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Preface. 

Afterwards one of the interesting things of preparing a thesis is that you go 

through stages of different ways of doing scientific research. The first part of the thesis, 

concerning bandwidth selection for kernel estimators, took place at a fair distance of the 

experts in this particular part of density estimation. One of the consequences is that at 

times you worry whether they haven't already written up your results. On the other 

hand the research on deconvolution and the Wicksell problem received so much 

attention from colleagues nearby, working on related problems, that one of your main 

worries is why you haven't already written up your results. For a young statisticians 

selfconfidence in my view the second situation is preferable. 

I started the research for a thesis while I was working at the Centre for 

Mathematics and Computer Science (CWI) in Amsterdam. Later I worked at the 

Mathematical Institute of the University of Amsterdam. I thank both institutes for 

allowing me to do this research and for the facilities they offered. 

Some people I want to mention specially. I want to thank my promotor Piet 

Groeneboom for a long period of pleasant cooperation. Although the circumstances 

have not always been optimal I feel confident that in the near future we can prolong the 

interesting research related to the problems in the last chapter of this thesis. 

I am grateful to my co-promotor Paul Janssen for the effort he put into reading 

the manuscript in the limited time there was. It has benefitted a lot from his remarks. 

With Peter de Jong I had many discussions on some theoretical aspects of this 

research, i.e. the asymptotic distribution of statistics appearing in the chapters about 

kernel estimation. 

I thank Richard Gill and Adriaan Hoogendoorn for suggesting the Wicksell 

problem, which inspired the research on the deconvolution problem. 

Without Te Yung Fu writing (typing) this thesis would have required eveil more 

effort, since then I could not have avoided reading all those manuals. I thank him for 

his technical guidance. 

I am grateful to Dick Zwarst and his team for fitting the printing of this 

monograph in their tight schedule. 

Finally I thank Marian for putting up with someone showing increasing signs of 

obsession. Hopefully in the near future these are not replaced by signs of increase by 

another obsession. 
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1. INTRODUCTION. 

If X1, ... ,Xn are independent observations from a distribution with density f, then one of the 

oldest nonparametric estimators of the density is the Parzen-Rosenblatt kernel estimator (Parzen 

(1962), Rosenblatt (1956)) 

(1.1) 
1 n 

fnh(x) := iin ~ K((x-Xi)/h), 

where h is a positive real number called the window or the bandwidth and K is a probability density 

function called the kernel. This estimator is studied in the first two chapters. Of course many other 

nonparametric density estimators have been proposed, for instance the well known histogram 

estimator and several refinements of the kernel estimator. For reviews of density estimation we refer 

to Prakasa Rao (1983), Devroye & Gyfirfi (1985), Silverman (1986) and Devroye (1987). 

To compute a kernel estimate we have to choose a kernel and a bandwidth. It is generally 

recognized that for most loss functions the choice of the bandwidth is more important than the choice 

of the kernel. In chapter 3 we consider so called cross-validation methods to determine a good 

bandwidth for a kernel estimator. Least squares cross-validation was introduced and studied by 

Rudemo (1982) and Bowman (1984) and has since received considerable attention. Stone (1984) 

established an important optimality result with respect to the integrated squared error. It states that a 

kernel estimator with a bandwidth computed by least squares cross-validation asymptotically 

performs as well as a kernel estimator with the best possible non-random bandwidth. This optimality 

holds for all bounded densities. For smooth densities, i.e. essentially densities with a continuous 

second derivative, the asymptotic distribution of the computed bandwidths and the corresponding 

integrated squared error was derived by Hall & Marron (1987b). Likelihood cross-validation was 

introduced earlier by Habbema, Hermans & Van de Broek (1974) and Duin (1976). We establish the 

almost sure rates of convergence to zero of bandwidths computed by this method and the asymptotic 

distribution theory. It turns out that the asymptotic behavior is similar to the asymptotic behavior of 

least squares cross-validation, provided we use a modification proposed by Marron (1985), and 

provided we exclude densities with jumps. We show that likelihood cross-validation does not give 

asymptotically optimal bandwidths for densities with jumps. For densities without jumps likelihood 

cross-validation gives bandwidths which are asymptotically optimal with respect to a weighted 

integrated squared error, where the weight is equal to 1/f (Marron (1985)). For a detailed introduction 

to cross-validation methods we refer to section 3.1. 

Following Van Eeden (1985) and Cline & Hart (1986) we consider not only estimation of 

smooth densities, but also of densities with discontinuity points. We also allow discontinuity points 

in the first or second derivative. At those points we require the densities to have left and right Taylor 
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ezj>an'Sions. Thus we also consider densities with jumps and kinks. In section 2.1 we state the precise 

conditions on f . For the moment we suffice with gi~g two examples. 

Ex'ampTe I.I. Let "the density fbe given by 

'(1.2) 
{

o 
f(x) := <2-x/2)/0. 

~2-(x-3)2)/o. 

2 3+✓2 

if x<0 
if O~x<2 

if 2~<3+✓2 ' 
if x?.3+✓2 

where'«:= ,J 1(~-~)dx + j f 2-(x:.3)2)dx ""'6 . .S--523. Then f has -a jump m the point O, a kink in the 

p'oint 2 and a kink in the point 3+✓2 . 

.., 
ci 

N ' 
ci 

0 

ci +----,--,-----r'--, 
-2·.0 2.0 6. 0 

Figure-I . .1~ A non-srrloblli tlensity. 

We Use this density repeated!¥ as ah example of a typical non-smooth density. 

Example 1.2. A situatioh where a jump and a kink appear naturally is given by Wi'Cksdl's 

corpuscle problem. Let X1 , ... , Xn denote n radii of spheres of different random size in an opaque 

mediiltn, such as drops of oii in a piece of rock. Suppose that we can nat observe these spheres 

directly. Instead we can observe Ure radii of the circular profiles df the spheres obtained by taking a 

slice of the medium. Denbte the radii of the cireular profiles by Y 1, ••• , Y n, which we assume to be 

independent. Defining fas the sphere radius density and g as the circle radius density, WickSell 

(1925) showed that under suitable regulaHty conditions the next relations between f and g hold, 

(U) 

and 

00 I . 
g(y) = - J ::±::a= f(r) dr, (j <::: y < oo 

µy ✓r2-y2 

21,1 d f
00 

r , d (i.4) f(r) = - -'-BF , -V , 
2 2 

g(y) y, r?.d, 
1t y y -t 

where µ equais the expectation of the sphere radii. Several parametric and nonparametric methods 

have been proposed for estimating the density f or its distribution function . For reviews of the 
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Wicksell problem and related methods see Ripley (1981) and Stoyan, Kendall & Mecke (1987). 

Estimators of the density f related to the kernel estimator were proposed by Taylor (1983), Hall & 

Smith (1988) and Van Es & Hoogendoorn (1988). All these estimators suffer from a large bias close 

to zero, which can be explained from the fact that , no matter how smooth the density f is, the density 

g has a kink in zero. This is immediate from relation (1.3). Moreover, Hall & Smith propose an 

estimator based on the squared circle radii. It is readily seen that since the density of the squared circle 

radii equals g1(r) := (2r112r1g(r112) it has a jump in zero. 

Kernel estimation of non-smooth densities is studied extensively in chapter 2. In our opinion 

kernel estimators can be used for estimating such densities, even though they have a larger error and 

thus require larger sample sizes. Moreover, these densities might occur without the statistician being 

aware of it. For this reason we have also studied likelihood cross-validation for such non smooth 

densities. In fact, in an important special case, treated in corollary 3 .6, the density f has jumps. Some 

of the results derived in this chapter are also used frequently in chapter 3. 

In the last chapter we leave density estimation and consider deconvolution, i.e. estimation of 

an unknown distribution function in a situation where we have a sample from a distribution which is 

the convolution of the unknown distribution and a known one. Since the Wicksell problem, properly 

transformed, also has a convolution structure, estimation of the distribution function of the sphere 

radii is one of the examples. We present a minimax theorem which shows that even for estimating a 

distribution function at one fixed point different rates of convergence can appear, a phenomenon well 

known in density estimation. Also, for three examples, we derive the nonparametric maximum 

likelihood estimator of the distribution function. An extended version of this chapter will appear 

separately as a joint report with P. Groeneboom. 
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2. KERNEL ESTIMATION IN NON~MOOTR CASE'S. 

We examine me petfumranoo rofltike ltemel ~ot (l .. l) with ~e emphasis on its propetities 

if X1, ... , Xn is a sample oom adi:smbutioo with ,a delllsity f vihtch '<l~s rro't salisiy the usual 

smoothness conditions .. Under 1lhese ~ititms f is ~ti~\y ~u~ to have two contmuous 

derivatives. While tlre results fut the smooth 'C'aSe dme back ~ R~biatt (1956)., Studies on ,the 

behavior in non-smooth cases, allowing discontinuities inf~ its oon:v'ative, are fairly receat, see for 
example Van Eeden (1985) and Cline & Hmt ( l 986). 

The conditions we impose on f and K are given in section l.1 . In section 2-.1 we discuss the 

basic propenies of the kernel ~ator fmb evaluatoo at a fl~ poifit x of the teal line-. The resul'ts 

presented in this section are needed to derive global pro~es of ketnel estimators m iater sect1oi\s. 

They also have independent interest. The global behavior with respect t'o the in'te.gratetl squared error 

and the supremum distance is treated in sections 1.3 roYd V t For the properties ofkemel ·e:sthnai:ors 

with respect to the L1 norm we refer to Oevroye & OyOtfi (1985) and Devroye (1987). The last 

section of this chapter contains teehnicru (parts of) proofs of results in the preceding sections. 

2.1. Assumptions. 

We consider densities satisfying the following conditions. Essentially we allow the densities 

to have jumps and kinks. A typical example is given in figure l.l in the introduction. 

Condition F: 

(F. l) The first and second derivativts off, denottd as f' and f ", exist at every point of the 

real line , except at a countable set of points which we denote as D. l n these points We 

give f' and f" arbitrary values. We assume that inf (ld1-d2I: d1,d2e D} is positive, 

i.e. the points in D are separatitd. 

(F.2) The/unctions f, f' and f" have finite ltft and right llmits at the points in D. 

(F.3) The function f has finite left and right first and second derivatives at the points in D. 

(F.4) The second derivative f" is continUous on the open imervals between the points in D. 

The elements of the set D are called singular points. For the density of example 1.1 the set bis equal 

to (0,2,3+✓2}. The jumpsizes off, f' and f" in the singulllt' points ate denoted by s<0J(d); 5<1J(d) 

and 5<2J(d), so we have 

5<0J(d) := f(d+) • f(d-), 

oOl(d) := f'(d+) - f'(d-), 
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o<2l(d) := f"(d+)- f"(d-). 

Condition (F.3) needs some further explanation. By the existence of a finite right derivative off at 

de D we mean that the limit 

lim !..(f(d+£) - f(d+)) 
do £ 

exists and is finite. By Taylor's theorem and (F.2) this limit equals f'(d+). By the existence of the 

second right derivative off at de D we mean that the limit 

lim .3._(f(d+£)- f(d+)- tf'(d+)) 
do £2 

exists and is finite. This limit then equals f"(d+). Hence 

lim 1r(f(d+£) - f(d+) - tf'(d+) - ¥2f"(d+)) = 0. 
do£ 

The left derivatives are defined similarly. With left limits replacing the right limits the relation above 

also holds for f(d-£). This means that we can use left and right Taylor expansions in the singular 

points. 

Given the fact that we use a probability density, the choice of kernel is relatively unimportant. 

Hence we feel free to consider bounded support kernels only. This is further motivated in section 

2.3.1. We assume that the kernels satisfy the next condition. 

Condition K: 

(K.1) K is a probability density function. 

(K.2) K has support [-1 ,1]. 

(K.3) K is bounded. 

(K.4) K is symmetric. 

With respect to (K.2) note that 

(2.1) 

where he= c-1h and Kc(x) := cK(cx), for all x. This implies that to study the case of kernels with 

bounded support we can restrict attention to the support [-1, 1], without loss of generality. 
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2.2. Basic properties of the kernel estimator. 

(2.2) 

Since fnh(x) is an average of i.i.d. random variables its expectation is given by 

1 
E fnh(x) =Eh K((x-X1)/h) . 

To compute the variance note that a straightforward computation gives 

2 1 I 2 n-1 1 2 
E fnh(x) = nh Eh K ((x-X1)/h)) + 11 (Eh K((x-X1)/h)) , 

and therefore 

(2.3) 

Also note that the expectation (2.2) depends on the bandwidth but not on the sample size . The 

variance depends on both the sample size and the bandwidth. A further observation is that for Efnh(x) 

to converge to f(x) we have to assume that h tends to zero. 

The expectations appearing in (2.2) and (2.3) are of the same form. They can be written as 

where G is a measurable function, not necessarily a density, and Gh is defined by 

In (2.3) we take G equal to K2 for the first term and equal to K for the second term. This shows the 

necessity of expansions of such quantities for bandwidths h tending to zero. The next lemma consists 

of two parts. Suppose that f satisfies condition F and recall that that D denotes the set of singular 

points off. The first part gives an expansion for g(x,h) in terms of the bandwidth with x a fixed point 

in Dh, where 

(2.4) ~ := (x : lx-dl>h for all de D}, 

i.e. the set of all points of the real line which are at least at distance h of the singular points of f. In 

example 1.1 the set Dis equal to (0,2,3+✓2). The set Dh is equal to the following union of intervals, 

Dh = (-oo,-h)u(h,2-h)u(2+h ,3+✓2-h)u(3+✓2+h,oo ). 

For technical reasons we also establish the uniformity of the expansion over the sets Dh n[-M,M] for 

arbitrary positive integers M . The second part of the lemma gives an expansion of g(x,h) for x in a 

shrinking neighborhood of some fixed point x0• Here we consider points x=xo+th and we let h tend 

to zero. The expansion holds uniformly on bounded t-intervals. Furthermore we prove uniformity of 
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these expansions for the bandwidths h in intervals (0,hii.], where (hii.) is a fixed sequence of real 

numbers satisfying 

hii.>0 for n = 1,2, ... and fun hii. = 0. 
n--->oo 

Lemma 2.1. Let G denote a bounded measurable function with support [-1 ,1] and let X denote a 

random variable having a distribution with density f. Suppose that f satisfies condition F. 

(a) Then 

g(x,h) = E Gii(x-X) = 

1 I 1 

(2.5) f(x) J G(u)du - hf'(x) J uG(u)du + ~2f"(x) J u2G(u)du + r1(x,h), 
-1 -1 -1 

where the remainder r1 satisfies 

(2.6) fun sup sup h-2r1(x,h) = 0, 
n➔~ 0<h:Sh11 xeDhn[-M.M] 

for every positive M . 

( b) For XO a fued point we have 

g(xo+th,h) = E Gh(xo+th-X) = 

0 

f(xo-) J G(t-u)du + f(xo+)J G(t-u)du + 
-~ 

0 

(2.7) h(f'(xo-)_£ uG(t-u)du + f '(xo+) J uG(t-u)du) + 

0 

~ 2(f"(xo-) J u2G(t-u)du + f "(xo+)J u2G(t-u)du) + ri{t,h), 
-~ 

where the remainder r2 satisfies 

(2.8) fun sup sup h-2r2(t,h) = 0, 
n--->oo 0<h:Sh11 -M:St:SM 

for every positive M. 

Proof. By a substitution we obtain 

g(x+th,h) = E ~(x+th-X) = 

D 
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-
J 1 x+th-v 

(2.9) __ hG(~)f(v)dv =y 

J G(t-u)f(x+hu)du . 

To show (a) we take t equal to zero and we assume that x lies in the set Dh. Relation (2.9) then 

becomes 
1 

g(x,h) = J G(-u)f(x+hu)du . 
- 1 

Since xe Dh the interval [x-h,x+h] contains no points of D and hence by condition F the function f 

allows a three term Taylor expansion for f(x+hu) around the point x. We get 

1 

g(x,h) = J G(-u){f(x) + huf '(x) + ½ii2u2f "(x)) }du + r1(x,h), 
- 1 

where r1 equals 

(2.10) 
1 

r1(x,h) = ½ti2 J u2G(-u){f "(l;(x,hu)) - f "(x)) }du 
-1 

and l;(x,hu) is the point between x and x+hu appearing in Lagranges version of the remainder term in 

the Taylor expansion of f(x+hu). In order to complete the proof of part (a) it remains to show (2.6). 

Let (hn) be an arbitrary sequence of bandwidths satisfying O<hn~~ for all n, and let (xn) be an 

arbitrary sequence of points in Dhn[-M,M], where Mis an arbitrary positive number. It suffices to 

show 

(2.11) 

Under condition F the interval [-M,M] contains a finite number of singular points, -M:s;d1:s;d2:s; ... 

:s;dm:s;M, say. The second derivative f" is uniformly continuous on the intervals [-M,d1), (dm,Ml, 

and (di,di+1), i=l, ... ,m-1. Since for -l<u<l the points Xn and l;(xn,hnu) belong to the same interval 

we have 

lim f "(l;(xn,hnu)) - f "(xn) = 0, 
n➔-

so the integrand in (2.10) converges pointwise to zero. By the dominated convergence theorem we 

then obtain (2.11) and the proofofpart (a) is finished. 

The proof of part (b) is similar, except that since x0 is allowed to belong to D we have to use left and 

right Taylor expansions of f(xo+th) . In fact this is an important special case. The details of the proof 

of part (b) are given in section (2.5). D 
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By (2.2) we can now expand Efnh(x). Since condition K implies that the integral of uK(u) 

vanishes, taking G equal to K, part (a) of the lemma gives 

E fnh(x) = E Kh(x-X1) = 
1 1 1 

f(x)_[ K(u)du - hf'(x)_[ uK(u)du + ½h2f"(x)_[ u2K(u)du + r 1(x,h) = 
1 

f(x) + ½ii2f"(x)j u2K(u)du + r1(x,h). 

By (2.6) this expansion is only meaningful for x a non-singular point off. On the other hand for x a 

singular point we can apply part (b) with t=O. We get 

E fnh(x) = 
1 1 

½Cf(x-) + f(x+)) + ho<1l(x)J uK(u)du + ½ii2(f"(x-) + f"(x+))J u2K(u)du + r2(0,h), 

where r2 satisfies 

lim sup h-2r2(0,h) = 0. 
n➔oo 0<h:Sh0 

The next two theorems give expansions of the bias b(x,h):=Efnh(x)-f(x) and the variance of fnh(x). 

Note that the bias, just as the expectation, is independent of the sample size. It only depends on the 

bandwidth. Similar to part (b) of lemma 2.1 we give an expansion of b(xo+th,h)=Efn11(xo+th)­

f(xo+th), i.e. for values x=xo+th close to a point x0• However, since by condition F the value off in 

jumping points is arbitrary, we have to exclude t=0. We first introduce some functions which appear 

in the expansion of b(xo+th,h). 

Definition 2.2. The functions bo, b1 and bi are def ined as 

t 

bm(t) := 

form= 0,1,2. 

f (t-u)IDK(u)du if t<0 
-00 

00 

- f (t-u)IDK(u)du if ~ O 
t 

The next pictures show the graphs of bo, b1 and b2. We have used the kernel 

35 2 3 K(x) = #(1 -x ) I1- 1,11(x), 

a symmetric bounded support kernel with support [-1, I] . 
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"' ci 

0 
ci 

"' ?+-~----+-~~ 
-1.0 ~-5 o.o 0. 5 1. 0 

"' ci 

., 
?+---~---

-1. 0 ~-5 o.o 0. 5 1.0 

Figure 2.1. The functions bo,b1 and bi. 

"' ci 

., 
?+---~-~~ 

-1.0 ~.5 0. 0 0. 5 1.0 

Theorem 2.3. Assume that the kernel K satisfies condition K and that the density f satisfies 

condition F. 

(a) Then 

(2.12) 
1 

b(x,h) = ~lf "(x) J u2K(u)du + r3(x,h) 
-1 

where the remainder r3 satisfies 

1irn sup sup h-2r3(x,h) = 0, 
n~ O<hsh,; XEDhr.[-M,M] 

for every positive M. 

(b) For xo a fixed point we have 

(2.13) 

1 

5?2J u2K(u)du{f"(xo-)l(-,D)(t) + f"(xo+)l(O,oo)(t)} + 

where the remainder r4 satisfies 

1irn sup sup h·2r4(t,h) = 0, 
n➔oo 0<hSh0 -MS~M,tatO 

for every positive M. D 

Proof. Notice that by (2.2) the expansion in part (a) is a direct consequence of the expansion in part 

(a) of lemma 2.1 if we choose G equal to K. By the symmetry of K "c have 

1 1 

(2.14) J uG(u)du = J uK(u)du = 0, 
- 1 - 1 
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and so, since K integrates to one, the remainder r3 is equal to the remainder r1. 

To prove part (b) notice that b(xo+th,h) equals Efnh(x0+th)-f(x0+th) . Again by relation (2.2) the 

expectation can be expanded using part (b) of lemma 2.1. Together with left and right Taylor 

expansions of f(xo+th) around xo the result can be derived. The details are left to section (2.5). D 

Theorem 2.4. Assume that the kernel K is a bounded probability density with support equal to 

[-1,1] and that the density f satisfies condition F. 

(a) Then 

1 l 
var(fnh(x)) = -h f(x) f K2(u)du + r5(x,h), 

n -1 

where the remainder term rs satisfies 

1 
sup sup rs(x,h) = 0( -), for n ➔ 00, 

0<hSh0 xeDh/"'\[-M,M] n 

for every positive M. 

(b) For xo aftxed point we have 

] l I 

var(fnh(xo+th)) = ~h f(xo-)f K2(u)du + f(x0+) J K2(u)du)+ r6(t,h), 
n I -1 

where the remainder r6 satisfies 

1 
sup sup r6(t,h) = O(:n), for n ➔ 00 , 

O<hShn -MSISM 

for every positive M. D 

Proof. Recall that by (2.3) we have 

1 1 2 1 1 2 
var (fnh(x)) = nh E Fi K ((x-X1)/h)) - :n(E Fi K((x-X1)/h)) . 

Both terms can be expanded by lemma 2.1, taking the function G equal to K2 to deal with the first 

term and equal to K to deal with the second term. It turns out that the second term is negligible. The 

leading terms in the expansions of the first term give the leading terms in the expansions of the 

variance. D 

Remark 2.5. To get the bias of order h2 on the set Dh in (2.12) we have explicitly used that the 

integral of uK(u) is equal to zero. Assuming more smoothness off, a bias of order hm, with m>2, 

can be obtained using kernels satisfying 
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and 

1 

J uiK(u)du = 0 for i = 1,2, .. . ,m-1, 
- 1 

1 

J urnK(u)du 1= 0. 
-1 

Such kernels, called higher order kernels, clearly take on negative values. As a consequence they 

produce density estimates which can be negative. We don't consider higher order kernels here. We 

only mention that cross-validation, a technique discussed in the next chapter, can be used to select an 

appropriate order for a kernel, see Hall & Marron (1988). 

Example 2.6. To illustrate the bias expansions we have computed the bias of a kernel estimator of 

the density fin example 1.1. The kernel we have used is 

(2.15) 35 2 3 K(x) = #(1-x ) I[-1,l](X) . 

Figure 2.2.1 shows a graph off and a graph of Efnh(x) where we have taken the bandwidth h equal 

to½- Figure 2.2.2 shows a graph of the bias b(xJ) of fnh(x). 

"' d 

.... 
d 

-d 

0 

0+------,-~..u...._~ 
-2. 0 0. 0 2. 0 i . 0 6.0 

Fi~ure 2.2.1. The density f and Efnh for h=t-

"' d 

0 

d 

"' ?;----.----.----.---, 
-2.0 0.0 2. 0 i . 0 6.0 

Figure 2.2.2. The bias of fnh for h=t-
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Recall that for this density the set Dis equal to (0,2,3+✓2} and the set Dh is equal to the following 

union of intervals, 

Dh = (-oo,-h)u(h,2-h)u(2+h,3+✓2-h)u(3+✓2+h,oo ). 

If (hn) is a sequence of bandwidths converging to zero then for every fixed xii!: D we have 
I 

b(x,hn) = fh2
1 ~f "(x) J u2K(u)du + o(hJ), for n➔00 , 

- 1 

since XE Dhn for n large enough. In fact this expansion holds uniformly on Dhn ,that is in all points of 

at least a distance h11 to the singular points off. In the picture we see that the bias is much larger close 

to these points. 

Next let us consider the jumping point x=0. Then theorem 2.3 gives the following expansion 

b(th11,hn) = bo(t)o<0)(0) + O(hn) , for n➔00 and t:;ieO. 

This approximation holds uniformly fort in (-1,1 ], so on [-hn,hnJ the bias asymptotically resembles 

the function bo(t) times the jump size off in zero. Notice that if K is a symmetric kernel then the 

function bo is an uneven function.The bias will not converge to zero close to a jumping point if the 

distance to the jumping point is measured in terms of h. 

For the point x=2 we have the expansion 

b(2+thn,hn) = hnb1(t)o<1>(2) + O(hJ), for n➔00 and t;tc0, 

again uniformly fort in (-1,l]. This expansion shows that on the interval [2-hn,2+hnJ the bias 

asymptotically resembles hn times the function b1 times the jump size off' in 2. By the symmetry of 

K the function b1 is an even function. Close to a kink the bias does converge to zero but it is not of 

the same order h~ as it would have been in the smooth points in Dhn• Here the bias is of order hn! The 

point x=3+✓2 can be treated similarly since fhas a kink in this point too. 

The consequences of theorem 2.3 for the bias close to a point where f and f' are continuous and f" 

has a jump is left to the reader. 

All the previous considerations about the bias suggest that very small bandwidths give good 

density estimates. This is far from true. Using theorem 2.4 we obtain the next expansion of the 

variance offnh in a point x which does not belong to D 
I 

var(fnh(x)) = _!_I f(x) f K2(u)du + o(!..), for n➔00 and hJ0. 
n 1 -1 n 

This expansion shows that very small bandwidths cause large variances of the kernel estimator. Part 

(b) of the theorem implies that this is also true if x belongs to D. It follows that we should require 

nh11➔00 , for n➔00, otherwise the variance does nor vanish asymptotically. For optimal choices of the 
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bandwidth these two effects have to be balanced. Of course what we mean by optimal should be made 

precise. Two global optimality concepts are discussed in the next sections. 

Here let us briefly discuss estimation off in a fixed point x. A common loss function when 

estimating a real valued parameter is the mean squared error. The mean squared error of fnh(x) is 

defined by 

MSEn(x,h) := E(fnh(x) - f(x))2-

A simple computation shows 

MSEn(x,h) = b(x,h)2 + var(fnh(x)). 

Let (hn) denote a sequence of bandwidths converging to zero. By theorems 2.3 and 2.4 for a point 

xe D the mean squared error can be expanded as follows 

l 1 l 1 
MSEn(X,hn) = ~~ f "(x)2( f u2K(u)du)

2 
+ -nh f(x) f K2(u)du + o(h~+=:--)-

-1 n -1 nun· 

Minimizing the leading term in this expansion we obtain the asymptotically optimal bandwidth 
I l 

hipt = (f(x) f K2(u)du / (f"(x) f u2K(u )Ju)2) 
115 

n- 115• 
- 1 - 1 

This choice results in a mean squared error of order n-415. Since the expansion of the bias in a kink is 

different we also have a different expansion of the mean squared error. If x is a point where f has a 

kink then we have 
1 

MSEn(x,hn) = h~bt(t)oOl(x)2 + J_f(x) f K2(u)du 
Olin -1 

2 1 + o(hn+=:--), nun 

which leads to an optimal bandwidth of order n- 1/3 and a mean squared error of order n-213. It is not 

clear what the value off should be in a jumping point so we don't consider estimation off in such a 

point. 

There is one more unexpected lesson to be learned from example 2.6. Careful examination of 

figure 2.2.2 on the interval ( 1/2,3/2) suggests that the bias is identically equal to zero on this interval. 

The next remark shows that this is no coincidence. 

Remark 2.7. If a density f is linear on an interval [a,b] then the bias of a kernel estimator is equal to 

zero on the set [a+h,b-h], provided his smaller than b-a. The proof is left to the reader. Now suppose 

that we want to estimate f at a point x inside [a,b] . In that case bandwidths hn, which asymptotically 

minimize the mean squared error of fnhn(x), don't converge to zero. This is immediate from the fact 

that the mean squared error for vanishing sequences of bandwidths can always be decreased by taking 

larger bandwidths. This follows since the estimator fnhn(x) is unbiased and has a variance of order 
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1/(nhn). On the other hand the bandwidths hn can not converge to infinity either, since then, if the 

kernel is bounded by K*>O, by 

K* 
fnh(X) ~ hn, for all x, 

the estimate would converge to zero at every point of the real line. The conclusion is that in this case 

good choices for the bandwidth are asymptotically bounded away from zero and infinity. 

At this point it should be noted that the merit of theorems 2.3 and 2.4 lies not only in the 

pointwise properties just discussed, but also in the fact that these theorems give uniform 

approximations of the bias and the variance on any bounded interval of the real line. This can be 

achieved by considering Dhn and the hn intervals of around the points of D separately. Thus we can 

also expand integrals involving the bias and the variance, provided we integrate over bounded areas. 

2.3. The integrated squared error criterion. 

In the remainder of this chapter we approach density estimation from a global point of view. 

Suppose that we want to estimate the density "well" on some subset E of the real line instead of in a 

fixed point. What we mean by "well" could be quantified for instance by requiring that the estimate 

minimizes the integrated squared error loss 

(2.16) ISEn(h) := f (fnh(x)-f(x)/w(x)dx, 
E 

where w is a nonnegative measurable weight function. Incorporating the indicator function of the set 

E in the weight function we can rewrite (2.16) in the more convenient form 

ISEn(h) = f (fnh(x)-f(x))2w(x)dx. 

Since the integrated squared error measures the discrepancy between the random function fnh and the 

true density f, it is a random variable itself. The mean integrated squared error, defined as the 

expectation of the integrated squared error, 

MISEn(h) := E ISEn(h) = E J (fnh(x)-f(x)/w(x)dx, 

is a deterministic loss function. We discuss the asymptotic behavior of the mean integrated squared 

error in the following section. We also derive the asymptotic distribution of the integrated squared 

error about its mean and discuss the relation between the two loss criteria. 

2.3.1. The mean integrated squared error. 

The mean integrated squared error can be rewritten as follows, 

MISEn(h) = J E(fn11(x)-f(x))2w(x)dx = 
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(2.17) J { b(x,h)2 + var(fnh(x))} w(x)dx. 

This shows that MISEn(h) is a weighted average of the mean squared error of fnh(x), the estimate at 

the point x. We can use the expansions of the bias and the variance in the previous section to derive 

an expansion of the mean intgerated squared error. 

Assume that f satisfies condition F. The set D of singular points of f contains at most 

countably many points d 1, d2, .•.. Recall that o<0l( di), o<1l( di) and 0<2Jc di) denote the jump sizes off, 

f' and f" at the point di. We have to impose some extra conditions on the weight function w. We 

assume that w has a bounded support, which we denote by supp(w), and we assume that w has finite 

left and right limits in the singular points off. We further assume that these limits are not both equal 

to zero in those singular points off which also belong to supp(w). Define 
~ 

6~) := L(w(dj-) + w(di+))o<0lcdi 
i=I 

and 
~ 

6~) := L(w(dj-) + w(di+))o<llcdi· 
i=l 

It follows from condition (F.1) and the fact that w has bounded support that these sums exist of only 

finitely many non vanishing terms, since there are only finitely many elements of D contained in the 

support of w. So 6~el and 6~) are finite nonnegative real numbers. It turns out that the mean 

integrated squared error has a different asymptotic expansion in the following three cases: 

case I D.(O) > 0 
w ' 

case II 6~l = 0 and 6<J} > 0, 

case III 

The meaning of these cases will become clear after we have proved the next theorem. 

Theorem 2.8. Suppose that the density f satisfies condition F and that the kernel K satisfies 

condition K. Let w be a bounded measurable nonnegative weight function with bounded support and 

finite left and right limits in the singular points off. We assume that these limits are not both equal to 

zero for singular points in supp(w). Then for any sequence of bandwidths (hn) converging to zero 

and for n tending to infinity we have 
1 ~ 

(2.18) MISEn(hn) = ~ J K2(u)du -~ f(x)w(x)dx + O(¼) + 



1 

hn~~) J b5(t)dt + o(hn) 

1 

hfo~) J b t(t)dt + o(hii) 

1 

¾ti~ ( _[u2K(u)du)2_£ f "(x)2w(x)dx + o(h~) 
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in case I 

in case /I 

in case /II . D 

Proof. By (2.17) the mean integrated weighted squared error can be written as the integrated 

weighted squared bias plus the integrated weighted squared variance. The basic idea of the proof is 

that we split up the integration area in the set Dhn and its complement, which in its turn is a countable 

union of hn neighborhoods of the elements of D. Starting with the integrated weighted variance we 

write 
oo dj+hn 

(2.19) J var(fnh(x))w(x)dx = J var(fnh(x))w(x)dx + L J var(fnh(x))w(x)dx. 
Dhn 1= 1 dj-hn 

The same decomposition is used for the integrated weighted squared bias. Since w has bounded 

support theorems 2.3 and 2.4 provide us with asymptotic expansions of the integrands over the 

integration areas. Thus part (a) of theorem 2.4 implies that we have, 

1 1 
(2.20) J var(fnh(x))w(x)dx = nh J K2(u)du J f(x)w(x)dx + J r5(x,hn)w(x)dx, 

Dhn n - 1 Dhn Dhn 

where r5 satisfies 

1 
XE oh:~pp(w) r5(X,hn) = 0( n), for n➔00 , 

since the support of w is bounded. This implies that the second term of (2.20) is of order O(¼). To 

deal with the fust term notice that the Lebesgue measure of supp(w)\Dhn is of order O(hn), so 

replacing the integral over Dhn by an integral over supp( w) the difference is of order 0( ~) and 

therefore (2.19) equals the first term in the expansion (2.18). 

By part (b) of theorem 2.4 it follows that for each di belonging to D we have 
dj+hn l 
dj-tar(fnh(x))w(x)dx = O(n), 

and since there are only finitely many of such integrals which give a non zero contribution to (2.19) 

the sum of these terms is also of order 0(¼). This deals with the integrated weighted variance term. 

Next we concentrate on the integrated weighted squared bias term. By part (a) of theorem 2.3 we 

have 

1 

(2.21) J <½hiif"(x) J u2K(u)du + r3(x,hn))2w(x)dx = 
Dhn - 1 
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I oo 

¼hi ( J u2K(u)du)
2 

J f "(x)2w(x)dx + o(hi), 
-1 - 00 

which follows from similar arguments as above. We proceed with observing that for each di 

belonging to D we have 

(2.22) 

dj+hn 

f b(x,hn)2w(x)dx = 
dj-hn 

I 

hn J b(di+thn,hn)2w(di+thn)dt = 
-1 

0 I 

hn J b(di+thn,hn)2w(di+thn)dt +hn f b(di+th0 ,h0 )2w(di+th0 )dt . 
- I 6 

Since cases TI and ill are similar to case I we only treat case I . By part (b) of theorem 2.3 and the 

dominated convergence theorem (2.22) is asymptotically equivalent to, 
0 I 

hn J b5(t)o<0>(di)2w(dj-)dt +hn f b5(t)o<0>(di)2w(di+)dt + o(hn), 
-1 6 

which can be rewritten as 
0 

hn J b5(t)dt o<0>(di)2(w(di-) + w(di+)) + o(hn). 
-1 

The proof is completed by selecting the leading terms and adding them up. It should be noted that in 

cases I and Il the terms (2.22) dominate over the term (2.21) while in case ill it is the other way 

around. We need the condition that for singular points din supp(w) either w(d-) or w(d+) is positive 

to ensure that 11<';; = 0 implies that all the jump sizes o<0>(d) for points din supp(w) are equal to zero, 

and similarly that i2 = 0 implies that the jump sizes 0<1>(d) are equal to zero for points din supp(w). 

D 

Remark 2.9. The expansion for the mean integrated squared error holds uniformly in interval 

(O,hi:i], where (hi:i) is a fixed sequence of bandwidths converging to zero. This follows from the proof 

above using the fact that the orderbounds on the remainders in theorems 2.3 and 2.4 also hold 

uniformly on such intervals. 

Theorem 2.8 supplements the results of Van Eeden (1985) and Cline & Hart (1986) for w:al 

in the sense that we allow weight functions. In those papers however the kernels are not required to 

have a bounded support. Cline & Hart also consider the higher order kernels mentioned in remark 

(2 .5). 
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In theorem 2.8 the weight function waal is not allowed because of its unbounded support. Let us 

instead consider the weight function w(x) := IE(x), -00<x<oo, where Eis a bounded interval [a,b], 

-oo<a<b<oo. With this weight function the mean integrated squared error equals 

MISEn(h) = EJ (fnh(x) - f(x))2dx , 
E 

and the constants t:.«:/ and t:,,';J are equal to 

m 

(2.23) 
t:.~) = 2 i; 6<0l(di)2 + 6<0l(a)2 + 6<0l(b)2 

m 
t:,,~) = 2 i; 6Cl\di)2 + 6(l)(a)2 + 6(1)(b)2, 

where d1, ... ,dm denote the finitely many points of D inside (a,b). Notice that the contribution of the 

endpoints a and b is different than that of the points d 1 , . .• ,dm strictly inside E since w(a-) = w(b+) = 

0 and w(a+) = w(b-) = 1. For the points d inside E both w(d-) and w(d+) are one. It follows that the 

cases we have distinguished in theorem 2.8 correspond to the fact whether f has jumping points in 

[a,b], case I, whether f has kinks in [a,b], but no jumps, case II, and whether there are neither kinks 

nor jumps in [a,b), which corresponds to case ill. Thus the conclusion to be drawn from theorem 

2.8 is that the presence of jumps and kinks in E causes a larger mean integrated squared error than in 

the smooth case III. Jumps increase the error most since in that case we are estimating a 

discontinuous function with a continuous one. 

Similar conlusions hold for the error if the weight function is equal to w(x) = f1(x)IE(X), 

where E is an interval as above and the density f is assumed to be bounded away from zero on E. If 

f=O we also set w=O. The mean integrated squared error criterion thus obtained, i.e. 

MISEn(h) = E J(fnh(x) - f(x))2f1(x)dx, 

plays an important role in the next chapter. Notice that this mean integrated squared error is the 

squared L2 norm over the set E of the random function 

fnh(x) - f(x) 
fl/2(X) 

which for each fixed point which is not a jumping point by theorem 2.4 has an asymptotic variance 

independent of x. In this case the values of tl';J and t:,,';J are given by 

(2.24) 

m 

t:,,~) = L (f(di-Y1+f(di+ )"1)6<0>(di)2 + f(a+ )" 16<0l(a)2 + f(b-)" 16<0>(b)2 
t= l 
m 

t:,,~) = L (f(di-Y1+f(di+Y1)6(1)(di)2 + f(a+)" 16(1)(a)2 + f(b-)" 16< 1)(b)2. 
1= ! 
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This shows that, apart from the constants, jumps and kinks have the same influence on the asymptotic 

behavior of the mean integrated squared error as in the case of the previously considered weight 

function. 

Returning to the expansion of theorem 2.8 we see again that small bandwidths cause a large 

integrated variance term and that large bandwidths cause a large integrated squared bias term. 

Balancing these effects by minimizing the leading term in the expansion leads us to the following 

optimal bandwidths, 

(2.25) 
{

CX1(f,w)112pI(K)l/2 n-1/2 

hipt = CX11(f,w)l/4Pn(K)l/4 n-1/4 

CX111(f,w)l/5Pm(K)l/5 n-1/5 

in case I 

in case II , 

in case III 

where the constants ex, depending on the density f and the weight function w, are given by 

CX1(f,w) = (t.~rl J f(x)w(x)dx) 

cxn(f,w) = (3t.<.!;r
1 J f(x)w(x)dx, 

~ 

cxm(f,w) = ( J f "(x)2w(x)dx}
1 J f(x)w(x)dx, 

and the constants p, depending only on the kernel K, by 

1 I 

P1(K) = _{ K2(u)du (J b5(t)dt)-
1 

I I 

Pu(K) = _{ K2(u)du (J b f(t)dt)-
1 

I I 

Pm(K) = J K2(u)du ( J u2K(u)du)-
2
. 

- 1 - 1 

Remark 2.10. It is no surprise that theorem 2.8 shows that the presence of jumps off in the interval 

E, case I !, causes a large mean integrated squared error. Even if we use an asymptotically optimal 

bandwidth for case I, the mean integrated squared error is still of order n-112, while in case II and in 

case III it would have been of orders n-314 and n-415 respectively. If we don't know where the 

jumping points are then this large error is unavoidable if we use a kernel estimator. However if a 

jumping point is known then the influence of this jumping point can be substantially reduced. For 

densities with support [c,d], [c,oo) or (-oo,d], -oo $ c < d $ oo, with jumps at the points cord which 
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are known points, Schuster (1985) shows that the kernel estimator can be improved by a 

symmetrization device. The symmetrization has the effect that the error caused by the jump is reduced 

to an error caused by a kink. The special case of kernel estimation of decreasing densities on [O,oo) 

with a jump at zero is also treated in Devroye (1987) section 8.4. Cline & Hart (1986) generalize this 

symmetrization device to be able to deal with known jumping points which are not necessarily 

endpoints of the support of the density f. 

Until now we have only considered the choice of an optimal bandwidth. For all three cases 

there is also an optimal kernel. 

First we consider case ill. If we substitute the optimal bandwidth for this case in the expansion (2.18) 

we get 

nlim. n415 MISEn(hi\'Pt) = ¼( J f(x)w(x)dx)
415

( J f'(x)2w(x)dx)1
15 

-00 -oo 

1 1 

( J K2(u)du)415( J u2K(u)du)
215

. 
- 1 -1 

Under certain regularity conditions this expansion also holds for kernels with unbounded support. It 

is shown in Epanechnikov (1969) that the kernel which minimizes this expression over the class of 

symmetric kernels is 

(2.26) 3 2 K(x) = 4 (1-x )I[-1,l](x), 

which is the well known classical optimal kernel. It is less well known that the same procedure can be 

carried out in the non-smooth cases. The optimal kernel in case I was derived by Van Eeden (1985), it 

equals the Laplace density function 

(2.27) K(x) = ½e-lxl, -oo<x<oo. 

The optimal kernel in case ill, derived by Cline & Hart (1986) and simultaniously by Swanepoel 

(1987), is a bounded support density given by 

(2.28) K(x) = (2sinh(r)r 1( cos(lxl)cosh(r-lxl) + sin(lxl)sinh(r-lxl)) I[-1t/2,1t/2 ]( x), 

The last two kernels don't have support [-1,1]. By the scaling property (2.1) we can transfer the 

kernel (2.28) to a kernel with support [-1,1], without disturbing the optimality property. This can of 

course not be done with the Laplace kernel because of its unbounded support. However, Swanepoel 

(1987) gives bounded support kernels which approach the Laplace kernel (2.27) arbitrarily closely in 

the sense that the constants in the expansion of the mean squared error for the optimal bandwidth in 

case II become close to the optimal constants in this case, attained by the Laplace kernel. This shows 
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that our use of bounded suppon kernels is not restrictive from the point of view of the mean squared 

error criterion. 

2.3.2. Asymptotic normality of the integrated squared error. 

The previous section dealt with the expectation of the integrated squared error and the optimal 

bandwidths which we derived asymptotically minimize this expectation. However it is more natural to 

aim for minimizing the integrated squared error itself. From this point of view it is imponant that the 

variation of the integrated squared error around its mean does not dominate the leading terms in the 

asymptotic expansion of the mean integrated squared error, and thus disturb the optimality propeny of 

the optimal bandwidths derived in the previous section. To quantify this variation we give a central 

limit theorem for the integrated squared error. We consider all densities satisfying condition F. 

Theorem 2.11. Assume that f satisfies condition F and that the kernel K satisfies condition K. 

Furthermore assume that w is a bounded almost everywhere continuous nonnegative weight/unction 

with a bounded support and finite left and right limits in the singular points off. Further we assume 

that these left and right limits are not both equal to zero. Let (hn), a sequence of nonnegative 

bandwidths, satisfy hn➔O and nhn➔00 • Then 

']) 
dn (ISEn(hn) - MISEn(hn)) ➔ 

{N(0,2a
2

) if dn = nhh'2 and if nhJ ➔ 0 

N(0,2cr2+Acrt) if dn = nhh'2 and if nhJ ➔ A. , in case/ , 
N(O,cry) if dn = n l/2h·J12 and if nhJ ➔ 00 

{N(0,2cr') if dn = nhh'2 and if nh~ ➔ 0 

N(0,2cr2+Acrt1) if dn = nhh'2 and if nh~ ➔ A. , in case II, 

N(O,cr11) if dn = n 1/2h•J/2 and if nh~ ➔ 00 

r(0.2cr') if dn = nhh'2 and if nhJ ➔ 0 

N(0,2cr2+Aatn) if dn = nhh'2 and if nhJ ➔ A. , in case III , 
N(O,crtn) if dn = n 112h;i2 and if nhJ ➔ 00 

where the variances cr2, at, crt1 and crtn are given by 

~ I 

cr2 := J ( J K(v)K(v+z)dv ) 2dz J w2(u)f2(u )du, 
-00 -1 

~ 0 0 I 

at := 4 i; o<0l(di)2 (f(dj-) ! ( w(dj-)_{ K(t+v)bo(t)dt + w(di+ )J K(t+v)bo(t)dt )2ctv 
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0 l 

+ f(di+)J ( w(di-) _[ K(t+v)bo(t)dt + w(di+)J K(t+v)bo(t)dt )2dv ), 

oo 00 0 l 

at1 := 4 i; f(di)oO>(di)2 -~ ( w(di-) _[ K(t+v)b1(t)dt + w(di+) J K(t+v)b1(t)dt)2dv, 

l 

atu := ( J v2K(v)dv ) 2 ( J f "(x)2w2(x)f(x)dx - ( J f "(x)w(x)f(x)dx)2). D 
-1 -~ -~ 

Before we prove this theorem we first discuss its implications. Firstly the theorem shows that the 

asymptotically optimal bandwidths not only asymptotically minimize the mean integrated squared 

error but that they also minimize the order of the variance of the integrated squared error. Secondly it 

is readily checked that in all the cases considered we have for n tending to infinity 

(2.29) ISEn(hn) - MISEn(hn) 0 . b bi!. 
MISEn(hn) ➔ 'm pro a ity, 

which implies 

ISEn(hn) 1 . b bili. 
MISE

0
(hn) ➔ 'm pro a ty. 

This theorem shows that the bandwidths which asymptotically minimize the mean integrated 

squared error also, in probability, asymptotically minimize the integrated squared error. Property 

(2.29) is shown for smooth densities by Hall (1982b). Under regularity conditions Marron & Hardie 

(1986) show that (2.29) holds almost surely uniformly in the bandwidths hn. Furthermore they don't 

require smoothness of the density f. The uniformity in the bandwidths is useful for studying kernel 

estimation techniques with random bandwidths, in particular the cross-validation techniques 

discussed in the next chapter. 

Central limit theorems for the integrated squared error for smooth densities have been derived 

by Bickel & Rosenblatt (1973) and by Hall (1984). Both theorems correspond to our case III. Bickel 

& Rosenblatt consider small bandwidths which satisfy hn = O(n-219), so their theorem is covered by 

the first line of the case III part of the theorem above. It should be noted that doing so they excluded 

the optimal bandwidths in that case which are of order n- 115• This was recognized by Hall who 

proved a central limit theorem for the integrated squared error of multivariate kernel estimators which 

is similar to our case ill part in the one dimensional case. 

Remark 2.12. A nice consequence of our theorem is that the asymptotic variance 011 of the 

integrated squared error in case II is equal to zero if the value of the density in all the singular points 

where f has a kink is equal to zero. This shows that for sequences of bandwidths with nh~ ➔ oo the 
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influence of a kink in the density on the variation of the integrated squared error is of smaller order if 

this kink is in a point where the density is rero. 

Proof of theorem 2.11. We rewrite the integrated squared error ISEn(h) as follows, 

ISEn(h) = 

J (fnh(x) - f(x))2w(x)dx = 

oo n 

J (r5i i; K((x-Xi)/h) - f(x))2w(x)dx = 
-oo 

::ri~ j Ke·c i)Ke{i)w(x)dx + 
n h "'J -oo 

n oo 

2 ~ (x X·) - iih ~ _£ K T f(x)w(x)dx + 

J f2(x)w(x)dx. 

It follows that the integrated squared error is equal to a quadratic form plus a linear term. Statistics of 

this type are treated in appendix C, where special attention is paid to this specific case in theorem C.2 

and remark C.3. If b(u,h) denotes the bias function of a kernel estimator, i.e. b(u,h)=Efnh(u)-f(u), 

theorem C.2 states that if we assume 

00 

(2.30) 4nhfhar( J K(\X1)b(u,hn)w(u)du) ➔ o.2, 0 ~ o.2 < 00 

-oo n 

then the integrated squared error is asymptotically normal and we have 

(2.31) 1/2 ']) -2 2 nhn (ISEn(hn) - MISEn(hn)) ➔ N(0,2o-+ a ), 

where cr2 is defined above. Remark C.3 says that if (2.30) converges to infinity we also have 

asymptotic normality because then the linear terms in the proof of theorem C.2 dominate over the 

quadratic term. In that case we have by (C.13) 

§:fi112hn ( var ( j K (\X1)b(u,hn)w(u)du))-
112

(ISEn(hn) - MISEn(hn)) .:£ N(0,1). 
-oo n 

(2.32) 
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For a fixed sequence of bandwidths (hn), whether we are actually dealing with situation (2.31) or 

with situation (2.32) depends on whether (2.30) converges to a finite number or to infinity. This 

means that we have to expand the variance in (2.30). It turns out that the presence of singular points 

off in the support of w influences the order of magnitude of this variance. Distinguishing the cases I, 

II and ill, introduced in the previous section, we have 

00 

var ( J K(\X 1)b(u,hn)w(u)du) ~ ¼h~cry in case I, 
...., n 

00 

var( JK(\X 1)b(u,hn)w(u)du) ~rhiicrJ1 in case II, 
...., n 

00 

var ( J K(u 11X
1)b(u,hn)w(u)du) ~ ¼hfoTn in case ill, 

-oo n 

Since the proof of these expansions is rather technical it is postponed to section 2.5. 

In case I we have 

and 

00 {o 
4nhii1var( J K(ut1)b(u,hn)w(u)du) ➔ A~ 

...., n 
00 

00 

if nhii ➔ 0 

if nhii ➔ A , 

if nhii ➔ oo 

I 1/2 ( ( J cu-X1) ))-1/2 1/2 -1/2 -1 r1 hn var K ~ b(u,hn)w(u)du ~ n hn cr1 , 
...., n 

which proves the theorem for case I by (2.31) and (2.32). The other cases are obtained in a similar 

w~. D 

2.4. Properties with respect to supremum distances. 

Let E be a closed bounded interval on the real line. An alternative for the integrated squared 

error criterion and the mean integrated squared error criterion is the weighted supremum distance 

(2.33) sup lfnh(x) -f(x)I w(x), 
xeE 

where w is a weight function with w(x)>O for XE E. Since fnh is a continuous function the supremum 

distance between fnh and f is always larger than some positive constant if the density f has a jump in 

E. Therefore density estimation from the point of view of supremum distance loss functions is only 

meaningful for densities f which are continuous on some E neighborhood of E. Consequently only 

such densities are considered. 
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We discuss two aspects of kernel estimation from the point of view of supremum distances. In 

section 2.4.1, using the bias expansions of theorem 2.3, we supplement results of Stute (1982b) on 

the almost sure asymptotically optimal bandwidths for the specific supremurn loss function 

(2.34) sup lfnh(x) - f(x)I f 112(x). 
xeE 

Note that here w equals f 112• In section 2.4.2 we derive an almost sure order bound for 

(2.35) ( 
nh )l/2 

sup Ioiui- sup lfnh(x) - Efnh(x)I 
heln og n xeE 

Such bounds on the supremum distance between fnh(x) and Efnh(x), uniformly in the bandwidth, are 

important tools in studying bandwidth selection methods. Consequently the presented bound is 

frequently used in chapter 3. 

The first results on strong uniform consistency were obtained by Nadaraya (1965). Other 

relevant references are Revesz (1978), Silverman (1978b), Kolcinskii (1980), Serfling (1982) and 

Stute (1982b). 

2.4.1. Almost sure asymptotically optimal bandwidths. 

We consider the loss function (2.34). Note that by theorem 2.4 the pointwise asymptotic 

variance of (fnh(x)-f(x))f112(x) is independent of x. We derive asymptotically good bandwidths for 

the supremum distance (2.34) by studying the two terms in the right hand side of in the inequality 

(2.36) sup lfnh(x) - f(x)I f 112(x) ~ sup lfnh(x) - Efnh(x)I r 112(x) + sup IEfnh(x) - f(x)I f 112(x). 
~E ~E ~E 

The next theorem of Stute (1982b) gives the exact almost sure rate of the supremum norm of the 

error part in (2.36). 

Theorem 2.13. (Stute 1982). Let (h0 ) be a sequence of positive bandwidths with h0➔0, nh0➔oo , 

log(hi{)=o(nhn) and log(hi{)/log(log n)➔ oo. Assume that f is continuous on E=[a,b], with 

-oo<a<b<00, and assume 0<~(x)~M<00 ,for all xe E. Furthermore Jet K be any kernel function of 

bounded variation with K(x) = 0 outside some finite interval [r,s). With probability one we have 

(2.37) lirn ° _1 sup lfnh0 (x) - Efnh0 (x)I f 112(x) = J K2(u)du , 
( 

nh )1/2 ( s )1/2 
n-- 2 log(h 0 ) xeEt: r 

where EE denotes the interval (a+e,b-e)for some e>O. D 

Since theorem 2.3 gives us uniform expansions of the bias function Efnh(x)-f(x) the next lemma with 

expansions of the bias part in the right hand side of (2.36) readily follows (recall b1(0)=~
1 
uK(u)du). 

The proof of this lemma is omitted. Just as in the previous section the presence of singular points in 
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the set E plays an important role. We only consider densities satisfying condition F in section 2.1 

which are continuous on the interval E = [a,b], -00<a<b<00• Let d1, ... , dm denote the singular points 

off in the interval E. Define two special cases, 

case II 

case ill 

all jump sizes o<0>(di), i=l, ... ,m, are equal to zero and at least one of the 

jump sizes o0 >(di), i=l , ... ,m, is unequal to zero, 

Lemma 2.14. Let f, a density satisfying condition F, be bounded away from zero on the interval 

E=[a,b], -oo<a<b<oo. Let d1, ... , dm denote the singular points off in the interval E and let the kernel 

K satisfy condition K. We have in case II 

1 

(2.38) n~ hif !~f IEfnhn(x) - f(x)lf 112(x) = (J uK(u)dutr.-.~m f(dir 11210<1>(di)I 

and in case lll 

1 

(2.39) 1im hi? sup IEfnhn(x) - f(x)lf112(x) = ½ ( J u2K(u)du) sup lf"(x)lf 112(x). 
n--+oo xeB -1 xel! 

D 

By balancing the error and bias term in the right hand side of (2.36) we can now derive the 

asymptotically optimal bandwidths in the two cases described above. Stute (1982b) accomplished this 

for densities with a continuous third derivative. In exactly the same manner the following 

asymptotically optimal bandwidths can be derived, we omit the proof. Notice that Stutes result is 

covered by case ill. 

Theorem 2.15. Suppose that for some £>0 f , a density satisfying condition F, is uniformly 

continuous on [a-£,b+£], -00<a<b<00, with O~f(x)~M<00 for all xe [a-£,b+€] . Let K be a kernel 

which satisfies condition Kand let hgpt denote the bandwidth which minimizes the right hand side of 

(2.36), then 

and 

~lD 

'Tj in case II 
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in case lll. 

D 

The corresponding orders of the supremum loss are almost surely O((logn/n) 113) in case II and 

O((logn/n)215) in case ID. 

2.4.2. Uniformity in the bandwidths. 

Let In=[hh,hnl be an interval of bandwidths with hii=n· 1+6 and hn=n·6 for some 6 with 

0<0<1/2. Note that for all bandwidths hn in In we have hn➔0 and nhn➔oo. We derive a uniform 

orderbound for (2.35). This bound on the supremum over the set of bandwidths In is needed for 

proofs in later sections. There we also consider kernel functions which are not probability densities. 

For a related result see lemma 1 in Hlirdle & Marron ( 1985). 

Theorem 2.16. Let f be a bounded density and let Ebe a bounded interval. Suppose that the kernel 

K is a symmetric function with support [-1,1], not necessarily a density, and that K has a bounded 

derivative, then 

(2.40) ( nh ) 112 
limsup sup log n sup lfnh(x) - Efnh(x)I $ C, almost surely, 

n->oo heln xeE 

for some constant C>O. D 

Remark 2.17. Notice that for he In we have 6log n $ log(h-1) $ (1-o)logn so the norming constant 

in (2.40) is of the same order as the constant in (2.3 7). By the conditions on f in theorem 2.13 the 

factor f 1(x) in (2.37) is bounded on E. 

As a step in the proof of theorem 2.16 we need a bound on the oscillations of fnh(x)-Efnh(x) 

as a function of both h and x. Define for nonnegative real numbers a and p the random variable 

iln(a,P) := sup sup (h1vh2) lfnh1(x1)-Efnh1(x1)-fnhi{x2)+Efnhi{x2)I, 
(h1,h2)eAn(a) (x1,x2)eB(~) 

where h 1 vh2 denotes the maximum of h 1 and h2, 

and 

Proposition 2.18. Assume that the conditions of theorem 2 .16 hold. Let ( an) and (Pn) be two 

sequences of real numbers such that 



and 

then 

(2.41) 

<Xii= o(h~). 13n = 0(1) for n➔oo, 

!ln(<Xn,13n) = O(<Xri + 13n), almost surely. 
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D . 

Proof. With Vn(x) = n112(Fn(x) - F(x)), the empirical proces of the sample X1, ... ,Xn, we have by 

partial integration 

-½ _£ K((x-u)/h)d(Fn-F)(u) = 

-
: 2 _£ (Fn-F)(u)K'((x-u)/h)du = 

1 

½ f (Fn-F)(x+hv)K'(v)dv 
-1 

1 

n- 112h-1 f V n(x+hv)K'(v)dv. 
-1 

Therefore for all (h1,h2)e An(Cln) and all (x1,x2)e B(l3n) we have 

1 1 

n-112 lh1-1 f V0 (x1+h1v)K'(v)dv - h2-1 f Vn(x2+h2v)K'(v)dvl ~ 
-1 -1 

1 

n- 112h2-1I f (Vn(x1+h1v)- Vn(x2+h2v))K'(v)dvl+ 
-1 

1 

n-1121h1-1 - h2-1I I f Vn(x1+h1v) K'(v)dvl. 
-1 

Assuming that IK'I is bounded by the constant c>O by I x1 + h1v - x2 - h2v I~ <Xii+ 13n the first term is 

bounded by 

with 



30 

(2.42) ron(t) := sup I Vn(x+s) - Vn(x) I, 
xe Eh0,x+se Ehii ,0<-5St 

the oscillation modulus of the empirical process V non the interval Eh~ (the h~ neighborhood of E). 

Since J\K'(v)dv = 0 the second term can be rewritten as 
1 

n-l/l(h1-1 - h£1) I( f (Vn(x1+h1v) - Vn(X1))K'(v)dvl , 
-1 

which is bounded by 

en- l/lUn(h 1h2r 1ron(h 1). 

Thus we have for n sufficiently large 

C(l + Clnfhz) { (n(Cln + ~)r1/l(Cln + ~rl/lffin(Cln + f3n) 

+ (nhhr 112 sup h1-l/lron(h1)} (Cln + f3n)::;; 
hJEln 

The proof of proposition 2.18 is finished by an application of the next lemma about the oscillation 

modulus ffin. 

Lemma 2.19. Let the oscillation modulus ffin be defined by (2.42) then for any £>0, any sequence 

of nonnegative real numbers (tn), with tn➔O and ntn➔00, and any constant T>O, we have 

limsup logl n sup r 1flron(t)::;; C, almost surely, 
n➔oo tn~t<T 

for some constant C>O. D 

The proof of this lemma is given in section 2.5. 

Proof of theorem 2.16. Let (En) denote a sequence of nonnegative real numbers converging to 

zero. Since Eh-11K((x-X1)/h)I= J-\ IK(u)lf(x+hu)du we have for some constant c">O 



sup sup E h-11K((x-X1)/h)I ~ c". 
heln xeE 
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Consequently the exponential bound (A.4) in appendix A implies for n large enough, for all xe E and 

all hEin 

P(h 112 1 fnh(X) - Efnh(X) I ~En)~ 

2exp( -c'nEn2 ), 

for some constant c'>O. Here K• is a constant bounding K, i.e. IK(x)I ~ K• for all x. 

Next define subsets In and En of In and E where In consists of n2 equidistant points, the endpoints 

included, and, similarly, En consists of n l-li/4 equidistant points including the endpoints. Then for n 

large enough 

P( SUI> sup h 1121fnh(X) - Efnh(x)I ~En)~ 
hE7n XEEn 

2exp( -c'nEn2 + (3-6/4)log n ), 

which is summable if we choose En= 5c,-1(logn/n)112. Thus by the Borel-Cantelli theorem we get 

limsup sup sup EJh1121fnh(x) - Efnh(x)I ~ 1, almost surely, 
n➔oo hEin xeEn 

which in its tum implies (2.40) with the sets In and E replaced by In and En. 

We finish the proof by showing that the difference between the supremum over the finite sets and the 

supremum over the continuous sets vanishes almost surely. Let (h 1,x1) be a point in InxE, and let 

(h2,x2) be the nearest point in In:xEn. Then we have lh1-h21<n-2 and lx1-x21<cn-1+o/4 for some 

constant c>O. It suffices to show that 

(2.43) 

converges to zero, uniformly for all points (h1,x1) and (h2,x2) as described above. Here proposition 

2.18 will be instrumental. 

Writing <Xn = n-2 and f3n = cn-I+li/4 we see that (2.43) is bounded by 
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(2.44) n 112(h1vh2r112(log nr112 (h1vh2)1fnh1(x1) - Efnh1(x1) - fnhz(x2) + Efnhz(x2)I + 

n 112((h1vh2)112 - (h1Ah2)112)(lognr1f2iK•(h1Ah2r1. 

where we have used 

for all x and all h>O. 

The first term in (2.44) is bounded by 

by proposition 2.18. In order to treat the second term in (2.44) notice 

Therefore 

Since these bounds don't depend on the h's or the x's we have indeed shown that (2.43) vanishes 

uniformly and the proof is completed. D 
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2.5. Proofs. 

Proof of lemma 2.1 part (b). Let xo be a fixed point and Jet M be an arbitrary positive number. 

Recall that by (2.9) we have 

g(xo+th,h) = J G(t-u)f(xo+hu)du . 

We omit the proof for xae: D since then the same Taylor expansion argument as for part (a) can be 

used. So we assume xae D and write 
0 

g(xo+th,h) = -~ G(t-u)f(xo+hu)du + J G(t-u)f(xo+hu)du . 

Next define r!(t,h) by 
0 

(2.45) fi(t,h) := -~ G(t-u){f(xo+hu) - f(xo-) - huf'(xo-) - ~ 2u2f"(x0-)}du 

and similarly ri(t,h) by 

(2.46) *t,h) := J G(t-u){f(xo+hu) - f(xo+) - huf'(xo+) - ~ 2u2f"(x 0+)}du. 

Then r2(t,h) = d(t,h) + d(t,h). Use (F.3) and the dominated convergence theorem, which can be 

applied since the integrals in the definition of 11 is in fact an integral over a bounded area, to obtain 

lim hj/fi(tn,hn) = 0, 
n-+oo 

for all sequences (hn) with O<hn$h~ for all n, and for all sequences (In), with -M~tn~M for all n. A 

similar result holds for r5 and therefore for r2. D 

Proof of theorem 2.3 part (b). By (2.2) we have 

1 
b(xo+th,h) = E Ii K((xo+th-X1)/h) - f(xo+th). 

Part (b) of lemma 2.1 gives us an expansion of the first term in this expression. The second term can 

be expanded as follows 

f(xo+th) = (f(xo-) + thf'(xo-) + ½t2h2f "(xo-) )I(-oo,o)(t) + 

(f(xo+) + thf '(xo+) + ½t2h2f "(xo+ ))l(O,oo)(t) + 

r(t,h), 

where the remainder term r has the propeny we have to prove for the remainder r4 in the theorem. If 

x0 is not a singular point off this follows from a Taylor expansion argument and if x0 is a singular 

point it follows from condition (F.3), just as in the preceding proof. Combining these expansions we 

get 
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0 

b(xo+th,h) = f(xo-)_£ K(t-u)du + f(xo+)J K(t-u)du 

- [f(xo-)1(-oo,O)(t) + f(xo+)l(O,oo)(t)] + 

0 

hf'(xo-) J uK(t-u)du + hf '(xo+) J uK(t-u)du 
- 00 

- ht[f'(xo-)1(-oo,O)(t) + f '(xo+ )l(O,oo)(t)] + 

0 

~
2h2f "(xo-) _£ u2K(t-u)du + ~ 2h2f "(xo+) J u2K(t-u)du 

- ½ii2t2 [f "(xo-)1(-oo,O)(t) + f"(xo+ )l(O,oo)(t)] + 

where the remainder r4 has the property claimed in the theorem. 

First consider the constant term in this expansion. Since K integrates to one this term is for t<O equal 

to 
l 

f(xo-)J K(u)du + f(xo+) J K(u)du - f(xo-) = 
l 

l 

(f(xo+) - f(xo-)) J K(u)du = 

Next consider the coefficient of h. Using the fact that the integral of uK(u) is equal to zero we see that 

for t<O this term equals 

l 

hf'(xo-)J (t-u)K(u)du + hf'(xo+) J (t-u)K(u)du - htf '(xo-) = 
l 

l 

h(f'(xo+) - f '(xo-)) J (t-u)K(u)du +hf '(xo-) J (t-u)K(u)du - htf '(xo-)= 

The coefficient of h2 is for t<O equal to 
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I 

kii2f "(xo-)J (t-u/K(u)du + J.b2f "(xo+) J (t-u/K(u)du - J.b2t2f "(xo-) = 
2 I 2 -• 2 

t 

½h2cf "(xo+) - f "(xo-))_L (t-u/K(u)du +½h2f "(xo-)_L (t-u)2K(u)du - ½h2t2f "(xo-)= 

For t>O a similar discussion holds. D 

Proof of theorem 2.11. The proof is completed by checking condition (C.7) of theorem C.2 in 

appendix C which means that we have to expand the variance 

-
var( JK(u{1)b(u,hn)w(u)du) 

-• n 

for n tending to infinity. If the set D = { d1,d2, ... } denotes the set of singular points off and the set 

Dh, defined in (2.4), denotes the set of points at least at distance h of D, then we write, 

-
E ( J K(u{1)b(u,hn)w(u)du)2 = 

-• n 

• dj+hn 
E ( J K (U{t )b(u,hn)w(u)du + L J K(u{1)b(u,hn)w(u)du)2 = 

'nhn n 1=! dj-hn n 

E ( J K(u/ 1)b(u,hn)w(u)du)2 + 
Dhn n 

• dj+hn 
LE ( J K(u{1)b(u,hn)w(u)du)

2 
+ 

1=1 dj-hn n 

(2.47) • dj+hn 
2 LE ( J K(u/1)b(u,hn)w(u)du)( J K(\X1)b(u,hn)w(u)du) + 

1= I Dhn n dj-hn n 

dj+hn dj+hn 
l:E( JK(ut1)b(u,hn)w(u)du)( JK(ut1)b(u,hn)w(u)du). 
1".} dj-hn n dj-hn n 

Notice that since w has a bounded support the conditions on f imply that there are only finitely many 

singular points d 1 , •.. ,dm say, which are in the support of w. These points are the only singular points 

off which can give a nonzero contribution to the sums above. All the singular points outside the 

support of w are at a positive distance from this support which means that their contributions are 
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exactly equal to zero if n is larger than some fixed n0• Using the fact that K has support [-1,1] and 

using the expansions of b(u,hn) given by theorem 2.3 we derive the following bounds, 

d+hn 
f K(rn)b(u,hn)w(u)du = 

d-hn n 

(2.48) 
1 

hn J K(t+~)b(d+th0 ,h0 )w(d+thn)dt = 
-1 nn · 

for each de D, and 

(2.49) 
f K(1rn)b(u,h0 )w(u)du = O(hii). 

Db0 n [x-h0 ,x+hnl n 

From (2.48) it is immediately clear that the fourth term of (2.47) vanishes for n large enough. For the 

third term (2.48) and (2.49) give 

dj+hn 
E ( J K(\X1)b(u,h0 )w(u)du)( f K(\X1)b(u,h0 )w(u)du) = 

Dbn n dj-hn n 

dj+2hn dj+hn 
J ( J K(rn)b(u,h0 )w(u)du)( f K(rn)b(u,hn)w(u)du)f(x)dx = 

dj-2hn Dbn n dj-hn n 

It turns out that this term is also asymptotically negligible compared to the first two terms in (2.47). 

Using the expansion of b(u,h0 ) given by theorem 2.3 we can expand the first term as follows, 

E ( f K(u{1)b(u,h0 )w(u)du)
2 = 

'ohn n 

00 

J ( J K(rn)b(u,h0 )w(u)du)
2
f(x)dx ~ 

-oo Dhn n 

1 00 

(2.50) ¼ii~ ( f v2K(v)dv )2 J ( J K(rn)f"(u)w(u)du)2f(x)dx = 
-1 -oo Dbn n 
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1 00 

¼hg ( J v2K(v)dv )
2 

J ( J K(v)f "(x+hnv)w(x+hnv)dv )2f(x)dx~ 
-1 -oo (Dhn-x)/hn 

1 00 

¼hg (J v2K(v)dv )
2 

_£ f "(x)2w2(x)f(x)dx. 

The last equivalence holds since for each xe: D the set (~n-x)/hn converges to (-oo,00) which, since f" 

is continuous outside D and since w is almost surely continuous, implies that for each fixed xe D we 

have 

J K(v)f "(x+hnv)w(x+hnv)dv ~ J K(v)dv f "(x)w(x) = f "(x)w(x), 
(Dhn -x)/hn - oo 

almost surely as a function of x. 

Concerning the second term in (2.47), just as in (2.48), for each de D again by theorem 2.3 we get, 

d+hn 

E ( J K(\X1)b(u,hn)w(u)du)
2 
= 

d-hn n 

00 1 

h~_£ ( _[ K(t+~)b(d+thn,hn)w(d+thn)dt )
2
f(x)dx ~ 

00 1 

hii f ( f K(t+v)b(d+thn,hn)w(d+thn)dt )
2
f(d+vhn)dv ~ 

- 00 - 1 

00 1 

hii f ( f K(t+v)o<0)(d)bo(t)w(d+thn)dt )2f(d+vhn)dv ~ 
- oo -1 

0 0 1 

hii o<0l(d)2 ( f(d-)_£ ( w(d-) _[ K(t+v)bo(t)dt + w(d+)J K(t+v)bo(t)dt )2dv + 

0 1 

f(d+ )J ( w(d-) _{ K(t+v)bo(t)dt + w(d+)J K(t+v)bo(t)dt )2dv ) . 

If o<0l(d) is equal to zero a similar argument gives 

d+hn 

E ( f K(\X 1)b(u,hn)w(u)du)
2 

-
d-hn n 

0 I 

hii f(d)o<l)(d)2 J ( w(d-) f K(t+v)b1(t)dt + w(d+) J K(t+v)b1(t)dt)2dv, 
-oo -1 0 

and if both o<0\ ct) and o<1l(d) are equal to zero then we have 
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d+hn 
E ( J K(u{1)b(u,hn)w(u)du)

2 
= O(h~ . 

d-hn n 

In order to derive expansions for the variance let us successively consider the three cases 

introduced in section 2.3.1. Recall the definition of the quantities A~ and 6.~ , 

-
6.~) := L(w(di-) + w(di+))o(O)(di)2 

i=l 
and -

6.~) := L(w(dj-) + w(di+))o(1)(di)2. 
i=l 

In case I we have 6.~)>0 which means that there is at least one singular point di with 

(w(di•)+w(di+))o(O)(di)2>0. Since this implies that for such a point either w(di-)0(O)(di)2 or 

w(di+)6(0)(di)2 is positive we get 

-
E ( J K(u{1)b(u,hn)w(u)du)

2 ~ 
- n 

- 0 0 1 

h~ i;_ oC0>(di)2 (f(d-) 1 ( w(di· )j K(t+v)bo(t)dt + w(di+ )d K(t+v)bo(t)dt )2dv + 

0 1 

f(di+ )J ( w(di-)_ { K(t+v)bo(t)dt + w(di+ )J K(t+v)bo(t)dt )2dv ) . 

The bounds (2.48) and (2.49) imply that the squared expectation, 

-
(E 1 K(\~1)b(u,hn)w(u)du)

2
, 

is asymptotically negligible in this case. Thus we get 

-
( J (u-X 1) ) 1 3 2 var K ~ b(u,hn)w(u)du ~ ;rhncr1 . 
-- n 

In case II the situation is similar. Here we have 6.~ =0 and 6.~ >0. By our condition that for points 

di in the support of w either w( di-) or w( d i+) is positive the fact that A! =0 implies that all the jumps 

s(O)(di) for points in the support of w are equal to zero. Since 6.~ is positive there is at least one 

point di such that (w(di-)+w(di+ ))6(l)(di)2 is positive. We then have 

-
E ( J K(u{1)b(u,hn)w(u)du)

2 ~ 
-- n 

- 0 1 

hii i;_f(di)oCl>(di)21 ( w(di-)j K(t+v)br(t)dt + w(di+ )J K(t+v)b1(t)dt)2dv 
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and since in this case the squared expectation is also negligible we arrive at 
00 

( f (u-X1) ) 1 5 2 var K ""'Ji:""'. b(u,hn)w(u)du ~ ibn<rn . 
-oo n 

In case III the situation is different because the squared expectation is no longer negligible. Here both 

,i~) and ,i'}J are equal to zero. Therefore all o<0>(di) and oO>(di) for points di in the support of ware 

equal to zero. This leads to 

Since we have 

wefind 

00 

E ( f K (\X1)b(u,hn)w(u)du)
2 ~ 

-oo n 

1 oo 

~g ( f v2K(v)dv )
2 

ff "(x)2w(x)2f(x)dx. 
-1 - oo 

E ( f K(\X1)b(u,hn)w(u)du) = 
Dhn n 

f ( f K(¥n)b(u,hn)w(u)du)f(x)dx = 
-oo Dhn n 

00 

hn_f (Jt f K(¥n)f(x)dx)b(u,hn)w(u)du ~ 
Vhn 11..oo n 

h~f (f(u) + b(u,hn))b(u,hn)w(u)du ~ 
hn 

h~f f(u)b(u,hn)w(u)du ~ 
hn 

1 

½hii f v2K(v)dv ff "(u)w(u)f(u)du, 
-1 - 00 

00 

var ( f K(\X1)b(u,hn)w(u)du) ~ 
-oo n 

1 oo 

~g ( f v2K(v)dv )
2 

ff "(x)2w2(x)f(x)dx -
-1 - 00 

1 

(½hii f v2K(v)dv ff "(u)w(u)f(u)du)
2 = 

-1 -oo 
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1 6 2 
ihncrm · 

This completes the proof of theorem 2.11. D 

Proof of lemma 2.19. First we use the Bernstein inequality for the binomial distribution, i.e. 

inequality (A.3) in appendix A, to derive the following exponential bound. For all xE Eh~, all tn<t<T 

and all O~s~t such that x+sE Eh~ we have for any sequence (En) tending to infinity and n sufficiently 

large 

P( r 112 I Vn(x+s) - Vn(x) I~ £n):,; 

2exp(- £n), 

where c' is a constant bounding f, i.e. O~f(x)~c• for all x. We have used Q::;P(x<Xi::;x+s)::;c's::;c't, 

and (ntt112 ~(ntnt 112➔0. 
Next let In denote the interval [tn,TJ. Since Eis bounded and since h~ converges to zero the intervals 

Eh~ are uniformly bounded. Hence there exists a positive constant M such that the interval [-M,M) 

covers both E11~ and In for all n. Let Gn denote the grid of 2n3 points of [-M,M], given by gi=iMn-3, 

i=-n3+1, ... , n3. Notice that consecutive points have a distance equal to Mn-3. It follows for n 

sufficiently large 

P( sup sup sup r 112 IV n(x+s) - Vn(x) I~ £n) ~ 
tEJ0 nG0 xEEh0nG0 sE[0,t]nG0 

8exp( -£n + 9logn ), 

which is summable if we take £n equal to 1 llog n, which we assume from now on. 

Let Sn denote the supremum over the discrete sets, 

Sn := £n-l sup sup sup r 112 I Vn(x+s) - Vn(x) I, 
IEJnnGn XE Ehnr,Gn SE [O,tJnGn 

and Sn the supremum over the continuous sets, 



Sn := En-l sup sup sup r 112 I Yn(x+s) - Yn(x) I . 
IE Jn XE Eb0 SE [0,t] 

By the Borel-Cantelli theorem we have for Sn , 

limsup Sn ~ 1, almost surely. 
n➔oo 

It remains to show that the difference between Sn and Sn vanishes almost surely, since then 

limsup Sn $ 1, almost surely. 
n➔oo 

From this result lemma 2.19 is immediate since 

~
l sup t-112c.on(t) ~ l lSn, 
g n lnSt<T 
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we would have established the result of lemma 2.19. To show that Sn - Sn vanishes almost surely 

define the set A 

A := (dn ~ Mn-3, infinitely often}, 

where dn denotes the smallest spacing of the sample X1, . .. ,Xn. It follows from a result of Devroye 

(1982) that the probability of A is zero. Actually Devroye condiders uniform spacings but since the 

density f is bounded it also follows for the spacings of the sample X1, ... ,Xn. On the complement of 

A for tE Jn, xE Eh~and SE [0,t] the value of 

En-1r 112n 112 I Fn(x+s) - Fn(x) - (F(x+s) - F(x)) I 

changes for n larger than a certain random index No at most 

if we replace t,x, and s by their nearest points in the interval Jn, Eh~ and [0,t] which also lie on the 

grid Gn. Hence on the complement of A we have 

and since the complement of A has probability one we have indeed shown 

Sn - Sn = o(l), almost surely, 

which completes the proof of lemma 2.19. D 
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3. BANDWIDTH SELECTION BY LIKELIHOOD CROSS-VALIDATION. 

3.1. Introduction and results. 

Results in the previous chapter show that optimal bandwidths for kernel estimators depend on 

the unknown density f. One way to avoid this problem is to design procedures which compute a 

bandwidth, Hn = H0 (X1, ... ,X0 ), from the sample X1, ... ,X0 . For large sample sizes these 

bandwidths should be close to the optimal ones. Kernel estimators using these bandwidths are called 

automatic or data adaptive. Two such data adaptive bandwidth selection methods are likelihood cross­

validation, which originates from a likelihood approach to the problem, and least squares cross­

validation. Least squares cross-validation is briefly discussed in section 3.1.1. Likelihood cross­

validation has a history of trial and error. A review of its development is given in section 3.1.2. For a 

comparison of cross-validation techniques in a more general setting see Marron (1987). Next, in 

section 3.1.3, we give a heuristic derivation of our results on the rates of convergence to zero and the 

asymptotic distribution of the bandwidths selected by likelihood cross-validation. These results are 

proved in the further sections of this chapter. 

3.1.1. Least squares cross-validation. 

Let us first consider the least squares cross-validation. Suppose that our aim is to find 

bandwidths and corresponding density estimates with a small integrated squared error. In order to do 

so write 

MISE0 (h) = 

E J (fnh(u) - f(u))2w(u)du = 
-00 

00 

E J fJh(u)w(u)du - 2 E J fnh(u)f(u)w(u)du + J f2(u)w(u)du, 

where w is a nonnegative weight function. Since the third term is independent of h it suffices to find a 

bandwidth which minimizes 

(3.1) E J fJh(u)w(u)du - 2 E J fnh(u)f(u)w(u)du, 

an expression depending on the unknown density f. The least squares cross-validation method results 

in an unbiased estimator of (3.1). So we can estimate (3.1) as a function of h and compute the value 

of h which minimizes the estimate. 

(3.2) 

Then 

Define the "leave one out estimator" based on the sample X 1, ... ,X0 with Xi left out by 

fJi(x) := du:1 h . ± . K((x-Xj)/h)) , -oo < x < oo. 
,n-,;11 J=l,J>'• 
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Ji) 1 
E tiib(x) = h E K((x - X1)/h) = E fnh(x), 

and the independence of fJi(x) and Xi implies 

2 f E f~~(u)w(u)f(u)du = 

2 f E fnh(u)w(u)f(u)du = 

2 E J fnh(u)f(u)w(u)du. 

Therefore 

(3.3) 
"" n 2 ,[') 

LSn(h) := f fJh(u)w(u)du - - L t~(Xi)w(Xi), h >0, 
- n1=l 

is an unbiased estimator of (3 .1 ). For waal this reduces to 

1 ~ ~ 1 (2) 2 ~ 1 
LSn(h) = :z :"' :"' i:- K (Xi - Xj)/h) -~l ~ i:- K(Xi - Xj)/h), 

n 1=li=l fl n\n-1J l;t_J II 

where K<2l denotes the convolution of K with itself. The factor 2/((n(n-l)) is often replaced by 2/n2• 

This method is introduced and studied by Rudemo (1982) and Bowman (1984). Further relevant 

references are Hall (1983a, 1983b), Stone (1984), Scott (1985), Burman (1985), Hall & Marron 

(1987a, 1987b) and Scott & Terrell (1987). Silverman (1986) also considered computational aspects 

of the method. 

Hall (1983a) obtained the first asymptotic optimality result for densities f with a finite second 

moment and a continuous square integrable second derivative. Generalizing this result Stone (1984) 

showed that the optimality property holds for all bounded densities f. In the univariate case and for 

kernels satisfying condition Kin section 2.1 the theorem states the following. 

Theorem 3.1. (Stone 1984). If K is Lipschitz of order /3, i. e. for some positive constants p and c 

IK(y) - K(x)I $ cly - xl 13,for all real x and y, 

then we have for all bounded densities f on the real line 
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fun ISEn(Hn) l l l 
(3.4) n--- mf ISEn(h) = , a most sure y, 

h 

where Hn is the bandwidth obtained by least squares cross-validation, i.e . the bandwidth which 

minimizes (3.3) and ISEn(h) equals 

(3 .5) f (fnh(u) - f(u))2du, 

the integrated squared error of the kernel estimate fnh. 

This theorem shows that asymptotically the bandwidths obtained by least squares cross-validation 

perform as well as the best possible deterministic ones. 

The rate of convergence in (3.4) was investigated by Hall & Marron (1987a, 1987b). If Hri 

denotes the random bandwidth which minimizes the integrated squared error (3.5) then under some 

smoothness conditions on K and f, essentially our smooth case III in chapter 2, they show 

(3.6) 

and 

* Hn - Hn _ O ( -1/10) 
H; - P n , 

* ISEn(Hn) - ISEn(Hn) _ O ( -1/5) 
ISEn(H;) - P n . 

In spite of the nice asymptotic optimality result (3.4), the convergence is very slow. However, Hall 

and Marron show that no data adaptive bandwidth selection method can have a faster convergence. 

Before we discuss likelihood cross-validation we briefly mention other data adaptive methods. 

Silverman (1978a, 1986) gives a graphical method to compute bandwidths with good properties with 

respect to the supremum distance loss function, the so called test graph method. Scott & Factor 

(1981) and Bowman (1985) compare several other data adaptive methods by means of simulation 

studies. 

3.1.2. The likelihood approach to bandwidth selection. 

Again we consider the problem of selecting a bandwidth for a kernel estimator with a kernel 

satisfying condition K. Now we argue as follows. A "good" bandwidth h will give a large value to 

the "likelihood" Ln, defmed by 

n 

Ln(h) := J] fnh(Xi)-

This suggests that we should use the value of h which maximizes Ln over [0,00 ). However, we can't 

use this value because it is always equal to zero. This can be seen from the inequalities 

(3.7) 
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and 

Ln(h) :2:: (K(0)/(nh)t, 

which show that Ln(h) tends to infinity if h decreases to zero. Recognizing this phenomenon 

Habbema, Hermans & Van de Broek (1974) and Duin (1976) proposed to replace Ln by 

n .ii) 
(3.8) LCVn(h) := I1 tiui(Xi), 

i=l 

where rJi is the "leave one out" kernel estimator defined by (3.2) in the previous section. The value 

of h which maximizes LCV n is always finite, since for n fixed we have 

0< h < . max rI_l~ IXi-Xjl ⇒ LCVn(h) = 0 
i=l, .. . ,Il J"'l 

and 

where we assume that the kernel is bounded by K*>0. In this way we lose the i-th term in (3 .7), 

which is exactly the term which made it converge to infinity for h tending to zero. This technique is 

called likelihood cross-validation or Kullback-Leibler cross-validation. 

The first undesirable property was reported by Schuster & Gregory (1981). Let Hn denote the 

positive value of h which maximizes LCV n(h), then, since the kernel K has a support equal to [-1, 1 ], 

the next inequality holds. We have 

Hn :2:: Xn:n-Xn-1:n, 

where X1:n~2:n~---~Xn:n denotes the ordered sample. This inequality follows from the fact that 

LCVn(h) is equal to zero for all bandwidths h with 0 < h ~ Xn:n - Xn-I :n, since for these bandwidths 

the term in the product (3.8) corresponding to the largest sample point Xn:n is equal to zero. It 

follows that the computed bandwidth is always at least equal to tlle difference between the largest 

sample point and the second to largest. For certain densities f however this difference converges 

almost surely to infinity. Moreover, these densities are by no means pathalogical. It turns out that 

densities with an exponential tail form the border line. For densities with heavier tails the bandwidths 

Hn converge almost surely to infinity and therefore produce inconsistent estimates. 

One possibility to avoid the problem discussed above is to restrict attention to densities with a 

compact support. If we know that f does not have a compact support we can always disregard all 

observations outside some bounded interval E, next estimate the probability of this interval and use 

likelihood cross-validation to compute a bandwidth for a kernel estimate of the density, conditional on 

being in E. Chow, Geman & Wu (1983) and Devroye & Gyorfi (1985) prove some positive results 

concerning the estimation of bounded support densities. An alternative to avoid the tail problems is to 

maximize the product 
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,ii) 
(3.9) LCY0 (h) := TI tnh(Xi), 

i:XieE 

where Eis a bounded interval on the real line. Note that this definition coincides with (3 .8) if we can 

take E equal to the support off. Here we evaluate the leave one out estimators f~ only in the points 

Xi in the interval E, instead of in all the points as we did in the original definition of LCV n• It is 

important to notice that here rJi is still based on the whole sample X1, ... ,X0 minus Xi, contrary to 

above where it was based on observations in E only! By maximizing (3.9) we aim at finding a good 

bandwidth for estimating f on the interval E rather than on the whole real line as in the original 

definition (3.8). Accepting this restriction indeed avoids the tail problems discussed above, but 

instead we are faced with the next property reported in Hall (1982). The theorem is reformulated to 

hold for kernels satisfying condition K. 

Theorem 3.2. (Hall 1982). Let E=[a,b], -00 <a< b < 00 • Assume that f is twice continuously 

differentiable on (a-e,b+e)for some positive e. Furthermore assume that f is bounded and that f is 

bounded away from zero on E. Then the bandwidths computed by maximizing LCV n, as defined by 

(3 .9), are of order n·113 i/f '(b) < f '(a), and they are much larger ijf '(b) > f '(a). In the last case we 

might even have inconsistency. 

Notice that in neither case the order is n·1
JS which is the optimal one for the integrated squared error 

criterion (see (2.25)). Also the dependence on the derivatives in the endpoints of E is very 

undesirable. However, Marron (1985) showed that if we maximize a modification LCV~(h), instead 

of LCV 0 (h), this behavior can be avoided. Then we even achieve asymptotic optimality with respect 

to a weighted integrated squared error with respect to the weight function f 1IE, We obtain LCYii(h) 

by multiplying LCYn by a correction factor, 

n 1 
LC~(h) := LCV0 (h)exp (-nJfnh(u)du) = LCV0 (h)exp (-L Ii JK((u-Xi)/h)du). 

E ~1 E 

A heuristic motivation for this correction factor is given in section 3.1.3 . The corrected method has 

the following optimality property. The theorem is reformulated to hold for kernels satisfying 

condition K. 

Theorem 3.3. (Marron 1985). Let E=[a,b], -oo<a<b<oo. Suppose f is bounded away from zero on 

E and suppose that f satisfies a Lipschitz condition, 

lf(x) - f(y)I:;;; Mix - yl'f,Jor all x,y, 

for some positive constants Mandy. If I-Iii denotes the value of h which maximizes LC~(h) over the 

set l0 =[hh,h~], where h~=n-1+0 and h;;=,n-o for some cr>O, then 

(3.10) , almost surely, 



and similarly 

(3 .11) 
MISEn(Hii) 
inf MISEn(h) ➔ 1 , almost surely. 

he [h~.hnl 

Here the integrated squared error is defined by 

ISEn(h) = J (fnh(x)-f(x))2f 1(x)dx, 

and MISEn(h) as its expectation. 
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This theorem was the first asymptotic optimality result for the likelihood cross-validation method. 

Just like theorem 3.1 it says that the random bandwidths computed by cross-validation asymptotically 

perform just as well as the best deterministic ones except that here we are dealing with a weighted 

integrated squared error. In section 3.1.3 we give an heuristic explanation for the appearance of this 

particular weighted integrated squared error. 

The method studied by Chow, Geman & Wu and Devroye & Gyorfi differs from the one 

studied by Hall and Marron in one important aspect. Apart of course from the correction factor in 

Marron's modification, Hall and Marron assume that the interval E = [a,b] is strictly contained in the 

support off in the sense that both the endpoints a and b are strictly inside the support. Chow, Geman 

& Wu and Devroye & Gyorfi study the case where E is equal to the support of f. The results 

described in the next section show that this causes a quite different behavior. 

Theorems 3.1 and 3.3 show that the two cross-validation methods have optimality properties 

with respect to appropriate (mean) integrated squared error loss functions. For these loss functions 

the choice of the kernel is relatively unimportant. Consequently we consider bounded support kernels 

only. It should be noted however that things change considerably if instead we want to minimize the 

Kullback-Leibler distance between our estimate and the true density, which can be desirable for 

instance in problems of discrimination. Likelihood cross-validation is studied from this point of view 

in Hall (1987a,1987b). Actually in Hall (1987a) it is shown that in this context the choice of the 

kernel is important and that it is unwise to use kernels with a compact support. 

3.1.3. Likelihood cross-validation: heuristics and results. 

The original likelihood cross-validation method prescribes that we maximize the function 

LCV 0(h) given by (3 .9). The main ingredients in the proofs in Hall (1982) and Marron (1985) are 

expansions of the logarithm of this function. Using such expansions they prove theorem 3.2, Hall's 

surprising theorem about the original method, and theorem 3.3, Marron's optimality result. In this 

section by heuristics in the same spirit we present our results concerning likelihood cross-validation, 

both uncorrected and corrected. Later sections contain rigorous proofs of these results. The basic 

theme of these proofs is the analysis of the derivative of the logarithm of LCV 0(h). We assume that 
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the density f satisfies condition F, so we also consider non-smooth densities. We don't impose the 

restriction required by Hall and Marron that the set E is strictly contained in the support off. On the 

other hand we do also have to require that f is bounded away from zero on E. 

Let In denote the interval [h~,h~], where h~=n-l+-0 and hn'=n-cr for some cr > 0. From now on 

we assume n➔oo, h➔O and nh-too. Following Hall and Marron we write 

1 n log(LCV n(h)) = 

Since the first term is independent of h the problem is to maximize 

(3 .12) 
1 n 
- _L log(l + ~ru(Xi,h))IE(Xi), 
n 1=! 

where ~ni(x,h) is defined by 

f~(x) - f(x) . 
~ni(x,h) := f(x) , 1 = 1, ... ,n. 

Defining 

(3 .13) g(x) := log(l + x) - x + ½ x2
, 

we can rewrite (3.12) as 

ln ln ln 
-n _L ~ru(Xi,h)IE(Xi) - !...2 -n L ~~i(Xi,h)IE(Xi) + - _L g(~ru(Xi,h))IE(Xi). 

1=1 1=1 n 1=1 
(3.14) 

Now assume that the variation in (3.14) is asymptotically negligible compared to the expectation, in 

the sense that, asymptotically, by maximizing LCVn(h) we are maximizing the expectation of (3.14). 

We don't give a proof of this assumption. However, proofs of the results coming from this heuristic 

approach are given in sections 3.2 to 3.5. 

The expectations of the first two terms in (3.14) are easily computed. Since 

_nl L E(~ru(Xi,h)IE(Xi) I Xj, j=l, ... ,n, j-:;:. i) = 
1=! 

-n
1 L J (f~~(u) - f(u))f\u)f(u)du = 

1=1 E 

1 n 1 n 

n _L J ( ~ . L . K((U-Xj)/h))du - J f(u)du = 
1=! E v1- 1J11 1=l,p•1 E 
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(3.15) 
l n n 

::T.:""TTC" _L . ~ . J K((u-Xj)/h) du - J f(u)du = 
11\U-•Jl• 1=1 1=l,u•1 E E 

1 n 
=- _L J K((u-Xj)/h) du - J f(u)du = 
nn J=l E E 

J fnh(u)du - J f(u)du, 
E E 

the expectation of the first term in (3.14) is 

(3.16) E J (fnh(u)du - f(u))du = J b(u,h)du, 
E E 

where b(u,h) is the bias of the kernel estimator fnh at the point u. Since theorem 2.3 gives uniform 

expansions of the bias function we can also derive expansions for (3 .16). To obtain the expectation of 

the second term in (3.14) note that 

- -
2
1 .!. .± E(~@(Xi,h)IE(Xi) I Xj, j=l , ... ,n, j * i) = 

n t=l 

- -2
1 -n

1 .± J (f~g(u) - f(u))2f 2(u)f(u)du. 
t=lE 

Therefore the expectation is given by 

(3 .17) 1 J f (l) 2 I - 2 E ( nh (u) - f(u)) f (u)du "' 
E 

Expansions of this mean integrated squared error are given by theorem 2.8. From (3.16) and (3 .17) 

we conclude that by maximizing log(LCVn(h)) is asymptotically equivalent to maximizing 

(3.18) 

So if the second term dominates the other two terms then we are asymptotically minimizing the 

weighted mean integrated suared error 

(3.19) 

However it turns out that this not always true. 
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Before we proceed with considering separate cases note that at this stage we can also show the 

intuition behind Marron's correction term. From the definition of LCVg(h) we have 

!.1og(LCV\i(h)) = !.1og(LCVn(h))- J fnh(u)du. 
n n E 

By (3.16) and (3.18) maximizing Lcvg(h) is asymptotically equivalent to maximizing 

- f f(u)du - ½ E J (fnh(u) - f(u))2f1(u)du + E g(t.n1(X1,h)IE(X1). 
E E 

Note that the first term is independent of h. This means that in those cases where the third term is 

negligible compared to the second term, we are minimizing the weighted mean integrated squared 

error (3.19). 

Let Ebe a bounded interval [a,b], -00 <a< b < 00, and let us again consider the three cases 

introduced in section 2.3.1. If we take the weight function w equal to f 1IE then these cases were 

defined by 

case I 1-,.<0l > 0, 

case II 1-,.(0) = 0 and t,Cll > 0, 

case ID : t-.<0l = t.<1l = O, 

where t.<0l and t,Cll are given by 

m 

t. (OJ= _L (f(di-)"1+f(di+ )"1)o<0l(di)2 + f(a+)"1o<0l(a)2 + f(b-)"1o<0l(b)2 

1=1 

m 

t. (l) = _L (f(di-)"1+f(di+Y1)6(l)(di)2 + f(a+)"1o0 >ca)2 + f(b-)"1o0 >cb)2. 
1=1 

Here d1, .. ,,dm denote the singular points off in the open interval (a,b). Further we assume without 

proof that for the cases II and ID we have 

(3.20) i=~~?..n ~~~ lt.ru(x,h)I ➔ 0, almost surely. 

By lg(x)l::;;lx13, for x small enough, this implies that the third term in (3.18) is negligible. Since cases 

II and ID correspond to densities which are smooth on E, having at most kinks, condition (3.20) is 

not an unreasonable assumption. This condition is not satisfied for case I. In that case there are two 

possibilities. If there is at least one jumping point din (a,b) then 

._ sup sup lt.ni(x,h)I ~ to<O)(d) ( inf f)·1 > 0, 
1-l, ... ,n xeE xeE 

and if one of the endpoints of Eis a jumping point then (3 .20) also can't be valid. 
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In case ill using the expansions given by theorem 2.3 and theorem 2.8 we see that (3.18) is 

asymptotically equivalent to 

1 

½h2 {u2K(u)du J f "(u)du + 
- E 

-½{¼ h 4 
( f u2K(u)du)

2 
J f "(u)2f1(u)du + ~ f K2(u)du}"" 

-1 E -1 

(3 .21) 
1 1 

½h2 (f'(b)- f'(a)) Ju2K(u)du -~ JK2(u)du. 
-1 -1 

This is exactly n times the expansion derived by Hall (1982) to prove theorem 3.2. Clearly if 

f'(b) - f '(a) > 0 then (3.21) is an increasing function of h which does not have a maximum . It does 

have a maximum iff'(b) - f'(a) <0. The point h where the maximum is attained is of order n-113. 

Next we consider case II. Let d1, ... ,dm denote the points in (a,b) where fhas a kink and recall 

that in case II there are no jumping points off in E. Let Dii denote the set of points which are at least 

at a distance h of the singular points off. Then theorem 2.3 gives the following expansion for the first 

term in (3 .18), 

b 

J b(u,h)du = J b(u,h)du = 
E a 

a+h b m di+h 
J b(u,h)du + J b(u,h)du + _L J b(u,h)du + J b(u,h)du = 
a b-h •=l di-h Dhn[a,b] 

1 0 m 1 

(3 .22) h d b(a+th,h)dt + h J b(b+th,h)dt + h _L J b(di+th,h)dt + J b(u,h)du "" 
-1 t=l -1 Dhn[a,b] 

1 0 m 1 

h2o(l)(a) Jb1(t)dt + h2o<l)(b) _[b1(t)dt + h\;o<1)(di) _{ b1(t)dt + 

1 b 

½h2 J u2K(u)du J f "(u)du = 
-1 a 

m 1 1 b 

h2 (o(l)(a) + o<1)(b) + 2 ~o<1)(di)) d b1(t)dt + ½h2_{ u2K(u)du 1 f "(u)du. 

The terms of order h2 in (2.13) don't appear in this expansion because they are integrated over 

intervals oflength 2h. We have also used 
b 

J f "(u)du "" J f "(u)du. 
Dhn[a,b] a 
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Because f' can be discontinuous on (a,b) this integral is not necessarily equal to f '(b) - f '(a). By 

theorem 2.8 it now follows that in this case we are asymptotically maximizing 

1 
b-a J 2 - 2nh K (u)du, 

-1 

which leads for the uncorrected method to the same type of behavior as in case ill above. 

Since in cases II and ill the third term in (3.18) is negligible the corrected method indeed 

asymptotically minimizes the weighted mean integrated squared error (3.19). This corresponds to 

Marron's optimality result given in theorem 3.3. Notice that in cases II and ill the density f satisfies a 

Lipschitz condition on an £-neighborhood of [a,b] for some E small enough. If the kernel K has a 

bounded support then this property can replace the condition in theorem 3.3 that f should be Lipschitz 

on the whole real line. 

Finally we consider case I. Suppose that d1, ... , dm denote the jumping points off in (a,b) 

then we have similarly to (3 .22) 

J b(u,h)du = 
E 

I O m I 

ho<0>(a) J bo(t)dt + ho<0>(b) J bo(t)dt + h i;o<0>(di) J bo(t)dt = 

I 

h (o<0>(a) - o<0>(b)) J bo(t)dt, 

since bo is odd. Notice that since bo is negative on [0,1] the integral above is also negative. For the 

third term in (3.18) we have for h small enough 

Eg(~n1(X1,h))IE(X1) = 

Eg((f~(X1) - f(X1))f1(X1))IE(X1) = 

J E g((f~(u) - f(u))f1(u))f(u)du = 
E 



where 

(3 .23) 

a+h b m d;+h 

( J + J + L J ) E g(({~(u) - f(u))f 1(u))f(u)du"' 
a b-h t= 1 d;-h 

a+h b m dj+h 

( J + J + L f ) g((Ef~\u) - f(u))f 1(u))f(u)du = 
a b-h i= 1 d;-h 

a+h b m d;+h 

( J + J + L J ) g(b(u,h)f1(u))f(u)du = 
a b-h i=l di•h 

h'y(f,K), 

1 

)'(f,K) := f(a+) J g(f(a+ )"1o<Ol(a)bo(t))dt + 

0 

f(b-) f g(f(b-)"1o<0l(b)bo(t))dt + 
-1 

m 1 0 i; (f(di+) J g(f(di+)"1o<0l(di)bo(t))dt + f(di•) _[ g(f(dj-)"1o<0\di)bo(t))dt) . 
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So in case I this term is not negligible. Again by theorem 2.8 we see that in case I we are 

asymptotically maximizing 

1 { 1 1 } 
h (o<0l(a) - o<0l(b)) J bo(t)dt - ½ h ii (Ol J bcr(t)dt + ~ _{ K2(u)du + h)'(f,K) = 

However using the corrected method we are asymptotically maximizing 

h {- t ii (Ol ibcr(t)dt + y(f,K) }-~ _f K2(u)du. 

Since in case I situations the third term in (3.18) is not negligible neither the uncorrected nor the 

corrected method asymptotically minimizes the integrated squared error (3 .19). So Marron's 

optimality result does not hold for densities with jumps in the interval [a,b] . Notice that if neither a 

nor b is a jumping point off then there is no difference in the asymptotic behavior of the uncorrected 

and the corrected method because the first term in (3 .24) vanishes. 

These heuristics lead to the next theorem which gives the rates of convergence of the 

bandwidths obtained by likelihood cross-validation. 



54 

Theorem 3.4. Suppose that Eis a bounded interval [a,b], -oo<a<b<00 , and that the density f 

satisfies condition F and is bounded away from zero on E. Let d1, ... ,dm denote the singular points of 

fin (a,b). Further assume that the kernel K satisfies condition Kand has a bounded second 

derivative. For some cr>0 let In denote the interval [h'Ibh~] with h~=n-l+o and h~=n-a. Let Hn denote 

the value ofh which maximizes LCVn(h) over In and let H~ denote the value ofh which maximizes 

LC\lii(h) over In. The next statements hold almost surely. 

(3.25) 
{ 

I }1/2 ½{b-a) J K2(u)du 
fun Cn = -l 
n~ I 1 

(o<0l(b)-o<0l(a)) d bo(t)dt + ~(Old b5(t)dt - y(f,K) 

provided 
I I 

(o<0l(b)-o<0l(a)) d bo(t)dt + ~ (O) d b5(t)dt - y(f,K) > 0. 

If H~=Cgn- 112 then 

(3.26) 
{ 

½{b-a) f K2
(u)du } 

112 

fun cg= ----'-1
"-----

n➔oo 1 
~(Ol Jbcr(t)dt - y(f,K) 

provided 
I 

~(Old b5(t)dt - y(f,K) > 0. 

liminf (logn) l/2+£ Cn ;:::: 1 
n~ 

(3.27) 

funsup 
1 

Cn ~ 1, 
n~ (log n)l+E 

provided 
m I I b 

( o<1l(a) + oOl(b) + 2 i;o<1l(di)) d b1(t)dt + ½h2_[ u2K(u)du 1 f "(u)du < 0. 

(3.28) 

(c) Case Ill: lfHn=Cn n- 113then 
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(3 .29) 

limsup l Cn:o:; 1, 
0
-- (log n)l+t 

provided f'(b) < f '(a) . 

(3.30) lirn C~ = am(f,w)115Pm(K)115. n-- D 

Here the constants an(f,w), am(f,w), Pn(K) and Pm(K) are the factors in the optimal bandwidths 

given in (2.25), where the weight function should be taken equal to f 11E, and 'Y(f,K) is defined in 

(3.23). So the limits (3.28) and (3.30) are the optimal constants in cases II and ill respectively. 

Remark 3.5. Since by remark 2.9 the expansions of the mean integrated squared error hold 

uniformly for h in (0,h;;:J for any sequence of positive hii converging to zero, for the corrected method 

in cases II and ID the theorem above implies (3 .11) of theorem 3.3. By an argument based on a result 

of Marron & H!irdle (1986), similar to the one Cline & Hart (1986) use to prove their theorem 6, it 

can be shown that (3.10) also holds. 

Next we consider the type of densities studied by Chow, Geman & Wu (1983) and Devroye 

& Gy5rfi (1985), i.e. we assume that f has bounded support [c,d] and E=[c,d]. This means that we 

compute the product (3.9) over all the data points Xi. Also assume f continuous and bounded away 

from zero on E. This is a case I situation with 

I I 

'Y(f,K) = f(c+)J g(f(c+r1f(c+)bo(t))dt + f(d-)J g(-f(d-r1f(d-)bo(t))dt = 
1 

(f(c+) + f(d-))J g(bo(t))dt < 0. 

This constant is negative because g is an increasing function on (-1 ,oo) with g(0) = 0. So g is negative 

on (-1,0) and since bo is negative on (0,1) the function g(bo) is also negative. We also have by partial 

integration 

1 

(o<0>(c)-o<O)(d)) Jbo(t)dt = 

I I 

- (f(c+) + f(d-))J (/K(u)du)dt = 

I 

- (f(c+) + f(d-))J uK(u)du < 0. 
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Using the equality ~(Ol=f(c+)+f(d-) the next result now follows from theorem 3.4. 

Corollary 3.6. Let f satisfy condition F and have bounded support [c,d]. Let E=[c,d] and let f be 

continuous and bounded away from zero on E. If Hn=Cnn-l/2 and H~=Ciin-l/2 then under the 

conditions of theorem 3.4 we have almost surely 

(3.31) { 

l }1/2 
½<d-c) J K2(u)du 

Jim C -1 
n = 1 1 1 

n->oo (f(c+) + f(d-))(J uK(u)du + tJ b5(t)dt -J g(bo(t))dt) 

and 

(3.32) 
{ 

l }1/2 
½<d-c) J K2(u)du 

Jim cg= -1 
n->oo 1 1 

(f(c+) + f(d-))(tJb5(t)dt-J g(bo(t))dt) 
D 

Remark 3.7. The asymptotically optimal constant for the weight function f 1IE in the case I situation 

of this corollary is given by (2.25). It equals 

½<d-c) J K2(u)du 

{ 

l }1/2 

The corresponding optimal bandwidth hgpt is equal to Coptn-lfl_ Note that the quotients of the limits in 

(3 .31) and (3.32) and Copt depend only on the kernel function Kand not on the density f. This means 

that we can obtain almost sure convergence to the asymptotical optimal constant Copt by multiplying 

the computed bandwiths Hn and H~ by a known constant. However, even using the optimal 

bandwidths, unavoidably we have a large error since we are dealing with a case I situation. It would 

be better to use the symmetrization device described by Schuster (1985) combined with cross­

validation to determine a good bandwidth. Cline & Hart (1986) discuss this approach for least 

squares cross-validation. 

The two previous theorems show that in the cases II and III, i.e. if the density f has no jumps 

in the interval [a,b], the bandwidths Hii are asymptotically almost surely equivalent to the 

deterministic asymptotically optimal bandwidths with respect to the weighted mean integrated squared 

error MISEn(h), where 
b 

MISEn(h) = E ISEn(h) = EJ (fnh(x) - f(x))f\x)dx. 
a 
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Let H; denote the positive value of h which minimizes the integrated squared error ISEn(h). Since H; 

is the random bandwidth which we would like to approximate we derive the asymptotic distribution 

of Hg - H;. The next theorem establishes the asymptotic normality of I-fn -H; in the cases II and III. 

The proof is given in section 3.4. 

Theorem 3.8. Suppose that the conditions of theorem 3.4 are satisfied. With L(u) :=K(u)+uK'(u) 

we define the constants a2, ot1 and crn1 by 
1 

cr2 := 4(b-a) J L 2(u)du, 
-1 

1 l 

crr1 := ,1CI) J ( _L (t-u)L(u)du)2dt, 

1 b 
cr111 := ¼ ( J u2K(u)du)2( J f "(x)2f1(x)dx - (f '(b) - f '(a))2), 

-1 a 

and the constants Oo, a 1 and a2 by 

b-a 
1 

ao := .._ J K2(u)du, 
~ -1 

1 b 
a1 := ½-{ f u2K(u)du)

2 ff "(x)2f 1(x)dx 
- 1 a 

1 I 

a2 := ½t1(1) J (_L (t-u)K(u)dt)2dt. 

Then we have in case /I 

n3/8(Hc - H•) ~ N(0..!...(2a -5/4a -3/4-...2+ a -l/4a -7/4,T 2)) n n '16 0 2 0- 0 2 vm 

and in case lll 

n3/I0(Hc _ H•) ~ N(O ..!...(2a -7/5a -3/5cr2+ a -2/5a -8/50 2)) 
n n '25 0 1 0 1 II • D 

The second statement of this theorem is similar to theorem 2.1 in Hall & Marron (1987a), the 

asymptotic normality result for the bandwidths computed by least squares cross-validation, the only 

difference is in the asymptotic variance. It shows that for smooth densities we also have the slow 

convergence demonstrated by (3 .6) for least squares cross-validation. Though formally it doesn't 

apply here since we use a different weight function, this result is coherent with theorem 2.1 in Hall & 

Marron (1987b), which states that we can not expect a faster rate of convergence. This theorem 
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assumes the densities to be twice differentiable, essentially our case III situation. It is a nice surprise 

that the first statement of our theorem shows a faster rate of convergence. In that case we have 

(E-3/8) -11s 
Op~ = Op(n ), 

which is of smaller order than the bound Op(n-1110) which holds in the smooth case. Proceeding as in 

Hall & Marron (1987a) we would also obtain 

and 

which shows that the minimal integrated squared error is also better approximated in case II. 

However we should keep in mind that if f has kinks in [a,b] this integrated squared error is of a larger 

order than it is for smooth densities. 

3.2. The derivative of log(LCV n(h)). 

The proofs of theorem 3 .4 and theorem 3 .8 in the previous section are based on expansions of 

the derivative of the function log(LCVn(h)). Before we can derive these expansions we give two 

successive decompositions of this derivative in sections 3.2.1 and 3.2.2 . In section 3.3 we then 

obtain the expansions which prove theorem 3.4. The proof of theorem 3.8, stating the asymptotic 

normality of 1--fn - H;, is given next in section 3.4. 

3.2.1. A decomposition . 

We first consider the derivative of the kernel estimator fnh with respect to the bandwidth h. 

For K differentiable we have 

(3.33) 

with 

(3.34) 

d l~dl 
dh fnh(x) = n i~ dh h K((x-Xi)/h) = 

1 ~ 1 (x-Xi) , n i~ (- h2 K((x-Xi)/h) -h3 K ((x-Xi)/h)) = 

1 n 
- -h2 Li L((x-Xi)/h) n ,=I 

L(x) := K(x) + xK'(x), -oo < x < oo. 

This function plays an important role in the sequel. For kernels K, satisfying condition K and having 

a bounded derivative, L has the following properties, 



(L.l) 

(L.2) 

(L.3) 

(L.4) 

L has support [-1,1], 

L is bounded, 

L is symmetric, 
1 

J L(u)du = 0. 
-1 

The first three properties are immediate and property (L.4) follows by partial integration. 

The next figure shows the graph of the function L for the kernel K, given by 

K(x) = :~ (l-x2)31[-1,l](X). 
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Notice that K' continuous implies L continuous, and that L has a bounded derivative if K has a 

bounded second derivative. This last property is required if we want to apply theorem 2.16 to the 

derivative (3.33). 

0 

0 

0 

0 

j 

-1 . 0 0. 0 1.0 

Fi~re 3.1. The function L. 

Now consider log(LCVn(h)). Since 

1 1 ,i') 
-log(LCVn(h)) =- L log(t~(Xi)). 
n n i:XieE 

and 

we have 
1 
nlog(LCVn(h)) = 

1 ~ 1 n 
n A;~E log(fnh(Xi) - nh K(O)) + log(n-1). 
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Next use (3.33) to obtain 

(3.35) 

1 d 
nahlog(LCVn(h)) = 

1 n 1 
_ l L nh .; L((Xi-Xj)/h) - iili"K(O) = 

nh i:X;eE fnh(Xi) - iJi K(O) 

The following decomposition of this derivative is the key tool in our analysis of the behavior of 

likelihood cross-validation. 

Proposition 3.9. If the kernel K is differentiable and satisfies condition K, and if we define the 

function L by (3.34), then 

1 d 
nahlog(LCVn(h)) = 

Un(h) + Vn(h) + Wn(h) + Yn(h) + Rn(h). 

where 

with 

and where 

(3.36) 

Un(h) := \~ Uij(h), Vn(h) := \~ Vij(h) andWn(h) :=\. L Wijk(h), 
n '°'l n '°'l n 1".);tk 

U ij(h) := - :z L((Xi-Xj)/h) f(Xir 1 IE(Xi), 

V ij(h) := ~3 K((Xi-Xj)/h) L((Xi-Xj)/h) f(Xir2 IE(Xi), 

W ijk(h) := ~3 K((Xi-Xj)/h) L((Xi-Xk)/h) f(Xir2 IE(Xi), 

1 n 1 n 1 
Y n(h) := - -::--r:- L (-::--r:- L L((Xi-Xj)/h) - -::--r:- K(O)} 

nn 1=1 nn i=l nn 

1 n 1 
( nhi; K((Xi-Xj)/h) - f(Xi)- nh K(0)} 2 

( nlh t K((Xi-Xj)/h) - J_h K(O) J-l f(Xir2 IE(Xi), 
J=l n 



Proof. Write the denominator in (3.35) as 

thus defining 6ru(h). Next we introduce the function g by 

1 1 1 s2 

g(x,s) := -- -+ s :::-r= ~. 
x+s x x x (x+s) 

This gives 

and therefore by (3.35) we have 

1 d 
nonlog(LCV0 (h)) = 
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D 

-J:.. L f l .± L((Xj-Xj)/h) - k(o)} {~ - L\fn(iX(hi)i + g(f(Xi),L\ni(h))} = 
nn i:X;eE lnJi J=l nh-- 1\-"-I} 

1 n fl n 1 } 
-rui;; IE(Xi) lnJi i; L((Xi-Xj)/h) - ruiK(O) 

{r&r- f(~i)2 (ifi iti K((Xi-Xj)/h) - ifiK(O)) + g(f(Xi),L\ni(h))}. 

This can be rewritten as 

6 

(3.37) L Zni(h) + Y n(h), 
i=l 

with 
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and 

Now note that 

1"{¼" 1 } Yn(h) := - ::i:- L .L L((Xi-Xj)/h) - ::i:-K(O) g(f(Xi),t.ru(h)) lE(Xi)-
nn ,=1 i=l nu 

Zn.2(h) = -Zn,3(h) - Zns(h) + Zn6(h) + Vn(h) + Wn(h), 

I Zn6(h) = 2 Rn(h), 

which shows that (3.37) equals 

CTn(h) + Vn(h) + Wn(h) + Y n(h) + Rn(h). 

This completes the proof of the proposition. 

3.2.2. The relation to U-statistic theory: a second decomposition. 

D 

The statistics CTn(h), Vn(h) and Wn(h) in the preceding section are CT-statistics. If q> is a 

symmetric real valued function defined on them dimensional Euclidean space then a CT-statistic of 

degree m with kernel q> is defined as 

where Cn,m is the set of all ordered m-tuples (i1, .. ,,im) of different indices from the set { 1,2, ... ,n}. 

Note that, with 

<p~(x,y) := -~L((x-y)/h)(f(xt1IE(x)+f(yt1IE(Y)), 

~ (x,y) := & K((x-y)/h)L(x-y)/h)(f(xt2IE(x)+f(yf2IE(Y)), 

we have 
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so up to normalizing factors Un(h) and Yn(h) are indeed U-statistics. Also notice 

and 

Similarly we can write Wn(h) as 

where 

i.e. the sum over all permutations of the indices. So Wn(h) is a U-statistic of order 3. 

The kernel functions cp~, cp~ and cpi; depend on the bandwidth. To derive the asymptotic 

distribution theory for likelihood cross-validation we need the asymptotic distribution ofUhn(hn) for a 

sequence of bandwidths (hn) (The terms Vhn(hn) and Whn(hn) are negligible). In that case we are 

dealing with a statistic of the form 

a U-statistic with a kernel depending on the sample size. The asymptotic distribution theory for this 

type of statistics is studied by Hall (1984), Jammalamadaka & Jansson (1986), De Jong (1987, 

1988), Nolan & Pollard (1987, 1988). 

Although we can not use the theory for U-statistics with fixed kernels, we can employ 

Hoeffding's projection technique to derive a decomposition of a U-statistic (Hoeffding (1948), 

Serfling (1980)). This results in the following decompositions 

n-1 
Un(h) = n EUij(h) + 

n-1 1 ~ n-1 1 ~ 
--"-' (E(Uij(h)IXi) - EUij(h)) + --"-' (E(Uij(h)IXj) - EUij(h)) + 
n ni=l n nj=l 

which we rewrite as 
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n-1 
Un(h) = n EUij(h) + 

n-1 1 ~ n-1 1 ~ 
-- ,(., (E(Uij(h)IXi) - EUij(h)) + -- ,(., (E(Uij(h)IXj) - EUij(h)) + 
n n i= 1 n n i= 1 

where 

and 

tJij(h) := Uij(h) - E(Uij(h)IXi) - E(Uij(h)IXj) + EUij(h). 

Similarly we decompose Vn(h) as 

n-1 
Vn(h) = -:r EVij(h) + 

n 

n-1 1 ~ n-11 ~ -:r- _,(., (E(Yij(h)IXi) - EVij(h)) +-:r- ,(., (E(Yij(h)IXj) - EYij(h)) + 
n n 1=1 n n J=l 

where 

and 

Finally we also decompose the statistic Wn(h). We get 

Wn(h) = (n-l)(n-Z) EWijk(h) + 
n 

(n-l)(n-2) 1 ~ 
n n ;-:1 (E(Wijk(h)IXi) - EWijk(h)) + 

(n- l)(n-Z) !. .± (E(Wijk(h)IXj) - EWijk(h)) + 
n n 1=t 

(n-l)(n-2) 1 ~ ~~n-~ii" k~ (E(Wijk(h)IXk) - EWijk(h)) + 

~n(h), 

where 
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and 

An imponant propeny of these decompositions is that the conditional expectations of the terms of 

bn(h) given the X's vanish, i.e. for k=l, ... , n 

This implies that bn(h) and the linear terms in the decomposition of Un(h) are uncorrelated, an 

inherent propeny of the Hoeffding decomposition. The other two decompositions have a similar 

propeny. 

We obtain a funher decomposition of the derivative of n-11og(LCV n(h)) by plugging in the 

previous ones of the statistics Un(h), Vn(h) and Wn(h) in the decomposition derived in the previous 

section. Then we compute the various conditional expectations appearing above. These conditional 

expectations can be expressed in terms of functions b0 with G equal to one of K, L, or KL, the 

product of the functions K and L. These functions b0 are generalizations of the bias function b in 

section 2.2. We also introduce generalizations of the functions bo, b1 and½, which appeared in the 

expansion of the bias. 

Definition 3.10. The functions b0 , ~ . bY and ifi are defined by 
1 • 1 

b0 (x,h) := E Gii(x-X1) - f(x) J G(u)du = k J G((x-u)/h)f(u)du - f(x) J G(u)du 
-1 -- -1 and 

{

I 

J (t-u)mG(u)du 

~(t) := --

_j(t-u)mG(u)du 
I 

if t<O 

if t:2:0 

for m=0,1,2 . 

The proof of the next lemma is a direct generalization of the proof of theorem 2.3 and is therefore 

omitted. 

Lemma 3.11. Assume that G is a bounded symmetric measurable function with support equal to 

[-1,1] and that the density f satisfies condition F. let (h~) be a vanishing sequence of positive real 

numbers. 

(a) Then 
1 

b0 (x,h) = ½ii2f "(x) J u2G(u)du + r3(x,h) 
-1 

where the remainder r3 satisfies 
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Jim sup sup h-2r3(x,h) = 0 n- 0<hSh0 ' xeDhn[-M,MJ 

for every positive M . 

(b) For xo a fixed point we have 

1 

~i2_{ u2G(u)du {f "(xo-)Ic-.oi(t) + f"(xo+ )lco.4 t)} + 

where the remainder r4 satisfies 

Jim sup sup h-2r4(t,h) = 0 n- 0<hSh0 ' -MStSM,t..O 

for every positive M . 

We now state the main proposition of this section. 

Proposition 3.12. If the kernel K is differentiable and satisfies condition K, and if we define the 

function L by (3.34), then we have the following decomposition, 

1 d n dh log(LCVn(h) = 

nn-l EUij(h) + ~EVij(h) + (n-l)(n-2) EWijk(h) + 
n n 

n-11 ~ 
--~(u1(Xi,h) - Eu1(Xi,h)) + 
n n i=l 

n-11 ~ 
--~(u2(Xi,h) - Eu2(Xi,h)) + 
n n i=l 

n-1 1 ~ -:z ~(v1(Xi,h) - Ev1(Xi,h)) + 
n n i=l 

n-1 1 ~ -:z ~(v2(Xi,h) - Ev2(Xi,h)) + 
n n i=l 
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(n-l)(n-2) 1 ~ 
2 L.(w3(Xi,h) - Ew3(Xi,h)) + 

n n •=• 

Y 0(h) + Rn(h), 

where the functions u1, u2, VJ, v2, w1, w2, w3 are defined by 

u2(x,h) .- -& j L((u-x)/h)du , 

I 

v1(x,h) .- & (f(x) _f KL(u)du + bKL(x,h))f(xr2IE(X), 

(3.38) v2(x,h) .- & JKL((u-x)/h)f(ur1du, 

w1(x,h) .- k bK(x,h)bL(x,h)f(xr2IE(X) , 

w2(x,h) .- & J K((u-x)/h)f(ur1bL(u,h)du, 

w3(x,h) := & J L((u-x)/h)f(ur1bK(u,h)du. 

To prove this result we only have to compute the conditional expectations in the decompositions of 

U0(h), V0(h) and W0(h). These conditional expectations are given by the next lemma. 

Lemma 3.13. The conditional expectations of Uij(h), Yij(h) and Wijk(h) are given by 

(a) E(Uij(h) I Xi)= - } bL(Xi,h) f(Xir1IE(Xi) = 2u1(Xi,h), 

E(Uij(h) I Xj) = -~ J L((u-Xj)/h)du = 2u2(Xj,h), 

I 

(b) E(Yij(h) I Xi)= b-<f(Xi) lKL(u)du + bKL(Xi,h))f(Xir2IE(Xi) = V1(Xi,h), 
h -

E(Yij(h) I Xj) = & JKL((u-Xj)/h)f(ur1du = v2(Xj,h), 

(c) E(Wijk(h) I Xi)= - ½ E (Uik(h) I Xi)+ k bK(Xj,h)bL(Xj,h)f(Xir21E(Xi) = 
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- u1(Xi,h) + w1(Xi,h), 

E(Wijk(h) I Xj) = & 1 K((u-Xj)/h)f(ur1bL(u,h)du = w2(Xj,h), 

E(Wijk(h) I Xk) = -½E (Uik(h) I Xk) + & JL((u-Xk)/h)f(ut1bK(u,h)du = 

Proof. We only derive the expressions for E(Wijk(h)IXi) and E(Wijk(h)IXk). The other expressions 

are obtained similarly. We get the conditional expextation ofWijk(h) given Xi and Xk by integrating 

out Xj, 

Next we obtain E(Wijk(h)IXi) = E(E(Wijk(h)IXi,Xk)IXi) by integrating out X. This gives 

Similarly we compute E(Wijk(h)IXk) by integrating out Xi. This gives 

E(Wijk(h)IXk) = 

-½ E(Uik(h)IXk) + A-I L((u-Xk)/h)f(ut1bK(u,h)f(u)du , 
h E 

which is the correct expression. D 
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Proposition 3.12 gives us a basis for deriving both the rates of convergence to zero as well as the 

asymptotic distributions of the bandwidths computed by likelihood cross-validation. In the following 

section we obtain results on the rates of convergence to zero. Distributional properties are studied in 

section 3 .4. 

3.3. Rates of convergence: proof of theorem 3.4. 

Recall that the random bandwidth Hn computed by the uncorrected likelihood cross-validation 

method is equal to the value of h which maximizes the random function LCV n, defined in (3.9), over 

the interval In=[h~,h~J. where h~=n-l+o and h~=n-0 for some cr>O. The random bandwidth Hii 

computed by the corrected likelihood cross-validation method is equal to the value of h which 

maximizes the random function LC\'ii over the interval In. The function LCVii is obtained from LCV n 

by 

(3.39) 
n 1 

LC\'ii(h) = LCVn(h) exp (-i; Ii J K((u-Xi)/h)du). 

In this section we prove theorem 3.4 concerning the rates of convergence to zero of the random 

bandwidths Hn and Hg. We consider the root and the sign of the derivative of the random functions 

log(LCVn(.)) and log(LCVg( .)). 

Throughout this section we assume that the conditions of theorem 3.4 are satisfied, i.e. we 

assume that E=[a,b] and that the density f satisfies condition F and is bounded away from zero on E. 

Further we assume that K satisfies condition Kand has a bounded second derivative. By d1, ... , dm 

we denote the singular points off in the open interval (a,b). We treat the points a and b separately. 

The decomposition given in proposition 3.12 gives the next expansion of the derivative of 

log(LCVn(.)). The proof of this expansion is given at the end of the section. 

Proposition 3.14. If we write 

1 d 
ndnlog(LCVn(h)) = 

1 n 1 
-- .L iii JL((u-Xj)/h)du + n J=l 

1 

b-a [ 2nh2 - K2(u)du + 

Yn(h) + 
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Rn1(h), 

where Y n(h) is defined by (3.36), then the remainder term Rn1 satisfies 

sup an(h) Rn1(h) = o(l), almost surely, 
heln 

with an(h) equal to 

in case I 

in case II 

in case Ill. D 

Now we also automatically obtain an expansion for the derivative of log(LCVii(.)) since by (3.39) 

and (3 .33) we have 

1 d ndh log(LCVii(h)) = 

(3.40) 1 d 1 d (~ 1 J ) --:n:-log(LCV(h)) - --:n:- _...., i:- K((u-Xi)/h)du = 
nun nnn ~1nE 

1 d 1 ~ 1 
--:n:-log(LCV(h)) + -n ...., ;:z J L((u-Xi)/h)du . 
nnn ~lh E 

It follows that the correction factor removes the first term in the expansion of¼ ak, 1og(LCVn(h)) 

given by proposition 3.14. Using the expansions of the bias functions bK and bL, provided by lemma 

3 .11, next we expand the deterministic third term. 

Lemma 3.15. We have 

k J bL(u,h)bK(u,h)f(ur1du = 

1 

-½~(Old b~(t)2dt + r1(h) in case I 

1 
(3.41) - } h2 ~ (ll J b!f(t/dt + h2r2(h) in case II 

1 

- th3( J u2K(u)du)
2 J f "(u)2f1(u)du + h3r3(h) 

-1 E 
in case Ill 

where r1(h), r2(h) and r3(h) converge to zero uniformly for he In. D 
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Proof. Let Dh denote the set of points on the real line which are at least at a distance h from the 

singular points off. For n large enough and he In write 

First consider case III. Then the interval E = [a,b] contains no singular points. By lemma 3.11 we 

have for n large enough 

1 1 

~ J ( th2f "(u)(J v2L(v)dv )½-h2f "(u)(_[ v2K(v)dv )f 1(u)du) + h3r1(h), 

where the remainder term r1(h) vanishes uniformly for he In for n tending to infinity. Since by partial 

integration we have 
1 1 

J v2L(v)dv = -2 f v2K(v)dv 
-1 -1 

this proves (3.41) for case III. In the cases I and II this term is asymptotically negligible and the term 

(3.42) 

dominates. Let di be a singular point off in the open interval (a,b). The term corresponding to di in 

the sum (3.42) is equal to 

(3.43) 

By lemma 3.11 this term is equal to 

1 

f o<0>(di)b5(t)o<0>(di)b!(t)f1(di+th)dt + o(l) = 
-1 

1 

o<0>(di)2 f bht)b!(t)f1(di+th)dt + o(l) = 
-1 

1 0 

o<0>(di)2(f1(di+) Jb/r(t)b!(t)dt + f 1(di-)_{b/r(t)t}§-(t)dt) + o(l) = 
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I 

o<0l(di)2(f1(di+) + f1(di-))Jb~(t)blfo)dt + o(l), 

since b! and b& are odd functions. If o<0l(di) is equal to zero then the expansion of (3.43) becomes 

1 

f 0< 1l(di)br(t)o<ll(di)b1f(t)f1{di+th)dt + o(h2) = 
-1 

I 

h2 o<1l(di)2(f1(di+) + f 1(di-)) J br(t)blf(t)dt + o(h2). 

Similar expansions hold for the points a and b. The uniformity of these expansions is readily verified 

so it remains to show the equalities 
1 1 

(3.44) J b~(t)b~(t)dt = -½ J b~(t/dt 

and 

(3.45) 
1 1 

J br(t)blf(t)dt = - f J blf(t/dt. 

The proof of these equalities is postponed to the end of section 3.5. D 

We also need a bound on the term Yn(h). For cases II and III it is given by lemma 3.16. 

Lemma 3.17 provides information on Yn(h) for case I. Both lemmas are proved in section 3.5. 

Lemma 3.16. For some constant c > 0 

where 

limsup sup Cln(h) IY n(h)I < c, almost surely, 
n-)oo he ln 

in case Il 

in case lll D 

First consider the corrected method in the smooth case III. Proposition 3.14, (3.40), lemma 3.15 and 

lemma 3.16 imply 

(3.46) 1 d c 1 3 ( 1 3) - dh log(LCVn(h)) = ao:-;:r- a 1h + Rn2(h) :72+ h , 
n nh nh 

where for some sequence of almost surely vanishing random variables Sn we have for all he In 

(3.47) IRn2(h)I ~ Sn, 

and the constants Clo and a1 are defined in theorem 3.8. Substituting h = cn- 115 in relation (3.46) and 

multiplying by n315 we get 
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(3.48) 1 3 -1/5 ( 1 3) <Xo:,:- CltC + Rn2(cn ) :,:+ C . 
C C 

Let co be equal to (o.o/cx1)
115 then co is equal to the optimal constant for the mean integrated squared 

error in case III for the weight function w = f 1IE (see (2.25)). Next we rewrite (3.48) as 

(3.49) 

j-+ c3 

(aoj-- cx1c3)(1 + Rn2(cn- 115) \ ). 

C <Xo:,:- Cl I c3 
C 

We see by (3.47) that for any O < E < co and for all n larger than a random integer N(E) the expression 

(3.49) is positive for all c in (O,eo-e)nn 115In and negative for all c in (co+E,oo)nn115In. So if we write 

Hg= cg n-115 then for all E in (O,co) 

eo-E s cg s co+E, for all n ~ N(e). 

Thus we have shown 

lim Cii = co, almost surely, 
Il-)oo 

which proves (3.30), i.e. the almost sure convergence to the optimal constant for case III. 

The proof of statement (3.28) of theorem 3.4 for the case II is exactly the same except that the 

second term in (3.46) is of order h2 instead of h3. In case II we have 

(3.50) ld c 1 2 (1 2) ndhlog(LCVn(h)) = <Xo~- a2h + Rn3(h) ~+ h , 

where cx2 is given in theorem 3.8, and Rn3(h) satisfies a condition similar to (3.47). 

In case I the situation is different since then the term Y n(h) in the expansion of proposition 

3.14 is no longer negligible. The next lemma deals with this term. The proof is given in section 3.5. 

Lemma 3.17. Let d1, ... , dm denote the jumping points off in (a,b). Then 

Y n(h) = )'(f,K) + Rn4Ch), 

where )'(f,K) is defined in (3.23) and Rn4(h) satisfies 

~ )
-! 

sup :::;:i-+ 1 Rn4(h) = o(l), almost surely. 
heln 

We now get the following expansion of the derivative of log(LCVg(.)), 

(3 .51) ld c 1 (1 ) ndhlog(LCVn(h)) = <Xo~- cx3 + )'(f,K) + Rns(h) ~+ 1 , 

D 
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where for some almost surely vanishing sequence of random variables Sh we have for all he In 

IRns(h)I ~ Sh. 

Here Ct{) is the same as above and cx3 is given by 
I 

CX3 := f~(O) J b!(t/dt. 
0 

Contrary to the previous cases here the leading term of (3.51) does not always have a root in (0,oo). If 

cx3 - y(f,K) < 0 then by the same argument as above the derivative is positive for all he In for n larger 

than some random integer N. This means that we get find large values of Hii. On the other hand if 

cx3 - 'Y(f,K) > 0, defining cg by Hii = cgn-115, we get (3.26) of theorem 3.4. 

Having dealt with the part of theorem 3.4 about the corrected method we proceed with proving 

the results concerning the uncorrected method. The next lemma gives expansions of the expectation of 

the correction term 

1 n 1 
-n L ;:-r J L((u-Xi)/h)du . 

1=1 h E 

Since the proof is a straigthforward application of lemma 3.11 it is omitted. 

Lemma 3.18. We have 

1 b 
E ;:-r J L((u-Xi)/h)du = 

h a 

1 

(o<0l(a) - o<0l(b))J b~(t)dt + r1(h) in case I 

m 1 

~(f'(b) - f '(a))_{ u2L(u)du + hr2(h) in case// 

1 

~(f'(b) - f '(a))_{ u2L(u)du + hr3(h) in case ll/, 

where the functions r1(h), r2(h) and r3(h) converge to zero uniformly for he In. 

By the statement concerning u2 in lemma 3.19 below we also have almost surely 

1 n 1 b 1 b 
nlog n suf. (nh)

112 I_L (;:-r J L((u-Xi)/h)du - E ;:-r J L((u-Xi)/h)du)I = o(l), 
hen 1=1 h a h a 

so the correction term is equal to 

D 
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1 b lo n 
E ;:-r J L((u-Xi)/h)du + Rn6(h) ~, 

h a (nh) 
(3 .52) 

where Rn6(h) for all he In satisfies 

1Rn6(h)I ~ Sn 

for some almost surely vanishing sequence of random variables S~. It is not hard to show that the 

asymptotic standard deviation of the correction term is of the order (nhr112, so apart from the factor 

logn the bound in (3.52) is sharp. 

First consider the uncorrected method in case III. Substracting expansions (3.46) and (3 .52) 

we get 
1 d 
ndh log(LCV n(h)) = 

1 d 1 ~ 1 J -=-log(LCV~(h)) - - "'- ;:-r L((u-Xi)/h)du = 
nun n i=l h E 

b 
1 3 ( 1 3) 1 J .!£B.E._ ao::-;:-r - a1h + Rn2(h) ::-;:-r + h - E ;:-r L((u-Xi)/h)du - Rn6(h) 2 , nh nh h a (nh)11 

which by lemma 3.18 equals 

1 3 ( 1 3) .!£B.E._ ao::-;:-r- a1h +a.Ji+ hr3(h) + Rn2(h) ::-;:-r+ h - Rn6(h) = 
nh nh (nh)112 

(3.53) 1 ( 1 3) .!£B.E._ ao::-;:-r+ 04h + hr3(h) + Rn2(h) ::-;:-r+ h - Rn6(h) 1 2 , nh nh ~ / 

where a4 is given by 
I I 

04= - ~f'(b) - f'(a))_[ u2L(u)du = (f'(b) - f'(a))_[ u2K(u)du 

and r4(h) converges to zero uniformly for he In. Next notice 

so if nh3 converges to zero or infinity fast enough the term (nhr112logn is negligible compared to the 

leading terms in (3.53), uniformly for he In. However if nh3 remains bounded away from zero and 

infinity then this term is not negligible. Writing h = cn·113 and multiplying (3.53) by n113 we rewrite 

(3.53) as 
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<Xo~+ 04c - Rn6(cn-113) log n + cr3(cn-113) + Rn2(cn-113) (~+ c3n-213) . 
C C 

Now assume that 04 is negative then exoc-2 + 04c has a root in (0,00 ). By a similar argument as we 

used for the corrected method we then find that for n larger than a random integer N we have for all 

€>0 
1 ~ Cn ~ (log n)l+E 

(log n)l/2+E 

which gives 

liminf (logn)1/2+E Cn ~ 1, almost surely, 
n-+oo 

and 

limsup 
1 

Cn ~ 1, almost surely, 
n-+oo (log n)l+E 

thus proving (3.29). 

For case II the proof of (3.27) is exactly the same except that the constant 04 is different since 

lemma 3.18 gives a different constant. Here 04 is equal to 

m l l 

- h (oOl(a) + o<1l(b) + 2i;oOl(di))J br(t)dt- ~(f'(b) - f'(a))_f u2L(u)du = 

m l l 

2h (o<1l(a) + oOl(b) + 2~oOl(di))J bf(t)dt + h(f'(b) - f '(a))_f u2K(u)du , 

where we use (see the end of section 3.5 for the proof) 
1 1 

(3.54) d br(t)dt = - 2J bf(t)dt. 

Statement (3.25) for case I can be proved in the same way as we proved (3 .26) because in this case 

the variation of the correction term is negligible since uniformly for all he In we have log n (nhr 112 = 

o(l). Here we need the relation 
1 1 

(3.55) d b~(t)dt = -d b\fo)dt, 

the proof of which is also postponed to section 3.5. 

To complete the proof of theorem 3.4 we now prove proposition 3.14. 

Proof of proposition 3.14. The proof is based on the decomposition given by proposition 3.12. 

Combining some of the terms of the decomposition we write 

n-1 n-1 (n-l)(n-2) n-1 1 ~ ( 
-n EUij(h) + -:z EVij(h) + 2 EWijk(h) + --~ u2(Xi,h) - Eu2(Xi,h)) = 

n n n n •=I 



n-1 ) n-1 (n-l)(n-2) 
-(E(EUij(h)IXj) - Eu2(Xi,h) + -:z E(EVij(h)IXi) + 2 E(EWijk(h)IXj) + 
n n n 

n-1 1 ° 1 b ---L ~ f L((u-Xi)/h)du. n n i=l h a 

By lemma 3.13 this is equal to 

n b 
(n-l)(n-2) ( ) n-1 1 ~ 1 J 

2 -Eu1(X1,h) + Ew1(X1,h) - -- _.L.. ~ L((u-Xi)/h)du = 
n n n 1=! h a 

n-1 E (X h) (n-l)(n-2) E (X h) n U2 !, - n2 UJ !, + 

n-1 1 ° 1 b ---L ~ f L((u-Xi)/h)du. 
n n i=l h a 

Notice that by lemma 3.11 we have 

(3.56) 
I 

b-a [ 2 h ~ K (u)du + ~r4(h), 
2nh - nh 

where r4(h) converges to zero uniformly for he In, Here we use the equality 
1 1 I 

J KL(u)du = _[ (K2(u) + uK'(u)K(u))du = ~_[ K2(u)du. 

Furthermore we have 

Ew1(X1,h) = k Jb1-(u,h)bK(u,h)f(ut1du 

and since Eu1(X1,h) = Eu2(X1,h) = EUij(h) we also get 

n-1 E (X h) (n-l)(n-2) E (X h) -fl U2 !, - n2 Ut !, -

(3.57) 

77 
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It follows from lemma 3.18 that (3.57) is asymptotically negligible and from lemma 3.15, lemma 

3.18, (3.52) and (3.56) that the factors (n-1)/n and (n-l)(n-2)/n2 can be replaced by one. 

Since the term R0 (h) is readily dealt with it remains to show that the linear terms corresponding to the 

functions UJ, VJ, v2, WJ, w2 and w3 and the quadratic terms 60 (h), ◊n(h) and ~n(h) are 

asymptotically negligible. This is achieved by the next two lemmas which are proved in section 3.5. 

Lemma 3.19. Let <p be one of the functions u J, u2, VJ, v2, WJ, w2 and w3 and let (an(.)) be 

sequence of positive functions on (0,00 ). The statement 

(3.58) 
1 n = sup an(h) IL (<p(Xi,h) - E<p(Xi,h))I = o(l), almost surely, 

mog n he ln i=J 

is valid/or <p = UJ, <p = w2 and <p = w3 if 

in case I 
in case II 
in case III 

It is valid for <p = u2 if we take a 0 (h) equal to nJ/2hJ12,for <p = VJ and <p = v2 if we take an(h) equal 

to nJ12h2 and/or <p = WJ if 

in case I 
in case II 
in case Ill 

Lemma 3.20. For any a>O we have 

sur, n•a(nh312) 16n(h)I = o(l), almost surely, 
hen 

(3.59) sur, n•a(n2h512) I◊ n(h)I 
hen 

= o(l), almost surely, 

suf. n•a(n312h2) I~ n(h)I = o(l), almost surely. 
hen 

D 

D 

The proof of proposition 3.14 is completed by checking that the bounds provided by these two 

lemmas are small enough. For instance for the term corresponding to the function UJ we use 

which shows by distinguishing the cases nh2~1 and nh2<1 that we have 

-J/2h-J/2 ( 1 I) n < ~+ ' 
nh 
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for n large enough. So in case I the linear term corresponding to the function u1 is indeed small 

enough. The other linear terms can be treated similarly. For the quadratic term On(h) we write 

l◊n(h)I = :h h 112nh3121◊n(h)I ~ :h (n-012nh3121◊n(h) I), 
nh nh 

so by lemma 3.20 that this term is also asymptotically negligible. By similar bounds the other two 

quadratic terms are also negligible and the proof of proposition 3.14 is completed. D 

3.4. Asymptotic distribution theory: proof of theorem 3.8. 

Before we study the asymptotic distribution of the bandwidths obtained by likelihood cross­

validation we first derive some properties of Hri, the value of h in the interval In which minimizes the 

integrated squared error ISEn(h), given by 

(3 .60) ISEn(h) = J (fnh(x) - f(x))2f 1(x)dx . 
E 

In the proof of theorem 2.11 we already noticed that 

ISEn(h) = 

1 ~ J KC-Xi)K(x-Xi)f1(x)dx + 
~1;0JE ~ h 

2 ~ J (x-Xi)d 
-nhi~EK~ x+ 

J f(x)dx . 
E 

Since with Las in (3.34), 

we have 

d 1 X 1 X 
dhh K(h) = - h2 L(ii) 

d 
dhISEn(h) = 

2 1: J LCX-Xi)dx + 
~i=IE h 
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Therefore 
d 

ali'ISEn(h) = 

1 n 
-- L E(Uij(h)IXj) + 

n J=l 

2 n 
- ::T _L E(Vij(h)IXj), 

n J=l 

with Uij(h), Yij(h) and Wijk(h) as in proposition 3.9. Just as in section 3.2.2. we use the Hoeffding 

projection technique and lemma 3.13 to obtain the decomposition 

d 
ahISEn(h) = 

( n-1 1 ) 2 n-1 - -+ ~ EUij(h)- -EYij(h)-2-EWijk(h) + 
n 2n n n 

n-1 ~ 
- 2 -:z -~ (w2(Xi,h) - Ew2(Xi,h)) + 

n t=l 

(3.61) 

1 n 
- 2 ::T _L (v2(Xi,h) - Ev2(Xi,h)) + 

n t=l 

- 2 Wn(h), 

where the functions w2, w3 and v2 are defined by (3.38) and 

By the same arguments we used to prove the bound on frn(h) in lemma 3.20 we have for any a>O 

(3 .62) sup n-a(nh312) Wn(h) = o(l), almost surely. 
heln 
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Next notice the similarity of (3.61) and the decomposition given by proposition 3.12, and also notice 

that the linear term corresponding to the function u2, which dominated the behavior in case of the 

uncorrected likelihood cross-validation method, is of lower order in (3.61). Proceeding in the same 

way as in section 3.3 we obtain the next result which states that in the three cases I, II and III the 

random bandwidths H;'; are asymptotically almost surely equivalent to the deterministic optimal 

bandwidths for the mean integrated suared error, which is no surprise since we are directly 

minimizing ISEn(h ). The proof of the theorem is omitted. 

Proposition 3.21. Suppose that Eis a bounded interval [a,b], -oo<a<b<oo, and that the density f 

satisfies condition F and is bounded away from zero on E. Let d1, ... , dm denote the singular points 

off in (a,b). Further assume that the kernel K satisfies condition Kand has a bounded first 

derivative . For some O>O let In denote the interval [h'n,h~]. with h0=n-l+cr and h'{-;=n-o. Let Hri denote 

the value of h which minimizes ISEn(h), given by (3 .60), over In. The next statements hold almost 

surely. 

lirn Co= a1(f,w) 112P1(K) 112. 
n-+oo 

lirn Co= an(f,w) 114Pn(K)114. 
n-+oo 

lirn Co= am(f,w) 115Pm(K)115• 
n-+oo 

Here the factors a1, an, o.m, P1, Pn and Pm are the factors in the optimal bandwidths for the mean 

integrated squared error given in (2.25). 

Another important property of H;'; which we need is the fact that since the derivative of ISEn is 

equal to zero in the point H;'; we have by (3.61) 

{ ( n-1 1 ) 2 n-1 
-+--,.- EUiJ·(h) + -EYii·(h) +2-EWiJ·k(h) + n 2n~· n n 

(3 .63) 
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In order to derive the asymptotic distribution of Hii - Hri we assume that the conditions of 

theorem 3.4 are satisfied. Define the two random functions D~1l(.) and Df\) by 

and 

Dh1l(h) := £-1og(LCVii(h)), h>O 

d2 
Dh2l(h) :=-:;;:-,;- log(LCVii(h)), h>O. 

dh 

By the mean value theorem we have 

for some random variable Hn between Hii and Hri. Thus we have the equality 

(3.64) (Hii - Hri) = - Dh l)(Hri) . 
ofl(Hn) 

First consider the denominator. In cases II and III it follows from theorem 3.4 and proposition 3.21 

that Hii and Hri are asymptotically almost surely equivalent to the deterministic optimal bandwidths 

given by (2.25). The same is clearly true for Hn. By examining the derivative of the decomposition 

given by proposition 3.9, using the same techniques which led to (3.50) in case II, and to (3.46) in 

case III, it can be shown that we have 

with ao, a1 and a2 as in theorem 3.8 and where we have almost surely 

sup IRn1(h)I = o(l) and sup IRns(h)I = o(l). 
hel0 hel0 

in case II 

in case III 

Since the optimal constants in the cases II and III are (ao/a2)114 and (ao/a1) 115, respectively, we 

have almost surely 

(3.65) (2) - 0 2 1 
{ 

4a I/4a 3/4n-l/4 
n Dn (Hn) ~ 5 2/5 3/5 -2/5 

- ao a 1 n 

in case II 

in case III 

Next we examine the nominator of (3.64). Recall that by proposition 3.12 and (3.74) we have 
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1 d 1 n 
-D~1l(h) = -:n:-log(LCVn(h)) - - L u2(Xi,h). 
n WI n 1=1 

Use proposition 3.12, (3.40) and (3.63) to show that 

(3.66) 

where 

and 

(n-l)(n-2) 1 ~ 
2 ~(w1(Xi,h) - Ew1(Xi,h)) + 

n n i=t 

◊n(h) + ~n(h)- Wn(h) + Yn(h) + Rn(h) + 

2n-1 1 n-1 
- -;:r EUij(h) - :r EYij(h) - 2 -:z EWijk(h). 

4n n n 

It turns out that T~2>(H;) is negligible compared to T~ 1>cH;). By the next two lemma's we derive the 

asymptotic normality of 

(3.67) T~1)(H;) = On(H;) + { n-l .!. _±(u1(Xi,h) - Eu1(Xi,h)) } lh_T,. . 
n n 1=1 -nn 

Lemma 3.22. 
(a) In case II we have 

n5/8 (TJl)(H;) -T~l)(Coptn-1/4)) _!! 0, 

where Copt denotes the asymptotically optimal constant for case II given by (2.25). 

(b) In case Ill we have 

n7/10 (TJI>(H;) - T~l)(Coptn-1/5)) _!! 0, 

where Copt denotes the asymptotically optimal constant for case lll given by (2.25). 

Lemma 3.23. 
(a) In case II we have for any c>O 

n518TJ1l(cn-114) ~ N(0,c-3(2cr2+c4011)), 

D 
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with 1 

cr2 := 4(b-a) f L 2(v)dv 
- 1 

1 

OTI := ~(1) J bt'(t/dt. 

(b) In case Ill we have for any c>O 

n7!10TJ 1)(cn-115) l N(O,c-3<2cr2+c5cr1r1)), 

with 1 b 
cri11 :=¼( f u2K(u)du)2( ff "(x)2f1(x)dx - (f'(b) - f'(a))2) . 

- 1 a 
D 

A sketch of the proof of lemma 3.22 and the proof of lemma 3.23 are postponed to section 3.5. 

Lemma 3.22 shows that to obtain asymptotic normality of (3.67) Hri can be replaced by the 

deterministic asymptotically optimal bandwidth (ao/a2)114n-114 in case II, and by (aofa1)115n-115 in 

case III. Provided the other terms in (3.66) are negligible by (3.64) we see from (3.64), (3 .65) and 

the two previous lemmas that in case II 

!_Drl1)(Hri) 
n3/8(H~ - Hri) = - n3/8 n ' 

.!.o <2)(fl ) n n n 

is asymptotically normally distributed with zero mean and variance 

(ao/a2r
314

(2cr
2

+ (ao/a2)cr1r) = .l.(2a -5/4a -3/4-2+ a -1/4a -7/4~ 2) 
16 

1/2 3/2 16 0 2 c, 0 2 vm , 
ao a2 

In case III n3110(H~ - Hri) is asymptotically normally distributed with zero mean and variance 

(aofa1t
315

(2cr
2

+ (ao/a1)crur) _ .l.(2 -7/5 -3/5--2 -2/5 -8/5 2) 
4/5 615 - 25 ao a1 o- + ao a1 crn . 

25ao a1 

To complete the proof of theorem 3.8 it remains to show that Tf>(Hri) is indeed negligible. 

In order to deal with the term ~n(Hri) - \Vn(Hri) we write 

~n(h) - \Vn(h) = 



with 

(3 .68) 
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Similarly to the proof of the statement concerning ~n(h) in lemma 3.20 it can be shown that we have 

for any a>O 

(3.69) sup n-a(n312h2) itn(h)I = o(l), almost surely. 
heln 

In case III we now have 

ln7110(~n(Hri) - Wn(Hri))I ~ 

n 7110n-312(Hrir2 n312(Hri)21tn(Hri)I + 

In 7110 ~!. (Hrir312 n(Hri)3121W n(Hri)I ~ nn 

(Crir2n-4/10 sup (n3/2h2) 1tn(h)I + 
heln 

2 (Crir312n-1 sup (nh312) IWn(h)I, 
heln 

which almost surely vanishes by statements (3.62) and (3.69) and theorem 3.21. Thus we have 

shown that the term ~n(Hri)-Wn(Hri) is indeed negligible in case III. Case II can be treated similarly. 

The terms 

{ (n-l)(n-2) 1 ~ } I 
2 '°'"'(w1(Xi,h) - Ew1(Xi,h)) h=H'! , n n 1= ! ll 

and 

can be dealt with using lemma 3.19 and the term ◊n(Hri) using lemma 3.20. 

The three expectations appearing in (3 .66) can be treated in the same way as in the proof of 

proposition 3.14. Lemmas 3.15 and 3.18 can then be used to show that they are also asymptotically 
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negligible. The fact that the tenn Yn(Wn) is negligible follows from lemma 3.16. Since this is obvious 

for Rn(H~) the proof of theorem 3.8 is completed. D 

3.5. Proofs. 

Before we give the remaining proofs we derive the next bound on the number of points X; in 

intervals of length h. 

Lemma 3.24. Let f be a bounded density then we have/or any point dfor some positive constant c 

d+h 
limsup suf. h-1 I J dFnl :=, c, almost surely. 

n-4<>0 he O d-h 
D 

Proof. By a discretization argument and the Bernstein inequality for the binomial distribution, i.e. 

inequality (A.3) in appendix A, we can show for any £>0 

(3 .70) 
1/2 d+h 

sup 
112 

n 
112 

I J d(Fn-F)I = o(l), almost surely. 
helnh (logn) +E d-h 

Since f is bounded we also have for some positive constant c' 

d+h 
I J dFI ~ c'h, 
d-h 

for all hE In. Together these bounds complete the proof by the triangle inequality. 

Proof of lemma 3.16. First we introduce some notation. Define fJli and fJ!i by 

1 n 
fJli(x) := =- _L K((x - Xj)/h) 

nn 1=1 
and 

1 n 
fJ!i(x) := nh L L((x - Xj)/h), 

J= l 

D 

so fJli(x) is the usual kernel estimator and fJ!i(x) is of the same form except for the fact that Lis not a 

probability density. Specifically it integrates to zero instead of to one (see (L.1) - (L.4) in section 

3.2.1). Next define the random variables S* and sk by 

(3 .71) 

and 

(3 .72) sk := suf. sup ¼ongh )1'2 1filfi(x) - EfJ!i(x)I. 
he nXeE n 

Notice that by theorem 2.16 we have with probability one for some constant c > O 



(3.73) 

and 

(3.74) 

lirnsup S~ ~ C n---
limsup sk ~ C, 

n->oo 

It follows that for any subset E' of E for all xe E' and all he/ n we have 

I fi'Si(x) - f(x) I ~ 

(3 .75) I fJ5i(x) - Efi'5i(x) I+ I EfJ5i(x) - f(x) I~ 

( 10~ n/
12s~ + sun lbK(x,h)I, 

n xeE' 

and similarly for fJfi, 

(3 .76) I fJfi(x) I~ 

c1;ft) 112 sk + sun lbL(x,h)I. 
xeE' 

Here the functions bK and bL are defined in definition 3.10. 
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Let d1, ... , dm denote the singular points off in the open interval (a,b) and let Dh as usual 

denote the set of points on the real line which are at least at a distance h of all the singular points off. 

Notice that Yn(h), defined by (3.36), can be written as 

with 

and 

y<l{(h) + y<~l(h), 

y(~(h) :=- ~jti {fJfi(Xi) -jfu-K(O)}{fJ5i(Xi) - f(Xi) -jfu-K(O)r 

{f!Si(Xi) - ~ K(O)rf(XiY2 
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For Y<Al(h) we have by (3 .75) and (3 .76) 

IYW(h)1:,;}{(
11N()112

s} + sup lbL(x,h)I + ¼K(O)} 
XE ErlDh 

I 1/2 1 -1{ }-2 
{

inf f(x) - (~) s~ - sup lbK(x,h)I - nh K(O)} inf f(x) , 
xE E n xE ErlDh xE E 

for all he/ n• By lemma 3.11 we have for some positive constant c' and for n large enough uniformly 

forhEln 

and 

sup lbK(x,h)I :,; c'h2 

XEErlDh 

sup lbL(x,h)I:,; c'h2, 
XEErlDh 

Since for n large enough uniformly for he/ n we have 

the term¼ K(O) is asymptotically negligible. A combination of these bounds then gives 

limsup sup h ( (1;! n) l/2 + h2Y3 
IY <fi)(h)I < C, almost surely. 

n- hEln 

Using (x + y)3 :,; 23(x3 + y3) for all x,y>O we obtain 

(3 .77) 
1 1 3/2 -1 

limsup sup ~ ( l n) + h
5

) 1y<fi)(h)I < 2-3c, almost surely. 
n- hEln 

Since in case ill the term y<~)(h) is equal to zero for all he In for n large enough we also have (3 .77) 

for Y n(h) which proves the case ill part of the lemma. Next assume that we are dealing with a case II 

situaution and consider the term YW(h). If Nn(h) denotes the number of points Xi in the set 

m 
(3.78) E\Dii = [a,a+h] u [b-h,b] u V [di-h,di+h], 

1=1 

then by lemma 3.24 we have for some positive constant c 

limsup suo Nnhn(h):,; c, almost surely. 
n➔00 he In 
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By lemma 3.11 we have for any point d where f has a kink, for some positive constant c' and for n 

large enough uniformly for he/ n 

and 

sup lbK(x,h)I :s; c'h, 
XE En[d-h,d+h) 

sup lbL(x,h)I :s; c'h. 
XE En[d-h,d+h) 

By a similar argument as above, taking into account the number of points Xi in the set (3 .78), we find 

for some positive constant c" 

~ 3/2 3 -1 
(3 .79) limsup sup ((,ili-) + h) IYW(h)I < c", almost surely. 

n-- hEln 

From (3 .77) and (3.79) the lemma follows for case II. 

Proof of lemma 3.17. We use the same notation as in the previous proof. Since 

1 (lo~ n)312 
h5 1 1 I:' + < --:'z + , 

u n nh 

for all he In for n large enough (3.77) implies 

~

1 )-1 
sup ::-;:T+ 1 IYW(h)I = o(l ), almost surely. 
hEln h 

Now consider y<~(h). We can write y<~(h) as the sum ofm+2 terms 

(3 .80) 

where dis one of the points a, b, d1, ..• , dm. We can write (3 .80) as 

(3 .81) - ~ J Gnh(x)dFn(x), 
En[d-h,d+h] 

where Fn is the empirical distribution function based on the sample X 1, ... , Xn and 

{frk(x) - iJi K(O)} {f~(x) - f(x) - ~ K(0) r 
Gnh(x) := --------------­

{f~(x) - iJi K(O)} f(x) 2 

D 
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{bL(x,h) + fli;(x) - Efn1I(x) - ¥ } {bK(x,h) + fJli(x) - EfJli(x) - ¥Y 
{t(x) + bK(x,h) + fn11(x) - EfJli(x) - KnhO)} f(x) 2 

Recall that in case I lemma 3.11 implies that for some constant c > 0 and for n large enough we have 

for all he In 

sup lbK(x,h)I $ c and sup lbL(x,h)I $ c. 
xE"'E xeE 

Further, defining S~ and skas in (3.71) and (3.72), notice that we have 

lf!Si(x) - Ef!Si(x)I $ (
1;! n) lf2. S ~ 

and 
1 lf2. 

lf!ili(x) - Ef!ili(x)I $ ( ~t n) sk. 

By (3.73) and (3.74) and the fact that logn/nh vanishes uniformly on In we see that with probability 

one for n large enough 

(log n) 1/2 
IGnh(x) - gnh(x)I $ c' nh , 

for all x e E and h e In, where we define gnh(x) by 

Then, with 

1 
Rn9(h) := h J [Gnh(x) - gnh(x)] dFn(x), 

Er'l[d-h,d+h] 

it follows that 

IRn9(h)I $ c•k(1l n) !(2.1 J dFn(x)I. 
En [ d-h,d+h J 

Hence by lemma 3.24 we have now shown 

sup IRn9(h)I = o(l), almost surely. 
heln 

Next we consider the term 



(3 .82) k J gnh(x) dFn(x). 
En[d-h,d+h] 

By lemma 3.11 we have for n large enough for some constant c">O 

I 
( ) ( o<

0
>(d)bb((x-d)/h)o<

0
l(d)2b!((x-d)/h)

2 
f( )-2) I I ( ) < "h 

gnh X - - (0) K X En[d-h,d+h] X - C , 
f(x) + 6 (d)bo((x-d)/h) 

for all xe E and all he In. Then, with 

Rn10(h) := 1 J (gnh(X) + o<O\d)3bh(x-d)/h)~((x-d)/h)2 f(xr2)dFn(X), 
h En[d-h,d+h] f(x) + o<0l(d)b!((x-d)/h) 

we have 
c" I IRn10(h)I ~ hh J dFn(x)I, 

En[d-h,d+h] 

and by lemma 3.24 

sup IRn10(h)I = o(l), almost surely. 
heln 

We continue with 

(3.83) - 1 o<0\d)3 J bb((x-d)/h)~((x-d)/h)2 f(xr2 dFn(X). 
h En[d-h,d+h] f(x) + o<0l(d)b!((x-d)/h) 
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Since the integrand in (3.83) is a bounded function , by a discretization argument and the Bernstein 

inequality, (A.2) in appendix A, with 

Rn11(h) := - l o<0\d)3 J bb((x-d)/h)b!((x-d)/h)2 f(xr2 d(Fn-F)(x) 
h En[d-h,d+h] f(x) + 15(0)(d)b!((x-d)/h) 

we have almost surely 

sup IRn11(h)I = o(l). 
heln 

Finally, assuming that dis not equal to a orb, notice that 

_ 15(0)(d)31 J bb((x-d)/h)b!((x-d)/h)2 f(xr2dF(x) = 
h En[d-h,d+h] f(x) + 15(0)(d)b!((x-d)/h) 

- o<0>cd)3 j bbct)~Ct)
2 

f(d+thr1dt 
- 1 f(d+th) + o<0>(d)b~(t) 
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converges uniformly for he In to 

(3.84) 

Using 

and 

1 

- o<Ol(d)3f(d+rl J 
0 

- o<O)(d)3f(d-rl J 
-1 

i>b-(t)b~(t)2 dt + 

f(d+) + o<0>(d)b~(t) 

i>b-(t)~(t)2 d t . 
f(d-) + o<0>(d)b~(t) 

i>b-(t) = tK(t) = t & b~(t) 

g'(x) = x2/(l+x) 

by partial integration (3 .84) equals 

1 

- f(d+) J t &g(f(d+r10<0l(d)b~(t))dt + 

1 

- f(d-) J t & g(f(d-r10<0>(d)b~(t))dt = 

1 

f(d+) J g(f(d+ r 10<0>(d)b~(t))dt + 

0 

f(d-) f g(f(d-r10<0>(d)b~(t))dt. 
-1 

If d equals a orb then one of the terms of (3 .84) vanishes. By adding up these expansions for all the 

m+2 terms in (3 .80) the lemma is proved. D 

Proof of lemma 3.19. First notice that the conditions we have imposed on the kernel function K 

imply that K and L are Lipschitz functions. Using this property it can be shown thm it suffices to 

prove the lemma for suprema over discrete subsets In of In with an at most algebraically fastly 

increasing number of elements, i.e. we assume #In :c:; na, for some integer a. If (Un(.)) is a sequence 

of positive functions on (0,oo) then by the Bernstein inequality, i.e. inequality (A.2) in appendix A, 

we have for any e > 0 

n 

P( I_I, (cp(Xi,h)- Ecp(Xj,h)) b nlog n an1<h) e) :5; 
1=1 

2 exp 2 , 
( 

- n (log n a 11 1
(h)e)

2 J 
2var(cp(X1,h)) + 3 m(h)log n a 11 1(h)e 
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where m(h) is a constant such that l<p(X1,h) - E<p(X1,h)I $ m(h) with probability one. For£< 1 this 

bound is dominated by 

2exp ( 
- t nan2ch)(log n)2e

2 
} 

Ecp2(X1,h) + m(h)aii. 1(h)log n 

Assume that the functions Cln can be chosen such that for some constant c>O and for n large enough 

(3.85) 

for all he In. If #In$ na, for some integer a, then 

1 n 
P( ::,-:-:-:-g sup Cln(h) I_L (<p(Xi,h) - E<p(Xi,h)) I> f:) $ 

ntOI!: n he7n 1=! 

n 

L P( I _L ( <p(Xi,h) - E<p(Xi,h)) I > nlog n Cln 1ch) f:) $ 
he/n 1=! 

2 #In exp(- ~£2(logn)2) = 

which is summable. Hence by the Borel-Cantelli theorem 

l;g n suf. Cln(h) I_± (<p(Xi,h)- E<p(Xi,h))I = o(l), almost surely. 
n he n 1=! 

First we take <p equal to u1. Recall that the set Eis equal to the bounded interval [a,b] . We 

shall choose a suitable sequence of functions (an(.)) and then check (3.85). Write 

00 

b- J (bL(x,h)f(xr1IE(x))2f(x)dx. 
h -oo 

1 b 
;:-rJ bL(x,h)2f(x)dx. 
ha 

Since the order of magnitude of bL is different in the three cases I, II and III we also get three 

different bounds for this expectation. By lemma 3.11 we have for some constant c' > 0 
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(3.86) 
in case I 

in case II , 
in case III 

for n large enough uniformly for h e In . Lemma 3.11 also provides us with suitable choices for 

m(h). We can use 

(3.87) 
{

c"k in case I 
m(h) := s~p lu1(x,h) - Eu1(X1,h)I $; c" in case II , 

c"h in case III 

for n large enough uniformly for h e In. Here c" is a positive constant. The inequalities (3 .86) and 

(3.87) imply that the condition (3.85), i.e. for n large enough 

nUii.2 
2 1 ~ C > 0, for all he In, 

Eu1(X 1,h) + m(h)ati (h)log(n) 

is satisfied for the choices 

in case I 
in case II 
in case III 

Notice that we have taken <Xn(h) equal to n 112 times the inverse of the root of the bounds in (3 .86). 

We have now shown that (3.58) is valid for the function u1. 

Next consider the function u2. For this function we have for n large enough 

EuiX1,h) = 

oo b 

~ f ( f L(u-x)/h)du)2f(x)dx $; 
h -oo a 

00 

~ f ( f L(u-x)/h)du)2f(x)dx $; 
h -oo [x-h,x+h)n[a,b] 

l a+h b 

;::r (f + f) ( f L(u-x)/h)du )2f(x)dx , 
h a b-h [x-h,x+h)n[a,b] 

1 

since f L(u)du is equal to zero. It follows that for some constant c' > 0 we have 
-1 

Eu~(X1,h) $; c'~ h h2 = c' } , 



uniformly for h E In and n large enough. We also have for some constant c" > 0 

m(h) := sup lu2(x,h) - Eu2(X1,h)I:,; c" Ah= c" -h
1
. 

X h 
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It is readily verified that with the choice <Xn(h) = n112h112 condition (3.85) is satisfied which proves 

statement (3.58) for the function u2. For the other functions this statement can be proved in the same 

manner. D 

Proof of lemma 3.20. Using the fact that the functions K and L are Lipschitz functions it can be 

shown that it suffices to prove (3.59) for finite subsets In of In instead of for the intervals In 

themselves. We choose In such that the number of its points increases sufficiently rapidly but still at 

most algebraically fast in n. The Lipschitz property can be used to show that sufficiently small 

changes in h result in negligible changes in finCh), ◊ n(h) and ~n(h). 

We start with frn(h). Write 

~ 

L P(sup nh312n-o. ltJn(h)I > E):,; 
n=l heln 

~ 

L L P(nh312n•o.1() n(h)I > E) :,; 
n=l he/n 

~ 

L #In sup P(nh312n-o. ltJn(h)I > E):,; 
n=I heln 

~ 

L #In sup (En'1h'312no.rp E(tJn(h))P = 
n=l heln 

~ 

e·P
0
; #In n•ap~~fn (nh312)P E(frn(h))P, 

for every even positive integer p. Here #In denotes the number of elements of In. In order to show 

that this sum is finite, which would enable us to apply the Borel-Cantelli theorem, we derive a bound 

for the p-th moment of frn(h). Recall 

tJn(h) = n-2~ (}ij(h), 
l"J 

where bij(h) is defined above. Since 

any product of bij'S, such as Oiu1(h) ... d ipip(h), with at least one index i or j appearing only once in 

ii,ji,·· ·•¼>•jp, has zero expectation. Therefore 
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where Sm is the sum of all products f\u1(h) ... d ip.ip(h), with ii,ji,···•~•jp containing exactly m 

different indices, every index appearing at least twice. Since X1, ... ,Xn are identically distributed we 

can rewrite ESm as 

with Sm equal to the sum of all possible terms of Sm with indices in {1,2, ... ,m}. Since m~p the 

number of such terms is bounded by a constant depending only on p, cp, say. From corollary B.3 

( appendix B) it follows that the expectation of the absolute value of each of the terms appearing in Sm 

is bounded by a constant times hrn/2-2P. Therefore 

for n large enough. Here Cp denotes a constant independent of hand n. We have used that for large n 

and he In we have nh112>nh~n'➔00 • 
Combining these bounds and assuming #/ n ~ na for some positive integer a, we have for every 

positive integer p, even and large enough, and for every E>O 

-
0
;. P(~~t nh312n-a IOn(h)I > E) ~ 

-
2cpE-PL n~-ap sup (nh312)P(nh312fP = 

n=l heln 

-2c"pE-PL na-ap < oo, 
n=l 

which proves the statement of this lemma for bn(h) by the Borel-Cantelli lemma. 



97 

The argument for ◊n(h) is similar. Since by corollary B.3 the bound on the expectation of the 

absolute values of the terms appearing in Sm is of order hm/2-3P, here it leads to 

for n large enough. 

For ~n(h) the argument is similar too. In this case by corollary B.3 the bound on the 

expectation of the absolute values of the terms appearing in Sm is of order h2m/3-3P. Hence the bound 

for the p-th moment becomes 

for n large enough. Just as before cp and cp are constants depending only on p. To derive these 

inequalities we have used 2m5;3p and that for large n and he In we have nh213>nhamn'➔00• D 

Proof of lemma 3.22. Since the proof of this lemma is tedious and very similar to the proofs of 

lemma 3.2 and lemma 3.3 in Hall & Marron (1987a) we only mention the basic steps. For case ill it 

suffices to show that for some e1>0 we have 

(3 .88) 

and that for all E2>O we have 

(3.89) 

For case II we have to prove two similar properties, i.e. (3 .88) with n-115 replaced by 

n-114, and (3 .89) with n-115 replaced by n-114 and n7110 replaced by n518. D 

Proof of lemma 3.23. For any sequence of bandwidths (hn) we define T n(hn) by 

Tn(hn) := (nhn)2T~1)(h) = (nhn)2( On(hn) + n-l !. .± (u1(Xi,hn) - Eu1(Xi,hn))). 
n n •=I 

Then the expectation of Tn(hn) is equal to zero and by the definition of On(h) we see that Tn(hn) 

equals 
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n 

~hJEUij(hn)- (n-l)hJ _L Eu1(Xi,hn) + L. hiiUij(hn) + 
~ ~1 ~ 

n 

L (-(n-l)hii,(E(Uij(hn)IXi) + E(Uji(hn)IXi)) + (n-l)hJ u1(Xi,hn)). 
1=] 

Next we write 

where G is equal to -Land w is the function given by 

w(x,y) := f(xr 1IE(X) + f(yr1IE(y). 

Thus T n(hn) equals 

n 

LhJEUij(hn) - (n-l)hJ L Eu1(Xi,hn) + 
ia<j i=I 

n 

~ G((Xj-Xj)/hn)w(Xi,Xj) + L gn(Xi), 
l"J 1=] 

with gn(Xi) equal to -(n-l)hii(E(Uij(hn)IXi) + E(Uji(hn)IXi)) + (n-l)h; u1(Xi,hn)- Asymptotic 

normality of this type of statistic is treated in appendix C. In order to apply theorem C. l notice that 

the function g;(x) which appears in the conditions of this theorem is here given by 

g;(x) = (n-l)hii u1(x,h) = - (n-l)hn bL(x,h)f1(x)IE(x). 

Condition (i) of theorem C.1 then requires 

which is clearly satisfied here.To check condition (ii) we consider 
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(3.90) 

It follows from theorem C. l that if this quantity converges to a constant a.2 then 

with 

cr2 := J G2(v)dv J w2cx)f2cx)dx. 

In our case cr2 equals 
1 1 

J L2(v)dv J (f(xt1IE(x) + f(xt1IE(x))2f2(x)dx = 4(b-a) J L 2(v)dv. 
-1 - oo -1 

So if (3.90) indeed converges to a.2 then we have shown 

(3.91) 

We proceed with computing a.2 in the two cases considered in this lemma. By lemma 3.11 in case II 

we have the following expansion for h0=cn-114 

1 

nhnhii~(l) d br(t}2dt = 

1 

c4~<1> d br(t)2dt 

and in case ill for h0 =cn-115 we have 

1 1 

nh0 (¼-h~ ( J u2L(u)du)
2 J f "(x)2f1(x)dx - (}hii J u2L(u)du J f "(x)dx)2) = 

-1 E -1 E 

1 b 
!.n-1hii ( J u2L(u)du)2( J f "(x)2f1(x)dx - (f'(b) - f'(a))2) = 
4 -1 a 

1 b 
c5 !.( J u2L(u)du)2( J f "(x)2f1(x)dx - (f'(b) - f'(a))2)_ 4 -1 a 
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These two expansions can be derived by the same method we have used in the proof of theorem 2.8. 

The proof of the lemma is completed by observing that the norming factor nhii'2 in (3.91) is equal to 

c312n518 if hn is equal to cn-114, and that it is equal to c312n7/10 if hn is equal to cn-115. D 

Proof of relations (3.44), (3.45), (3.54) and (3.55). To prove the relations it suffices to 

consider any particular density f. Define f by 

f(x) = G+x 
if x<O 
if O~x~\8-1 
if x~\8-1 

Computing the bias of a kernel estimator off at the point th for O<t<l and O<h< 1-l we get 
~ 

K 1 J (th-u) b (th,h) = h -~ K h- f(u)du - f(th) = 

J K(t-v)f(vh)dv - f(th) = 

d K(t-v)(l +vh)dv - (1 +th) = 

~(t) + hbf(t). 

Similarly for O<t<l and O<h< 1-l the bias function for Lis equal to 

bL(th,h) = b&(t) + hbr(t) . 

Next recall that by the definition of bK(x,h) and bL(x,h), and by (3.33) we have 

d K 1 L 
dhb (x,h) = - hb (x,h). 

In order to prove relations (3.54) and (3.55) consider the equation 

dh hd lh 
dh d bK(x ,h)dx = d dhbK(x,h)dx + bK(h,h) = - h d bL(x,h)dx , 

which follows from Leibnitz's theorem for differentiation of integrals, i.e. formula 3 .3.7 in 

Abramowitz & Stegun (1965). By the substitution t=x/h we get 

d I I 

diihd (bf(t) + hbf(t))dt = -J (b~(t) + hb'r(t))dt, 

which proves formulas (3.54) and (3.55) by comparing the constant term and the coefficient of h in 

the left and right hand side of this equality. 

Relations (3 .44) and (3.44) can be proved similarly by considering the equation 

dh hd 2h 
dh d bK(x ,h)2dx = d dh bK(x,h)2dx + bK(h,h)2 = - h d bK(x,h)bL(x ,h)dx, 

and comparing the constant terms and the coefficients of h2. D 
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4. RECOVERING A DISTRIBUTION FUNCTION FROM A CONVOLUTION. 

4.1. Introduction and results. 

Suppose that we have a sample X 1, ... ,X0 of observations with a distribution function G 

which is the convolution of two other distribution functions Kand F, i.e. for all x we have 

G(x) = f K(x-y)dF(y). 

Assuming that the function K is known we consider the problem of estimating F at a fixed point Xo, in 

cases where the distribution function F is uniquely determined by G and K (if, for example, K is a 

distribution function with a characteristic function with compact support, this need not be true). Our 

main theorem gives lower bounds for a local minimax risk for estimation of F(xo) in two cases. It 

turns out that the rate of convergence to zero of the minimax risk depends on the smoothess properties 

of K. Theorem 4.1 states that if K has a density k with jumps then the rate of the lower bound is 

equal to n-113, but, on the other hand, if the density k is smooth enough, then the lower bound has the 

larger rate n- 114! Supplementary to this result we show that two other minimax risks do not converge 

to zero. 

We give three examples. In the first example we derive the nonparametric maximum likelihood 

estimator, NPMLE, of Fin one particular case, where K is the uniform distribution function and the 

support of Fis contained in the interval [0,1]. We show that this estimator converges with a rate 

n- 113• This suggests that the rate of the minimax lower bound in this case is sharp. However, a 

rigorous proof would require an additional uniformity argument. In the second example we propose 

an algorithm for computing the NPMLE of F for a different K. In the third example we use the 

convolution structure in the Wicksell problem, example 1.2, to derive the NPMLE of the distribution 

function of the sphere radii. 

Let x0 be a fixed point in the support of F and let (y0 ) be a vanishing sequence of positive 

numbers to be specified later. To define the local minimax risk for ne IN and 0e (0,1), we introduce 

the functions h0 (.) and F0 (.;0), given by 

and 
X 

F0 (x;0) := F(x) + 0 J h0 (u)du, 

assuming that f(xo),the derivative of Fat xo, exists and is positive. Note that for n sufficiently large 

F0 (.;0) is a distribution function . 
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We define the minimax risk MR(n;0,6) by 

MR(n;0,6) := inf max Ee IUn - Fn(xo;0)1, 
Un 8e(0,6] 

where the infimum is taken over the set of all possible estimators Un of F(xo) based on the 

observations X1, .. ,,Xn from the distribution K•F. Thus MR(n;0,6) is the best possible maximal 

expected error for estimating the two values F(xo)=Fn(xo;O) and Fn(xo;o). 

We restrict ourselves to absolutely continuous distribution functions K with densities k. In theorem 

4.1 we consider densities k which satisfy one of the next two conditions. Notice that by condition (A) 

we can use left and right one term Taylor expansions of kin the points a1, ... ,am. 

Conditions on k. 

(A) The density k is differentiable except in m points a1, ... ,am where k has a jump. In these points 

the left and right limits of k exist and are finite, as well as the left and right derivatives of k. 

We further assume that, for i = 1, ... ,m -1, the restriction of k' to the interval (ai,ai+t) can be 

extended to a continuous function on [ai,ai+tl, such that the values at the endpoints coincide 

with the corresponding one-sided derivatives. We use similar assumptions on the intervals 

(-00,ai] and [am,00) for the right and left endpoint, respectively. 

(B) The density k is continuously differentiable on R. 

Let • denote convolution, i.e. K•F is the convolution of the distribution functions K and F, and k•F 

denotes its density. 

Theorem 4.1. Assume that both Kand F have a bounded support. 

(a) If k satisfies condition (A) and Yn=n-113 then 

sup liminfn113 MR(n;O,o) ~ 3413 
f(xo) 1/3 (1: (k(ai+) - k(ai-))\

113
_ 

lie(0,1),c>O n-- lb i=l (k.F)(xo+ai) 

(b) If k satisfies condition (B) and yn=n-114 then 

00

k'( )2 -1/4 
sup liminfn114 MR(n;O,o) ~ 2314s-514 f(x0) 112 ( f x-xo dx) . D 

lie(0,1),c>O n-- --00 (k.F)(x) 

The theorem suggests that the lower bounds for the minimax risk in the case of a nice smooth density 

k have a slower rate of convergence to zero than in the case of certain densities k with jump 

discontinuities. This is further illustrated in the next remark. 
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Remark 4.2. Suppose that F has a bounded density. If K(x) = xalco,oo) for all xSe for some E>O, if 

K satisfies the conditions of theorem l.l(b) on the interval [r,oo) and if 'Yn=n- 11<2a+l), then we have 

for O~a<f 

sup liminfn11<2a+l) MR(n;O,o) ~ f(x0Pa-l)t(2a+l)m(a) > 0, 
lie (0. l),c>O n-

where m(a) depends on a only. We need the assumption that F has a bounded density to ensure that 

k•F is continuous. This bound can be proved by the same arguments we have used for the proof of 

part (a) of theorem 4.1. An interesting feature of this bound is that for a=l/2 the rate becomes n 112. 

However, it is still an open question whether this rate can actually be achieved by some particular 

estimator. Clearly for O~a<l/2 the rate is not sharp, since in that case it is smaller than n 112• 

We assumed above that the derivative of the distribution function Fat xo exists and is positive. 

The next theorem deals with a situation where this condition is not fulfilled. It states that the minimax 

risk for estimating the value of two degenerate distribution functions at a fixed point xo does not 

converge to zero. 

Theorem 4.3. Let ,for 0 ~ 0, the distribution function F(.;0) be defined by F(x;0) := l[xo+8,oo)(x). 

Then we have 

liminf inf max Ee IUn - F(xo;0)1 ~ ¼, 
0 - Un 8e (0.80 ) 

provided 0n decreases to zero sufficiently fast. D 

Although our main interest in this chapter is estimation of the distribution function F we 

mention one result on estimation of the density f of F, assuming that F is absolutely continuous. 

Theorem 4.4. For any density k we have 

inf sup Er J lfn(x) - f(x)ldx ~ 1, 
fn fe '.T = 

where '.T denotes the class of all densities on the real line and the infimum is taken over the set of 

estimators fn of the density f based on samples of size n from the distribution K•F. D 

In other words, the theorem states that for any E>O and any estimator fn there exists a density f such 

that the expected L1-distance between fn and f is larger than 1-E. The proof of this result is based on a 

theorem in Devroye (1987) for estimation of a density within a convolution family. It should be noted 

that this proof requires that the supports of the densities f e '.Tare not uniformly bounded. It is not 

clear if the minimax risk converges to zero if we consider densities with uniformly bounded supports. 
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We close this section with some examples of situations where the nonparametric maximum 

likelihood estimator of F can actually be computed. 

Example 4.5. For the special case that K is the uniform distribution function, the lower bound 

given by part (a) of theorem 1.1 becomes 

34/3 1 1 ) -1/3 

l'6 f(xo)
113 

( (F(xo) - F(xo-1)) 1 (F(xo+l) - F(xo)) ' 

and if we assume that Fis concentrated on the interval [0,1] this bound reduces to 

34/3 1/3 1 1 )-1/3 
16 f(xo) ( J!'(x(J-t (1 - F(xo)) = 

34/3 1 -1/3 

16 f(xo)
113 

( F(xo)(l - F(xo))) · 

Now, let Xi,···•¾ be a sample, generated by the density g, defined by 

(4.1) g(x) = J k(x - y)dF(y), x E IR, 

where k is the uniform density on [0,1] . We want to find the nonparametric maximum likelihood 

estimator (NPMLE) of F. Defining 6i = 1 ( Xi ~ 1}, the log likelihood, based on X1 ,···•¾• can be 

written 

n n 

.L log J k(Xi - y)dF(y) = .L log{F(Xi)-F(Xi -1)) = 
1=1 -00 1=! 

n 
= .L { Oi log F(Xi) + (1 - 6i)log ( 1 - F(Xi - 1)}) . 

•=l 

Now let Yi, 1 ~ i ~ n, be defined by 

Then Y1, ... ,Yn are distributed as a sample from a uniform distribution on [0,1] . Let Z1 ~- --~ Zn 

denote the order statistics of the set Y 1, ... ,Y n• and let ~J. = 1, if the Xk , corresponding to z., is~ 1, 
A J 

and let ~j = 0, otherwise. Then the NPMLE F n<Zi) of F at Zi is given by the left-continuous 

derivative at the point i of the convex minorant of the function 8n: [0,n] ➔ IR, defined by 

Hn(i) :=.; ~j 
J - 1 
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at points i, and by linear interpolation at other points of [0,n] (see Barlow et al. (1972)). Moreover, 

we have the following result. 

Theorem 4.5. Let t0 be such that O < F(to) < 1, and let F be differentiable at t0, with strictly positive 
I\ 

derivative f(t0). Furthermore, letFn be the NPMLE ofF, based on the order statistics X1, ... ,Xn of 

the sample, generated by the (convolution) density g, defined by (4.1). Then we have, as n ➔ 00, 

(4.4) 
11 I V 

n 113(F n<lo) - F(t0))!{2 F(to)(l - F(t0))f(t0)) l/3 ➔ 2.Z, 

where ~ denotes convergence in distribution, and Z is the last time that two-sided Brownian motion 

minus the parabola y(t) = t2 reaches its maximum. D 

The proof of theorem 4.5 proceeds along the lines of the proof of theorem 1.1 in Groene boom (1987) 

and is omitted here. The next three pictures show the NPMLE for the three distribution functions, 

F(x) = x, F(x) = x2, and F(x) = .../x, 0 ~ x ~ 1, and simulated samples of size 1000, generated using 

the uniform random number generator from the IMSL library. 

~------------

0 •------------1 o.o 1.0 0. 0 1.0 

0 •-----------~ 
0 . 0 1. 0 

Figure 4.1 . The NPMLE computed for samples of size 1000. 
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The next two examples are of the same type as the previous one. However, the algorithm for 

computing the NPMLE is much more complicated. For more details see Van Es & Groeneboom 

(1988). 

Example 4.6. Let k be the probability density defined by 

k(x) :={2(1 - x), x E (0,1), 
0, elsewhere, 

and let Xi,···,~ be an ordered sample, generated by the density g, defined by 

g(x) := f k(x - y)dF(y), x E IR.. 

Notice that the density k satisfies condition (A), so in this case part (a) of theorem 4.1 holds and we 

have a minimax lower bound of order n-113. The specific choice for the function 2(1-x) is not 

essential. The same method can be used for other decreasing functions as well. 

The NPMLE is a discrete distribution function, with masses ai at the points Xi, where the ai 

maximize the function: 

n i-1 

(4.2) i~ log(j; k(Xi - Xj)<Xj), 

n 
under the restrictions I ai = 1, ai;::: 0, 1 ~ i ~ n-1 and <Xn = 0. We can write (4.2) in the form 

i=l 

n i-1 

.L log(~ WiJ-aJ·), 
1=2 J=l 

where wij = k(Xi - X/ Letting a= (a1 , ... ,a0 ), fork= 1, ... , n-1 we define the derivative with 

respect to ak by 

(4.3) 

A maximum can be found using the gradient projection algorithm (Luenberger (1973)), an algorithm 

for maximizing a concave function subject to a number of linear constraints. 
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Example 4.7 (The Wicksell problem). Let X1 S ... s ~ be the order statistics of a sample of 

squared radii of sections of spheres. We assume that the support of the distribution of the radii of the 

spheres is a finite interval, which we take to be [0,1]. For a review of this estimation problem and 

related problems we refer to Stoyan, Kendall and Mecke (1987). As observed by Hall and Smith 

(1988), the distribution function of the squared section radii can be written as a convolution of the 

unknown distribution function of the squared sphere radii with a known function . Therefore a 

technique similar to the one in the previous example can be used. 

The log likelihood L(X1 , ... ,~) of the sample can be written in the following form: 

(4.4) 

where F is the distribution function of the squared sphere radii, and 'Y is given by 

1 1 
-y=f dxf -~ dF(y). 

0 (x,l] -vy - X 

The nonparametric maximum likelihood estimator of F is a discrete distribution function, with mass at 
the points X2, ... ,~. So we can write: 

where °'2•···•~ are the masses of F at the points X2, ... ,Xn, and where 'Y can be written 

defining X0 = 0 and a1=0. Note that this example does not exactly fit into our previous set-up for 

two reasons: we look at the convolution with a function which is not a probability density and we 

have the extra parameter y. It is possible to reformulate the problem in such a way that we would deal 

with the convolution with a probability density (looking at the logarithms of the observations), but we 

would not get rid of the extra parameter in this way. There does not seem to be a real advantage in this 

reformulation, so we keep to the above statement of the maximization problem. 

Since L(X1, ... ,Xn) is not a concave function of (a2, ... ,an), using the gradient pojection 

algorithm as in the previous example we might find local maxima. However, for fixed 'Y the log 

likelihood L(X1, ... ,Xn) is concave. So by the gradient projection algorithm we can maximize 

L(X1, .. . ,Xn) subject to ai :2: 0, for i = 2, .. . ,n, and the two linear constraints 
n n 
L a · = 1 and 2L a ·{X;° = -y. 
i=2 I i=2 I I 
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Next we can vary y to find values of a2, ... , <Xn and a corresponding y which maximize the log 

likelihood L(X 1 , ... ,Xn)- Notice that this procedure also yields a maximum likelihood estimate of y. 

Theory for this NPMLE seems to be absent, but should be related to the theory for the estimator of 

example 4.5. In fact, because of the peakedness of the weight function 1 / ✓ x - Xi in (4.4), we 

expect a faster rate of convergence of the NPMLE. 

To illustrate this procedure we have simulated three samples of circle radii of size 100, for F 

equal to the three distribution functions in example 4.5. Since the computation for a fixed y is already 

timeconsuming we have only computed the maximizing F for the three true values of y, and for three 

estimated values ofy. We have used the estimator 

n 1 
1n := 1tn I _L _r-v- , 

t=I vXi 

which is based on an estimator ofµ= y/2 in example 1.2 (see Hall & Smith (1988)). The log 

likelihoods of the estimates are given in a table following the next figures. 

0. 0 1. 0 

0. 0 1. 0 

Figure 4.2. The maximizing F for the true values of y for three samples of size 100. 
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~-,-------------,, 

0.0 1.0 0.0 

Figure 4.3. The maximizing F for the estimated values of y for the same samples as in figure 4.3. 

The next table gives the values of the true and estimated values of y and the log likelihoods of the 

corresponding estimates of F. 

F 'Y '9n log lik. with true y log lik. with est. y 

X 1 1.07 29.71 29.57 
x2 413 1.41 21.95 20.57 

"1/X. 213 0.75 36.29 37.32 

Roughly speaking the estimates in figure 4.2 for samples of size 100 have about the same error as the 

estimates in figure 4.1 , which were based on samples of size 1000. This suggests that the NPMLE in 

the Wicksell problem indeed has a faster rate than n- 113, and perhaps even a rate close to n-112. 

Because of limited computing time we have not been able to compute the true NPMLE, i.e. the 

estimate with a value of y which maximizes L(X1, ... ,X0 ). However we expect that for this value of y 

the estimates would have a better fit than the estimates for the estimated yin figure 4.3. 
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4.2. Proofs. 

Proof of theorem 4.1. We use the same arguments as in the alternative proof of theorem 1.2 by 

Assouad's lemma in Groeneboom (1987). Notice that for n large enough we have 

xo 
IFn(xo;O) - Fn(xo;O)I = f 0f(xo)du = 0cynf(xo) . 

xo-C'Yn 

A combination of Assouad's lemma (Le Cam (1986), p.524) and Le Cam's inequality (Le Cam 

(1973)) now gives 

max Ee IUn - Fn(xo;O)I ~ 
9e{0,6} 

where Pe is the measure corresponding to (K.Fn)(.;0). 

We proceed with examining the term nH2cP 0,P&). By the definition of the Hellinger distance we have 

The convolution of k and Fn(.;o) can be written as 

J k(x-y)dF(y) + J k(x-y)of(xo)hn(y)dy = 

(k•F)(x) + of(xo) f k(x-y)hn(y)dy = 

(k•F)(x) + of(xo)D~(x-xo,C'Yn), 

where m denotes the second difference of the function K, i.e. 

m(x,z) := K(x-z) - 2K(x) + K(x+z). 

Since both Kand F have bounded support the integrals are actually over a bounded area. By a Taylor 

expansion argument we then get for Yn➔O 



To deal with the second difference min case (a) we need the following lemma. 

Lemma 4.8. For any point ae!R we have 

a+z 
J Df(x,z)2dx = f z3(k(a+) - k(a-))2 + o(z\ z.l.o. 

a-z 

Proof. By Taylor expansion and a substitution t=(x-a)/z we get 

a+z 
J Df(x,z)2dx = 

a-z 

a+z a 
J (K(x-z) - 2K(x) + K(x+z))2dx + J (K(x-z) - 2K(x) + K(x+z))2dx = 
a H 

a+z 
J (K(x-z) - K(a) - 2(K(x) - K(a)) + K(x+z) - K(a))2dx + 
a 

a 

J (K(x-z) - K(a) - 2(K(x) - K(a)) + K(x+z) - K(a))2dx = 
a-z 

a+z 
J ((x-z-a)k(a-) - 2(x-a)k(a+) + (x+z-a)k(a+ ))2dx + 
a 

a 

J ((x-z-a)k(a-) • 2(x-a)k(a•) + (x+z-a)k(a+ ))2dx + o(z3) = 
a-z 

I 

2z\k(a+) • k(a-))2J (1-t}2dt + o(z3) = 

f z3(k(a+) - k(a-))2+ o(z3) , 

which proves the lemma. 
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D 

D 

Notice that the leading term is only nonzero if a is a jumppoint of k. By a Taylor expansion argument 

we see that for z➔O we have mcx,z) - z2k'(x), uniformly for x at distance z of the jump points of k. 

Since under our conditions the density k is bounded the convolution k*F is continuous. This gives 

for case (a) 
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'n➔oo. 

We can now finish the proof of part (a) by observing that talcing Yn equal to n·113 we get 

sup liminf n 113 MR(n;O,6) ~ 
6e (0, l),c>O n---+oo 

I { I 2 3~ (k(ai+) - k(aj-))2} 
sup 4 cf(xo) 1 - 12 f(xo) c -~ (k•F)(x +a·) = 
oO ~! 0 1 

For the last equality observe that the supremum is attained for c equal to 

For part (b) of the theorem the argument is similar, except that now we have 

- -
I Df(x-xo,C'fn/ d 4 4 J k'(x-xo/ d 

·- (k.F)(x) x - C Yn...., (k.F)(x) x ,n➔oo. 

The term fn causes then· 114 lower bound. D 

Proof of theorem 4.3. Just as in the previous proof we use Assouad's lemma and Le Cam's 

inequality. Notice that for all 0>O we have IF(xo;0) - F(x0;O)1=1 , so in this case we get 

lnllnn I 2 max Ee I Un - F(xo;0)1 ~ 2 llr 0Ar 9nll ~ 4 ( 1 - nH (P 0,P en)}. 
Se {0,80 } 

Since the densities of the measures P0 and Pen are given by k(x-x0) and k(x-x0-0n) respectively, we 

get 

which converges to zero if 0n decreases to zero fast enough and the proof is completed. D 

Proof of theorem 4.4. Consider the family of densities q defined by 

q := k•J" := {g : g(x) = J k(x-y)f(y)dy, fE J"} . 
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Such a family of densities is called a convolution family. Notice that, contrary to Devroye (1987, 

section 5.8), who considers convolutions of k with an arbitrary measure, we only allow convolutions 

of k with another density f. A minor adaptation of the proof of theorem 5.6 in Devroye (1987) gives 

the following minimax bound for estimating members of (j, 

inf sup Eg J lgn(x) - g(x)ldx ~ 1. 
gn ge (j -

Next notice that if g=k•f and gn=k•fn then by gn-g=k•(fn-f) and Young's inequality we have 

J lgn(x) - g(x)ldx :5 J lk(x)ldx J lfn(x) - f(x)ldx = J lfn(x) - f(x)ldx, 

i.e. convolution with a probabilty density is a contraction operator for the L1 norm. This gives 

inf sup Er J lfn(x) - f(x)ldx ~ 
fn fej" -~ 

inf sup Er J l(k•fn)(x) - (k•f)(x)ldx ~ 
fn fe:F -

inf sup Er J lgn(x) - g(x)ldx ~ 1, 
gn ge (j 

which shows that the minimax bound also holds for estimation off. D 
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APPENDIX A. EXPONENTIAL BOUNDS. 

In our proofs frequently we need an almost sure order bound for the supremum of some 

stochastic process. A standard way to derive such bounds is to consider finite subsets of the set 

where the supremum is taken over, and to derive a bound for the supremum over these finite subsets 

first. This is then usually followed by an argument showing that the difference between the 

supremum over the finite sets and the supremum over the original sets is asymptotically negligible. A 

useful tool to derive a bound for the supremum over a finite set is the next exponential inequality 

attributed to S.N.Bernstein. See Serfling (1980) who for the proof refers to Uspenski (1937). We 

omit the proof here. 

Lemma A.I. Let Y 1, ... ,Y n be independent random variables satisfying P(IYi - EYil $ m) = l,for 

each i, where m<oo. Then for t>O we have 
n n 

(A.1) P( l;~/i- i;EYi I~ nt) $ 2exp( -n2t2/(2Li=Ivar(Yi) + tmnt)), 

for n = 1,2, .... 

If we impose the extra condition that the random variables are identically distributed then the bound 

becomes 
n n 

(A.2) P( li;Yi- i;EYi I~ nt) $ 2exp( - nt2/(2var(Y1) +fmt)), 

which gives the next bound in the even more special case that Yi is binomial (1,p), and Li=iY i is 

consequently binomial (n,p ), distributed, 
n n 

(A.3) P( li;Yi- i;EYi I ~.nt) $ 2exp( -½nt2/(p + t)). 

Recall that the kernel estimator is a sum of i.i.d. random variables. Lemma A.1 then gives us the next 

exponential bound, which is a minor adaptation of lemma 5 in chapter 6 of Devroye and Gyorfi 

(1985). We prove this bound for bounded measurable kernel functions K, so we don't require that K 

is a density function. 

Theorem A.2. Let K be a bounded measurable function then for arbitrary t>O and h>O we have for 

any point x on the real line 

(A.4) P( lfnh(x) - Efnh(x) I~ t) $ 2exp( - nht2/(2K*(Eh-11K((x-X1)/h)I + t)) ) . 

Here K is bounded by K*, i.e. IK(x)l$K*,for all x . 

Proof. First we estimate the variance of h-1K((x-Xi)/h). We have 



h-1K*Eh-11K((x-X1)/h)I. 

A direct application of lemma A.1 gives, 

P( lfnh(x) - Efnh(x) I ~ t ) = 

n 1 n 1 
P( li;h K((x-Xi)/h) - i;%K((x-Xi)/h)I ~ nt):,; 

2exp( - nt2/(2h-1K*Eh-11K((x-X1)/h)I + ?1-1K*t)) :,; 

2exp( - nht2/(2K*(Eh-11K((x-X1)/h)I + t))), 

which proves the theorem. 

115 

D 



116 

APPENDIX B. MOMENT BOUNDS. 

Investigating the performance of kernel estimators and cross-validation techniques the 

following type of statistic is often encountered. If X1, ... ,Xn is an i.i.d. sample from a distribution 

with a bounded density f then for h>O we consider statistics T n(h), 

(B.1) ~ (Xi-X·) ~ Tn(h) := L.:' G ~h w(Xi,Xj) + ~ gn(Xi). 
l"'.J 1=] 

Here G, w and gn are bounded measurable functions for which we additionally require that G is 

symmetric around zero, that G is integrable and that w is symmetric in its two arguments. The first 

term of T n(h), Gn(h) say, is a U-statistic of degree two. We have 

with 

(B .2) (~) (j)h(x,y) := G h w(x,y). 

T n(h) is the sum of a U-statistic of degree two and a sum of i.i.d. random variables. Examples of 

these statistics are (nh)2Un(h) and (nh)3Vn(h), where Un(h) and Yn(h) are defined in proposition 3.9. 

In the notation of chapter 3 we have 

and 

In chapter 3 we need bounds on the moments of terms in the Hoeffding decomposition of 

these statistics. First consider the moments of the statistic Gn(h). Writing Gij(h) := (J)h(Xi,Xj) we 

have 

Gn(h) = ~ Gij(h). 
''°l 

For any positive integer k we compute the k-th absolute moment of Gn(h), 

(B.3) 

E IGn(h)lk = E I~ Gij(h)lk = 
l"'.J 

. . L . . E IGi1jJ(h) ... Gi~k(h)I, 
(1) .J])E Cn,· •-hk,Jk)E Cn 

where Cn denotes the set ((i,j) : i=l, .. . ,n, j=l, ... n, i:tj) . Each of the terms E 1Gi1jJ(h) ... Gi~k(h)I 

can be represented as a graph r with vertices corresponding to to the indices 1,2, ... ,n and with an 

undirected edge between two vertices i and j, i;t:j, for each time the term Gij(h) appears in the product 

Giij1(h) ... Gi~k(h). Let eij denote the number of edges between the vertices i and j and let v(r) 

denote the number of vertices reached by at least one edge, which is equal to the number of different 

indices in i1 ,j1, ... ,ik,jk. For example the term E IG!2(h)G23(h)G24(h)3Gs6(h)21 is represented by the 
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graph 

5 4 

Figure B. l. The graph corresponding to E IG12(h)G23(h)G24(h)3Gs6(h)21. 

We need some notions from graph theory which can be found for instance in Wilson (1975). A graph 

r is called connected if, going through consecutive edges, each vertex of r can be reached from any 

other vertex. If r is not connected then r is the union of finitely many disjoint connected subgraphs 

called the components of r. Let y(f') denote the number of such components. If for each pair of 

vertices of a graph there exists one and only one way to reach one vertex from the other then such a 

graph is called a tree. If r is an arbitrary connected graph and if f'' is a subgraph of r with the same 

vertices, such that r' is a tree, then r ' is called a spanning tree of r. The number of edges of any 

spanning tree of r is equal to v(f')-1. 

If r is connected we have 

for some constant c>O not depending on h. The fact that this inequality holds can be seen as follows. 

Let r' denote a spanning tree of r . We can rewrite the integral above by performing a series of 

substitutions which correspond to consecutive edges off''. Each of these substitutions yields a factor 

h and the final integral is bounded because all integer powers of IGI are integrable and because w and 

f are bounded. The argument is completed by the observation that the number of edges of any 

spanning tree is equal to v(f')-1. If r is not connected then it has y(f')> 1 disjoint connected 

components C1, ... ,C'Y(r). For each of these components the bound (B.4) holds. By the independence 

of the X's the expectation E 1Gi1ji (h) ... Gik.ik(h)I is equal to a product of expectations, each 

concerning terms of one component only, so we have for general r, 

which gives the next result. 
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Lemma B.1. Let X1, ... ,X0 denote a sample from a distribution with a bounded density. Under the 

conditions imposed on the functions G and w we have for any positive integer k and for any positive 

h 

for some constant c>O independent of h, where r is the graph corresponding to the indices 

considered. D 

Next we decompose the statistic G0 (h) by Hoeffding's projection method (Hoeffding (1984), 

Serfling (1980)). Writing the conditional expectations of Gij(h) as 

E(Gij(h)IXi) = gj;(Xi), 

E(Gij(h)IXj) = g\;(Xj), 

with 

gi\(x) = f (j)h(x,y)f(y)dy, 

we define bij(h) and {]0 (h) by 

{]ij(h) = Gij(h) - g\;(Xi) - gj;(Xj) + EGij(h) 

and 

This gives the next decomposition of Gn(h), 
n 

(B.7) Gn(h) = {]n(h) + 2(n-l)_L g\;(Xi) - EGn(h). 
1=! 

Since E({]ij(h)IXi) = E({]ij(h)IXj) = 0 it follows that the terms are uncorrelated. Plugging (B.7) into 

(B.1) we get a similar decomposition for Tn(h), 
n 

(B.8) Tn(h) = bn(h) + _I, (2(n-l)g\;(Xi) + gn(Xi)) - EG0 (h). 
1=! 

Notice that the terms of this decomposition are also uncorrelated. It turns out that {]ij(h) also satisfies 

(B.6). 

Lemma B.2. Let X1, ... ,Xn denote a sample from a distribution with a bounded density. Under the 

conditions imposed on the functions G and w we have for any positive integer k and for any O<h<l, 

for some constant c>O independent of h, where r is the graph corresponding to the indices 

considered. D 



Proof. By a simple substitution v = (y-x)/h we get 

gi;_(x) = J (ph(x,y)f(y)dy = 
00 

_L~(lf)w(x,y)f(y)dy = 

h J G(v)w(x,x+hv)f(x+hv)dv, 

and by repeated integration 

EGij(h) = f J (?h(x,y)f(x)f(y)dxdy = 

f g}i(x)f(x)dx. 

It follows that for some constant a>O we have 

(B.10) 

and consequently 

(B.11) 

lgi;_(x)I :o; ah, for all x, 

IEGij(h)I :o; ah . 

119 

Recall that 6ij(h) is equal to Gij(h) - gi;_(Xi) - g}i(Xj) + EGij(h). Returning to E 16i1j1 (h) ... 6ikik(h)I 

we see that this expectation is equal to the sum of 4k terms of the form E l~iu1(h) ... ~ikik(h)I where 

~ij(h) equals either Gij(h), g}i(Xi), g}i(Xj) or EGij(h). The proof is now completed by the same 

spanning tree argument as above for each of the terms E l~iu1(h) .. . ~ikik(h)I, with this exception that 

each edge of the spanning tree, between i and j say, now corresponds to a term 

where eijl, .. ,,eij4 are nonegative integers with e;j1+ ... +eij4 = eij, If e;ji=eij this term yields a factor h 

by substitution just as above, and by (BIO) and (B.11) since O<h<l it yields a factor smaller than a 

constant times h otherwise. D 

Corollary B.3. Let f be bounded density which is bounded away from zero on the set E. For the 

statistics frn(h), ◊n(h) and~n(h) defined in proposition 3 .9 we have for some constant c>O and for 

O<h<l 

E 16; ih (h) ... fripjp(h)I :o; chm/2-2P, 

E l◊iiji (h) ... ◊ip.ip(h)I :o; chm/2-3P, 

provided there are exactly m different numbers in the sequence i1, j1, ... , ip, jp, each index appearing 

at least twice. 

Similarly we have 
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provided there are exactly m different numbers in the sequence i1, j1, k1, ... , ip, jp, kp, each index 

appearing at least twice. □ 

Proof. Taking G equal to the function L defined by (3.34) and w equal to 

we see that {)ij(h) equals h-26ij(h). By lemma B.2 we have 

E 1{)i 1j1(h) ... {)ip.ip{h)I = 

h-2P E 16iih (h) ... bip.ip(h)I s; 

ch v(r)-)'(r)-2p_ 

The conditions of the lemma imply v(r)=m and y(r)s;m/2. So by O<h<l the bound above is smaller 

than chm-m/2-2P. This proves the first statement. The proof of the second statement is completely 

analogous, except that the factor h-2 should be replaced by h-3. We cannot use lemma B.2 to derive 

the third statement. However, the expectation E l~iijiki (h) ... ~ip.ipk/h)I can also be represented as 

a graph r. In this case the conditions of the lemma imply that the number of components of r, y(r), 

does not exceed m/3. By the same method as above we can then derive a bound chm-m/3-3p_ D 
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APPENDIX C. ASYMPTOTIC NORMALITY. 

We consider the asymptotic distribution of the statistics T n(hn) defined by (B .1) for sequences 

of positive bandwidths (hn) tending to zero. fu that case the kernel function of the U-statistic Gn(hn) 

depends on the sample size and we can not use standard U-statistic theory to derive asymptotic 

normality of Tn(hn). fustead we use a limit theorem of Jammalamadaka and Janson (1986). An 

alternative approach would be to use central limit theorems for degenerate U-statistics which can be 

found for example in Hall (1984), De Jong (1987, 1988), Nolan & Pollard (1987, 1988). 

By decomposition (B.8) we have 

(C.1)) 

with 

(C.2) gri(x) := 2(n-l)gh'ii(x) + gn(x). 

Since the terms in this decomposition are uncorrelated and since E<3n(hn)=0 the variance of TnChn) 

equals 

E(<3n(hn))2 + n var(gri(X1)), 

Next we use the fact that E(<3ij(h)IXk) and E((\(h)IXk) are both equal to zero for k=l, ... ,n. We get 

E(<}n(hn))2 = E(21: C1ij(hn))2 = 2n(n-1) E((}l2Chn))2, 
l<J 

and 

Assume that w and f are almost everywhere continuous. Then by (B.10), (B .11) in appendix B and 

the dominated convergence theorem 

(C.3) 

hn J J G2(v)w2(x,x+hnv)f(x)f(x+hnv)dxdv -

hn J J G2(v)w2cx,x)f2(x)dxdv = 
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hn J G2(v)dv J w2(x,x)f2(x)dx . 

To examine the variance of the second tenn we compute E(gi\
0
(X1))2. By the dominated convergence 

theorem we have 

J (hn J G(v)w(x,x+h0 v)f(x+h0 v)dv ) 2f(x)dx ~ 

hii J ( f G(v)w(x,x)f(x)dv ) 2f(x)dx = 

hii ( f G(v)dv )2( f w(x,x)f3(x)dx) . 

This implies that the variance of 2(n-l)ghc
0
(X1) is typically of order (nh0 )2. Thus if g0 is identically 

equal to zero and if nh0➔oo, as in our applications, then 60 (h0 ) is asymptotically negligible compared 

to the linear term. For an example of this situation see Veraverbeke (1985). Actually in the standard 

U-statistic theory where the kernels are fixed functions the linear term dominates too. In our 

applications however g0 is not identically equal to zero. It turns out that in those cases g0 (Xi) 

compensates the terms 2(n-1 )gh~(Xi) in such a way that the variances of both terms in (C.l) are of the 

same order, or that the variance of the second term is even of smaller order than the first term. We use 

a theorem of Jammalamadaka and Janson (1986) to prove the next theorem which establishes 

asymptotic normality of T 0 (hn) in the case that 60 (hn) is not asymptotically negligible. 

Theorem C.1. Let f be a bounded almost everywhere continuous density and let the functions G, w 

and g0 also be bounded. Further assume that G is symmetric and integrable , that w is symmetric in its 

two arguments and that w is almost everywhere continuous. Let the statistic T 0 (h) be defined by 

(B.l) and let (hn) be a sequence of positive bandwidths converging to zero such that nh0➔oo. Let the 

function gri be defined by (C.2) and suppose that this function satisfies 

Then 

(C.4) 

with 

(i) 

(ii) 

1 ( )'l) 2 2 :;:-m Tn(hn)- ETn(hn) ➔ N(0,2cr +a ), 
nhn 
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(C.5) cr2 := J G\v)2dv J w\x,x)f2(x)dx. D 

Proof. To apply theorem 2.2 of Jammalamadaka and Janson (1986) we rewrite and renormalize 

T nChn) as follows, 

with 

(C.6) ~n(x,y) := %n(x,y) - in(x) - in(Y) + EcphnCX1,X2). 

Suppose that we have checked the conditions. Then this theorem gives 

(E 2~~n(Xi,Xj), L ~(gn(Xi) - Egn(Xi))) ➔ N 0 ,0, 2 , 1 n 1 * * 'IJ ( (2cr
2 

O )) 
1<1 nhn 1=1 nhn 0 a. 

and consequently 

1( ) * 'IJ 22 ::7i72 Tn(hn) - ETnChn) = Tn(hn) ➔ N(0,2cr +a. ), 
nhn 

which proves (C.4). All we have to do is to check 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

The first three conditions are clearly fulfilled by the fact that 612Chn) = ~hn(X1,X2) has vanishing 

conditional expectations, and by conditions (i) and (ii) of our theorem. Condition (iv) with ~2 equal to 

2cr2 follows from (C.3). In order to show (v) and (vi) notice that for n large enough we have 

nh~.{2:?:nhn➔00 , which together with (B .10) and (B.11) implies (v). Property (vi) follows by the 

same arguments as in the derivation of (B.10) and (B.11). D 
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This theorem is used in section 3.4 to prove the asymptotic normality of the statistic Un(hn), 

thus serving as an important tool in the asymptotic distribution theory for likelihood cross-validation. 

Another place where it is used is in the derivation of the asymptotic distribution of the integrated 

squared error of kernel estimators in section 2.3 .2. There the theorem can be directly applied only for 

wad . However, for other weight functions, modifying the proof above we can also prove asymptotic 

normality. 

Assume that the function K satisfies condition K and that w is a bounded nonnegative 

measurable weigth function with a bounded support. In section 2.3.2 we have shown that the 

integrated squared error of a kernel estimator fnh can be written as 

ISEn(h) = 

1 I: j K(u-Xi)K(\Xi)w(u)du + 
~'"l - h 

2 f 
00 

(u X·) 
- nh i~ -~ K T f(u)w(u)du + 

n oo 

1 ~ J 2cu-Xi) ~ ;~ _ K """Ji"""'. w(u)du + 

J r(u)w(u)du. 

For W=l the first term equals 

1 
1 

X · X · ::z;:-I: J K(u)K(u + ~h-)du. 
n h 1"i -1 

The terms of this sum are symmetric functions of (Xi-Xj)/h so we can directly apply the previous 

theorem. However, if w is not identically equal to one we get 

1 
1 

X· X· ::z;:-I: J K(u)K( u + ~h-)w(Xi+hu)du, 
n h '"J - I 

which is not of the form considered above. A modification of the proof of theorem C. l gives the next 

limit theorem for the integrated squared error. 

Theorem C.2. Let f be a bounded almost everywhere continuous density and let w be a bounded 

almost everywhere continuous weight function with a bounded support. Furthermore assume that the 

kernel K satisfies condition Kin section 2.1 and that (hn) is a sequence of nonnegative bandwidths 

converging to zero such that nhn➔00 • Let b(u,h) denote the bias function Efnh(u) - f(u) of the kernel 
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estimator. If 
00 

(C.7) 4nh1/var ( J K(uhX 1)b(u,h0 )w(u)du) ➔ o.2, 0 ~ o.2 < oo, 

- n 

then 

(C.8) nhl/2 (ISE0 (h0 ) - MISE0 (h0 )) ~ N(0,2cr2 + o.2), 

with 
oo I 

(C.9) cr2 := J ( J K(v)K(v+z)dv ) 2dz J w2(u)f2(u)du. 
-00 -1 

Proof. We use the same notation as above. Define the statistic T0 (h) by 
oo n oo 

~ 1 cu X·) cu X·) ~ cu X·) Tn(h) := LJh J K T KT w(u)du-2n ,:-- J K T f(u)w(u)du. 
~ - ~1-

We decompose this statistic using Hoeffding's projection technique. Write 

and 

(j)h(x,y) := k[ KClf)K(r)w(u)du 

g~(x) = J (j)h(x,y)f(y)dy = 

_[ck_[ K(lf)K(r)w(u)du)f(y)dy = 

00 00 

-~K(\x)f(u)w(u)du + -~K(\x)b(u,h)w(u)du. 

We obtain the decomposition 
n 

Tn(h0 ) = ~ ~h0 (Xi,Xj) + L g~(Xi) - n(n-l)E%nCX1,X2), 
l"J 1=1 

where ~his defined by (C.6) and the function g~ is given by 
00 

g~(x) := 2(n-l)gh~(x) - 2n J K(i;;x)f(u)w(u)du = 
oo --oo n oo 

2(n-1) J K cuh x)b(u,hn)w(u)du - 2 J K (u/)f(u)w(u)du. 
- n - n 

Using the fact that b(u,h) is bounded by a fixed constant for all real x and all positive h it is readily 

shown that ~hn and g~ satisfy conditions (i), ... ,(vi) in the proof of the previous theorem. Therefore 

(C.10) 
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Returning to the integrated squared error notice 

nh{f2(ISEn(hn) - MISEn(hn)) = 

(C.11) n ~ ~ 

1 1 ~ ( f 2(u-X·) f 2(U-Xi) ) ~(Tn(hn)- ETn(hn)) + :-;:-m .-"-' K 7i::-1 w(u)du - E K -h- w(u)du . 
nhn nhn •=l -~ n _ n 

The variance of the second term can be bounded as follows, 

n ~ ~ 

var (:-;:k-~ ( J K
2
(u/i)w(u)du - E J K

2
(u(i)w(u)du)) ~ 

nhn •=l -~ n -~ n 

~ 1 

J- J ( J K2cw)w(v+hnw)dw )2f(v)dv = o(J-), 
nnn - - 1 nnn· 

which shows that this term vanishes in probability. By (C. l 0) and (C.11) the proof is completed. 

D 

Remark C.3. If condition (C.7) of the previous theorem holds with a2 equal to infinity then the 

linear term Li~1 g~(Xi) dominates over the quadratic term Li,<_i ~n(Xi,Xj)- Considering 

(C.12) 

we recall 

n 

_L (g~(Xi) - Eg~(Xi))/(ntti{2) 
1=1 

i.e. the terms of the sum (C.12) vanish uniformly in i for n tending to infinity. We also have 

~ 

n ~4 (n-1)2var ( J K(u 11X
1)b(u,hn)w(u)du) ~ 

n hn _ n 

~ 

4nh~ var( J K(\X 1)b(u,hn)w(u)du) ➔ oo. 
-~ n 
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This implies asymptotic normality of the linear term by the Linde berg Feller central limit theorem, so 

in case condition (C.7) is fulfilled with a2 equal to infinity the integrated squared error is still 

asymptotically normal. The proof of theorem C.2 now implies 
~ 

(C.13) ½n 112hn ( var ( f K(\X 1)b(u,hn)w(u)du)Y
112

(ISEn(hn)- MISEn(hn)) ~ N(0,1), 
-~ n 

which gives the proper normalizing constant in this case. 
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SAMENV A TTING. 

Het grootste deel van dit proefschrift is gewijd aan de Parzen-Rosenblatt kernschatter, 

gedefinieerd door formule (1.1). Dit is een schatter van de kansdichtheidsfunktie, zeg f, van n 

onafhankelijke identiek verdeelde stochastische variabelen X1, .. . , Xn. In het laatste hoofstuk beste­

den we aandacht aan het deconvolutie probleem. 

Na een korte introductie bestuderen we in hoofdstuk 2 eigenschappen van kemschatters met 

de nadruk op het gedrag in gevallen waarin de dichtheid f niet glad is, d.w.z. we laten toe dat f 

sprongen en knikken heeft. We beginnen met het afleiden van ontwikkelingen van de bias en variantie 

van een kemschatter in een vast punt. Daama bestuderen we eigenschappen met betrekking tot een 

bekende verliesfunktie, de geintegreerde gekwadrateerde fout. We behandelen het asymptotische 

gedrag van de verwachting van deze verliesfunktie en het daarmee verbandhoudende probleem van 

optimale bandgrootten. Eveneens bewijzen we een centrale limietstelling voor deze verliesfunktie. In 

het laatste deel van het hoofdstuk geven we enige resultaten met betrekking tot de supremum afstand. 

Een aantal resultaten in dit hoofdstuk, met name de ontwikkelingen van de bias en een ordegrens voor 

het supremum van de fout van een kemschatter, zijn belangrijke technische hulpmiddelen in het 

volgende hoofdstuk. 

Om een kemschatter te kunnen uitrekenen moeten we eerst een kemfunctie K en een 

bandgrootte h>0 kiezen. Het is bekend dat de keuze van de kemfunktie voor de meeste verliesfunkties 

minder belangrijk is dan de keuze van de bandgrootte h. Uit resultaten in hoofdstuk 2 blijkt dat 

asymptotisch optimale bandgrootten afhangen van de onbekende dichtheid f. We kunnen deze 

bandgrootten dus niet zomaar uitrekenen. Om die reden zijn er methoden voorgesteld om goede 

bandgrootten te schatten, d.w.z. om bandgrootten te berekenen op grond van de steekproef. We 

beperken ons tot de zogenaamde cross-validation methoden. Na een inleiding over least squares 

cross-validation, een methode waarover reeds vrij veel bekend is, richten we ons op likelihood cross­

validation. We laten zien dat de bijna zekere orde van convergentie naar nul van de met deze methode 

berekende bandgrootten afhangt van de aanwezigheid van sprongen en knikken in de dichtheid f. Het 

blijkt dat, als f geen sprongen heeft, de berekende bandgrootten bijna zeker asymptotisch equivalent 

zijn met de deterministiche asymptotisch optimale bandgrootten met betrekking tot een speciale 

verwachtte geintegreerde gekwadrateerde fout. Als f echter wel sprongen heeft dan is dit niet meer het 

geval. Dan heeft de berekende bandgrootte wel bijna zeker de optimale orde van convergentie naar 

nul, n.l. n·112, maar niet de juiste constante. Vervolgens veronderstellen we dat f geen sprongen heeft 

en bewijzen we asymptotische normaliteit van de berekende bandgrootten. 
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In het laatste hoofdstuk behandelen we deconvolutie , met als belangrijkste voorbeeld het 

Wicksell probleem. Bij het deconvolutie probleem hebben we de beschikking over een steekproef X1, 

... , Xn uit een verdeling die de convolutie is van een bekende verdeling en een onbekende verdeling 

die we willen schatten. We beperken ons tot het schatten van de onbekende verdelingsfunktie in een 

vast punt. Uit de resultaten blijkt dat, hoe gladder de bekende verdeling, des te moeilijker is het om de 

onbekende verdeling te schatten. We geven drie voorbeelden van problemen waarin de niet 

parametrische maximum likelihood schatter van de onbekende verdelingsfunktie uitgerekend kan 

worden. Voor het eerste voorbeeld en het Wicksell probleem zijn een aantal schattingen berekend op 

grand van gesimuleerde steekproeven. 
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