l] such that 

= MD(h h)· O MB(e ---1 u,D"•e) - MD(e ---1 u,D"•e) { - - } 
---1 e, e ➔ max , _ _ 

1 - min{MB(e ---1 u,D"·e),MD(e ---1 u,D"·e)} 

Nate that these combination functions yield function values equal to zero 
when there is more reason to believe that e is false than there is to believe that 
e is true. 1bis property of the combination functions for propagating 
uncertain evidence has as a consequence that a production rule e ➔ h has no 
influence on the belief nor on the disbelief in h when the rule has failed during 
the top-down inference process. 

Now recall that the evidence e in a production rule e ➔ h is a positive 
Boolean combination of pieces of evidence. In order to be able to apply the 
combination functions MB . and MD . for approximating the measures of 
belief and disbelief of h after the application of this rule, the measures of belief 
and disbelief of e given some derivation of e from u have to be known. As 
these function values generally are not known they are approximated from the 
separate measures of belief and disbelief for each of the pieces of evidence that 
e comprises, then viewed as hypotheses. As an intuitive account for their 
approximation functions, Shortliffe and Buchanan argue 

"that the measure of belief in the conjunction of two hypotheses is only as 
good as the belief in the hypothesis that is believed less strongly, whereas ... 
the measure of disbelief in such a conjunction is as strong as the disbelief in 
the most strongly disconfirmed." 
([SHOR84], p. 256) 

Complementary observations are made for disjunctions of hypotheses. In 
character with these contemplations, Definition 2.24 formulates the functions 
MB&, MD&, MB I and MD I for approximating the measures of belief and 
disbelief in positive Boolean combinations of hypotheses. Note that these 
approximation functions fulfil the role of the combination functions for 
composite hypotheses. In the sequel therefore, they will be denoted as such. 



42 Quasi-Probabilistic Models 

DEFINITION 2.24. Let <ff; u and !!) be as before. Furthermore, let the functions 
MB and MD be defined according to Definition 2.22. Let e; E tff and D",e, E 24 
i = I, 2 MB 

I 
is a partial function MB 

1 
: tff X tff X !!) ➔ [O, I] such that 

MB I (e 1 V e2 -i u,Du,e, IDu,e,) = max{MB(e 1 -i u,D 11'e'),MB(e2 -i u,D"'e')} 

MD I is a partial function MD 1 : tff X tff X !!) ➔ [O, I] such that 

MD I (e1 V e2 -l u,Du.e, ID 11'e1
) = min{MD(e1 -l u,Du.e,),MD(e2 -l u,D",e')} 

MB& is a partial function MB&: tff X tff X !!) ➔ [O, I] such that 

MB&(e1 /\e2 -l u,Du.e,&Du,e,) = min{MB(e1 -l u,D 11'e'),MB(e2 -l u,D"'e')} 

MD& is a partial function MD&: <ff X <ff X !!) ➔ [O, I] such that 

MD&(e 1 /\ e2 -i u,D",e, &Du,e,) = max{MD(e 1 -i u,D 11'e'),MD(e2 -i u,D",e')} 

When different successful production rules e; ➔ h conclude on the same 
~otheses h, a measure of belief MB(h -i u,D't·h) and a measure of disbelief 
MD(h -i u,D't·h) are calculated from each of these rules using the 
approximation functions MB and MD. The net measure of belief and the net 
measure of disbelief, for example for two production rules 
MB(h -i u,D1·h II Di·h) and MD(h -i u,D1·h II Di·h), are approximated from 
these partial measures of belief and disbelief. Shortliffe and Buchanan account 
for their combination functions for combining the results of different 
production rules concluding on the same hypothesis as follows: 

"since an MB (or MD) represents a proportionate decrease of disbelief (or 
belief), the MB ( or MD) of a newly acquired piece of evidence should be 
applied proportionately to the disbelief (or belief) still remaining." 
CTSHOR84], p. 256) 

The next definition formulates the approximation functions MB 11 and MD 11 for 
dealing with co-concluding production rules. Again, these approximation 
functions will be named after the role they fulfil; they will be called the 
combination functions for combining the results of co-concluding production 
rules. 

DEFINITION 2.25. Let <ff; u and !!) be as before. Furthermore, let the functions 
MB and MD be defined according to Definition 2.22. Let h E tff and let 
D't·h E 24 i = 1, 2. MB II is a partial function MB 11: <ff X tff X !!) ➔ [0, I] such 
that 

(I) MB11(h -l u,DY·h II Di·h) = 0, if MD11(h -l u,DY,h II Dfh) = 1, and 

(2) MB11(h -l u,D1·h II Di·h) = MB(h -i u,D'{-h) + MB(h -i u,D~h) · 

· (1 - MB(h -i u,D'{-h)), otherwise. 
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MD 11 is a partial function MD 11: <ff X <ff X fl} ➔ [O, l] such that 

(1) MD 11(h ---1 u,DY·h II D2·h) = 0, if MB 11 (h ---1 u,DY·h II D'th) = I, and 

(2) MD 11(h ---1 u,DY•h II D2·h) = MD(h ---1 u,Di·h) + MD(h ---1 u,D2·h) · 

· (I - MD(h ---1 u,Dj·h)), otherwise. 

43 

When closely examining the definitions of MB 11 and MD 11 , a circularity is 
readily detected: the function values MB 11 (h ---1 u,Dj·h II D2·h) and 
MD 11(h2 u,DY·h II D2·h) are not defined uniquely in for example the case 
where MB(h ---1 u,D'{,h) = I and MD(h ---1 u,D2·h) = 1. In Definition 2.25 we 
have merely followed Shortliffe and Buchanan. In Section 2.3.1, however, we 
comment on this observation and show that, given the probabilistic foundation 
of the model, such problematic cases cannot occur. 

MB 11 ,MD 11 

MB1,MD1 

FIGURE 2.7. The order in applying the combination functions. 
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In the preceding, we have defined the functions MB and MD recursively 
through eight combination functions. Since in top-down inference a derivation 
is built up from successful production rules, these combination functions are 
not applied in just any order for approximating the measures of belief and 
disbelief for the intermediate results derived as the inference proceeds. Figure 
2.7 schematically depicts the process of approximating function values as a 
derivation is being 'built up'; the directions of the arcs indicate the order in 
which the combination functions are applied. For example, from the left-hand 
side of a production rule being a conjunction of disjunctions of atomic 
propositions we have that the combination functions MB I and MD I cannot be 
applied right after MB& and MD& have been applied. 

2.2.5. A Derived Measure and its Combination Functions 

In addition to the measures of uncertainty MB and MD, in the certainty factor 
model a third measure, derived from the measures of belief and disbelief, is 
defined. 1bis derived measure of uncertainty is the certainty factor function we 
have encountered before in Section 2.1. 

DEFINITION 2.26. Lett! and~ be as before. Furthermore, let the functions MB 
and MD be defined according to Definition 2.20. Let h, e E <ff and De,h E ~ 
The certainty factor . function CF is a partial function 
CF: t! X t! X ~ ➔ [-1, I] such that 

CF(h 
7 

e De,h) = MB(h --1 e,De,h) - MD(h --1 e,De,h) 
' I - min{MB(h --1 e,De,h), MD(h --1 e,De,h)} 

Recall that the measures of belief and disbelief were devised by Shortliff e and 
Buchanan to explicitly distinguish between the concepts of confirmation and 
disconfirmation. 1bis property is 'preserved' in the certainty factor function. 

LEMMA 2.27. Lett! and~ be as before. Let the functions MB and MD be 
defined according' to Definition 2.20. Furthermore, let the function CF be as in 
the preceding definition. Let h, e E <ff and D e,h E ~ - Then, one of the following 
statements is true: 

(I) CF(h --1 e,De,h) = MB(h --1 e,De,h), or 

(2) CF(h --1 e,De,h) = -MD(h --1 e,De,h). 

PROOF. From Lemma 2.21 we have that at least one of MB (h --1 e,De,h) and 
MD(h --J e,De,h) equals zero. The property stated in the present lemma 
follows from this observation. ■ 

Definition 2.26 describes the certainty factor function in terms of the measures 
of belief and disbelief as intended by Shortliffe and Buchanan in (SHOR84]: if 
the exact function values MB (h --1 e,De,h) and MD (h --1 e,De,h) are known, 
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then the corresponding function value CF(h ., e,De,h) can be calculated from 
these values. As we have discussed in the preceding subsection, however, in 
general the function values of MB and MD are not known; they are 
approximated in the model using MB and MD. So, in practice the function 
values of the certainty factor function are calculated from approximations of 
the function values of MB and MD. In the following definition, therefore, the 
notion of a certainty factor is redefined in terms of the approximation 
functions for MB and MD. 

DEFINITION 2.28. Let <ff and !5) be as before. Furthermore, let the functions MB 
and MD be defined according to Definition 2.22. Let h, e E <ff and De,h E !5)_ 

CF' is a partial Junction CF': <ff X cf X !5) ➔ [ - 1, l] such that 

CF'(h ., e,D e,h) = MB(~,De,h) - MD..f!!:_-, e,De,h) 
1 - min{MB(h ., e,De,h), MD(h ., e,De,h)} 

It should be evident from the definitions of the functions CF and CF' that 
these functions (at least) coincide where production rules are concerned. This 
property is formulated in the following lemma. 

LEMMA 2.29. Let cf and fJJ be as before. Furthermore, let the function CF be 
defined according to Definition 2.26 and let the function CF' be as above. Let 
h, e E cf and e ➔ h E fJJ. Then, CF(h ., e,e ➔ h) = CF'(h ., e,e ➔ h). 

PROOF. The property stated in the lemma follows from the observation that 
from Definition 2.22 we have MB(h ., e,e ➔ h) = MB(h ., e,e ➔ h) and 
MD(h ., e,e ➔ h) = MD(h ., e,e ➔ h). ■ 

In Section 2.4.1 we will show, however, that the two certainty factor functions 
do not coincide for each derivation in general. 

In the implementation of the certainty factor model in the EMYCIN expert 
system shell derived from MYCIN and in later implementations, rather than 
subsequently approximatin_g_ the measures of belief and disbelief for each 
hypothesis using MB and MD, and finally computing the certainty factor using 
Definition 2.28, only subsequently approximated certainty factors are used. 
This is why we never mentioned the measures of belief and disbelief in Section 
2.1 where our aim was just to describe the application of the certainty factor 
model in a present-day rule-based setting. For the purpose of approximating 
the certainty factor function we introduce approximation functions for it in 
terms of certainty factors only. 

DEFINITION 2.30. Let ~ u and fJJ be as before and let !5) be defined according to 
Definition 2.2. Furthermore, let the function CF' be defined according to 
Definition 2.28 and let the functions CF o, CF&, CF I and CF11 be as in the 
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subsequent definitions. Let h, e E tff and D u,h = D 1 0 D 2 E ~ where 
0 E {0, &, I, II}. CF is a partial function CF: tff X tff X ~ ➔ [-1, l] such that 

(1) CF(h -1 e,e ➔ h) = CF'(h -1 e,e ➔ h), if e ➔ h E 9, and 

(2) CF(h -1 u,D1 0 D2) = CF0(h -1 u,D 1 0 D 2), otherwise. 

In Definition 2.30 several new functions have been mentioned. These 
functions CFo, CF 1 , CF& and CF 11 are the combination functions for the 
certainty factor function which have been discussed before informally in 
Section 2.1.5. They are defined more formally in the following three 
definitions. 

DEFINITION 2.31. Let <8; u and 9 be as before and let ~ be defined according to 
Definition 2.2. Furthermore, let the function CF be defined according to 
Definition 2.30. Let h, e E t8; Du,e E ~ and e ➔ h E 9. CFo is a partial 
function CFo: tff X tff X ~ ➔ [-1, l] such that 

CFo(h -1 u,Du,e 0 (e ➔ h)) = CF(h -1 e,e ➔ h)· max{0,CF(e -1 u,Du,e)} 

Henceforth, CFO will be called the combination function for propagating 
uncertain evidence, analogous to the naming of MB o and MD o. This 
combination function shows once more that a production rule has no influence 
on the belief nor on the disbelief in a hypothesis when the rule has failed 
during the top-down inference process: in that case the approximated certainty 
factor resulting from application of this rule equals zero. 

DEFINITION 2.32. Let <8; u and ~ be as before. Furthermore, let the Junction CF 
be defined according to Definition 2.30. Let e; E tff and Du,e, E ~ i = 1,2 
CF I is a partial function CF 1 : tff X tff X ~ ➔ [ - 1, l] such that 

CF1 (e1 V e2 -1 u,Du,e, I Du,e,) = max{ CF(e 1 -1 u,Du,e,),CF(e2 -1 u,Du,e')} 

CF & is a partial function CF & : tff X tff X ~ ➔ [ - 1, l] such that 

From now on, we will call the approximation functions CF I and CF & the 
combination functions for composite hypotheses. 

DEFINITION 2.33. Let t8; u and~ be as before. Furthermore, let the Junction CF 
be defined according to Definition 2.30. Let h E tff and Dr·h E ~ i = 1,2 
CF11 is a partial function CF11: rff X tff X ~ ➔ [-1, l] such that 

(1) CF 11 (h -1 u,DY•h II D~h) = CF(h -1 u,DY•h) + CF(h -1 u,D2·h) · 

· (1 - CF(h -1 u,DY·h )), if CF(h -1 u, Dth) > 0 and CF(h -1 u,D2·h) > 0, 
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(2) 
CF(h -1 u,D't'h) + CF(h -1 u,D2·h) 

CF
11
(h -1 u,DY•h II D2·h) = -----------------

1 - min{ I CF(h -1 u,DY·h) I, I CF(h -1 u,D2·h) I} ' 
if - I < CF(h -1 u,DY·h) · CF(h -1 u,D2·h) ~ 0, and 

(3) CF
11
(h -1 u,DY·h II D2·h) = CF(h -1 u,DY·h) + CF(h -1 u,D2·h) · 

. (I + CF(h -l u,DY·h )), if CF(h -l u,DY·h) < 0 and CF(h -l u,D2·h) < 0. 

The approximation function CF11 will be called the combination function for 
( combining the results of) co-concluding production rules. 

2.2.6. Summary of the Definitions 

In the preceding subsections we have defined the basic measures of uncertainty 
of the certainty factor model, the measure of belief MB and the measure of 
disbelief MD, in terms of a probability function Pr on a sample space S1 (see 
Definition 2.20). As such a probability function is not always known in 
practice, not all function values of MB and MD can be computed from this 
probabilistic definition; the functions MB and MD are introduced to 
approximate function values of MB and MD respectively (see Definition 2.22). 
In addition, in the model a third measure of uncertainty is used; the certainty 
factor function CF is defined in terms of MB and MD (see Definition 2.26). 

CF 

CF' 

Dclinitioa , .30 l 
CF 

Pr 

~on2.20 

Definition 2.26 
MB, MD 

l Dclinition l22 

Definition 2.28 
MB,MD 

FIGURE 2.8. A diagram of the functions of the certainty factor model. 
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As function values of MB and MD are approximated using MB and MD, we 
have redefined the certainty factor function in terms of these approximated 
measures of belief and disbelief, giving CF' (see Definition 2.28). In more 
recent implementations of the model, only this certainty factor function is used 
for handling uncertainty. For the purpose of approximating function values of 
CF' the function CF is introduced (see Definition 2.30). Figure 2.8 shows the 
relationships that have been defined between the functions employed in the 
certainty factor model. In the subsequent sections we examine these 
relationships in detail. In Section 2.3 we will concentrate on the right half of 
Figure 2.8 and we will show that the approximation functions MB and MD do 
not respect the probabilistic definitions of MB and MD respectively; in Section 
2.4 we will investigate the left half of the figure and we will show, among other 
results, that the two certainty factor functions CF' and CF coincide. 

2.3. AN ANALYSIS OF TIIE APPROXIMATION FUNCTIONS MB AND MD 

Since its introduction in the 1970s the certainty factor model has been 
implemented in a large number of rule-based expert systems and expert system 
shells. Part of the success of the model can be accounted for by its 
computational simplicity. At the same time, however, the model has been 
criticized severely because of its ad hoc character. In this and the following 
section we will show that the model does not respect the probabilistic 
foundation suggested for it by E.H. Shortliffe and B.G. Buchanan. 

This is not the first analysis of the relationship between the certainty factor 
model and probability theory. J.B. Adams has examined the probabilistic 
basis of the model as well, [ADAM84]. In their paper [WISE86], B.P. Wise and 
M. Henrion suggest some properties that are implicitly assumed in the model. 
We will comment on these papers. D. Heckerman in [HECK86] and 
M. Ishizuka et al. in [ISHI8 l] have presented counterproposals for some parts 
of the model. As our only purpose is to show that the original model is not 
consistent with the probabilistic basis suggested for it by Shortliffe and 
Buchanan, we will not discuss these counterproposals. 

In Section 2.2 we have defined the measures of uncertainty MB and MD in 
terms ~robability theory. In addition, we have introduced the functions MB 
and MD for approximating certain function values of MB and MD, 
respectively. In this section we will analyse these approximation functions in 
the light of the probabilistic definitions of MB and MD. In our analysis, we 
will only address the question whether or not the function values of MB and 
MD obtained are exact, or more formally, whether MB is a restriction of MB 
and whether MD is a restriction of MD. 

DEFINITION 2.34. Let 17/10, 17/1 and -r denote nonempty sets such that 17/10 ~ ~ 

Furthermore, let f be a function f : 17/1 ➔ r. A fwiction f O: 17/10 ➔ -r is called a 
restriction off, notation: ft f o, if f o(uo) = f (uo) for each uo E 17//o. The 
function f is called an extension off o• 
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We recall that the approximation functions MB and MD are defined 
recursively through eight combination functions: MBo and MDo (the 
combination functions for propagating uncertain evidence), MB 1, MD 1, MB& 
and MD& (the combination functions for composite hypotheses), and MB 11 
and MD 11 (the combination functions for co-concluding production rules). 
Several authors have analysed the combination functions for combining the 
results of co-concluding production rules, see for example [ADAM84], 
[HECK86], [ISHI81]. We present our views on these functions in Section 2.3.1. 
The other combination functions have received far less attention in the 
literature. We feel however that these combination functions influence the 
correctness of the certainty factor model as well. Practical experience in using 
the certainty factor model for example has learned that the functions for 
composite hypotheses are applied about as often as the combination functions 
for co-concluding production rules. The functions for composite hypotheses 
therefore may also have a considerable impact on the resulting approximated 
function values of MB and MD. In Section 2.3.3, we analyse these 
combination functions. Section 2.3.2 examines the combination functions for 
propagating uncertain evidence; it is noted that in general practice, these 
functions are applied less often than the other ones. 

2.3.1. The Combination Functions for Co-concluding Production Rules 

In this subsection, we investigate whether the combination functions for co­
concluding production rules, that is, MB 11 and MD 11 , respect the probabilistic 
definitions of MB and MD. We are interested in function values resulting 
from applying the combination functions MB ~d MD II once. Therefore, we 
assume that all function values of MB and MD which have been computed 
before applying MB 11 and MD 11 are exact, that is, we assume that for i = 1, 2 
the following properties hold: MB(h -J u,Dr•h) = MB (h -J u,Dr•h) and 
MD(h -J u,Dr·h) = MD (h -J u,Dr·h). 

We recall from Definition 2.25 that the combination function for combining 
the measures of belief of co-concluding production rules is defined as stated 
below: 

(I) MB11(h -J u,DY·h II D~·h) = 0, if MD11(h -J u,DY·h II D~·h) = 1, and 

(2) MB11(h -J u,DY·h II D~·h) = MB(h,u -J DY•h) + MB(h -J u,D':J:h) · 
· (1 - MB(h -J u,DY·h)), otherwise. 

Furthermore, the combination function for combining the measures of disbelief 
of co-concluding production rules is defined as stated below (again assuming 
the above-mentioned properties): 

(1) MD 11 (h -J u,DY·h II D~·h) = 0, if MB 11 (h -J u,DY·h II D~·h) = 1, and 

(2) MD 11 (h -J u,D'f'h II D~·h) = MD(h -J u,Df·h) + MD(h -J u,D~·h) · 
· (1 - MD(h -J u,Df·h)), otherwise. 

We will show that in some situations under rather strong (independency) 
assumptions these combination functions respect the probabilistic definitions 
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of MB and MD. Given a hypothesis h and two different derivations D't·h of h 
from u each not increasing the disbelief in h, Proposition 2.35 states conditions 
under which the combination functions for combining these derivations are 
correct. 

PROPOSITION 2.35. Let tS; u and~ be as before. Furthermore, let the functions 
MB and MD be defined according to Definition 2.20, and the functions MB II and 
MD 11 according to Definition 2.25. Let h E tf and D'/'h E ~ i = 1, 2, such that 
MD (h -i u2_D't·h) = 0 and u n D'/'h are independent and conditionally indepen­
dent given h. Then, 

(1) MB11(h -i u,D1·h II D~·h) = MB(h ., u,D1·h II D~h), and 

(2) MD11(h -i u,Dth II D~·h) = MD(h -i u,DV·h II D~·h) = 0. 

PROOF. 

ad (1) Since MD(h -i u,D1·h) = 0 and MD(h ., u,D~·h) = 0 imply 
MD 11 (h -i u,D1·h II D~·h) =I= 1, we have to prove that 

MB(h -i u,D1·h IID~·h) = 
= MB(h -i u,D1•h) + MB(h -i u,D~h)(l - MB(h -i u,Drh)) 

From Definition 2.20 we have 

= {
1 

{ Pr(h I u n D~h n D~·h) - Pr(h)} 
max 0,-----------

1 - Pr(h) 

We distinguish two cases: Pr(h) = 1 and Pr(h) =I= 1. 

ifPr(h)= 1 

otherwise 

In case Pr(h) = 1 we have that MB(h -i u,D1·h II D~h) = 
= MB(h -i u,D1·h) = MB(h -i u,D~•h) = 1. It follows that 

MB(h .,u,Drh IID~·h) = 
= MB(h -i u,Drh) + MB(h -i u,D~h)(l - MB(h -i u,Drh)) = 1 

Now suppose that Pr(h) =I= 1. By definition we have 

MB (h -i u,D1· II D~· ) = max 0,--'----------
h h { Pr(h I u n nv,h n Dfh) - Pr(h)} 

1 - Pr(h) 
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Pr(h I u n nr,h n D2·h) - Pr(h) 
The fraction ----------- will first be examined 

1 - Pr(h) 
in isolation: 

Pr(h I u n nr,h n D~·h) - Pr(h) 

1 - Pr(h) 

1 - Pr(h I u n nr,h n D2·h) 
1-----------

1 - Pr(h) 

= 
1 

_ Pr(h I u n nt n D2·h) 

Pr(h) 

1 
_ Pr(u n nr,h n D2·h I h) 

Pr(u n nr,h n D2•h) 

using Bayes' Theorem for the last equality. We recall from the 
conditions of the proposition that u n nr,h _ and u n D2·h are 
independent and conditionally independent given h. So, we have 

Pr(h I u n Dfh n D 2·h) - Pr(h) 

1 - Pr(h) 

Pr(u n nr,h lh)Pr(u n D2·h lh) 
1------------

Pr(u n Dr•h)Pr(u n D2•h) 

Pr(h I u n ny,h)Pr(h I u n D2·h) 
=1- -

Pr(h)2 

using Bayes' Theorem once more for the last equality. The last term 
may now be written as follows: 

Pr(h I u n ny,h n D2·h) - Pr(h) 

1 - Pr(h) 

1 - ------- + 1-------- + 
[ 

1 - Pr(h I u n D'{·h) l [ 1 - Pr(h I u n D2·h) l 
1 - Pr(h) 1 - Pr(h) 

_ [i _ 1 - Pr(h I u n ny,h)] · [
1 

_ 1 - Pr(h I u n D2·h) l 
1 - Pr(h) 1 - Pr(h) 
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We recall from the conditions of the proposition that 
MD(h --t u,DY•h) = MD(h --t u,D~·h) = 0; so, for i = 1, 2 we have 

Pr(h I u n D'/'h) - Pr(h) 
--'--------;;.,, 0 

1 - Pr(h) 

Using these inequalities it follows from Definition 2.20 that 

Pr(h lu n Dth n D~·h)-Pr(h) 

1 - Pr(h) 

So, we have 

_ { Pr (h I u n Dt h n Dth) - Pr (h) } _ 
- max O, I - Pr(h) -

ad (2) We have to show that MD 11 (h --t u,DY·h II D~·h) = 0 and 
MD(h --t u,DY•h II D~·h) = 0. 

If MB 11 (h --t u,Dth II D~·h) = 1 we have MD 11(h --t u,ny,h II D~·h) = 0 
by definition; in case MB 11 (h --t u,DY·h II D~·h) =fa 1, we have 
MD11(h --t u,DJ·h II Dfh) = MD(h --t u,Dth) + MD(h --t u,Drh)(1 + 
- MD(h --t u,Dth)) = 0 using the conditions of the proposition. It 
follows that MD11(h --t u,DY·h II Drh) = 0. 

It remains to be shown that MD(h --t u,Dth II D~·h) = 0. 

Since MD(h --t u,Dth) = MD(h --t u,Drh) = 0 implies Pr(h) =fa 0, 
we have according to Definition 2.20 that 

h h { Pr(h) - Pr(h I u n ny,h n D~•h)} 
MD(h --t u,DY· IID~· ) = max 0, ( ) 

Pr h 

We distinguish two cases: MB(h --t u,Dth II D~·h) > 0 and 
MB(h --t u,ny,h II Dth) = o. 
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■ 

First, assume that MB(h 7 u,DY·h II D~·h) > 0. The cases Pr(h) = 1 
and Pr(h) =I= 1 are distinguished. 

If Pr(h) = 1, then Pr(h I u n DY·h n D~·h) = 1 as well; so, 

u,h u,h - { Pr (h) - Pr (h I u n DY·h n D~·h) } -
MD(h 7 u,D 1 IID2 ) - max 0, Pr(h) -

=0 

Now suppose that Pr(h) =I= 1. From the two assumptions 
MB(h 7 u,DY·h II Drh) > 0 and Pr(h) =I= 1 it follows that 

Pr(h I u n DY·h n D~·h) - Pr(h) 
MB(h 7 u,ny,h IID~·h) = ----------- > 0 

I - Pr(h) 

From this inequality we have Pr(h I u n Dth n D~·h) > Pr(h), 
implying 

h h { Pr(h) - Pr(h I u n DY·h n D~·h)} 
MD(h 7 u,Dt IID~· ) = max 0, Pr(h) = 

=0 

Now assume that MB(h 7 u,DY·h II D~·h) = 0. From this assumption 
we have Pr(h) =I= 1. Furthermore, from the proof of part (I) we have 

MB(h 7 u,DY·h IID~·h) = 
= MB(h 7 u,Dth) + MB(h 7 u,D~•h)(l - MB(h 7 u,Dth) = 0 

It follows that MB(h 7 u,DY·h) = MB(h 7 u,D~•h) = 0. This 
observation and the conditions of the proposition, 
MD (h 7 u,DY·h) = 0 and MD (h 7 u,D~·h) = 0, imply that 
Pr(h I u n DY·h) = Pr(h) and Pr(h I u n D~·h) = Pr(h). It can now 
easily be shown that Pr(h I u n DY·h n D~•h) = Pr(h); so, 

u,h u,h - { Pr(h) - Pr(h I u n DY·h n D~h) }-
MD(h 7 u,D1 IID2 )- max 0, Pr(h) -

=0 
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Given a hypothesis h and two different derivations DY·h of h from u each not 
increasing the belief in h, Proposition 2.36 states conditions under which the 
combination functions for combining these derivations respect the probabilistic 
definitions of MB and MD. 

PROPOSITION 2.36. Let If, u and ~ be as before. Furthermore, let the functions 
MB and MD be defined according to Definition 2.20, and the functions MB II and 
MD II accordin9, to Definition 2.25. Let h E <ff and D'/'h E ~ i = l, 2, such that 
MB (h -, u,DY· ) = 0 and u n D'/'h are independent and conditionally indepen­
dent given h. Then, 

(1) MD11(h -, u,DY·h II Di·h) = MD(h -, u,DY·h II Di·h), and 

(2) MB11(h -, u,DY·h II Di·h) = MB(h -, u,Dfh II Di·h) = 0. 

PROOF. We will only prove part (1). The proof of part (2) is analogous to the 
proof of part (2) of the foregoing proposition. 

Since MB(h -, u,Df·h) = 0 and MB(h -, u,Di·h) = 0 together imply that 
MB(h -, u,DY·h II D 2·h) =I= l, we have to prove that 

MD(h-, u,DY·h IIDi'h) = 
= MD(h-, u,Df•h) + MD(h-, u,Di·h)(l - MD(h-, u,Dfh)) 

According to Definition 2.20 we have 

MD (h -, u,D'{·h II Di·h) = 

= {
1 

{ Pr(h) - Pr(h I u n DY•h n D 2·h)} 
max 0, Pr(h) 

We distinguish two cases: Pr(h) = 0 and Pr(h) =I= 0. 

if Pr(h) = 0 

otherwise 

If Pr(h) = 0, we have by definition that MD(h -, u,DY·h II Di·h) = 
= MD(h -, u,DY·h) = MD(h -, u,Di'h) = l. It follows that 

MD (h -, u,DY·h II Di·h) = 
= MD(h-, u,DY·h) + MD(h-, u,Di·h)(l - MD(h-, u,Dfh)) = 1 

Now suppose that Pr(h) =I= 0. By definition we have 

u,h u,h - { Pr(h) - Pr(h I u n DY·h n Di'h)} 
MD(h-,u,D1 IID2 )-max 0, Pr(h) 
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. . . Pr(h) - Pr(h I u n ny,h n D~·h) . . . 
We will exarmne the fract.ton Pr (h) m isolation. 

Pr(h) - Pr(h I u n ny,h n D~·h) 

Pr(h) 

Pr(h I u n ny,h n D~·h) 
= I - Pr(h) 

= 
1 

_ Pr(u n ny,h n D~·h lh) 

Pr(u n ny,h n D~·h) 
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using Bayes' Theorem for the last equali7. Recall from the conditions of the 
proposition that u n ny,h and u n D~· are independent and conditionally 
independent given h; so, we have 

Pr(h) - Pr(h I u n ny,h n D~·h) 

Pr(h) 

Pr(u n ny,h lh)Pr(u n D~·h lh) 
=1------------

Pr(u n D~h)Pr(u n D~·h) 

Pr(h I u n DY·h)Pr(h I u n D~h) 
=1---'------'----

Pr(h)2 

using Bayes' Theorem once more for the last equality. The last term may now 
be written as follows 

Pr(h) - Pr(h I u n ny,h n D~·h) 

Pr(h) 

[ 
Pr(hlunny,h)l [ Pr(hlunD~·h)l 

I - Pr(h) + 1 - Pr(h) + 

_ [ _ Pr(h lu n D~h)l· [ _ Pr(h lu n D~·h)l 
I Pr(h) I Pr(h) 

We recall from the conditions of the proposition that 
MB(h --i u,DY·h) = MB(h --i u,Di~h) = 0. It follows that we have 

Pr(h) - Pr(h I u n Df·h) 
--------- ~ 0 

Pr(h) 
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for i = 1, 2. Using these inequalities and Definition 2.20 we have 

Pr(h) - Pr(h I u n DY·h n Di'h) 

Pr(h) 

= MD(h ---1 u,DY·h) + MD(h ---1 u,Di'h)(l - MD(h ---1 u,DY·h)) 

So, it follows that 

• 

_ { Pr(h) - Pr(h I u n DY·h n D'1.·h) }­
- max 0, Pr(h) -

Given two derivations DY·h and D2·h of h from u with respect to a given set of 
production rules, there are three possibilities for their relationship with the 
belief in the hypothesis h: 

(1) both DY·h and D2·h do not increase the disbelief in h, that is, 
MD(h ---1 u,D'f'h) = MD(h ---1 u,D2•h) = 0, and MB(h ---1 u,D'f'h) ;;;,, 0 
and MB (h ---1 u,D2·h) ;;;,, 0, or 

(2) both DY·h and D2·h do not increase the belief in h, that is, 
MB(h ---1 u,DY·h) = MB(h ---1 u,D2·h) = 0, and MD(h ---1 u,DY·h) ;;;,, 0 
and MD(h ---1 u,D 2) ;;;,, 0, or 

(3) one of DY·h and D2·h increases the disbelief in h while the other one 
increases the belief in h, that is, we have that MB(h ---1 u,DY·h) > 0 and 
MD(h ---1 u,D2·") > 0, or alternatively that MD(h ---1 u,DY·h) > 0 and 
MB(h ---1 u,D'1.·") > 0. 

In Proposition 2.35 it has been shown that in the case of part (1) the 
(approximated) function values MB 11 (h ---1 u,DY·h II D'1.·h) and 
MD 11 (h ---1 u,D'f'h II D2·h) equal the actual function values of MB and MD if 
certain conditions are fu1filled; similarly Proposition 2.36 provides for the case 
that part (2) occurs. The case of 'conflicting' derivations described in part (3) 
has not been dealt with as yet. 

In his analysis of the combination functions for co-concluding production 
rules [ADAM84], Adams states propositions similar to our Propositions 2.35 
and 2.36. He, however, does not identify the restrictions MD (h ---1 u,Dr·h) = 0 
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on the values of the measure of disbelief as being necessary for showing that 
the combination function MB 11 respects the probabilistic definition of MB in 
the case of part (1); equally, he does not identify the restriction 
MB(h --1 u,D't·h) = 0 as being necessary for showing that MD 11 respects the 
probabilistic definition of MD in the case of part (2). In considering the case 
that part (3) occurs, he then seems to assume the following three properties: 

(i) DY,h and Di·h are mutually independent, and. 

(ii) D'i·h and Di·h are conditionally independent given h, and 

(iii) D'i·h and D2·h are conditionally independent given h. 
It can easily be shown that when these properties hold, at least one of the 
following statements is true: 

(i) Pr(h) = 0, or 

(ii) Pr(h) = 1, or 

(iii) Pr(h I D'i·h) = Pr(h), or 

(iv) Pr(hJDi·h) = Pr(h). 

Therefore, his taking the three assumptions together renders the combination 
functions MB 11 and MD II only correct in trivial situations. 

The following example concerns the case of conflicting derivations. 

EXAMPLE 2.37. Let if, u and I!) be as before. Furthermore, let the functions 
MB and MD be defined accordinf to Definition 2.20, and let MB II and MD 11 

be as above. Leth E cf and Df , D2·h EI!) such that MB(h --1 u,D'{·h) > 0 
and MD(h --1 u,Di·h) > 0. Now consider the exact function values 
MB(h --1 u,D'{·h II D2·h) and MD(h --1 u,DY,h II D2·h) of MB and MD 
respectively: from Lemma 2.21 we have that one of them equals zero. 
Application of the approximation functions MB II and MD II however, may 
render function values MB 11(h --1 u,D'{·h II D~h) and MD 11 (h --1 u,D'i·h II D2·h) 
both being greater than zero. For example, if MB(h --1 u,D'i·h) = 0.3 and 
MD(h --1 u,Di•h) = 0.4 (and therefore MB(h --1 u,D2·h) = 0 and 
MD(h --1 u,D'i·h) = 0), we find MB 11(h --t u,D'{•h II Di•h) = 0.3 and 
MD 11 (h --1 u,D'{·h II Di·h) = 0.4. Note that, as the approximation functions 
cannot decrease the once calculated measures of belief and disbelief, such an 
error cannot be reduced; only if one of MB 11 (h --1 u,D'i·h II D~h) and 
MD 11 (h --1 u,D'{·h II D2·h) attains the value one, is the other set to zero. ■ 

From the preceding example, it will be evident that the approximation 
functions MB II and MD II do not respect the probabilistic definitions of MB 
and MD in the case that there are conflicting derivations of a hypothesis. 

We conclude this subsection with two more propositions concerning the 
cases that have been treated as exceptional ones by Shortliffe and Buchanan. 
In [SHOR84], the case in which MD 11 (h --1 u,D'i·h II D2·h) = 1 has been defined 
as an exceptional case for the function MB 11 ; likewise, the case in which 
MB 11 (h --1 u,D tl,h II Di·h) = 1 has been defined as an exceptional case for the 
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function MD 11• In Definition 2.25 we have followed Shortliffe and Buchanan 
in excepting these cases. Recall that the function values 
MB 11 (h ., u,DV·h II D1·h) and MD 11 (h -, u,DV·h II D1·h) are not defined 
uniquely in for example the case where MB(h ., u,DV·h) = I and 
MD(h ., u,D1·h) = I, that is, they are not defined uniquely in the case where 
one derivation completely proves a hypothesis h and the other one completely 
disconfirms h. Propositions 2.38 and 2.39 however show that under the 
conditions stated in the preceding propositions, the special cases mentioned 
above cannot occur. 

PROPOSITION 2.38. Let if, u and P) be as before. Furthermore, let the functions 
MB and MD be defined according to Definition 2.20. Let h E ~ and D'/'h E ~ 
i = I, 2, such that u n Df•h are independent and conditionally independent given 
h. If MB(h -, u,DV·h) = l, then MD(h ., u,DV·h) = MD(h ., u,D'fh) = 0. 

PROOF. From MB(h ., u,DV·h) = I and Lemma 2.21 it follows that 
MD(h ., u,DV·h) = 0. It is noted that from MD(h ., u,Dth) = 0 we have 
that Pr(h)-:/= 0. We now have to show that from MB(h ., u,DV·h) = I it 
follows that MD(h ., u,D1·h) = 0 for any other derivation D1·h of h. 

We distinguish two cases: Pr(h) = I and Pr(h)-:/= I. 

If Pr(h) = I, then also MB(h ., u,D~·h) = I according to Definition 2.20. 
Using Lemma 2.21 once more we have MD(h ., u,D~·h) = 0. 

Now suppose that Pr(h)-:/= I. According to Definition 2.20 we have 

h { Pr(h lu n Dth)- Pr(h)} 
MB(h., u,DV· ) = max 0, I_ Pr(h) 

From MB(h ., u,DV·h) = I and our assumption Pr(h)-:/= I it follows that 
Pr(h I u n DV·h) = I. 

Pr(h n u n Dth) 
From Pr(h lu n DV·h) =-------=I and Lemma 2.13(4), we 

Pr(u n Dth) 
have 

Pr(h nun Du,h n Dr;,h) 
Pr(h I U n Du,h n Dr;,h) = I 

2 = } 
. I 

2 Pr(u n Dth n D'th) 

(It is noted that we may assume that Pr(u n DV·h n D1·h)-:/= 0). 

It follows from Bayes' Theorem that 

Pr(u n DV·h n D'fh I h)Pr(h) 
Pr(h I u n DV•h n D'fh) = ---------­

Pr(u n Dth n D'fh) 
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We recall that u n DY·h and u n D~·h are independent and conditionally 
independent given h; so, we have 

h h Pr(u n DY·h lh)Pr(u n Di·h lh)Pr(h) 
Pr(h I u n DY· n D~· ) = 

Pr(u n DY·h)Pr(u n D2·h) 

Pr(u n DY·h I h)Pr(h) 
Using Pr(h I u n DY·h) = -------- = 1, we have 

Pr(u n D't'h) 

Pr(u n Di·h lh) 
Pr(h I u n DY·h n D~·h) = ---------'-­

Pr(u n D~·h) 

Pr(h I u n Di·h) 

Pr(h) 

From Pr(h I u n D'{·h n D~·h) = 1, it follows that Pr(h I u n Dlh) = Pr(h). 
So, MB(h .., u,D~·h) = 0 and MD(h .., u,D~·h) = 0 by definition. ■ 

PROPOSITION 2.39. Let is; u and~ be as before. Furthermore, let the functions 
MB and MD be defined according to Definition 2.20. Let h E tf and Df·h E ~ 
i = 1, 2, such that u n Df·h are independent and conditionally independent given 
h. If MD(h .., u,DY·h) = 1, then MB(h .., u,DY·h) = MB(h .., u,Di·h) = 0. 

PROOF. Analogous to the proof of Proposition 2.38. ■ 

2.3.2. The Combination Functions for Propagating Uncertain Evidence 

In this subsection, we investigate whether the combination functions for 
propagating uncertain evidence, that is, the functions MB. and MD . , respect 
the probabilistic definitions of the measures of uncertainty MB and MD. We 
are interested in the error introduced by applying the combination functions 
MB. and MD. once. Therefore, we assume that all function values of MB 
and MD which are computed before applying MB. and MD. are exact; more 
in specific, we assume that for an intermediate hypothesis e used in a 
production rule e - h the properties MB(e .., u,D"·e) = MB(e .., u,D"·e) and 
MD(e .., u,D"·e) = MD(e .., u,D"·e) hold. 

We recall from Definition 2.23 that the combination functions for 
propagating uncertain evidence are defined as stated below: 

= MB(h h). {o MB(e.., u,D"·e) - MD(e.., u,D"·e) } ..,e,e- max , 
l - min{MB(e.., u,D"•e),MD(e-, u,D"•e)} 

and 

MD.(h .., u,D"•e 0 (e-h)) = 

= MD(h h). {o MB(e.., u,D"·e) - MD(e.., u,D"·e) } ..,e,e- max , 
l - min{MB(e.., u,D"·e),MD(e.., u,D"·e)} 
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Under assumption of the above-mentioned properties the formulations of the 
functions MB . and MD . can be simplified to 

MB .(h ., u,Du,e O (e ➔ h)) = MB(h ., e,e ➔ h) · MB(e ., u,D"'e) 

MD .(h ., u,Du,e O (e ➔ h)) = MD(h ., e,e ➔ h) · MB(e ., u,D 11·e) 

using the property stated in Lemma 2.40 given below. Note the asymmetry in 
these functions. 

LEMMA 2.40. Let ~ u and ~ be as before. Furthermore, let the functions MB 
and MD be defined according to Definition 2.20. Let e E <ff and D"•e E ~­

Then, 

max{o MB(e., u,D"'e) - MD(e-, u,D"'e) } = MB(e., u D"•e) 
' 1 - min{MB(e-, u,D"'e),MD(e., u,D"·e)} ' 

PROOF. From Lemma 2.21 we have that at least one of MB(e ., u,D"·e) and 
MD(e ., u,D"·e) equals zero. The property stated in the present lemma 
follows from this observation. ■ 

From Example 2.37 it will be evident that this simplifying property does not 
hold in general for approximated function values. 

In [ADAM84], Adams notices the resemblance between the function MB. 
and the probabilistic formula Pr(h I e) = Pr(h I i)Pr(i I e) which holds in case 
h C: i C: e. He states that this assumption is not strong enough to prove that 
the combination functions for propagating uncertain evidence are correct with 
respect to the probabilistic definitions of the measures of belief and disbelief. 
Proposition 2.41, however, shows that Adams' observation stated above is 
useful. It is noted that Proposition 2.41 uses a property of the function ~. 
embedding derivations in the sample space ~: the interpretation of the 
operation ° as the set operation union is essential to the result stated in the 
proposition. 

PROPOSITION 2.41. Let~ u and fJ' be as before and let~ be defined according to 
Definition 2.2. Furthermore, let the functions MB and MD be defined according 
to Definition 2.20 and the functions MB. and MD. according to Definition 2.23. 
Leth, e E ~ D"'e E ~ and e ➔ h E 9' such that h C: e C: u n D"'e. Then, 

(1) MB.(h ., u,Du.e O (e ➔ h)) = MB(h ., u,Du.e O (e ➔ h)), and 

(2) MD.(h ., u,Du,e O (e ➔ h)) = MD(h ., u,Du.e O (e ➔ h)). 

PROOF. We will only prove the property stated in part (l); part (2) follows by 
symmetry. 
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From Definition 2.23 and Lemma 2.40 it follows that we have to prove that 
MB(h ., u,nu,e O (e ➔ h)) = MB(h ., e,e ➔ h) · MB(e ., u,D",e). 

From Definition 2.20 we have 

MB(h-,u,D"•e 0 (e ➔ h)) = 

1
1 if Pr(h) = 1 

= {o Pr(h I u n (Du,e u e)) - Pr(h)} th . 
max , 1 _ Pr(h) o erw,se 

We distinguish two cases: Pr(h) = 1 and Pr(h) =I= 1. 

If Pr(h) = 1, then we have MB(h ., u,nu.e O (e ➔ h)) = 1 and 
MB(h ., e,e ➔ h) = I by definition. From the condition of the proposition 
h ~ e and our assumption Pr(h) = 1, it furthermore follows that Pr(e) = 1, 
which implies MB(e ., u,D"·e) = 1. So, we have that 
MB(h ., u,nu,e O (e ➔ h)) = MB(h ., e,e ➔ h) · MB(e ., u,D"·e) = 1. 

Now suppose that Pr(h) =I= 1. We have 

MB(h ., u,nu,e 0 (e ➔h)) = 

- {o Pr(h I u n (Du,e u e)) - Pr(h) }-
- max ' 1-Pr(h) -

= {o Pr(h I (u n D"·e) u (u n e)) - Pr(h)} = 
max ' 1 - Pr(h) 

= max{o Pr(h I u n D"·e) - Pr(h)} 
' 1 -Pr(h) 

using e ~ u n nu,e for the last equality. Now consider the product 
MB(h ., e,e ➔ h) · MB(e ., u,nu.e). Recall that we have to show that this 
product equals MB(h ., u,nu.e O (e ➔ h)). Once more, we distinguish two 
cases: Pr(e) = 1 and Pr(e) =I= 1. 

If Pr(e) = I, then we have MB(e ., u,D"·e) = 1 by definition. Furthermore, 
we have 

MB(h h) = {o Pr(h I e) - Pr(h)} = O 
., e,e ➔ max ' 1 - Pr(h) 
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From the condition of the proposition e ~ u n D"·e and our assumption 
Pr(e) = 1, it furthermore follows that Pr(u n D"·e) = 1. We therefore have 

MB(h 7 u,D"·e 0 (e-h)) = max{o, Pr(h l ul ~~:a~ Pr(h)} = O 

So, MB(h -i e,e - h) · MB(e -i u,D"·e) = MB(h -i u,D"·e o (e - h)) = 0. 

Now suppose that Pr(e) =I= 1. We have 

= m {o Pr(h I e) - Pr(h) }· {o Pr(e I u n D"·e) - Pr(e)} = ax ' I - Pr(h) max ' 1 - Pr(e) 

= max{o [Pr(hje)-Pr(h)l· [Pr(eJunDu,e)-Pr(e)l} 
' 1 - Pr(h) 1 - Pr(e) 

Note that for the last equality we have used that e c u n D"·e. Now 

.d th d t [Pr(hje)-Pr(h)l [Pr(eJunD"·-;)-Pr(e)l fir . 
cons1 er e pro uc 1 _ Pr(h) · 1 _ Pr(e) st m 

isolation: 

[ 
Pr(h / e) - Pr(h)] . [ Pr(e / u n D"'') - Pr(e)] = 

I - Pr(h) I - Pr(e) 

_ Pr(h / e)Pr(e / u n D"-') - Pr(h / e)Pr(e) - Pr(h)Pr(e / u n D"'') + Pr(h)Pr(e) _ 
- (I - Pr(h))(l - Pr(e)) -

_ Pr(h / u n D"'') - Pr(h)- Pr(h)Pr(e / u n D"'') + Pr(h)Pr(e) _ 
- (I - Pr(h))(l - Pr(e)) -

_ (Pr(h ./ u n D"-') - Pr(h))(I - Pr(e)) + Pr(h / u n D"'')Pr(e) - Pr(h)Pr(e / u n D"'') _ 
- (I - Pr(h))(l - Pr(e)) -

= Pr(h / u n D"-') - Pr(h) + Pr(h nu n D"'')Pr(e) - Pr(h)Pr(e nu n D"'') = 
I - Pr(h) Pr(u n D"-')(l - Pr(h))(l - Pr(e)) 

Pr(h / u n D"-') - Pr(h) 
I - Pr(h) 
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So, we have 

MB(h ., e,e ➔ h) · MB(e ., u,Du,e) = 

= max{o Pr(h I u n D'~e) - Pr(h)} = 
' 1-Pr(h) 

• 
2. 3.3. The Combination Fwictions for Composite Hypotheses 

In this subsection, we investigate whether the combination functions for 
composite hypotheses, i.e. the functions MB 1, MD 1, MB& and MD&, respect 
the probabilistic definitions of MB and MD. Again we are interested in the 
error introduced by applying these combination functions once. We therefore 
assume that all function values of MB and MD which have been computed 
before applying the combination functions for composite hypotheses are exact, 
that is, we assume that the properties MB(e; ., u,Du.e,) = MB(e; ., u,Du,e,) 
and MD(e; ., u,Du,e,) = MD(e; ., u,Du,e, ), i = I, 2, hold. 

We recall from Definition 2.24 that the combination functions for composite 
hypotheses are defined as stated below: 

and 

and 

and 

The combination functions for composite hypotheses have received little 
attention in papers dealing with the certainty factor model. Adams shows that 
these combination functions in general are not consistent with the probabilistic 
definitions of MB and MD by giving a counterexample ([ADAM84], p. 258). 
The idea of his counterexample concerning MB& is reflected in Example 2.42. 

ExAMPLE 2.42. Let <ff, u and ~ be as before. Furthermore, let the function MB 
be defined according to Definition 2.20 and the function MB& according to 
Definition 2.24. Let e 1, e2 E ~ such that e I n e2 = 0, and let 
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D u,e, , Du,e, E P) such that Pr(u n D u,e, n D "'e' ) > 0. Now suppose that we 
have MB(e 1 ---1 u,Du,e,) = 0.2 and MB(e 2 ---1 u,Du.e, ) = 0.4. From Definition 
2.20 we have MB(e 1 A e2 ---1 u,Du,e, & Du,e,) = 0 since 
Pr(e1 n e2 I u n Du, e, n D u,e,) = 0. From Definition 2.24, however, we 
find MBc1(e1 A e2 ---l u,Du.e, & Du,e,) = min{MB(ei ---l u,D"' e' ), 
MB(e2 ---1 u,Du.e,)} = 0.2. ■ 

Similar counterexamples may be found for the combination functions MD&, 
MB

1 
andMD 1• 

Adams does not examine the combination functions for composite 
hypotheses in further detail, because to him 

"the extent or importance of the use of these (combination functions) in the 
employment of the model is not clear, but does not seem great" 
([ADAM84], p. 258). 

Since these combination functions are used in the application of each 
production rule of which the left-hand side is not atomic, we however feel that 
these combination functions might have a considerable impact on the 
approximated measures of belief and disbelief of the goal hypotheses. 

Now observe that the combination function MB& bears strong resemblance 
to the probabilistic formula Pr(a n b) = min{Pr(a),Pr(b)} which holds 
when either a ~ b or b ~ a. Because of this similarity Wise and Henrion 
suggest in their paper that in the combination functions for composite 
hypotheses maximum correlation of hypotheses is assumed: 

"the less probable event occurs whenever the more probable event occurs" 
([WISE86], p. 73). 

The following example shows that even the assumption of maximum 
correlation of hypotheses is not strong enough to derive MBc1 and MD& from 
the probabilistic definitions of MB and MD respectively. 

ExAMPLE 2.43. Let <f, u and P) be as before. Furthermore, let the function MB 
be defined according to Definition 2.20 and the function MBc1 according to 
Definition 2.24. Let e 1, e2 Et! such that e 1 C e 2, e 1 =/= 0, and let 
Du,e,, Du,e, E P)_ From Definition 2.20 we have 

{ 

Pr(e1 I Un Du,e, n Du,e,) - Pr(e1)} 
=max0-------------

, 1 - Pr(e1) 
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not equalling min{MB(e 1 ---1 u,D.,,"' ),MB(e2 ---1 u,D"·"1
) } in general. Even if 

we further assume D"·"• c D"·"1 we cannot show that MB& respects the basis 
of MB in probability theory since we might possibly have 
MB(e 2 ---1 u,D"·"1

) < MB(e 1 ---1 u,D"·" 1
) in spite of e1 C e2. ■ 

We have not been able to identify a set of 'natural' assumptions under which 
the combination functions for composite hypotheses can be shown to be 
correct with respect to the probabilistic definitions of the measures of belief 
and disbelief. 

2. 3.4. Summary of the Results 

In this section we have addressed the question whether the approximation 
functions MB and MD for the measures of uncertainty MB and MD respect 
the probabilistic definitions of these functions. Since the approximation 
functions are defined recursively through eight combination functions, we have 
analysed the application of each of these combination functions in just one 
step in the process of approximating the actual function values of MB and 
MD, that is, we have renounced errors introduced earlier during the 
approximation process. The analysis of some of these combination functions 
has helped us to formulate conditions under which the function respects the 
probabilistic foundation of the model. Note that such conditions have only 
been proven to be sufficient; we have not proven them necessary. 

In Section 2.3.1 our analysis of the combination functions for co-concluding 
production rules, that is, MB II and MD 11 , given two derivations DY·\ i = 1, 2, 
of the hypothesis h from the user's de facto knowledge u, has shown that these 
combination functions respect the probabilistic basis of the model if one of the 
following sets of conditions holds: 

(1) Both derivations do not increase the disbelief in the hypothesis, that is, 
MD(h ---1 u,DY·h) = 0, and the two derivations, or to be more precise 
u n D}~h, are independent and conditionally independent given the 
hypothesis (see Proposition 2.35). 

(2) Both derivations do not increase the belief in the hypothesis, that is, 
MB(h ---1 u,D~h) = 0, and the two derivations are independent and 
conditionally independent given the complement of the hypothesis (see 
Proposition 2.36). 

In the case of 'conflicting' derivations the combination functions for co­
concluding production rules do not always respect the probabilistic definitions 
of the measures of belief and disbelief (see Example 2.37). 

In Section 2.3.2 our analysis of the combination functions for propagating 
uncertain evidence, that is, of MBo and MDo, given a production rule e ➔ h 
and a derivation D"·" of e from the user's de facto knowledge u, has shown 
that these combination functions respect the probabilistic basis of the model if 
h (: e (: u n Du," (see Proposition 2.41). This result shows that the 
combination functions MB a and MD a are correct in case the expert system is 
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only able to narrow its focus and does not have the ability to turn to 
hypotheses slightly outside the scope of the derivation up till that moment. 

In Section 2.3.3 our analysis of the combination functions for composite 
hypotheses, that is, of the functions MB 1, MD i, MB& and MD&, has not 
enabled us to formulate 'natural' conditions under which these functions can 
be shown to be correct with respect to the probabilistic basis of the model. 
The easy counterexamples we have given concerning these functions (see the 
Examples 2.42 and 2.43), however, suggest that any set of such conditions will 
be violated in most practical cases. 

From these observations we have that the approximation function MB is not 
a restriction of the function MB. A similar statement can be made concerning 
MD and MD. 

THEOREM 2.44. Let the /_unctions MB and MD be defined according to Definition 
2.20, and the functions MB and MD according to Definition 2.22. Then, the 
following statements are true: 

(I) MB j MB. 

(2) MD j MD. 

In Figure 2.9 this result has been inserted into the diagram of functions, which 
has been introduced before in Section 2.2. 

Pr 

CF MB, MD 

CF' MB,MD 

l 
CF 

FIGURE 2.9. Toe diagram of functions. 
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It can easily be shown that the identified problems cannot be remedied, using 
an argument recently stated by R.E. Neapolitan, [NEAP90]. We furthermore 
observe that even as ae£!9ximation functions for the measures of belief and 
disbelief, the functions MB and MD are not satisfactory; the counterexamples 
we have given show that these combination functions may introduce 
considerable errors. 

2.4. AN ANALYSIS OF THE CERTAINTY FACTOR FUNCTIONS CF, CF' AND CF 

In Section 2.2.5 we have introduced in addition to the measures of belief and 
disbelief of the certainty factor model, a third measure of uncertainty: the 
certainty factor function CF. We recall from Definition 2.26 that the certainty 
factor function CF is defined in terms of the functions MB and MD: 

CF(h --le D e,h) = MB(h --1 e,De,h) - MD(h ---1 e,D e,h) 
' 1 - min{MB(h --1 e,De,h),MD(h --1 e,De,h)} 

From Lemma 2.27 we have that there is a one-to-one correspondence between 
the functions MB and MD, and the function CF. 

Recall that, arising from the fact that in practice the function values of MB 
and MD are approximated using MB and MD, actually another certainty 
factor function CF' is used. Definition 2.28 redefined the certainty factor 
function in terms of the approximated function values of MB and MD: 

CF'(h --j e,De,h) = MB(h~,De,h) - MD..!!:_ ---1 e,De,h) 
1 - min{MB(h --1 e,De,h),MD(h --1 e,De,h)} 

Furthermore, we have described in Section 2.2.5 that in present-day 
implementations of the model, and in fact in all implementations since the 
introduction of the MYCIN system, only subsequently approximated certainty 
factors are used. For that purpose we have defined an approximation function 
CF for certainty factors. 

In this section we investigate the relationships between these certainty factor 
functions CF, CF' and CF; this section therefore focusses on the left half of 
Figure 2.9. From the analyses from the previous section it is readily seen that 
we have that application of the functions CF and CF' does not always render 
the same function values; in Section 2.4.1 we will discuss this observation in 
further detail. In Section 2.4.2 we will show that the approximation functions 
CF' and CF coincide. 

2.4.1. The Certainty Factor Functions CF and CF' 

In this section we compare the certainty factor function CF as defined by 
E.H. Shortliffe and B.G. Buchanan, and the function CF', actually employed 
by them in the implementation of the model. From the respective definitions 
of these functions we have that CF' is a restriction of CF if and only if MB is 
a restriction of MB and MD is a restriction of MD. So, using Theorem 2.44 
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we have that CF' is not a restriction of CF. This result will be stated more 
formally in Theorem 2.49. Before giving this theorem, we examine the 
behaviour of the functions CF and CF' in the respective cases of propagation 
of uncertain evidence, of composite hypotheses and of co-concluding 
production rules. In the following analysis we again have renounced errors 
that have been introduced earlier during the computation. 

The first case we consider is the propagation of uncertain evidence. 

COROLLARY 2.45. Let~ u and 9' be as before and let fiJ be defined according to 
Definition 2.2. Furthermore, let the function CF be de.fined according to 
Definition 2.26 and the fwiction CF' according to Definition 2.28. Let h, e E ~ 
D"·e E fiJ and e ➔ h E 9' such that h C e C u n D"·e. Then, 

CF'(h --t u,Du.e O (e ➔ h)) = CF(h --t u,D"·e O (e ➔ h)) 

PROOF. From Proposition 2.40 it follows that under the conditions of the 
corollary we have MB 0 (h --t u,Du.e O (e ➔ h)) = MB(h --t u,Du.e O (e ➔ h)) 
and similarly MDo(h --t u,Du.e O (e ➔ h)) = MD(h --t u,Du.e O (e ➔ h)). The 
property stated in the corollary follows immediately from this observation. ■ 

Recall from Section 2.3.3 that we have not been able to identify a number of 
'natural' conditions under which the combination functions for composite 
hypotheses can be shown to be correct with respect to the probabilistic 
definitions of MB and MD. From this observation we have that in the case of 
composite hypotheses the certainty factor functions CF and CF' will generally 
not render the same function values. 

In the case of co-concluding production rules our observation concerning the 
two certainty factor functions is threefold. We consider the following three 
cases: the case of two derivations both not increasing the disbelief in a 
hypothesis h, the case of two derivations both not increasing the belief in h 
and the case of 'conflicting' derivations. Corollary 2.46 addresses the first of 
these cases; Corollary 2.47 concerns the second one. 

COROLLARY 2.46. Let ~ u and fiJ be as before. Let the fwiction CF be defined 
according to Definition 2.26 and the fwiction CF' according to Definition 2.28. 
Let h E <ff and DY•h E ~ i = 1, 2, such that CF(h --1 u,DY·h) ;;;. 0 and 
u n DY·h are mutually independent and conditionally independent given h. Then, 

PROOF. The property stated in the corollary follows immediately from 
Proposition 2.35. ■ 
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COROLLARY 2.47. Let~ u and~ be as before. Let the function CF be defined 
according to Definition 2.26 and the function CF' according to Definition 2.28. 
Let h E <ff and D1·h E 24 i = 1, 2., such that CF(h ---1 u,D'!•h) ..; 0 and 
u n D'!·h are mutually independent and conditionally independent given h. Then, 

PROOF. The property stated in the corollary follows immediately from 
Proposition 2.36. ■ 

The case that remains to be considered in our examination of the behaviour of 
the two certainty factor functions in case of co-concluding production rules is 
the case in which there is a derivation of h from u confirming h to some degree 
and a derivation of h from u disconfirming h to some degree. In [ ADAM84], 
J.B. Adams observes that the model combines separately all derivations 
favouring a hypothesis and all derivations not favouring the hypothesis when 
calculating the corresponding certainty factor. Lemma 2.48 can easily be 
generalized to confirm his observation. 

LEMMA 2.48. Let ~ u and ~ be as before. Furthermore, let the functions MB 
and MD be defined according to Definition 2.20 and the functions MB II and 
MD II according to Definition 2.25. Let the function CF' be defined according to 
Definition 2.28. Let h E <ff and D)'·h E 24 i = 1, 2. If MB(h ---1 u,Dj·h) > 0 
and MD(h ---1 u,D2·h) > 0, then 

MB(h ---1 u,Dj·h ) - MD(h ---1 u,D2·h ) 
CF'(h ---l u Du,h IIDu,h) = ---------------

, 
1 2 

1 - min{MB(h ---1 u,Dj•h),MD(h ---1 u,D2•h)} 

A similar prr,erty holds for the case where MB (h ---1 u,D2·h) > 0 and 
MD(h ---1 u,Dj· ) > 0. 

PROOF. Let MB(h ---1 u,Dj-h) > 0 and MD(h ---1 u,D2~h) > 0; the proof for the 
case where MB (h ---1 u,D2·h) > 0 and MD (h ---1 u,Di'h) > 0 is analogous. 
From Definition 2.28 we have 

CF'(h ---1 u,Di'h II D2·h) = 

It suffices to show under the conditions mentioned above, that 

(1) MB 11 (h ---1 u,Dj·h II D2·h) = MB(h ---1 u,Dj·h), and 

(2) MD11(h ---1 u,Dj•h II D2·h) = MD(h ---1 u,D2·h). 

We will only prove part (1); part (2) follows by symmetry. 



70 Quasi-Probabilistic Models 

From the condition of the proposition MD(h --i u,D~·h) > 0 and Lemma 2.21 
it follows that MB(h --i u,D~·h) = 0. From Definition 2.25 we have 

MB 11(h --i u,Df·h IIDth) = 

■ 

It should be evident from Example 2.37 that in the case of conflicting 
derivations the certainty factor functions CF and CF' do not always render the 
same result. 

Theorem 2.49 states the conclusive result. 

THEOREM 2.49. Let the fwiction CF be defined according to Definition 2.26 and 
the function CF' according to Definition 2.28. Then, CF j CF'. 

2.4.2. The Combination Fwictions for Certainty Factors 

Recall that in present-day implementations of the model instead of 
subsequently approximating the function values of MB and MD, and then 
computing the corresponding function value of CF', only subsequently 
approximated certainty factors are used. For that purpose we have introduced 
the approximation function CF for certainty factors. In this subsection we will 
show that CF' and CF coincide. 

We recall that the approximation function CF is defined recursively through 
four combination functions: CFo (the combination function for propagating 
uncertain evidence), CF I and CF & (the combination functions for composite 
hypotheses), and CF 11 (the combination function for co-concluding production 
rules). We will examine these combination functions separately, again 
renouncing errors that have been introduced earlier in the computation. 

We recall from Definition 2.31 that the combination function for 
propagating uncertain evidence is defined as stated below: 

CFo(h --i u,D'V 0 (e ➔ h)) = CF(h --i e,e ➔ h)·max(O,CF(e--i u,D"•e)} 

Proposition 2.50 shows that the combination function CFO respects the 
definition of the function CF'. 

PROPOSITION 2.50. Let t&; u and 9 be as before and let P) be defined according to 
Definition 2.2. Furthermore, let the fwiction CF' be defined according to 
Definition 2.28 and the fwiction CFo according to Definition 2.31. Leth, e E is; 
D"'e E P)and e ➔ h E 9. Then, 
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PROOF. From Definition 2.31 it follows that we have to show that 

CF'(h-, u,Du,e 0 (e ➔ h)) = CF(h-, e,e ➔ h)·max{O,CF(e-, u,Du,e)} 

From Definition 2.28 we have 

CF'(h-, u,Du,e 0 (e ➔ h)) = 

1 - min{MBo(h-, u,Du,e 0 (e ➔h)),MD 0 (h-, u,Du,e o(e ➔h))} 

71 

It can easily be shown that the denumerator of this fraction equals I. It 
follows that 

CF'(h-, u,Du,e 0 (e ➔ h)) = 

= MB(h-, e,e ➔ h)·MB(e-, u,Du,e) + 
- MD(h-, e,e ➔ h) · MB(e-, u,Du,e) = 

= (MB(h-,e,e ➔h)-MD(h-,e,e ➔ h))·MB(e-,u,D"·e) = 

= (MB(h-,e,e ➔ h)-MD(h-,e,e ➔ h))· 

·max{O,MB(e-, u,Du,e)- MD(e-, u,Du,e)} 

using Lemma 2.21 for the last equality. Furthermore, 
1 - min{MB(h -, e,e ➔ h),MD(h -, e,e ➔ h)} = 1 and 
1 - min{MB(e -, u,Du,e),MD(e -, u,Du,e)} = I. It follows that 

MB(h-,e,e ➔ h)-MD(h-,e,e ➔ h) = 

MB (h -, e, e ➔ h) - MD (h -, e, e ➔ h) 
1 - min{MB(h-, e,e ➔ h),MD(h-, e,e ➔ h)} 

= CF(h -,e,e ➔ h) 

and furthermore that 

MB(e-, u,D'V) - MD(e-, u,Du,e) = 

MB(e-, u,Du,e) - MD(e-, u,D"'e) 

1 - min{MB(e-, u,Du,e),MD(e-, u,Du,e)} 

= CF(e-, u,Du,e) 

we have 
similarly 

So, CF'(h-, u,Du,e 0 (e ➔ h)) = CF(h-, e,e ➔ h)·max{O,CF(e-, u,Du,e)}. ■ 
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We recall from Definition 2.32 that the combination function for a disjunction 
of hypotheses is defined as stated below: 

Proposition 2.51 shows that the combination function CF I respects the 
definition of the function CF'. 

PROPOSITION 2.51. Let <!, u and §1) be as before. Furthermore, let the function 
CF' be defined according to Definition 2.28 and the function CF I according to 
Definition 2.32. Let e; E <ff and Du,e, E ~ i = 1, 2 Then, 

PRooF. From Definition 2.32 it follows that we have to show that 

From Definition 2.28 we have that 

Again, it can easily be shown that the denumerator of the fraction equals I. 
So, we have 

= max{MB(e 1 -; u,D"'e'),MB(e1 -; u,D"'e')} + 
- min{MD(e 1 -; u,D"'e'),MD(e1 -; u,D"'e')} 

We distinguish several cases. 

(I) Assume MB(e1 -; u,Du,e,) = 0 and MB(e1 -; u,Du,e,) = 0. The case 
MD(e 1 -; u,D"'e') = MD(e 1 -; u,D"'e') = 0 follows by symmetry. 

From our assumption and Lemma 2.21 we have MD(e 1 ., u,D"·e');;;;,, 0 
and MD(e 1 -; u,Du,e,);;;;,, 0. 
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Now suppose MD(e 1 --i u,Du,e,) :s;;; MD(e 2 --i u,D"'e'). The other case 
MD(e 1 --i u,Du,e,) ~ MD(e2 --i u,D"'e') follows by symmetry. Our 
assumptions together imply 

max{MB(e 1 --i u,D"'e'),MB(e2 --i u,Du.e,)} + 
- min{MD(e1 --i u,D"'e'),MD(e2 --i u,D"'e')} = 

= max{MB(e 1 --i u,Du,e,) - MD(e 1 --i u,D"'e'), 

MB(e2 --i u,Du,e,) - MD(e2 --i u,D"'e')} 

(2) Assume MB(e 1 --i u,Du,e,) > 0 and MD(e 2 --i u,D"'e') > 0. The case 
MD(e 1 --i u,Du.e,) > 0 and MB(e 2 --i u,Du,e,) > 0 follows by symmetry. 

From our assumption and Lemma 2.21 we have MD(e 1 --i u,Du,e,) = 0 
and MB (e 2 --i u,Du,e,) = 0. So, 

max{MB(e1 --i u,D"'e'),MB(e2 --i u,D"'e')} + 
- min{MD(e 1 --i u,D"·e'),MD(e2 --i u,Du.e,)} = 

= max{MB(e1 --i u,Du,e,) - MD(e 1 --i u,D"'e'), 

MB(e2 --i u,Du,e,) - MD(e 2 --i u,Du,e,)} 

From (I) and (2), we have 

= max{MB(e1 --i u,Du,e,) - MD(e 1 --i u,D"'e'), 

MB(e2 --i u,Du,e,) - MD(e 2 --i u,D"'e')} 
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Using Lemma 2.21, it can easily be shown that 
1 - min{MB(e; .., u,D"'e' ),MD(e; .., u,D"'e' )} = 1, i = 1, 2, from which we 
have 

MB(e;.., u,Du,e,) - MD(e;.., u,Du,e,) = 

1 - min{MB(e;-, u,D"'e' ),MD(e;.., u,Du,e,)} 

= CF(e;.., u,D"'e' ) 

Therefore, we have 

■ 

We recall from Definition 2.32 that the combination function for conjunctions 
of hypotheses is defined as stated below: 

The proof of Proposition 2.52 is analogous to the proof of the foregoing 
proposition. 

PROPOSITION 2.52. Let ~ u and pj be as before. Furthermore, let the Jwiction 
CF' be defined according to Definition 2.28 and the fwiction CF d: according to 
Definition 2.32. Let e; E <ff and Du,e, E ~ i = 1, 2 'Then, 

Tue combination function that remains to be examined is the combination 
function for co-concluding production rules. We recall from Definition 2.33 
that this combination function is defined as stated below: 

(1) CF11(h .-i u,DY,h II D~·h) = CF(h.., u,DY,h) + CF(h .., u,D~h) · 

· (1 - CF(h.., u,DY,h)), if CF(h.., u,DY,h) > 0 and CF(h.., u,D~·h) > 0, 

(2) 
h h CF(h -, u,DY·h) + CF(h .., u,D~·h) 

CF11(h-,uDY, IID~· )=----------------
, 1 - min{ I CF(h .., u,DY,h) I, I CF(h.., u,D~h) I}' 

if -1 < CF11(h -, u,DY,h) · CF 11 (h.., u,D~h) ..;;; 0, and 
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(3) CF11(h ---J u,DY·h II D~·h) = CF(h ---J u,DY·h) + CF(h ---J u,Di·h) · 

· (I + CF(h ---J u,Df·h)), if CF(h ---J u,DY·h) < 0 and CF(h ---J u,Di•h) < 0. 

In Proposition 2.53 it is shown that the combination function CF 11 respects the 
definition of the function CF'. 

PROPOSITION 2.53. Let ~ u and fl) be as before. Furthermore, let the fwiction 
CF' be defined according to Definition 2.28 and the function CF11 according to 
Definition 2.33. Leth E <ff and D'/'h E ~ i = 1, 2. Then, 

CF 11 (h ---J u,DY•h II Di·h) = CF'(h ---J u,DY·h II Di·h) 

PROOF. From Definition 2.28 we have 

I - min{MB 11 (h ---J u,DY•h II Di·h),MD 11 (h ---J u,DY·h II Di·h)} 

We will consider this fraction in detail. 

(I) Assume MB(h ---J u,Df·h) > 0 and MB(h ---J u,D~h) > 0. The case 
MD(h ---J u,Df·h) > 0 and MD(h ---J u,Di•h) > 0 follows by symmetry. 

From Lemma 2.21 we have MD(h ---J u,Df•h) = MD(h ---J u,Di•h) = 0. 
So, from our assumptions it follows that CF(h ---J u,Dfh) > 0 and 
CF(h ---J u,Di•h) > 0. 

From MD(h ---J u,DY·h) = 0 and MD(h ---J u,Di·h) = 0 we have 
MD 11 (h ---J u,DY·h II Di·h) = 0. Therefore, the denumerator of the 
fraction shown above equals I. It follows that 

= MB(h ---J u,D~h) + MB(h ---J u,D~h) + 
-MB(h---Ju,DY·h) ·MB(h ---J u,D~h) = 

= (MB(h ---J u,Df·h) - MD(h ---J u,D~h)) + (MB(h ---J u,Di•h) + 
- MD(h ---J u,Di·h)) - (MB(h ---J u,DY·h) - MD(h ---J u,DY·h)) · 

·(MB(h ---J u,Di·h)- MD(h ---J u,D~·h)) 
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From 1 - min{MB(h --1 u,Dr•h),MD(h --1 u,Dfh)} = 1, i = 1, 2, we 
have 

1 - min{MB(h --1 u,Dr·h),MD(h --1 u,Dfh)} 

Therefore, we have 

(2) Now assume MB(h --1 u,D'f'h) = 0 and MB(h --1 u,D~·h) > 0. The case 
MB(h --1 u,D'{·h) > 0 and MB(h --1 u,D~h) = 0, similar cases for MD 
and the case where MB(h --1 u,D'f'h), MB(h --1 u,D~•h), MD(h --1 u,D'{·h), 
and MD(h --1 u,D~·h) equal 0 follow by symmetry. 

From Lemma 2.21 we have MD(h --1 u,D'{·h) ~ 0 and 
MD(h --1 u,D~·h) = 0. Hence, from our assumptions we have 
CF(h --1 u,D'{·h) ~ 0 and CF(h --1 u,D~·h) > 0. From now on we 
assume CF(h --1 u,D'{·h) · CF(h --1 u,D~·h) > -1. So, the numerator of 
the fraction can be written as follows 

= MB(h --1 u,D'f'h) + MB(h --1 u,D~h)(I - MB(h --1 u,D'f'h)) + 
- MD(h --1 u,D'f'h) - MD(h --1 u,D~h)(l - MD(h --1 u,D'{·h)) = 

= (MB(h --1 u,D'{·h)- MD(h --1 u,D'f'h)) + 
+ (MB(h --1 u,D~h) - MD(h --1 u,D~h)) 



An Analysis of CF, CF' and CF 77 

■ 

From the observation that for i = 1, 2, we have 
1 - min{MB(h -1 u,DY·h),MD(h -1 u,DY·h)} = 1, it follows that 

MB(h -1 u,Di·h) - MD(h -1 u,Di·h) -------------- + 
1 - min{MB(h -1 u,Di•h),MD(h -1 u,D'th)} 

MB(h -1 u,D~·h) - MD(h -1 u,D~•h) 
+--------------

1 - min{MB(h -1 u,D~·h),MD(h -1 u,D~•h)} 

Note that MB 11 (h -1 u,Di·h II D~·h) = MB(h -1 u,D~·h) and 
MD 11 (h -1 u,Di·h II D~·h) = MD(h -1 u,Di•h). We have that the 
denumerator of the fraction equals 

= 1 - min{MB(h -1 u,D~·h),MD(h -1 u,Di·h)} 

It can easily be shown that 

MB(h -1 u,D~·h)- MD(h -1 u,D~·h) 
MB(h -1 u,D~·h) = --------------

1 - min{MB(h -1 u,D~·h),MD(h -1 u,D~•h)} 

I CF(h -1 u,D~•h) I 

Furthermore, we can show that 

So, we have 

MB(h -1 u,Di·h) - MD(h -1 u,Di·h) 

1 - min{MB(h -1 u,Di•h),MD(h -1 u,Di•h)} 

I CF(h -1 u,Di·h) I 

CF(h -1 u,Di•h) + CF(h -1 u,Dth) 
CF'(h -1 u,D'th IID~·h) = ----------------

1 - min{ I CF(h -1 u,D'th) I, I CF(h -1 u,D~·h) I} 
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The Propositions 2.50, 2.51, 2.52 and 2.53 together yield the result stated in 
Theorem 2.54. 

THEOREM 2.54. Let the function CF' be defined according to Definition 2.28 and - -
the function CF according to Definition 2.30. Then, CF' = CF. 

2.4.3. Summary of the Results 

We have investigated the relations between the certainty factor functions CF, 
CF' and CF. In Section 2.4.1 we have shown that the certainty factor function 
CF defined by Shortliffe and Buchanan and the function CF' actually used by 
them in implementations of the model, do not always render the same function 
values for the arguments~ interest. In Section 2.4.2 we have shown that the 
~roximation function CF respects the definition of CF'. In fact, CF' and 
CF coincide. In Figure 2.10, these results have been inserted into the diagram 
of functions introduced in Section 2.2. 

p 

CF MB,MD 

fl l f 
--

CF' MB,MD 

= j 
CF 

FIGURE 2.10. The diagram of functions. 

The overall result of the preceding subsections shows that the certainty factor 
model is not correct with respect to the probabilistic foundation of the model 
as suggested by Shortliffe and Buchanan. The separate, detailed results we 
have discussed, identified conditions under which at least some components of 
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the model behave correctly. Recall that all results should be taken relative to 
the way we have introduced and handled the notion of derivation in the 
probabilistic foundation of the model. 

We have not paid attention to the question whether it is to be expected that 
the identified conditions will be met in practice. Furthermore, although we 
have not analysed the impact of the application of the model in situations in 
which the conditions are not fu1filled, we feel, supported by the literature on 
the subject, that the model's behaviour degrades noticebly in such situations. 

Shortliffe and Buchanan themselves have experimented with the model in 
the context of the MYCIN system using sampling data simulating several 
hundred patients, to__Eompare the computed certainty factors, that is, the 
function values of CF, with the correct probabilistic values, that is, the 
function values of CF, [SH0R84]. In this experiment, they have focussed on 
the combination function for co-concluding production rules. They observed 
that in most of the cases, the computed certainty factor does not differ 
radically from the theoretical probabilistic value. However, they have observed 
that the more the combination function for co-concluding production rules is 
applied for a given hypothesis, the more the computed values tend to deviate 
from the theoretical ones. Furthermore, their test showed that the most 
erroneous values arose from cases in which the different derivations of the 
hypothesis under consideration were strongly interrelated. We add to these 
observations that since the vast majority of the production rules of MYCIN 
contained positive certainty factors, the problematic case of conflicting 
derivations cannot have occurred very often. The experiment of Shortliffe and 
Buchanan therefore did not reflect the impact of conflicting evidence. 

Guided by their experiment, Shortliffe and Buchanan themselves have 
warned against application of their model to other domains without due 
consideration. The certainty factor model however is incorporated as a special 
feature in many present-day, commercially available expert system shells. The 
model therefore is likely to be applied to any type of domain. 
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Chapter 3 

Belief Networks 

In the mid-eighties a new trend in reasoning with uncertainty in knowledge­
based systems became discernable: several (mathematically correct) 
probabilistic models were proposed, each departing from a so-called belief 
network, see for example [SHAC86,PEAR88,SPIE86b]. Informally speaking, a 
belief network is a graphical representation of a problem domain consisting of 
the statistical variables discerned in the domain and their probabilistic 
interrelationships. The relationships between the statistical variables are 
quantified by means of 'local' probabilities together defining a joint probability 
distribution on the variables. The phrase belief network has been adopted from 
J. Pearl, [PEAR88]. Several other phrases are used to denote the same concept: 
D.J. Spiegelhalter uses the phrase causal graph [SPIE86b], and the phrase 
influence diagram is used by R.D. Shachter [SHAC86]. Statisticians often use 
the phrase recursive model to denote similar graphical representations of a 
problem domain, see for example [WERM83,Knv84]. 

This chapter presents a theoretical introduction to belief networks. In 
Section 3.1 some preliminaries are provided. Section 3.2 discusses the 
representation of a problem domain in a belief network in general. We 
present a mathematically detailed description of the notion of a belief network 
which, in the relevant literature often only introduced informally, is the 
common denominator of the work by Shachter, Pearl, Spiegelhalter and others. 
In Section 3.3 we briefly discuss some general properties a scheme for 
processing evidence in a belief network has to meet. It should be noted that 
although all network models proposed so far build on the same notion of 
belief network, they differ considerably in their schemes for processing 
evidence. In Section 3.4 one such scheme will be dealt with in some detail. 

We note that as far as reasoning with uncertain information is concerned, 
the use of graphical representations of a problem domain is currently not only 
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studied from the perspective of probability theory, but from the perspective of 
Dempster-Shafer theory as well, see for example [SHEN86,DEMP88]. 

3.1. PRELIMINARIES: GRAPH THEORY AND PROBABILITY THEORY 

In this section, we review several notions from graph theory that will play a 
central role in the remainder of this chapter. Furthermore, we once more 
provide some preliminaries concerning probability theory. 

3.1.1. Graph Theory 

We review some basic notions from graph theory. For further information the 
reader is referred to [WILS79,BERG73]. 

Generally, two types of graphs are discerned: undirected graphs and 
directed ones. 

DEFINITION 3.1. An undirected graph G is an ordered pair G = (V(G),E(G)), 
where V(G) = {V1, ... , Vn}, n;;;,, I, is a finite set if vertices and E(G) is a 
family of unordered pairs (V;, VJ), V;, VJ E V(G), called edges. Two vertices V; 
and VJ are called adjacent or neighbouring vertices in G if (V;, V) E E(G). 
The set of all neighbours if vertex V; in G is denoted by vG(V;). 

A directed graph (or digraph, for short) G is an ordered pair G = (V(G),A (G)), 
where V(G) = {V 1, ••• , Vn} , n;;;,, I, is a finite set of vertices and A(G) is a 
family of ordered pairs (V;, V), V;, VJ E V(G), called arcs. Vertex VJ is called 
a successor if vertex V; if there is an arc (V;, Vj) E A (G); the set of all 
successors if V; in G is denoted by aG(V;). Similarly, vertex V; is called a 
predecessor of vertex VJ if there is an arc (V;, Vj) EA (G); the set if all 
predecessors of V; in G is denoted by ?TG(V;). The set of all neighbours if vertex 
V; in G is defined as vG(Vi) = aG(V;) U ?TG{V;). 

In the sequel, we will often drop the subscript G from aG etc. as long as 
ambiguity cannot occur. 

DEFINITION 3.2. Let G = (V(G),A (G)) be a digraph. The underlying graph H 
of G is the undirected graph H = (V(H),E(H)) where V(H) = V(G) and 
E(H) is obtained from A (G) by replacing each arc (V;, VJ) EA (G) by the edge 
(V;, VJ)-

In the following Definitions 3.3 and 3.4 some notions are introduced 
concerning undirected graphs. These notions however can easily be extended 
to apply to directed graphs by taking the directions of the arcs into account. 

DEFINITION 3.3. An undirected graph G = (V(G),E(G)) is a simple graph if 
E(G) is a set and (V;, V;) fl_ E(G)for all V; E V(G). 

In the sequel, we take all ( directed and undirected) graphs to be simple. 
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DEFINITION 3.4. Let G = (V(G),E(G)) be an undirected graph. A pathfrom 
V0 to V1u V0 , Vk E V(G), in G is a sequence of vertices V0 , Vi, . .. , Vk such 
that (Vi - i, V;) E E(G), i = 1, ... ,k, k ;;a. O; k is called the length of the 
path. 

If for each pair of vertices V;, VJ E V(G) there is a path from V; to VJ in G, 
then G is called a connected graph; otherwise G is disconnected 

A cycle is a path of length at least one from VO to V 0, VO E V ( G). A cycle is 
elementary if all its vertices are distinct. A chord or shortcut of an elementary 
cycle V0 , Vi, ... , Vk = V0 is an edge (V;, VJ), i =I= (J-+- l)mod(k + 1). 

G is called a cyclic graph if it contains at least one cycle; a graph without any 
cycles is called acyclic. 

We conclude this subsection with two more definitions. 

DEFINITION 3.5. Let G = (V(G),E(G)) be an undirected graph. The order of 
G is the number of vertices in G. The size of G is the number of edges in G. G is 

a complete n-graph, n ;;a. 1, if it has order n and size [ ~], that is, a graph is 

complete if there exists an edge between each pair of distinct vertices. 

An undirected graph H = (V(H),E(H)) is a subgraph of G if V(H) C V(G) 
and E (H) C E ( G). A subgraph H of G is a full subgraph of G if 
E(H) = E(G) n (V(H) X V(H)); we say that the Jul.I subgraph His induced 
by V(H). 

A clique in G is a full subgraph H of G which is complete. H is called a maxi­
mal clique if there does not exist a clique H' in G differing from H such that H is 
a full subgraph of H'. The set of all maximal cliques in G is called the clique set 
of G and is denoted by C/(G). 

In the sequel, we will take the word clique to mean a maximal clique. 

DEFINITION 3.6. A forest is an undirected graph which is acyclic. A tree is a 
connected forest. 

Let G = (V(G),E(G)) be a connected undirected graph. Furthermore, let 
T = (V(T),E(T)) with V(T) = V(G) and E(T) C E(G) be a subgraph of G 
such that T is a tree. Then, T is called a spanning tree of G. 

3.1.2. Probability Theory Revisited 

In this subsection, again some preliminaries concerning probability theory are 
provided, this time not departing from a set-theoretic point of view, but from 
an algebraic one. 

In an expert system, knowledge concerning the problem domain usually is 
represented in a special knowledge-representation formalism such as for 
example the production-rule formalism we have encountered in Chapter 2. In 
the present chapter we do not consider such knowledge-representation schemes 
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nor do we discuss the reasoning methods associated with these formalisms. 
Here, we assume that knowledge is simply represented in statistical variables 
and their probabilistic interrelationships. We assume that these variables can 
only take one of two values, thus allowing to view them as logical, 
propositional variables. The generalization to variables with discrete multiple 
values, however, is rather straightforward. 

In the following definition the notion of a Boolean algebra of propositions is 
introduced; for further information the reader is referred to [BIRK.77]. 

DEFINITION 3.7. A Boolean algebra !JI is a set of elements with two binary 
operations A (conjunction) and V (disjunction), a unary operation -, (negation) 
and two constants false and true which (by equality according to logical truth 
tables) adhere to the usual axioms. 

On a Boolean algebra !JI we define a partial order ~ as follows: for any 
X J, X 1 E ~ we say that X J ~ X 1 if X 1 = X J V X 1 or (equivalently) if 
XJ = XJ A X2. 

A subset of elements <§ = {g 1, ••• , gn }, n ;;;,, 1, of a Boolean algebra !JI is said 
to be a set of generators for !JI if each element of !JI can be represented in terms 
of the elements g; E ~ i = 1, ... , n, and the operations A, V and-,. A set of 
generators <§ for !JI is said to be free if every mapping of elements of <§ into an 
arbitrary Boolean algebra !JI' can be extended to a homomo,phism of !JI into !JI'. 

A Boolean algebra !JI is free if it has a finite set .91 = { a 1, .. • , an}, n ;;;,, 1, of 
free generators; we say that !JI is (finitely) generated by sL We use 
!Jl(a 1, ... , an) to denote the free Boolean algebra !JI generated by ~ from now 
on, we will refer to .91 as the set of atomic propositions and to !JI as the Boolean 
algebra of propositions. 

It is well-known that a free Boolean algebra with n free generators has 22
• 

elements, n ;;;,, I. In the sequel, for any subset {a;,, ... , a;J ~ { a 1, ••• , an}, 
I ..;; k ..;; n, we simply use !Jl(a;,, ... , a;.) to denote the subalgebra of 
!Jl(a1, ... ,an) generated by {a;,, ... ,a;,}. 

DEFINITION 3.8. Let .91 = { a 1, ... , an}, n ;;;,, 1, be a set of atomic propositions 
and let !Jl(a 1, ••. , an) be the free Boolean algebra generated by sL For 
i = 1, ... ,m, m ;;;,, 0, let A; be a variable over !Jl(a 1, .•• ,lln)- A Boolean 
polynomial function in the variables A 1, ••. ,Am is a function 
F: !Jl(a1, ... ,anr ➔ !Jl(a 1, ... ,an)- We use !Jl(a 1, ... ,an)[A 1, ... ,Am] to 
denote the set of Boolean polynomial functions in A 1, ••. ,Am. 

In the following definition we introduce a so-called configuration function as a 
special type of Boolean polynomial function. 
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DEFINITION 3.9. Let Sil= { a 1, ... , an}, n ;;.. 1, be a set of atomic propositions 
and let ~(a 1, ••• , an) be the free Boolean algebra generated by .91. Let 
A = {A;,, ... , A;.}, 0 ,,;;; k ,,;;; n, be a set of variables over ~(a 1, ... , an)­
Now, let FA E ~(a1, ... ,an)[A;,, ... ,A;.] be the Boolean polynomialfwiction 
defined by FA = true if k = 0 and FA(A;,, . .. ,A;) = A;, I\ · · · I\ A;, 
otherwise. Let B; = { a;, -,a;}, i = I, ... , n. We define the configuration 
function CA as the restriction of FA to B;, X · · · X B;., that is, 
CA = FA In,, x ... x B,,· A fwiction value cA of CA is called a configuration of 
A. 

In the sequel, we will often use the notation { cA} to denote the set of all 
configurations of the set of variables A. 

EXAMPLE 3.10. Consider the Boolean algebra of propositions ~(a 1, ••• ,a8). 

Let A = {A 1, A 3, A 1 } be a set of variables over ~(a1, ... , a 8). Then, 
FA(A 1,A3,A 1) = A1 AA 3 AA 7 • The configuration function CA will be 
viewed as defined by CA(A 1,A 3, A 1) = A 1 /\ A 3 I\ A 1 where A; now is taken 
to be a variable over { a;, -,a;}, i = 1,3, 7, only. The conjunction 
-,a 1 I\ a3 I\ a 1 E ~(a1, ... ,a8) is an example of a configuration of A. 
Note that a configuration is a semantical notion whereas a configuration 
function is a syntactic one. ■ 

We introduce the notion of a probability distribution on a Boolean algebra of . . . 
propos1t10ns. 

DEFINITION 3.11. Let ~ be a Boolean algebra of propositions defined according 
to Definition 3. 7. Let Pr be a fwiction Pr: ~ - [O, 1] such that 

(1) Pr is positive, that is, for all x E !!l, we have Pr(x) ;;.. 0, and furthermore 
Pr(false) = 0, 

(2) Pr is normed, that is, we have Pr(true) = 1, and 

(3) Pr is additive, that is, for all x 1, X2 E !!l, if x 1 /\ X2 = false then 
Pr(x 1 v x 2) = Pr(x 1) + Pr(x 2). 

Then, Pr is called a probability distribution on 8l The pair (~,Pr) is called a 
probability algebra. 

Let ~(a 1, ••• ,an) be a Boolean algebra of propos1tJons and let 
A = { A 1, ••• , An} be a set of variables over ~(a 1, ••• , an). In this chapter 
we will frequently exploit the property that a probability distribution Pr on a 
Boolean algebra ~(a 1, ••• , an) is uniquely defined by its values Pr(cA) for 
each configuration cA of A; this property will be proven formally in Chapter 4. 
Note that since there are 2n possible configurations of A, to explicitly represent 
Pr in a straightforward manner would require 2n probabilities. We shall see in 
Section 3.2, however, that in some cases far less probabilities suffice for 
uniquely representing Pr. 
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Recall that in Section 2.2.1 we associated probabilities with sets instead of 
with logical propositions. However, it can easily be shown that the probability 
of an event is equivalent to the probability of the truth of the proposition 
asserting the occurrence of the event. The following proposition states this 
well-known equivalence more formally. We provide the proposition and part 
of its proof merely because it conveys many ideas that we will return to in the 
next chapter. For further details, the reader is referred to [FINE70]. 

PROPOSITION 3.12. Let .91 be a set of atomic propositions and let !JI be the 
Boolean algebra of propositions generated by .91 as defined in Definition 3. 7. Let 
Pr be a probability distribution on !JI. The11, there exists a sample space 0, a 
probability function P on 0, and an isomorphism , : !JI ➔ ff where ff is the set of 
subsets of 0, such that 

(1) for all Xi, x2 E 9J, we have t(x 1 I\ x 2) = t(x 1) n t(x2), 

(2) for all x1, x 2 E 9J, we have t(x 1 V x2) = t(x 1) U t(x2), 

(3) for all x E 9J, we have t(-,x) = t(x), 

( 4) ff equals the free Boolean algebra generated by { t(x) Ix E .91}, and 

(5) for each x E 9J, we have P(,(x)) = Pr(x). 

We have that Pis uniquely defined by Pr. Furthermore, the algebras (ff,P) and 
(f!l,Pr) are isomorphic. 

PROOF. We only provide a sketch of the proof. Let .91 = { a 1, ••• , an}, 
n • 

n ;;;;,, 1. Now, let O = { /\ A; IA; = a; or A; = -,a;, a; E .91} . Note that the 
i=I 

elements of O are all configurations of length n in which for each 
i = I, ... , n, either a; or -,a; occurs. It will be evident that O has 2n 
elements. In the remainder of this proof the elements of O are enumerated as 
WJ, ••• ,W2•. 

Using De Morgan's laws and the distributive laws, any element of !JI can be 
represented as a disjunction of elements of 0: for each x E !JI there exists a 
unique set of indices J.~ C { I, ... , 2n} such that x = V w; where w; E 0. 

i EJ, 

When x is represented as . V w;, we say that xis in disjunctive normal form. 
1EJ, 

We define a mapping t as follows: for x = . V w; where~ C {I, ... ,2n}, 
I EJ, 

we take , (x) = { w; I i E ~}. Note that , is well-defined since for a given x 
the set ~ is unique. 

It is obvious that we have ,(false) = 0 and ,(true) = 0. Furthermore, we 
have the following properties of this mapping ,: 

Suppose that we have x 1 = V w- and x 2 = V w;,, where 
i 1 E.', 

11 
i2 E.', 
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Ji,~ ~ {I, ... , 2n}. So, x 1 A x 2 = ( V W;) A ( V W; ). Using 
i1 EJ'; 1 i1 EJi 2 

the distributive laws, x 1 A x 2 can be written as V ( w; A w; ). 
i1 E./;,i2 E.J; 1 2 

From our definition of ~. we have that w;, A w;, = false for i 1 =/= i 2• It 
follows that x 1 A x 2 = V w;. Consequently, we have 

i E..', n J, 

t(x 1 A x 2) = {w;ji E Jin~}= {w;, Ji 1 E Ji} n {w;, Ji 2 E ~} = 

= t(x 1) n t(x2) 

(2) for all X1, X2 E fA, t(X1 V X2) = t(X1) U t(X2). 

(3) for all x E 81, t(-,x) = t(x). 

It will be evident that the mapping t is an isomorphism, since it has an inverse 
mapping t - 1• 

The algebra ff obviously equals { t(x) Ix E 81}. We have that ff is the free 
Boolean algebra generated by { t (x) I x E d}. 

From the properties of the probability distribution Pr on fA we have that 
P ( = Pr O t -

1) is additive and [O, 1 ]-valued on ff and therefore is a probability 
function on ff. It can easily be shown that (81,Pr) and (ff,P) are isomorphic. 

■ 

From the previous proposition we have that a probability distribution Pr on a 
Boolean algebra of propositions 81 has the usual properties. Lemma 3.13 
repeats some convenient ones. 

LEMMA 3.13. Let (fA,Pr) be a probability algebra as defined in Definition 3.11. 
Then, 

(1) for all x E !JJ, we have Pr(x) + Pr(-,x) = 1, 

(2) for all xi, xi E !JJ, Pr(x1 v x2) + Pr(x1 A x2) = Pr(x1) + Pr(x2), 
and 

(3) for all Xi, xi E !JJ, if x 1 ~ X2 then Pr(x 1) .;;;; Pr(x2)-

Tbe following lemma is rather straightforward. 

LEMMA 3.14. Let 81(a 1, ... ,an), n ;;;;,, I, be a Boolean algebra of propositions 
defined according to Definition 3. 7. Let Pr be a probability distribution on 
fA(a 1, ••• , an). Then, for each i, 1 .;;;; i .;;;; n, we have that the probabilities 

Pr(x) = Pr(x I\ a;) + Pr(x I\ -,a;) 

for all x E fA(a 1, ... ,a;- 1,a;+J, ... ,an), define a probability distribution on 
fA(a1, ... ,a; - 1,a; + 1, ... ,an)-
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PROOF. The lemma follows from the observation that the properties 
mentioned in Definition 3.11 hold. ■ 

The probability distribution defined by the probabilities 
Pr(x ) = P(x I\ a;) + Pr (x I\ , a;) as indicated in the preceding lemma is 
called the marginal distribution on 93'(a 1, ••• , a;- 1,a;+i, . .. , an)- The 'entire' 
probability distribution Pr is often called the j oint probability distribution to 
discern it explicitly from marginal distributions derived from it. Note that by 
recursively applying Lemma 3.14 we may obtain a marginal distribution on 
any subalgebra of 93'(a 1, •• • , an)-

In the sequel, we will often have to deal with the situation that several pieces 
of evidence become available which should be taken into account in future 
probabilistic statements. For this purpose, we introduce the notion of a 
conditional probability. 

DEFINITION 3.15. Let (93',Pr) be a probability algebra defined according to 
Definition 3.11. For each x, y E 93' with Pr(y) > 0, the conditional 
probability of x given y, denoted as Pr (x I y ), is defined as 

p ( I ) = Pr(x I\ y) 
r x y Pr(y) 

In the sequel, we will implicitly assume that the conditional probabilities we 
specify are defined unless explicitly stated otherwise. 

The following lemma states that given a specific piece of evidence we may 
compute a revised probability distribution. 

LEMMA 3.16. Let 93'(a 1, ••• , an), n ;;;.. 1, be a Boolean algebra of propositions 
defined according to Definition 3. 7. Let Pr be a joint probability distribution on 
93'(a 1, ••• , an)- Then, for a given e E { a; , ,a;}, 1 .;;;; i .;;;; n, the conditional 
probabilities Pr(x I e) for all x E 93'(a 1, ••• , a;- 1,a; +J, . . . , an) define a 
probability distribution on 93'(a 1, ••• , a; - 1,a; + 1, ..• , an)-

The probability distribution defined by the conditional probabilities Pr(x I e) 
as in the preceding lemma is called the updated probability distribution given e; 
in the sequel, this probability distribution will often be written as Pre. 
Furthermore, we will use the phrase to update a probability distribution to 
denote the process of computing the updated probability distribution given 
some piece of evidence. For updating a joint probability distribution for 
successively obtained evidence the preceding lemma may be applied 
recursively: let e; E { a;., ,a;

1 
}, j = l, ... , k, 1 .;;;; k .;;;; n, n ;;;,. I, and let 

J J 

Pre,, , ··· ,e,1 be the updated probability distribution given e;, , ... , e;
1

• Then, we 

h th P e,,, . . . ,e,·c)-Pe,,, . .. ,e,,_,( I)" all =c ) ave at r x - r x e;, , ior x E a1 a;,., , ... , a;, . 
In the sequel, we take Bayes' Theorem introduced in Chapter 2 to accord 

with the algebraic point of view. The following theorem is known as the chain 
rule. 
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THEOREM 3.17. Let ,q/(a1, . .. ,an), n ;;,,, 1, be a Boolean algebra of propositions 
as defined in Definition 3. 7. Let Pr be a Joint probability distribution on 
,q/(a 1, ••• ,an). Then,for all X; E {a;, ,a;}, i = I, . .. ,n, we have 

Note that using configuration functions, the property from the previous 
theorem may be rewritten as 

Pr(A1 I\ · · · /\An)= 

= Pr(An IA1 /\ · · · /\An - 1) · · · Pr(A2 IA1)·Pr(A1) 

where each A; is a variable talcing values from {a;, -,a;}, i = I, ... ,n. From 
now on we will adhere to this point of view and take a variable A; to be a 
variable over B; = {a;, ,a;}. 

We conclude this subsection with one more definition. 

DEFINITION 3. I 8. Let ,q/(a 1, ... , an), n ;;,,, 1, be a Boolean algebra of 
propositions as defined in Definition 3. 7. Let Pr be a joint probability distribution 
on ,q/(a1, .. . ,an). Let A = {A 1, ... ,An} be a set of variables where each A; 
is a variable over B; = {a;, ,a;}, i = 1, ... , n. Furthermore, let X, Y, Z ~ A 
and let Cx, Cy and C2 be configuration functions for the sets X, Y and Z, 
respectively, as defined in Definition 3.9. The set of variables X is said to be 
conditionally independent of Y given Z, denoted as lp,(X,Z, Y), if 
Pr(CxlCy I\ C2 ) = Pr(CxlCz). 

The following lemma can now easily be proven. 

LEMMA 3.19. Let ,q/(a 1, ... ,an), n ;;,,, 1, be a free Boolean algebra of 
propositions. Let Pr be a joint probability distribution on ,q/(a 1, .•• , an). Let 
A = { A 1, ••• , An} be a set of variables where each A; is a variable over 
B; = { a;, ,a;}, i = I, ... , n. Let X, Y, Z, W ~ A. Furthermore, let the 
relation lp, have the meaning as in Definition 3.18. Then, the following 
properties hold: 

(1) lp,(X,Z, Y) if and only if lp,(Y,Z,X). 

(2) If lp,(X,Z, Y U W) then lp,(X,Z, Y) and lp,(X,Z, W). 

~ If~~ZYUW)~m~~zu~n 

(4) If lp,(X,Z, Y) and lp,(X,Z U Y, W) thm lp,(X,Z, Y U W). 

The first property mentioned in the preceding lemma is called the property of 
symmetry. The second one is the decomposition property. The third property 
is the property of weak union and the fourth one is called the contraction 
property. For an in-depth discussion of the independence relation lp,, the 
reader is referred to [PEAR88]. 
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3.2. KNOWLEGE REPRESENTATION IN A BEUEF NETWORK 

In Section 3.1.2 we have remarked that in this chapter we do not depart from 
the knowledge representation schemes generally employed in knowledge-based 
systems: we assume that knowledge is represented in statistical variables 
(viewed as propositional variables) and their probabilistic interrelationships. 
In this section we discuss this representation scheme in further detail. 

Belief networks provide a formalism for representing a problem domain. A 
belief network comprises two parts: a qualitative representation of the problem 
domain and an associated quantitative representation. The qualitative part of a 
belief network takes the form of an acyclic directed graph G = (V(G),A (G)) 
with vertices V(G) = {V1, ... , Vn}, n ;;;i,, I, and arcs A(G). Each vertex V; 
in V ( G) represents a statistical variable that can take one of a set of values. 
In the sequel, we assume that the statistical variables can take only one of the 
truth values true and false. We will adhere to the following notational 
convention: v; denotes the proposition that the variable V; takes the truth 
value true; V; = false will be denoted by ,v;. Informally speaking, we take 
an arc (V;, Vj) E A (G) to represent a direct 'influential' or 'causal' relationship 
between the linked variables V; and V/ the arc (V;, Vj) is interpreted as 
stating that 'V; directly influences V/. Absence of an arc between two vertices 
means that the corresponding variables do not influence each other directly. 
In the sequel, we take the digraph to be configured by an expert from human 
judgment; hence the phrase belief network. 

Associated with the graphical part of a belief network is a numerical 
assessment of the 'strengths' of the represented relationships: with each vertex 
is associated a set of ( conditional) probabilities which describe the influence of 
the values of the predecessors of the vertex on the values of the vertex itself. 

We define the notion of a belief network more formally. 

DEFINITION 3.20. A belief network is a tuple B = (G, I') such that 

(1) G = (V(G),A (G)) is an acyclic directed graph with vertices 
V(G) = {V1, ••• , Vn}, n ;;;i,, I, andarcsA(G), and 

(2) r = {Yv, IV; E V(G)} is a set of real-valued nonnegative Junctions 
Yv,: {v;,,v;} X {cw(v,)} ➔ [0,11 called (conditional probability) 
assessment functions, such that for each configuration c,r(v,) of 7T(V;), we 

haverv,(-,v;jcw(v,)) = 1 - Yv,(v;lc,r(v,)), i = 1, ... ,n. 

Note that in the previous definition V; is viewed as a vertex from the graph 
and as a variable over {v;, ,v;}, alternatively. For ease of exposition, we 
assume in the remainder of this thesis that the graphical part of a belief 
network is connected; our observations, however, can easily be extended to 
apply to disconnected acyclic digraphs. 

In order to draw a link between the qualitative and quantitative parts of a 
belief network, we assign a probabilistic meaning to the topology of the 
digraph G of the network. For each vertex V; E V(G), we define the set a(V;) 
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of (strictly) anterior vertices of V; by a(V;) = { VJ I VJ E V(G) \ '1T(V;) and 
there is no path from V; to VJ}. Informally speaking, the digraph now is 
taken to represent the following independency relationships: each variable 
V; E V(G) is conditionally independent of the variables from a(V;) given its 
parent variables ?T(V;). We say that a joint probability distribution Pr respects 
the independency relationships portrayed by G if for each variable V; E V(G) 
we have that Pr(V; I Ca(v,) I\ Cw(v,)) = Pr(V; I Cw(v;)). Since in the sequel we 
will primarily be concerned with undirected graphs, we do not discuss the link 
between probability distributions and directed graphs any further; for details, 
the reader is referred to [LAUR88b,PEAR88]. 

The following proposition states that the initial assessment functions of a 
belief network provide all information necessary for uniquely defining a joint 
probability distribution on the variables discerned that respects the 
independency relationships portrayed by the graphical part of the network. 

PROPOSITION 3.21. Let B = (G, r) be a belief network ru defined in the 
preceding definition, where V(G) = {V1, ••• , Vn}, n ;a: I. Let g/(vi, . . . , vn) 
be the free Boolean algebra of propositions generated by {v; IV; E V(G)}. Then, 

Pr(Cvcc)) = II 'Yv,(V; I C'll(v,)) 
V1 EV(G) 

defines a joint probability distribution Pr on g/(v 1, ... , vn) that respects the 
independency relationships from G. 

PROOF. A digraph without directed cycles allows at least one total ordering of 
its vertices such that any successor of a vertex in the graph follows it in the 
ordering. It follows that there is an ordering of the statistical variables such 
that in applying the chain rule each variable is conditioned only on the 
variables preceding it in the ordering. Choosing an appropriate ordering of 
V(G), the conditional independency relationships portrayed by G can be 
exploited. By taking Pr(v; I cw(v,)) = 'Yv,(v; I cw(v,)) for each V; E V(G) and all 
configurations c,,cv,) of 77(V;), the property stated in the proposition follows 
immediately. For further details, see [Knv84]. ■ 

Example 3.22 illustrates the notion of a belief network. Whenever possible, 
this example will be used as the running example; it has been taken from 
[LAUR88a). 

ExAMPLE 3.22. Let G = (V(G),A(G)) with V(G) = {Vi, ... , V8} be the 
acyclic digraph shown in Figure 3.1. We assume that this graph has been 
configured by an expert who for example observed that the value of the 
variable V 2 is only dependent directly upon the value of the variable V 1• Let 
_q/( v 1, ••• , v 8) be the Boolean algebra of propositions associated with G as 
indicated in Proposition 3.21. Corresponding with this digraph G the expert 
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has assessed the following eighteen function values of the conditional 
probability assessment functions 'Yv,, ... , 'Yv,: 

'Yv, (v6 I v2 /\ v 4), 'Yv, (v 6 I v2 /\ -,v 4), 'Yv, (v6 J-,v2 /\ v 4) and 

'Yv,(v6 l-,v2 /\-,v4) 

'Yv,(v1 I V5 /\ v6), 'Yv,(v1 I V5 /\-,v6), 'Yv,(v1 l-iv5 /\ v6) and 

'Yv,(v1 l-iv5 /\-,v6) 

Note that from these function values we can uniquely compute the remaining 
function values using Yv,(-,v; I c,r(v,)) = I - Yv,(v; I c'Tl(v,)), i = I, ... , 8. 

FIGURE 3.1. An acyclic digraph G. 
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The graph is taken to represent conditional independency relationships among 
the statistical variables V 1, ... , Vs. The graph for example shows that the 
variable V7 is conditionally independent of V3 and V4 given V 5 and V6, that 
is, for any joint probability distribution P on ~(v 1, ••• , vs) respecting the 
independency relationships portrayed by G, we have that 
P(V1 I V3 /\ V4 /\ V 5 /\ V6) = P(V1 I V 5 /\ V6)- Exploiting these 
independency relationships, the joint probability distribution P can be 
expressed as the following product: 

P(V1 /\ · · · /\ Vs) = 

= P(V8 I V1 /\ · · · /\ V1)·P(V1 I V1 /\ · · · /\ V6)· 

·P(V6 I V1 /\ · · · /\ Vs) · · · P(V1) = 

= P(Vs I V6)·P{V7 I V 5 /\ V6)·P(V6 I V2 /\ V4)·P(V5 I V3)· 

. P(V4 I V3). P(V3). P(V2 I V1). P(V1) 

From Proposition 3.21 we have that the values of the assessment functions Yv, 
taken as (conditional) probabilities together define a specific joint probability 
distribution Pr on ~(vi, ... , vs): we therefore have that 

Pr(V1 /\ · · · /\ Vs) = 

= Yv,(Vs I V6)·Yv,(V1 I Vs/\ V6)·rv,(V6 I V2 /\ V4)·rv,(Vs I V3)· 

--rv,(V4 I V3) ·rv,(V3) ·rv,(V2 I V1)·rv,(V1) 

Any actual probability Pr(cv(G)) can now be obtained by 'filling in' values for 
the statistical variables V 1 up to Vs inclusive and then computing the resulting 
product on the right-hand side from the initially assessed probabilities. Note 
that in this example only eighteen probabilities suffice for uniquely 
representing a joint probability distribution on a Boolean algebra with eight 
free generators. ■ 

The representation of uncertainty in factors which are local to expressions 
giving a qualitative description of the domain, resembles the approach 
followed in the quasi-probabilistic models for dealing with uncertainty in rule­
based systems in which the production rules constitute the qualitative 
representation of the domain. 
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3.3. EVIDENCE PROPAGATION IN A BELIEF NETWORK 

In the preceding section we have introduced the notion of a belief network as 
a means for representing a problem domain, or, to be more precise, for 
representing a joint probability distribution. A belief network may be used for 
reasoning with uncertainty. For making probabilistic statements concerning 
the statistical variables discerned in the problem domain, we have to associate 
with a belief network two methods: 

(I) a method for (efficiently) computing probabilities of interest from the 
belief network, and 

(2) a method for processing evidence, that is, a method for entering evidence 
into the network and subsequently (efficiently) computing the updated 
probability distribution given the evidence. This process is generally 
called evidence propagation. 

In the relevant literature, the emphasis lies on methods for evidence 
propagation; in this section we do so likewise. 

Recall that the assessment functions initially given for a belief network 
uniquely define a joint probability distribution Pr on the statistical variables 
discerned in the problem domain. The impact of a value of a specific variable 
becoming known on each of the other variables can therefore be computed 
from these 'local' function values. Calculation of an updated probability from 
the initially given joint probability distribution Pr in a straightforward manner, 
however, will generally not be restricted to performing computations which are 
local in terms of the graphical part of the network, and will become prohibitive 
for larger networks. For example, computing a conditional probability 
Pr(-,v; I vi) using Definition 3.15 would entail dividing two marginal 
probabilities each of which is the sum of an exponentially large number of 
probabilities computed from r as indicated in Example 3.22. 

In the literature therefore, several less naive schemes for updating a joint 
probability distribution as evidence becomes available have been proposed. 
Although all methods proposed build on the same notion of a belief network, 
they differ considerably in concept and in computational complexity; as far as 
computational complexity is concerned, it should be noted that in the general 
case exact probabilistic inference in belief networks without any restrictions is 
NP-hard, [COOP87]. All proposals however have two important characteristics 
in common: 

(I) for propagating evidence the graphical part of a belief network is 
exploited more or less directly as a computational architecture, and 

(2) after a piece of evidence has been processed again a belief network 
results. Note that this property renders the notion of a belief network 
invariant under evidence propagation and therefore allows for recursive 
application of the method for processing evidence. 

We briefly review some of the proposed schemes for evidence propagation. 
R.D. Shachter has presented a method for propagating the impact of 
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evidence concerning a specified set of variables to a set of variables of interest. 
The general idea of his method is to eliminate vertices from the original 
graphical part of the belief network without changing the (updated) joint 
probability distribution; the topology of the graph is modified using a 
sequence of arc reversals, and vertex removals and additions, [SHAC86]. For 
each successive propagation of evidence again such a sequence of graph 
modifications has to be performed. The problem of optimizing a sequence of 
graph modifications has been further investigated, see for example [TRUN88]. 

The method for processing evidence presented by J.H. Kim and J. Pearl in 
[KIM83] is only applicable to singly connected digraphs, a restricted type of 
acyclic digraph. Their method leaves the original graphical representation of 
the problem domain unchanged. Updating the joint probability distribution 
after a piece of evidence has become available essentially entails each statistical 
variable (that is, each vertex) updating the joint probability distribution locally 
from messages it receives from its neighbours in the digraph, that is, from its 
predecessors as well as its successors, and then in turn sending new, updated 
messages to them. In his more recent work, [PEAR88], Pearl proposes 
additional methods for coping with (undirected) cycles. 

S.L. Lauritzen and D.J. Spiegelhalter have presented another, elegant 
method for evidence propagation, [SPIE86b,LAUR88a]. They have observed 
that updating the joint probability distribution after a piece of evidence has 
become available will generally entail going against the initially assessed 
'directed' conditional probabilities. They concluded that the directed graphical 
representation of a belief network is not suitable as an architecture for 
propagating evidence directly. This observation, among other ones, motivated 
an initial transformation of the belief network into an undirected graphical 
and probabilistic representation of the problem domain. This new 
representation allows for an efficient method for evidence propagation in 
which the computations to be performed are local to small sets of variables. 
For this purpose, Lauritzen and Spiegelhalter make use of the existing 
statistical theory of Markov random fields, see for example [PITM76,DARR80]. 

The work of Lauritzen and Spiegelhalter will be treated in further detail in 
Section 3.4; this method will play an important role in the remainder of the 
present thesis. 

3.4. EVIDENCE PROPAGATION BY LAURITZEN AND SPIEGELHALTER 

The method for evidence propagation presented by S.L. Lauritzen and 
D.J. Spiegelhalter departs from an undirected (graphical and probabilistic) 
representation of the problem domain. The method has been inspired by the 
existing statistical theory of Markov random fields, or more in specific, by the 
theory of graphical models (i.e. probabilistic models that can be represented by 
an undirected graph) in contingency tables. To be able to exploit this theory, 
the original directed belief network is transformed into an undirected so-called 
decomposable belief network which again consists of a qualitative 
representation of the problem domain, this time a so-called decomposable 



96 Belief Networks 

graph, and a quantitative representation, now being a set of marginal 
distributions associated with the cliques of this graph. 

This transformation scheme will be discussed in detail in Section 3.4.2. 
First, however, we will address in Section 3.4.1 the issue of assigning a 
probabilistic meaning to the topology of an undirected graph. We conclude 
this chapter with a discussion of the method for evidence propagation of 
Lauritzen and Spiegelhalter in Section 3.4.3. 

3.4.1. Probabilistic Interpretation of the Topology of an Undirected Graph 

In this subsection, we will discuss the relationship between probability 
distributions and undirected graphs. For this purpose, we introduce some 
notions from the theory of Markov random fields on finite graphs. For further 
information, the reader is referred to [PITM76]; [PEAR88] addresses the subject 
from the perspective of belief networks. In our discussion, we will closely 
follow the latter reference. 

We begin by introducing a new notion concerning undirected graphs. 

DEFINITION 3.23. Let G = (V(G),E(G)) be an undirected graph with vertices 
V(G) = {V1, ... , Vn}, n ;;;.. 1. Let X, Y, Z C V(G) be sets of vertices. The 
set Z is said to separate the set X from the set Y in G, denoted as 
<X I Z I Y > G, if any path from a vertex from X to a vertex from Y involves at 
least one vertex from Z. 

Building on the notion of separation introduced above, we define several types 
of relationships between probability distributions and undirected graphs. 

DEFINITION 3.24. Let G be an undirected graph with the vertex set 
V(G) = {V1, ••• , Vn}, n ;;;.. 1. Let .9l(v 1, ••• , vn) be the Boolean algebra of 
propositions generated by { v; I V; E V(G)}. Furthermore, let Pr be a Joint 
probability distribution on .9l(v 1, ••• , vn)- For X, Y, Z C V(G), let lp,(X,Z, Y) 
denote that X is conditionally independent of Y given Z, as defined in Definition 
3.18. 

(1) The graph G is called a dependency map, or D-map for short, of Pr if for 
all X, Y, Z C V(G) we have: if lp,(X,Z, Y) then <XI Z I Y>G-

(2) G is called an independency map, or I-map for short, of Pr if for all 
X, Y, Z C V(G) we have: if <XI Z I Y>G then lp,(X,Z, Y). 

(3) G is called a perfect map of Pr if G is both a dependency map and an 
independency map of Pr. 

Note that vertices that are adjacent in a D-map of a joint probability 
distribution Pr are guaranteed to be dependent in Pr (then viewed as statistical 
variables); the D-map, however, may display a pair of dependent variables as a 
pair of non-adjacent, that is, separated vertices. On the other hand, vertices 
found to be non-adjacent in an I-map of Pr correspond to independent 
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variables; those shown to be adjacent, however, need not necessarily be 
dependent. A perfect map of Pr faithfully displays all dependencies and 
independencies embodied in Pr. Not every probability distribution has a 
perfect map; for some examples see [PEAR88]. It will be evident, however, that 
every probability distribution has a D-map (an edgeless graph) as well as an 
I-map (a complete graph). 

From now on we will restrict the discussion to I-maps. The following 
definition introduces the notion of a minimal I-map of a joint probability 
distribution. 

DEFINITION 3.25. Let G be an undirected graph with the vertex set 
V(G) = {V1, • •• , Vn}, n ~ 1. Let ,q/(vi, ... , vn) be the Boolean algebra of 
propositions generated by {v; IV; E V(G)}. Furthermore, let Pr be a joint 
probability distribution on ,q/(v 1, ••• , vn). The graph G is called a minimal I­
map of Pr if G is an I-map of Pr and no proper subgraph of G is. 

Note that a minimal I-map of a joint probability distribution Pr again need 
not portray all independencies embodied in Pr. 

We will shortly see that a joint probability distribution can be represented in 
terms of functions which are local to the cliques of any one of its I-maps. For 
this purpose, we introduce the notion of factorization. 

DEFINITION 3.26. Let G be an undirected graph with the vertex set 
V(G) = {V1, ... , Vn}, n ~ I. Let C/(G) = {C/1, ... , Clm}, m ~ I, be the 
clique set of G. Furthermore, let ,q/(v 1, ..• , Vn) be the free Boolean algebra 
generated by {v;j V; E V(G)}. Let Pr be a joint probability distribution on 
,q/(v 1, •• • , vn). Pr is said to factorize according to G if there exist non-negative 
functions g;: {cv(cJ,) } ➔ [0,1] such that Pr is defined by 

Pr(Cv(G)) = /3 · II g;(Cv(cl,)) 
i=l, . .. , m 

where /3 is a normalization factor. 

The functions g; mentioned in the foregoing definition are sometimes called 
compatibility fwictions, [PEAR88], or factor potentials, [LAUR88b]. These 
compatibility functions are arbitrary in the sense that they are not necessarily 
related to marginal distributions obtained from the joint probability 
distribution. 

PROPOSITION 3.27. Let G be an undirected graph with the vertex set 
V(G) = {V1, ... , Vn}, n ~ 1. Furthermore, let ,q/(v 1, ... , vn) be the free 
Boolean algebra generated by {v; IV; E V(G)}. Let Pr be a joint probability 
distribution on ,q/(v 1, ••• , Vn). Then, Pr factorizes according to G if and only if 
G is an I-map of Pr. 
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We refer the reader to [PEAR88] for a proof of the proposition which is 
originally due to J.H. Hammersley and P. Clifford; in the sequel, we will only 
use a special case of the proposition. 

We have mentioned above that the compatibility functions in a factorization 
of a joint probability distribution Pr according to an arbitrary I-map in 
general are not related to marginal distributions derived from Pr. However, if 
Pr is factorized according to an I-map which is a so-called decomposable 
graph, then the resulting compatibility functions do have this property. Before 
we state this more formally in Proposition 3.38, we introduce some new 
notions concerning graphs. 

DEFINITION 3.28. An undirected graph G is decomposable if all its elementary 
cycles of length k ;;;;,, 4 possess a chord. 

Decomposable graphs are also called triangulated graphs, [BERG73,LAUR88a], 
or chordal graphs, [PEAR88]; the term decomposable has been adopted from 
[LAUR84]. 

DEFINITION 3.29. Let G = (V(G),E(G)) be an undirected graph of order n, 
n ;;;;,, 1. Let i: V(G) ~ {1, ... , n} denote a total ordering of the vertices of G. 
Now, let the elements of V(G) be numbered V1, •.• , Vn according to i (that is, 
we have i(V;) = i). The ordering i is called a perfect ordering of V(G) if for 
each i = 1, ... , n, the full subgraph of G induced by the set of vertices 
P(V;) n { V1, ... , Vi - 1} is complete. 

An undirected graph may allow more than one perfect ordering. The notion 
of a perfect ordering and its definition have been taken from [LAuR88a]. 
R.E. Tarjan and M. Y annakakis define the notion of a zero fill-in numbering 
and show in a lemma that a total ordering is a zero fill-in numbering if and 
only if it has the property we have used for a definition, [TARJ84]. 

The next lemma is of major importance; it has been proven in [TARJ84]. 

LEMMA 3.30. Let G be an undirected graph. G is decomposable if and only if it 
permits a pe,fect ordering of its vertices. 

The following provides an algorithm for computing a total ordering of the 
vertices of an arbitrary undirected graph. 

ALGORITIIM 3.31. Let G = (V(G),E(G)) be an undirected graph of order n, 
n ;;;;,, 1. The maximum cardinality search algorithm for computing a total 
ordering i of V(G) is the following: 

1. Assign the number I to an arbitrary vertex. 

2. Number the remaining vertices from 2 ton in increasing order such that the 
next number is assigned to a vertex having a largest set of previously 
numbered neighbours. 
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Note that in Algorithm 3.31 in each step the next vertex to be numbered need 
not be unique. Furthermore, the vertex that is numbered need not be a 
neighbour of the last numbered one. 

Tarjan and Y annakakis have proven that when applied to a decomposable 
graph maximum cardinality search renders a perfect ordering of its vertices: 

LEMMA 3.32. Let G be a decomposable graph. Any ordering t of the vertices of 
G obtained from maximum cardinality search is perfect. 

We now define an ordering of the cliques of a decomposable graph. 

DEFINITION 3.33. Let G = (V(G),E(G)) be a decomposable graph of order n, 
n ;;;;,, I. Let t be a perfect ordering of V ( G) obtained from maximum cardinality 
search. Let Cl(G) = {C/ 1, • • • , Clm}, m ;;;;,, 1, be the clique set of G. We 
define the ordering t: Cl(G) ~{I, .. . ,m} by t(Cl;) < t(Clj) if 
max{i(Vk)IVk E V(Cl;)} <max{i(Vk)IVk E V(Clj)}, for each pair of 
cliques Cl;, Cl1 E Cl(G). 

Note that in the ordering t introduced above, the cliques of a decomposable 
graph G are numbered in the order of their highest numbered vertex according 
to t. It will be evident that t is uniquely determined by the ordering ,. 

LEMMA 3.34. Let G = (V(G),E(G)) be a decomposable graph. Let t be a 
perfect ordering of V(G) obtained from maximum cardinality search. Let Cl(G) 
be the clique set of G. Lett be the ordering of Cl(G) obtained from , as defined 
above. Then, t is a total ordering. 

PROOF. The lemma follows from the properties of the ordering,. ■ 

The following lemma states an important property of an ordering t of the 
cliques of a decomposable graph as defined above; in [LAUR84,TARJ84] further 
details are provided. The lemma is known as the running intersection property. 

LEMMA 3.35. Let G be a decomposable graph. Let Cl(G) be the set of cliques of 
G numbered Cl 1, .•• , Clm, m ;;;;,, 1, according to an ordering t as defined in 
Definition 3.33. Then, t has the following property: for each i = 2, ... , m, there 
exists a j < i such that V(Cl1) :::> V(Cl;) n (V(C/ 1) U · · · U V(C/;_ 1)). 

The previous lemma states, in other words, that the vertices a clique has in 
common with the lower numbered cliques are all contained in one such clique. 

DEFINITION 3.36. Let G be a decomposable graph. Let Cl ( G) be the set of 
cliques of G numbered Cl 1, ... , Clm, m ;;;;,, 1, according to an ordering t having 
the running intersection property. For each i = 1, ... , m, we define 
S; = V(Cl;) n (V(C/1) U · · · U V(C/;- 1)) with S 1 = 0; furthermore, we 
define R; = V(Cl;) \ S;. S; is called the separator of clique Cl;; R; is called its 
residue. 
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We now turn our attention to the factorization of a joint probability 
distribution according to a decomposable I-map. 

DEFINITION 3.37. A joint probability distribution Pr is called decomposable if it 
has a minimal I-map that is decomposable. Pr is said to be decomposable 
relative to an undirected graph G if G is an I-map of Pr and G is decomposable. 

Note that for Pr to be decomposable relative to a graph G, it is not necessary 
that G is a minimal I-map of Pr. 

From the property stated in Proposition 3.27 we conclude that a joint 
probability distribution Pr which is decomposable relative to a (decomposable) 
graph G factorizes according to G. In fact, the additional information that G 
is decomposable allows us to prove the following more specific result. 

PROPOSITION 3.38. Let G be a decomposable graph with the vertex set 
V(G) = { V 1, ••• , Vn }, n ;;i. 1. Let Cl(G) be the set of cliques of G numbered 
Cl 1, . • • , Clm, m ;;i. I, according to an ordering t having the running intersection 
property; for each clique Cl; E Cl(G), i = 1, ... , m, let its separator S; be 
defined according to Definition 3.36. Let SB'(v 1, ••• , vn) be the Boolean algebra 
of propositions generated by {v; IV; E V(G)}; for each Cl; E Cl(G), 
i = 1, ... ,m, let SB'(Cl;) <: SB'(v 1, ••• , vn) be the free Boolean algebra 
generated by {vj I Vj E V(Cl;)}. Furthermore, let Pr be a joint probability 
distribution on SB'(v 1, ••• ,vn); for i = 1, ... ,m, let /Lc,, be the marginal 
distribution on SB'(Cl;), derived from Pr. Then, Pr is decomposable relative to G if 
and only if Pr is defined by 

Pr(Cv(G)) = IT 
/Lc,,(Cv(c/

1
)) 

/Lc,,(Cs,) i=l, ... ,m 

PROOF. 

~ We assume that Pr is decomposable relative to G; we have that the 
decomposable graph G is an I-map of Pr. So, for all subsets 
X, Y, Z <: V(G) of vertices such that <XI Z I Y>G we have 
Ipr(X,Z, Y). Now observe that since t has the running intersection 
property, we have that <V(Cl;)IS;J V(C/ 1) U · · · U V(Cl;-i)>G, for 
i = I, ... , m; it therefore follows that 
Pr(Cvcct,) I Cvcct,)u ... uvcct,_,)) = Pr(Cvcct,) I Cs,). So, 

Pr(Cv(G)) = II Pr(Cvcct,) I Cvcct,)u .. . uvcc1
1

_ ,)) = 
i=l, ... ,m 

II Pr(Cvcct,) I Cs,) = 
i=l, ... ,m 

II 
i=l, ... ,m 

/Lc1,(Cvcc1,)) 

/Lc1,(Cs,) 
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¢= We assume that the joint probability distribution Pr is defined by 

■ 

µ,ct,(Cvcc1,)) 

µ,ct,(Cs,) 
Pr(Cv(G)) = II 

i=l, ... ,m 

We have to prove that the decomposable graph G is an I-map of Pr, that 
is, we have to show that for all X, Y, Z ~ V(G) such that 
<XI Z I Y>G we have lp,(X,Z, Y). It suffices to show that 
Pr(Cvcc1,) I Cvcc1,)u ... uvcc,,_,)) = Pr(Cvcc1,) I Cs,) for i = I, ... ,m. 
We first prove the statement for i = m: 

}: Pr(Cv(Cl,)U · · · UV(Clr,) A CR,.) 

Now note that from 

Pr(Cv(G)) = 

II 
i=1, ... ,m 

we have that 

µ,ct,(Cv(ct,)) 

µ,ct,(Cs,) 

Pr(Cvcc1,)u ... u vcc,~ _, )) = II 
i=l, ... ,m-1 

µ,ct,(Cvcc1,)) 

µ,ct,(Cs,) 

We can now simply repeat the argument for i = m - 1, ... , I. 
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3.4.2. The Transformation Scheme 

In our introduction, we have mentioned that Lauritzen and Spiegelhalter 
propose transforming the originally assessed belief network into a new 
representation of the problem domain called a decomposable belief network. 
Before proceeding with a discussion of the proposed transformation we define 
the notion of such a decomposable belief network. 

DEFINITION 3.39. A decomposable belief network is a tuple B = (G, M) such 
that 

(I) G = (V(G),E(G)) is a decomposable graph with the vertex set 
V(G) = {V1, .•. , Vn}, n ~ I, and the clique set 
Cl(G) = {Cl 1, ••• , Clm}, m ~ I, and 

(2) M = {µ,c,, I Cli E Cl(G)} is a set of marginal distributions µ,c,, on f!l(Cli) 
where f!l(Cl;) is the Boolean algebra of propositions generated by 
{ vJ I VJ E V(Cl;)}, i = I, ... , m, such that for each pair of cliques 
Cl;, ClJ E Cl(G) with V(Cf;) n V(Cl) =/=- 0 we have that 
µ,q(Cv(C/,)nV(C/;)) = µ,q(Cv(Cl,)n V(CI;)). 

The statement in the following lemma can readily be verified using Proposition 
3.38. 

LEMMA 3.40. Let B = ( G, M) be a decomposable belief network as defined 
above. Let f!l(v 1, •.• , vn), n ~ I, be the Boolean algebra of propositions 
generated by {v; I Vi E V(G)}. Then, M defines a joint probability distribution 
Pr on f!l(v 1, • •. , vn) such that Pr is decomposable relative to G. 

The transformation of the originally assessed belief network into a 
decomposable belief network comprises several steps. These transformation 
steps are shown in Figure 3.2; the graphical representation of the belief 
network is transformed into a decomposable graph, and from the probabilistic 
part of the network a new representation of the joint probability distribution 
in terms of marginal distributions associated with the cliques of the 
decomposable graph is obtained. The overall transformation scheme 
essentially comprises two steps: 

(I) Transform the initial belief network into a so-called moral belief network 
which consists of a so-called moral graph and an associated 
representation of the joint probability distribution in terms of so-called 
evidence potentials. 

(2) Transform the moral belief network into a decomposable belief network 
which consists of a decomposable graph and an associated representation 
of the joint probability distribution in terms of marginal distributions. 

We discuss these transformation steps in some detail. 
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FIGURE 3.2. Transformation of the original belief network. 
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The Moral Belief Network. 

In [SPIE86b], D.J. Spiegelhalter has pointed out that 

"the class of recursive models and the class of graphical models intersect in the 
class of decomposable models, and a recursive model is a member of this 
intersection provided it does not have two non-adjacent vertices both 
preceding the same vertex" 
CTSPIE86b], p. 51 ; the statement has been proven in [WERM83]) 

thus providing a motivation and means for the construction of the graphical 
part of the moral belief network. 

Consider a belief network B = (G, I') as defined in Section 3.2. Informally 
speaking, the moral graph GM of the acyclic digraph G is obtained by first 
adding arcs to G such that no vertex in V(G) has non-adjacent predecessors1, 

and subsequently dropping the directions of the arcs. The moral graph of an 
acyclic digraph is defined more formally in the following definition. 

DEFINITION 3.41. Let G = (V(G),A (G)) be an acyclic directed graph with ver­
tices V(G) = {Vi, . . . , Vn}, n ;;., I. Let H be the (simple) digraph 
H = (V(G),A (H)) such that A (H) = A (G) U {(V;, VJ) I there is an index k 
such that V;, VJ E ?T(Vk), i < j, and V; and VJ are not adjacent in G}. The 
moral graph GM of G is defined as the widerlying graph of H. 

Note that the process of adding arcs between non-adjacent predecessors as 
described in the previous definition is only performed once: it is not repeated 
recursively. The construction of the moral graph for our running example is 
demonstrated in the following example. 

EXAMPLE 3.42. Consider the acyclic digraph G from Figure 3.1 once more. 
Upon successively examining the vertices Vi up to V 8 inclusive we find that 
the predecessors of vertex V 6 (that is, the vertices V 2 and V 4) are not 
adjacent, and that the same holds for the predecessors of vertex V7• We 
therefore add the arcs (V2, V4) and (V5, V6) to G. Note that the directions of 
these arcs are irrelevant since we will drop all directions subsequently. The 
construction of the moral graph GM of G is shown in Figure 3.3. ■ 

The following lemma will be evident. 

LEMMA 3.43. Let G be an acyclic digraph with the vertex set 
V(G) = {Vi, ... , Vn}, n ;;., I. For each V; E V(G), let Vi be defined as 
Vi= {V;} U ?TG{V;). Furthermore, let GM be the moral graph of Gas defined 
above. Then for each V; E V ( G), the full subgraph of GM induced by Vi is 
complete. 

I. The phrase moral graph comes forth from the observation that in a moral graph the parents of 
a common child are married (that is, there is a direct relationship between them). 
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(a) 

(b) 

FIGURE 3.3. Construction of the moral graph GM. 
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For the qualitative part of the original belief network we now have obtained 
an undirected representation. This moral graph again demonstrates certain 
independency relationships between the statistical variables. The following 
example shows however that some of the initially assessed independency 
relationships may no longer be visible explicitly in the moral graph. The 
moral graph therefore is an I-map but not necessarily a perfect map of the 
originally assessed joint probability distribution. The arcs that were added to 
the original graph should be taken as a kind of 'dummy' relationships. 

(a) (b) (c) 

(d) 

FIGURE 3.4. Three digraphs having the same moral graph. 

ExAMPLE 3.44. Consider the graphs shown in Figure 3.4(a) - (d). The digraph 
(a) for example represents independency of the variables V1 and V2 ; this 
independency however is no longer represented explicitly in the corresponding 
moral graph (d). The three digraphs (a) - (c) reflect different probabilistic 
independency relationships between the variables V1, V2 and V3• All three 
digraphs nevertheless have the same moral graph ( d). ■ 
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With the obtained moral graph we associate a new 'undirected' representation 
of the initially specified joint probability distribution, again in terms of local 
factors. This new representation is based on the notion of an evidence 
potential, a real-valued non-negative function of which the values only depend 
on configurations of small sets of vertices. An evidence potential may be 
viewed as the proportional contribution of the indicated set of variables to the 
original joint probability distribution. 

Definition 3.45 introduces these evidence potentials and the notion of a 
moral belief network. 

DEFINITION 3.45. Let B = (G, r) be a belief network as defined in Definition 
3.18, where G is an aryclic digraph with vertices V(G) = {V1, ••• , Vn}, n ;i, I. 
For each V; E V ( G), let Vf be defined as Vf = { V;} U '1T G(V;). The moral 
belief network BM derived from B is the tuple BM = ( GM, it) where 

(1) GM is the moral graph of Gas defined in Definition 3.41, and 

(2) it = {i/;v; I V; E V(G)} is the set of real-valued non-negative functions 

"1v;: { cv;} ➔ [O, 11 called evidence potentials, such that each "1v; is 

defined bv "1v.(Cv.) = Yv(V;IC,,.(v)), Yv Er, Cv. = V; I\ C,,.(V'• 
/ I I I G I I I G 1r 

i = 1, ... ,n. 

ExAMPLE 3.46. Consider the acyclic digraph G from Figure 3.1 once more and 
its corresponding moral graph GM as shown in Figure 3.3(b). With GM we 
associate a set of evidence potentials which are obtained from the conditional 
probability assessment functions associated with G as follows: 

"1v;(V1) Yv,(V1) 

"1v;(V1 I\ V2) Yv,(V2 I V1) 

"1v;(V3) Yv,(V3) 

"1v,(V3 I\ V4) Yv,(V4 I V3) 

"1v;(V3 I\ Vs) Yv,(Vs I V3) 

"1v;(V2 I\ V4 I\ V6) Yv.(V6 I V2 I\ V4) 

"1v;(Vs I\ V6 I\ V1) Yv1 (V1 I Vs I\ V6) 

"1v;(V6 I\ Vs) Yv.(Vs I V6) 

■ 

It will be evident that the set of evidence potentials constitutes just another 
representation of the original joint probability distribution defined by the 
initial assessment functions. This property is stated more formally in the 
following proposition. 
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PROPOSITION 3.47. Let B = (G, r) be a belief network defined according to 
Definition 3.18, where G is an acyclic digraph with vertices 
V(G) = {V1, •• • , Vn}, n ~ 1. For each V; E V(G), let 
Vi = {V;} U '1Ta(V;). Furthermore, let al(v 1, ••• , vn) be the free Boolean alge­
bra generated by { V; I V; E V(G)}, and let Pr be the joint probability distribution 
on at(v1, ... , vn) defined by r as in Proposition 3.21. Now, let BM= (GM,'¥) 
be the moral belief network derived from B defined as above. Then, we have that 

Pr(Cv(G)) = II 1/lv;(Cv;) 
V,EV(G) 

PROOF. The property follows immediately from Definition 3.45 and 
Proposition 3.21. ■ 

From Proposition 3.47 we have that although some of the originally assessed 
independency relationships are no longer explicitly represented in the moral 
graph, they still are represented in the joint probability distribution. Note that 
the representation of the joint probability distribution in terms of evidence 
potentials again is a local representation of uncertainty. 

The Decomposable Belief Network 

We recall that the transformation of the initially assessed belief network into a 
decomposable belief network comprises two steps, the first of which we have 
discussed just now. We proceed with a discussion of the transformation of the 
moral belief network resulting from the first transformation step into a 
corresponding decomposable belief network. We first consider the 
transformation of the obtained moral graph into a decomposable graph. 

The moral graph can be made decomposable by filling-in, that is, ( once 
more) by adding certain 'dummy' edges. Lauritzen and Spiegelhalter use an 
efficient algorithm by Tarjan and Yannakakis, (TARJ84], for doing so. The 
algorithm is known as the fill-in algorithm for obtaining a decomposable graph 
from an arbitrary undirected one. 

ALGORITHM 3.48. Let G be an undirected graph of order n, n ~ 1. The fill-in 
algorithm is the following: 

I. Compute a total ordering i of the vertices of G using maximum cardinality 
search. 

2. From i = n to 1, for each vertex numbered i add edges between a19' non-
adjacent neighbours of i that are assigned a lower number than i in L. 

The set of edges added to G is called the fill-in. 

If by applying Algorithm 3.48 no edges are added to an undirected graph G, 
then G was already decomposable; the phrase 'zero fill-in numbering' used by 
Tarjan and Y annakakis instead of the phrase 'perfect ordering' emerges from 
this observation. Otherwise, the new graph obtained from applying the 
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algorithm is decomposable. This property is stated more formally in the 
following lemma. For a proof of the lemma, the reader is referred once more 
to [T ARJ84]. 

LEMMA 3.49. Let G be an undirected graph. Let H be an wzdirected graph 
obtained from G by using the fill-in algorithm shown above. Then, H is 
decomposable. 

The following example shows the application of the fill-in algorithm to the 
moral graph of our running example. Note that the graph which results from 
applying the algorithm need not be unique. 

EXAMPLE 3.50. Consider the moral graph GM from Figure 3.3(b) once more. 
We use Algorithm 3.48 to obtain from GM a decomposable graph Gn. Using 
maximum cardinality search the vertices of GM may be numbered as shown in 
Figure 3.5(a). Examining the vertices from 8 to I in decreasing order we find 
that the vertex numbered 6 has two non-adjacent neighbours that are assigned 
a lower number than 6 in the ordering: the full subgraph generated by 
{V4,V5 } n {V1,V2,V4,V5,V6} = {V4,V5} is not complete. Therefore the 
edge (V4, V 5) is added to GM, yielding the decomposable graph Gn shown in 
Figure 3.6(b). Note that the alternative addition of (V3, V6) would have 
yielded a decomposable graph as well. We now number the six cliques of Gn 
in the order of their highest numbered vertex as prescribed in Definition 3.33. 
Let Cl; be the clique assigned number i. Then, we have obtained the following 
ordering, (identifying a clique with its vertex set): 

■ 

Cl1 = { Vi, V2} 

Cl2 = {V2, V4, V6} 

Cl3 = {V4, Vs, V6} 

Cl4 = {V3, V4, Vs} 

Cl5 = {Vs,V6,V1} 

Cl6 = {V6,Vs} 

In [LAUR88a], Lauritzen and Spiegelhalter point out that the fill-in should be 
computed very carefully, since the maximal order of the cliques of the 
decomposable graph resulting from the fill-in determines the computational 
complexity of their method for evidence propagation. It should be noted that 
the problem of computing a fill-in containing a minimum number of edges is 
NP-complete, [Y ANN8 l ]. 
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1 
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(a) 

1 

2 5 

8 

(b) 

FIGURE 3.5. Construction of the decomposable graph Gn. 
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The graphical part of the original belief network has now been transformed 
into a decomposable graph. Recall from Section 3.4.1 that a joint probability 
distribution which is decomposable relative to a (decomposable) graph G can 
be expressed in terms of marginal distributions associated with the cliques of 
G. Lauritzen and Spiegelhalter propose transforming the representation of the 
joint probability distribution in terms of evidence potentials into such a 
representation in terms of clique marginals. 

We recall that associated with the moral graph GM we departed from for 
constructing the decomposable belief network, we had a representation '1' of 
the joint probability distribution in terms of evidence potentials i/lv, 
V C V(GM)- We now are interested in a representation of the joint 
probability distribution in terms of marginal distributions associated with the 
cliques of a decomposable graph Gn obtained from GM. Since the evidence 
potentials i/lv not necessarily are defined on cliques or clique-intersections, they 
do not give rise to a representation of the joint probability distribution in 
clique marginals in a straightforward manner. In Lemma 3.51 we introduce an 
intermediate representation of the joint probability distribution in terms of so­
called kernels; Lemma 3.52 gives the sought-for representation in terms of 
clique marginals. 

LEMMA 3.51. Let BM = (GM, '1') be a moral belief network defined according to 
Definition 3.45 where V(GM) = { V 1, ..• , Vn }, n ;;;,, 1. Furthermore, let 
f:W(v 1, ••• , vn) be the Boolean algebra of propositions generated by 
{v; IV; E V(GM)} and let Pr be the joint probability distribution on 
f:W(v 1, • •. , vn) defined by '1' as in Proposition 3.47. Let Gn be a decomposable 
graph obtained from GM by using Algorithm 3.48. Furthermore, let Cl(Gn) be 
the set of cliques of GD numbered Cl 1, ••• , Clm, m ;;;,, 1, according to an 
ordering 'i having the running intersection property. For each clique Cl;, let its 
separator S; and its residue R; be defined as in Definition 3.36. Then, there 
exists a set K = {"ct, I Cl; E Cl(Gn)} of functions "c1,: {cR,} X {cs,} ➔ [O, 11 
such that 

II "c1,(CR, I Cs,) 
i=l, ... ,m 

PROOF. The lemma has been proven by Lauritzen and Spiegelhalter in 
[LAUR88a]. · Since the proof gives a construction of K, we repeat their 
argument ( even in more detail). 

Let Dm +J = {VI V C V(GM), i/lv E '1'} be the set of (initial) evidence 
potential domains. We have from Proposition 3.47 that 
Pr(Cv(G.,)) = II i/lv(Cv) is an evidence potential representation of the 

VED • • , 

marginal distribution on f:W(v 1, ••• , vn) (or, less formally, on V(GM)). We 
recursively repeat the following computation for i = m, ... , 1: 
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Consider clique C( and its residue R;. We define 
V*(Cl;) = V(C/ 1) U U V(Cl;). Now assume that 
Pr(Cv•(ct,)) = II 1/Jv(Cv) is an evidence potential representation of the 

VED1+1 

marginal distribution on V* (CIJ (note that the assumption holds for i = m). 
We split the set D;+i into two disjoint subsets: the set 
D t = { V I V E D; + 1, V n R; =I= 0 } consisting of those evidence potential 
domains that contain variables from R; and the set D 1 = D; + 1 \ D t 
consisting of those domains that do not. We have 

Pr(Cv-(Cl,)\R) = ~ Pr(Cv-(Cl,)\R, /\ cR) = c., 

= II 1/Jv(Cv) · ~ [ II+ 1/Jv(Cv\R, /\ cR)l 
VED; ~ VE~ 

Note that the first equality merely states that Pr(Cv•(ct,)\R) is obtained from 
Pr(Cv-(CI,)) by marginalization; the second equality follows from the earlier 
mentioned assumption Pr(Cv-(cl,)) = II l[lv(Cv). 

VED1+, 
We now have obtained a representation of the marginal distribution on 

!JC/1) U · · · U V(Cl;- 1). We define a new potential domain 
D; = U V \ R;; we furthermore define the function 

VED,+ 

It follows that 

Pr(CR, I Cs) = Pr(CR, I Cvcc1,)u ... uvcc11_,)) = 

Pr(Cv(Cl,)U ... UV(CI,)) 

Pr(Cv(Cl,)U . . . u V(CI,_,)) 

II 1/Jv(Cv) 
v EDI+, 1/Jv(C v) 

----'-----= II 
II 1/Jv(Cv) · c/>i5,(Cii) VED,+ c/>i5,(Ci5,) 

VED,-

We add the new evidence potential domain D; to D1 as an initialization for 
the following computation step of the recursion. So, we let 



Evidence Propagation by Lauritzen and Spiege/halter 113 

D; = D;- u {D;}; note that the elements of D; do not coD!_ain variables from 
R;. We furthermore define a new set of evidence potentials 'Pv such that 

ipi5
1
(Cjj,) = l/ljj,(Cjj,) · </>i5,(Cjj,) in case D; E D; +i, or 

l/li5,(Ci5,) = <Pi5,(Cjj,), otherwise 

and 

I/Iv = I/Iv for all V E D; +i, V =/= D; 

resulting in an evidence potential representation of the marginal distributi_Qn 
on V* (Cl; - 1) = V(Cl 1) U · · · U V(Cl; - 1). Subsequently, we rename 'Pv 
into ipv, and we repeat the computation for i - 1. Note that we have 
established the property Pr(Cv•(ct,_,) ) = II 'Pv(Cv)-

VED, 

Taking "ct, (CR, I Cs) = Pr (CR, I Cs), it will be evident that we find 
Pr(Cv(G.,)) = II Kq(CR, I Cs,). ■ 

i=l, ... ,m 

The functions "CJ, introduced in the preceding lemma are called kernels. From 
these kernels, we now obtain a set of clique marginals. Lemma 3.52 provides a 
means for doing so. 

LEMMA 3.52. Let BM = (GM,'¥) be a moral belief network defined according to 
Definition 3.45 where V(GM) = {V1, ... , Vn}, n ;;;;,, I. Let &t(v1, . .. , vn) be 
the free Boolean algebra generated by {v;I V; E V(GM)} and let Pr be the joint 
probability distribution on &t(v 1, ••. , vn) defined by '¥ as in Proposition 3.47. 
Let Gn be a decomposable graph obtained from GM by using Algorithm 3.48. 
Furthermore, let Cl(Gn) be the set of cliques of Gn numbered Cl 1, ••• , Clm, 
m ;;;;,, l, according to an ordering t having the running intersection property. For 
each Cl;, let its separator S; be defined according to Definition 3.36. Let K be 
the set of kernels as constructed in the previous lemma. Then, there exists a set 
M = {µ.et, I Cl; E Cl(Gn)} of marginal distributions P.ct, such that 

P.c,,(Cv(ct,)) 

i=l, ... ,m P.ct,(Cs,) 

PROOF. The lemma follows immediately by taking 
P.ct, (Cv(ct ,)) = "ct, (CR, I Cs,), and for each Cl;, i = 2, ... , m, recursively, 
P.ct,(Cv(ct,)) = "ct,(CR, I Cs,)· P.CI/Cs,) where j < i is chosen such that 
V(Cl1) ::> V(Cl;) n (V(Cl 1) U · · · U V(Cl; - 1)) and P.ct/Cs,) is obtained 
by marginalization. ■ 
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ExAMPLE 3.53. Consider the decomposable graph Gn from Figure 3.5(b) once 
more. With GD we associate the set of clique marginals 

M = {µc,,(Ccv,,v,}), µc,,(Ccv,,v,,v,} ), µc,,(Ccv,,v,,v, }), 

µc,, (C (V,, v,, v,}), µc,, (C (V,, v,,v,}), µc,, (C (V,,v,})} 

giving rise to the following representation of the joint probability distribution: 

Pr(V1 I\ · · · I\ Vs) = 

µc,,(V3 I\ V4 I\ V5) µc,,(V5 I\ v6 I\ V1) µct,(V6 I\ Vg) 
-------·-------·-----

µc,,(V4 I\ Vs) µct,(Vs I\ V6) µc,,(V6) 

• 
The transformation of the initially assessed belief network into a decomposable 
belief network has now be described completely. We have mentioned before 
that the actual scheme for evidence propagation proposed by Lauritzen and 
Spiegelhalter operates on this decomposable belief network. We emphasize 
that for a specific problem domain the transformation needs to be performed 
only once. 

3.4.3. Evidence Propagation in a Decomposable Belief Network 

For making probabilistic statements concerning the statistical variables 
discerned in a problem domain we have to associate with a decomposable 
belief network a method for computing probabilities of interest from it and a 
method for propagating evidence through it. As far as computing probabilities 
from a decomposable belief network is concerned, it will be evident that any 
probability which involves variables occurring in one and the same clique only, 
can simply be computed locally from the marginal distribution on that clique. 

The method for evidence propagation is less straightforward. Suppose that 
evidence becomes available that a statistical variable V has adopted a certain 
value, say true. For ease of exposition, we assume that the variable V occurs 
in only one clique of the decomposable graph; our observations, however, can 
easily be adapted to deal with the more general case in which V occurs in the 
intersection of two or more cliques. Informally speaking, propagation of this 
piece of evidence amounts to the following. The vertices and the cliques of the 
graph of the decomposable belief network are ordered anew as described in 
Section 3.4.1, this time starting with the instantiated vertex. The ordering of 
the cliques then is taken as the order in which the evidence is processed 
through the cliques; for each subsequent clique, the updated marginal 
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distribution is computed locally. Then, the instantiated vertex is removed 
from the graph, and the updated marginal distributions are taken as the 
marginal distributions associated with the cliques of the remaining graph, 
together once more constituting a decomposable belief network. 

In Definition 3.53 we define the set M1' of updated marginal distributions. 
In Proposition 3.54 we state that M• indeed defines the updated probability 
distribution given V = true. 

DEFINITION 3.53. Let B = (G, M) be a decomposable belief network. Let 
Cl(G) be the clique set of G. Now let the evidence V = true (or V = false, al­
ternatively) be observed for a vertex V E V(G). Let t be an ordering of V(G) 
obtained from maximum cardinality search starting with V (so, we have 
t(V) = 1). Let the cliques of G be numbered C/ 1, ••• , Clm, m ;;;;,, 1, according 
to the ordering t obtained from t as in Definition 3.33. For each Cl;, let its 
separator S; be defined according to Definition 3.36. We define the updated mar­
ginal distributions f.Lct,, i = 1, ... , m, as follows: 

(1) f.Lc1,(Cc1, \(V) ) = f.Lc,,(Cct, \ (V) I\ v), and 

(2) 
f.Lc1,(Cs,) . . 

f.Lc,,(Cct,) = /J,q(Cc,,) · (C ),for 1 = 2, ... ,m, recursively. 
f.Lct, s, 

We use M• to denote the set of updated marginal distributions 
M• = {f.Lct, Ii = 1, .. . , m }. 

PROPOSITION 3.54. Let B = ( G, M) be a decomposable belief network where 
V(G) = {V1, ••• , Vn}, n;;;;,, l. Let Cl(G) be the clique set of G. Now, let the 
evidence V = true (or V = false, alternatively) be observed for a vertex 
V E V(G). Let t be an ordering of V(G) obtained from maximum cardinality 
search starting with V. Let the cliques of G be numbered Cl 1, ..• , Clm, m ;;;;,, 1, 
according tot obtained from the ordering t as in Definition 3.33. For each Cl;, let 
its separator S; be defined as in Definition 3.36. Let ~(v 1, ••• , vn) be the Boole­
an algebra of propositions generated by { V; I V; E V(G)} and let Pr be the joint 
probability distribution on ~(v 1, ••• , vn) defined by M as in Proposition 3.38. 
Let Pr• be the updated probability distribution given v. Now, let M• be as in the 
previous definition. Then, 

Pr•(Cv(G) \ (VJ) = f.Lct, (Cct, \ (V)). II 
i = 2, ... ,m 

f.Lc1,(Cct,) 

f.Lc,,(Cs) 

From Definition 3.53 and Proposition 3.54 we have that propagation of 
evidence entails only local updating of the joint probability distribution. Note 
the analogy with the locality of the schemes for propagating evidence in the 
quasi-probabilistic models discussed in Chapter 2. 

The following lemma states that the notion of a decomposable belief 
network is invariant under evidence propagation. 
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LEMMA 3.55. Let B = (G, M) be a decomposable belief network. Let the 
evidence V = true (or V = false, alternatively) be observed for a vertex 
V E V(G). Let G' be defined as G' = (V(G'),E(G')) such that 
V(G') = V(G)\ {V} and E(G') = E(G) n (V(G') X V(G')). Furthermore, 
let M' be defined as in Definition 3.53. Then, B' = (G',M') is a decomposable 
belief network. 

PROOF. The lemma follows from Proposition 3.54 and the observation that a 
decomposable graph remains decomposable after removing an arbitrary vertex 
from it in the way mentioned in the lemma. ■ 

The method presented by Lauritzen and Spiegelhalter has served as a point of 
departure for the implementation of a network-based expert system shell called 
HUGIN at Aalborg University, Denmark, [ANDE89]. HUGIN offers, among 
other features, a set of tools for constructing a belief network, for subsequently 
transforming it into a decomposable belief network and for entering and 
propagating evidence. 
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Chapter 4 

Partially Quantified Belief Networks 

In Chapter 1 we have argued that one of the problems in applying probability 
theory in a model for handling uncertainty in a knowledge-based system is the 
difficulty of obtaining a joint probability distribution on the problem domain: 
often only a few probabilities are known or can be estimated by an expert in 
the field. In such a case, we are confronted with the problem of having to 
derive statements concerning probabilities of interest from only a partial and 
often inconsistent specification of a joint probability distribution. We have 
seen in Chapter 2 that the quasi-probabilistic models developed in the 1970s 
were able to handle this problem, although not in a mathematically sound 
way: we have shown that the schemes for combining and propagating evidence 
employed in these models are incorrect. In fact, even as an approximation 
technique they are far from convincing. 

In contrast, the schemes for evidence propagation employed in the network 
models are mathematically sound. These models, however, are not capable of 
dealing with a partial specification of a joint probability distribution nor with 
an inconsistent one: in the models presented so far the belief network has to 
be fully and consistently quantified, that is, the initially assessed local 
(conditional) probabilities have to define a unique joint probability distribution 
on the statistical variables concerned. Several contributors to the discussion of 
the paper by S.L. Lauritzen and D.J. Spiegelhalter have called attention to the 
difficulty of assessing all probabilities required, see for example the 
contributions by P. Cheeseman and F. Critchley, [LAUR88a]. In the same 
discussion, D. Dubois and H. Prade furthermore argue that the requirement 
for a unique joint probability distribution on the statistical variables almost 
inevitably leads to replacing missing information by strong default 
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assumptions concerning independency relationships between the variables in 
order to be able to guarantee uniqueness, with all the unpleasant consequences 
we encountered before with the quasi-probabilistic models. 

In this chapter we address the problem of having only a partially quantified 
belief network at our disposal for reasoning with uncertainty. Informally 
speaking, a partially quantified belief network is a kind of belief network: it 
equally consists of a qualitative representation of a problem domain in terms 
of an acyclic digraph, and a quantification of the arcs of the graph in terms of 
local probabilities. In a partially quantified belief network, however, the 
initially given local probabilities do not give rise to a unique joint probability 
distribution respecting the independency relationships between the statistical 
variables shown in the graph. We have chosen the phrase partially quantified 
belief network so as to express that only the quantitative part of the 
representation of a problem domain has been specified partially: we assume 
that the qualitative part has been fully specified, that is, we assume that all 
'directed' independency relationships between the statistical variables are 
known or have been assessed by an expert in the field. 

Now recall from Chapter 3 that for making probabilistic statements 
concerning the statistical variables discerned in the problem domain, two 
methods were associated with a belief network: a method for deriving from the 
network information about probabilities of interest and a method for 
processing evidence. In order to be able to exploit a partially quantified belief 
network for reasoning with uncertainty, we have to devise similar methods for 
this type of belief network. In Section 4.3 we will present a method for 
computing upper and lower bounds on probabilities of interest from a partially 
quantified belief network. The general idea of our method is to take the 
probabilities provided by a domain expert as defining constraints on a yet 
unknown probability distribution; Section 4.2 provides the basic details of this 
approach. For exploiting independency relationships between the statistical 
variables discerned we build on the model by Lauritzen and Spiegelhalter as 
discussed in the preceding chapter. In Section 4.4 we once more take this 
model as a starting point for investigating the problem of evidence propagation 
in a partially quantified belief network. Adhering to the basic idea of the 
model by Lauritzen and Spiegelhalter, our aim was to arrive at a method for 
processing evidence in which the graphical part of the network is exploited 
more or less directly as a computational architecture and which renders the 
notion of a partially quantified belief network invariant under evidence 
propagation. Unfortunately we have not been able to devise such a 
propagation method; in fact, by means of a counterexample we will show that 
the method for evidence propagation proposed by Lauritzen and Spiegelhalter 
cannot be extended in a straightforward manner to deal with probability 
intervals. We will comment on some of the problems we encountered in trying 
to meet the mentioned requirements. 
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4.1. PRELIMINARIES: THE THEORY OF LINEAR PROGRAMMING 

In this section we review some basic notions from the theory of linear 
programming. For further information, the reader is referred to 
[PAPA82,SCHR86]; he may consult [STRA76] for information on aspects from 
linear algebra and [BR0N83] for more definitions and properties concerning 
convex polytopes. 

DEFINITION 4.1. Let x, y E Rn, n ~ 1. A convex combination of x and y is a 
vector z E Rn such that z = AX + (I - ;\.)y, ;\. E R, 0 ,;;;; ;\. ,;;;; 1. 

A set S C Rn is convex if for each x, y E S, all convex combinations of x and y 
are in S. A convex set is called a ( convex) polyhedron if it is the intersection of 
a finite number of closed half spaces; if a polyhedron is bounded and nonempty, it 
is called a ( convex) polytope. 

For any subset S c; Rn, the convex hull of S, denoted by hull(S), is the set 
obtained by recursively taking convex combinations starting with the elements 
from S. We say that S spans the convex hull hull(S). 

Note that for each set S c; Rn, the convex hull hull(S) is the smallest convex 
set containing S. Furthermore, it will be evident that a convex set is a 
polytope if and only if it is the convex hull of a finite nonempty set S c; Rn. 

DEFINITION 4.2. Let x,y E Rn, n ~ 1. A conical combination of x and y is a 
vector z E Rn such that z = AX + µy, ;\, µ ~ 0. 

A set S C Rn is a cone if for each x E Sand;\. E R, A ~ 0, we have AX E S. 
For a given x E S, the half/ine AX, ;\. ~ 0, is called the ray spanned by x. 

A convex cone is a cone which is convex. A convex cone is called polyhedral if 
it is the intersection of a finite number of linear halfspaces. 

For any subset S c; Rn, the convex cone generated by S, denoted by cone(S), is 
the set obtained by recursively taking conical combinations starting with the 
elements from S. 

DEFINITION 4.3. Let P c; Rn, n ~ 1, be a nonempty convex polyhedron and let 
H be a closed halfspace defined by a hyperplane h. If the intersection 
f = P n H is a subset of h, then f is called a face of P and h is called the 
supporting hyperplane defining f. 

A face of P of dimension n - 1 is called a facet of P. A face of dimension one 
is called an edge. A face of dimension zero is called a vertex. We use vert (P) to 
denote the set of vertices of P. 

Informally speaking, a supporting hyperplane defining a facet of a convex 
polyhedron corresponds to a defining hyperplane of the polyhedron, a vertex is 
a 'corner' of the polyhedron and an edge is a line segment joining two vertices. 
A point on a face of a convex polyhedron will be called an extreme point; a 
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point of a convex polyhedron that is not extreme will be called an interior 
point. 

It will be evident that a convex polytope has finitely many faces. In the 
sequel, we will use the following important property. 

LEMMA 4.4. A convex polytope is the convex hull of its vertices. 

In the following definition we define a linear programming problem. 

DEFINITION 4.5. A linear programming problem (or LP-problem for short) in 
general form is a problem having the following form: 

n 

maximize ~ c1x1 
j=I 

subject to 
n 

(i) ~ a;,1x1 ,;;;; b;,for i = 1, ... ,k, k;;;. 0, 
j=I 

n 

(ii) ~ a;,1x1 = b;, for i = k + 1, ... , m, m ;;;. k, 
j=l 

(iii) x1 ;;;. O,for j = 1, ... ,n, n ;;;. 1, 

where the constants a;J constitute them X n matrix A, the variables x1 constitute 
the n-vector x, the constants b; constitute the m-vector b and the constants c1 
constitute the vector c. The linear function to be maximized is called the 
objective function of the linear programming problem. The equalities and 
inequalities (i ), (ii) and (iii) are called the constraints of the problem; the 
constraints (iii) are also called the nonnegativity constraints. A system of 
constraints is called homogeneous if b = O; otherwise it is called an 
inhomogeneous system of constraints. 

An LP-problem involving inequalities only is said to be in canonical form; an 
LP-problem involving only equalities and nonnegativity constraints is said to be in 
standard form. 

A vector x satisfying a system of constraints is called a feasible solution to the 
system. The set of all feasible solutions to a system of constraints is called its 
feasible set A feasible solution that maximizes a given objective function is 
called an optimal solution; the corresponding value of the objective function is 
called the optimal value. If a system of constraints has no feasible solutions at 
all it is called an infeasible system of constraints. 

The phrases general form, canonical form and standard form which in the 
previous definition have been related to LP-problems often are taken to apply 
to systems of constraints as well. It can easily be shown that the three forms 
are equivalent, that is, a system of constraints in one form can be transformed 
into one in another form having the same feasible set. 
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LEMMA 4.6. The feasible set of a system of linear constraints is a convex 
polyhedron. The feasible set of a homogeneous system of linear constraints is a 
polyhedral cone. 

Definition 4.7 defines the notion of an £-neighbourhood in relation with a 
system of linear constraints in standard form. Because of the equivalence of 
the three forms, the definition can be reformulated to apply to systems of 
constraints in one of the other forms. 

DEFINITION 4.7. Let Ax = b, x;;;;. 0, be a system of linear constraints in stan­
dard form and let P be its feasible set. For each y E P and E: > 0, the £-neigh­
bourhood of y, denoted by N,(y), is defined as the set N,(y) = {xix E P and 
lly - xii :,;;;; E:}, where II.II denotes Euclidean distance. 

From the theory of linear programming we have the following theorem: the 
objective function of an LP-problem having the convex polytope P as the 
feasible set of its system of constraints assumes its optimal value at a vertex of 
P. From this theorem it follows that we only have to consider the vertices of 
P to determine an optimal solution. A well-known computation procedure for 
solving linear programming problems exploiting this property is the simplex 
method which has been developed by G.B. Dantzig. We do not consider this 
method in detail; further details can be found in [PAPA82]. The worst-case 
behaviour of the simplex method is exponential in the size of the LP-problem 
being solved, which in turn is dependent upon the number of variables the 
problem involves as well as the number of constraints. Besides this simplex 
method several other computational methods for solving linear programming 
problems have been developed. Some of these have been shown to be 
polynomial in time, such as the ellipsoid method presented by L.G. Kachian. 
This method is discussed in detail in [PAPA82]. Complexity properties of 
computational methods for solving LP-problems have been formulated in 
considerable detail by A. Schrijver in [SCHR86]. 

4.2. PARTIAL SPECIFICATION OF A JOINT PROBABILlTY DISTRIBUTION 

As has been mentioned before, in this chapter we will deal with the situation 
in which only a partially quantified belief network is available for reasoning 
with uncertainty. Recall that such a partially quantified belief Qetwork was 
meant to consist of an acyclic digraph representing independency relationships 
between the statistical variables discerned, and a partial specification of a joint 
probability distribution on the variables comprising prior as well as 
conditional probabilities assessed by a domain expert. In this section we lay 
the foundation for a method for deriving bounds on probabilities of interest 
from such a partially quantified belief network. We will concentrate ourselves 
on the notion of a partial specification of a joint probability distribution and 
develop a method for calculating probability intervals given such a partial 
specification. For the moment, we do not take the graphical part of the 
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network into consideration; in fact, we assume that no independency 
relationships hold between the statistical variables discerned. In Section 4.3, 
however, we will present a method for computing bounds on probabilities in 
which the independencies portrayed in the graphical part of the partially 
quantified belief network are exploited. 

In the following definition the notion of a partial specification of a joint 
probability distribution is formally defined. 

DEFINITION 4.8. Let !JI be a Boolean algebra of propositions as defined in 
Definition 3. 7. A partial specification of a joint probability distribution on !JI is 
a total function P : CC➔ [O, I] where CC C !!I. 

A partial specification P : CC➔ [O, I] is consistent if there exists at least one joint 
probability distribution Pr on !JI such that Pr I ~ = P; otherwise, P is said to be 
inconsistent Furthermore, we scry that P (uniquely) defines Pr, or alternatively 
that P is a definition for Pr, if Pr is the only joint probability distribution on !JI 
such that Pr I ~ = P. 

We note that D.V. Lindley et al. use the terms coherent and incoherent instead 
of consistent and inconsistent, [LIND79]. In this section we will often use the 
incomplete phrase partial specification to denote a partial specification of a 
joint probability distribution on a given Boolean algebra of propositions as 
long as ambiguity cannot occur. 

The problem of determining the probability of an event given a partial 
specification of a joint probability distribution has already been investigated as 
early as halfway the nineteenth century by G. Boole, [BOOL54]. However, 
Boole's ideas on probability theory have received little attention. In an 
excellent book providing a thorough exposition of Boole's work on logic and 
probability in terms of modem algebra, propositional logic and probability 
theory, T. Hailperin states the following: 

"Never clearly understood, and considered anyhow to be wrong, Boole's ideas 
on probability were simply by-passed by the history of the subject, which 
developed along other lines." 
(IHAIL86], p. 215) 

In our opinion Boole's ideas have become topical once more in the context of 
reasoning with uncertainty in artificial intelligence. In fact, our method for 
deriving mathematically sound statements concerning probabilities of interest 
from a partial specification of a joint probability distribution is based on 
Boole's work; we have used Hailperin's book, [HAIL86], as a guide to the work 
of Boole. 

In Section 4.2.1 we will present our method for computing bounds on 
probabilities of interest from a consistent partial specification of a joint 
probability distribution. For ease of exposition, we will assume that such a 
partial specification only comprises prior probabilities; in Section 4.2.2 it will 
be shown, however, that the method we have developed can deal with 
conditional probabilities in the same way in which it handles prior ones. In 
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Section 4.2.3 we will briefly touch upon the problem of having an inconsistent 
partial specification of a joint probability distribution. 

4.2.1. Computing Bounds on Probabilities of Interest 

In the following definition, we introduce the notion of a basis for a JOmt 
probability distribution. This notion will play an important role in the 
remainder of this section. 

DEFINITION 4.9. Let 81 be a Boolean algebra of propositions as defined in 
Definition 3. 7. A set <t <;;; 81 is called a basis for a joint probability distribution 
on 81 if for any consistent partial specification P: <t ➔ [O, 1] defined on ~ there 
exists a joint probability distribution Pr on 81 such that P is a definition for Pr. 

In Definition 4.10 we introduce a basis that will be shown to have some 
convenient properties shortly. 

DEFINITION 4.10. Let d = { a 1, •.. , an}, n ;;;. 1, be a set of atomic proposi­
tions and let 81(a 1, ..• , an) be the Boolean algebra of propositions generated by 
d as defined in Definition 3. 7. We define the set 810 <;;; 81(a 1, ••• , an) such that 

n 

810 = { /\ L; IL; = a; or L; = -,a;, a; Ed}. 
i=l 

Note that the set 810 has been introduced before in the proof of Proposition 
3.12. Recall that it has 2n elements essentially being the 'smallest' ones from 
81(a 1, ••• , an)- It can easily be shown that 810 indeed is a basis. 

LEMMA 4.11. Let 81 be a Boolean algebra of propositions as defined in Definition 
3. 7 and let the set 810 <;;; 81 be defined as above. Then, 810 is a basis for a joint 
probability distribution on 81. 

The basis 810 <;::; 81 will be used frequently throughout the remainder of this 
chapter. Note that by definition we have that each consistent partial 
specification P: 810 ➔ [O, l] defined on 810 , uniquely defines a joint probability 
distribution Pr on the entire Boolean algebra of propositions 81. 

It will be evident that in 81 we can identify several different bases. The 
following lemma for example states another two sets that can easily be shown 
to be bases for a joint probability distribution on 81. 

LEMMA 4.12. Let d= {a 1, ... ,an}, n;;;. 1, be a set of atomic propositions, 
and let 81(a 1, ... , an) be the Boolean algebra of propositions generated by sl. 
Then, the set {;~_,a; I.F <;::; { 1, ... , n }, a; Ed} is a basis for a joint probability 

distribution on 81(a 1, ••• , an), and so is { V a; I.F <;::; {l, ... , n }, a; Ed}. 
iE-' 

PROOF. We only prove the lemma for {;~_,a; I.F <;::; {I, ... ,n}, a; Ed}. 

The proof for the set {; 'f _, a; I .F <;::; {I, ... , n}, a; E d} follows by symmetry. 
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Let <f={/\ a;I.J'C{I, ... ,n},a;E.w''} and let P:<f➔ [O,l] be a 
iEJ 

consistent partial specification of a joint probability distribution on 
81(a 1, ••• , an)- Using P, we now construct a (total) joint probability 
distribution Pr on 81(a 1, ... ,an) such that Pr I~= P. By definition we have 
Pr(c) = P(c) for all c E ~ that is, the probabilities Pr(c) coincide with the 
initially specified function values P(c). First, the probabilities of conjunctions 
comprising negated elements of d are determined uniquely by recursively 
applying the rule 

Pr(c I\ -,a) = Pr(c) - Pr(c I\ a) 

for all c E ~ a E .91. Note that this rule has been derived from Definition 
3.11. The function values Pr(x) for all other elements x E 81 \<fare now 
determined uniquely by recursively using the following properties from Lemma 
3.13: 

(1) for all XJ, X2 E 81, Pr(x1 V X2) + Pr(x1 I\ X2) = Pr(x1) + Pr(x2), 
and 

(2) for all x E 81, Pr(x) + Pr(-,x) = I. 

Note that the joint probability distribution Pr is computed using P only and 
therefore is a unique extension of P. Since Pis an arbitrary consistent partial 
specification defined on ~ we have that <f is a basis for a joint probability 
distribution on 81. ■ 

The following lemma can easily be proven. 

LEMMA 4.13. Let 81 be a Boolean algebra of propositions with nfree generators, 
n ;;;;,, I, as defined in Definition 3. 7. Then, a basis for a Joint probability distribu­
tion on 81 has at least 2n - I elements. 

Note that it does not follow from Lemma 4.13 that when less than 2n - I 
probabilities have been specified initially, they cannot define a joint probability 
distribution on a Boolean algebra of propositions 81 with n free generators 
uniquely: it may well be that a consistent partial specification P defined on a 
subset <f <;;; 81 with I <f I < 2" - I is a definition for a joint probability 
distribution on 81. 

ExAMPLE 4.14. Letd= {a1,a 2,a3} be a set of atomic propositions and let 
81(a1, a 2, a 3) be the Boolean algebra of propositions generated by .91. Now, let 
<f = { a 1 /\ a 2 I\ a 3}. It will be evident that the partial specification P 
defined on <f by P(a 1 I\ a 2 I\ a 3) = I is a definition for a joint probability 
distribution on the entire Boolean algebra 81(a 1, a2, a 3). The set <fhowever is 
not a basis for a probability distribution on 81(a 1, a 2, a3). ■ 

We introduce the notion of a minimal basis. 
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DEFINITION 4.15. Let !!4 be a Boolean algebra of propositions with n free 
generators, n ;;;,,, 1. Let CC ~ !!4. CC is called a minimal basis for a joint 
probability distribution on !!4 if CC is a basis as defined in Definition 4.9 and if in 
addition we have I CC I = 2" - 1. 

COROLLARY 4.16. Let !!4 be a Boolean algebra of propositions as defined in 
Definition 3.7 and let !!40 C !!4 be the basis defined according to Definition 4.10. 
Then, !!40 is not a minimal basis. 

Note that the basis !!40 contains just one element too many to be a minimal 
basis. For, since the Boolean algebra of propositions !!4 is finite we have for 
each joint probability distribution Pr on 81 that any probability Pr(b;), 
b; E 810, can be expressed 

2
µi terms of the probabilities of all other elements 

from !!40 : Pr(b;) = 1 - ~ Pr(bj). The deletion of an arbitrary element 
j=I, jc/=i , 

from !!40 therefore yields a minimal basis. 
The following three lemmas state some general properties concerning the 

basis !!40 • 

LEMMA 4.17. Let !JI be a Boolean algebra of propositions with n free generators, 
n ;;;,,, 1, as defined in Definition 3. 7. Let the basis !!40 ~ !!4 be defined according 
to Definition 4.10 and let its elements be enumerated as b;, i = 1, ... , 2". 
Then, for any joint probability distribution Pr on !!4 we have 

2' 

~ Pr(b;) = 1 
i=I 

PROOF. From our definition of the basis !!40 we have for any 
i, j E

2
,{l, ... , 2"} with i -=/= j that b; I\ b1 = false. Furthermore, we have 

that V b; = true. The result now follows from the observation Pr(true) = 1 
i= I 

and the additivity of any probability distribution Pr on !!4. ■ 

The probabilities Pr(b;) of b; E !!40, i = 1, ... , 2n, as mentioned in the 
previous lemma will be called the constituent probabilities of Pr. 

LEMMA 4.18. Let !JI be a Boolean algebra of propositions with n free generators, 
n ;;;,,, 1, as defined in Definition 3. 7. Let the basis !!40 C !!4 be defined according 
to Definition 4.10 and let its elements be enumerated as b;, i = 1, ... , 2". 
Then, for each b E !!4 there exists a unique set of indices -'6 ~ {I, ... , 2n} such 
that b = V b;. 

i EJ, 

PROOF. Each element b E !!4 can be written in disjunctive normal form, that 
is, b can be represented uniquely as a disjunction of elements of !!40 using 
De Morgan's laws and the distributive laws. For further details, the reader is 
referred to the proof of Proposition 3.12. So, there is a unique set of indices 
-'6 ~ {I, ... ,2"} such that b = V b;. ■ 

i EJ, 
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The unique set of indices .Pi, for an element b E 81 having the property 
mentioned in the preceding lemma will be called the index set for b. 

LEMMA 4.19. Let 81 be a Boolean algebra of propositions with n free generators, 
n ;;;,, l. Let the basis 810 C 81 be defined as in the foregoing and let its elements 
be enumerated as b;, i = l, ... , 2". Furthermore, let b E 81 and let .Pi, be the 
index set for bas in Lemma 4.18. Then, for each joint probability distribution Pr 
on 81we have 

Pr(b) = ~ Pr(b;) 
i E-', 

PROOF. From Lemma 4.18 we have that b = V b;. From the additivity of 
i EJ, 

Pr and the observation that b; I\ bj = false for any i, j E {1, ... ,2"},_ 
i =/= j, we derive the property stated in the lemma. ■ 

We will exploit the set 810 and its properties for computing probability 
intervals for probabilities of interest from an arbitrary partial specification. 
Suppose that we are given probabilities for a number of arbitrary Boolean 
combinations of atomic propositions, that is, we consider the case in which we 
are given a consistent partial specification P of a joint probability distribution 
on 81, which is defined on an arbitrary subset Cf C 81. The problem of finding 
a joint probability distribution on 81 which is an extension of P will now be 
transformed into an equivalent problem in linear algebra. The general idea is 
to take the initially given probabilities as defining constraints on a yet 
unknown joint probability distribution. 

Let 81 once more be a Boolean algebra of propositions with n free 
generators, n ;;;,, l. Let 810 C 81 be the basis defined in Definition 4.10 and let 
its elements be enumerated as b;, i = 1, ... , 2". Let Cf= { c 1, ••• , cm}, 
m ;;;,, l, be a subset of 81, and let P: Cf ➔ [O, l] be a consistent partial 
specification of a joint probability distribution on 81. We now consider an 
arbitrary (yet unknown) joint probability distribution Pr on 81 with 
Pr I <f = P. Let the constituent probabilities Pr(b;), b; E 810, of Pr be 
denoted by x;, i = 1, ... , 2". Furthermore, let the initially specified 
probabilities P(c;) = Pr(c;), c; E ~ i = 1, ... ,m, be denoted by p;. From 
Lemma 4.17 and Lemma 4.19 we obtain the following inhomogeneous system 
of linear equations: 

d1,1X1 + ... + d1,2•X2• Pi 

Pm 
1 
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{
o if j (/. ~I 

where d;,J = 
1 

ifj E ~ ,' i = l , ... ,m, j = l, ... ,2n, in which~, is the 

index set for c; E ~ This system of linear equations has the 2n constituent 
probabilities of Pr as unknowns. Now, let p denote the column vector of 
right-hand sides of this system of linear equations and let x denote the column 
vector of unknowns. Furthermore, let D denote the coefficient matrix of the 
system. Then, the system of linear equations shown above is equivalent to the 
following matrix equation: 

Dx =p 

From now on, we will use this matrix equation to denote the system of linear 
equations obtained from a partial specification P as described above. 

The following lemma states the relation between extensions of a consistent 
partial specification of a joint probability distribution and solutions to the 
matrix equation obtained from it. 

LEMMA 4.20. Let !JI be a Boolean algebra of propositions with n free generators, 
n ;;. l, as defined in Definition 3. 7. Let the basis 810 \:;;;; 8if be defined according 
to Definition 4.10 and let its elements be enumerated as b;, i = l, ... , 2n. Let 
<(! \:;;;; 8if and let P : <(! ➔ [O, 1] be a consistent partial specification of a joint 
probability distribution on !JI. Let Dx = p be the matrix equation obtained from 
P as in the foregoing. Then, the following properties hold: 

(1) For any joint probability distribution Pr on 8if such that Pr I~ = P, we 
have that the vector x of constituent probabilities X; = Pr(b;), b; E 810, 

i = l, ... , 2n, is a solution to the matrix equation Dx = p. 

(2) For any nonnegative solution vector x with components x;, i = l, ... , 2n, 
to the matrix equation Dx = p, we have that Pr(b;) = X;, b; E 810, 

defines a joint probability distribution Pr on 8if such that Pr I ~ = P. 

PROOF. The properties stated in the lemma follow immediately from the 
Lemmas 4.17 and 4.19. ■ 

Nate that although every Jomt probability distribution Pr which is an 
extension of a consistent partial specification P corresponds uniquely with a 
solution to the matrix equation Dx = p obtained from P, not every solution to 
Dx = p corresponds with a 'probabilistic' extension of P: Dx = p may have 
solutions in which at least one of the x;'s is less than zero. 

From Lemma 4.20 we derive a necessary and sufficient condition for a 
consistent partial specification to be a definition of a joint probability 
distribution. 
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COROLLARY 4.21. Let 81 be a Boolean algebra of propositions as defined in 
Definition 3. 7. Let P be a consistent partial specification of a joint probability 
distribution on 81 and let Dx = p be the matrix equation obtained from P. Then, 
P uniquely defines a joint probability distribution on 81 if and only if Dx = p has 
a unique nonnegative solution. 

Now consider the case in which we are given a consistent partial specification 
P which can be extended in more than one way to a joint probability 
distribution on 81, where 81 is a Boolean algebra of propositions with n free 
generators, n ;;.,, 1. For making statements concerning probabilities of interest, 
we can simply select a single 'probabilistic' extension of P and use the selected 
joint probability distribution for computing the probabilities we are interested 
in. In the foregoing, we have transformed the problem of finding a joint 
probability distribution Pr on 81 which is an extension of P into the equivalent 
problem in linear algebra of finding a nonnegative solution to the matrix 
equation Dx = p obtained from P. Since P can be extended in more that one 
way to a joint probability distribution on 81 we have that Dx = p has 
infinitely many solutions. For the rank r of the coefficient matrix D we have 
that r < 2n. So, in Dx = p we have r basic variables and 2n - r free 
variables. To obtain a particular solution to the matrix equation, we choose 
the values of the free variables, that is, some of the constituent probabilities, 
more or less freely although subject to the constraints from the matrix 
equation and x; ;;.,, 0, i = 1, ... , 2n; from these values the values of the basic 
variables can then be computed uniquely. 

There are, however, other joint probability distributions on 81 respecting the 
initially given probabilities that are not equal to the one defined by the chosen 
solution vector: every other nonnegative vector differing from the selected one 
by a vector in the nullspace of D defines another joint probability distribution 
on 81 which is also an extension of P. It will be evident that the more free 
variables occur in the matrix equation, the more arbitrary the selected 
probability distribution will be. The results from using one solution vector for 
computing probabilities of interest can therefore differ considerably from the 
results from using another solution vector. Selecting a single, not unique 
extension of a partial specification of a joint probability distribution to serve 
as the basis for further computations as sketched in the foregoing, therefore 
does not render a reliable result. 

We abandon the idea of selecting a single extension of a partial specification 
of a joint probability distribution for further computation: we introduce a 
method for finding best possible upper and lower bounds on probabilities of 
interest. The idea of finding bounds on probabilities from a partial 
specification of a joint probability distribution originated with G. Boole, as 
well as the idea of obtaining the 'narrowest limits' ([HAIL86], p. 338). 

We define the notions of the best upper bound and the best lower bound 
function relative to a partial specification of a joint probability distribution. 
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DEFINITION 4.22. Let !JI be a Boolean algebra of propositions as defined in 
Definition 3. 7. Let <(I C !JI and let P : <(I ➔ [O, 1] be a consistent partial 
specification of a joint probability distribution on !JI. The function 
bubp: !fl ➔ [0,1] defined by bubp(b) = sip{Pr(b)IPr is a joint probability 
distribution on !JI such that Pr I c;, = P} for all b E ~ is called the best upper 
bound function relative to P. The best lower bound function relative to P, 
denoted by blbp, is defined symmetrically. 

Note that the best upper bound function relative to a partial specification Pin 
general is not a joint probability distribution; of course, the same remark can 
be made concerning the best lower bound function. Furthermore, for a given 
b E !JI the length of the interval [blbp(b),bubp(b)] expresses the lack of 
knowledge concerning the probability of the truth of the proposition b. 

The two types of bounds are interrelated as stated in the following lemma. 

LEMMA 4.23. Let !JI be a Boolean algebra of propositions as defined in Definition 
3. 7. Let P be a consistent partial specification of a joint probability distribution 
on !JI. Let the functions bubp and blbp be defined as above. Then, for each 
b E !JI we have bubp(b) = 1 - blbp(-,b). 

PROOF. From Definition 4.22 we have for each joint probability distribution 
Pr on !JI which is an extension of P and each b E !JI, that Pr(b) .,;;; bubp(b) 
and blbp(-,b).,;;; Pr(-,b). From Pr(-,b) = 1 - Pr(b), it follows that 
blbp(-,b) :s;;; 1 - Pr(b), thus obtaining Pr(b) :s;;; 1 - blbp(-,b), for each 
b E !JI. We therefore have bubp(b) :s;;; 1 - blbp(-,b). Reversing the argument, 
we show that 1 - blbp(-,b) :s;;; bubp(b), from which we obtain the property 
mentioned in the lemma. ■ 

Let P be a consistent partial specification of a joint probability distribution on 
a Boolean algebra of propositions !JI. The following lemma now states that we 
can find for each b E !JI a joint probability distribution Pr on !JI being an 
extension of P such that Pr(b) = bubp(b); again, a similar observation can be 
made concerning blbp. 

LEMMA 4.24. Let !JI be a Boolean algebra of propositions as defined in Definition 
3. 7. Let <(I C !JI and let P : <(I ➔ [O, 1] be a consistent partial specification of a 
joint probability distribution on !JI. Furthermore, let the functions bubp and blbp 
be defined according to Definition 4.22. Then, for each b E !JI we have 
bubp(b) = max{Pr(b) I Pr is a joint probability distribution on !JI such that 
Pr I c;, = P}. A similar property holds for blbp(b). 

PRooF. The property stated in the lemma will readily be seen using the 
observation that the Boolean algebra of propositions !JI is finite. The lemma 
has been proven formally by Hailperin, [HAIL65]. ■ 

On the basis of the properties stated in Lemma 4.24, it can be shown that the 
problems of finding for a given b E !JI the best upper bound bubp(b) and the 
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best lower bound blbp(b) relative to a consistent partial specification P of a 
joint probability distribution on f/1, are equivalent to the following linear 
programming problems, respectively: 

(I) maximize Pr(b) subject to Dx = p and x ;;;;,, O; and 

(2) minimize Pr(b) subject to Dx = p and x ;;;;,, 0, 

where Dx = p is the matrix equation obtained from P. The equivalence will 
be stated formally in Proposition 4.25. First, we consider case (1) in some 
detail in order to obtain a more traditional representation of the linear 
programming problem. 

Let ffl be a Boolean algebra of propositions with n free generators, n ;;;;,, l. 
Let f/10 c; ffl be the basis defined according to Definition 4.10 and let its 
elements be enumerated as b;, i = l, ... , 2n. Now let b E f/1 and let .Pi, be 
its index set. For each joint probability distribution Pr on ffl, we have that 

Pr(b) = ~ Pr(b;) = ~ X; 
i EJ',; i EJ',; 

Now, let for b constants c;, i = 1, ... ,2n, be defined such that 

{
o if i El .Pi, 

C; = 1 if i E .Pi, 

Then, we have that 

2' 

Pr(b) = ~ c;x; 
i=l 

2' 
So, our aim is to find the best upper bound for this function ~ C;X;. 

i=I 

We recall that in the matrix equation Dx = p obtained from a partial 
specification P: <"{ ➔ [O, I], <"{ c; ffl, D denotes a ( I <"{ I + I) X 2n matrix, x is 
the 2n column vector of constituent probabilities Pr(b;) and p is the I ~ I + I 
column vector of initially given probabilities. The partial problem (1) can 
therefore be reformulated in the following more traditional representation of a 
linear programming problem: 

2' 

maximize ~ c;x; 
i=I 

subject to 

(i) 
2' 

~ d;Jxj = p;, for i = 1, ... , I ~ I + I, and 
j=l 

(ii) Xj;;;;,, 0, for j = 1, ... ,2n, 
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where the constants d;J constitute the matrix D . Note that we have added 
nonnegativity constraints to Dx = p explicitly to allow for nonnegative 
solutions only. The linear programming problem (2) can be treated 
analogously by taking for the objective function - ~ C;X;. 

PROPOSITION 4.25. Let !JI be a Boolean algebra of propositions as defined in 
Definition 3. 7. Let CC ~ !JI and let P : <(J ➔ [0, 1] be a consistent partial 
specification of a joint probability distribution on !JI. Let Dx = p be the matrix 
equation obtained from P. Furthermore, let the functions bubp and blbp be 
defined according to Definition 4.22. Then, for any b E PA we have that bubp(b) 
is equal to the solution of the linear programming problem 

maximize Pr(b) 

subject to 
(i) Dx = p, and 

(ii) X ~ 0. 

A similar statement can be made concerning blbp(b ). 

Note that since computing a best upper bound for a given probability does not 
'cut off solutions from the feasible set of the system of linear constraints, we 
have that several different objective functions can be maximized independently. 

Now consider application of the linear programming approach in a model 
for handling uncertainty in a knowledge-based system. In short, a domain 
expert is requested to assess several probabilities. The assessed probabilities 
are used in the manner described in this section to generate a system of linear 
constraints. From this system of constraints upper and lower bounds on the 
probabilities that are of interest to the user of the system are computed. The 
following example illustrates the idea. 

EXAMPLE 4.26. Letd = {a 1, a 2, a 3} and let !Jl(a1, a 2 , a 3) be the free Boolean 
algebra generated by d. Let CC= {a 1 /\ a 2, -,a 1 V a 3, a 2, a 2 I\ ,a3 }. Note 
that CC cannot be a basis for a joint probability distribution on !Jl(a1, a 2, a 3) 

since it only contains four elements. Let P be a consistent partial specification 
defined on CC which can be extended in more than one way to a joint 
probability distribution on PA(a 1, a 2, a 3). We consider such a 'probabilistic' 
extension Pr. Suppose that we have the following function values of Pr 
coinciding with the corresponding initially given function values of P: 

Pr(a 1 /\ a2) 0.23 

Pr(,a 1 V a3) 0.62 

Pr(a2) 0.43 

Pr(a2 I\ ,a3) 0.18 
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Now, let the elements of the basis 910 C 9l'(a 1, a2, a 3) be enumerated as 
follows : 

bi OJ I\ a2 I\ 03 

b2 -,a1 I\ a2 I\ a 3 

b3 a 1 I\ -,a2 I\ a3 

b4 a1 I\ a2 I\ -,a3 

bs -,al I\ -,a2 I\ a3 

b6 -,al I\ a2 I\ -,a3 

b1 a 1 I\ -,a2 I\ -,a3 

bs -,al I\ -,a2 I\ -,a3 

Furthermore, let the constituent probabilities Pr(b;) be denoted by X;, 

i = 1, ... , 8. From P we obtain the following system of linear equations: 

X1 + X4 0.23 

X1 + X2 + X3 + X5 + X6 + Xg 0.62 

Xt + X2 + X4 + X6 0.43 

X4 + x6 0.18 

XJ + X2 + X3 + X4 + X5 + x6 + X7 + Xg I 

We add the constraints 

X; ;;;,, 0, i = J, ... , 8, 

explicitly. Now, suppose that we are interested in bounds on the probability 
of the truth of the atomic proposition a 3 • From Proposition 4.25 we have that 
the problem of determining the best upper bound for Pr(a 3) is equal to 
maximizing the objective function 

subject to the constraints shown above. Applying the simplex method we 
obtain bubp(a3) = 0.62. Similarly, we find blbp(a 3) = 0.25. ■ 

In Section 4.1 we have mentioned that an LP-problem can be solved in 
polynomial time, that is, polynomial in the size of the problem. Recall that 
the size of an LP-problem is dependent, among other factors, upon the number 
of variables it comprises. The specific type of problem discussed in the 
foregoing has exponentially many variables, that is, exponential in the number 
of statistical variables discerned in the problem domain. Therefore, these 
problems cannot be solved in polynomial time; computing bounds on 
probabilities of interest requires an exponential number of steps. 
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4.2.2. Dealing with Conditional Probabilities 

In the previous subsection we have presented a linear programming method for 
computing bounds on probabilities of interest from a partial specification of a 
joint probability distribution. This method has been developed for partial 
specifications comprising prior probabilities only. In the domains in which 
expert systems are employed, however, it often is easier to assess or otherwise 
obtain conditional probabilities than it is to obtain prior ones. Moreover, the 
user of the system will often be interested in conditional probabilities. We will 
show that conditional probabilities can be introduced into the linear 
programming method without requiring much effort. 

We first examine the case in which we are initially given some conditional 
probabilities. Let !JI once more be a Boolean algebra of propositions with n 
free generators, n ;;;,, 1, as defined in Definition 3.7. Furthermore, let 810 ~ !JI 
be the basis as defined in Definition 4.10 and let its elements be enumerated as 
bi, i = 1, ... , 2". Let P be a consistent partial specification of a joint 
probability distribution on !JI. We consider a joint probability distribution Pr 
on !JI which is an extension of P. Now suppose that an expert has assessed the 
value P(c 1 I c2) = Pr(c 1 I c2) = p 0 , where c 1, c2 E !JI and O.;;; p 0 .;;;I, to be 
taken as a conditional probability. Note that it follows implicitly that 

Pr(c 1 I\ c2) 
Pr(c2) =/= 0. By definition, we have Pr(c 1 I c2) = ( ) From 

Pr c2 

Lemma 4.18 and Lemma 4.19 we have that there exist an index set .F,,, I\ c, for 
c 1 /\ c2 such that 

Pr(c 1 I\ c2) = ~ Pr(bJ 
iE~1 A, 2 

and an index set .F,,
2 

for c2 such that 

Pr(c2) = ~ Pr(bJ 
iE-.,;:1 

where Pr(bJ are the constituent probabilities of Pr. We therefore have that 

~ Pr(bi) 

It follows that 

~ Pr(bi) = Po · ~ Pr(bi) 
iE.JJ; 1 ,.." 2 ;e..-;2 

We now obtain the equation 

~ Pr(b;) - p 0 · ~ Pr(b;) = 0 
;e~, Ati ;e--"2 
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which is similar in concept to the ones we have encountered before; it can 
therefore be treated likewise. (Note however that we have to guarantee that 
}: Pr(b;) = 0 is not a solution to the obtained system of linear equations.) 

iE.JS; 2 

Now consider the case in which we are interested in lower and upper 
bounds on a conditional probability. From the foregoing discussion, it will be 
evident that we have a fractional objective function for our problem. Such a 
problem, called a fractional linear programming problem, however, can be 
reduced to a related 'ordinary' linear programming problem with one 
additional variable. The following proposition formulated in [HAIL86] but 
originally due to A. Charnes, states this result. 

PROPOSITION 4.27. The fractional linear programming problem 

maximize 
ex 
gx 

subject to 
(i) Dx = p, and 

(ii) x;;;,,o 

is equivalent to the linear programming problem 

maximize cy 

subject to 
(i) Dy= tp, 

(ii) gy = 1, 

(iii) y;;;,, O,and 

(iv) t ;;;,, 0. 

In Section 4.2.1 we have shown that computing upper and lower bounds on a 
probability of interest from a consistent partial specification of a joint 
probability distribution is equivalent to a linear programming problem in 
which all constraints except the nonnegativity constraints are equalities. The 
linear programming problems we obtained in the foregoing therefore were in 
standard form. It will be evident that our method is able to deal with LP­
problems in general form as well. Allowing inequalities in our method 
provides a domain expert with a flexible means for expressing probabilistic 
information: besides prior and conditional probabilities, he may specify 
bounds on probabilities instead of point estimates and he may give certain 
probabilities relative to other ones. 



Partial Specification of a Joint Probability Distribution 135 

4.2.3. A Note on Inconsistent Partial Specifications 

In the foregoing subsections we have dealt with partial specifications that 
could be extended in at least one way to a joint probability distribution. In 
Chapter 1, however, we have argued that in an expert system context the 
'probabilities' assessed by a domain expert are likely to be inconsistent. 

ExAMPLE 4.28. Let ~ = { a 1, a 1 } be a set of atomic propositions and let 
81( a 1, a 1) be the Boolean algebra of propositions generated by .91. Let 
<(f = {a 1 A a1, ai}. Now consider the function P: <(f ➔ [0, l] defined by 

P(a1 I\ a1) = 0.34 

P(a1) = 0.28 

which is to be taken as a partial specification of a joint probability distribution 
on 81(a 1, a 1). This function P cannot be extended to a joint probability 
distribution on 81(a 1, a1), since in every joint probability distribution Pr on 
81(a1, a1), for any x 1, x 2 E 81, the property if x 1 ~ x 2 then 
Pr(x 1) ~ Pr(x1) holds. ■ 

It will be evident that the more probabilities are initially assessed by a domain 
expert, the more likely the resulting partial specification is to be inconsistent. 
In the foregoing example the inconsistency was readily detected. 
Unfortunately, however, the more probabilities have been assessed, the less 
evident the inconsistency will be, and therefore the harder to detect and 
subsequently resolve. In this subsection, we will briefly touch upon the case in 
which we are given a set of 'probabilities' which is inconsistent in the sense 
that when the given values are looked upon as values of a partial specification 
of a joint probability distribution it is not possible to extend this partial 
specification to an actual joint probability distribution. 

We have discussed that the problem of finding an extension of a consistent 
partial specification P of a joint probability distribution on a Boolean algebra 
of propositions is equivalent to the problem of finding a nonnegative solution 
vector x to the system of linear constraints Dx = p, x ~ 0, obtained from P. 
We recall that such a solution vector x is a vector of constituent probabilities. 
Since in the foregoing we assumed that the initially given probabilities were 
specified consistently we were guaranteed that the matrix equation Dx = p 
had at least one such nonnegative solution vector. Now, we have to reckon 
with the possibility of having an inconsistent partial specification of a joint 
probability distribution, and we therefore are not guaranteed that the matrix 
equation obtained has nonnegative solutions; in fact, the matrix equation may 
have no solution at all or may have only solutions in which at least one of the 
components is less than zero. It will be evident that inconsistency of the 
partial specification P corresponds with the system of constraints Dx = p, 
x ~ 0, being infeasible. 

The linear programming approach for computing bounds on probabilities of 
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interest as discussed in Section 4.2.1 cannot be applied when we are given an 
inconsistent partial specification of a joint probability distribution: for a 
correct application of our method we need to have a consistent specification. 
A solution to the problem of having only an inconsistent partial specification 
at our disposal is to have the expert reassess the function values. This, of 
course, will be of little practical use since the expert will generally not be able 
to do any better. We therefore have to obtain a consistent partial specification 
from the initially given inconsistent one which still reflects the expert's 
intentions. We emphasize that all methods for doing so can only be viewed as 
approximation techniques and therefore are apt to be ad hoc. It will be 
evident that this is an extremely difficult problem and is worth a study of its 
own. It is noted that in linear algebra, several methods such as least squares 
approximations have been developed for selecting a single vector that best fits 
an (overdetermined) infeasible system of equations; in statistics a similar 
method, then called regression analysis, is employed. Since these methods aim 
at selecting a single solution for further computations, we feel that they are not 
suitable for situations in which only a partial specification of a joint 
probability distribution is intended. The same more or less holds for methods 
developed for 'adjusting' subjective probabilities. In further investigating the 
subject of inconsistency, however, the literature on (the reconciliation of) 
subjective probabilities, such as [LIND79,KAHN82], should not be simply by­
passed. 

Here, we merely propose an empirical method for obtaining a consistent set 
of probabilities from an initially given inconsistent partial specification of a 
joint probability distribution. The general idea of the method is based on the 
observation that inconsistency of a partial specification may be due to one of 
the following causes or to a combination of them: 

(I) The normedness is violated, that is, the 'constituent probabilities' 
computed from the partial specification do not sum up to I. 

(2) The additivity is violated, that is, the initially specified 'probabilities' are 
not in correct proportion. 

Note that in Example 4.28 (at least) the additivity was violated. 
The following lemma applies to an inconsistent partial specification of a 

joint probability distribution in which only the normedness is violated: the 
initially specified values behave additively, but the 'constituent probabilities' 
do not sum up to I. 

LEMMA 429. Let !JI be a Boolean algebra of propositions with n free generators, 
n ;;;. 1, as defined in Definition 3. 7. Let re C !JI and let P: re ➔ [O, I] be an 
inconsistent partial specification of a joint probability distribution on !JI. Let 
Dx = p, x ;;;. 0, be the system of linear constraints obtained from P as described 
in the preceding subsections; D is a ( I re I + I) X 2n matrix, x is a 2n colwnn 
vector and pis a I re I + I column vector. We assume that the last row of D is 
the 1r row vector. Now, let n- denote the I re I X 2n matrix obtained from D 
by omitting its last row; equally, let p- denote the I re I column vector obtained 



Partial Specification of a Joint Probability Distribution 137 

from p by deleting its last component. If the system of linear constraints 
n- x = p - , x ;;;;,, 0, has a solution and p - ,f= 0, then there exists a scalar 

k > 0 such that the system of constraints Dx = [ k~ - i, x ;;;;,, 0, has a solution. 

PRooF. Suppose that the system of linear constraints n- x = p - , x;;;;,, 0, has 
at least one solution. We consider such a solution vector x' with components 
x/, j = I, . .. , 2n . For this vector x' we evidently have 

2' 

~ d;Jx/ = p; 
j=l 

i = I, ... , J "{f J, where d;,J constitute n- and p; constitute the vector p - . 
From the system of linear constraints Dx = p, x ;;;;,, 0, not having a solution, 
we have that either~ x/ < I or~ x/ > I. Furthermore, from p - ,f= 0 it 

X·' 
follows that~ x/ > 0. Now, let y/ = 2• 1 Then, we have 

2· p; 
~ d;JY/ = -2·-­

J=I ~ x/ 
j=l 

~ x/ 
J=I 

i = 1, ... , J "{f J. From x' being a solution to the system of constraints 
n- x = p - , x ;;;;,, 0, we have that y' with components y/ is a solution to the 

system of linear constraints n- x = kp-, x ;;;;,, 0, where k = 2" 
1 

It will 

2' 

be evident that ~ y/ = I. Therefore, the vector y' 
j=l 

system of linear constraints Dx = [ k~ - i, x ;;;;,, 0. ■ 

~ x/ 
j=I 

is a solution to the 

The basic idea of Lemma 4.29 is that, interpreted in 2n -dimensional space, the 
convex polyhedron F being the feasible set of the system of linear constraints 
n- x = p -, x ;;;;,, 0, is moved along the p- vector towards the origin or just 
away from the origin dependent upon whether~ X; > 1 or~ x; < 1, so that 
the intersection of the shifted polyhedron and the hyperplane ~ x; = 1 is not 
empty. It will be evident that there exist many scalars having the property 
mentioned in the proposition, obtained from different points in the original 
convex polyhedron F. 

The method we propose for obtaining a consistent set of probabilities from 
an inconsistent partial specification of a joint probability distribution which 
does not behave additively, is based on the idea of allowing an expert to make 
a certain mistake in his assessments. For each probability the expert has 
assessed, we add two inequalities to the system of linear constraints instead of 
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one equality. Let O < m < 1 be a small constant value representing the 
margin we allow the expert to be mistaken in his assessments. When an expert 
has specified the value Pr(c) = ~ d;JxJ = p 0, 0 ,,;;;; p 0 ,,;;;; 1, we add the 
following inequalities to the system of constraints: 

2" {fo + m if Po + m < 1 
(1) ~ d;JXJ ,,;;;; Pd where Pd 

otherwise j=I 

2" 
= {io - m 

if p 0 - m > 0 
(2) ~ d;JXj ~ Po where Po 

otherwise j=I 

Notice that instead of a hyperplane we have specified a 'band' in 
2n -dimensional space. We consider the system of linear constraints that is 
obtained this way from the expert's assessments. If this system is still 
infeasible, then the assessments cannot be used and the expert has to reassess 
the probabilities. If the resulting system of constraints however has at least 
one feasible solution, then the equation~ x; = 1 is added to the system (after 
applying Lemma 4.29, if necessary). We then proceed with the thus obtained 
system of linear constraints. Note that in this approach the equalities from the 
original matrix equation are treated as being equally trustworthy. If the 
domain expert is more certain of some of his assessments than of the other 
ones, however, we can attach for each constraint a weighting factor to the 
margin m we allow the expert to be mistaken thus obtaining a constraint­
specific margin determining the width of the specified band. 

4.3. PARTIAL QUANTIFICATION OF A BELIEF NETWORK 

In the preceding section we have presented a linear programming method for 
computing bounds on probabilities of interest from a consistent partial 
specification of a joint probability distribution. The initially assessed 
probabilities were viewed as defining constraints on an unknown probability 
distribution. We assumed that no independency relationships existed between 
the statistical variables discerned in the problem domain. For the linear 
programming method to be applicable to a partially quantified belief network, 
however, it has to be extended with an additional method for representing and 
exploiting independency relationships between the variables. Note that 
representing independency relationships in a straightforward manner yields 
nonlinear equations and therefore is not suitable for our purposes. 

We recall from the introduction to this chapter that a partially quantified 
belief network was meant to consist of an acyclic directed graph representing 
the statistical variables discerned in the problem domain and their 
independency relationships, and an associated partial specification of a joint 
probability distribution. In this section we will present a method for 
computing bounds on probabilities of interest from such a partially quantified 
belief network in which the independency relationships portrayed by its graph 
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are exploited. Our method builds on the work on belief networks by 
S.L. Lauritzen and D .J. Spiegelhalter as discussed in Chapter 3. For ease of 
exposition we will assume that the graphical part of a given partially quantified 
belief network has been transformed into a decomposable graph as 
demonstrated in Section 3.4; we will return to this simplifying assumption at 
the end of this section. In the mean time, we will show that we can take 
advantage of the topology of a decomposable graph by observing that between 
the statistical variables all occurring in the same clique of the graph no 
independency relationships exist and that the cliques are interrelated only 
through their intersections. In order to be able to exploit these properties, we 
further assume that all initially given probabilities are prior ones and local to 
the cliques of the graph G: we are given probabilities P(cv) where each cv is a 
configuration of a set of vertices V such that there is at least one clique Cl; in 
G with V ~ V(Cl;). Recall from the previous section that the restriction to 
prior probabilities is not an essential one; the restriction to local probabilities, 
however, is essential. 

The initially given probabilities being local to the cliques of the 
decomposable graph G of a partially quantified belief network now allows us 
to apply many of the notions introduced in the preceding section separately to 
the cliques of G and their associated marginal distributions. We begin by 
using the definition of a partial specification of a joint probability distribution 
to apply to marginal distributions. 

DEFINITION 4.30. Let G be a decomposable graph with the vertex set 
V(G) = {Vi, ... , Vn}, n ;;;,, I, and the clique set Cl(G) = {Cl 1, ••• , Clm}, 
m ;;;,, 1. Let .9l(v 1, .• • , vn) be the free Boolean algebra generated by 
{v; IV; E V(G)}. For each clique Cl; E Cl(G), let PA(Cl;) ~ PA(v 1, ••. , vn) be 
the free Boolean algebra generated by {v1 I v1 E V(Cl;)}. A partial 
specification of a marginal distribution on PA(Cl;) is a total fwiction 
mc1,: % ➔ [0,1] where% ~ PA(Cl;). 

We now are able to define the notion of a partially quantified belief network 
more formally; note that for the moment we assume that the graphical part of 
a partially quantified belief network is a decomposable graph. 

DEFINITION 4.31. A partially quantified belief network is a tuple B = (G,M) 
such that 

(I) G is a decomposable graph with the vertex set V ( G) = { V 1, ••• , Vn }, 
n ;;;,, l, and the clique set Cl(G) = {Cl 1, ... , Clm}, m ;;;,, I, and 

(2) M = {met, I Cl; E Cl(G)} is a set of partial specifications of marginal 
distributions mq on PA(Cl;), where PA(Cl;) is the free Boolean algebra 

associated with clique Cl; as indicated in Definition 4.30. 

We recall from Definition 4.8 that we defined a partial specification of a joint 
probability distribution as being consistent if it could be extended in at least 
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one way to an actual joint probability distribution. In Definition 4.30 we have 
used the definition of a partial specification of a joint probability distribution 
to apply to marginal distributions; we now take the notion of consistency to 
apply to a partial specification of a marginal distribution. 

DEFINITION 4.32. Let G be a decomposable graph with the vertex set 
V(G) = {Vi, ... , Vn}, n ;;a,, 1, and the clique set Cl(G) = {Cl1, ••• ,Clm}, 
m ;;a,, I. Let &i'(v 1, ••• , vn) be the free Boolean algebra generated by 
{v;j V; E V(G)}, and for each clique Cl; E Cl(G), let &i'(Cl;) C: &i'(v 1, • •• , vn) 
be the free Boolean algebra associated with Cl; as in Definition 4.30. A partial 
specification of a marginal distribution me,,: % ➔ [O, 11 % c;; &i'(Cl;), is 
consistent if there exists at least one marginal distribution P.et, on &i'(Cl;) such 
that P.et, I 'li = me,,; otherwise, met, is said to be inconsistent. 

Now observe that between the statistical variables occurring in one and the 
same clique of a decomposable graph no independency relationships exist. 
This observation and the analogy between the notions of a consistent partial 
specification of a joint probability distribution and a consistent partial 
specification of a marginal distribution suggest that we may apply the linear 
programming method presented in the preceding section separately to each of 
the partial specifications associated with the cliques of the graph. It will be 
evident, however, that even if all partial specifications of marginal distributions 
associated with the cliques of the decomposable graph have been specified 
consistently and therefore can be extended separately to marginal distributions, 
they might not give rise to a joint probability distribution respecting the 
independency relationships shown in the graph. Therefore, we define two 
notions of consistency for a set of partial specifications of marginal 
distributions. 

DEFINITION 4.33. Let G be a decomposable graph with the vertex set 
V(G) = {Vi, ... , Vn}, n ;;a,, I, and the clique set Cl(G) = {Cl1, ••• ,Clm}, 
m ;;a,, I. Let &i'(v 1, ••. , vn) be the free Boolean algebra generated by 
{v; IV; E V(G)}, and for each clique Cl; E Cl(G), let &i'(Cl;) c;; &i'(v 1, • •• , vn) 
be the free Boolean algebra generated by {v1 I V1 E V(C/;)}. Let 
M = {met, I Cl; E Cl(G)} be a set of partial specifications of marginal 
distributions such that B = (G,M) is a partially quantified belief network as 
defined in Definition 4.31. 

(I) M is called locally consistent if each partial specification met, E M, 
i = 1, . . . , m, is consistent. 

(2) M is called globally consistent if there exists a set 
M = {P.et, I P.e,,: &i'(Cl;) ➔ [O, 1]} of marginal distributions JJ,e1, on &i'(Cl;) 
such that for each clique Cl; E Cl(G), JJ,ei, is an extension of met, E M, 

and furthermore that /J,et,(Cv(el,)nv(el;)) = P.C1/Cvce1,)nV(e1;)) for each pair 
of cliques Cl;, Cli E Cl(G) with V(Cl;) n V(C/1) =/= 0; such a set M is 
called a global extension of M. 
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For a partial specification of a joint probability distribution we define an 
additional notion of inconsistency related to a decomposable graph. 

DEFINITION 4.34. Let G be a decomposable graph with the vertex set 
V(G) = {V1, ... , Vn}, n ~ 1. Let 93'(v 1, ... , vn) be the free Boolean algebra 
generated by { V; I V; E V ( G) }. Let P be a partial specification of a joint 
probability distribution on 93'(v 1, ••• , vn)- We say that P is consistent with 
respect to G if P can be extended in at least one way to a joint probability 
distribution Pr on 93'(v 1, ... , vn) such that Pr is decomposable relative to G. 

Let B = (G,M) be a partially quantified belief network. Now, consider the 
partial specification P of a joint probability distribution defined by the set M 
of partial specifications of marginal distributions, simply by taking the 
function values of the partial specifications from M as function values of P. 
The following lemma states that global consistency of the set M is a necessary 
and sufficient condition for P being consistent with respect to the 
decomposable graph G. 

LEMMA 4.35. Let G be a decomposable graph with the vertex set 
V(G) = {V 1, ••• , Vn}, n ~ I, and the clique set Cl(G) = {Cl 1, ••. , Clm}, 
m ;;i: I. Let 93'(v 1, . .. , vn) be the free Boolean algebra generated by 
{v; IV; E V(G)}, and for each clique Cl; E Cl(G), let 93'(Cl;) be the free 
Boolean algebra generated by {v1 I v1 E V(Cl;)}. Let 
M = {met, I Cl; E Cl(G)} be a set of partial specifications of marginal 
distributions such that B = (G,M) is a partially quantified belief network. Now, 
let <'{! <: 93'(v1, ... , vn) be such that <'{! = U {% I me,,: % ➔ [O, l], mq EM, 
% <: 93'(Cl;)}. Furthermore, let P: "{/ ➔ [O, l] be the partial specification of a 
joint probability distribution on 93'(v 1, ... , vn) defined by P(c) = mq(c) for 
each c E %, i = 1, ... , m. Then, M is globally consistent if and only if P is 
consistent with respect to G. 

PROOF. 

~ Let M = { me,, I Cl; E Cl ( G)} be a globally consistent set of partial 
specifications of marginal distributions me,,: % ➔ [O, I], % <: 93'( Cl;), 
i = 1, ... , m. We have from Definition 4.33 that there exists a set 
M = {/Let, I /Le,,: 93'(Cl;) ➔ [O, l]} of marginal distributions /Let, on 93'(Cl;) 
such that for each clique Cl; E C/(G), /Let, is an extension of mq, and 

furthermore that /Le1
1
(Cvce1,)nvce9) = /Lq(Cvce1,)nvce1)) for each pair of 

cliques Cl;, C/1 E Cl(G) with V(Cl;) n V(Cl) =I= 0. From /Let, being 
an extension of mq, we have for each c E % that /Le,,(c) = mq(c), 
i = 1, ... , m. From Lemma 3.40 we have that the set M defines a joint 
probability distribution Pr on 93'(v 1, ... , vn) such that Pr is 
decomposable relative to G. We have Pr(c) = /Le,,(c) for each c E %, 
i = 1, ... ,m. So, Pr(c) = mq(c) = P(c) for each 
c E %, i = 1, ... , m. It follows that Pr I Cf = P. We have by 
definition that Pis consistent with respect to G. 
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¢= Let P be a partial specification of a joint probability distribution which 
is consistent with respect to G. By definition we have that there exists a 
joint probability distribution Pr on 8/(v 1, ••• , vn) being an extension of 
P which is decomposable relative to G. It follows that Pr(c) = P(c) for 
each c E ~ From Proposition 3.38 we furthermore have that Pr can be 
written in terms of marginal distributions P.ct, on 8/(Cl;), i = 1, ... , m, 
that is, Pr is defined by a set M = {P.c,, I P.c,,: 81( Cl;) ➔ [O, 1]} of 
marginal distributions such that for each Cl;, Cl1 E Cl(G) with 
V(Cf;) n V(Clj) =/= 0 we have P.c1

1
(Cvcc1,)nV(Ct,)) = P.c1,(Cv(ct,)nV(Ct,))­

RecalI that we have assumed that the initially given probabilities are 
local to the cliques of G. So, for each c E ~ we have that there exists 
an index i such that c E ~- For all c E ~. i = 1, ... , m, we therefore 
have Pr(c) = µ,q(c). So, µ,c1,(c) = P(c) = mc1,(c) for each c E ~- It 
follows that µ,c,, I 'e: = met,, for each Cl; E Cl(G), i = 1, ... , m. So, M 
is a global extension of M. From Definition 4.33 we have that M is 
globally consistent. 

■ 

The following corollary follows straight from the proof of the preceding 
lemma. 

COROLLARY 4.36. Let B = (G,M) be a partially quantified belief network, 
where G is a decomposable graph with the vertex set V(G) = {V1, ••• , Vn}, 
n ~ 1. Let 8/(v 1, ... , vn) be the free Boolean algebra generated by 
{v; IV; E V(G)}. Furthermore, let P be the partial specification of a joint 
probability distribution defined by M as in Lemma 4.35. Then, each global 
extension M of M defines a joint probability distribution Pr on 81(v 1, •• • , vn) 
such that Pr is an extension of P and Pr is decomposable relative to G, and vice 
versa. 

Let B = (G,M) once more be a partially quantified belief network. We have 
suggested before that we can apply the linear programming method separately 
to each of the partial specifications of marginal distributions associated with 
the cliques of the decomposable graph G. To this end, we now define for each 
clique Cl; of G a set of constituent probabilities of a yet unknown marginal 
distribution P.ct, in the manner described in the previous section. From the 
partial specification me,, associated with clique Cl; we then obtain an 
appropriate system of linear constraints with the constituent probabilities as 
unknowns just as we have done before. From our observations from Section 
4.2 we have that each nonnegative solution to such a system of constraints 
defines a marginal distribution which is an extension of the corresponding 
partial specification mq. The separate systems of constraints are subsequently 
combined into one large system of linear constraints. Note that the separate 
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systems of constraints corresponding with the different cliques do not have any 
variables, that is, constituent probabilities, in common and therefore are not 
interrelated. We now have to guarantee that every nonnegative solution to the 
thus obtained system of constraints defines an extension of the initially given 
probabilities to an actual joint probability distribution respecting the 
independency relationships portrayed by G. We have from Lemma 4.35 that 
in order to guarantee this, it suffices to augment the system of constraints with 
some additional equations expressing that the set M of partial specifications of 
marginal distributions has to be globally consistent. Henceforth, such 
additional equations will be called consistency equations. Note that these 
consistency equations will specify constituent probabilities from more than one 
clique. The following example illustrates the basic idea. 

ExAMPLE 4.37. Let G = (V(G),E(G)) be the decomposable graph shown in 
Figure 4.1. 

FIGURE 4.1. A decomposable graph G. 

Let al'(v1, ... , v4) be the Boolean algebra of propositions associated with G. 
The graph G has only two cliques: the clique Cl 1 with the vertex set 
V(C/1) = {V1, V2} and the clique C/2 with the vertex set 
V(C/2) = {V2, V3, V4}. Let al'(v1, v2) and al'(v2, v3, v4) be the free Boolean 
algebras associated with the cliques C/1 and C/2, respectively. Now, let 
M = {me,,, me,,} be a set of partial specifications of marginal distributions 
such that B = (G,M) is a partially quantified belief network. For clique C/1 

we define the following constituent probabilities: 

xi = JJ,c1,(v 1 A v2) 

x! = J1,e1
1
(-,v1 A v2) 

x} = JJ-et, (v I A -,v2) 

xl = JJ-et, (-,v 1 A -,v 2) 
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where µc,, is a yet unknown marginal distribution on 93'(v 1, v2). For clique 
C/2 we define the following eight constituent probabilities: 

xt = µc,,(v2 I\ V3 I\ v4) x; = µCl, (-,V2 I\ -,V3 I\ V 4) 

x~ = µc,,(-,v2 I\ V3 I\ v4) x~ = µc,,(-,v2 I\ V3 I\ -,v4) 

x5 = µc,,(v2 I\ -,v3 I\ v4) x~ = µc,,(v2 I\ -,v3 I\ -,v4) 

xi = µc,,(v2 I\ V3 I\ -,v4) X§ = µc,,(-,v2 I\ -,v3 I\ -,v4) 

where µCJ, is an unknown marginal distribution on 93'(v2, v3, v4). From the 
partial specifications mCI, E M and mCJ, E M corresponding with the cliques 
C/1 and C/2, respectively, we obtain two systems of linear constraints in the 
manner described in the previous subsection. These systems comprise the 
variables xJ, i = I, ... ,4, and x7, i =I, ... ,8, respectively. It will be 
evident that these systems do not have any variables in common. The two 
systems of constraints are combined into one large system of constraints. We 
now have to augment the thus obtained system of constraints with consistency 
equations expressing that the set M has to be globally consistent. We 
therefore add equations expressing that any global extension M = {µc,,, µc,,} 
of M has to satisfy the property µc,, (V 2) = µc,, (V 2). We obtain the following 
equations: 

x! + x1 = xt + x5 + xi + x~ 

x! + xl = x~ + x; + x~ + x§ 

(Note that actually it suffices to specify only one of these equations). ■ 

In the way demonstrated in the preceding example, we obtain consistency 
equations for each nonempty clique intersection. We then have obtained a 
system of linear constraints having the form shown in Figure 4.2; a system of 
constraints of this form is called an angular system of constraints. 

Definition 4.38 introduces the notion of a clique-incidence graph showing all 
nonempty clique intersections for a given decomposable graph; it is an 
undirected graph in which the cliques of the original graph are taken as 
vertices and in which occurrences of nonempty clique intersections are 
represented by edges. 

DEFINITION 4.38. Let G = (V(G),E(G)) be a decomposable graph with the 
vertex set V(G) ={Vi, ... , Vn}, n;;;. I. Let C/(G) = {Cl 1, ••• ,Clm}, 
m ;;;. I, be the clique set of G. The clique-incidence graph h associated with G 
is the undirected graph h = (V(IG),E(h)) where V(h) = {Cl; I Cl; E Cl(G)} 
andE(h) = {(Cl;,Cli)IV(Cl;) n V(Cl)=fa 0, Cl;,Cli E Cl(G), i <J}. 
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FIGURE 4.2. Linear constraints from a partially quantified belief network. 

ExAMPLE 4.39. Consider the decomposable graph G from Figure 3.5(b) once 
more. The clique-incidence graph JG associated with G is shown in Figure 4.3; 
for simplicity's sake, we have identified a clique with its vertex set. ■ 

Recall that from a set M of partial specifications of marginal distributions 
associated with a decomposable graph G, we have obtained an angular system 
of linear constraints of the form shown in Figure 4.2. From the foregoing 
discussion, it will be evident that this system of constraints comprises 
consistency equations for all edges of the clique-incidence graph associated 
with G. The following example, however, shows that the system of constraints 
thus obtained specifies many redundant equations. 
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FIGURE 4.3. The clique-incidence graph h associated with G. 

ExAMPLE 4.40. Consider the decomposable graph G from Figure 3.5(b) and its 
clique-incidence graph JG as shown in Figure 4.3 once more. We now consider 
the cliques with the following vertex sets in isolation: 

V(C/1) = {V2, V4 , V6} 

V(C/2) = {Vs, v6, V7} 

V(C/3) = {V6, Vs} 

Note that these cliques share the variable V 6 • From the edge (C/ 1,C12) we 
obtain two consistency equations expressing that any two marginal 
distributions µc1, and µc1, associated with the cliques C/ 1 and C/2 , 

respectively, have to satisfy 

(1) µc,,(v6) = µc,,(v6) 

(2) µc,,(,v6) = µc,,hv6) 
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From the edges (C/2,C/3) and (C/ 1,C/3) we obtain consistency equations 
expressing that: 

(3) /J,c1,(v6) = /J,c1, (v6) 

(4) /J,ct, (--,v6) = /J,ct, (--,v6) 

(5) /J,c1,(v6) = /J,c1, (v6) 

(6) /J,c1
1
(--,v6) = /J,q,(--,v6) 

From the transitivity of the equality, however, we for example have that 
equation (5) immediately follows from the equations (1) and (3), and that 
equation (6) follows from (2) and (4). In fact, it will suffice to specify 
consistency equations for only two of the three edges (Cl 1,C/2), (Cl2,Cl3) and 
(Cl1,Cl3) . ■ 

In Definition 4.41 we introduce the notion of a clique tree of a decomposable 
graph. After stating some properties of such a clique tree we will show in 
Lemma 4.45 that for guaranteeing global consistency of a set of partial 
specifications of marginal distributions it suffices to obtain consistency 
equations from such a clique tree only instead of from the entire clique­
incidence graph. 

DEFINITION 4.41. Let G be a decomposable graph with the vertex set 
V ( G) = { V 1, ... , Vn}, n ~ 1. Let Cl ( G) = { Cl 1, ... , Clm }, m ~ 1, be the 
clique set of G. A clique tree of G is a tree Ta = (V(Ta),E(Ta)) where 
V(Ta) = {Cl; I Cl; E C/(G)} and where E(TG) has the following property: for 
each pair of distinct cliques Cl;, Clj E C/(G) with V(Cl;) n V(Clj) =/= 0, the 
(unique) path in T G from Cl; to C/1 is a sequence of vertices Clk such that 
V(Cl;) n V(C/1) <;;;; V(Clk). 

The notion of a clique tree is frequently used in the recent literature on belief 
networks. Our notion of a clique tree for example is equal to the notion of a 
junction tree as defined by F.V. Jensen in [JENS88a,JENS88b] and similar to the 
notion of a join tree as discussed by J. Pearl, [PEAR88]. In [DEMP88], 
A.P. Dempster and A. Kong introduce a so-called tree of cliques which is 
analogous to our clique tree as well. Not only in the research area of plausible 
reasoning are clique trees and their related properties encountered. The notion 
of a clique tree is of major importance to the theory of acyclic databases 
[MAIE83]; there it is again called a join tree. In their work on constraint 
satisfaction problems, R. Dechter and J. Pearl employ related techniques as 
well, see for example [DECH87]. 

Ex.AMPLE 4.42. Figure 4.4 shows a clique tree for our running example. Note 
that this clique tree is not the only one for our graph. In fact, a decomposable 
graph may have more than one clique tree. ■ 
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FIGURE 4.4. A clique tree T G of G. 

The following lemma will be evident. 

LEMMA 4.43. Let G be a decomposable graph and let h be its associated clique­
incidence graph as defined in Definition 4. 38. Then, each clique tree T G of G is a 
spanning tree of JG. 

The reverse property does not hold, that is, not every spanning tree of the 
clique-incidence graph is a clique tree of the original decomposable graph. 

The following lemma provides a method for constructing a clique tree of a 
given decomposable graph. For further details, see [PEAR88]. 

LEMMA 4.44. Let G be a decomposable graph with the vertex set 
V(G) = {V1, ... , Vn}, n ~ 1. Let Cl(G) be the set of cliques in G, numbered 
Cl 1, ••• , Clm, m ~ 1, according to an ordering L having the running intersection 
property. The following algorithm yields a clique tree of G: 
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1. Start with the tree consisting of Cl 1 only. 

2. Subsequently, add the remaining cliques to the tree in increasing order 
according to 'i such that Cl; is connected to a clique Clj, j < l sharing the 
highest number of vertices with Cf;. 

The notion of a clique tree is already implicitly present in the work of 
S.L. Lauritzen and D.J. Spiegelhalter. Recall from Chapter 3 that in their 
scheme for evidence propagation in a belief network, for each new piece of 
evidence the vertices and the cliques of the decomposable graph G of the 
(transformed) network are ordered anew using Algorithm 3.31 and Definition 
3.33, starting with a clique containing the observed vertex; the obtained 
ordering 'i of the cliques then is taken as the order in which the evidence is 
propagated through the network. From Lemma 4.44 we have that the ordering 
'i may be used for constructing a clique tree of the graph G; propagating a 
piece of evidence through the belief network as prescribed by Lauritzen and 
Spiegelhalter now amounts to propagating the evidence through the clique tree 
obtained from 'i, starting with its root. Now, note that the clique tree can be 
exploited to render recomputing 'i for new evidence unnecessary: for 
propagating a new piece of evidence we simply take an appropriate vertex of 
the clique tree as its new root. 

Before proceeding we introduce some new notational convention. Let 
B = (G,M) be a partially quantified belief network. Recall that for each 
clique Cl;, i = 1, ... , m, m ;;;. 1, of the decomposable graph G, we have 
defined new constituent probabilities; the vector of constituent probabilities for 
clique Cl; will from now on be denoted as x;. Analogous to the notational 
convention introduced in the previous section, we use D;x; = m; to denote the 
system of linear constraints obtained from the partial specification of a 
marginal distribution met, E M associated with clique Cl;. The nonnegativity 
constraints for Cl; are expressed as x; ;;;. 0, i = 1, ... , m. The separate 
systems of constraints corresponding with the cliques of G are combined into 
one large system of linear constraints; this system will be denoted as Dx = m, 
x;;;. 0, where 

D1 0 0 

0 D2 0 
X1 m1 

D= , x= and m= 

0 0 Dm 
Xm mm 

Furthermore, recall that this system of constraints is extended with consistency 
equations expressing that the set M of partial specifications of marginal 
distributions has to be globally consistent. It will be evident that these 
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consistency equations each involve variables from two cliques only. In the 
sequel, the system of consistency equations for the nonempty intersection of 
two distinct cliques Cl; and Cl1 will be denoted by T;,1x; - r1,;x1 = 0. The 
system of consistency equations obtained from an entire clique tree of the 
decomposable graph G will be denoted by Tx = 0, where T is a block matrix 
with two nonzero blocks per row. We will call the system of constraints 
Dx = m, Tx = 0, x ;;;;. 0, the joint system of constraints. From now on, we 
assume that this joint system of constraints is feasible. To conclude, a solution 
vector x = (x1,1, ... ,x1,k,, ... ,xm, 1, ••• ,xm,k), k;;;;;. 1, i = 1, ... ,m, will 
often be written as x = (x1, ..• ,xm) where X; = (x;, 1, ... ,x;,k) is the part of 
the solution vector x corresponding with the subsystem of constraints 
D;x; = m;, X; ;;;;. 0. 

The following lemma now states that for obtaining consistency equations a 
clique tree of the decomposable graph G suffices. 

LEMMA 4.45. Let B = (G,M) be a partially quantified belief network defined as 
in Definition 4.31. Let Dx = m be the system of linear constraints obtained from 
M as described in the foregoing. Now, let I G be the clique-incidence graph 
associated with G, and let Jx = 0 be the system of consistency equations obtained 
from fa; we use F1 to denote the feasible set of the system of constraints 
Dx = m, Jx = 0, x ;;;;. 0. Furthermore, let TG be a clique tree of G, and let 
Tx = 0 be the system of consistency equations obtained from TG; we use Fr to 
denote the feasible set of the system of constraints Dx = m, Tx = 0, x ;;;;. 0. 
Then, F1 = Fr, 

PROOF. From Lemma 4.43 we have that TG is a spanning tree of fa. It 
follows that Tx = 0 is a subsystem of Jx = 0. So, we have F1 C Fr. It now 
suffices to show that the addition of an arbitrary edge from fa to T G does not 
yield further restrictions on the set Fr: we have to show that the consistency 
equations obtained from the new edge follow from the system of constraints 
Tx = 0. 

Consider part of a clique tree T G, as shown in Figure 4.5(a). 

(a) (b) 

FIGURE 4.5. The addition of an edge from Ia to TG. 
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From the edges (C/ 1,C/2) and (C/1,C/3) we obtain the following consistency 
equations (for ease of exposition we express the consistency equations in terms 
of marginal distributions instead of in terms of the constituent probabilities of 
these marginal distributions): 

(I) JJ,c1, (cv(c!,)n V(Ct,)) = JJ,ct, (cv(Ct,)n vcc1,)), for each configuration 

cv(ct,)nV(Ct,) of V(C/1) n V(C/2), and 

(2) JJ,ct, (cv(ct,)n V(Ct,)) = JJ-ct, (cv(ct,)n v(ct,)), for each configuration 

Cv(Cl,)nV(CI,) of V(C/1) n V(C/3). 

Now suppose that h contains the edge (C/2,C/3). From TG being a spanning 
tree of fa we have that the addition of an arbitrary edge from fa which is not 
already in TG to TG yields a cycle. Addition of (C/2,C/3) to TG yields the 
cycle shown in Figure 4.5(b ). Note that from Definition 4.38 we have 
V(C/ 2) n V(C/3) =/=- 0. From this new edge (C/2,C/3) we obtain the 
following consistency equations: 

(3) JJ,ct, (cvcct,)n vcc1,)) = JJ,ct, (cvcct,)n vcc,,)), for each configuration 
Cv(Cl,)nV(CI,) of V(C/2) n V(C/3). 

From Definition 4.41 we have that V(C/2) n V(C/3) C V(C/ 1). It follows 
that V(C/ 2) n V(C/ 3) C V(C/ 1) n V(C/ 2) and furthermore that 
V(C/2) n V(C/3) C V(C/1) n V(C/3). From the consistency equations (1) 
we get 

JJ,ct, (cvcct,) n v(cl,)) = JJ,ct, (cv(CI,) n vcc,,)), 
cvcct,)nv(ct_,) of V(C/2) n V(C/3), 

by further marginalization. From (2) we get 

JJ,c1, (cvcct,)n V(Ct,)) = JJ-ct, (cvcct,)n V(Ct,)), 

cvcc1,)nvcc1,) of V(C/2) n V(C/3). 

From the transitivity of the equality we have 

JJ,c1, (cv(ct,) n v(ct,)) = JJ-ct, (cv(ct,)n V(Ct,)), 

Cv(Ct,)nV(CI,) of V(C/2) n V(C/3). 

for 

for 

for 

each configuration 

each configuration 

each configuration 

So, the consistency equations (3) follow immediately from the consistency 
equations (1) and (2). ■ 

Analogous to our observations from the preceding section, we have the 
following relation between global extensions of a set M of partial specifications 
of marginal distributions and solutions to the joint system of constraints 
Dx = m, Tx = 0, x ;;;,, 0, obtained from a partially quantified belief network 
B = (G,M). 
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PROPOSITION 4.46. Let B = (G,M) be a partially quantified belief network 
where G is a decomposable graph with the clique set Cl = { Cl 1, .• • , Clm }, 
m ~ I, and where M = {me1, I Cl; E C/(G)} is a set of partial specifications of 
marginal distributions. Let Dx = m, Tx = 0, x ~ 0. be the joint system of con­
straints obtained from B as described in the foregoing. Then, the following pro­
perties hold: 

(I) For each global extension M = {/Let, I Cl; E Cl(G)} of M, we have that the 
vector x = (xi, ... , Xm) of subvectors X; of constituent probabilities of the 
marginal distribution /Let, associated with clique Cl;, i = I, ... , m, is a 
solution to Dx = m, Tx = 0, x ~ 0. 

(2) For each solution x = (xi, .. . ,xm) to Dx = m, Tx = 0, x ~ 0, we have 
that each subvector x; defines a marginal distribution /Lei, associated with 
clique Cl;, i = I, .. . , m, such that M = {/Let, I Cl; E Cl(G)} is a global 
extension of M. 

We recall that in the preceding section we defined a best lower bound function 
and a best upper bound function relative to a partial specification of a joint 
probability distribution. We now define similar functions relative to partial 
specifications of marginal distributions. 

DEFINITION 4.47. Let G be a decomposable graph with the vertex set 
V(G) = {Vi, ... , Vn}, n ~ I, and the clique set Cl(G) = {Cl 1, ••• , Clm}, 
m ~ I. Let ~(vi, ... , vn) be the free Boolean algebra generated by 
{v; IV; E V(G)}, and for each clique Cl; E Cl(G), let ~(Cl;) ~ ~(v1, ... , vn) 
be the free Boolean algebra generated by {vj I Vj E V(Cl;)}. Let 
M = {me,, I Cl; E Cl(G)} be a set of partial specifications of marginal 
distributions such that B = (G,M) is a partially quantified belief network. For 
each met, E M, the function bubct,: ~(Cl;) ➔ [O, I] defined by 
bube,, ( c) = sip {/Let, ( c) I /Let, E M where M is a global extension of M} for all 
c E ~(Cl;), is called the best upper bound function relative to me,,• For each 
me1, E M, the best lower bound function relative to me,,, denoted by blbe1,, is 
defined symmetrically. 

It will be evident that for each c E ~(Cl;) we can find an extension M of M 
such that /Let, E M and /Le,,(c) = bube1,(c); a similar observation can be made 
concerning blbe1,. 

In the following discussion it is assumed that a probability of interest Pr(c) 
is local to a clique, that is, involves variables all occurring in one and the same 
clique. It will be evident from the foregoing that we have that the problem of 
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finding the best upper bound for a probability of interest Pr(c) is equivalent to 
the following linear programming problem: 

maximize Pr(c) 

subject to 
(i) Dx = m, 

(ii) Tx = 0, and 

(iii) X ;;;,, 0. 

We can solve this linear programming problem using a traditional LP­
program. In such a straightforward approach, however, the modular structure 
of the problem at hand is not exploited. For solving linear programming 
problems of special structure, several methods have been introduced, see for 
example [LASD70]. For a problem having the form shown in Figure 4.2, a 
method for taking advantage of this angular structure has been designed which 
is known as Dantzig-Wo!fe decomposition, [PAPA82,LASD70]. This 
decomposition method basically amounts to solving the entire problem by 
iteratively solving the separate 'blocks' of the problem; this iteration process is 
monitored globally by a master problem, the major part of which is formed by 
so-called coupling constraints (in our case the consistency equations). If we 
were to apply Dantzig-Wolfe decomposition to our problem, however, the 
computations to be performed would not be restricted to local computations 
per clique only. 

Now, recall that our problem is an even special case of the angular form 
shown in Figure 4.2: each consistency equation involves variables from 
precisely two cliques only. This observation together with the properties of a 
clique tree allow us to devise a new decomposition algorithm in which all 
computations are local to the cliques (provided of course that the probability 
of interest is local to a clique as well). This decomposition algorithm will be 
stated in Algorithm 4.48; its correctness will be shown in the Lemmas 4.49 and 
4.50. First, however, we describe the basic idea of the algorithm informally for 
our running example. 

Recall that the tree shown in Figure 4.4 is a clique tree of our example 
graph G. In Figure 4.6 this clique tree is depicted once more, this time 
explicitly showing the nonempty clique intersections by means of boxes; in this 
convention we follow Jensen et al. [JENS88b]. Note that this figure also depicts 
the structure of our linear programming problem: each ellipse may be viewed 
as representing a system of linear constraints D;x; = m;, x; ;;;,, 0, and each box 
may be viewed as representing a system of consistency equations 
T;,1x; - T1,;x1 = 0. We now use an object-oriented style of discussion: we 
view the vertices of the clique tree as autonomous objects holding the local 
systems of constraints D;x; = m;, x; ;;;,, 0, as private data. These objects are 
only able to communicate with their direct neighbours in the clique tree and 
only 'through' the consistency equations: these equations are used for the 
translation of variables of one clique in terms of variables of another one. So, 
the edges of the clique tree are viewed as commt01ication channels. 
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compute 

add 

add 

add add 

compute compute 

add 

compute 

FIGURE 4.6. A decomposition method with local computations. 
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Suppose we are interested in the best upper bound for a probability which is 
local to a specific clique, like the one shown in the figure. The object 
corresponding with the clique now sends a request for information about 
further constraints, if any, to its neighbours and then waits until it has received 
the requested information from all of them. For the moment, each 'interior' 
object in the clique tree just passes the request on to its other neighbours and 
then awaits the requested information. As soon as a leaf (or the root) of the 
tree receives such a request for information, a second pass through the tree is 
started. The leaf computes the feasible set of its local system of linear 
constraints and derives from it (by means of projection) the set of feasible 
values for the probabilities which are the constituent probabilities for the 
intersection with its neighbour. This information then is passed on to this 
neighbour via the appropriate communication channels using the consistency 
equations for ' translation' of the variables. This results in the addition of extra 
constraints to the local system of constraints of this neighbour. These 
computations are performed by the interior vertices as well until the object 
that started the computation has been reached again. The arcs in Figure 4.6 
represent the flow of computation from this second pass through the clique 
tree. From its (extended) local system of linear constraints, the object that 
started the computation may now compute the best upper bound for our 
probability of interest. We will show that the result thus obtained is the same 
as when obtained directly from the joint system of constraints. The intuition 
of this property is that when the process has again reached the object that 
started the computation, this object has been 'informed' of all constraints of 
the entire joint system. By directing the same process once more towards the 
root and the leaves of the tree, all objects can be brought into this state. So, 
in three passes through the clique tree, each object locally has a kind of global 
knowledge concerning the entire joint system of constraints. For any 
probability of interest that is local to a clique we can now compute a 
probability interval locally. 

The following algorithm describes these three passes. 

ALGORITHM 4.48. Let B = (G,M) be a partially quantified belief network as 
defined in Definition 4.31, where G is a decomposable graph with the clique set 
Cl(G) = {Cl 1, ... , Clm}, m > 1, and where M = {mCI, I Cl; E Cl(G)} is a 
set of partial specifications of marginal distributions. Let D;x; = m;, x; ;;,, 0, be 
the system of linear constraints obtained from me,,, i = 1, .. . , m. Let 
TG = (V(TG),E(TG)) be a clique tree of G as defined in Definition 4.41. Let 
T;JX; - T1,;x1 = 0 be the system of consistency equations obtained from the edge 
(Cl;,Cl) E E(TG)- Now view TG as a computational architecture in which the 
vertices are objects and the edges are communication channels. Without loss of 
generality we assume that the computation is started by the root Cls of the clique 
tree TG. 
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The root Cls of T G starts the computation by performing the following actions: 

1. Send a request for information to all neighbours and wait. 

2. If a return message, having the form of a system of constraints, has been re­
ceived from all neighbours, then add these systems of constraints to the local 
system of constraints Dsxs = ms, Xs ;;,,: O,· compute the feasible set Fs of the 
resulting system and derive from it the set { TsJXs I Xs E Fs }, for each 
CIJ E v(Cls). 

3. For each such neighbouring clique Cl1, send this information as a system of 
constraints to Cl1 using TsJXs - T1,sxJ = 0. 

Each leaf Cl; of T G performs the following actions: 

1. Wait for a message. 

2. If a request for information is received, then compute the feasible set F; of the 
local system of constraints D;X; = m;, X; ;;,,: 0, and derive from it the set 
{T;,JX; jx; E F;},for Cl1 E v(Cl;). 

3. Send this information as a system of constraints to Cl1 using 
T;JX; - T1,;x1 = 0, and then wait for a message. 

4. If a system of linear constraints is received, then add this system to the local 
system of constraints D ;X; = m;, X; ;;,,: 0. 

For each interior vertex Cl;, let the vertex Cit be defined as Cit E v(Cl;) and 
Cit is on the path from Cl; to Cls, and let the set C/1 be defined as 
C/1 = v(Cl;) \ {Cit}. Each interior vertex Cl; performs the following actions: 

1. Wait for a message. 

2. If a request for information is received from the neighbour Cit, then pass this 
message on to all other neighbours C/1 E Cl;-. 

3. If systems of constraints have been received from all neighbours Clk E Cf1 
(or from Cit, respectively), then add these additional systems of constraints to 
D;x; = m;, X; ;;;,,, O; compute the feasible set F; of the resulting system of con­
straints and derive from it the set { T;JX; IX; E F;} for Cl1 = Cit (or for 
each C/1 E Cl;-, respectively). 

4. For each such clique C/1, send this information as a system of constraints to 
C/1 using T;JX; - TJ.ixJ = 0. 

In the following lemma, it is shown that after applying Algorithm 4.48 an 
equilibrium has been reached. 
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LEMMA 4.49. Let B = (G,M) be a partially quantified belief network as in the 
preceding algorithm. For each clique Cl; E Cl(G), let D;x; = m;, X; ~ 0, be 
the system of linear constraints obtained from mCJ, E M, i = 1, ... , m, m > 1. 
Let TG = (V(TG),E(TG)) be a clique tree of G as defined in Definition 4.41. 
Let T;JX; - Tj,ixj = 0 be the system of equations obtained from the edge 
(Cl;, Clj) E E(TG). Now consider the extended local systems of constraints after 
applying Algorithm 4.48; for each clique Cl; E Cl(G), let Fioca/ be the feasible set 
of the extended local system of constraints. Then, for each pair of distinct cliques 
Cl;, Clj E Cl(G) such that V(Cl;) n V(Clj) =:/= 0 we have 
{ T;JX; IX; E F1oca1} = { Tj,iXj I Xj E F~ocat}. 

PROOF. We prove the lemma by induction on the construction of the clique 
tree as described in Lemma 4.44. 

Induction Basis 

Consider the case in which we have a decomposable graph G with two cliques 
Cl1 and Cl2• Let TG be a clique tree of G; TG has two vertices Cl 1 and Cl2, 

as in the following figure ( once more the clique intersection has been shown by 
means of a box): 

compute1 

computei 

FIGURE 4.7. A clique tree of order 2. 

For i = 1, 2, let D;x; = m;, x; ~ 0, be the local system of linear constraints 
obtained from the partial specification me,, E M associated with clique Cl;; let 
F; be the feasible set of D;x; = m;, x; ~ 0. Recall that each vector x; E F; 
defines a marginal distribution JLet, which is an extension of mCJ,. Let 
T1,2x 1 - T2, 1x2 = 0 be the system of consistency equations obtained from T G· 

Without loss of generality, we assume that Algorithm 4.48 is applied starting 
with C/ 1• C/ 1 sends a request for information to Cl2 • C/2 now computes the 
feasible set F 2 of its initial local system of constraints D 2x2 = m2, x2 ~ 0. It 
subsequently computes the set { T2, 1 x2 I x2 E F 2}, that is, it computes the 
feasible values for the constituent probabilities for the intersection 
V(Cl 1) n V(Cl2) obtained from marginalization of a yet unknown marginal 
distribution JLet, being an extension of me,,• Note that the set 
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{ T2, 1 x2 I x2 E F 2} is convex. 1bis information is sent to Cl I as a system of 
constraints; the consistency equations T1,2x1 - T2, 1x2 = 0 are used for the 
appropriate translation of the variables; Cl I adds these constraints to its initial 
local system of constraints D 1x 1 = m 1, x 1 ;;a. 0. The object Cl 1 then 
computes the feasible set F~ocat of this extended system of constraints. We 
obviously have that F~ocat ~ F 1• From this feasible set F~ocat, the object Cl 1 

subsequently derives the set {T1,2x1 Jx1 E F~ocat}. Note that we have that 
{T1,2X1 Jx1 E F~ocat} ~ {T2,1X2 Jx2 E F2}. The object Cl 1 sends this 
information as a system of (possibly tighter) constraints to Cl2, again using 
T1 2X1 - T2 1x2 = 0 for translation of the variables. Cl2 adds these 
co~straints to its local system of constraints and here Algorithm 4.48 halts. 

Now suppose that the object Cl2 actually computes the feasible set F'{cat of 
its extended system of constraints and that it derives from this feasible set the 
set { T2, 1 x2 I x2 E F~ocat}. It will be evident that we have that 
{T2,1X2 lx2 E F~ocat} ~ {T1,2X1 Jx1 E F~ocat}. Recall that we have to show 
that {T2,1X2 lx2 E F~ocat} = {T1,2X1 lx1 E F~ocat}. We do so by contradition. 
Suppose that there exists a vector x such that x E F~ocat and x ff. F'{ca/. Then, 
the extended system of constraints of Cl 2 comprises at least one constraint 
that is not met by x. From x E F~ocat we have that this constraint cannot 
have been added to the original system of constrains of Cl 2 on account of 
information received from Cl 1• So, the violated constraint has to be among 
the initially specified ones. But then we have that x ff. F 2 ; it follows that 
x ff. F~ocat. From the contradiction we conclude that 
{T2,1X2 lx2 E F~ocat} = {T1,2X1 lx1 E F~ocat}. We say that an equilibrium has 
been reached. 

Note that the additional constraints from Cl 1 added to the local system of 
constraints of Cl2 might not only affect the bounds on µc,

1 
(cvcc,,)n vcc1

1
)), but 

the bounds on µc,
1
(c) for any configuration c of a subset of V(Cl2)\ V(Cl 1) 

as well. But then, since the variables from V(Cl2)\ V(Cl 1) do not occur 
elsewhere in the clique tree TG, this cannot possibly lead to new, again tighter 
constraints on µc,

1 
(cvcct,)n vcc,

1
)). So, the computational process cannot 

'bounce' from the leaves of the tree. 

Induction Hypothesis 

Suppose that for some n ;;a. 2, after applying Algorithm 4.48 to a clique tree 
T G of a decomposable graph G of order n, we have that for each pair of 
distinct cliques Cl;, Cli E Cl(G) such that V(Cl;) n V(Clj) =fa 0 the 
property { T;1x;I X; E r;ocat} = { Tj,ixj I xj E E:'ioca/} holds. 

Induction Step 

Let T G be a clique tree of a decomposable graph G of order n + I. Lemma 
4.44 allows us to view T G as constructed by adding a leaf Cln + 1 to a clique 
tree T' of order n. Assume that C/n + 1 is connected to a vertex Clk of T' as 
shown in Figure 4.8. Now, let C/n + 1 compute the feasible set Fn + 1 of its 
initial local system of constraints D n + 1 Xn + 1 = mn + 1, Xn + 1 ;;a. 0. It 
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) 

FIGURE 4.8. A clique tree of order n + 1. 
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subsequently computes the set { Tn + l,kxn + 1 I Xn + 1 E Fn + i}, that is, it 
computes the feasible values for the constituent probabilities for the 
intersection V ( Cln + 1) n V ( Clk) obtained from marginalization of a yet 
unknown marginal distribution µc,, ., which is an extension of the partial 
specification me,.+, associated with Cln + 1• The object Cln + 1 now sends this 
information as a system of constraints to Clk> using 
Tn + 1,kxn + 1 - Tk,n + 1 xk = 0 for the appropriate translation of the variables. 
The object Clk adds these constraints to its initial local system of constraints. 

We view this as an initialization before applying Algorithm 4.48. We now 
take for Clk the thus extended system of constraints and apply the algorithm 
to T' ( disregarding Cln + 1 ). From the induction hypothesis it follows that after 
the execution of the algorithm, for each pair of distinct cliques 
Cl; , C/1 E C/(G)\ {Cln +d such that V(Cl;) n V(C/1) =fa 0, we have that 
{T;JX;IX; E F/oca/} = {T1,;x1 ix1 E Fjocat}. 

Now let Clk compute the feasible set F~ocat of its (extended) local system of 
constraints after application of Algorithm 4.48 to T'. From this set F~at, the 
object Clk subsequently computes the set { Tk,n + 1 xk I xk E F~ocat}. The object 
Clk now sends these (possibly tighter) constraints to Cln + 1• After using 
Tn + 1,kxn + 1 - Tk,n + 1 xk = 0 for translation of the variables, Cln + 1 adds these 
constraints to its local system of constraints. Since Clk was extended initially 
with the additional constraints from Cln + 1 before applying Algorithm 4.48 to 
T' we have {Tk,n+JXkixk E F~ocal} (;;; {Tn +J,kXn +l lxn + l E Fn +d· Now 
suppose that Cln + 1 actually computes the feasible set F~°'fl of its thus 
extended system of constraints. Using the same argument as in the induction 
basis, we have that the computation process cannot 'bounce' from Cln + 1 ; so, 
{ Tk,n + 1 xk I xk E Ftocat} = { Tn + J,kxn + 1 I Xn + 1 E F~c_ti } . It now follows from 
further marginalization and the transitivity of the equality that for each pair of 
distinct cliques Cl;, C/1 E C/(G) such that V(Cl;) n V(Clj) =fa 0, we have 
that {T;,1x;jx; E F/ocal} = {T1,;x1 ix1 E Fjocat}. 
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Recall that in this induction step we added the constraints obtained from 
Cln + 1 to Clk before applying Algorithm 4.48 to the clique tree T' of order n. 
However, if we apply the algorithm to the entire clique tree T starting with the 
root of T', then the object Clk has to wait for systems of constraints from all 
its successors before it can compute from its extended system of constraints, 
the constraints to be sent to its predecessor in the clique tree. So, in both 
cases Ch computes the constraints to be sent to its predecessor from the same 
system of constraints. We therefore have that an equilibrium is reached after 
applying Algorithm 4.48 to the clique tree T of order n + 1. ■ 

In the following lemma it is shown that the decomposition algorithm yields the 
correct results. 

LEMMA 4.50. Let B = (G,M) be a partially quantified belief network as in 
Algorithm 4.48. Let D;x; = m;, X; ;;;,, 0, be the system of linear constraints 
obtained from mq E M, Cl; E Cl(G), i = 1, ... ,m, m > 1. Let 

TG = (V(TG),E(TG)) be a clique tree of G. Let Tx = 0 be the system of 
consistency equations obtained from T G and let Dx = m, Tx = 0, x ;;;,, 0, be the 
joint system of constraints, having the feasible set FJoint_ For each Cl;, let 
Ffoint = {x;l(x1, ••• ,x;, ... ,Xm) E FJoint}, i = 1, ... ,m. Furthermore, let 
F1°cal be the feasible set of the extended system of constraints for clique Cl; after 
application of Algorithm 4.48. Then, for i = I, ... , m, we have F/ocal = F{oint. 

PROOF. For i = 1, ... , m, let F; be the feasible set of the local system of 
linear constraints D;x; = m;, X; ;;;,, 0, before application of Algorithm 4.48. 
From the proof of the preceding lemma it will be evident that we have 
F/ocal <;;; F;, i = l, ... , m. From the observation that each D;x; = m;, 
x; ;;;,, 0, i = I, ... , m, is a subsystem of the joint system of constraints 
Dx = m, Tx = 0, x;;;,, 0, we also have F{oint <;;; F;. We will show that 
F/ocal <;;; Ffoint and Ffoint <;;; F/ocal_ 

(1) Consider a vector x;' E F/ocal_ Recall that x;' defines a marginal 
distribution µ,' ct, which is an extension of the partial specification mq 

associated with Cl;. From the equilibrium property proven in the 
preceding lemma, we have that we can find a vector x/ E F~ocal such 
that T;Jx;' - T1,;x/ = 0 using the consistency equations obtained from 
the edge (Cl;,Clj) in E(TG)- Recursively repeating the argument, we 
have that there exists a vector x' = (x1 ', ••• , Xm '), x/ E F7ca1, 
j = 1, ... , m, such that Tx' = 0, x' ;;;,, 0. From F/ocal <;;; F;, 
i = 1, ... , m, it furthermore follows that x' is a solution to 
Dx = m, x ;;;,, 0. So, x' is a solution to Dx = m, Tx = 0, x ;;;,, 0. But 
then, we have that x;' E Ffoint. It follows that F/ocal <;;; F{oint. 

(2) Consider a vector x;' E Ffoint_ We have that there exists at least one 
vector x' = (x1', ••• ,x;', ... ,xm ') which is a solution to the joint 
system of constraints Dx = m, Tx = 0, x;;;,, 0. We have for each 
k = l, ... , m, that xk' is a solution to Dkxk = mk, xk ;;;,, O; so, 
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■ 

x/ E Fk. Now consider a subvector x/ of x' corresponding with a 
clique C/1 which is a neighbour of Cl; in T G· Since x' is a solution to 
Tx = 0, we have that T;Jx;' - ~.;x/ = 0. Now suppose that after 
applying Algorithm 4.48, x;' fl F;ocat. From the equilibrium property 
proven in the previous lemma, it follows that x/ fl Ft01

• Recursivey 
repeating the argument, we have for k = 1, ... , m, that x/ fl Ftc . 
But then, for some j this contradicts x/ E Ftn1

• It follows that 
x;' E F/ocal_ We have Ffoinl ~ F/ocal_ 

Note that after Algorithm 4.48 has been applied, for any local probability a 
lower bound and an upper bound can be computed locally from an 
appropriate (extended) local system of constraints. The resulting probability 
interval may be rather wide, in fact it may be too wide for practical purposes. 
However, it is in a sense an 'honest' result: it just reflects the lack of 
knowledge concerning the joint probability distribution. Note that if we had 
selected a single solution to the joint system of constraints for computing 
probabilities of interest, the resulting 'point' probabilities would have given the 
false impression of complete information. 

Now recall that in this section we have taken a partially quantified belief 
network to consist of a decomposable graph G and a number of probabilities 
which are local to the cliques of G. Viewed in the context of such a partially 
quantified belief network, the probability intervals resulting from optimizing 
local probabilities after Algorithm 4.48 has been applied are exact. The 
decomposable graph G, however, has been obtained from an acyclic directed 
graph by applying the transformation scheme proposed by Lauritzen and 
Spiegelhalter. Now recall from Section 3.4 that the decomposable graph does 
not reflect all independency relationships between the statistical variables 
discerned that have been assessed initially by the domain expert: it may 
contain several 'dummy' edges. It will be evident that in this case the 
probability intervals may be too pessimistic, since we have not taken all 
independency relationships into account. For obtaining exact probability 
intervals, however, the entire approach can be applied recursively to the 
cliques containing such 'dummy' edges. 

We conclude this section with a discussion of some issues concerning the 
computational complexity of the presented algorithm. In this discussion, n 
denotes the number of statistical variables in the partially quantified belief 
network B = (G,M ), that is, n is the order of the decomposable graph G. 
Algorithm 4.48 essentially is composed of a sequence of solving smaller 
problems. The computational complexity of the algorithm therefore is 
dependent upon the number of problems to be solved as well as upon the 
complexity of solving these separate problems. It will be evident that in 
general the algorithm may take exponential time. However, if the maximal 
clique size is small compared to the number of statistical variables, that is, if 
the maximal clique size is bound by some constant k, then the algorithm will 
take polynomial time. The fact is, that under this restriction on the clique 
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sizes, computing the required information from a local system of constraints 
will only take constant time. Moreover, the system has to solve O (n) 
problems of constant size, since the maximum number of cliques is n. Note 
that after Algorithm 4.48 has been applied, any local probability can be 
optimized locally; under the restriction mentioned above this takes constant 
time. It is noted that in [LAUR88a], Lauritzen and Spiegelhalter mention the 
same restriction on the maximal clique size for their method to be feasible. An 
important question for the decomposition algorithm to be of practical use is 
the question whether it is likely that the mentioned restriction will be met in 
practice. Concerning this question, Pearl argues that sparse, irregular networks 
are generally appropriate in practical situations, [PEAR88]. 

4.4. PROCESSING EVIDENCE 

Recall from the introduction to this chapter that in order to be able to exploit 
a partially quantified belief network for reasoning with uncertainty, we had to 
devise a method for deriving information about probabilities of interest from 
the network and a method for processing evidence. In this section we address 
the latter problem of propagating evidence through a partially quantified belief 
network. Again we assume that the graphical part of such a belief network 
has been transformed into a decomposable graph. In addition, we assume that 
a clique tree of the decomposable graph has been constructed. We will once 
more use an object-oriented style of discussion and view the clique tree as a 
computational architecture just like we have done in the preceding section. 
We assume that each of the autonomous objects of the clique tree holds a local 
system of linear constraints that initially has been obtained from the 
appropriate partial specification of a marginal distribution and subsequently 
has been extended using Algorithm 4.48. 

Now suppose that a piece of evidence becomes available. We discern two 
types of evidence: 

(1) evidence concerning a certain partial specification of a marginal 
distribution, called case-independent evidence, and 

(2) evidence observed for a specific case, called case-dependent evidence. 

Case-independent evidence is merely new knowledge concerning a certain 
partial specification of a marginal distribution rendering it 'more specified': it 
is information we did not have before. This type of evidence is dealt with just 
by adding another constraint representing the piece of evidence to the 
appropriate system of constraints obtained from that specific partial 
specification. After application of Algorithm 4.48 new bounds on any local 
probability of interest can be computed locally. The bounds obtained after 
processing this type of evidence are modified monotonically: new evidence 
merely leads to the same or narrower probability intervals. Note that this 
property allows for stepwise filling-in a quantification of a belief network. 

The second type of evidence concerns information that for the specific case 
we are looking at we have observed that a certain statistical variable has a 
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certain value. From the way an updated probability distribution in the fully 
specified case is computed, it will be evident that we cannot simply add this 
evidence as a new constraint to an appropriate system of constraints; the 
addition of such a constraint will probably even render the system infeasible. 

Now, recall from the previous section that for computing bounds on 
probabilities of interest from a partially quantified belief network we exploited 
the work on belief networks by S.L. Lauritzen and D.J. Spiegelhalter. Once 
more we take their model as a point of departure. Adhering to the basic idea 
of the scheme for evidence propagation used in this model, our aim now is to 
arrive at a method for 'updating' the separate systems of constraints locally, 
yielding new systems of linear constraints such that each of these systems 
defines the possible extensions of the corresponding partial specification of a 
marginal distribution after it has been updated with the evidence. Then, after 
a piece of evidence has been processed we can compute bounds on 
probabilities of interest locally just like before the evidence was processed: the 
notion of a partially quantified belief network is invariant under evidence 
propagation. Unfortunately, we have not been able to find such a method for 
processing case-dependent evidence. The problem of evidence propagation 
through a partially quantified belief network will have to be a subject of future 
research. Here, we will merely state some of the problems we have 
encountered when trying to devise such a propagation method. In Section 
4.4.1 we will discuss processing a piece of case-dependent evidence in one 
clique of the graph; in Section 4.4.2 we will consider the propagation of the 
evidence to the other cliques of the graph and show by means of an easy 
counterexample that the scheme for evidence propagation proposed by 
Lauritzen and Spiegelhalter cannot be extended to deal with probability 
intervals as indicated. 

4.4.1. Processing Evidence in One Clique 

We consider a partially quantified belief network B = (G,M) as defined in the 
previous section. Let C/(G) = {C/ 1, ••. , Clm}, m ;;;;. 1, be the clique set of 
the decomposable graph G of B. For each clique Cl;, let mCI, E M be the 
partial specification of a marginal distribution associated with Cl;. Now, for 
each Cl;, we obtain a system of linear constraints from the appropriate partial 
specification mCI,; recall that each solution vector of such a local system of 
constraints defines a marginal distribution that is an extension of mCI,. 

Furthermore, let FCI, denote the feasible set of the (extended) local system of 
constraints for Cl; resulting after applying Algorithm 4.48, i = 1, ... , m. 
Now suppose that we obtain the case-dependent evidence that the statistical 
variable V E V(G) has the value true (the case in which we have observed 
that V has the value false is dealt with analogously). Let Cl be a clique in G 
containing V and let r be the number of statistical variables in the vertex set of 
Cl, r ;;;;. 1. 

We consider the marginal distribution µc, defined by a specific vector 
x E F ci and investigate the updating of µc1• Note that 2' - I constituent 
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(marginal) probabilities of µc1 specify v and that the remaining 2' - l ones 
specify -,v. It will be evident that updating the marginal distribution µc1 

amounts to setting all constituent probabilities specifying -,v equal to zero, and 
then normalizing the remaining constituent probabilities in order to render the 
result again a marginal distribution. Now consider the defining vector x. 
Without loss of generality, we take the components of x to be ordered in such 
a way that the first 2' - l components correspond to the constituent 
probabilities of µc1 specifying v and that the remaining components correspond 
to the constituent probabilities specifying -,v. The following definition 
introduces an update mapping such that when applied to the vector x the 
updated vector defines the updated marginal distribution (for ease of 
exposition, we take the updated vector to be of the same dimension as the 
original one). 

DEFINITION 4.51. The update mapping U: R2' ➔ R 2', r ;;;;. I, is the partial 
mapping defined by 

(1) 
X1 X2' - ' 

y-r-, ... , y-r-,0, ... , 0 
2,-1 

if }: X; =/=- 0, and 

}:x; }:x; i=l 

i=l i=l 

(2) U(x) = undefined, otherwise. 

The case in which we apply the update mapping U to somi-yector x E R 2' of 

constituent (marginal) probabilities for which we have }: x; = 0 deserves 
i=l 

some special attention. For the marginal distribution µc1 defined by such a 
vector x, we evidently have µc,(v) = 0. Evidence that µc,(v) = I contradicts 
this prior information. For this case, we take U(x) = undefined; this is an 
arbitrary choice. We return to this observation shortly. 

Since we are primarily interested in applying mappings to vectors 
representing marginal distributions, we will frequently restrict the discussion to 
unit simplices. 

DEFINITION 4.52. The unit simplex in Rn, n ;;;;. I, denoted by Sn, is the convex 
n 

set in the positive orthant of Rn such that for each x E Sn we have }: X; = 1. 
i=l 

The following lemma states the evident property that when applied to a vector 
representing a marginal distribution the update mapping U yields a vector 
which again represents a marginal distribution, provided of course that the 
result is defined. 

LEMMA 4.53. Let the mapping U: R2' ➔ R2', r ;;;;. I, be defined as above. For 
each x E S 2,, we have that either U(x) E S 2, or U(x) = undefined. 
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Until now we have only looked at the updating of a single vector. Recall that 
such a vector is an element of a convex polytope F ci of vectors, each defining 
a marginal distribution which is an extension of the initially given partial 
specification mc1 associated with the clique Cl. For processing the evidence 
that the statistical variable V has adopted the value true, we have to apply the 
update mapping U to each vector x E Fe1• We therefore are interested in the 
image U(Fo) of Fe,- Since the mapping U is non-linear, the question arises 
whether the image of a convex polytope under U again is a convex polytope. 
We will show that this question may be answered in the affirmative. 

It will be evident from the preceding informal discussion that the update 
mapping U is composed of a multiplication and a projective mapping. The 
multiplication mapping is defined in the following definition. 

0 

I ·, 

.. 

I 
I 

I 
I 

I 
I 

I 

y 

I 
I 

I 
I 

I 

I 

I 
I 

' • , 

I 

I 
I 

-✓ 

i=I 

2' 

~ X; = l 
i=I 

FIGURE 4.9. The general idea of the mapping M. 

X; = l 
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DEFINITION 4.54. The multiplication mapping M: R2' ➔ n2', r ~ I, is the 
partial mapping defined by 

(I) 
X1 X2' 

-y=r--, .. . ,-y=r--
2,-1 

if }: x; =fo 0, and 

}:x; }:x; i=l 

i=l i=l 

(2) M (x) = undefined, otherwise. 

The geometrical idea of applying the multiplication mapping M to a vector 
from the unit simplex S 2, is sketched in Figure 4.9. We consider this mapping 
M in some detail. 

LEMMA 4.55. Let the multiplication mapping M: n2' ➔ R 2', r ~ I, be defined 
according to Definition 4.54. Furthermore, let F C S 2, be a convex polytope 
such that for each x E F we have that M(x) =fo undefined. Then, the image 
M (F) of F is a convex polytope. 

PROOF. We prove the lemma by showing that by applying M each line 
segment in F is mapped again into a line segment. 

Let x,y E F. Let M(x); denote the i-th component of M(x). Then, 
AX + (I - ;\)y, 0 ~ ;\ ~ I, represents the line segment between the two 
points x and y. Consider M(AX + (I - ;\)y); note that the conditions of the 
lemma guarantee that M(AX + (I - ;\)y) is defined. We have to show that 
there exists a scalar µ,, 0 .;;; µ, .;;; 1, such that the property 
M(AX + (I - ;\)y) = µM(x) + (I - µ)M(y) holds. We have 

M(AX + (I - ;\)y); = 

AX; + (I - ;\)y; 
2· -• 

}: (;\xJ + (I - ;\)yJ) 
j=I 

AX; + (I - ;\)y; 
r- r -

;\}: x1 + (1 - ;\)}: YJ 
j=I j=I 

2,-1 2,-1 

for i = I, ... ,2'. Now let a= }: x1 and P = }: y1. Then, 

M(AX + (I - ;\)y); = 

AX; + (I - ;\)y; 

;\a + (I - ;\)/J 

j=I j=I 

;\ (I - ;\) 
;\a + (I - ;\)/J X; + ;\a + (I - ;\)/3 y; 
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X · 
By definition, we have M(x); = ___!._ and M(y); 

a 

M('lu: + (1 - A)Y); = 

So, 

Aa (1 - X)/3 _ 
Aa + (1 - A)P M(x); + Aa + (1 - A)P M(y); -

= µM(x); + (1 - µ,)M(y); 
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f 1 2, h - Aa N h O 1 or i = , ... , , w ere µ, - Aa + (l _ A)/3 ote t at ,a;;; µ ,a;;; • 

Furthermore, note that A = 0 corresponds with µ, = 0 and that A = 1 
corresponds with µ, = 1. We have that µ,M(x) + (1 - µ)M(y) is the line 
segment between the points M(x) and M(y). It follows that M(F) is convex. 
■ 

LEMMA 4.56. Let the multiplication mapping M: n2' - R2', r ;;. 1, be defined 
according to Definition 4.54. Fw·thermore, let F C S2, be a convex p<J/ytope 
such that for each x E F we have that M (x) =I= undefined Then, x is a vertex of 
F if and only if M(x) is a vertex of M(F). 

PROOF. The lemma follows immediately from the proof of the previous lemma 
and the observation that for each x, y E F such that x =I= y, we have 
M(x) =/= M(y). ■ 

In the previous two lemmas, we have excepted the case in which the 
r -vttiplication mapping M is applied to some vector x E S 2' for which 

~ x; = 0. We have pointed out before that this case is somewhat 
i=l 

problematic. We now exploit the geometrical view to the mapping M 
presented informally in Figure 4.9 in order to look at this special case in more 
detail. 

LEMMA 4.57. Let F denote the feasible set of the system of constraints 

2' 

~ d1,;X; = PJ, j = 1, ... ,k, k;;. 1, 
i=I 

2' 

~x; = 1, and 
i=l 

X; ;,. 0, i = 1, ... , 2', 
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where r ;;;;,, 1. Furthermore, let F 0 be the feasible set of the system of constraints 

2' 

}: (dJ,i - p1)x; = 0,j = 1, ... ,k, k;;;;,, 1, 
i=I 

2' 

~ x; = 1, and 
i=I 

X; ;;;;,, 0, i = 1, ... , 2'. 

Then, F = F 0
• 

2' 2' 

PROOF. The lemma follows from the observation that ~ d1,;x; = Pi · }: X;, 
/=I /=I 

j = 1, ... , k. ■ 

Consider the property stated in the preceding lemma once more. From 
Lemma 4.6 we have that the feasible set C of the system of constraints 

2' 

~ (d1,, - p;) x1 = 0, j = 1, ... ,k, k ;;;i: 1, and 
i=I 

x, ;;;i: 0, i = 1, .. . ,2', 

where r ;;;;,, 1, is a polyhedral cone. In fact, C equals the polyhedral cone 
generated by vert (F), where F is the feasible set of the original system of 
constraints as in Lemma 4.5\, We have that by intersecting this polyhedral 

cone C with the hyperplane ~ X; = 1, we again obtain this feasible set F. 
i=I 

Now, let M be the multiplication mapping defined according to Definition 
4.54. If F does not contain any vectors x for which M(x) is undefined, then 
f,~ obtain the image M (F) of F by intersecting the cone C with the hyperplane 

}: x1 = 1. This property is stated more formally in the following lemma. 
i=I 

LEMMA 4.58. Let the multiplication mapping M: R2' ➔ R2
', r ;;;;,, 1, be defined 

according to Definition 4. 54. Let F be the feasible set of the system of constraints 

2' 

~ d1,1X1 = PJ, j = 1, ... ,k, k;;;;,, 1, 
/=I 

2' 

~ x1 = 1, and 
i=I 

x, ;;;i: 0, i = 1, ... , 2', 
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such that for each x E F we have that M(x) =/= undefined. Let F* be the 
feasible set of the system of constraints 

2' 

l: (dj,i - pj) X; = 0, j = 1, ... ,k, k ;;;i, 1, 
i=I 

2•-I 

l: x; = 1, and 
i=J 

X; ;;;i, 0, i = 1, ... ,2r. 

Then, F* = M(F). 

PROOF. We will show that M(F) ~ F*; the proof that F* ~ M(F) is 
analogous. 

Recall from the conditions of the lemma that we have assumed that M (x) is 
defined for each x E F. Now, let x' E F. We have that M(x') = Nx' where 

A' = ~. From x' E F, we have that 

l: X; 
i=I 

2' 

l: di,;x;' = Pi• j = 1, ... , k, and 
i=I 

2' 

l: x;' = 1, and 
i=I 

x;' ;;;i, 0, i = 1, ... , 2r. 

It follows that 

2' 

l: (di,i - p;) x;' = 0, j = 1, ... , k. 
i=I 

Evidently, we have that 

2' 

l: (di,i - p;)( AX;') = 0, j = 1, ... , k, 
i=I 

for any A. ;;;i: 0. For A. = A.' we furthermore have 

2•-I 

l: (A.'x/) = I. 
i=I 

So, A.'x' E F*. ■ 



170 Partially Quantified Belief Networks 

We return once more to the case in which the feasible set F of the ( original) 
system of constraints as in Lemma 4.58 comprises at least one solution vector 
x for which the image M(x) = undefined. Now, consider the polyhedral cone 
C being the feasible set of the system of constraints 

2' 
~ (dj,i - p j) x; = 0, j = 1, ... , k, k ~ 1, and 
i=I 

X; ~ 0, i = I, ... , 2r. 

2,-1 

We have that C comprises at least one solution vector x for which ~ X; = 0. 
i=I 

It follows that the feasible set F* of the system of constraints 

2' 

~ (dj,i - pj)X; = 0, j = 1, ... ,k, 
i=J 

2, - 1 

~ x; = 1, and 
i=I 

X; ~ 0, i = 1, ... , 2r, 

2, -1 

is either empty or unbounded (note that this property follows from ~ X; = 0 
2,-1 i=I 

and ~ x; = 1 being parallel hyperplanes). The aptness of this geometrical 
i=I 

observation may readily be seen by examining the images M(y) of all vectors 
y E Fin the £-neighbourhood N ,(x) of x. 

Now, recall that we are investigating the question whether the image of a 
convex polytope under the update mapping U from Definition 4.51 again is a 
convex polytope. We have argued that this mapping U is composed of the 
multiplication mapping M and a projective mapping. We now turn our 
attention to this projective mapping. 

DEFINITION 4.59. The projective mapping P: R2' ➔ R2', r ~ 1, is the 
mapping defined by 

P((x1, ... ,X2')) = (xi, ... ,x2,-• ,0, ... ,0). 

Note that if we take U = P O M, we formally have to deal with the case where 
M(x) is undefined for some vector x. For ease of exposition we disregard such 
cases. 
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LEMMA 4.60. Let the projective mapping P: R2' ➔ R 2', r ;;;i= 1, be defined as 
above. Let F <:;::; S 2, be a convex polytope. Then, the image P (F) of F is a con­
vex polytope. 

PRooF. The lemma follows from the observation that P is a linear mapping. 
■ 

The following lemma should be evident. 

LEMMA 4.61. Let the projective mapping P: R2' ➔ R 2', r ;;;i= 1, be defined as 
above. Let F <:;::; S 2, be a convex polytope. Then, P (x) is a vertex of P (F) only 
if x is a vertex of F. 

Note that the reverse property does not hold, that is, not every vertex x of F 
corresponds with a vertex of P (F). 

We look once more at the problematic case in which the feasible set F of the 
original system of constraints contains at least one solution vector x for which 
M (x) = undefined. Recall that for this case we have that the feasible set P of 
the system of constraints 

2' 

~ (dj,i - pj) x; = 0, j = I, ... ,k, k ;;;i= I, 
j=I 

2, - 1 

~ X; = I, and 
i=I 

X; ;;;i= 0, i = I, .. . , 2r, 

is either empty of unbounded. We observe that if P is ~\)ounded, then the 

image P (P) of F* is bounded since the hyperplane ~ x; = I and the 
i=I 

hyperplane defined by X; = 0, i = 2r - I + I, ... , 2r, are orthogonal. 
We now combine the Lemmas 4.55, 4.56, 4.60 and 4.61 to yield the 

following lemma concerning U. 

LEMMA 4.62. Let the update mapping U: R2' ➔ R 2', r ;;;i= I, be defined as in 
Definition 4. 51. Let F <:;::; S 2, be a convex polytope such that for each x E F we 
have that U(x) =/= undefined Then, 

(I) the image U(F) of Fis a convex polytope, and 

(2) U(x) is a vertex of U(F) only if xis a vertex of F. 

The following lemma states a more detailed result concerning the image of a 
convex polytope under the update mapping. 
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LEMMA 4.63. Let the update mapping U: n2' ➔ R2', r ;;;;,, 1, be defined accord­
ing to Definition 4.51. Let F C S 2, be a convex polytope such that for each 
x E F we have that U(x) =fa undefined. Let vert(F) be the set of vertices of F. 
Then, U(F) = hu/l(U(vert(F))). 

PROOF. We have from Lemma 4.62(2) that the set U(vert(F)) contains all ver­
tices of U(F). The lemma now follows from this observation and Lemma 4.4. 

■ 

Consider the statement of the preceding lemma once more. It will be evident 
that for a given polytope F having the mentioned property, the set U(vert(F)) 
is not the minimal spanning set of U(F) since it may contain some interior 
points from U(F) as well. 

In the beginning of this section we have argued that for propagating case­
dependent evidence through a partially quantified belief network B = (G,M) 
we aim at devising a method for 'updating' the (extended) local systems of 
constraints associated with the cliques of G, yielding new systems of 
constraints such that each of these defines the possible extensions of the 
corresponding partial specification of a marginal distribution after it has been 
updated with the evidence. The last lemma now provides us with a 
(theoretical) means for updating the system of constraints associated with the 
clique Cl of G in which the evidence has been entered. In the following 
algorithm we exploit the property stated in this lemma. Note that we once 
more assume that the feasible set of the system of constraints does not 
comprise any vectors x for which U(x) is undefined. 

ALGORITHM 4.64. Let the update mapping U: R2' ➔ R2', r ;;;;,, 1, be defined ac­
cording to Definition 4.51. Let F C S 2, be a convex polytope such that for each 
x E F we have that U(x) =fa undefined. Then, the following algorithm yields a 
system of constraints having U (F) for its feasible set: 

1. Compute the set vert (F) of all vertices of F. 

2. Apply the operator U to each element x E vert (F), thus obtaining the set 
U(vert(F)). 

3. Use U(vert(F)) to span the convex hull U(F) = hu/l(U(vert(F))). 

4. Construct the supporting hyperplanes of U(F) and generate the appropriate 
system of constraints. 

This algorithm for processing case-dependent evidence is rather inefficient; step 
(I) in itself already takes exponential time. It shows however that updating a 
local system of constraints can actually be achieved. 

We return once more to the case in which the feasible set F c, of the 
(extended) system of constraints associated with the clique Cl contains at least 
one vector x for which the image U(x) is undefined. We distinguish two cases: 
if vert (F cD consists of only vectors for which the image under U is undefined, 
then the observed evidence we are trying to process evidently is inconsistent 
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with the prior information; the evidence cannot be processed and the detected 
inconsistency should be reported. If, on the other hand, vert (F cD also 
comprises some vertices x for which U(x) is defined, then the observed 
evidence can be processed. In computing U(Fci), however, we have to exclude 
all vectors defining marginal distributions the piece of evidence is inconsistent 
with. From the geometrical observations in the foregoing, it will be evident 
that the above-mentioned algorithm yields the correct result after just ignoring 
those vertices of F for which the image under U is undefined. 

4.4.2. Propagating Evidence Through a Partially Quantified Belief Network 

From the introduction to this section we recall that our aim is to arrive at a 
method for processing evidence in a partially quantified belief network that is 
similar in concept to the method for evidence propagation presented by 
Lauritzen and Spiegelhalter for fully quantified networks. In the foregoing we 
have presented a method for processing a piece of case-dependent evidence in 
one clique of a given partially quantified belief network; this method basically 
amounted to 'updating' the (extended) local system of constraints associated 
with this clique. We now like to propagate the piece of evidence through the 
remainder of the network, adhering to the same basic idea. We have 
mentioned before that we have not been able to devise such a propagation 
method. In this subsection we state some problems we have encountered in 
trying to find such a method and show by means of an easy counterexample 
that the method of Lauritzen and Spiegelhalter cannot be extended to apply to 
a partially quantified belief network. 

Let B = (G,M) be a partially quantified belief network where G is a 
decomposable graph with the clique set C/(G) = {C/ 1, ••• , Clm}, m > 1. 
For each clique Cl; , we obtain a system of linear constraints from the 
appropriate partial specification me,, E M associated with Cl; in the manner 
described in Section 4.3 and extend it using Algorithm 4.48. The general idea 
of the propagation of a piece of case-dependent evidence through the entire 
network is sketched in Figure 4.10. The upper row of the figure shows three 
cliques Cir, Cls and C/1 as they occur in a given clique tree T G of the 
decomposable graph G of the network. From now on, let r denote the number 
of statistical variables in the vertex set of clique Cl, , let s be the number of 
variables in clique Cls and t the number of variables in C/1, r, s, t ~ 1. In the 
middle row of the figure, the feasible sets F,, Fs and F, of the ( extended) local 
systems of constraints corresponding with the cliques Cir, Cls and C/1, 

respectively, are shown. Recall that after Algorithm 4.48 has been applied an 
equilibrium as stated in Lemma 4.49 has been reached. In the figure, the 
symbol =; is used to denote that this equilibrium property holds between the 
indicated sets. In the sequel, we take this equilibrium property to be the 
invariant under evidence propagation, that is, if an equilibrium holds between 
the feasible sets of two local systems of constraints then an equilibrium has to 
hold between the feasible sets of the 'updated' systems of constraints. 

Now suppose that we obtain the case-dependent evidence that the statistical 
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F; 

FIGURE 4.10. Propagating evidence. 

variable V occurring in clique Cl, has the value true (the case where we 
observe that V has the value false is dealt with analogously). For processing 
this evidence in Cl, we simply apply the method described in the preceding 
subsection: given the feasible set F, of the ( extended) local system of 
constraints for clique Cl,, we compute the set F, = U(F,), where U is the 
update mapping defined in Definition 4.51 (for ease of exposition, we assume 
in the remainder of this section that for each y E F, the image 
U(y) =I= undefined). This updating is shown in the leftmost column of Figure 
4.10. Informally speaking, each marginal distribution in F, is the result of 
updating a marginal distribution from F,. Recall that this set F, of updated 
marginal distributions is a convex set and therefore can be described again by 
a system of linear constraints. It will be evident that in general the 
equilibrium property which held between the sets F, and Fs, will no longer 
hold between the sets F, and Fs. 

For propagating the observed evidence from clique Cl, to clique Cls, we now 
have to find a mapping T such that 

(I) given the feasible set Fs of the ( extended) local system of constraints for 
clique Cls, the image F; of Fs under T is the set of marginal distributions 
JLet, being extensions of the partial specification met, associated with Cls 
after updating, and 

(2) the equilibrium property again holds between the sets F, and F;. 
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Furthermore, to render the notion of a partially quantified belief network 
invariant under evidence propagation, the image F; of Fs under T has to be a 
convex set: only then is it possible to describe F; by a system of linear 
constraints. So in addition T has to be a convex mapping. 

In order to find such a mapping T, we reconsider the scheme for evidence 
propagation for the fully specified case presented by Lauritzen and 
Spiegelhalter. Let M be a specific global extension of the set M of partial 
specifications of marginal distributions of the network B. For the marginal 
distributions µct,, µct, E M we have that for each configuration cc,,nct, of 
Cir n Cls the property µc,,(cqnct) = µct,(Cct,nct) holds. Now, let µh, be the 
result of updating µc,, with the observed evidence. Recall from Definition 3.53 
that the updated marginal distribution µct, is computed using 

µh(Cqnct) 
µh(Cc,) = µc,,(Cct,) · (C ) 

µc,, Cl, n C/, 

We reformulate this updating in terms of vectors from Fr and Fs. Let x be the 
vector from Fs defining the marginal distribution µc,, E M we have considered 
before. Furthermore, let y be the vector from Fr defining the marginal 
distribution µc,, E M corresponding with µCl,. From the Lemmas 4.18 and 
4.19 we have that for each configuration cc,,nct, of Cir n Cls there exist an 
index setfc such that 

µq(cc1,nc1) = ~ Yi 
iE,?, 

and an index set -Fc such that 

µct,(Cc1,nc1) = ~ xi 
i EJ, 

Note that the index sets -Fc and fc are dependent upon the configuration 
cc,,nct, under consideration. Now, recall that for each configuration cc,,nct, of 
Cir n Cls we have µc1,(cc,,nct) = µc1,(cc,,nct); so, we have 

~xi= ~ Yi 
iEJ, iEfo 

for each pair of appropriate index sets -Fc andfc. It will now be evident that 
we have to map each component x1 = µc,, (cct,), j = 1, ... , 2S, of x into 

µet,(Cct,nct) 
µct,(Cct,). ( ) 

µq Cct,nct, 

~ U(y)i 
i E/; 
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where U(y); denotes the i-th component of the iinage U(y) of y and ~ is the 
index set dependent upon x1. 

In the following definition we define a binary mapping T for this updating. 

DEFINITION 4.65. Let the update mapping U: R 2' ➔ R 2', r ;;,,, l, be defined 
according to Definition 4.51. We define the mapping T: R 2' X R 2' ➔ R 2', 

s ;;,,, 1, by 

~ U(y); 

(1) 
iE.f; . 

T(x,y)1 = x1 · ~ , for J = 1, ... , 2S, if x and y correspond as 
""'y; 

i E.f; 

indicated in the preceding discussion, and 

(2) T(x,y) = undefined, otherwise. 

Informally speaking, for a vector x E F5 and a corresponding vector y E F,, 
we have that some of the components of x are multiplied by a certain 
normalization factor dependent upon the chosen y, that another part of the 
components is multiplied by another normalization factor and so on. 

The following lemma now states the evident property that when applied to 
vectors representing marginal distributions the mapping T yields a vector 
which again represents a marginal distribution, provided of course that the 
iinage is defined. 

LEMMA 4.66. Let the mapping T: R 2' X R 2' ➔ R 2', r, s ;;,,, 1, be defined as 
above. Then, for each x E S-r and y E S 2, we have that either T(x,y) E S 2, 

or T(x,y) = undefined 

The following lemma will be evident. 

LEMMA 4.67. Let the update mapping U: R2' ➔ R2', r ;;,,, 1, be defined 
accordfng !O D,efinition 4.51. Furthermore, let the mapping 
T: R2 X R2 ➔ R 2

, s ;;,,, 1, be defined as in Definition 4.65. Then, for each 
x E S -r and y E S 2, such that T(x,y) =fa undefined, we have 

~ T(x,y); = ~ U(y); for all j = I, ... ,25
• 

iE~ i E.f; 

The property from the preceding lemma guarantees that the equilibrium 
property holds between the two sets F, and F; = {T(x,y) I 
x E Fs, y E F,, T(x,y) =fa undefined}. The mapping T therefore satisfies the 
first two properties we required T to have. Recall, however, that in addition T 
had to be a convex mapping. Unfortunately, the mapping T is not a convex 
one as the following easy counterexample will demonstrate. 
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V 1 = true 

FIGURE 4.11. The clique tree of G. 
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EXAMPLE 4.68. Let B = (B,M) be a partially quantified belief network where 
G is a decomposable graph having the clique tree shown in Figure 4.11. For 
clique Cl I having the vertex set V ( Cl 1) = { V 1, V 2 } we have the constituent 
probabilities 

Y1 = µc,,(v1 I\ v2) 

Y2 = µc,, (v 1 /\ ,v2) 

Y3 = µc,,(,v1 I\ v2) 

Y4 = µc,,(-,v1 I\ ,v2) 

where µc,, is a yet unknown marginal distribution associated with Cl 1• For 
clique Cl2 having the vertex set V(Cl2) = {V2, V3 } we have the constituent 
probabilities 

X1 = µc,,(v2 I\ V3) 

X2 = µc1,(,V2 I\ V3) 

X3 = µc,, (v2 I\ ,v3) 

X4 = µc,, (-,v2 I\ ,v3) 

where µCJ, is a yet unknown marginal distribution associated with Cl2 • Now 
suppose that after application of Algorithm 4.48, the feasible set Fe,, of the 
(extended) local system of constraints for Cl I is the line segment between the 
points z1 and z2 where 

1 1 1 
Z1 = (4,4 ,0, 2), and 

3 1 
Z2 = (4,0,0,4) 

It will be evident that 
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lies on this line segment. Furthermore, suppose that the feasible set F ci, of the 
(extended) local system of constraints for C/2 is the line segment between the 
points Wt and w2 where 

t I I 
Wt = (0,2'4'4) 

I I I 
W2 = (2,0'4'4) 

The point 

lies on this line segment. 
Suppose that we obtain the case-dependent evidence that V 1 = true. The 

images of 41, 42 and 43 under the update mapping U are computed as follows: 

I I 
U(41) = (2 , 2,0,0) 

U(42) = (1,0,0,0) 
4 I 

U(43) = (5 ,5 ,0,0) 

The reader can easily verify that the point U (43) lies on the line segment 
between U(41) and U(42). We now consider the updating of w1, w2 and w3. 
We choose 4J to correspond with w1, 42 to correspond with w2 and 43 to 
correpond with w3, and compute the images under T as follows: 

I I I 
T(w1,41) = (0, 3,2,6) 

2 I 
T(w2,42) = (3 ,0, 3 ,0) 

2 I 2 I 
T(w3,43) = (5'10'5'10) 

Upon inspection of these images it will be evident that T(w3,43) does not lie 
on the line segment between T(w1,41) and T(w2,42). It follows that the 
update mapping T is not convex. ■ 

From the previous example we have that the convex set of marginal 
distributions being extensions of a partially specified marginal distribution is 
mapped into a non-convex set by T: the local updating scheme presented by 
Lauritzen and Spiegelhalter evidently is a non-convex mapping. 

To conclude, we recall that a partially quantified belief network can only be 
employed as a model for reasoning with uncertainty if it has associated two 
methods: a method for deriving information concerning probabilities of 
interest from the network and a method for propagating evidence through the 
network. From the foregoing discussion it will be evident that we have 
succeeded only in devising a method for the first goal; note that our method 
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for computing probability intervals from a partially quantified belief network 
allows for stepwise filling in the quantitative part of a belief network and 
therefore can be used as a help in the process of knowledge acquisition. We 
have not been able to find a method for evidence propagation that renders the 
notion of a partially quantified belief network and the linear programming 
approach invariant; in fact, our counterexample shows that for devising such a 
method we cannot build on the work by Lauritzen and Spiegelhalter. 
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Samenvatting 

Bij bet ontwikkelen van een kennissysteem voor een bepaald probleemgebied 
blijkt vaak dat (menselijke) experts op bet betreffende gebied oordelen kunnen 
vormen en beslissingen kunnen nemen op grond van onvolledige, onzekere en 
soms zelfs tegenstrijdige informatie. Om toegepast te kunnen worden in zo'n 
probleemgebied moet een kennissysteem ook in staat zijn met dit soort 
informatie om te gaan. Onderzoek naar formalismen voor de representatie van 
onzekerheid en algoritmen voor bet manipuleren van onzekere informatie 
vormt dan ook een substantieel onderzoeksgebied binnen de kunstmatige 
intelligentie. Dit proefschrift heeft de toepasbaarheid van de 
waarschijnlijkheidsrekening in een dergelijke context tot onderwerp. 

Aangezien de waarschijnlijkheidsrekening een van de oudste theorieen met 
betrekking tot onzekerheid is, is bet niet verwonderlijk dat deze wiskundige 
theorie in de jaren zeventig als eerste uitgangspunt in bet onderzoek naar bet 
redeneren met onzekerheid werd gekozen. Helaas blijkt een aantal problemen 
een na:ieve toepassing van de waarschijnlijkheidsrekening in een kennissysteem 
in de weg te staan. Voor een traditionele besliskundige aanpak zijn 
bijvoorbeeld al ex:ponentieel veel kansen nodig ( ex:ponentieel in bet aantal 
onderscheiden statistische variabelen), meer dan gewoonlijk in praktische 
toepassingen bekend zullen zijn. Daarnaast is de tijdscomplexiteit van de 
algoritmen voor bet uitvoeren van de probabilistische berekeningen voor bet 
manipuleren van onzekere informatie exponentieel. 

In de zeventiger jaren werd daarom gezocht naar modificaties van de 
waarschijnlijkheidsrekening die oplossingen moesten bieden voor de 
gesignaleerde problemen. De in deze periode ontwikkelde modellen gaan in 
beginsel uit van de waarschijnlijkheidsrekening, maar bieden ad hoc methoden 
voor bijvoorbeeld het manipuleren van een partiele specificatie van een 
kansverdeling. In dit proefschrift worden deze modellen quasi-probabilistische 
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modellen genoemd. De quasi-probabilistiscbe modellen zijn vanuit wiskundig 
oogpunt belaas niet correct; desondanks worden ze in de praktijk op grote 
scbaal toegepast. Met name deze observatie beeft een zorgvuldige analyse van 
een van deze modellen, te weten bet certainty factor model, gemotiveerd. De 
resultaten hiervan zijn vastgelegd in boofdstuk 2; aangetoond wordt 
bijvoorbeeld dat in bet model impliciet sterke veronderstellingen betreffende 
onafhankelijkheid zijn gedaan. 

De eerste teleurstellende ervaringen met bet toepassen van de 
waarschijnlijkheidsrekening in kennissystemen bebben ertoe geleid dat de 
aandacht ervoor als theoretische basis voor bet redeneren met onzekerbeid 
drastisch afnam: de geschiktheid van de waarschijnlijkheidsrekening werd zelfs 
ter discussie gesteld. De tegenstanders van de waarschijnlijkheidsrekening 
wijzen erop dat deze theorie niet voor elke vorm van onzekerbeid een 
natuurlijke oplossing biedt, en stellen altematieve grondslagen voor het 
redeneren met onzekerheid voor, zoals de vage logica, de theorie van Dempster 
en Shafer, en een aantal niet-numerieke theorieen. 

Het onderzoek naar de toepassing van de waarschijnlijkheidsrekening in 
kennissystemen is echter voortgezet en beeft de laatste jaren een nieuwe impuls 
gekregen in de vorm van de zogenaamde netwerkmodellen. Deze modellen 
worden gekenmerkt door een grafisch model van de statistische variabelen die 
in een probleemdomein onderscheiden worden en bun onderlinge 
probabilistische relaties; de sterkten van deze relaties zijn vastgelegd met 
behulp van voorwaardelijke kansen, die tesamen een unieke kansverdeling op 
het domein definieren. Hoofdstuk 3 gaat op deze nieuwe stroming in bet 
redeneren met onzekerbeid in en bespreekt een voorbeeld van een dergelijk 
netwerkmodel in detail. 

In tegenstelling tot de quasi-probabilistiscbe modellen zijn de 
netwerkmodellen wiskundig correct. De netwerkmodellen zijn echter niet in 
staat om met een particle specificatie van een kansverdeling om te gaan. In 
boofdstuk 4 van dit proefschrift wordt als gedeeltelijke oplossing voor dit 
probleem een methode voorgesteld om, gegeven een partieel gekwantificeerd 
netwerk, grenzen aan kansen te berekenen; deze methode kan bijvoorbeeld als 
hulpmiddel bij bet kwantificeren van de probabilistische relaties in een netwerk 
gebruikt worden. De voorgestelde methode lost het genoemde probleem echter 
slechts ten dele op: bet is vooralsnog niet mogelijk om met een partieel 
gekwantificeerd netwerk te manipuleren. 




