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1. INTRODUCTION 

In this thesis we treat identification and realization problems for counting pro­
cess systems. Counting processes are nowadays frequently used in mathemati­
cal models for phenomena that occur in fields like nuclear biology, survival 
analysis, optical physics, traffic flow analysis and software reliability. For 
instance in software reliability counts of observed failures of a computer pro­
gram are registered. These counts can be used to estimate the total number of 
errors in the program [43,44). An example in traffic flow analysis is given in 
section I. I. Many other examples can be found in the book by SNYDER [ 48). 

The theory of counting processes has seen a fast development over the past 
15 years, stimulated by the growth of the general theory of stochastic 
processes, martingale theory, stochastic integration and stochastic differential 
equations. This theory provides a most suitable framework for studying the 
dynamic behaviour of counting processes. Since then many problems concern­
ing the modelling and identification of counting processes that arise in the 
aforementioned fields can be solved in a satisfactory way. One reason for 
succesful attempts in this direction is the availability of many theoretical 
results for martingales like convergence theorems and central limit theorems 
that also play a crucial role in this thesis. Our aim is to derive results on 
recursive estimation and realization problems for counting process systems. 

The purpose of this chapter is to introduce counting processes and related 
identification and realization problems on an intuitive level. 

1.1 Informal introduction to counting processes 
We introduce the notion of a counting process by means of an example. In 
the analysis of freeway traffic flows information about such flows is obtained 
by counting verhicles that pass a certain location at a freeway [30). To that 
end a detection loop is built at that location where the time instants are 
registered when vehicles pass over it. Oearly those time instants exhibit an 
irregular behaviour, which points in the direction of a random phenomenon. 
More precisely, the time intervals that elapse between two succesive registra­
tions can be viewed as a random variables. One way to build a mathematical 
model, albeit unrealistic, is to make the assumption that those time intervals 
are independent and identically distributed according to an exponential distri­
bution with parameter A. So if, starting from an initial time 0, we denote by 
Tn the time when the n-th vehicle passes the detection loop, we have that all 
the Tn + 1 - Tn are independent with the same exponential distribution and 

E (Tn + 1 -Tn) = ! . Thus we see that we can anticipate the intervals Tn + 1 - Tn 

to be short for high values of A, whereas the opposite will happen for low 
values of A. The interpretation in this example is that high values of A reflect a 
high intensity of the traffic flow. A counting process { N,} is now defined by 

N, = ~l{r • ._,} (1.1) 
n 
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So N, is the number of vehicles that have passed the detection loop up to time 
t. In agreement with its intuitive interpretation the parameter A is called the 
intensity of the counting process. The counting process that arises in this 
example is called the homogeneous Poisson process with parameter A. This 
name is due to the fact that for all t and h ;;;;i.o, the random variable N, +h - N, 
is distributed as a Poisson random variable with parameter M. If we capture 
the history of the process { N,} up to time t into a a-algebra 'ff,', we can show 
that for hJ,O we have the conditional probabilities 

P(N,+h-N, = ll'ff,') = M + (h) 

P(N, +h - N, = 0l'ff,') = I -M + O(h) 

(1.2a) 

(1.2b) 

The equations (1.2) again justify why A is called the intensity of {N,}. Indeed 
a high value of>. makes a new count in a small time interval (t,t+h) more 
likely. In a more fancy way (1.2) admits an alternative description. Define the 
process { m,} by N, = N + m,. In a differential notation this can be written as 

dN, = Adt + dm,. (1.3) 

Then one can show that { m,} is a martingale. A martingale is the archetype 
of a stochastic process with an asystematic behaviour. [See definition 2.2.1). 
The important observation is that under fairly general assumptions one can 
always decompose a counting process {N,} (the assumption that the time 
intervals Tn + 1 -Tn are i.i.d. is not necessary any more) as 

dN, = >.,dt + dm, (1.4) 

The process {m1 } arising in (1.4) is then again a martingale and this decom­
position is essentially unique. However >., is in general not a fixed constant 
but a stochastic process. It is called the intensity process. The decomposition 
(1.4) is important because of two reasons. Often the assumption in the previ­
ous example that the Tn + 1 -Tn are independent and identically distributed is 
untenable. So (1.4) allows a greater variety of counting processes. The second 
reason is that, not only is the process {X,} unique, it also uniquely determines 
the distribution of { N,}. So a way to model a counting process is to specify 
the intensity process. Stated otherwise one can say that modelling a counting 
process is equivalent to modelling the corresponding intensity process. 

1.2 Modelling the intensity process 
We have seen in section 1.1 that the intensity of a counting process is in gen­
eral a stochastic process. In a practical situation one can often think of the 
intensity >., as a function of another stochastic process { X,} which has a physi- · 
cal meaning in the particular situation at hand, so that we can write 
A1 =f(t,X,). In such a case the modelling of the intensity process reduces to 
specifying the function f In doing this one can often distinguish between two 
stages, the first of which may be called structural modelling. We illustrate this 
with an example. Suppose that X, ERd. If the structural form of the intensity 
is linear we have >.,=a(tfX,, where a(t)ERd. This is the multiplicative 
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intensity model studied by AALEN [12,17). A special case is obtained if a(t)=a 
for all t, so A1 =ar X,. In another example the structural form of the intensity 
process might be exponential, so we can write A1 =exp(a(tf X,) or 
A1 = exp( aT X,> · If the structural form of the intensity process is given, one can 
say that one is left with a parameteric modelling problem. lbis can be an 
infinite dimensional problem, as in the case where A1 =a(tf X,. The parameter 
is then the function a which is in general an infinite dimensional object. In 
the special case where A1 = ar X, the parameter is an element of Rd which 
yields a finite dimensional problem. One can say that establishing the struc­
tural form of the intensity corresponds to the selection of a model class. The 
model class is then described by the finite or infinite dimensional parameter. 

An intensity process of the form A1 = f(t,X,) naturally arises in the context of 
stochastic system theory. Roughly speaking a stochastic system is a pair of 
stochastic processes, the state and the output process. The state process is 
always a Markov process that drives the output process. If the output process 
is a counting process then its intensity process is of the form A1 = / (t,X,> if 
{ X,} is the state process. A stochastic system with counting process output is 
called a counting process system. A shorthand notation for such a system is 
(X,N) where X stands for {X,} and N for {N,}. An important example is the 
following. (See (20) for an application). Suppose that the state space of the 
Markov process {X,} is finite, {x 1, ••• ,xn} say. Then we can define the indica­
tor process {Y,} by Y,=[Y11, ... ,Y111f and Y;,=l{x,=x,}· Assume that 
A1=f(X1). Let c;=f(x;) and C=[c1, ... ,cn]. Then we can write A,=CY,. Let A 
be the generator matrix of { X,}. It can be shown that we can represent this 
model by the following equations 

dY, = A Y1dt + dM, 

dN, = CY,dt + dm, 

(1.5a) 

(1.5b) 

The processes { M,} and { m,} in ( 1.5) are martingales. Observe the analogy of 
(1.5) with Gaussian systems, where one has similar equations (1.5) for an n­
dimensional Gaussian process { Y,} and a one dimensional process { N,} with 
{ M,} and { m,} an n-dimensional and a one dimensional Brownian motion. 
The equations (1.5) can be considered as the structural model of the counting 
process. The parametric modelling problem in this case is the specification of 
the matrices A and C. It is noticed that a structural model can often be set up 
on the basis of information that one has about the particular phenomenon that 
one wants to model. The values of the parameters are usually not known 
beforehand. The only way to obtain these is by analyzing the observed data. 
1bis leads to the problem of identification. 
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1.3 Identification 
Speaking in loose terms one can say that identification is concerned with 
obtaining a model from the observed data. In the situation where one deals 
with counting process observations this amounts to identification of the under­
lying intensity process. As in modelling problems it is in principle possible to 
distinguish between structural and parametric identification. However if one 
wants to perform an identification procedure based on a single realization of 
the counting process, it is in general difficult if not impossible, to obtain the 
structural form of the intensity process. In such a situation one has to assume 
that the structural form of the intensity process is given, in which case the 
identification problem becomes a parameter identification problem. But even 
then one cannot always expect to identify the "true" but unknown parameter. 
This is for instance the case if >.., = a(tf X, where the parameter a is a function. 
For the identification of the function a there exist non parametric techniques 
for which several realizations of the same counting process are needed [12,17). 
Since we will treat some identification procedures that are based on a single 
realization of the counting process, we will assume that the unknown parame­
ter is finite dimensional which is for instance the case if >.., = aT X,, where 
aeRd. If the structural form of the intensity, or a model class, is given, one 
can view identification as approximate modelling. Estimating a parameter 
then corresponds to the selection of a model that best explains the observation 
according to a certain criterion. There are basically two procedures for 
estimating a finite dimensional parameter called off-line and on-line. Off-line 
procedures are applied if it is is possible to collect the data before actually 
computing a parameter estimate. Off-line estimators can often be obtained by 
minimizing a suitable criterion. 

A well-known example is the maximum likelihood estimator. It is known 
that these estimators are consistent and enjoy certain optimality properties. 
For counting process observations results in this direction are obtained in 
[19,22,23,27,32), by means of a suitable analysis of the likelihood ratio. 

On-line or recursive procedures naturally arise if one is confronted with a 
control or a filtering problem. In a control problem one usually looks for a 
feedback control law in order to meet some required behaviour of the output 
process. This control law depends on a parameter whose value might be 
unknown. Hence if one wants to apply this control law at all time instants t 
one also needs estimates of the unknown parameter values for all t. This calls 
for a device that computes new estimates from previous ones and from new 
observations. This de~ce usually consists of a set of stochastic differential 
equations. Denote by fJ, an estimator of fJ at time t.A In the context of count­
ing processes the stochastic differential equation for fJ, is then of the following 
form 

A A A 

dfJ, = f(t, 81 )dt + g(t,fJ, _ )dN, (1.6) 
A 

The interpretation of (1.6) is that fJ, evolves according to an ordinary 
differential equation between the occurrence times of the counting process 
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(then dN, =0) whereas 81 jumps to a new value if a count is registered 
(dN, = 1). Similar considerations hold for filtering problems. A filtering or 
state estimation problem arises when one can only observe a counting process, 
but not the state process X, that influences the intensity process as for instance 
in (1.5). A filter is then a set of stochastic differential equations that deter­
mines the conditional expectation of X, given the past observations. Such a 
filter generally depends on the unknown parameter value. Hence to actually 
compute such a conditional expectation one again needs parameter estimates 
that are generated by an equation like (1.6). The combined set of stochastic 
differential equations that simultaneously estimate state and parameter is 
called an adaptive filter. One of the requirements that an adaptive filter 
should satisfy is that parameter estimates converge to the true parameter if the 
true model is in the model class. The same requirement is of course desired 
for any on-line estimation procedure whether or not it is part of an adaptive 
filter. Although we will not treat adaptive filtering problems, the above con­
siderations at least motivate why it is important to study the convergence pro­
perties of recursive estimators. 

One of the difficult problems for recursive estimators is the design of an 
equation like (1.6). A reason is that it is often not clear how to obtain a recur­
sive formula starting from known off-line estimators. Equations like (1.6) can 
be obtained via heuristic reasoning and by making suitable approximations. 
In chapter 4 we give some examples. A consequence is that, even if it is intui­
tively clear that a certain recursive estimator defined by (1.6) is close to a 
known off-line estimator, it is not easy to see whether certain known properties 
for the off-line estimator carry over to the corresponding on-line estimator. 
This is largely due to the fact that it is often not known what criterion a recur­
sive estimator minimizes, or what estimation equation it satisfies. Hence for 
on-line estimators new techniques for investigation of e.g. asymptotic proper­
ties have to be developed. Since recursive estimators are defined via stochastic 
differential equations, stochastic Lyapunov functions can be expected to play a 
role. An analysis of this type is presented in chapter 4. Finally it is noticed 
that if one wants to prove consistency of a family of estimators { 81 } one has to 
be sure that the "true" value 8 of the parameter is in principle identifiable. 
For instance if two different values 80 and ()' 0 give rise }o the same observed 
process one cannot expect to get convergence of the {8,} to 80 • A possible 
way out is to redefine the parameter space such that no two different values (lf 
the parameter induce the same observed process and to be sure that all the 81 

belong to this new parameter space. 

1. 4 Realization 
Realization problems play a prominent role in stochastic system theory. In the 
context of counting process systems the basic question is the following. Given 
a counting process { N,}, can we view it as the output of a stochastic system? 
In the light of the discussion in section 1.2 this amounts to reformulating this 
question as follows. Given a counting process { N,} with intensity process 
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{;\,}, does there exist a Markov process { X,} with a small tractable state space 
such that ;\, is a function of t and X,, so ;\, = f(t,X,)? If the answer is 
affirmative then one says that the system (X,N) is a realization of {N,}. Sup­
pose now that we have a realization (X,N) where X is a finite state process 
such that (1.5) holds. A second question is then whether this realization is 
~al. Minim~ty here means _!h.!t we cannot find another Markov E!ocess 
X and a function f such that ;\, = f(X,) and such that the state space of X con­
tains fewer elements than that of X. In order to answer this second question 
we need a characterization of minimality. It will be given in chapter 5 in 
terms of the matrices C and A appearing in (1.5). Minimality is an important 
concept that also plays a role in identification problems where one only has 
observations of the counting process whereas the state process cannot be 
observed. A rather trivial example clarifies this. Suppose that one wants to 
identify the matrix A from the observations of the counting process and sup­
pose that C=[A, ... ,A] for some ;\>0, so that ;\,=CY,3. Then clearly any 
Markov process X that yields a minimal realization (X,N) is such that its space 
is a singleton. For Markov processes X with a larger state space such that 
CY,3, the counting process contains no information whatsoever about X. 
Hence one is not able to identify A on the basis of the counting process obser­
vations alone. Although this example treats a degenerate case, it indicates that 
minimality is a prerequisite for identification of the underlying state process. 
Finally we notice that a characterization of minimality can be used to define 
the parameter space in such a way that all its elements are identifiable. 

1.5 Organization of the Thesis 
. In this section we briefly go through the contents of this thesis. In chapter 2 

the relevant results from the general theory of stochastic processes are 
reviewed. All results except a convergence theorem of semimartingales can be 
found in the literature [3,4,5,8]. For this reason most of the proofs are omit­
ted. Chapter 3 starts with results from weak convergence theory, especially for 
sequences of (semi)martingales. As in chapter 2, only proofs of new results are 
given. The second part of this chapter is devoted to the study of likelihood 
ratios for counting process. The proofs that we present differ slightly from 
those in the references [16,24]. Also an alternative characterization of local 
asymptotic normality is derived. This LAN property turns out to be very 
helpful in designing recursive parameter estimation algorithms. This is 
explained in chapter 4 where we also study convergence properties of such 
algorithms. 

The technique we use to prove almost sure convergence involves stochastic 
Lyapunov functions and a convergence result for nonnegative semimartingales. 
In chapter 5 we discuss counting process systems. In detail we treat minimal­
ity for conditionally Poisson systems and a realization problem for selfexciting 
systems. 
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2. BACKGROUND IN STOCHASTIC PROCESSES 
In this chapter we briefly summarize the theory of stochastic processes as far 
as we need it. Basic references for this chapter are the books by DELLACHERIE 
and MEYER [4,5), JACOD [8], or specialized to point processes the one by 
BREMAUD [3] and [14,41). We do not give definitions and results of most basic 
notions in probability theory. 

A probability space is a triple (0, 'ff,P), where (0, §) is a measurable space 
and Pa probability measure on it. If (E,&) is another measurable space, then 
an E-valued random variable X is a measurable mapping X:(O, §)➔(E,&). In 
the sequel E will usually be a subset of some Rn, and $ its Borel a-algebra. 
Stochastic processes to be defined below will have [O, oo) as continuous "time 
set". However occassionally it will be replaced by 1\1, as a discrete "time set". 

2.1 Basic concepts 
DEFINITION 2.1.1: A stochastic process is a mapping X:OX[O,oo)➔E such that 
for all 1;;a.O the mapping X(·,t):O➔E is a random variable. The map 
X(w,-):(0,oo)➔E is said to be a trajectory or path of X. For X(·,t) we will 
often write X1• 

Given a stochastic process one can form its associated family of finite dimen­
sional distributions by computing P(x,, EA 1, ••• ,x,. EAn) for I; E[O, oo) and 
A;E&(i=l, ... ,n). Denote these quantities by cl>(t1, ... ,tn;A1, ... ,An)- Then obvi­
ously one has cl>(t,r(I),···,ttr(n);Atr(1),···•Atr(n)) for every permutation 'TT' of {l, ... ,n} 
and 

cl>(t1 , ... ,tn;A I , ... ,An -I ,E)=cl>(t1 , ... ,In -I ;A I , ... ,An -1). 

A natural question to ask is then whether these two properties plus probably 
some extra completely characterize in some sense a stochastic process. This 
question is answered by the following theorem, essentially due to Kolmogorov. 

THEOREM 2.1.2: Let the family cl>= { cl>(t 1 , ... ,In ;A 1 , ... ,An)ln EN,t; E[O, 00 ),A; E6'} 
satisfy the above permutation anaconsistency property. Then there exists a proba­
bility space (0,'ff,P) and a stochastic process X:Ox[O,oo)➔E such that the set of 
finite dimensional distributions of X coincides with cl>. 

The space O in this theorem has to be rich enough in order to carry the 
desired property. In Kolmogorov's proof of the theorem O=El0,00>, and <Fis 
the smallest a-algebra that makes all cylinder sets in O measurable. For most 
purposes however this space is not suitable to answer questions like: What is 
the probability of the set {w:X(w,-):(0,oo)➔E is continuous}? Also it is not 

I 

clear how one should define double integrals like E jX(s,w)dsP(dw). These 
0 

problems can historically be accounted for by noticing that the definition of 
stochastic process has first been given for a countable time set like 1\1 or Z. 
Then all the relevant measureability properties are a simple consequence of the 
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given definition of a stochastic process. For problems like the above ones 
more sophisticated measurability concepts are needed. 
The assertion of the theorem admits more than one choice of a probability 
space. In fact one should always include (0, <ff,P) in the definition of a stochas­
tic process. The fact that one can choose more than one probability space 
motivates the following definition: 

DEFINITION 2.1.3: Let (0,<ff,P,X) and (0','ff,P',X') be two stochastic processes, 
both with values in (E,t;). They are said to be equivalent if their families of 
finite dimensional distributions coincide. 

Even if one has a fixed suitable probability space (0, <ff,P), the stochastic 
process X is not completely determined by its family of finite dimensional dis­
tributions. We need more precise notions that tell us in what sense two sto­
chastic process are the same. These are given in the next two definitions. 

DEFINITION 2.1.4: Let X and X' be two stochastic processes on (0, <ff,P) 
1) X' is said to be a modification of X if X, =X', a.s. for every t~O. 
2) X' is said to be indistinguishable from X if 

P(w:X,(w)=X',(w) for all t~O)= 1. 

One clearly has that two indistinguishable processes X and X' are 
modifications of each other and assuming only the latter, they are also 
equivalent. In the sequel statements that two processes X and Y are equal 
(X = Y) will always mean that X and Y are indistinguishable. Similarly if a 
process X satisfying some property is unique, it will mean that it is indistin­
guishable from any other process that satisfies the same property. The next 
two examples of a process play an important role in the theory of stochastic 
processes. These are the Brownian Motion and the Poisson process. 

DEFINITION 2.1.5: W:OX[O,oo)➔R is a Brownian motion if 
(i) W0 =O a.s. 
(ii) W bas independent increments if for t>s>u W,-Ws is independent of 

Wu. 
(iii) W, - Ws bas a normal distribution with mean O and variance It - s I• 

DEFINITION 2.1.6: N:OX[O,oo)➔No is a Poisson process with intensity func­
tion A: R + ➔R + which is locally integrable, if 
i) N 0 =0 a.s. 
ii) N bas independent increments 

I 

iii) N,-Ns has a Poisson distribution with parameter jA(u)du 
s 

If A(t)=A,Vt, then N is called a homogeneous Poisson process with intensity 
parameter A. Later on we will define a generalization of a Poisson process. 
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Although there are striking similarities between the Wiener process and the 
Poisson process, the differences are at least as important. 

PROPOSITION 2.1.7: 
1) There exists a modification of the Brownian motion such that its paths are 

continuous and of unbounded variation. It is called the Wiener process. 
2) There exists a modification of the Poisson process such that its paths are 

increasing, constant between the jumps, that are all of magnitude + 1 and on 
each finite time interval there are only finitely many jumps. 

The current framework of the theory of stochastic processes has essentially 
been introduced by Doob. The important concept is that of a filtration, with 
the interpretation of a growing information pattern. 

DEFINITION 2.1.8.: Let (O,~ be a measurable space. A filtration F={~},_.0 
on O is a family of sub a-algebras of '1f' such that ~ :>~ if t~s. A filtered 
measurable space is then a triple (0, <:f,F), where F is a filtration on (0, ~-

DEFINITION 2.1.9: A stochastic process X on (0,~ is said to be F-adapted if X, 
is ~-measurable for all t ~O. 
Given a stochastic process X there always exist a filtration to which it is 
adapted. Take~= Vo{Xs)-

s<.1 

DEFINITION 2.1.10. Let X be a stochastic process on (0, ~ and let F be a filtra­
tion on (0, ~- Xis said to be progressively measurable (relative to F) if for all 
t~O the mapping (w,s)➔X(w,s) is a measurable mapping from 
(OX[0,t),~X~[0,t)) in (E,&). 

The usefulness of this definition is motivated by the following. Let X be a 
progressively measurable process on (0, '?f,P). Assume that X is 
(Lebesgue)integrable on OX[0,t] w.r.t. the product of P and the Lebesque 
measure on [0,t ]. Then from Fubini's theorem 

t 

jX(w,s)ds 
0 

I 

is ~-measurable. Hence Y defined by Y(w,t)= jX(w,s)ds is again an adapted 
0 

process. 
A filtration F on a (necessarily complete) probability space (0, <:f,P) is said to 
be complete if ~ contains all P-null sets. F is called right continuous if 
ns>t~ =~- If F is both complete and right continuous than it is said to 
satisfy the usual conditions. 
We need two other concepts of measurability. 
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DEFINITION 2.1.11: A stochastic process X is said to be cadlag if all its trajec­
tories are right continuous and have left limits at all points. 
Note: cadlag is a french abbreviation and stands for continue a droite et pour­
vue de limites a gauche finies. 

DEFINITION 2.1.12: The optional a-algebra eon DX[O,oo) is defined as the a­
algebra generated by all F-adapted processes that are cadlag. A stochastic 
process Xis said to be optional if it is measurable w.r.t. e as a function of both 
t and w. 

The predictable a-algebra ~ on DX [O, oo) is defined as the a-algebra gen­
erated by all F-adapted processes that have left continuous trajectories. A sto­
chastic process X is predictable if it is measurable as a function on (0, oo) X ~ 
w.r.t. ~-

The following sequence of implications holds: X is predictable ~x is 
optional. If X is moreover right continuous or left continuous, then it is also 
progressively measurable. 

ExAMPLE: Let X be an adapted cadlag process. Define the process X _ by 
(X - )1 = Xi- = limstt,Xs. Then X _ is a predictable process. 

Any cadlag process X is optional and by t:.X we mean the process with 
t:.X, = X, - X, _ . Hence also t:.X is optional. 

REMARK: All measurability concepts introduced above, from predictability to 
adaptedness hold with respect to the given filtration F. Mostly it will be clear 
with what filtration we work. However if confusion may arise we will speak of 
F-predictable process etc. 

PROPOSITION 2.1.13: Let X be a stochastic process such that almost all its paths 
admit left and right hand limits. Then almost all paths have only countable many 
points of discontinuity. 

The next concept that will be introduced is that of a stopping time. We will 
need it only occasionally. 

DEFINITION 2.1.14: A stopping time is a random variable T:O➔[O, oo] such that 
{T~t}E'!f, for all t. 

PROPOSITION 2.1.15: 
1) IfTisastoppingtime, then {T<t}E'!f,. 
2) If T is a random variable such that { T < t} E 'If, and if the filtration is right 

continuous, then T is a stopping time. 

PROOF: 

1) {T<t}= U{T~t-.l}E'!f,. 
neN n 

2) {r~t}= n {T<t+.l}E'!f;+ ='If,. 
neN n 
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DEFINITION 2.1.16: The pre-Ta-algebra §"T is defined as 
§"7 = {A E<:foo :A n { T:s;;;;t} E'?f;, Vt} 

PROPOSITION 2.1.17: If S and Tare two stopping times such that S:s;;;;T, then 
§"s C<:f7. 

We close this section with 

DEFINITION 2.1.18: A stochastic process X is uniformly integrable if 

lim SUP EJX,ll{IXl>k} =O 
k➔oo 1:>tl ' 

ExAMPLE: 
1) If Xis bounded in L 1+a (a>O), that is sup,_.0EJX,J1+«<oo. then Xis 

uniformly integrable. 
2) Let I be a random variable, EJ/J<oo. Define X, =E[/J'?f;], where {'if; },_.0 is 

a filtration on (0, '!f,P). Then { X, },_.0 is uniformly integrable. 

2.2. Martingale theory 
In this section we summarize results on some important classes of stochastic 
processes, namely the martingales, supermartingales and submartingales. 
Throughout this section we assume that a complete probability space is given, 
together with a filtration F on it. All processes are adapted to this filtration 
and defined on the given probability space. 

DEFINITION 2.2.1: 
1) A stochastic process X (adapted to F) is a supermartingale if 

i) EJX,J<oo,Vt;;;i:O 
ii) E[X,l~]:s;;;;Xs a.s. Vt;;;i:s. 

2) X is a submartingale if - X is a supermartingale 
3) X is martingale if X is both a supermartingale and a submartingale. 

ExAMPLE: 
1) Let B:'1X[0,oo]-+R be a Brownian Motio~. Let for all t ~=a{B3 ,s:a;;;;t}. 

Then B is a martingale. Indeed since B, - Bs is independent of ~ we have 
E[B,-Bsl~]=E[B, -Bs]=O 

2) Let N :0 X [O, oo )-+1\10 be a homogeneous Poisson process, with intensity A. 
Let <ff,' =a{Ns,s:s;;;;t}. Then X defined by X, =N,-N is a martingale. 
Indeed since N,-Ns is independent of ~ we have E[N,-Nsl~]= 
E[N,-Ns]= ;\(t-s). 

3) More generally let X be a process with independent increments such that 
EJX,J<oo. Then as in the two previous examples the process M defined 
by M, = X, - EX, is a martingale relative to the filtration generated by X. 

4) Let X:(O,'!f,P)-+R be a random variable, EJXJ<oo. Let F be a filtration 
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on (0, '?f,P) Then M defined by M, =E[XI~] is a martingale. Observe that 
Mis uniformly integrable. 

It turns out that the trajectories of supermartingales enjoy desirable properties. 
Specifically one may almost always assume that they have cadlag paths. This 
statement will be made precise in the next sequence of theorems. 

THEOREM 2.2.2: Let (0, '?f,F,P) be a filtered probability space. Let D be a count­
able dense subset of[O,oo). Let X be a supermartingale on (0,'?f,F,P) 
1) Then for almost all w limXs(w) exists and is finite for all t. This limit will 

sHt 
S E }) 

be denoted by X, + ( w ). 
2) For almost all w li.mXs(w) exists and is finite for all t;;;;;..O. This limit is 

sftt 
$El) 

denoted by X, _ ( w ). 
3) The process X + = { X, + },_.0 is a supermartingale with respect to the filtra­

tion F+ = {~ + },;;;.o-
4) The process X _ = { X, _ },>O, is a supermartingale with respect to the filtra­

tion F- ={~-h>o- Here~-= V§;. 
s<t 

THEOREM 2.2.3: Let X be a supermartingale on (0,'?f,F,P). Assume that almost 
all its paths are right continuous. Then Xis also a supermartingale with respect 
to the smallest filtration G that contains F and that satisfies the usual conditions. 

THEOREM 2.2.4: Assume that the filtration F satisfies the usual conditions and let 
X be a supermartingale on (0,'?f,F,P) such that t1-+EX, is a right continuous func­
tion. Then X admits a modification such that all its paths are cadlag. Hence 
every path has only countably many discontinuities. 

Although this is usually not stated, one can also prove that there exists a 
modification which has left continuous paths on (0, oo ). In fact one then takes 
x-. 

In view of these results we will from now on, unless stated otherwise, assume 
that the filtrations satisfy the usual conditions and that supermartingales have 
cadlag paths. Martingales and supermartingales are especially interesting 
processes because under suitable conditions they converge almost surely as 
t➔OO. 

THEOREM 2.2.5: Let X be a right continuous supermartingale. Suppose that 
sup{EIX,I, t~O}<oo (or equivalently that lim,➔00 EX,l{.x;<o}>-oo). Then 
I= lim,➔00 X, exists and is an integrable random variable. If X is uniformly 
integrable, then Xis right closed by its limit l which means that X,;;;;;..E(ll~J. 

REMARK: The same statement holds for left continuous supermartingales. 
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REMARK: As we have seen before X defined by X, =E[Yl'?fi] is a uniformly 
integrable martingale if EIYl<oo. The theorem tells us that the converse also 
holds. If X is a uniformly integrable martingale, then necessarily X is of the 
form X, =E[ll'?fi]. 

DEFINITION 2.2.6: A martingale Xis called square integrable if SUD EX;< 00. 
t>tl 

One can also say that such a martingale is bounded in L 2 • So in particular 
square integrable martingales are uniformly integrable and their limit for t➔oo 
exists. 

In a number of cases the requirement that a process is a uniformly integrable 
martingale is too restictive. Therefore we introduce a wider class of processes, 
that of local martingales. 

DEFINITION 2.2. 7: A right continuous stochastic process X on (~, 'if, F ,P) is said 
to be a local martingale if there exists an increasing sequence of stopping times 
{ Tn} with limn➔oo Tn = oo a.s. such that the process { X11\T, l{T,>O) }, ;;;.o is a uni­
formly integrable martingale for each n. { Tn} is called a fundamental sequence 
for X. 

In order to see that local martingales are extension of martingales we mention 
the following result. 

THEOREM 2.2.8: Let X be a (super)martingale, ritt continuous. Let T be a stop­
ping time. Then the stopped process X (={X,Ar},_.0) is again a 
( super )martingale. 

REMARK: 
1) Let X be a right continuous martingale. Let Tn=n. Then 

x;· =X,An =E[Xnl'!fi] for all t. Hence xT, is a uniformly integrable mar­
tingale and X is a local martingale. 

2) X is a local martingale iff for the fundamental sequence { Tn} for X we 
have that 
i) X0 l{T,>O} is integrable 
ii) { X, AT, - XO} is a uniformly integrable martingale. 

3) In fact the additional requirement that the stopped processes in this 
definition are uniformly integrable is superfluous. Indeed if we merely 
demand that { X, AT, - XO }i_.0 is a martingale for each n, 
{X,AT,An-X0 }i;;,,o is a uniformly integrable martingale for each n. Hence 
taking { n I\ Tn} as a fundamental sequence, then we see that indeed X is a 
local martingale. 

DEFINITION 2.2.9: X is called a locally square integrable martingale if there 
exists an increasing sequence of stopping times {Tn}, Tnfoo such that 
{X,AT, -X0 }i_.o is a square integrable martingale. 
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ExAMPLF. Every continuous martingale X is locally square integrable. Take for 
Tn =inf{t>O:IX,l;;;.i:n }. 

PROPOSmON 2.2.10: Let X be a nonnegative local martingale and assume that 
EX O < oo. Then Xis a supermartingale, as follows from Fatou's lemma. 

DEFINITION 2.2.11: A stochastic process A on (fl, <?f,F ,P) is called increasing if 
its trajectories are right continuous, finite, increasing functions on [O, oo ). It is 
called integrable if lim,➔00 EA,<oo. The difference of two increasing processes 
is called a process of finite variation. If a process is the difference of two 
integrable increasing processes, then it is called a process of integrable varia­
tion. 

PRorosmoN 2.2.12: Let A be an increasing process. Then there exists a unique 
increasing process AC, a sequence of stopping times { Tn} and a sequence op posi­
tive constants {An} such that 

A, =Af + ~An l{r .... ,} 
n 

Ac is called the continuous parts of A, Ad= A -Ac is the jump part of A. For 
processes of finite variation, being the difference of two increasing processes, a 
similar result holds. 

DEFINITION 2.2.13: An increasing process is called locally integrable if there 
exists a sequence of stopping times {Tn} such that E[Ar. -A 0]<oo for each n 
and if A O is finite a.s. 

Observe that for a locally integrable increasing process A and a nonnegative 
00 

measurable process X, one can define E f XsdAs as a Lebesque integral, which 
0 

I 

also yields j XsdAs adaptive. 
0 

PROPOSmON 2.2.14: Let A be an increasing process, locally integrable. Then 
there exists a unique predictable increasing process B such that A-B is a local 
martingale. B is called the dual predictable projection of A, or the compensator of 
A. 

PROPOSITION 2.2.15: Let A be an increasing locally integrable process. Then a 
00 00 

predictable process B is its compensator if and only if E j XsdAs =E j XsdBs for 
0 0 

all nonnegative predictable processes X 

ExAMPLE: Let N be a standard Poisson process. N is certainly locally integr­
able, which is immediately seen by taking Tk=inf {t>O:N,;;;.i:k}. Since we 
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have already seen that N, - t is a martingale, the process B with B,=t is the 
compensator of N. 
The dual predictable projection plays an important role in proving the decom­
position theorem for supermartingales. 

DECOMPOSITION OF SUPERMARTINGALES 
Let A be an increasing process and let EA,< oo, for all t. Let M be a mar­
tingale. Then X defined by X, = M1 - A, is a supermartingale. Conversely, 
given a supermartingale X can one always decompose it in the form 
X, = M, - A, above, and if this is the case, for a predictable process A this 
decomposition is unique. Clearly the latter is not the case if one considers the 
supermartingale X,= -n,, where n is a Poisson process with En,=M. Now 
one can take A1 = - n1 and M, = 0, but also one can take Al = - At and 
M} =At-n1, if the underlying filtration is given by '?J;=a{ns,sE;;;t}. The 
difference between the two decompositions is that A I is a predictable process, 
whereas A is not. The surprising result is that one can always uniquely decom­
pose a supermartingale as a difference of a martingale and a predictable 
increasing process. In the discrete time case this is almost trivial. Take A 
defined by 

An-An -I =Xn-1-E(Xnl'Fn-1), Ao=0, and define Mn=Xn+An 

This is called the Doob-decomposition of a supermartingale. In continuous 
time it requires much more sophisticated techniques to prove a similar result, 
which is due to Meyer and is known as the Doob-Meyer decomposition of 
supermartingales. 

THEOREM 2.2.16: Let X be a supermartingale. Then X admits a unique decompo­
sition X = M - A, where M is a local martingale and A a predictable increasing 
process, A 0 =0. Moreover A is an integrable process iflim,➔00EX1 >- oo. 

It should be noted that the process M and A depend on the given filtration. 
For instance in the Poisson process case A,=-M if we take '?fr=a{ns,sE;;;t}. 
But A,= -n, if we would take the (deterministic) filtration 'Fr=~ for all t. 
Now we are in the position to define a class of stochastic processes, which is 
closed under many operations. 

DEFINITION 2.2.17: A stochastic process X on (~.~F,P) is called a semimar­
tingale if there exists a decomposition X, =XO + A, + M,, where M is a local 
martingale, M O = 0, A is a process of finite variation, A O = 0. A semimartingale 
is called special if there exists a decomposition such that A is predictable. 

REMARK~ The d~m~siti~n of a special fe~~gale is unique. !ndeed if 
X, - X 0 -A1 + M1 -A1 + M,, then M, - M, 1s predictable local martingale of 
finite variation and zero fort =0. Hence M,=M}=0. 

An example of a special semi martingale is a supermartingale, according to 
the Doob-Meyer decomposition (theorem 2.2.16). 
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DEFINITION 2.2.18: A semi.martingale Xis said to be locally square integrable if 
the process Y defined by Y, = sup{ IXs - X O 1

2 ,s ~ t} is locally integrable. 

LEMMA 2.2.19: 
i) A locally square integrable semimartingale is special. 
ii) A semimartingale is locally square integrable if/ M is a locally square integr­

able martingale, where M is the local martingale of the canonical decomposi­
tion X,=X0 +A,+M,. 

Next we state and prove a convergence theorem for semi.martingales, which is 
new and that will be used in subsequent chapters. 

THEOREM 2.2.20: Let X be a stochastic process such that X, =XO + A, - B, + M,. 
Here A and Bare increasing processes with Ao =Bo =0 and lim,➔00A,<oo a.s. 
and M is a local martingale with MO = 0. Assume that inf { X,: t ;;;;.o} > - oo a.s. 
Then both lim,➔00X1 and lim,➔00B1 exist and are finite. 

PROOF: Assume without loss of generality that X0 =0. Observe that lim,➔00X1 
exists and is finite if and only if the same holds for lim,➔00 X, _. We will prove 
the latter. Let {Tn} be a fundamental sequence for M. Define also another 
sequence of stopping times Rk=inf{t>0:X;- +A,>k}. Observe that {Rk} is 
an increasing sequence with lim Rk = oo. Observe also that {Rk = oo }t1l. Now 
for each n {M,Ar.},_.0 is a uniformly integrable martingale. But then also 

{M,Ar.- h>o is a (uniformly integrable) martingale with respect to {§;-h>o, 
and the same is true for {M,AR.AT.- h>o for each k,n. Observe also that 

M,/\R,AT.- ;;;;.X,/\R,/\T.- -At/\R,/\T.-;;;;. 

;;;;.-(Xi"AR.AT.- + A,/\R,/\T.-). 

Hence Mi"AR.AT.- ~k. So for fixed t and k {Mi"AR.AT.- }n;;.o is uniformly 
integrable. Then 

E[M,/\R.-1~-} = E[limM,/\R,/\T-l~-1~ 
n➔OO " 

~liminf E[M1/\R,AT.-l~-J = liminf Ms/\R,/\T.- =Ms/\R,-
n➔oo n➔oo 

The last inequality follows from Fatou's lemma for uniformly integrable fami­
lies of random variables. So {M,AR.- },_.0 is a supermartingale and moreover 

{ M;-1\R.- },_.,0 is uniformly integrable since also Mi"AR.- ~k. Hence from the 
convergence theorem for supermartingales lim,➔oo M, /\R. _ exists and is finite. 

But then also lim(X,/\R.- + B,/\R,-) = lim(A,/\R.- + M,/\R,-) exists and 
1➔00 1➔00 

is finite. 

Hence lim,➔00 X,/\R.- and lim,➔00 B,AR.- exist and are finite because the latter 
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limit always exists and cannot be infinity because of inf,_,.0X,>-oo. 
Consequently 1.im, ..... 00 X,AR.- also exists and is finite a.s. on {Rk = oo} and on 
this set it equals lim, ..... 00 X, _ . But as noticed before { Rk = oo} increases to 0, 
which finishes the proof. □ 

REMARK: This theorem generalizes a result in [39), in the sense that we do not 
require X to be nonnegative, nor do we require that the jumps of A ae 
bounded. A similar result in discrete time can 6e found in [35). We will apply 
this theorem in chapter 4 (cf. lemma 4.1.1.1 ), in order to prove almost sure 
convergence of a family of parameter estimators. However, there X, will be 
nonnegative for all t. 

DEFINITION 2.2.21: Let M be a square integrable martingale. Then X = M2 is 
a submartingale in view of Jensen's inequality. Applying the Doob-Meyer 
decomposition theorem, we see that there exists a unique predictable increasing 
process, which we denote by <M,M>, such that M 2 -<M,M> is again a 
martingale. <M,M> is called the predictable variation process of M. This 
definition easily extends to locally square integrable martingales M. 

ExAMPLE: Let N be a Poisson process with parameter >.. Then one easily cal­
culates that <M,M>, =M. 

DEFINITION 2.2.22: For two locally square integrable martingales X and Y one 
defines the predictable covariation process <X, Y> via the polarization for­
mula: 

<X,Y> = ~[<X+Y,X+Y>-<X,X>-<Y,Y>t 

Then XY - <X, Y> is a martingale. 

REMARK: <X, Y> =O iff XY is martingale. <X, Y> is a process of bounded 
variation. 

Clearly if one drops in the last two definitions the requirement that X and Y 
are locally square integrable, then there is no reason why <X,X > or 
<X, Y > should exist. However one can define another "variation" -process in 
this case. 

DEFINITION 2.2.23: Let X be a local martingale. Then there exist a unique 
optional increasing process, denoted by [X,X], such that 
i) X2 -[X,X] is a local martingale 
ii) d[X,X]=(il')2. 

For two local martingales X and Y, [X, Y] is defined as [X, Y]= 
½{[X + Y,X + Y]-[X,X]-[Y, Y]}. Hence 11[X, Y]=i1[Y,X]=i1X-11Y and 
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XY -[ X, Y] is a local martingale. 

The processes [X, Y],[X,X] are called the optional covariation and optional vari­
ation processes. It is obvious (because of the possible jumps) that they are in 
general not predictable. 

DEFINITION 2.2.24: Let X be a local martingale. 
1) If [X,X] is a purely discontinuous increasing process, we say that Xis a 

purely discontinuous local martingale 
2) If X has continuous paths, then we say that X is a continuous local mar-

tingale. 
One can prove the following theorem. 

THEOREM 2.2.25: Let X be a local martingale. Then there exists a unique decom­
position X = xc + Xd, where xc is a continuous local martingale and Xd is a 
purely discontinuous local martingale. 

REMARIC: Different from the case where we considered increasing processes, 
the paths of Xd are not necessarily piecewise constant. With the aid of this 
theorem one can prove the following relation for any local martingale X: 

[X,X], = <XC,Xc>, + ~(ll'sf-
s.;;1 

Notice that <Xe ,xc > is well defined since any continuous local martingale is 
locally square integrable. Notice also that [X,Xf = <Xc,xc>. 

Furthermore if Xis locally square integrable martingale then both [X,X] and 
<X,X> exist and [X,X]-<X,X>=([X,X]-X2)+(X2 -<X,X>) is a local 
martingale. Stated otherwise, in this case <X,X> is the dual predictable pro­
jection of [X,X]. 

ExAMPLE: Let N be a Poisson process with EN, =N and M, =N,-N. Then 
~[M,M1=(W1)2=W1• Hence [M,M]=N. 

The next thing that we want to do is to define the process [X,X] for a sem­
imartingale X. 

DEFINITION 2.2.26: Let X be a semimartingale and let X1 =XO+ A,+ M, a 
decomposition. In this case the process [X,X] is defined as 

[X,X1 = <Mc,Mc>, + ~((ll'sf 

REMARK: Although the decomposition of X in definition 2.2.26 is not unique, 
the continuous part Mc of M is. This can be shown in the same way as prov-



ing the uniqueness of the decomposition of a special semimartingale. 

ExAMPLE: Let N be a Poisson process, then [N,N]=N. 
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We close this section by giving some rules that enable us to compute [X, Y] for 
arbitrary semimartingales X and Y. If X is a local martingale and Y is a 
predictable process of finite variation, then [X, Y], =l:s..;,AXsAYs. In particu­
lar if Y is continuous, then [X, Y]=O. The same is true if Xis a continuous 
local martingale. If both X and Y are semimartingales of finite variation, then 
again [X, Y1 =l:s._,AX3 AYs. 

2.3. Stochastic integration 
Stochastic integration theory originated by considering integrals of the form 
t 

ffsdWs, where W is a Brownian motion. Then clearly a path by path 
0 
definition as a Stieltjes integral is not possible, since the paths of Brownian 
motion are not of bounded variation. Ito has resolved this problem by 
defining a stochastic integral as an isometry between two Hilbert spaces, which 
is, although rather hidden in the definition that we will give in the sequel, still 
the core of stochastic integration theory. 

t 

Our goal will be to construct stochastic integrals of the form JHsdXs, where 
0 

H is a predictable process and X a semimartingale. Let & be the set of simple 
predictable processes, that is HE & if and only if there exists an increasing 
sequence of stopping times {T11 },T11 foo such that H,=l:11H 11 lcr.<, .. r.+.}, where 
H11 is ~r. -measurable. Let X be a semimartingale. Define the stochastic 
integral of H with respect to X to be the stochastic process H·X with 

(H·X), = ~H11-1(Xr.A,- Xr __ ,A,)-

" 
Then the following theorem holds: 

'THEOREM 2.3.1: Let X be a semimartingale. the map H .... H-X on & admits a 
unique extension as a linear map on the space of all predictable locally bounded 
processes H. This extended map is also called the stochastic integral of H with 
respect to X H· X is a stochmtic process with cadlag paths and we will write 
t 

f H3 dX3 for (H· X),. 
0 

THEOREM 2.3.2: The stochastic integral is a stochastic processes satisfying the fol­
lowing properties 
a) H· Xis a semimartingale 
b) For all locally bounded predictable processes H and K we have 

K-(H·X)=(KH}X 
c) The jumps of H·X are given by A(H·X)=HAX 
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d) If X is a local martingale, then H· X is one too. 
e) If X is of finite variation, then H· X is also of finite variation. 
f) If H is left continuous and of finite variation and X is of finite variation then 

H · X is indistinguishable form an ordinary Stieltjes integral, that can be cal­
culated path by path. 

REMARK: The last property (j) is of interest in the following chapters, where 
all relevant processes are of finite variation. Observe however that this pro­
perty is not evident from the definition of the stochastic integral as a linear 
map. This definition a priori gives no recipe for calculating how to calculate 
(H·X),(w) for each wE'2. 

The next results will be often used. 

THEOREM 2.3.3: Let X and Y be two semimartingales, Hand K locally bounded 
processes. Then [H·X,K-Y]=HK-[X, Yt 

If moreover the relevant predictable processes exist then also 
<H·X,K· Y> =HK·<X, Y>. 

THEOREM 2.3.4: Let X and Y be two semimartingales. Then the stochastic 
integrals X _ · Y and Y _ · X are well defined and 

I I 

X,Y, = XoYo + jXs - dYs + jYs _ dXs + [X,Y],. 
0 0 

This formula will often be used in differential form: 

d(X,Y,) = X,_dY, + Y, _ dX, + d[X,Y], 

and is known as the product formula of stochastic calculus. In theorem 2.3.5 
we will encounter a more general chain rule for "differentiation" of stochastic 
processes. This theorem is the most important rule of stochastic calculus. 

THEOREM 2.3.5: (stochastic differentiation rule): Let X=(X 1 , ••• ,Xn) where 
X 1 , ... ,xn are real valued semi martingales. Let FEC2(Rn ,R). Denote by D; 
differentiation with respect to the i-th component. Then F(X) is a semimartingale 
and 

I n . I I . . 

F(X,) = F(Xo) + j ~ D;F(Xs _ ')d]fs + 2 j~D;D1F(Xs _ ')d[X',Xl]~ 
O i=l O i,j 

+ ~[F(Xs)-F(Xs-) - ~D;F(Xs-)~] 
s,.;;1 

ExAMPLE: If one defines F(x,y)=xy, then theorem 2.3.5 yields the statements 
of theorem 2.3.4. 
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As an application of the stochastic calculus rule we have the following proposi­
tion, originally due to Uvy. 

PRoPosmoN 2.3.6: Let X be a martingale with values in A. X is assumed to 
have continuous paths X o = 0 and [ X, X1 = t. Then X is a Wiener process. 

PROOF: Let u EA. Consider /"X.. From theorem 2.2.4, applied to complex 
valued processes: 

I t 

/UX. = 1 + f /UX. iudXs - ! u2 f eiuX, ds 
0 0 

Hence for v>0: 
t+v t+v 

/u(X.+, -X) = 1 + f /u(X,-X,) iudXs - ! u2 f /u(X, - X,) ds. 

t t 

Take conditional expectations, conditional on~- Then 
t+v 

E[/u(X,+,-X,)l~J = l+E[-!u2 f /u(X, - X,)dsl~i 
t 

Let 

~(s,t) = E[eiu(X,-X,)I~] for s~t, ~(t,t)= 1. 

Then the above equation yields 

I I +v 
~t +v,t)= 1-2 u2 f ~s,{)ds 

t 

or ~(t +v,t)=exp(- ~ u2v), not depending on~- This shows that X, +v - X, is 

independent of ~ and that it has a normal distribution with zero mean and 
variance "· □ 

2.4. Point Processes 
DEFINITION 2.4.1: A point process is a sequence of random variables 
Tn:O➔R+ such that Tn+ 1>Tn on {Tn<oo}. The point process is called non 
explosive if T 00 =lim,,➔00 Tn = oo. With a point process one can associate a 
counting process N:OX[0,oo)➔l\lo by N,=IneNl{r.c;;,}• The point process is 
then non explosive iff N1 < oo a.s. for all t. It is called integrable if 
EN,<oo,Vt. The Tn are the jump times of N. We always assume that N is 
non explosive. 
In order to fit this general definition into the framework that we have used 
before we assume to be given a complete filtered probability space (0, (ff, F ,P) 
and we assume that N is adapted to F, or equivalently that all Tn are stopping 
times. Since evidently N is an increasing locally integrable process its compen­
sator A exists, hence m = N - A is a local martingale. Observe that this result 
also follows from the Doob-Meyer decomposition theorem if N is integrable. 
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From now on we will assume t'1,,• i.ne compensator A of N is absolutely con­
tinuous with respect to Le~;-r 0 oJe-measure. That is: there exists a nonnegative 

I 

progressively measu:,,'.,1e process;\ such that A1 = J;\sds. This process is called 
0 

the intensity pr,• ,.:ss. Of course from the definition of a compensator we have 
that a prog~•-J1vely measurable process ;\:OX [O, oo )-+A + is an intensity of N if 

00 00 

and o..:,·•1 if E f X3 dNs = E f XsAsds, for all nonnegative predictable processes X. 
0 0 

P'..,serve that we wrote an intensity ;\ in the proceeding sentence. Clearly if 
00 

one changes ;\.(w) on a set of Lebesgue measure zero, the integral E f X3 ;\3 ds is 
0 

left unchanged. However we have uniqueness of the intensity in the sense of 
the next proposition. 

PROPOSITION 2.4.2: Let N be a counting process, and assume that it admits an 
intensity process. Then there also exists a predic,Jable intensity process;\_ More­
over this ;\ is unique _in the following sense. If ;\ is another predictable intensity 
process, then ;\ and;\ coincide both P(d,.i)dN1(w) a.e. and ;\1(w)dt a.e. Further­
more Ar. >0 a.s. on {Tn < oo }. 

ExAMPLE: Let { Sk} be an i.i.d. sequence of positive random variables with 
P(Sk;ai,t)=e->.i for some ;\>0. Define Tn =I1Sk. Then {Tn} is a point pro­
cess and its associated counting process is the Poisson process with parameter 
A. As we have seen before N1 - ;\t is a martingale. Therefore ;\ is the intensity 
of N as just defined. This example more or less indicates that there is a con­
nection between the distributions of the Tn (or the Sk) and the intensity of the 
counting process. We have the following precise statement that relates the 
compensator of N to the conditional distributions of the Tn. 

PROPOSITION 2.4.3: Let N be a counting process with jump times { Tn} and com­
pensator A. Then on {Tn~t<Tn+d 

t-r. Fn(dx) 
A1 = Ar. + f F. [ ) 

0 n X, 00 

where Fn is the conditional distribution function of Tn + 1 - Tn given <:fr, and 
Fn[x,oo)= 1-Fn(x) 

But now it is immediately clear when a counting process admits an intensity. 
This is the case if and only if the conditional distributions Fn are absolutely 
continuous with respect to the Lebesgue measure. And in that case we have 
for the predictable intensity ;\ of N. 

;\ l _ fn(t-Tn) 
t (r.<1-.;r,+.} - Fn[t-Tn,OO) l{r,<1-.;r.+.}· 
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b 

where Fn(a,b]= f J,,(x)dx. Although it is in general difficult to characterize 
a 

pre-T a-algebras <:fr, it is relatively easy in the counting process case for 
T=Tn. One can prove that <:fr. =a{T1, ... ,Tn}-

Similarly to Levy's characterization of Brownian motion we have 
Watanabe's characterization of the (inhomogenous) Poisson process. 

PRoPosmoN 2.4.4: Let N be a counting process and ;qo, oo )➔R + a nonnega­, 
tive locally integrable function such that N, - f>,.,(s ')<is= m1 is a martingale. Then 

0 
n is a Poisson process. 

PROOF: We also prove this using theorem 2.3.4. Application of this theorem 
gives 

I 
eiuN,= I+ iufeiuN,_dNs + I[eiuN,_eiuN, _ -iueiuN,_] 

O s<.t 

I 

= I+ f /uN•- (e;" - I)dNs 
0 

I I 

= I+ feiuN,(e;"-I')A(s')ds + J/uN• - (e;"-I')dms 
0 0 

Hence for V ;;;i:o: 

t+v 
E[/"(N,.,-N,)l'J,] = I+ (e;" - l)E[ f eiu(N, - N,)A(s')dsl«J,i 

As in the proof of proposition 2.3.6 we deduce 

E[i"(N,+, -N,) l'J,] 

I +v 
= exp((e;" -1) f A(s')ds), 

I 

I 

which is the characteristic function of a Poisson random variable with parame-
1 +v 

ter f :\(s ')<is and which also shows that N is a process of independent incre­, 
ments. □ 
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2.5. Random Measures 
The results of this section have been taken from JACOD & SHIRYAYEV [9]. Let 
E be an auxiliary space, with separable a-algebra &. In fact E will always be a 
subset of some Rd and & its Borel a-algebra. 

DEFINITION 2.5.1: A random measure on [0,oo)XE is an indexed family 
µ={µ(w,dtXdx):wEO} of positive measures on ([0, oo)XE, Bor[O,oo)X&) 
satisfying µ(w,{0} XE)=O for all wEO. 

N N N 
Introduce O=OX[0, oo)XE and 6=6X&, '5'=_,'5'X&, which are called the 
optional respectively predictable a-algebra Qn 0. Function~ on O are called 
optional, respectively predictaple if they are 0-, respectively '5'-, measurable. If 
Wis an optional function on O such that for all t and all w 

J IW(w,s,x)lµ(w,ds Xdx) 
[0,l) XE 

is finite, then we can define the proces W•µ by 

W*J.L, = f W(w,s,x)µ(w ,ds Xdx). 
[0,l) XE 

If W•µ is an optional process for all optional W, thenµ is called optional. 

N N 

A rapdom measure µ is called '5'-a-finite if there is a partition {An} of 0, 
An E'?J> for all n such that E(IA, •µ) 00 <oo. We have the following result 
( extending proposition 2.2.4). 

THEOREM 2.5.2: Letµ be an optional '5'- a-finite random measure. There exists a 
random measure v, called the dual predictable projection of µ. which is unique up 
to a P-nujl set with the following property: _ 
For all '5'-measurable functions W with I Wl*µEA1"tc we have I Wl*vEA1°tc and 
W•v is the dual predictable projection of W•µ. so W•µ- W•v is a local mar­
tingale. 

ExAMPLE: A rather trivial case is the following. Let A be an increasing pro­
cess. Let E={l}. Define µ(w,dtXdx)=dA,(w~1)(dx)=dA,(w). (Here f(z) is 
the Dirac I!leasure at point z). In Nthis case v is given by the dual predictable 
projection A of A: v(w,dt Xdx)=dA,(w). 

DEFINITION 2.5.3: A random measureµ is called integer valued if 
i) µ(w,{t} XE)~l, VwEO 
ii) µ(·,A)El\lo, for allNA EBor[0,oo)X& 
iii) µ is optional and '5'- a-finite. 
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PRoPosmoN 2.5.4: Let µ. be an integer valued random measure. Then there 
exists a sequence of stopping times { Tn} and an E-valued optional process fJ such 
that f Tn]t\(Tml = 0 for m=/=n and with D = U n1Tnl 

µi,_w,dtXdx) = I lv(w,s~s,P,(..,))(df,dx) 
s>0 

Consequently, if W is a nonnegative optional function, then 

W•P-t = I W(s,/J3)lv(s) = IW(Tn,fJT.)l{T • .;;1}, 
s>0 n 

where we have suppressed the dependence on w. 

The important example of an integer valued random measure is the jump 
measure associated with a cadlag adapted process X:[0,oo)XO-Rd. Here 
E=Rd, &=Bor(Rd) and µ.=µ.Xis defined as 

µ.X(w,dt Xdx) = I l{il,~}f(s,a.x,)(dt Xdx). 
s>0 

In the terminology of proposition 2.5.4 above D = {(t,x):AX,(w)=l=O} and 
/J=AX. We are mainly concerned with quasi-left continuous processes X, that 
is a process such that AXT=O, for all predictable stopping times T. In that 
case we have 

PROPOSITION 2.5.5: Let X be an adapted cadlag process, µ.X its jump measure. 
Then X is quasi-left continuous if and only if there is a version JI of the dual 
predictable projection of µ.X such that v( w, { t} XE)= 0, V w, t. 

ExAMPLE: Let N be a counting process with compensator A. Then we may 
take E={l}, and 

µ.N(w,dt Xdx) = Il{AN,=J}f(s,AN,)(dt Xdx) = 
s 

= IIl{T.(1o>)=s}f{T.(1o>),l}(dt Xdx), 
n s 

where {Tn} is the sequence of j~p times of N. So µ.N(w,[0,t]X{l})=N1• The 
dual predictable projection JI ofµ!" is given by v(w,dt X { I })=dA1(w). It obvi­
ously follows that N is quasi left continuous iff A is continuous. 

2.6 Local Characteristics of Semi Martingales 

2.6.1. Processes with Independent Increments. The local characteristics of a 
semi martingale, to be defined in 2.6.2 can be considered as an extension of 
the characteristics of a process with independent increments. We will see in 
section 3.1.5, that they play an important role in for instance studying weak 
convergence. In order to develop some feeling for what these local characteris­
tics are, we will first briefly discuss the case of a process of independent incre-­
ments. See JACOD [8] for details. 
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Let X be a a process of independent increments and assume that X has no 
fixed discontinuities, meaning that for all t P(AX,=0)=1, X:OX[O,oo)➔Rd. 
Leth be a truncation function, that is, h(x)=x in a neighbourhood of 0, h is 
bounded and h has compact support. We have the following result (Uvy­
Khintchine formula) 

PROPOSITION 2.6.1.1: There exists a unique trzlet (Bh,C,11) where 
Bh:[O,oo)➔Rd is a continuous function, C:[O,oo)➔R xd is continuous and 
C, - Cs ~O for t ~s, " is a positive measure on [O, oo) X Rd (Levy-measure) satis­
fying P([O,oo)X {O})=O, v({t} XRd)=O and jJxJ2 1\1 P([O,t]Xdx)<oo, 'o't~O 
such that 

t - f j(e;,!x_l-iuTh(x))P(dtXdx)} 
sR' 

REMARK I: Observe that we get as a corollary that 

t 

exp(iuTX,-(iuTB; - ~ uT C,u- f j(e;u'x - 1-iuTh(x))v(dr Xdx)) 
OR' 

is a martingale. A similar result will turn out to hold in the case where X is a 
semimartingale. 

REMARK 2: If we had taken another truncation function, h' say, then the rela­
tion between Bh' and Bh is given by Bh' =Bh +(h'-h)•v. 
One can show that there exists an equivalent description of the triplet 
(Bh,C,11). First we need some definitions: 

r, = ~(AXs-h(AXs)), 
s<;t 

,?, = r,-B~ 
C: = c, +hhT .,,, 

PROPOSITION 2.6.1.2: Let X be a process of independent increments, h a trunca­
tion f':!nction. (Bh, C, 11) as defined above is the unique triplet satisfying 

~~ f' ~ a mar!if,'~ale 
u) x'(x')7 -C ,s a martingale 
iii) "i,3 ._,f(AX3 )-f*v, is a martingale for all bounded measurable f that are zero 

in a neighbourhood of zero. 
This last proposition, opens the way to defining the local characteristics of a 
general semimartingale. However we will not discuss this notion in its full gen­
erality, but we will restrict ourselves to semimartingales that are quasi left con­
tinuous. Later on we will confine ourselves to the case that the semimartingales 
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are also locally square integrable. In case EIXtl2 is finite one can show that 
lxl2*Pt<oo. 
Therefore (x -h')(x))*Pt is well defined as well as Bt =B~ +(x -h(x))*Pt and 
Ct =Ct+ XXT *"t· 

In this case proposition 2.6.1.2 reads 

PRoPosmoN 2.6.1.3: Let X be a process with independent increments such that 
EIXl is finite. With the above notation (B,C, P) is the unique triplet satisfying 
i) X - B is a martingale 
ii) (X - B)(X - Bf - C is a martingale 
iii) Is-,;;.,J(!::.Xs)- f*Pt is a martingale for all measurable f such that 

lf(x)l~clxl2 for some cE(0,oo). 

2.6.2 Semimartingales. We will follow the notation previously employed for 
processes with independent increments. Let X be a semi.martingale and let h 
be a truncation function. We make the following assumption 

A 1: Xis a quasi left-continuous process. 
This means that for any increasing sequence of stopping times { Tn} with limit 
T we have on { T < oo} lim ,X T a.s. Then the following holds 

n➔OO 

PROPOSITION 2.6.2.1: There exist a continuous process of finite variation 
Bh:OX[0,oo)➔Rd, B3 =O, a continuous process C:SlX[0,oo)➔Rdxd such that 
Ct(c..,)-Cs(c.,);;a,:O, meaning that Ct(c..,)-Cs(c..,) is nonnegative definite if t~s and 
a predictable random measure P on [0, oo) X Rd such that 
i) P(c..,,{t}XRd)=0, Vt;;a,:O, P(c..,,[0,oo)X{0})=0 

t 

ii) j Jlxl2 /\lP(c..,,dtXdx)<oo satisfying the following properties 
OR' 
i) 4h -:. Bh is q Joca/ martingale _ 
ii) x' (x'l - C is a local martingale, where C: =Ct+ hh T *Pt 
iii) l:s<tg(Axs)-g*Pt is a local martingale for all measurable and bounded 

function g on Rd which are zero in a neighbourhood of zero. 

An alternative way of getting the triplet (Bh, C, P) is the following. Observe 
that Xh is a s~al semimartingale since it has bounded jumps. Let 
.r, =X0 + B~ + Mt be its unique special semimartingale decomposition. Split 
M~ = Mf + M It, where M' is a continuous local martingale and M It a compen­
sated sum of jumps martingale. Hence we get 

Xt = Xo+B~+Mf +M1t+ ~(11Xs-h(11Xs)) 
s<t 

Denote as usual by µ.X the jump measure of X and by P its dual predictable 
projection. Observe that illl 11 =h(l1Xt). Then we can write 

Xt = X 0 +B~+Mf + jh(x)(µ.x([O,t]Xdx)-P([O,t]Xdx)) 
R' 
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+ j(x -h(x))µx([O,t)Xdx) 
R' 

or 

X, = Xo+B~+Mf +h•(µx -p),+(x-h(x))*P, 

Define also C= <Mc,(Mc)7> =[X,Xrf. 
Then one can check that the triplet _(Bh, C, P) is the same as that in proposi­

tj~n 2.6.2.1; similarly the process Ch in proposition 2.6.2.1 is given by 
C =<M\(Mh)7>. 

REMARK: Notice that C and P, in contrast to Ch and Bh , don't depend on the 
specific choice of the truncation function h. 

There is a third way of defining the local characteristics of a semimartingale. 
Let gu(x)=eiurx_I-iuTh(x). Since there exists a constant Cu such that 
lgu(x)l,e;;;;cu(lxl2 td), gu*P is well defined and we can then define the process 
A(u) by A(u),=iuTB~-2 uTC,u+gu*P1• Observe that A(u) does not depend 

on the function h, and that A(u) (in general being predictable and of finite 
variation) is a continuous process under the assumption that Xis quasi left 
continuous. 

PROPOSITION 2.6.2.2: Let X be a cadlag process, X:0X[O, oo)-Rd. Leth be a 
truncation and let (B\C,P) be defined as in 2.6.2.1 and A(u) as defined above. 
Then the following statements are equivalent. 
a) Xis a semimartingale with local characterization (Bh, C, P). 
b) For all uERd, the process M(u):0X[O,oo)-C defined by 

I 

M(u),=exp(iuX,)- j exp(iuX3 _)dA(u)s is a local martingale. 
0 

CoROLLARY 2.6.2.3: If Xis a semimartingale with local characteristics (B\C,P) 
and (Al) holds, then 

exp(iuTX-A(u)) is a local martingale. 

Observe the resemblance of corollary 2.6.2.3, with the remark following propo­
sition 2.6.1.1. Parallel to the case where processes with independent incre­
ments were considered we have the following 

PROPOSITION 2.6.2.3: Assume that the semimartingale X satisfies 
(A2):X is locally square integrable. 
i) Then lxl2*P1<oo a.s. Vt;;;a.O, and Xis a special semimartingale with canoni­

cal decompositi2n X =XO+ B + M where B = Bh + (x -h (x ))*P 
ii) <MT,M>=C=C+(xxT)*P 
iii) Is..; 1g(AX3 )-g*P1 is a local martingale for all measurable g such that 

lg(x)l,e;;;;c1x12. 
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ExAMPLE: Let N be a counting process with intensity process ;\. Th.en the 
I 

above applies with B, = f">-sds, C:=O, P(_dt Xd.x)=;\1dt®£p}(d.x). Or if we 
0 

~ould have taken E = { 1} as the auxiliary space, then we can take 
O=OX[O,oo) and we simply get P(_dt)=;\1dt. 
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3. WEAK CONVERGENCE AND LOCAL ASYMPTOTIC NORMALITY 

3.1 Weak Convergence 
Weak convergence of stochastic processes is a subject in probability theory, 
that equally well can be viewed as a subject belonging to functional analysis. 
To explain this clearly, we have to introduce the relevant vector spaces with 
suitable topologies and the relevant weakly compact subsets. After having done 
this we have to show how we can treat stochastic processes within this frame­
work and we have to present verifiable criteria that are sufficient to ensure 
weak convergence. 

Historically, weak convergence was studied first for sequences of indepen­
dent random variables, later on for stochastic procesess with independent 
increments. 

As announced in section 2.6.1 the local characteristics of a semimartingale 
play an important role in studying weak convergence of a sequence of sem­
imartingales. In order to obtain some insight in this statement, consider first 
the case where the semimartingales are processes of independent increments. In 
this case the characteristics are related to the process via the Levy-Khintchine 
formula, which is in fact a formula for the characteristic function. Clearly it is 
sufficient for finite dimensional convergence of a sequence of semimartingales 
with independent increments that the corresponding characteristic functions 
converge, which condition can then be formulated in terms of convergence of 
the corresponding characteristics. Hence one may anticipate similar conditions 
(although of course more restrictive) on the local characteristics of the sem­
imartingales that ensure weak convergence of the sequence under considera­
tion. This is partly attributable to the analogy of the results of propositions 
2.6.1 and 2.6.2.3. 

Before we arrive at these results, we will briefly review some basic facts on 
weak convergence of general stochastic processes. Relevant references for this 
chapter are unless others are mentioned, LIPTSER and SHIRYAYEV [29), JACOD 
and SHIRYAYEV [8] or, JACOD [18) and BILLINGSLEY [2). 

3.1.1 General Concepts. Let B be a real Banach space, with norm IHI. The dual 
space B' is the vector space of all continuous linear functionals on B with 
norm 

IIAII = sup{jAxl :xEB, llxll~l}, AeB'. 

The weak topology on B is defined by the neighbourhoods of zero of the form 

v(,n = {xEB:jA;xl<t:, A;EB', i=I, ... ,n} , 

or equivalently by saying that a sequence {xn} CB converges to xeB iff 
Axn➔Ax, for all A EB'. 

The weak •-topology on B' is defined by the neighbourhoods of zero of the 
form 
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u,,n = {AEB':1Ax;I<£, X;EB, i=l, ... ,n} 

REMARK: If Bis separable, the weak •-topology on B' is metrizable. 

DEFINITION 3.1.1.1: A subset E is called weakly compact if it is compact for 
the weak topology on B. 

A subset E in B is called weakly sequentially compact if every sequence in E 
has a weakly convergent subsequence with limit in E. 

PROPOSITION 3.1.1.2: If K is a weakly compact set of a separable Banach space, 
then it is also weakly sequentially compact. 

The usual setup for weak convergence in probability theory is the following. 
Consider a metric space S, with its Borel a-algebra~. Let P,Pn, n = 1,2, ... be a 
family of probability measures or (S, ~). Clearly each P,Pn can be considered 
as a continuous linear functional on Cb(S), the space of bounded continuous 
functions on S, via Pf= fsfdP. Then 11.fll = sup {lf(x)l:xES} makes Cb(S) a 
Banach space that plays the role of B in the preceding paragraphs and 
IPfl~ll.fll, so indeed PECb(S)'. Observe that IIPll=l, for all probabilities P. 
The situation in which we are interested is that of stochastic processes. A sto­
chastic process X:{}X[O,oo)-+Rd can be viewed as a random variable 
X:{l-+(R0)'0,00>. In order to apply the preceding definitions we have to turn 
(Rd)IO,oo) into a metric space. Of course the space (Rd)IO,oo) is too large for this. 
Since we assumed that all of the stochastic processes have cadlag paths, we 
replace (Rd)IO, 00 > with Dd[O, oo ), by definition the space of cadlag functions 
from [0,oo) into Rd. The next point is to metrize D[0,oo). This will be done 
by means of the so called Skorokhod metric to be defined below. It should be 
noticed here that weak convergence problems considerably simplify if the 
processes under consideration have continuous paths. We will give some 
results for the case where indeed the paths X(w) belong to Cd[0,oo), the space 
of continuous functions from [0, oo) into Rd. The results for Dd[O, oo )-valued 
random variables will then be seen to be close in formulation to this case. For 
the particular applications we are interested in, we can even restrict ourselves 
to studying weak convergence of stochastic processes with paths in Dd[O, 1] or 
Cd[0, I], the space of cadlag (respectively continuous) functions from [0, I] into 
Rd. 

DEFINITION 3.1.1.3: Let P,Pn, n=l,2, ... be probability measures on (S,~). The 
sequence {Pn} is said to converge weakly to P if Pnf-+Pf, for all fECb(S). 
Notation: Pn~P. 

Obviously, this fits in the general framework outlined above by taking 
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DEFINITION 3.1.1.4: Let for each n Xn:(0,'if,P)➔(S,~) be a random variable. 
Then we say that { X,,} converges weakly to a random variable 
X:(O, 'if,P)➔(S,~) if the induced probability measures P" =PX;; 1 on {S,~) con-

verge weakly to px- 1• Notation x,,4x. 

The plan of attack in proving weak convergence in usually as follows. Firstly 
one shows that a sequence of probability measures is weakly compact. 
Secondly it is shown that the set of limit points is a singleton. This second 
point can be checked by considering finite dimensional distributions, and it 
turns out that the first step is the difficult part. A theorem by Prokhorov gives 
an equivalent formulation for relative compactness. First we need a definition. 

DEFINITION 3.1.1.5: 
1) A family IT of probability measures on (S,~) is said to be tight if 'v£>0 

there exists a compact subset K of S such that P(K);;;;.1-£, VPEIT. 
2) A sequence of random variables { Xn }, Xn :O➔S will be called tight iff the 

induced sequence of probability measures {Pn}, Pn=PX;; 1 on (S,~) is 
tight. 

THEOREM 3.1.1.6: A set IT of probability measures on (S, ~) is weakly compact if 
and only it is tight. 

3.1.2 Weak convergence in Cd[O, 1). We first make Cd[O, 1) a Banach space by 
defining for fECd[0,1] the norm llfll=sup{lf(x)l:xE[0,1]}. Next we define for 
fECd[O, 1) its modulus of continuity W/8) by 

W/8) = sup{lf(t)-f(s)I: t,sE[0,1], lt-sl~8}. 

and for any interval J C[O, 1) 

W/I)=sup{lf(t)-f(s)l:t,sEI} 

In order to check the tightness condition of theorem 3.1.1.6 we need a charac­
terization of the compact sets in Cd[O, 1 ]. This is given by the Arzela-Ascoli 
theorem. 

PROPOSITION 3.1.2.1: A subset K of Cd[O, l) is relatively compact ifJ 
i) sup{lf(O)l:fEK}<oo 
ii) lima➔o sup{W/8):JEK}=O. 

We are now in the position to state what tightness in Cd[O, 1) means. 

PROPOSITION 3.1.2.2: A sequence {P,,} of probability measures on Cd[O,l] is 
tight if! 
i) 'v'IJ>O: 3a>O such that supPn{x ECd[O, l]:lx(O)l>a }os;;;'IJ 

n 
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ii) 'V£;r1>0: 38E(0, 1),no EN: supPn{x ECd[0, l]:wx(8);;;;i,£ },s,;;;71 
n>n0 

3.1.3 Weak convergence in Dd[0, 1]. In order to apply Prokhorov's characteri­
zation of weak compactness, we first have to make Dd[0, 1] a separable metric 
space. This will be done via Skorokhod's topology. One of the requirements 
of a topology on Dd[0, l] is that the relative topology on Cd[0, l] induced by it, 
should coincide with the norm-topology. Indeed Skorokhod's topology fulfills 
this requirement. Let us introduce some terminology. A time change on (0, l] 
is a strictly increasing continuous function A:[0, l]-(0, l] with A(0)=0, A(l)= 1. 
The set of time changes is denoted by A. 

DEFINITION 3.1.3.1: The Skorokhod topology is the topology defined by the fol­
lowing convergence concept. Let a, an EDd[0, 1 ], 'Vn. Then an-a if there exist 
a sequence {An} of time changes on (0, 1] such that 
i) sup{IAn(t)-tl:tE[0,11}-o for n-oo 
ii) sup{lan(An(t))-a(t)l:tE(0, 11}-o, for n-oo 

PROPOSITION 3.1.3.2: Let a,,BEDd[0, l]. The function d:Dd[0, l] XDd[0, l]-R+ 
given by 

d(a,P) = inj{c3AEA: sup{logA(t)-A(s) :t=,6:s},s,;;;£, 
t-s 

sup{la(A(t))-,B(t)I :t E[0, 11} ,s,;;;£} 

defines a metric on Dd[0, 1] that induces the Skorokhod topology, and for which 
Dd[0, 1] is a separable metric space. 

Checking whether a sequence {an} cDd[0, 1] converges to a function a ED may 
be a complicated task. However in some special situations it is easy to verify 
whether this is the case. 

PROPOSITION 3.1.3.3: Let a,an be increasing functions in Dd[0, 1] with 
an(0)=a(0)=0 'in and assume that a is a continuous function. There is 
equivalence between the following three statements. 
i) an-a for the Skorokhod topology 
ii) an-a uniformly on (0, 1] 
iii) an(t)-a(t) for a/1 t E[0, Ii 

It turns out that there exists an Arzela-Ascoli type theorem for (Dd[0, 11). 
Therefore we need an extension of the modulus of continuity as defined for 
continuous functions. Define w! (8)=inf{ max wx[ti - J, ti)} , where the infimum 

O<i._, 
is taken over all partitions { ti} satisfying 0 = t0 < · · · <t, = 1, and 
inf I ti - ti - 1 I ;;;;i,8. 

PROPOSITION 3.1.3.4: A subset K of Dd(0, 1] is relatively compact iff 
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i) SUP SUP jx(t)j<oo 
xe):° le[{t,l] 

ii) fun supw!(c5)=O. 
6➔0 xe):° 

Via proposition 3.1.3.4 we arrive, similarly to the situation in Cd[O, I], at a cri-
terion for tightness in Dd[O, I]. 

PROPOSITION 3.1.3.5: A sequence {Pn} is tight i/f 
i) for all t:>O,3a>O such that supPn{supjx(t)j>a}~t: 

n I 
ii) Vt:;q>O:3c5>O,3n0 EN such that supPn(w!(c5);;a,.,1)~t'.. 

n>ti0 

The following result, which will be convenient later on, is now intuitively clear. 
(In fact one only has to check tightness of the Z" below) 

PROPOSITION 3.1.3.6: Assume that xn4x and that supjY;j4o (hence in 
s<t 

probability) then Z" =X" + yn.4 X 

The cases that will be of interest to us are the ones in which the funiting meas­
ures are concentrated on Cd[O, I]. A sequence satisfying this property is called 
C-tight. In this case we can replace proposition 3.1.3.5 with 

PROPOSITION 3.1.3.7: The following statements are equivalent. 
i) the sequence { X"} is C-tight 
ii) condition 3.1.3.5 (i) holds and Vt:;q>O:3n0 EN,c5>O such that 

P"(wr(c5);a,T/)~t: for n;,.no 

iii) the sequence {X"} is tight and'vt:>0 we have 

liinP"(supjL\r,j>t:)=O. 
n➔OO I 

The verification of the second criterion of proposition 3.1.3.5 may be difficult 
since it involves the calculation of (w.\,- (c5)). The following lemma gives a 
sufficient condition in terms of stopping times. Assume that each X" is 
adapted to a filtration P(={'57he[0,1]) and let T" be the set of P-stopping 
times. 

LEMMA 3.1.3.8: JfVNEN,Vt:>O,Vri>O:3n0EN,c5>O such that 

n;,.no~ sup{P"(l..ri--rs1>ri):S,TET",IS-Tl~c5}~t'. 

Then VNEN,t:>0,ri>0:3n 0 EN,c5>0 such that 

n ;;.no~P"(w.\,- (c5)>ri)~t:. 

This lemma is particularly useful if we consider the case where the X"'s are 
P-martingales, that are locally square integrable. First we state an auxiliary 
result. 
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LEMMA 3.1.3.9 (Leng/art's inequality): Let X be a stochastic process adapted to a 
filtration F = {§; h e[O,IJ· Let A be a F-predictab/e increasing process, such that for 
all F-stopping times Tone has EIXrlE;;;EAr. Then for all £,11>0 and all stopping 
times T 

COROLLARY 3.1.3.10: Let X be a locally square integrable martingale. Let 
A ="2.j<Xj,Xj>. Then EIXrl2 E;;;EAr by Fatou's lemma and 

P(J~Xsl;;;i.£)E;;;7 + P(Ar~1J). 

It is now very easy to derive a tightness condition for locally square integrable 
martingales: 

THEOREM 3.1.3.11: Let { xn} be a sequence of locally square integrable mar­
tingales and assume that X3 =Ofor all n. Then {Xn} is tight if {An} is C-tight, 
where An ="2.i<Xnj,xnj>. 

It is also easy to provide a sufficient condition for C-tightness of the sequence 
{An} as defined in corollary 3.1.3.10. 

PROPOSITION 3.1.3.12: Let {An} be a sequence of increasing processes. Suppose 

that A 7 4 f(t1 where f is a continuous deterministic function. Then {An} is 

C-tight. 

In general it is difficult to check the hypotheses for tightness as given in propo­
sitions 3.1.3.5,7, since they require knowledge of the distributions of the 
involved stochastic processes. Our aim is therefore to formulate sufficient con­
ditions that ensure the necessary and sufficient condition for tightness. It turns 
out that the local characteristics are useful when we consider the case where 
the sequence of processes { Xn} is a sequence of semimartingales. The idea 
behind this is motivated by the case where in addition { Xn} is a sequence of 
processes with independent increments, since in this case the distribution of 
each of the Xn is completely characterized by the corresponding characteristics. 
However let us remark that in the case where we deal with weak convergence 
of stochastic processes there is no equivalent description in terms of charac­
teristic functions as in the case where all Xn 's take their values in some finite 
dimensional Euclidean space. See BILLINGSLEY [2] for examples. It is indeed 
this lack of anal~ that leads to studying tightness of a family of distributions 
on Cd[O, I] or D [O, 1 ). On the other hand if one is only interested in conver­
gence of the finite dimensional distributions, such an analogy indeed exists. 
Motivated by this brief explanation above we first give some results for 
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processes with independent increments. 

3.1.4 Weak convergence of processes with independent increments. In view of 
proposition 2.6.1 it is easy to give conditions on the characteristics of the 
processes under consideration that are equivalent to converging of X'l to X, in 
distribution for each t. Since weak convergence of the sequence { xn} deals 
with the whole paths one anticipates conditions on the characteristics that also 
involve the whole trajectories. Here is the result. 

THEOREM 3.1.4.1 : ut {Xn},X be processes with independent increments without 
fixed discontinuities, and ha truncation function. ut (Bh,n,cn,il') and (Bh,C,v) 

be the corresponding characteristics. Then xn 4 X is equivalent to the following 

set of conditions 
i) suRIB~•n - B~ l-+0 

10, I -;J, n -;Ji 
ii) suol<.:,' -c.;, 1-+0 

[O, t] 

iii) suolf•(il' -v)1 l-+0, for every bounded continuous 
[O, t) 

function f :Rd-+R +, which is zero in a neighbourhood of zero. 

REMARKS: One can show that these conditions may be reformulated in terms 
of convergence for the Skorokhod topology. 

In the proof of theorem 3.1.4.1 its conditions are mainly used to prove tight­
ness. The fact that the law of Xis completely determined by (B ,C,v) com­
pletes the proof. 

PROPOSITION 3.1.4.2: Condition ii) and iii) of theorem 3.1.3.1 are equivalent with 
respecJively ~ 
ii) c;,n -+C:, \ft;;a.O 
iii) f•v7-+f*v1, \ft;;a.O and for all f:Rd-+R+, which are continuous, bounded 

and zero in a neighbourhood of 0. 
This proposition immediately follows from proposition 3.1.3.3 since the func­
tions that we consider are increasing and have continuous limits. We also 
have as an immediate consequence from the continuity theorem for charac­
teristic functions 

COROLLARY 3.1.4.3: Suppose that the processes with ind'f!.endent increments 

{ xn} ,X have no fixed discontinuities and suppose that X'l ~ X,, for all t ;;a.O. 

Then xn 4 X if and only if suolB~·n - B~ l-+0. 
[O,t) 
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3.1.5 Weak convergence of semimartingales to a process with independent incre­
ments. Let { xn} be a sequence of semi.martingales. Each xn is defined on a 
complete filtered probability space (D", 6J' ,F" ,Pn). In addition we assume that 
each xn satisfies condition Al of section 2.6.2. Denote by (Bn ,cn,il') the 
corresponding local characteristics. X is supposed to be a process with 
independent increments without fixed discontinuities that has characteristics 
(B,e,11). 

The next theorem 3.1.5.1 parallels to a certain extent theorem 3.1.3.1 in that 
the given conditions are similar but only sufficient, and that the convergence 
takes place in distribution and thus in measure since the limiting processes are 
deterministic. 

THEOREM 3.1.5.1 : Under the assumptions presented above we have xn 4 X if 

each of the next conditions is satisfied. 

i) 1~IB~·n-B714o 

ii) c;,n4c; , VtE[O,l] 

iii) f*1174 f*11,, for all continuous bounded functions f which are zero in a 

neighbourhood of zero. 
By specialization to the case where the semi.martingales and the limiting pro­
cess are locally square integrable we obtain 

PROPOSITION 3.1.5.2: xn4x ifwe have (iii) of theorem 2.7.6.1 and 

i) 1~1B7-B,l40 

ii) c';4c,, VtE[O,l] 

iii) lim limsupPn(IXl2 Ioxl>b} •117>t:)=O, Vt:>0, VtE[O, 1) 
bfoo n ~ 

where as l!,SUal Bn = Bh,n + (x -h (x ))*ii' and en= en+ xx T *117 and likewise 
for Band C. 

Further specializing to the case where X is a continuous process with indepen­
dent increments and characteristics (B,e ,O), we get 

PROPOSffiON 3.1.5.3: xn4x if 

i) lxl2 Ioxl>f}*11740, \ft,t:>0 

ii) 1~1B7-B,l40. 

iii) c'; 4c,, \ft>O. 

In the particular case that we deal with locally square integrable martingales 
proposition 3.1.5.3 reads 
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PRoPosmoN 3.1.5.4: Let { xn} be a sequence of locally square integrable mar­
tingales, R-valued, and X a continuous Gaussian martingale with characteristics 

(0, C, 0). Then xn 4 X if 

i) lxl2l{lxl>t}*vf4o 

ii) i!;4c,, \ft>0. 

REMARK I: Condition i) is also known as "strong asymptotic rarefaction of the 
jumps of the second type", see [34). Both proposition 3.1.5.3 and proposition 
3.1.5.4 are known under the name "functional central limit theorem" for 
( semi)martingales. 

REMARK 2: The sufficient conditions in the above propositions and theorems 
that involve the third characteristic are easily verified in the case that 
sup, l~.r, I ~cn, \fn, where the deterministic sequence { Cn} tends to zero. 

REMARK 3: Of course the limiting process X is a Brownian motion if C, = t. 
REMARK 4: condition 3.1.5.4 i) implies that l{lxl'>t} •v74o. 

In LIPTSTER & SHIRYAYEV [29) it has been proved that this last property is 

equivalent to suolax;l~O. Therefore in view of propositions 3.1.3.7 and 
s<t 

3.1.3.11 one sees that conditions 3.1.5.4 i) and ii) imply that the sequence { xn} 
is C-tight. 
The convergence in condition 3. l.5.4(i) takes place in probability. If we 
replace it with the stronger condition that convergence holds in L 1, then we 
get Lindeberg's condition: 

Elxl2 l{lxl>t} *Pf-o. 
Observe that 

Elxl2I(lxl>t}*v7 = Elxl2l(lxl>t}*µ7 = 
= E~lax;l21 {1.u!l>t}, 

s<t 

which enables us to formulate sufficient conditions for weak convergence 
directly in terms of the jumps of xn. 

It may turn out to be convenient to work with other sufficient conditions. 
Some of these are listed below. The statement in the next proposition is obvi­
ous. Nevertheless we give the proof, since this proposition cannot be found in 
the standard references. 

PROPOSITION 3.1.5.5: Condition 3.l.5.3(i) is implied by lxl2+a•v74o, for some 

a>0. 
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PROOF: Observe first that lxl2+a l{JxJ>(} *P7 ~~+a l{lxJ>(} *v7. Application of 

this and Holder's inequality (with p = -
2 

2 ,q = -
2 

a ) yields 
+a +a 
2 a 

lxl2 l{lxJ>(} *v7,s;;;(lxl2+a*P7} 2+a (l{lxl>(} *P7) 2+a ,s;;; 
2 a 

,;;;;£-"(lxl2+"*v7) 2+a (lxl2+"*v7) 2+a 

□ 
U we replace the convergence in proposition 3.1.5.5 by L 1-convergence, we get 
Lyapunov's condition: 

Elxl2+"*v7➔0 

As above this condition can be reformulated in terms of the jumps of the xn 
as follows: 

s,c;;;1 

Parallel to proposition 3.1.5.5, one can show (see [46] for a different proof) 
that Lyapunov's condition implies Lindeberg's condition. The advantage of 
both these conditions is the fact that it is sometimes comparatively simple to 
compute expectations. 

3.1.6. In this subsection we discuss some other forms of the central limit 
theorem. The difference with previous sections is that we work with a single 
semimartingale and study the asymptotic behaviour as t tends to infinity. In 
the literature, see for example [26,28] self contained proofs have been given for 
the results below. Here we will embed these into the framework that has been 
used throughout this chapter, thus giving alternative proofs. The raison d'etre 
of this section is its use in determining the asymptotic distribution of certain 
recursive estimators that play a role in sections 4.2 and 4.3. First we present 
after some introductory notation and definitions the result of [26]. Let µ be an 
integer valued random measl!!e and v its dual predictable projection. Let f be 
a measureable function on O ( see the terminology of section 2.5) such that 
VT~O: 

T 

f Jlf(t,x)l2(µ-vXdtXdx)<O a.s. 
OR' 

Then the following process f is well defined: 

I 

r, = f fJ(s,xXµ-vXdsXdx). 
OR' 

In [26) the following result can be found. 
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PROPOSITION 3.1.6.1: Assume that there exists a function g :[O, oo )-[O, oo) such 
that g(t)-oo for t-oo with 

T 

i) limg(1T 2 f jf(t,x)ll(_dtXdx)41 
T--+oo OR 

T 

ii) limg(T)-(2+a)Ej/lf(t,x)l2+ap(_dtXdx) = 0,forsomea>0 
T--+oo OR 

Then g(t)- 1f,4N(O, 1) as 1-00, where N(O, 1) denotes a standard Gaussian 

random variable. 

PROOF: We have to show that for all sequences bn with bn-oo the random 
variable r b. has a distribution which is asymptotically normal with parameter 
(O,g(bn)2 ). Define an= g(bn)2. Without loss of generality we can assume that g 
is strictly increasing. Hence its inverse h is well defined. Let t E [O, 1] and 
define 

h(...;;;:1) 

f /f(s,x)(p.-,,Xds Xdx). 
0 z 

Let '!J'/ ='%c...;;;:,), then Mn is P-adapted. We will now show that Mn satisfies 
the Lyapunov condition. 

l:1Mf = . ~ /f(h(ya;t),x)(p.-,,X{h(ya;t)}Xdx) 
van z 

Because µ( { ( ya; t)}) is in fact a Dirac measure for each w on Rd, concen­
trated on some point z =z(ant,w) [8], we have 

1~12+a = a;l-a/2 /lf(h(y;;;t),x)l2+a(µ-pX{h(y;;;t)} Xdx) 
z 

Hence 

h(...;;;:1) 

~ll:1M;l2+a = a;l-a/2 f /lf(s,x)l2+aµ (dsXdx) 
s<.t O z 

Since µ - ,, is a local martingale measure 

h(...;;;:1) 

E~ll:1M;l2+a = a;l-al2E j /lf(s,x)2+ap(_ds Xdx) = 
s<.t O z 

h(v'ii:) 

~a; 1-a12 E j /lf(s,x)l2+ap(_dsXdx) = 
0 z 

h(y;;:) 

= (g(h(y;;;)))-2-a E f Jlf(s,x)l2+ap(_dsXdx)-o 
0 z 

by assumption (ii). So a fortiori the sequence {Mn} satisfies assumption 3.1.5.4 
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(i). We proceed to investigate the process <Mn>. A simple calculation gives 

h(,ra:1) 

<Mn>,= -
1 f Jlf(s,x)l2 P(_dsXdx) = 

an O z 

l h(,ra:1) 

= t -J;: f Jlf(s,x)l2 P(_ds Xdx)➔t 
(g(h an 1)))2 o z 

in probability by assumption i). 
We are now in the position to apply proposition 3.1.5.4 and we conclude that 

Mn 4 W, where W is a standard brownian motion. In particular 

or 

e M'l ~N(O,l) 

1 
y;;; 

h(yc;:) z (:, 

j jJ(s,xXµ.-p)(ds Xdx) ~N(O, I) 
0 

which gives us the desired result by definition of an . 

Corresponding to proposition 3.1.5.4 we have in this context the following 

PROPOSITION 3.1.6.2: Assume that there exists a function g :[O, oo )➔g[O, oo) such 
that g(t)➔oo as t➔oo and 

T 

i) g(7T2 f Jlf(s,x)l2 P(_dsXdx) 41 
o.p' 

ii) g(Tr2 f Jlf(s,x)l2 1{l/{s,x)l>•g<n)P(_dsXdx) 4o 
OR' 

Then g(T)- 1fr 4N(O,l). 

PROOF: As in the proof of proposition 3.1.6.1, we define a sequence of local 
martingales Mn by 

l h(yc;:1) 

M'; = _ ~ f jJ(s,xXµ.-p)(ds Xdx). 
Van O A' 

Again we see that <Mn>,4t, for fixed t. Next we need to verify that 

3.l.5.4i holds. We get 

~ 1~121 0AM;l-"•l 
s-..1 
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· µ({h(~s)}Xd.x) 

Hence the strong asymptotic rarefaction of jumps property in this case 
becomes: 

Now this integral in less than 

1 b. 

--~ J /lf(s,x)l2 I{l/ts,x)>tg(b.))P(dS' Xdx), 
g(bn1 o 

by definition of an. Indeed this quantity tends to zero in probability by 
assumption. 

REMARK: Observe that proposition 3.1.6.1 is a special case of proposition 
3.1.6.2 in view of the relation between the conditions (ii) in both propositions. 

Of particular interest for us is the case where the random measure µ is in fact 
a counting process n, and its compensator "is of the form P(dt )="'A.,dt. In this 

t 

case we have f, = jfs(dns - "'A.sdS') and proposition 3.1.6.2 reads as follows: 
0 

PROPOSITION 3.1.6.3: Assume that there exists a function g :[O, oo )➔[O, oo) such 
that g(t)➔oo as t➔oo and 

t 

i) g(t)- 2 jJ;As<LS' 41. 
0 
t 

ii) g(t) - 2 jJ;l{lf.l>tg(t)JdS' 4o. 
0 

I e 
Then g(t)- 1 jfs(dns -XsdS') ~N(O, 1). 

0 
It is indeed this type of central limit theorem that will be used in sections 4.2 
and 4.3 to obtain the asymptotic distribution of certain recursive estimators. 
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3.2 Likelihood Ratios and local asymptotic normality 
In this section we discuss what is called local asymptotic normality (LAN) for 
counting processes. This LAN property is a special case of what is known as 
contiguity for two sequences of probability measures. First we spend a few 
words on the situation where the probabilities are concentrated on a finite 
dimensional space. This discussion facilitates the understanding of the 
relevant definition for the case when we deal with a sequence of stochastic 
processes. The raison d'etre of this section partly lies in the fact that we use 
some of the results in chapter 4. 
Consider a sequence of binary experiments (On,'?!' ,P1 ,P8 ), each Pf being a 
probability measure on (On,'?!'). the sequences { P1} and { P8} are said to be 
contiguous if for all An E'?f, 

1im P1 (An)=~ lim P8 (An)=O 
n➔oo n➔oo 

Think now of P1 and P8 as two alternative distributions of a random vector 
xn :On -+Rk. So the Pf are now defined on (Rk ,Bor(Rk)). Let pf be the 
corresponding densities with respect to some dominating a-finite measure and 
assume that for each n P1 ~PS. In this case one has the following result, 
known as Le Cam's first lemma [7]. 

p1 
PRoPosmoN 3.2.1: Denote by e2 the law of log- under PS. { P8 } and { P1 } 

p8 
are contiguous if and only if the sequence { e2} is weakly compact and each limit 
point e satisfies 

f exp(y )e( cry) = 1. 
R 

COROLLARY 3.2.2: Suppose that e2 converges to a normal N(p.,a2) distribution. 
Then {P1} and {P8} are contiguous if!µ= - ~ a2 . 

This corollary makes the next definition of a specific case of contiguity under­
standable. Let { P3) be a sequence of probability measures indexed by a 
parameter 8 E 0 CR . Think of P3 being the law of a random vector 
xn:on-+Rk . Let 80 play the role of the "true" parameter and let uERd. Let 
{Mn} be a sequence of matrices in Rdxd such that Mn -+0 and define 
fl' =80 + Mnu. We will assume that 80 Elnt0 and therefore that fl' E0 for all 
n. Denote by P8 the probability P3

0 
and by P1 the probability P3 for 8 =fl'. 

Define zn to be the sequence of likelihood ratios 

dP1 
zn = zn(u) = --· 

dP8 

DEFINITION 3.2.3: The family of measures { P3} is called locally asymptotically 
normal (LAN) at 80 , with normalizing sequence {Mn} if zn admits the 
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representation 
1 zn = exp(uTan- 2 uTu + rn), 

where the an are random variables that converge weakly to a standard Gaus­
sian random variable a under the sequence { P8 } and lim P3 (lrn I >8) = 0, 
V8>0. 

REMARK: 
1 Observe that E(uTa- ~uTu) = -~uTu and Var(uTa- ~uTu)=uTu, 

which corresponds to the situation described in corollary 3.2.2. 
2 Of course we may replace the discrete parameter n, above by a continuous 

one. 

Now we will turn to the case where we are dealing with stochastic processes 
instead of finite dimensional random variables. Suppose that we have a 
sequence of stochastic processes xn , each of which is defined on a space 
(O",?J!,FN) and suppose that the time set is [0, 1), and assume that 
xn ED[0, 1 f. Denote by P3 the law of xn on D[0, 1 f , where as before the 
parameter () is taken from a set 0 c Rd. With the same notation as before, 
define 

fr = 80 + Mnu, P3 = P3
0 

and P7 to be P3 for ()=fr . 

Assume that P7 <<P3 and define the likelihood ratio process Z7 to be the 
Radon-Nikodym derivative of P7 with respect to P3, restricted to 6Jl. 

DEFINITION 3.2.4: The family of measures { P3 } is called locally asymptotically 
normal at 80 with normalizing sequence {Mn} if zn admits the representation 

1 Z7 = exp(uTM- 2 uT <W>,u + ,7). 

Here {an} is a sequence of P-adapted stochastic processes such that 

an e(PS) > W, where the weak convergence to the Gaussian martingale W with 

quadratic variation < W > takes place relative to the sequence { P3 } and 

P3(suol~l>t)➔O. 
s<t 

REMARK: Observe that in definition 3.2.4 

e(P3) 1 
logZn >uTW-2 uT <W>u. 

Furthermore by taking t = 1 we get Z? = exp( u TA 7 - ~ u Tu + r?) and 

a7 e(PS) ➔N(0,J), 

thus we are back in the situation of definition 3.2.3. 
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The point is now to identify for a given sequence { xn ,P3} the processes !!:.n 
and the normalizing sequence Mn as well as the likelihood ratio process zn 
itself. This problem will be treated in subsequent sections for the case where 
the xn are counting processes. Although we will not fully exploit the LAN 
property in the sense that we will not discuss asymptotic properties of (off-line) 
maximum likelihood estimators, we remark that establishing LAN is important 
for proving consistency and asymptotic normality. In a general context the 
reader is referred to IBRAGIMOV and KHASMINSKII (7) and for counting 
processes for instance to KUTOYANTS [23,24] or LIN'KOV [27). The heuristic 
idea is however simple enough to present. Suppose that one works with a sin­
gle counting process N defined on [O, oo ), and suppose that an unknown 
parameter 0, entering in the intensity process, is to be estimated. In this case 
one usually establishes LAN as an asymptotic property for 1-00. If LAN 
holds for the likelihood ratio z, with a normalizing sequence M(t) we have 

dP,, 
with II =00 + M(t)u for Z, = dP the representation 

o. 
I z, = exp(uT !!:.,- 2 uT u + r,) 

By ignoring the remainder term r we have for the maximum likelihood estima­
tor of ~o in terms of u: u, = !!:., and hence the "real" maximum likelihood esti­
mator O, should then be approximately equal to 

Oo + M(t)u, = Oo + M(t)!!:.,. 
A A 

Hence 0,-00 RjM(t)!!:.,, which tends to zero in P 80 probability and 0,-00 is 
asymptotically distributed as a normal N(O,M(t)2) random variable. Similar 
properties are desired for recursive estimators to be treated in chapter 4. The 
analysis of their asymptotic behaviour as presented later on differs consider­
ably from what can be done for "off-line" estimators, since it is often not clear 
what the minimizing criterion is, in contrast with eg. maximum likelihood esti­
mation. However a clever interpretation of the form z, at least offers a way to 
guess a possible recursive algorithm that generates estimators with good 
asymptotic properties. 

In studying LAN for counting processes, we use proposition 3.2.5 below. 
Suppose that a counting process N on (0, '?f,F ,P 0) admits an intensity process 
A. Let m, = N, - f bAsds, m is a local martingale. Let p be another nonnegative 
predictable process such that 

I 

f (Ps -1 )Asds is a.s. finite for all t. 
0 

Then X defined by X, = fb(Ps - l)dms is again a local martingale. Let Z be the 
solution of the Doleans equation dZ, = Z, _ dX,, Z O = I. Then 
Z, = exp(/b log PsdNs - /b(Ps - l)Asds), and Z is a nonnegative local mar­
tingale. Assume that EZ 1 = I. It is known (37), that we can define another 
measure P I on (0, <5) such that of each t the restriction of P I to '?J; is 
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absolutely continuous with respect to the restriction of Po to the same qr,, and 
the Radon-Nikodym derivative on qr, equals 2 1• The next proposition is a spe­
cial case of a result in [37). 

PROPOSITION 3.2.5: Under P 1, N has the intensity p">.. 

PROOF: Define m I by m] =m, - Jb(Ps - l')A3 ds =N, - JbPsAsds. We will prove 
that m I is a local martingale under P 1 • Consider first the process m I Z. By 
the stochastic calculus rule 

d(m 1 Z), = m]_dz,_ + Z,-dm] + d[m 1 ,Z]1 

= m]_Z,_dX1 + z,_dm1-Z1(p1 - l')A,dt + Z,-d[m,X], 

= m]_Z,_dX, + z,_dm, + Z 1 _(p1 -l)[dN1 ->..1dt] 

= m]_Z,-dX, + z,_p,dm1• 

Hence we see that m I Z is local martingale under PO• Let { Tn} be a sequence 
of stopping times such that both {mL\T,ZiAr.} and {Z,Ar.} are martingales 
under P 0 • Write E; for the expectation under the measure P;. Then 

Eo[mll\r,Z,l\r, l'ffs] 
E1[m]l\r, 1/ffs] = ------- = ms l\ T,- □ 

Eo[Z,Ar, 1/ffs) 

In the sequel we always assume that, whenever there are two probabilities P 0 
and P I involved, the latter is an absolutely continuous transformation of the 
first. This is of course a restriction, but not too serious, if one accepts the idea 
behind the following example. Let (n, GJ,P) be a probability space with_ a _stan­
dard Poisson process N defined on it, and 'ff o { N,,1 f oo}. Let (n, ~ be 
another measurable sp!l,ce with t_wo measures P and P which are mutually 
singular, for exapiple _n= {O, 1 },P

1 
is the Dirac measure at _i; Form the pr<2:_ 

duct space (n X n, ~ ~ with the two product measures P X P . If we define N 
on the product space by N1(w,i)=N1(w) then clear~ N has_iptensity 1 under 
each of the two product measures, although P X P .l.P X P . Suppose now 
that we are ~nly interest~ in what happens on 1¥00 • We see that the projec­
tions of P X P

I 
and P_ X P

O 
on _ttf.s a-algebra coincide. So under this assump­

tion the fact that P X P 
1 
.l.P X P is innocuous. 

In order to study LAN for counting processes in a proper way, we adopt the 
following approach. Suppose that we are given a sequence of binary experi­
ments (O",<:¥',P,P1,P3). Here the filtrations Pare P={'!,'},E[O,IJ· Let {Nn} 
be a sequence of counting processes, each Nn defined on (n, n, <Jr' ,P) and 
assume that Nn admits the intensity >.,n under P3 and that P1 is such that Nn 
has the intensity p"">..n under this measure, for some nonnegative predictable 
process p". (3.6) that P1 <<P3. The Hellinger process nn is in this situation 
defined as 

I 

H'/ = J<..;;;;-1)2>..; ds (3.1) 
0 
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For a definition of the Hellinger process in a more general situation see [6]. In 
general the behaviour of the Hellinger processes nn characterizes the 

dPn 
behaviour of the likelihood ratio --

1 
[6]. For multivariate counting processes 

dP3 
this has been explained in a fashion, tailored for nonparametric applications in 
[16). In this section we will follow an approach that is close to [16), thus 
avoiding explicit technical conditions as given by other authors as LIN'KOV [27] 
and KurOYANTS [23,24]. In agreement with the previous notation we have for 

dPn 
zn, - __ 116!: 

- dP3 1 

the expression 
t t 

Z~ = exp(j logp;dN; - j(p;-1)>.;~) (3.2) 
0 0 

So zn is the exponential of the local martingale Mn, defined by 
¥, = Jb(p; - I )dm; , where m n is the local martingale part of Nn under P3. 
Let W be a continuous Gaussian martingale with (deterministic) quadratic 
variation process < W >. The result that we want to get is weak convergence 
of the sequence zn to the exponential of W, so to exp(W-½<W>), which is 

the content of the next theorem. 

I 
THEOREM 3.2.6: Assume that If'/ converges to 4 <W>1 in P3-probability for 

each t and that for all t>O 
t 

w,,f = JI{1v'i{-l/>t}(W - 1)2>.;~ 
0 

ten~ to zero in PB-probability. Then 

zn f(PB) ➔ exp(W- ~ <W>), 

where zn is as defined in (3.2) and the weak convergence takes place with respect 
to the sequence { P3 }. 

PROOF: Write 

t t 

j(W -1)2dm; + 2jlf(.W)dN;, 
0 0 

I = 2Wi-2<W>, + r, 

where W, = Jb(W - l)dm;, lf(_x)=logx-x + 1 + ~ (x - 1)2, and r, is simply 
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defined as log Zf - 2M'/ + ~ < W > 1• Our plan of attack is to prove the fol­

lowing steps. 

I 2Mn - ~ <W> e(P3) ➔ W- ~ <W>. 

P3 
2 SUD I P, I---=--;;. 0 

IE[(f,IJ 

As soon as we accomplished doing this, then from proposition 3.1.3.6 we get 

log zn e(P3) ➔ W- ~ <W>. 

Step 1: Since < W > is deterministic it is clearly sufficient to prove that 

Mn e(P3) ➔ ~ W. But this is immediate from proposition 3.1.5.4 under the 

assumptions that we have made. 

Step 2: In order to prove this we will split yn into parts 

I 2 3 . P3 
yn = yn, + yn, + yn, and we will prove that suplP,·'l----=--;;.0 for i = 1,2,3. 

I 

I 
Step 2.1: Let P,· 1 = 2(.H7 - 4 < W > 1 ). Observe that Hn and < W > are 

increasing processes, that < W> is continuous, and that tis an element of a 
pn 

compact set. Hence proving that supl P,· 11~0 is now equivalent to proving 
pn 

that IP,· 1 l~O for all t, which follows by assumption. 

Step 2.2.: Let t>0. Write 

I I 

P,· 2 = fl<1v'P: -11<£J(# -l'fdm; + /l{lv'P;-11>£}(# -1)2dm; 
0 0 

pn 
First we will prove step 2.2.1: suplP,·2·(1~0. Observe that yn,2,( is a 

locally square integrable martingale, so we can apply Lenglart's inequality in 
the following way: 

Here 

P3(suol¥;· 2·(1;,;;a,8):s;;;-t + P3(<r• 2·(>,;;;a:71) 
s<t 8 

I 

<Yn,2,£>, = fl<1v'P:-11<£J(# -l)4A;ds­
o 
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Therefore 

P8(<r•2·•>,~71) ,s;;;; P(H~~7") ,s;;;; 

,s;;;;Pa(1w,- ! <W>,1~~) + lc<W>, ... v}· 
By taking t sufficiently small, the indicator disappears. Then by letting n tend 
to infinity, the last probability goes to zero. Since 71 is arbitrary step 2.2.1 has 
been proved. 

-;-,n, 2,, P8 
Step 2.2.2: We have to prove that supl r 1~0. Here we have the ine­, 
quality 

T 

~~1Y,'·
2
·•1~/lcw;- 11;;.,}(# -l)2dN; + 

0 

T 

+ f 1c1w-11 ... ,H# - tf>.;ds. (3.3) 
0 

Toe last term in (3.3) tends to zero in { P8 } probability by assumption. For the 
first one we have for any 8<t2. 

T 

P8(flc1w-11;;.,}(# -lfdN;~8),s;;;; 
0 

However this last probability tends to zero since Mn converges weakly to a 
continuous martingale (step 1), hence {Mn} is C-tight and the claim follows 
from proposition 3.1.3.7. Step 2.2.2 has been proved. 

Step 2.3: This proof is similar to the one of step 2.2. First we split 
t 

J#.#)d~ = (3.4) 
0 

t t 

= ft{lw;-11;;.,}#.#)d~ + f 1C1W-ll<•}#.#)dN; 
0 0 

For the first term on the right hand side of (3.4) we can apply the procedure of 
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step 2.2.2: Notice that by a Taylor expansion 

I1'-(x)I~ 2 
3 lx-1I3 for lx-1I~£. 

(1-£) 

Hence 

I 

~~¥I/1c1v'P:-11<(}1'-(# )dN;I~ 
0 

T 

(l ~£)3 [1c1#-ll<(}(# -1)2X;tb + (l ~£)3 ~~r,'•
2•(I (3.5) 

where we have followed the notation in step 2.2. We have already proved that 

P" 
~~I n· 2·(1~0. 

The remaining term in (3.5) can be treated as in step 2.2.1. The theorem has 
been proved. □ 

PRoPosmoN 3.2.7: Under the assumption of theorem 3.2.6 we have 

2 ]<# - l)dm; f(_PS) ➔ W i.ff J(p;- l)dm; f<.PS) ➔ W. 
0 0 

I 

PROOF: Let M7 =2 j ( # - l)dm; and 
I 

M'; = j(p;- l)dm; Then 
0 0 

I 

M'; - M7 = f ( # - 1 )2 dm;. So the conclusion follows as soon as we have 
0 

proved that 

-;-~ P8 ~'21Ms -M;I~ 0, 

but this is exactly step 2.2 in the proof of theorem 3.2.6 □ . 

The next corollary is now immediate. 

COROLLARY 3.2.8: Let the assumptions of theorem 3.2.6 hold Then 

where 

I I 
z7 = exp(j(p;- l)dm;- 2 < W>, +ri'), 

0 

· PtP") Po" 
j(p;- l)dm;'"' 

0 ➔ W and ~'2I,;I~ 0 
0 
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REMARK: Observe that in corollary 3.2.8 we have given conditions such that 
-n e(P8) -n e(PS) 
M > W and at the same time zn = F;;,(M ) > f;,(W). Of course 

this procedure can be generalized to the situation where the processes zn loose 
their interpretation of being likelihood ratios. Furthermore it is noticed that 
corollary 3.2.8 can be proved directl_y_ by imposing the sufficient conditions for 
weak convergence of the sequence {Mn} as given in proposition 3.1.5.4. These 
are 

-;-,.n 1' 2 Po n, = (p;-1) '>..;ds~ <W>,, \ft>O. 
0 

and 

t pn 
Ht = f l{lp:- 1F;.t}(p;- 1)2">..;ds~O, Vt,(>0. 

0 

A natural question is then to ask whether these conditions and those of 
theorem 3.2.6 coincide. The answer turns out to be affirmative. See theorem 
3.2.12 below. This means that there is an alternative but equivalent sufficient 
condition for LAN available. In order to prove theorem 3.2.12 we need some 
auxiliary results. 

LEMMA 3.2.9: Let X be a locally integrable increasing process, X 0 =O, and X its 
dual predictable projection. Then for all bounded stopping times 
T EXr=EXr~oo. 

PROOF: Let M=4"-X, then Mis a local martingale. Observe that by by con­
vention X 0 =0~X0 =0, so M 0 =0. Let {Tn} be a fundamental sequence for 
M. Then ¥n = { MT.f't },_.0 is a uniformly integrable martingale. Hence 
EXrAT. =EXrAT. ~EXr~oo. Because Xr=limXrl\T, we have from Fatou's 
lemma. 

EXr~liminf EXrAT. ~EXr. 

Similarly EXr~EXr. □ . 
PRoPgsmoN 3.2.10: Let X and X be as in lemma 3.2.9 and assume moreover 
that X is continuous and that T is a bounded predictable stopping time. Then 
\f(,1j>0: 

PROOF: Fro!!} lemma 3.2.9 we obtain EXr=EXr. _ 
Now O=AXr=E[AXrl~r-1- Hence EAXr=O and we get EXr=EXr-• 
Because the process { x- } is predictable, application of Lenglart's inequelity 
(3.1.3.9) yields 
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because of the fact that X is increasing. □ 

REMARK: Trivially proposition 3.2.10 holds for a deterministic time t 

PROPOSITION 3.2.11: Let 

t 

n;,' = J•op:-11-....>(p;-1)2">-;ds 
0 

..:..n. t 

H,' = f l{p: - 11._,}(P;- 1)2">-;ds 
0 

The statements (i) and (ii) are equivalent: 
- ,< PB !: n,< PB l 

(i) it, ~ 0, H, ~ 4 <W>,, 'v£,t>0. 

- • PB ..:..n,. PB 
(ii) Ii';' ---=....;;.. o, H, ~ < W >,, 'v £, t >0. 

PROOF: The first thing that we prove is 

it.- ,. PB -;-,.n,• PB 
'v£>0, Vt;;;a.0: , ---=....;;..~ 'v£>0, Vt;;;a.0: n, ---=....;;.. 0. 

Since(x-1)2 = (Yx-1)2(Yx+I)2 ;;;a.(Yx-1)2 wehaveii';·'~.it;,'. 
pn 

So we only have to prove that 'v£>0,Vt;;;a.0: it,·•~o implies 

-;-,.n,• PB , • tn 
'v£>0, Vt;;;a.0: n, ---=....;;..o. Define X'l•' = /t{lp: - 11-...,}( V p; - l)2dN; and 

0 
I 

x:·• = ft{lp:-11-...,}(P;-1)2dN;. 
0 - n • -;-,n • -;-,.n • Observe that xn,, has compensator H' and A ' has compensator n, ' . From 

Lenglart's inequelity we get 

PB (X'l·' ~8)<-; + PB (it;'' ;;;a.11) 

and from proposition 3.2.7 

PB(i/;'';;;a.8),s;;;i + PB(X'l•';;;a,11). 
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it.- ( Po Po T.n ( 
So ,· ___;_,;;.Q if and only if r,,t___;_,;;.Q and of course the same holds for n,' 

and Y,·(. Therefore we have to prove the implication 

Po pn 
'v'E>O, v, ;;;;i::o: r,,(~o~ 'v'£>0, 'v't ;;;.o:x,'·( ~o. 

Let 8<c2 A£t, where d = (I - v'i'"+t)2• 

P8(.x,''(;;;.8) = Po(suo (p;-I)2M';>c2) 
s<t 

~Po(sun<~ -1)2M';>d) = Po(X7•(;;;.£y)~Po(X7•(;;;.8) 
s<i' 

which tends to zero by assumption. One remark about the choice of 8. We 
can obviously restrict ourselves to small values of 8, because P0 (¥,''( ;;;.8) is 
decreasing if 8 increases. The next point is showing that (i) implies 

Let 

Then 

..:...n,t Po 
'v'£>0,t;;;;i::O:H, ___;_,;;.<W>, 

~ n,( ~,t ~ n,t 
4(1-8-(E))H, ~H, ~4((1 +8+ (E))H, 

Let t,71,£>0. Observe that ~,1,08+(£)=li.mq08-(£)=0. Choose£' such that 
£'~£ and 

Then 
~,( 

Po(IH, -<w>,1;;;.211> 

Now 

PB n~;·( --ft/ 1 ~11>~Po (Ht ;;;;i::11>, 

which tends to zero from the first part of the proof . 
.::..n,< 

Po(IH, -<w>,;;;.11>~ 

Po(4(1 +8+(£')XH;-' - ! <W>,);;;;i::71-8+(£')<W>1)~ 

P8(4(1+8+(£')XH;·c - ! <W>1);;;.i::{), 

which tends to zero because of (i). A similar inequality holds for 
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~,, 
P8 (H1 - < W > 1 ~ -11) which completes this part of the proof. By a same 
way of reasoning one obtains that (ii) implies that 

en,, P8 1 
\ft:>0,t~O: H, ~ 4 <W>,. □ . 

THEOREM 3.2.12: Let W be a Gaussian martingale with deterministic quadratic 
variation <W>. The conditions of theorem 3.2.6 are equivalent to 

and 

I pn 
If, = j(p;- rf>..;ds ~<W>,, \ft. 

0 

I pn 
II,'' = f lop~-11;;.,}(p;- 1)2A;ds~O, 'vt,t:>0. 

0 

In either case we have the representation 

where 

I 1 
Z1 = exp(j(p;- l)dm;- 2 <W>, + 1), 

0 

PROOF: The equivalence in the theorem easily follows from the fact that for 

t:< ~ :lv'x-tl<t: => lx-1I~3£ 

and conversely that Ix - l I~£ => I Vx - l I~£ and by applying proposition 
3.2.11. The representation for zn now follows from corollary 3.2.8. □ 

Thus far we have established LAN for a sequence of counting processes 
{Nn}. It is also relevant to study LAN for a single counting process N where 
the time parameter t tends to infinity. It is possible to give sufficient condi­
tions on the intensity process A of N that ensures LAN, see for instance [24,27] 
or the slightly different conditions of proposition 3.2.18 below. However it 
may also be useful to see in the specific situation at hand whether LAN can be 
proved directly by inspecting whether the sufficient conditions of theorem 
3.2.12 hold after a suitable transformation of the given process N to a 
sequence of counting processes {Nn}. We will carry out this last procedure for 
counting processes with a particular form of the intensity process. This will be 
done with an eye to the recursive estimators that will be discussed in section 
4.2. 

Assume that we are given a counting process N on a filtered probability 
space (0,<:f,F,P8) such that it admits under the probability P 8 the Doob-Meyer 
decomposition 



dN, = lf>TOdt + dm, N 0 = 0. 
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(3.6) 

Here q, is a predictable process, q,:OX[O,oo)-+ [O,oof and 0E[£,oof for some 
£>0. Let 00 be the "true" parameter. We will prove LAN in proposition 
3.2.14 under the following assumption. 

ASSUMPTION 3.2.13: Let 

Q, 1 = J 'Ps:r ds. 
o 'Ps Oo 

Suppose that there exists an increasing function g:[O, oo )-+[0, oo) with g(t)-+oo 
as 1--+oo and a positive definite matrix P=PT ERdxd such that 

P9 -litn-1-P½Q, 1P½ = I 
o t➔oo g((f 

As said before we wish to prove LAN by applying theorem 3.2.12. Therefore 
we have to transform the above model to a different one that fits into the con­
text of this theorem. This will be done as follows. Let { bn} CR+ , with bn too. 
Define an= g(bn)2. Without loss of generality we may assume that g is strictly 
increasing and ge,Q_{R+). Then the same holds for its inverse function h. 
Define hn(t)=h(\!ant). Our sequence of counting processes {Nn} will now be 
defined via N7 =Nh.(t),t e[O, 1). The relevant probability spaces (On, Cf!' ,P ,P3) 
are now defined as on=O,'?J'=<:ffor all n and ~=~.(t), P3=P11l'?fl=P11l§i, •. 
Denote by 00 the true parameter and write P3 for Pr.. For u eRd we define 
ff'=Oo+Mnu, where Mn=g(bn)-IP½=a;½p½ · Write PT for P~. Under the 
measure P3 we have 

h.(t) 

N7 = f q,f Oods + m11.(1) 
0 

I 

= jA;ds + m7 
0 

Here A7 = ~ lf>{(t)Ooh'n(t) and mn is a local martingale under the measure P3. 

A similar expression holds for the decomposition of Nn under the measure PT. 
In the notation that we have used before 

n _ '1>{(1/I' _ (q,7f fl' 
Pt - T a - n TO 'Ph.(t)l10 (4>,) 0 

where the definition of the process q,n is obvious. Having introduced the 
relevant notation, we can write the Hellinger process Hn as 

h.(t) 

W, = j CV,{ - 1)2q,; Oods 
0 

where 
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~n cpf (I' 
Pt = q,f (I' · 

A similar expression holds for the process lf'/·8 (which is lf'/·' with £ replaced 
by 8). 

PROPOSITION 3.2.14: Under assumption 3.2.13 the following hold: 
P3 1 P3 

(i) H'/--=-;;;.4UTUt and lf'/·8--=-;;;.o, 'v'tE[O,l],'v'/3>0. 

(11") ft< - t-n 1)2 To ds Po 1 T d V P s - cps o ~ 4 u u as t -HYJ an 
0 

ft - t-n \2 T Po lwvi· -11>8}( V Ps -1, '1>s Oods--=-;;;. as t-HJJ. 
0 

PROOF: Let 8>0 and choose N such that IMnul<& for n~N. Clearly such N 
exists by assumption 3.2.13. Then 

I y;f; -II = IP;~ II ~,;;;-II = -'-lq,_;_M_n_u-'-1 ~ 
y;[ +I q,;80 

(cf,; '1>stlMnul cf,;llMnul ~ ~-----~-----'----'-<u 
q,;80 q,;h 

where 1 is the column vector with all its elements equal to + I. So trivially we 
pn 

have that lf'/·8 ~O. In order to prove the convergence of Jf'/, take 8 and N 

as above. Observe that we can write 

h.(t) T 

H'! = TM j '1>s'1>s (- t-n + 1)-2ds M (3.7) 
t U n ,i..T(J, V Ps nU 

O "f's 0 

Since we have for n~N li>;-11<8 (see above) we get the inequalities 

1-8~ v;[ ~I+; 8, which we use to obtain from (3.7) 

(2+; 8)-2uTMnQh,(hMnu~lf'/~(2-8)-2uTMnQh,(hMnu (3.8) 

Now we can write 

Mn Q;;,(hMn = a;; 1 g2(hn(t))g-2(hn(t))P ½ Qh,(hP '/2 

= tg-2(hn(t))P 0 Qh.(t)p½ (3.9) 

which by assumption 3.2.13 tends to tl in P3-probability. Since 8 is arbitrary 
the assertion follows from (3.8). The second part follows from (i) by taking 
t = 1 and by taking any sequence { bn} with bn ➔ oo. D . 

REMARK: The second part of the above proposition can be proved under a 
considerably weaker assumption than 3.2.13. If one has instead. 
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AssUMPTION 3.2.15: There exists a map M:[O,oo)-Rdxd such that 
M(t)=M(t)7>0, M(t)-O for t-oo and 

P 9
0 

- fun M(t)Q, 1 M(t) = I. 
l➔OO 

The proof is then as follows. In the notation we have used above we replace 
hn(t) by t and arrive at M(t)Q,- 1 M (t) instead of (3.9). 

Now we are in the position to prove LAN for the model (3.6) (see definition 
3.2.3). 

COROLLARY 3.2.16: Consider the model (3.6). Let assumption 3.2.15 hold 
Define fl =00 + M(t)u and 

t - q,;O' 
Ps - q,;fJo • 

Define 

t t 

z, = exp(j log p!dNs- j(p!-1)4';8ods) 
0 0 

Then 

1
1 4's {:(_Po) Po 

where fl,= M(t) -T-dms, fl, >N(O,J)and r,~O. 
O 4's 80 

PROOF: This is now a direct consequence of corollary 3.2.8, proposition 3.2.14 
and by noticing the 

1 
_ q,;M(t)u 

Ps-1 - ,1.TfJ, 
'l's 0 

□. 

It is also possible to state LAN for a counting process that admits an intensity 
process {A1(ll)} under the probability P 9 by giving conditions on A1(8) directly. 
We will do this for a scalar parameter fJ. These conditions (assumption 3.2.17 
below) are close to those given in (24). 

ASSUMPTION 3.2.17: There exists a function M:[O,oo)-R such that M(t)-oo 
and 

'A'(fJ,V. 
(i) P 6 - fun M(t)2 j s OJ ds = 1 

0 1➔00 0 As(fJo) 
' A' (0 )2 

(ii) P90 - fun M(t'r f 1<1 >.',<9•\_.£M(tf'} : o ds =O 
1➔00 0 ",(Bo) A s(fJo) 

(iii) P ,. - fun M (t)° SUD SUD I ~:'s(~(J)) I = 0 for some 
l➔OO s<t !9-9.J<t'M(t) I\ s 170 



58 

aE(O, 1) and 'VC>O. 

PROPOSITION 3.2.18: Let assumption 3.2.17 hold. Then the family {Po} is LAN 
at the point 80 with normalizing sequence {M(t)}. 

PROOF: We have to check the conditions of theorem 3.2.6, or those concerning 
Ii, and Ki in view of theorem 3.2.12 

- I I - As(8,) 
H, = l(p!- 1)2 '>,.s(80)df, where Ps - '>,.s(

8
o), 8, = 80 + M(t)u. 

By a Taylor expansion 
1 -

'>...s(8,) = '>...s(8o) + (8, -8o)NsC8o) + 2 (8, -80)2'>..."s(O,) 

- -
where 81 is between 80 and 81• Hence 

where 

Po
0 

- lim suolt:!I =O 
t-+oo s<t 

by assumption 4.1.12 (iii). Hence 

- _ j' 2 A's(8o)2 1-a 1v. 
H,- (8,-80) '>...(fJ)(l+M(t) t:s1ds 

o s 0 

I A' (fJ )2 = u2M(tf[f s o (1+2M(t)l-at:! + (M(t)l-at:!)2}df 
0 '>...s(Oo) 

_ 
2 2 1

, '>,.'s(Oo)2 
- u M (t) A (fJ ) ds + R 1, + R2,-

o s 0 

From assumption 3.2.17 (i) we see that we are left to verify that both R II and 
R 21 tend to zero in P 00 -probability. We will prove this for R 1, only, since for 
R 2, the procedure is the same. For R 1, this immediately follows from the next 
inequality 

2 v.J' A's(8o)2 I , 
IR1,l~2u M(t, 

0 
'>...s(8o) ds·M(t) -a ~~lt:sl-

The last thing that we have to show is that Ki ~O, where 

I 

K, = /lc1p:-11>•}(p!- l)2As(8o)df. 
0 
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Hence 

"' 2 \21' ">.:cs > >-'s(8o'f ds n,~4u M(t, l{l-'-0 1;;._!._M(1f' ,M(1)' - •«...;J} , (fJ) 
0 \(Bo) 2u l\s 0 

2 \21' ;\'s(()o'f I 2 + U M(IJ l{M(l)i-.«,>l} A (O) (l+ M(t) -at:1) ds 
O s 0 

(3.10) 

The first term in the right hand side of (3.10) tends to zero because of assump­
tion 3.2.17 (ii), whereas the last term tends to zero since H,➔u2 and 
Ps

0
(M(t)1-«t:,> l)➔O. D . 
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4. RECURSIVE EsTIMATION 

In this chapter we will treat the problem of recursively estimating an unknown 
parameter that occurs in the intensity process associated with a given counting 
process. Contrary to the case where off-line procedures are studied, there are 
hardly any results for the recursive estimation problem except for a first 
attempt by VERE-JONES (47) and NIKITIN and SNEGOVOY (31). Maximum likel­
ihood estimation (off-line) has been treated by various authors such as 
LIN'K0V (27) KUTOYANTS (23), OGATA (32), and KONECNY [21 ,22). They 
proved that under conditions that cliff er from paper to paper, the maximum 
likelihood estimator has desirable properties like consistency, asymptotic nor­
mality and efficiency. These properties still have to be investigated for recur­
sive estimators. In sections 4.1 , 4.2 and 4.3 we will do this for a rather specific 
case, viz. the case where the intensity process exhibits a linear structure. The 
first basic problem one encounters is that of designing a recursive procedure 
for parameter estimation. One of the justifications that we give for a certain 
choice of such an algorithm is based on the asymptotic expression of the likeli­
hood ratio process for counting processes, which has been studied in section 
3.2. We present a number of recursive parameter estimation algorithms for 
counting processes that admit an intensity process that is linear in the parame­
ter. This is the model that we have encountered in section 3.2 (see equation 
(3.6)). Recall that this model is given by 

(4.1) 

where N is our counting process, cf> is a predictable process, cp:(O, oo) X Q-Rd 
and 80 ERd. Occasionally we will need some additional requirements for q, or 
80. 

4.1 Recursive least squares estimation 
In this section we )Vill study the model (4.1). So dN1 =cf>T80dt +dm1• The least 
squares estimator 81 by definition minimizes the quadratic form in 8 

I I 

V1(8) = j(q,;8)2ds-2f<t,;8dNs (4.2) 
0 0 

For a heuristic justification of minimizing the criterion V,(8), observe that it is 
formally equivalent to minimizing the undefined expression 

f
t T dNs \2 

(cf>s 8- --;i;-J ds. 
0 

Assume for a m~ment that the matrix /bcf>scf>I ds is invertible, and denote by R1 

its inverse. Put~,= Jb<t>sdNs . Then eq. (4.2) reads 
- - T - I - - -V1(8) - (8-R,~1) R1 (8- R1~ 1)-~1R1~ 1 (4.3) 

A - B dR_ T From (4.3) we see that 81=R,~1 minimizes V,(8). ecause dt 1 - -R1cp1cp1 R1 
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we get by applying the stochastic calculus rule to the product R,i, for D, the 
equation 

(4.4) 

However it is a priori not clear that the matrix R, as introduced above is well 
defined. Therefore we will modify its definition slightly. Let R0 1 be a strictly 
positive definite matrix. Define now R, to be the inverse of Ro 1 + Jb4's4'I ds. 
One immediately sees that now R, is well defined. Usually one will wish R0 1 

to be small in norm. Observe also that R0 = (Ro 1 )- 1, which makes the nota­
tion consistent. As before we still have 

Furthermore let D0 be any vector in R';.. Now we are in the position to define 
a recursive (least squares) parameter estimation algorithm as the following cou­
ple of stochastic differential equations together with their initial values 

dD, = R1q,1(dN1 -q,fD,dt), D0 (4.5a) 

(4.5b) 

The equations (4.5a,b) will be referred to as least squares algorithm. Observe 
that this system of equations has a unique solution. 

REMARK: The algorithm (4.5) is invariant under non-singular linear transfor­
mations in ~e following sense. Let S ERdx d be a non-singular matrix. Write 
71=SfJ,~1 =SfJi,~1=S-7 q,1 and T1 =SR1S

7 . Then (4.5) transforms into 

A - T"' " d11, - T,UdN,-~, 11,dt), 1/o 

dT, = -T,~~TT,dt, T0 

which is exactly the least squares algorithm that corresponds to 
dN, =~T 71dt +dm,, but this is nothing else but (4.1) because ~r 71=q,f fJ. 

4.1.1 Convergence of the least squares algorithm. A 

In proving almost sure convergence of the estimators { 81 } defined by ( 4.5a, b) 
we will use the following lemma, which is nothing else but 2.2.20 for nonnega­
tive x. We restate it for convenience. Compare also to [39,42). 

LEMMA 4.1.1.1: Let x,a,b be nonnegative stochastic processes and ma local mar­
tingale such that x = a - b + m. Assume that a and b are increasing processes, 
ao =ho =0 and that 1imi➔00 a1 <00 a.s. Then 
(i) limx1 exists and is finite a.s. 

1➔00 

(ii) limb, is finite a.s. 
1➔00 

THEOREM 4.1.1.2:[45]: Consider the algorithm (4.5). Let 80 be the true parameter 
I 

value. Let 8, = D, -80 and let 'Pt = q,f q,,, i_, I = f "1sds + tr(Ro I ). 
0 
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Assume: 
(i) lim 'I',= oo a.s. 

t➔OO 
00 

(ii) f i',-21},cj,,dt < oo a.s. 
0 

t 

(iii) lim 'Y ;- 1 f c/>sc/>I ds = C, where CE Rm x m is positive definite a.s. 
t➔OO O 

Then A 

(a) lim01 =00 a.s. 
t➔OO 

t 

(b) limi',- 1 j(q,'{Osfds=O a.s. 
t➔ OO O 

PROOF: From (4.5) it follows that 

dO, =R,c/>,-(dN, -q,f81dt)=R1cj,,-(dm, -q,fOdt) 

dR,- 1 = c/>,c/>T dt 

-T - t -T 
Define the Lyapunov like process u,=O,R,- 101 + j(Osc/>sfds. Applying the 

stochastic calculus rule to u,, we obtain 
-T 

du,= 20, -c/>,dm, +c/>T R,cj,,dN,. 

Observe that '¥1 = tr(R;- 1 ). Define w, = u, it ,- 1, then 

0 

dw, = -i';- 1w,t},dt+cj,T R,cj,1i';- 105cj,,dt +dm 11 , (4.6) 

where m 1 is local martingale. We want now to apply lemma 4.1.1.1 to equa­
tion ( 4.6). Because u, w, 'Y are positive, we then see that the only thing we have 
to check is 

00 

f c/>T R,cj,, 'Y ,- 101;' cj,,dt < 00. 

0 

To that end, let p, = trR,. Let y;, be one of the eigenvalues of R,- 1, then 
lim,➔00 'Y ;- 1 Y;, = c; >0 by assumption (iii) of the theorem. Hence 
y;,=c;'Y,(l+o(l)) (t➔oo). Now Y;, 1 is an eigenvalue of R1, 

Y;, 1 =c;- 1'1',(1 +o(l)),(t➔oo). Hence 

p1 =i';- 1(~c;- 1 +o(l)Xt➔oo), or p1 =O(i'1- 1 ),(t➔oo). 

Recall that for a positive definite matrix A,xT Ax~xT x.tr(A) and 
xTA 2x~xrx(tr(A))2. Then 

00 00 

f c/>T R, 'Y ,- 1 cj,,01;' cj,,dt = f c/>T R,R,- 1 R,cj,, 'Y ;- 1 O'{ cj,,dt ~ 
0 0 

00 00 

~ f cj,,R;q,,85 cj,,dt ~ f c/>T cj,,p;01; cj,,dt = 
0 0 
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00 00 

8'{; f 'f1PT.P,dt = 8'{; f 4','f,O('lr,-2')dt<oo, by assumption (ii). 
0 0 

00 

Then from lemma 4.1.1.1 we conclude that w and f ws 'Ir; 1 'fsds almost surely 
0 

converge. We claim that li.mi .... 00 w, =0 a.s. If not, there exists a subset of 0 
with positive probability and an t:>0, such that lim1---+00 w, ~2t: on this subset. 
But then we also have on the same subset 

j 'lr,- 1w,'f,dt~t: j 'lr,- 1'¥,dt = [1og(ir1)] 

00 

= oo, by assumption (i). 
0 0 0 

But this contradicts the second assertion of lemma 4.1.1.1. Since w is the sum 
of two positive quantities we have both 

I 

lim 'Ir,- 1 / (ii; .Ps )2 ds = 0 a.s. and 
1---+00 0 

. -r R,- 1 -
lim81 -:r;-8, = 0 a.s. 

1---+00 Yt 

Because of assumption (iii) we know 

lim 81 = 0 a.s. 

that liminf 'Ir, 1 R,- 1 = C >0, hence 
1---+00 

1---+00 

REMARK: It is possible the relax the third assumption of theorem 4.1.1.2 to the 
one in [15]. The analysis of the algorithm then becomes a bit more compli­
cated. We will not discuss this. However we will follow a similar procedure in 
section 4.3 for a different algorithm. We will give some examples for which 
the assumption of theorem 4.1.1.2 hold. 

ExAMPLE 1: Letq,:[0,oo)➔R;., q,1 =[1,l+sint], 8=[a,bf. Then 

'Ir,= ~ I -2cost- ! sin2t + tr(Ro 1 ). 

Clearly assumptions 4.1.1.1 i) and ii) are satisfied and 

2 [ 
I - I I 

lim ir ,- 1 f .Ps.PI ds = 1im _i_ f 
t➔oo o , .... oo t o I +sin s 

l+sins l 
3 I ds - + 2sin s - -cos2s 2 2 

-1-[22] - 5 2 3 

ExAMPLE 2: Let q,:TXO➔R2 , q,1 =(1,1+(-If) and 8=(a,b)ER;.. As in 
[ 11, p. 59] the second component of q, jumps like a random telegraph process. 
Conditions (i) and (ii) of theorem 4.1.1.2 are easily verified. To check condi­
tions (iii), let us first define 
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Then 

I 

x, = 1- 11c-1t·t1s 
0 

We now proceed to compute as-limX1• Since N1=(a+b)t+btX1+m1, we 
1-+00 

find that 

X, = b- 1(t- 1N,-t - 1m,-a-b) 

The quadratic variation process <m>,=(a+b)t+btX,~(a +2b)t. It then 
follows from the strong law of large numbers for martingales that t - I m,-o 
a.s. Finally we have to evaluate the asymptotic behaviour of t - I N 1• Define 
Tk=inf{1;;..O:N1 =k}. Then 

~-k-1 }~t- 1N ~ ~ ..!...1 } 
~ 'T' {T.<;t<T,., "" t"" ~ 'T' {T.<;t<T,., · 

k=0 .ik+I k=0 .lk 

Consequently 

as - lim I - IN, = as- lim..!.... 
1-+00 1-+00 Tk 

Let -r1 = 11- r1 _ 1 ,j = 1,2,.... then {-r1} is a sequence of independent random 
variables, and E-r21 =a- 1,E-r21 +1 =(a+2b)- 1• Now the strong law of large 
numbers for independent random variables applies and we get: 

as-lim- = as-lim- ~-r-= - -+--. Tk . 1 k l [ 1 1 l 
t-+oo k t-+oo k J=I 1 2 a a +2b 

Collecting the above results we find 

as -lim X, = _l[ a(a +2b) 
t-+oo b a +b 

Conclusion: 

b a-b]=---· 
a+b 

. -11' T - 1 [a+b al as,:~ 'Ir, o '1>s'1>s ds - 3a +b a 2a >0. 

a+b 
a(a +2b) 

ExAMPLE 3: Let X be a Markov process which takes its values in {O, l }. 
Assume that the holding times in O and 1 are exponentially distributed with 
means /Jo and µ1 respectively. Assume that N, has intensity 
01 X, - + Oo(l - X, - ) which is left continuous, thus predictable. So 
q,1 =[X,-, 1-X,-f. Now '1'1=t+tr(R01). Again assumptions 4.1.1.2 i, ii 
are easy to verify and 

lim-1 1' q, q,T ds = lim .11' [Xs O lds = 1 [µI O l 
t-+oo 'Ir, o s s t-+oo to O 1- Xs µ1 +Po O /Jo 
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4.1.2 Asymptotic distribution of the least squares algorithm 
In thjs section we will show that the algorithm ( 4.5) provides us with estima­
tors 81 that are asymptotically normally distributed if we impose some addi­
tional requirements on the process cf,. We use some of the central limit 
theorems of section 3.2. It immediately follows from (4.5) that 

and 

A A I 

81 = R,[Ro 18o + /4'sdNs] 
0 

I 

o, = 8,-80 = R,[Ro 1(8o-8o) + Jq,sdms] 
0 

Introduce the vector valued martingale 

then 
I 

<M>, = /4'scf,;q,;8ods 
0 

A -

(4.7) 

Clearly the distributions of 81 and 81 are governed by the ones of R1 and M,. 
For the latter we have the following result. 

THEOREM 4.1.2.1: Let M be as defined in ( 4. 7). Assume that there exists a func­
tion µ:[O,oo)➔[O,oo) with µ.(_t)➔oo as t➔oo such that 
(i) P-limµ.(_t)- 1<M>1=D, where DERdxd is a positive definite non ran-

1 ..... 00 

dom matrix 
I 

(ii) P-lim µ.(_t)- 1 f q,; 4'sl(.;;,;,>,il(_t)}4';8ods = O,V£>0. 
, ..... oo 0 

Then 

<M>;-½M,4N(O,l). 

I 

PROOF: i) Let AERd and define M~=ATD-½M,= f'>?D-½q,sdms. Then 
0 

Hence 

(ATAµ.(_t))- 1 <MA>, = (ATA)-IATD-½µ.(_t)- 1 <M>,D-½A➔ l 

in ~robability. Hence condition i in proposition 3.1.6.3 is satisfied with 
g(t) =ATAµ.{_t). In order to establish condition 3.1.6.3 ii) for f,=ATD-½q,1 we 
compute 



66 

I 

(">._TAµ,(_t))- 1 f">..TD-½4>s4>T n-½M {IArD-"♦,l>•Qt¼i(.1))"}4>[8ods = 
0 

I 

(">._TAµ,(_t))- 1 AT n-½ f q,'[ 4>sl (A1D -•+.♦;D -•A>•'A1Aµ(_t)}'P; OodsD-½">._,s;;;; 
0 

I 

(ATAµ(t))- 1 ">._T n- 1 A/ 4>; 4>sl {ArD-'A♦;♦,>.'¼i(.t)} q,[Oods 
0 

which tends to zero in probability according to assumption ii since we can 
replace t: by il">..T'A.(">..TD- ">..)- 1• Now we have proved 

(">._T">._µ(t))-½ M~4 N(O, 1) 

(ii) According to the Cramer-World device 

'v'">..ERd ;(">._TAµ,(_t))-½ M~4 N(O, 1) 

if and only if 

µ,(t)D -½ M 14 N (0,1). 

Since 

and 

n-½µ(t)-½<M>P➔I 

in probability, we have finished the proof. 

REMARK: Stronger conditions than 4.1.2.1 (ii) are the corresponding Lindeberg 
or Lyapunov conditions 

I 

'v't:>0:µ(t)- 1 E f q,'[ 4>sl {♦;♦,>q,i.t)}4>[8ods➔O 
0 

I 

38>0:µ(t)_ 1 _ 812 E f 114>s 113+6 ds➔O, 
0 

where 11·11 denotes the (Euclidean) norm on Rd. 

CoROLLARY 4.1.2.2: Under the conditions of theorem 4.1.2.1 we have 

<M >,½ R, 1(01 -80)4 N(O,J) 
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PROOF: 

<M>1-½R1- 1(01-0o)=<M>1-½[Ro 1(8o-Oo) + M1]. 

The fact that <M > ;-½ R01 (80 -00 )➔0 in probability (this follows from 
4.1.2.1 i) gives us the desired result. 

REMARIC: <M > 1 depends on tge unknown parameter 00 • As usual we can 
estimate <M>1 by substituting 01, which is strongly consistent, for 00 • 

The examples given below are continuations of examples 1-3 of section 4.1.1. 

ExAMPLE 1: <P(t)=[l, 1 +sint]7,00 =(01,02). Take µ(_t)=t. Then we can calcu­
late 

limµ(_t)- 1<M>1 = 
1➔00 

which is a positive definite matrix. So assumption 4.1.2.1 (i) is satisfied. To 
establish that assumption 4.1.2.1 (ii) holds it is sufficient to remark that 

5 '1>f '1>s~5. Hence fort>- we have 
( 

I {cp;cp,><1} = 0. 

Another calculation shows that we have asymptotically 

A 1 [301 +02 -201 -02] 
(() -() ),;:::jN(O - ) 

I O ' / -20, -()2 201 +202 

ExAMPLE 2: q,1 =[l, 1 +(- It'- ], 80 =(81 ,82). Take µ(_t)=t. Then a simple cal­
culation yields: 

. _1 _ Or +20182 [l ll 
as1:~t) <M>1 - 0, +82 1 2 

which is positive definite. As in example 1 q,; '1>s is bounded, so again assump­
tion 4.1.2.1 (ii) trivially holds. Combined with an expression for R1 we can 
calculate that 

A 1 81 +82 [20r -or l 
(Oi-Oo),;:::jN(O, t Or+0

1
8
2 

-Or (81 +Oif +Oi ). 

ExAMPLE 3: q,1 =[X1-, l-X1-]. Again takeµ.(_t)=t. Then 

• - I - I [811-'1 0 l as - limµ(_t) <M>1- + O fJ. ,,,., • 
l➔oo J.LI Po On, 

Since q,; q,1 = 1, again assumption 4.2.2.1 (ii) is trivially satisfied. 
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Asymptotically we have 

A P.1 + l'o [81 / P.1 
(81 -80),::::;N(O, t o 

REMARK: Observe that implicitly corollary 1-1.2.2 provides us with an estimate 
if qie asymptotic speed of convergence of 81 - 80 • If we consider for instance 
V,(81 -801 where V, tends to infinity, but V,R,<M>P tends to zero, then cer­
tainly V1(81 -80)➔0 in probability. 

A 

The advantage of the least squares estimator 81 of ( 4.5) is that we are able to 
obtain an explicit expression (see the first paragraphs of section 4.1). One of 
the drawbacks however is that they are in general not asymptotically efficient. 
(Compare with section 4.2.3 below). This is one of the reasons why we present 
in the next section another type of a recursive estimation algorithm. 

4.2 Recursive maximum likelihood estimation 
In this section we study another parameter estimation algorithm for the model 
( 4.1 ). In contrast with the least squares algorithm there seems to be 40 explicit 
expression for a criterion that is minimized by the estimators { 81 } to be 
defined below, so we have to find another way to obtain an algorithm. Before 
stating the estimation algorithm, we prefer to formulate a preliminary version 
of it and provide a heuristic derivation. The preliminary algorithm is 

Q,'1>, TA 
d81 = A (dN, -q,1 8,dt), 80 (4.8a) 

q,;8,_ 

dQ
1 

= - Q,'1>,'1>! Q, dt, Qo 
q,;8, 

(4.8b) 

We will give three approaches that justify, at least heuristically, the form of 
this preliminary algorithm. The first one is based on a "implicit-function 
theorem" type argument (4.2.1). The second approach is based on an associ­
ated filtering problem ( 4.2.2) while the last one uses an asymptotic expression 
of the likelihood functional ( 4.2.3). Let P, be the measure on the trajectory 
space of counting processes defined on [O, t] that is induced by ( 4.1) and let Q, 
be the measure on the same space induced by a standard Poisson process. In 
order to express the dependence of dP!dQ, on 8 we write L1(8)=dP1/dQ1• 

Then the following expression holds. 

I I 

L,(8) = exp{jlogq,;8dNs - j(q,;8- l)th] 
0 0 

A 

The maxmium likelihood estimator 81 by definition maximizes L,(8). 
Equivalently, 81 minimill'-'> 

I I 

J,(8) = f q,;8ds- flogq,;8dNs 
0 0 
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If differentiation with respect to 8 under the integral sign is allowed we look 
for zeros of 

If J,(fl)=J(t,8) happens to be a smoot!?, function of both 8 and t, it follows 
from the implicit function theorem that 81 satisfies the equation 

d,. ,. _ 3 ,. di°' = -['v,l,(8, _ )] 1a;I,(8,) 

A similar expression in the present situation where /1(8) is not smooth, but has 
jumps, is 

d8, = -['v 1,(8, _ )]- 131/1(81 _) (4.9) 

where 3, is the forward partial differential operator with respect to t. Since we 
have 

3,1,(8, - ) = q,,dt - ~I dN, 
ipfo,_ 

and 

1 'Ps'PI 
'v 9/1(8) = l (q,[0)2 dNs 

equation (4.9) becomes after writing Q, =['v ,1,(8,)r 1 

,. - Q,-'P, r" 
dO, - ,. (dN, - 4>1 8,dt) 

(q,[8, _ ) 
(4.10) 

The next problem is to find an evolution equation for Q. One of the objectives 
is that the algorithm giv~ us strongly consistent estimators. Therefore we 
should have for large t, 81 ,;:::;80 • Hence for large t 

Q,- I,;:::; J 'P;'PI dNs = J <l>s_;>I ds + J 'P;'PI dms ( 4.11) 
o ('Ps Oof o lfls Do o ('Ps f/Jf 

The last term of the right hand side of (4.11) is a zero mean martingale. We 
get a new approximation of Q,- 1 by deleting this last term. 

,. 
Finally we replace 80 by Os and we arrive at 

dQ, = - Q,4',:!Q, dt (4.12) 
1/1, 8, 

Observe from (4.12) that Q, is continuous. Consequently (4.10) is indeed 
(4.8a). 
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Another way of justifying ( 4.8) is the following. Consider the following 
filtering problem. We have an observation equation 

dN, = q,f Odt + dm,,no =O 

Here q, is a <?,'-predictable random process where <:t,'=a{Ns,O,s;;;;s,s;;;;t} and 8 is 
an unobserved random parameter, that is a(O) cf. <Jt,' for all t. It is known [3] 
that the optiIJ;!al (in mean squared error sense) estimator of 8 given the obser­
vations<?,' is 81 : =E[Oi<Jt,'], and that satisfies the following equation 

A P,_q,, A A 

dO, = A (dN,-q,fO,dt), 80 =EO. 
q,fO,_ 

Here P, is the conditional covariance matrix E[(0-8,X0-8,)71<?,']and satisfies 

P~~p A A A 

dP, = - t't't;: 'dt + [E[(0-0,X0-0,)7(0-0,)7'1>,l<Jt,l] 
'1>, 8, 

p~~Tp l A - ,..,,,..,,, '1 --(d'N -~Todt) TA =t - TA I ..,,, I 
'1>, o, '1>, o, _ 

I A 

In this setting the innovations process N, - f q,; Osds is a martingale with zero 
0 

mean. We can approximate this equation by setting the martingale term equal 
to zero. Denoting the approximation of P, by Q, we find as a truncated 
second order filter 

A 

Q~q,, (dN -q,f8,dt) dO, = (4.13a) 
q,flJ,_ 

T 

dQ, = -Q q,,q,! Qdt (4.13b) 
I T(J I 'i>t I 

It can be argued that the effect of the pripr distribution of (J decays with time. 
Hence we will eventually get estimators 81 of (J that are hardly depending on 
the prior distribution. Consequently the 8, 's for large t will not change much 
if we would take O as a deterministic parameter. This suggests the use of the 
same formulas (4.13) for our original estimation problem. 

A third way to obtain the recursive scheme ( 4.8) is to make use of an 
asymptotic expression of the logarithm of the likelihood functional. See sec­
tion 3.2 for the relevant results and conditions. To illustrate what our aim is, 
consider the case where the process q, is deterministic. Define 

Q, = i] '1>1I dsr 1 

o '1>s Oo 
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Then we have in a notation similar to that of section 3.2: 
I I ,I,. 

1 - r-Tl "f's dm ..!_ T ogZ,(u) - u Q -T- s- 2 u u+p, 
o '?s Bo 

where p is a stochastic process that converges to zero in probability for ,_oo 
and 

(t f ts dms 
O '?s Bo 

converges in law to a gaussian (O,J) random variable. If we set p, =O, then the 
value of u that maximizes logZ,(u) is 

A -+ ' '?s u, = Q, l-r -dms 
O '?s Bo 

Hence an approximate maximum likelihood estimator of 80 is 

- - 1' '?s 8, = 8o+Q, -T-dNs 
O '?s 80 

Or 

- - 1' '?s 81 = Q1 -T -dNs 
o '?s 80 

I 

Observe that Q/ (8, -80) converges in law to a gaussian (O,J) random variable. 
Of course O, is useless as an estimator of 80 , since it depends on 80 • We just 
use it at an intermediate step in obtaining our algorithm ( 4.8). A simple calcu­
lation shows that O, and Q, satisfy 

- - Q,4', ra 
d8, - -T -(dN, -q,1 8,dt) (4.14a) 

4', 80 
- T-

d-Q = - Q,4>t4', Q, dt (4.14b) 
' 4'TBo 

As before sin~ one is lookin_g for 8,'s that are close to 80 (and thus O,) we 
replace 80 and 8, in (4.14) by 8,, thus arriving again at (4.8). 
Having finished the explanation of the preliminary version of our algorithm, 
we will now present it in its final form. The change that has been made is just 
for technical convenience and makes the proof work. Toe reasons for the 
change will be apparent from the proof of theorem 4.2.1.1. We give a little 
discussion that tells us that this change floes not affect the eventual perfor­
mance of the algorithm. Sup,POse that 8, given by ( 4.8), converges almost 
surely to 80 • Then eventually 8, will be in any neighbourhood of 80 • Hence if 
£ERt is such that all its ~mponents are smaller than the corresponding com­
ponents of 80 we have 4'T8,>q,T£ eventually. This is exactly the property that 
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we need in the analysis. However ( 4.8) do not guarantee us, that this inequal­
ity holds. Obviously the modification below has the desired property. Define 
the indicator process / 1 as follows 

I, = /{~;x,>~;•} 

where f.ER'{. is such that O<f.;<80;,i = l, ... ,d. We are now in the position to 
state our 

APPROXIMATE MAXIMUM LIKELIHOOD (AML) ALGORlTIIM 

Q,cp, T 
dx1 = A (dN, -cp, x1dt), x 0 

cpf8,_ 

dQ = - Q,cp,cpf Q, dt Qo 
I TA ' 

cp, 8, 

81 = x,I, + !(l -/1) 

A 

(4.15a) 

(4.15b) 

(4.15c) 

Here x 0 is taken such that 80 =x0 , and Q0 is a symmetric positive definite 
matrix 

Apparently one should pe able to establish lower bounds for the components 
80 in order to compute 81 according to (4.15). In practical situations there are 
often physical considerations that enable us to do so. As for the least squares 
algorithm we can also prove invariance of (4.15) under non singular linear 
transformations. Contrary to (4.5) we even have invariance of (4.15) under 
time transformations. Let -r= f (t) be a (possibly random) time transformation 
with inverse t =g(-r). Assume that g has a derivative g' almost everywhere and 
g'~O. Write y, =yg(,,.> for the time transformed process y. Then we have 

- -T 
dN, = cp, 8og'(-r)d-r + am, (4.16) 

The algorithm corresponding to (4.16) 

Q,,.cp,,._ - -T _ I 

dx, = __ (dN,,.-cp,,.x,,.g(-r)d-r) 
cp,,._8,,._ 

- --T-

dQ-~ = Q,,.q,,.q,,,. Q,,. '( \A 
, -T- g 'T JUT 

cp,,. 8,,. 

o,,. = x,,.I,,. + f.(1-J,,.) 

which is indeed the same as the time transformed version of (4.15). 
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4.2.1 Convergence of the AML algorithm 
The procedure that we follow is similar to the one of section 4.1.1. Again 
lemma 4.1.1.1 plays a key role. 

THEOREM 4.2.1.1: Let 90 ER~ and let£ ER~ be such that 90 -£ER~. Let 
I 

cI>, = 1 'f>s ds and assume 
0 

i) cI>f90➔oo a.s. (t➔oo) 

ii) funinf+ j q,:; ds = C>O. 
l➔OO c}l (JO O '1>s (JO 

Then 
i) a.s. fun 9, = 80 

t➔OO A 

• • ) 1; __ 1_1, (q,;(9s-9o)Y ds=O 
ll a.s. Wll T T 

l➔OO (JO c}lt O 'f>s (JO 

Before proving the theorem we notice that conditions 4.2.1.1 i, ii are equivalent 
with (1=(1, .. . , If) 
i') cI>f l➔ooa.s. 

ii') funinf-1-j'1>s'1>; ds>O 
cI>f 1 0 q,;l 

The equivalence of i) and i') can easily be seen by noting that 
9cI>f1~9'{ct,,.;;;)jct,ft, where 9=min{90;, i=l, ... ,d}8=max{90;, i=l, ... ,} . The 
equivalence of ii) and ii') follows similary. 

PROOF OF THEOREM 4.2.1.1: i) Let i, = x, -80' Then 

- - Q,'1>, T-dx, - A (dm, -q,1 x,dt), 
q,f 9, _ 

Applying the stochastic calculus rule to x; Q,- 1 x, we obtain 
T- -T '\2 T 

d(-TQ _1-) - 2'1>, x,_ d - (x, 'l>o dt+ '1>, Q,'1>, d'N x, 1 x, - A m1 A A , 

'l>T 9, - 'l>T 9, ('f>T9, - Y-
(4.17) 

- T 2 T 
-d - (x, '1>,) dt+ '1>, Q,'1>, ,i.Tg dt 
- m It TA '\2 TA 2 ..,,, o 

(q,, 9,, ('1>, 9,) 

where we have summarized the martingale term of ( 4.17) as dm 11 • Define the 
Lyapunov function 

- (Q- 1)+ 1' 'f,;'f>s ds r1 -tr O T 
O 'f>s £ 

Then 
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Define 

then 

I T- 2 
-1 -T -1- J(q,sXs) ds] u,=r, [x, Q, x, + TA , 

0 '?s 8s 

- - I q,; q,, d - Id - I q,; Q,q,, Ta d du,--r, -T-u, t+r, m1,+r, A \2q,1 110 t 
cf,, ( (q,;80 

(4.18) 

We are able to apply lemma 4.1.1.1 as soon we have verified assumption ii) 
which leads us to the calculation of 

0---/
00 

-I ct,;Q,q,, ,1,.Tn d __.. Joo -l(Q-1) Q,q,,q,;Q, = r1 A -r, 110 t =tr r, 1 A 

0 (q,;8,)2 0 q,;8, 
oo Q ,1,. ,1,.TQ ,1,.TfJ, oo j,1,.Tt 

~tr J m-r: ' ~dt~tr J (-dQ,)Tdt 
0 q,; 8, q,; 8, 0 ~4>, 1 

= 8 tr j(-dQ,)~ 8 tr(Qo)<oo. 
~ 0 ~ 

,1,.T(J, 
_-r_, -0 dt 

T8A 'Pt I 

Having verified assumption (ii) we conclude that as-lim u, exists and is finite 
a.s. We also get from the same lemma and eq (4.18) 

lim /
00 - I q,; q,, d 

a.s. r, -T-u, t<oo. 
/➔00 0 "'' ( 

(4.19) 

Now 

I ,1,.T ,1,. I 

r,;;i:..!. J :!:!f-ds +tr(Qo 1 );;i,-
1-f q,;lds +tr(Qo 1 

). 
£ o cf,$ 1 di o 

where we used in the last inequality that q,; q,1 -;a,. ! ( q,; 1 )2. Hence from 

assumption 4.3.1.1 (i) r,-+oo a.s. Suppose now that on a set 0 1 CO of positive 
probability we have lim u, -;a,.8 for some 8>0. Then there is -r such that t ;;i,,,. 
implies u, -;a,. ~ 8. But then 

Joo -1 4>; q,, d .li'foodl -r, -T-u, t;;i: 2 u ogr,- oo 
'T q,, £ 'T 

which contradicts (4.19). Hence as-lim,➔00 u, =0. 
positive processes we have in particular 

Q-1 

lim
-T I -_

0 as- x, --x, - . 
l➔OO r, 

- A 

Since u is the sum of two 

(4.20) 

Define now 8, =sup{8u,sE[0,t], i = l, .. . ,d} and write Amin(A)=min o(A) for 
the minimal eigenvalue of a matrix A. Then 
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Q-1 -Q-1 =ft 'Ps'P; ds::.i.J_J' 'Ps'P; ds 
t O A -- T · 

O q,;8s 8, o 'Ps l 

Hence 

O,s::: x, x, 'l . 1 f 'Ps'Ps ds ,s;:: -T- [ t T l 
"""-"min T I T""" 8, 41, 1 + tr(Qo ) 0 'Ps l 

-T-A. [ 1 [ -I -11] ,s;;;x, x, min 41;1 + tr(Qo I ) Q, - Qo 

,s::: 1 -T(Q-1 Q-1)~ 1 -1-T(Q-I Q-1)~ 
""" T -I Xt t - 0 x,,s;;;-r, X1 I - 0 X1 

41, 1 +tr(Qo ) ~ 

which tends to zero by ( 4.20). Consequently form assumption 4.2.1.1 (ii) 
-T-
X1X1 
-_-➔Oa.s. 

8, 
(4.21) 

- A 

Now it is easy toAprove that 8 is bounded. For suppose not, then there is Oil 
such that limsup 8;t = oo. But then also limsue_ X;t = oo and we get immediately 
from (4.21) that this cannot happen. Hence 8,,s;;;K for some K>O. But then 
from 

-T-
-T- XtXt 
xtxt,s;;;K-_-· 

8, 

we see that xt➔O and so eventually 
T r-T T T 'Pt Xt = 'Pt Xt +'i>t 8o>'Pt (. 

Then /t➔ l and consequently 
A 

8t = (x, + 8o)I, +£(1- J,)➔80 

ii) 8, := x,It + ( 1 - I, X £ -80 ). Let 'T be such that t ~'T implies It = 1. Then for 
t~'T 8t =xt. Hence 

j (q,;0:>2 ds = j (q,;o:f ds + j <~' ~sf ds 
O q,;8s O q,;8s T q,;8s 

From the fact that Ut➔O we have 

T (.i.T9 )2 
_!_ f 'l's : ds➔O. 
r, o q,;8s 

A 

But then it is easy to deduce from the fact that 8s➔8o a.s. that we also have 

_!_ f (ct>;~)2 ds➔ 0 a.s. 
rt T 4>;80 
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and 

1 1 (q,;Osf -T-f T ds-0 a.S. 
Oo~s o 4's Oo 

Q.E.D. 

Before giving a few examples to which the theorem can be applied let us 
remark that a necessary condition for assumption 4.2.1.1 is 

I liminf+ f c/>isds >0. 
t➔ oo ~ 1 0 

Clearly this condition is not sufficient. cp1 = 1 is a counterexample. 

REMA.RIC: It is possible to relax condition 4.2.1.1 (ii) in such a way that we still 
have the conclusion of theorem 4.2.2.1. However we have a small price to pay 
for this, which is a slight modification of the algorithm (4.15). See section 4.3. 

We give some examples for which the assumption in theorem 4.2.1.1 hold. 

ExAMPLE I: Let q,:[O,oo)-R;., cp1 =[1,l+sintl7. The following result will be 
used. For a >b;;;:.O. 

hence 

Then 

Then 

2
" I 2'1T 
f--dx = --;==== 

0 a+bsinx -Ja2-b2 

I 

lim..!./ I dx= 1 
1➔00 t O a +bsinx -Ja2-b2 

lim--f-"f's_"f'_s ds = lim----f --1 ' "' ,i,.T I ' [l 1 + sin.x l dx 
t➔oo ~;t 

O 
cp;l 1➔00 2t -cost+ 1 

0 
I+ sin.x I+ 2sin.x + sin2 x 2 + sin 

_!_V3 1 _ _!_V3 
I 3 3 
2 

1 
_ _!_ V3 .l V3 , which is positive definite. 

3 3 

_1_ I c/>sc/>; ds - 1 I [I l+(-If l ds ~;t[ cp;l - t(2+X1)[ l+(-If 2+2(-If 2+(-



1 N 
3 '[2-(-1)' 

t(2+X1) I l +(-It 
I 
3 [2-X1 

= 2+X1 l+X, 
l+X1 l 
2+2x, · 

In section 4.1.1 . we have found that 

as-limX1 = 82 
1➔00 

So 

lim-l-jl cf>scf>; ds= 
1➔ 00 (l>TJ ,1,TJ 

I O "t'S 

l+(-1t· l 
2+2(-lt ds 
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ExAMPLE 3: Let X be a Markov process that takes its values in {O, 1 }. Assume 
that the holding times in O and 1 are exponentially distributed with means Po 
and µ1 respectively. Assume that N1 has the intensiti (Ji X, _ + 00(1- X1 - ), 

which corresponds to cf>s =[X, -, l-X,_f and 0=[01 00 ] • Then 

lim _l_ I cf>scf>; ds = lim _!_ I [Xs O lds = 1 [P.l O l· P1➔ 00 «l>f 1 / cp;l 1➔ 00 t I O l - Xs µ1 + Po O Po 

4.2.2: Asymptotic distribution of the AML algorithm 
The purpose of this section is to show that the 81's generated by (4.15) have a 
limit distribution which is approximately normal. After some definitions we 
state a useful lemma. Define the following matrix valued stochastic processes 

Q- - 1 = Q - 1 + j' cp;Oo ds 
I O ,1,T(J 

o "f's 0 

v; = j cf>s!; cp; Oods 
o (cp;Osf 

LEMMA 4.2.2.1: Let 81 ,Q, as defined by (4.15) and let the assumptions of theorem 
4.2.1.1 be in force. Then 

i) as - lim {t Q, 1 {t = l ( 4.22) 
1➔00 

ii)as- limQ1v,ct =I. (4.23) 
1➔00 

PROOF: A 

i) Let 8>0 and fix w, taken from the set with prpbability one where 81(w)➔00 • 
Then there is T=T(w) such that 'tfJ~'T we have J0;1-00;J~8 for all components 
i. Consequently (l-8')cpf00 ~cpfO,~(l +8')cpf00 for t~'T. In the ordering of 
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positive definite matrices we then have 

_I_j cf>scf>I' ,s;;;Q-1 -Q-1 ,s;;;-1-J cf>scf>I' ds 
1+8,. cp;80 

1 
,. 1-8,. cp;80 

or 

I --1 --1 _ 1 _ 1 I --1 --1 
1+8(Qi -Q,. ),s;;;Q1 -Q,. ,s;;; l-8(Qi -Q,. ) 

which yields 

I -½--1-½ -½ -1 -1 -½ I -½--1-½ 
1+8(/-QI Q,. Qi ),s;;;QI (Qi -Q,. )Qi ,s;;; 1-8(/-QI Q,. QI). 

Now take limits for t-+oo and use that Q1-+0 to get 

1 J liminf" -Q*Q-1-Q* lim -Q*Q-1-Q* 1 J 
I+

~ ,s;;; 1 1 1 ,s;;; sup 1 1 1 ,s;;;-1 ~ 
0 l➔OO l➔ OO -o 

Since (4.24) holds for all 8>0 the proof of (4.22) is complete. D 
ii) The proof of ( 4.23) is analogous. 

The following vector valued martingale is important. Define 

I cf>s 
M1 = j A dms 

o ct>I'Bs-
Notice that we have <M > 1 = V,. 

(4.24) 

'THEOREM 4.2.2.2: Assume that there exists a function µ:[O, oo )-+[0, oo) such that 

P- limµ(t)- 18l~1 = I (4.25) 
1➔00 

Then 

-½ e 
Q1 M1~N(O,J). 

PROOF: Let C be as in assumption 4.2.1.2 (ii) 

C = as-Iim-1-Jct>scf>I' ds = as-lim-1-Q-l 
t➔oo Bl ~1 0 cf>s8o l➔oo Bl ~1 

1 

Then we also have 

P-lim-1-Jct>1; ds = C. 
l➔OO µ(t) 0 '?s (JO 

(4.26) 

Define 
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then 

(ATAµ(t))- 1<M>,= 

= (ATA)-,ATC-½Q,-½ µ(_t)-½Q~V,Q~ µ(_t)-½Q,-½ c-½A4 l 

by ( 4.25), ( 4.26). Hence assumption 3. l .6.3i is satisfied. As in the proof of 
lemma 4.2.2.1, let T(w) be such that r;;a,T(w) implies 

l4>TO, -4>T 60 I <-4>T 608. 

Consider 

T '1' (AT c-½'Psi ,,.re• T 
(A A#J(.t))- TA 

2 
J{l~l>B(A'>.p(t)f"}'Ps 80th 

0 (1/>s fJs) 'P, 8, 
(4.27) 

Let us split the integral in two pieces, one with integration bounds O and t /\:r 
and the second with bounds tl\'r and t. Then clearly (ATAµ(_t))- 1 times the 
former integral tends to zero almost surely. Hence we continue our investiga­
tion of the second integral which is after multiplication by (ATAµ(_t))- 1 less 
than 

(4.28) 

Then 

ATC-,A,1,.T,1,. ,,.rc-'">..,1,.T,1,. 
82ATAµ(_t)~ "f's "f's ~ "f's "f's 

fP(l -8)2(q,;1)2 (1-8)2(4>;80)2 

Consequently for large t the indicator appearing in the integral in ( 4.28) will 
be zero. As a result ( 4.27) converges to zero almost surely and a fortiori in 
probability, which gives us condition 3. l.6.3ii. Conclusion 

(ATAµ(t))-½ M~4N(0,1). 

As in the proof of theorem 4.1.2.1 the Cramer - Wold device gives us 

(µ(_t)C)-½ M,4 N(O,I), 

if and only if 

(ATAµ(_t))-½ M~4N(O,I), 
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which has just been proved. 

Finally 

Q: M, = µl_t)*C½µ(,_t)-½c-½ M,. 

We know from (4.26) that µ(,_t)½Q½c½-J in probability, which completes the 
proof. 

COROLLARY 4.2.2.3: Under the assumptions of theorem 4.2.2.2 

i) Q,½0,4N(O,J) 
- - ½- e 

ii) Q, O,~N(O,l). 

PROOF: i) By writing out the stochastic differential equation for Q,- 1 i, one can 
show that the following relation holds 

- 1' cps - I x, = Q,[ ,. dms + Qo (xo-Oo)] 
o ct,;Ds-

And consequently 

Q,½O, =I,Q,½ M, + I,Q,½Q0(x0 -00 )+Q,½(1-l,)(£-0o) (4.29) 

Since 11-1 a.s. and QP-o a.s. as t-oo we see from (4.29) that the asymptotic 
distribution of Q,- ½O, will be same as that of Qf M,. From lemma 4.2.2.1 we 
know that we can replace Q, by Q1 and the conclusion follows from theorem 
4.2.2.2. 
ii) 1bis is an immediate consequence of i) 

The examples below are examples 1-3 of section 4.2.1 continued. 

ExAMPLE 1: cp(t)=[l, 1 +sintjT. Take µ(,_t)=t. Then one finally gets after some 
tedious calculations: Approximately 

with 

- 01 +02 + v1-1Jr_+_2_01_0_2 
8,~N(O,-__:;__.:..........: _ __;__~V) 

t 

1 81 , / Or 
(-

0 
--

8 
> v8r+28102 +-2 

I 2____ 82 

- ;
2 

<v8r +28182 -81) 
V= 

ExAMPLE 2: cp, =[l, I+(-1f-1. One gets 

. I --1 81 +82 [Oi +02 
as-lim-Q, =---

t➔® t 81 + 282 81 

- ;2 (VOt +28182 -81) 

1 
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and the asymptotic distribution 

- I [281 
81 ::::,jN(0,-(8_t_+_8_18-2-)t -81 

ExAMPLE 3: q,1 =[X,-, 1-X,-]. Here 

. 1 --1 I [µ1/81 
as - Iim-Q, = ---

1 ..... 00 t µ1 + I-lo 0 

and asymptotically 

- µI +1,1o [81/µ1 0 l 
81 ::::,jN(O, t O 8011-'o ). 

We see that in this case the asymptotic variance of 81 is the same as in exam­
ple 3 of section 4.1.2. 

A -

REMARK: The basic assumption in getting a limit distribution for 81 or 81 

which is Gaussian is 4.1.2.li or (4.25) depending on the algorithm. This 
assumption more or less tells us that the quadratic variation process of the 
martingale M becomes deterministic as t grows. If this ass~ption is dropped 
one can still derive results for the asymptotic distribution of 81• The idea then 
is to perform some random time transformation T= f(t) after which the 
transformed version of <M> becomes deterministic. For the transformed 
algorithm (which looks the same in the AML case (4.16)) we can then infer 
asymptotic normality as T tends to infinity [36). In the AML case a useful 
transformation is T=~; 80. This idea has also been carried out in [36) for the 
off-line maximum likelihood estimation problem. Another way of getting 
other limit distributions is to look at process q, such that Local Mixed Asymp­
totic Normality holds for the associated family of probability distributions. 
See [I] for a deqnition. In this situation one may anticipate asymptotic distri­
butions for the 8,'s which are convolutions of a normal distribution and some 
other distribution. This approach will not be discussed here. 

4.2.3 Asymptotic efficiency of the AML algorithm 
from the given examples it becomes clear that the asymptotic distributions of 
81, generated by ( 4.5), or ( 4.15) will differ in general. Thus they cannot both 
give us efficient estimators. In general we have the following Cramer-Rao ine­
quality. An unbaised estimator of 8 based on the observations in [O,t] has a 
covariance matrix which is at least 

c,(8) = { E8[ aa
8 

IogL,(8)][ aa
8 

IogL,(8)J7}- 1 (4.30) 

where the likelihood ratio L1(8) is as before. Calculation of (4.30) gives us 

C,(8) = [ E, i ~;; <Ur 
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A 

This means that 81 is an asymptotically efficient estimator if we have 
A e 

C,(80)½(8, -8o)➔N(O,J) (4.31) 

Clearly by comparing corollary 4.1.2.2 and ( 4.31) we see that the LS estimator 
of 8 will not be asymptotically efficient in general except for some specific 
choices of q,. Recall that this was one of the considerations for seeking 
another algorithm than (4.5). On the other hand the AML estimator given by 
(4.15) is a good candidate for being an asymptotically efficient estimator by 
coroll~ 4.2.2.3 (ii). We will indeed have this property as soon as 
C1(80 )Q,-

1 ➔I in probability. However assumption (4.25) in theorem 4.2.2.2 
does not seem to be sufficient for guaranteeing this. But if we impose as an 
additional requirement that µ.(t)- 1 C,(80)- 1 ➔C then indeed from (4.26). 

--1 -1--I p -I 
C1(8o)Q1 = C,(80)µ.{t)µ.(_t) Q, ➔C C = I. 

In fact under the assumption (4.25) requiring µ.(t)- 1ftJfo) to converge to C is 
nothing else but demanding the collection { C1(80)Q, }i.,.0 to be uniformly 
integrable. 
Let us summarize the discussion of the proceeding paragraph in 

PROPOSITION 4.2.3. l: Assume that there exists a function µ:[O, oo )➔[O, oo) such 
that 

P-lim µ.(_t)- 1fl>f8o = 1 
l➔OO 

lim µ.(t)- 1C,(8o)- 1 = C 
l➔OO 

A 

where C is as in assumption 4.2.1.2 (ii). Then the AML estimator 81 generated 
by (4.15) is asymptotically efficient. 

One easily checks that one can take in the proceeding examples µ.(_t)=t. 
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4.3 Recursive maximum likelihood estimation II 
In this section we present a slight modification of the AM½. algorithm (4.15) 
that enables us to prove almost sure convergence of the { 01 } under weaker 
conditions. These conditions are close to those in [15,25]. However we do not 
require all of the conditions of [15] to hold. As such this can be considered an 
improvement. On the other hand we clearly deal with a more specific model 
than the general semimartingale regression presented in [15]. Recall that our 
model is given by ( 4.1 ). Throughout this section the following assumption 
holds. 

ASSUMPTION 4.3.1: 00 lies in a compact subset of R~. Hence there exists €>0 

such that €<00;<.!., Vi= 1, ... ,d. 
( 

AML II ALGORITHM: 

Q,q,, T 
dX, = A (dN, -q,1 X1dt),X0 

q,fO, _ 

dQ - - Q,lf>,lf>,Q, d Q >0 
I - T9A t, 0 

lf>t I 

81 = 11,li,X, + €(1-111)1 + €- 1(1-121)1 

11, = l{cp;X,~,cp;l} 

Ii, = l{c1>;.x;..:,- 'c1>,t} 

(4.32a) 

(4.32b) 

(4.32c) 

(4.32d) 

(4.32e) 

9>MMENT: Introducing the € above is done to establish a.s. convergence of 
{01 } to 00 • If we compare (4.32) to the AML algorithm (5.15) we see that we 
use the e,s_tra indicator pr~s J 2• Clearly we require knowledge of € to com­
pute the 01• The proof of O,➔Oo a.s. that we will give parallels to a certain 
extent the procedure in [15]. First we state an auxiliary result. 

- - 1 ft lf>slf>; --1 
Define Q1 = -T -ds. Denote by "A, the minimal eigenvalue of Q1 and by 

o lf>s Oo -
X, its maximal eigenvalue. 

LEMMA 4.3.2.: There exist constants c and c such that 
i) c+~X,~"Amax(Q1 1)~€-2X2 +c-
ii) c+~"A,..;;;Amm(Q,- 1);;.,€-2"A1 +c 

PROOF: Define c= inf xTQo 1x and c= SU_P,XTQo 1x. 
;. JxJ=1 JxJ - 1 

Since €q,Tt~q,T0,..;;;€- 1q,Tt we have for all xERd: 

xTQo1X + ~XTQ;-1x~xTQ,-lx~xTQolX + €-2XTQ;1x. (4.33) 
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By talcing infima in ( 4.33) in the right order we get (i). The second assertion 
follows by talcing suprema. 

THEOREM 4.3.3: Consider the AML II algorithm (4.32). Assume that A1➔oo a.s. 

and that there exists a function f :[O, oo )➔[O, oo) such that limx➔oo Lill= oo 
X 

and such that 

REMARKS: 

suo f(log >-., )< oo a.s. 
,~ti 

I. Observe that ~,➔oo a.s. implies that N1➔oo a.s. because 
t 

f T T--I T 4's Oods = Oo Q, Oo ~~,0o Oo. 
0 

2. A possible choice of J that can be found in the literature [15,25] is 
J(x)=x 1+a, with a>O. 

The crucial step in the proof of theorem 4.3.3 is lemma 4.3.4 below. We will 
postpone the proof of this lemma and show first, after stating the lemma, how 
we use it in the proof of theorem 4.3.3. 

LEMMA 4.3.4: Consider (4.32). Let X,=X,-Oo and P,=x; Q;- 1x,. Then 
P,=O(log X,) a.s. (t➔oo). 

PROOF of theorem 4.3.3.: 

x{x, = x{ Q;-,,,,Q1Q;-,,,,X,~'>-mv.(Q1)P1 = 

P, _ J(log X,) 
Amm(Q;-I) A1 

>-., . log X, _--.!.!..._ 
Amm(Q;- 1) J(log X,) log X, 

(4.34) 

Consider the right hand side of ( 4.34). Its last factor is bounded in view of 
lemma 4.3.4. The first factor is bounded because of the assumption in the 
theorem. The second factor is bounded because of lemma 4.3.2 and the third 
factor tends to zero because of the c!5sumption on f We conclude that X1➔0 

a.s. But now it is easy to show that O,➔Oo a.s. 

8, = 9,-0o = X,I1,li, + (l-I1,Xd-0o) + (l-I21X£- 11-0o)­

Since q,fOo>q,[1£__ there is 11>0 such that q,f0o~4'Tl(f.+1J). Because x,➔O we 
eventually have IX;,1<11,Vi. But then 

q,[X, = q,[X,+ q,fOo~-q,[111 + q,fl(f.+1J) = q,Tlf.. 

Ther~fore I 11 ➔ I. In a similar way one can prove that I 21➔ 1, which implies 
that O,➔O a.s. □. 
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The proof of lemma 4.3.4 involves a series of other lemmas. 

t 

LEMMA 4.3.5: Let P0>0, P0ERkxk and let P,=P0+ j€(/)€<._s)7ds for a con­

tinuous function UO, oo )➔Rk. Then 
t 

(i) f «_s)7 ps- 1€<..s')ds = log det(P,)-log det(P0) 

0 
t 

(ii) f «_s)7 P; 1«_s')ds = O(log Amax(P,)). 
0 

o 

PROOF: Let B ERkxk, W ERk and A =B + wwr. Assume that A is invertible. 
Then 

(4.35) 

This can be seen as follows. Observe that wwr A - 1 has k - 1 eigenvalues 
zero and that the other eigenvalue is wr A - 1 W. Hence the characteristic 
polynomial of wwr A-1 is p(>..)=>..k- 1(>..-WT A -I W). Observe now that 

det(/-WWTA- 1)=p(l)= 1-WT A- 1 W, 

whence ( 4.35). 

For dt tO we have by definition of P, 

P, =P,-41 + €<,_t)«t)7 dt + o(dt) 

Notice that P,~P0 >0. Hence P-; 1 exists and det(P,)>0. Application of 
(4.35) and the continuity of t......det(P,) yield 

det(P -•·) 
dt«_tf P- 1€(._t) = 1- ' ,.,,, + o(N) 

' det(P,) 

Hence 

det(P,)-det(P,-ru) I lit)Tp
1
-llit) = ________ + (1) 

._, ._, dt det(P,) 0 

or 

T _
1 

D-(detP,) _ 
€<._t) P, ~, = det(P,) = D log det(P,) 

where D - denotes left derivative. So of (i) has been proved. The second 
assertion of the lemma is a simple consequence of (i). 

LEMMA 4.3.6: Let m be a quasi left-continuous locally square integrable mar­
tingale with <m >=A. Let f :[O, oo )➔[O, oo) be a differentiable increasing func­
tion with 
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00 dx 
limf(x)=oo and f .fi 't <oo. 
X➔OO Q (1 + (X) 

Define g,=l+f(A1). Then both g~ 1m, and g,-2[m,m]1 converge almost surely 
for t➔ oo. On {A 00 = oo} both limits equal zero a.s. 

PROOF: This is a simple application of lemma 4.1.1.1. Consider g,- 1m,. 
Define X, = g~ 2 m;. Then application of the stochastic calculus rule yields 

dX, = -2g~3f(A 1)m;dA, + g,- 2(2m,_dm1 + d[m,m]1) 

= -2g,- 1f(A 1)X1d.A.1 + g,- 2d.A, + g~ 2(2m,_dm1 + d([m,m1-A,)) 

Notice that f(A,)"~O. Application of lemma 4.1.1.1 immediately yields the 
desired result since 

oo Am dx 

f -id.A = f ---<oo 
o g, , o (l+f(x)'f . 

On { A 00 = oo} the second part of lemma 4.1.1.1 yields that X, ➔O because 
00 00 

f g,- 1f(A 1)X1d.A. 1 = f X,dlog g,. 
0 0 

The statement about g,- 2[m,m 1 can be proved similarly. □ . 

REMARKS: 
1. The statements of the lemma can be summarized as 

m, = o(g,) + 0(1) and [m,m 1 = o(g;) + 0(1). 

2. Of course we may replace g, in the lemma by f (A,) since we consider the 
behaviour for t ➔ oo 

3. Convenient choices of fin applications aref(x)=x½(I+a), with a>0. 

PROOF of Lemma 4.3.4: For X we have the following equation 

- Q,q,, -
dX, = -A-(dm,-q,TX,dt) 

q,T(), -

Hence 

- X. 
d'P d( ::.TQ_ 1 x~ ) 2 4'T x, - (d Tx- d ) + ( '4',)2 dt + 4'T Q,4', d'N 

1 = x, 1 1 = A m, -q,, 1 t T()A TA 1 
4'T8, _ q,, , (q,, 8, -'t 

or 



Write ( 4.36) in obvious notation as 

P,-Po + 4 = 2M1, + R, + M21 

Compute 

Observe that 

2.s::: 4>IOo .s::: -2 
("""-..;:::: A .-.a;::::( 

4>;0s 
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(4.37) 

Hence i1-4~<M 1>,~£-24. Hence M 1,=o(4)+0(1) in view of lemma 
4.3.6 (take j(x)=x), and remarks I and 2 that follow this lemma. Consider 
now R, and notice that 

iJ-J '1>I ~'?s ds ~R, ~( -2 J '1>I Q:_'1>s ds ( 4.38) 
0 4>IOs O 4>IOs 

The integrals in the extreme sides of ( 4.38) are of the form encountered in 

lemma 4.3.5. (Take «s) = "': , Q;- 1 = P1). 

(q,IOs}* 
Therefore R,=0(log Amax(Q;- 1

)). The last term to analyze in (4.37) is M 21 • 

<M > = 1' ('1>I Q;.'1>s'r ,i..T(l ds = 1' _ q,; d~s'l>s '1>I'!o ds 
2 I T 4 "l's O T ~ T 

0 ('1>s Os) 0 (q,s Os} '1>s Os 
I ,i..T ,i.. ,i..T(J I ~1 "1"\"l"s -~d tr(-Q,)~£- 4ld tr(-Qs) 

0 4>IOs'r q,'{ Os 0 

M 
From lemma 4.3.6 we conclude that M 

2 
converges to a finite limit and 

< 2> 
since <M2 >,~£-4 tr(Q0), M 2 is a.s. bounded. Collecting the above results 
we get from ( 4.37) 

P,-Po + Li = o(Li) + 0(1) + O(log Amax(Q;- 1)) + 0(1) 

or 

P,-Po + 4(l+o(l)) = 0(1) + O(logAmax(Q,- 1)) 

From lemma 4.3.2 we obtain after dividing by log X, 

P,_ + (I +o(l)) Li_ = 0(1) 
log A1 log A, 
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Since both P, and (1 +o(l))L, are (eventually) nonnegative we get 
P, = O(log X, ), as was to be proven. □. 

We close this section by proving that the limit distribution of the AML II esti­
mators defined by ( 4.32) is asymptotically normal. Since this proof is essen­
tially the same as the end of 4.2.2.3 and related results we will only give the 
principal steps. 

A 

THEOREM 4.3.7: Assume that {81 } given by (4.32) is a.s. convergent. Assume that 
there exist P:[0,oo)➔Rdxd and h:[O,oo)➔R+ such that 
(i) his an increasing function of each of its arguments, h(t,T)~h(l,T)=T, 

'vt,TE[0,l]X[0,oo) and limh(t,T) = oo, 'vtE(0,Ii 
T➔oo 

(ii) R(t) = limP(T)-½ P(h(t,T))P(T)-½ exists and R(t)>O for tE(0,l] 
T➔oo 

(iii) P(t)-½Q,P(t)-½➔J in probability for t➔oo. 

'I'hen Q,-½e,4 N(O,I). 

PROOF: We use the same techniques ~ in section 4.2.2. It is easy to~ that 
the asymptotic distribution of Q,½81 is the same as that of Z,=Q, ½M1, 

- ft 4's 
where M, = -T -dms. Define 

O 4's 80 
h(t,D ~ 

Z; = ATP(T)½ f ,1,.T~ dms for AERd, tE[0,l), TE[0,oo). 
0 "I'S 0 

Then 

<Zr>, = ArP(T)½Q~l.nP(T)½A. 

Hence <Xr>,➔ATR(t)A in probability as T ➔OO, because of the assumptions 
/,2 

in the theorem. Now choose T0 such that ATP(T)½A~""l' for T>T0 . Then 

ATP(T)½q,sq,; P(T)½A~ATP(T)Aq,; 4>s~ ~ q,; 'Ps~ ~ (q,;1)1~82(4>;80)2. 

Hence for such T 

h(t,D ~ q,T 
ATP(T)½ f ~l{ I.\.TP<n"<l>,I ;;.8}dsP(T)½A = 0, 'vtE[0,1i 

0 4>s8o "'·'· 
The above implies that the assumptions of proposition 3.1.5.4 are satisfied. 

Hence zr 4 W, where Wis a Gaussian martingale with <W>1=R(t). In 

particular Zf =Qi =Q;M,4N(O,l), because R(l)=I. □ 
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5. CoUNTING PROCESS SYSTEMS 

In this chapter we treat some problems for counting process systems with a 
finite state space. Two specific classes of counting process systems will be 
treated viz. conditionally Poisson systems and self-exciting systems, which are 
the topics of sections 5.2 and 5.3. The main problem we adress is the charac­
terization of minimality of a system, which means minimality of the state 
space. The reason why this topic is important lies partly in identification 
problems for such systems in the situation where the state process cannot 
directly be observed. It is known in instance for deterministic linear system 
theory that a state space, which is too large for explaining the behaviour of the 
output process, contains unobservable components. This implies among other 
things that if one wants to perform output-based parameter estimation one will 
not be able to identify the true parameter values that govern the behaviour of 
the state process in a unobservable part of the state space. For counting pro­
cess systems to be treated in the next section a similar reasoning holds. If for 
instance one wants to identify transition rates of the state process (which turns 
out to be a Markov process) and if two different states yield the same 
behaviour of the observed counting process, then one is clearly not able to dis­
tinguish whether the state process assumes one of these two values, let alone 
that one is able to draw reliable conclusions about rates that govern a transi­
tion from one of these states to the other one. Therefore one can anticipate 
that minimality is also a prerequisite for consistency of estimators generated by 
recursive algorithms as in chapter 4, in the situation where the state process is 
not observed. The lesson of these considerations, as is well known, is that one 
should always work with minimal representation of a stochastic system. 

5.1 Counting process systems 
Counting process systems form a subclass of what is known as stochastic sys­
tems. Roughly speaking a stochastic system without input consists of two sto­
chastic processes X and Y where X is called the state process and Y the output 
process. As in deterministic system theory the state process at time t should 
summarize all the relevant information about the past of the system in order to 
describe the future output. Contrary to what can be done in deterministic sys­
tem theory the state process at time t cannot exactly predict the values of Ys 
for s~t. It can only describe the probabilistic behaviour of the output pro­
cess. These notions are made precise in definition 5.1.l that in abstract terms 
describes what a stochastic system without inputs is. This definition is fol­
lowed by a more detailed treatment of stochastic systems where the output 
process is a counting process. First we have to introduce some notation. Let 
a complete probability space (n, '?f,P) be given together with a filtration F. Let 
X and Y be F-adapted stochastic processes. Then 6Jf =a(Xs,s,s;;;;t} and 
6.fT =a(Ys,s,s;;;;t} are the a-algebras generated by the past of the procesesses X 
and Y. Similarly 6Jf+ =a(X.,s~t} contains the information of the future of X 
after t. We also use the a-algebra that describes the future increments of the 
output process Y, ijfY+ =a{Ys-Y,,s~t}. 
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If ~, ':Ji and § are sigma algebras contained in ~ then we say that ~ and ':Ji 
are conditionally independent given §, if for all integrable ~ -measurable func­
tions X I the following relation holds 

E[Xil':Ji/\§J = E[X1l§J. 

We will use the notation (~1,1:Jil§)ECJ. 

DEFINITION 5.1.1: [38]: A continuous time stochastic system is a multiple 
(D,~P,T,F,X, Y,~611) such that 
(i) (D, ~P) is a complete probability space 
(ii) TCR,T an interval. 
(iii) F={'Fiher a filtration on (D,~P) 
(iv) X and Y are F-adapted processes with values in the measurable spaces ~ 

and 611 res~tively. 
(v) (<jf+ V'?Jf' + ,'F,la(X,))EC/ for all t;;;i.O. 

Formally speaking each of the components of the multiple in definition 5.1.1 is 
part of the definition. However if no confusion can arise we will often write 
(X, Y) for a stochastic system. The crucial property in the definition of a sto­
chastic system is (v), which says that given a whole past§; it is sufficient to use 
only X, for the prediction of the future values of X and the future increments 
of Y. Observe that 5.1.1 (v) implies that Xis a Markov process with resfect to 
the filtration F. Finally it is noticed that usually §; =/jfVGJ, and 
T=(-00,00) or T=[0,oo). 
Oearly the above definition is too abstract for practical purposes. In particu­
lar cases one has to specify the distribution of the state and output process. 
One way to do this is to pose stochastic differential equations that X and Y 
satisfy. In this chapter we will treat stochastic systems where the output pro­
cess is a counting process and X a finite state process. 

DEFINmON 5.1.2: A counting process system is a stochastic system where the 
output Y is a counting process. We write in this case N for the output process 
instead of Y. The shorthand notation is then (X,N) for a counting process 
system with state process X. 

We will treat in more detail the class of conditionally Poisson systems. 

DEFINITION 5.1.3: Let N:DX[O,oo)➔N be a counting process, F-adapted with 
Doob-Meyer decomposition w.r.t. F: dN, =>..,dt +dm,. Let ~ =a{),,,t;;;;;i.0}. 
N is called a conditionally Poisson process, or a doubly stochastic Poisson pro­
cess, iff for all t,h;;;i.O, uER 

t+h 

E[exp(iu(N, +h - N,))l'Fi V~] = exp((e;" - 1) f ">-sds) 
t 

So conditioned upon §; V<Jt00 N, +h - N, has a Poisson distribution with mean 
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PROPOSITION 5.1.4: _N is _a conditionally_ Poisson process iff m as given in 5.1.3 is 
a martingale w.r.t. F={§;},;;.0, where §;=§;V'!foo. 

PROOF: UN is conditionally Poisson, then 

t+h 

E[m,+h-m,I~] = E[N1+h-N,l~]-E[ f Asdsl~] 
I 

t+h t+h 

= f Asds- f Asds = 0. 
I I 

Conversely assume that m is a martingale w.r.t. F. Apply the stochastic cal­
culus rule to exp(_iuN1) to obtain 

t+h 
exp(_iuN, +h) = exp(_iuN1) + (eiu - 1) f exp(_iuNs _ )dNs 

I 

t+h 

= exp(_iuN1) + (e;"-1) f exp(_iuNs-XAsds+dms) 
I 

Take conditional expectation w.r.t. §; and get 

t+h 

E[exp(_iuN,H)I~] = exp(_iuN1) + (eiu - 1) f E[exp(iuNs)l~JAsds 
I 

Define g(t +h,t)=E[exp(_iu(N1 +h-N,))1§;]. Then we get 
t+h 

g(t +h,t) = 1 + (eiu - 1) f g(s,t)Asds, 
I 

t+h 
from which we find g(t +h,t)=exp(_(eiu -1) f Asds). □ 

I 
Next we present a method for the construction of a counting process system. 
Let a probability space (0, ?f,P 0) be given together with a standard Poisson 
process N and a Markov process X (with state space X) defined on it such that 
N and X are independent processes. Notice that such a probability space 
always exists. We assume that X pas cadlag paths. Consider the following 
filtrations: FN,FXF={'1r"V'?}'f},;;,.0 ,F={'1r"V~}1;;,.0 . The following observa­
tion is important. Let m1 =N1 -t. By definition mis an FN-martingale. Ho~­
ever because of the independence assumption m is also an F- and F­
martingale. Similarly X is also Markov with respect to the filtration F. Let 
A:[O, oo) X ~(O, oo) be a measurable function such that 
EofbA(s,Xs)ds<oo, Vt. Write A1 =.X.(t,X,-). Then {A1} is clearly both F and 

I 

F-predictable. Then M defined by M, = f (A, - l)dm, is an F-martingale and 
0 
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let A, = fii. . .M, ). Then 
I I 

A1 =exp(.Jlog}.3dNs- j(">-s- l)ds) 
0 0 

and A is an F- and F-local martingale. We make the followip.g assumption: 
EoA,=1, \ft;;;;a.O:. We can now define a new measure Pon ('2,'!f00 )=('2,'!f00 )_as 
follows. If A E~ then by definition P(A)=E0[1AA,]. The extension to_ '!f00 

follows by Caratheodory's theorem. Observe that the restrictiol!, of P to ~ is 
absolutely continuous with respect to the restriction of P to ~ with A, as 
Radon-Nikodym derivative and that A,>0 P 0 a.s. Observe also that the res­
trictions of P and P O to ~ coincide. 

PRoPosmoN 5.1.5: Under the new measure P 
I 

(i) m1 = N, - J">-sds defines a martingale with respect to F and F. 
0 

(ii) X is a Markov process with respect to F. 

PROOF: The first assertion has already been proved in proposition 3.2.5. So 
here we prove only (ii). Let / be a bounded measurable fll!ction on CX, and 

. . . . dPI~ 
h >0. Then because A, 1s the Radon-Nikodyn denvattve _ 

dP01~ 
i;;- Eo[/(X,+h)A,1~] i;;-

E[/(X,H)I~,] = Eo[A,l~t = Eo[/(X,H)I~,] = Eo[/(X,H)la(X,)] 

In the second equality we have used the fact A, is ~-measurable and in the 
third one that Xis F-Markov under PO• □. 

THEOREM 5.1.6: Under the new measure P the pair (X,N) forms a stochastic sys­
tem. 

PROOF: From part (i) of proposition 5.1.5 and proposition 5.1.4 we obtain that 
N is conditionally Poisson. Notice that we even have 

t+h 

E[exp(iu(N, +h-N,))I~] = exp((e;" - I) f ">-sds). 
I 

Hence 

E[exp(iu(N,+h-N,))l~V<:ff + I = E[exp(iu(N,+h -N,))l<:ff +] 

which shows that 

(~+ ,~l<:ff+)EC/, \ft;;;;a.O. 

The fact that X is F-Markov yields 

(<:ff+ .~la(X,))EC/, \ft;;;;a.o. 
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Now we can use the following result which is obvious. Let F 1,F2G be o­
algebras. Then (F1,F2 IG)eC/ and (F1,F3 IGV F 2)eC/ is equivalent with 
(F1,F2 V F 3IG)eCJ. 
In our case we take G =o(X,), F2 =GJf+, F 1 =<!;, and F3 =~+ and we 
obtain(</f,,GJf+v~+lo(X,))eC/. D. 

Thus we have constructed a stochastic system where ( as always) X is a Markov 
process and the output process is a conditional Poisson process. Notice that 
so far we have used an evolution equation for N whereas for X we only have 
the Markov property. The next objective is to describe the evolution of X in 
terms of a stochastic differential equation. Throughout the rest of this chapter 
the following assumption will be in force. 

AssUMPTION: 5.1.7: The state process X takes its values in the finite set 
{~=x1, ... xn}, where the x; are different. 

Define Y:OX(O,oo)➔{O,l}n by its components Y;1:=l{x,=x,} Denote by 4>(t,s) 
the matrix of transition probabilities of X. That is for t ~s, with the notation 

z+ =z-1 l{z,;,taO} and the understanding ~ =O 

4>;j(t,s) = P(X1 = X;IXs = Xj) = (EYjs)+ E(Yjs Y;,). 

Then we have the following well known facts. Semigroup property: 
4>(t,s)=4>(t,u)4>(u,s) for t~u~s. Assume that for all t~0 the following limit 
exists 

A(t): = lim hl [(>(t +h,t) - /] 
hJ,O 

A (t) will be called the generator of X at time t. So A (t) has nonpositive diag­
onal elements, the other entries are nonnegative and the column sums are zero. 

Such a matrix will be called a Markov matrix. Then :t 4>(t,s)=A (t)4>(t,s) In 

particular :t (>(t, O)=A (t)4>(t, 0). From this equation we get 

det4>(t, O)=exp(J' trA(s')ds). Hence, by definition of A(t), we see that 4>(t, 0) is 
invertible for all P~o. -

PROPOSITION 5.1.7: Define Z:OX[O,oo)➔Rn by Z1 =4>(t, 0)- 1 Y,. Then Z is an 
F -martingale and Y satisfies the stochastic differential equation 

dY, = A (t)Y,dt + 4>(t, O)dZ, (5.1) 

PROOF: Using a representation of a conditional expectation when the condi­
tioning a-algebra is generated by a finite number of disjoint sets we get 

E[Z,l<:f;J = (>(t, 0)- 1 E[Y,l<!t] = (>(t, 0)- 1 E(Y,lo(Xs)J = 
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= ~t, 0)- 1 E[Y,lo(Y3 )] = cl>(t, 0)- 1 IE[Yjs]+ E[Y, Yjs]Yjs = 
j 

= ~t, 0)- 1cl>(t,s)Y3 = ~s, 0)- 1 Ys = Z3 • 

The second assertion can easily be proved by applying the stochastic 
differentiation rule to the product Y1 =cl>(t, 0)Z,. □ 

Notice that J' ~s, O')dZ3 appearing in (5.1) is again a F-martingale since cl>(·,0) 
is trivially pr&tictable. 
Proposition 5.1.7 thus gives us a representation of Markov processes in terms 
of a linear stochastic differential equation driven by a martingale. The next 
result gives a converse statement. 

PRoPosmoN 5.1.8: Let X:OX[0,oo)➔'X be a stochastic process, F-adapted, and 
let Y be associated with X as before. Assume that Y satisfies 

dY, = A(t)Y,dt + dmT (5.2) 

Here A :[0,oo)➔Rnxn is a Lebesque measurable function (deterministic !) and 
my an F-adapted martingale. Then X and Y are F-Markov processes. 

PRoOF: We have to prove that E(f(X,)l<:t]=E[/(X,)lo(X3 )] for all 
f :{x1, ... ,xn}➔R. Since /(X,) = ~jf(cj)Yj, we only have to prove 
E[Y,l<:fs]=E[Y,lo(X3 )]. Let: B(t)=cl>(t, 0). Then 

B(t)=A(t)B(t), B(0)=I 

Now we can write the solution Y, of (5.2) as 
t 

Y, = B(t)Y0 + B(t)JB- 1(s')dm;. 
0 

t 
Notice again that fo B- 1(s)dm; is an F-martingale and B(t) deterministic. 
Hence 

E[Y,l<:fs] = B(t)Y0 + B(t)f B- 1(u)dm! = 

= B(t)Yo + B(t)[B- 1(s)Ys - Yo]= B(t)B- 1(s)Ys 

Since we have o(X3 )=o(Y3 )C<:fs we get 

E[Y,lo(X3 )] = E[E[Y,l<:fs]lo(Ys)] = E[B(t)B- 1(s)Yslo(Y3 )] 

= B(t)B- 1(s)Ys = E[Y,l<:fs]. D 

Concluding we see that the statement X and Y are F-Markov is equivalent 
with saying that the indicator process Y satisfies equation (5.2). 

Next we give a result on Markov solutions of stochastic differential equations 
(see also [33] for related problems). 



95 

PRoPosmoN 5.1.9: Let X be the solution of the stochastic differential equation 

dX, = g(t,X,)dt + dmf, Xo (5.3) 

where mx is an F-martingale and g:[O,oo)X~R. Assume that the jump 
measure µ. of X admits a compensator ,, (with respect to F and P) such that 
P(dt,dy,w)=p(t,X,(w),dy)dt. Then Xis an F-Markov process 

PROOF: We show that for the indicator process Y the representation of propo­
sition 5.1.8 holds. From (5.3) we get from the stochastic calculus rule for all 
k;;a.O: 

dX'!= kr,:: 1dX, + j[(X,_ +yf-X'!- -kr,:: 1y)µ.(dt,dy) 
~ 

= k,¥f- 1(g(t,X,)+ j[(X1 +y'/'-X'!-kXf- 1yp(t,X1,dy)dt 
~ 

+~r ~~ 

Here ~~k) summarize all the martingale terms in (5.4). In a more compact 
notation we can write (5.4) as 

dr, = g<k>(t,X1)dt + ~~k) (5.5) 

where g<k>:[O,oo)X~R. Now we can writer, as [xt, ... ,x!]Y, and g<k>(t,X1) 

as G<k>(t)Y, where G<k>(t)=[g<k>(t,x 1), ••• ,g<k>(t,xn)]. Introduce the following 
notation. Vis the (nXn) matrix with k-th row equal to [xt- 1, ••• ,x!- 1] 

(k= 1, ... ,n). G(t) is the (n Xn) matrix with k-th row G(k-I>(t) (k = 1, ... ,n). 
M, is the martingale with components m~k). If we consider (5.5) as a system of 
equations fork =O, ... ,n -1 we can summarize it (with G(t) and Vas defined 
above) as 

VdY, = G(t)Y,dt + dM, (5.6) 

Observe that Vis a V andermonde matrix, that is J!Onsingular because all the X; 

are different. Let A (t) = v- 1 G(t) and MT= v- 1 M, then (5.6) becomes 

dY, = A(t)Y,dt + dMT (5.7) 

Because Mis an F-martingale and A (t) is nonrandom, we obtain from (5.7) by 
applying proposition 5.1.8 that Xis F-Markov, with generator A (t). □ 

If we collect the above results we get the following 

THEOREM 5.1.10: Let the process X and the counting process N satisfy the follow­
ing equation 

dX, = g(t,X,)dt + dmf, X 0 

dN, = ">..(t,X,)dt + dm,, No =O 

Here A and g are measurable functions from [O, oo) X 'X to R and R + respectively 
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and mx a'!d mare F-martingales. Assume moreover that mis a martingale with 
respect to F = { ~ V ~ } and that the Jump measure µ of X admits a compensator 
11 of the form ll(_dt,dy,w)=p(t,X,(w),dy)dt. Then the pair (X,N) is a counting pro­
cess system. 

5.2 Minimality of conditionally Poisson systems 
In this section we will confine ourselves to stationary systems. 1bis means that 
the function A,g, and A in theorem 5.1.10 are not explicitly dependent on t. 
So we use the representations 

dY, = AY,dt + dMT, Yo 

dN = CY,dt + dm,, No =O 

Here C is a row vector in Rn with elements C; =A(x;). 

(5.8a) 

(5.8b) 

Equation (5.8) is called the forward representation of the system (X,N). It is 
also possible to give a backward representation. The starting point of this sec­
tion is the system of equation (5.8). The word minimality in the title refers to 
the minimality of size of the state space ~ in a way made precise below. The 
external behaviour of the system (X,N) is the process N . We call (X,N) 
minimal (to be made precise below) if we cannot find a system (X,N) wh~e X 
has a smaller state space than X. Observe that the external behaviours (X,N) 
and (X,N) are both given by the same process N. For (X,N) we use the equa­
tion (5.8) with Y,A) and C replaced with Y, c,l. 

DEFINITION 5.2.1: The forward representation (5.8) of the system X,N) is 
called strongly reducible if there exists a set ~ of lower cardinality than ~ and 
a function f =~~ such that with X, = f(X,), the pair X,N) is a stochastic~­
tern with a forward representation of the form (5.8) and such that CY,= CY,. 
In this case (X,N) is called strongly forwardly reducible. If (X,N) is not 
strongly forwardly reducible, it is called strongly forwardly minimal. if it is not 
strongly reducible. 

Some remarks are appropriate. _ 
1. If (X,N) is strongly reducible then the "new" state process X is again Mar­
kov. 

2. The adverb strongly in definition 5.2.1 can be thought of as opposed to 
weakly. One El~ call a system weakly reducible if there exists a COY!!~g pro­
cess system (X,N) on SO_Ele possibly different probability space (0, 'F,P)_ such 
that the state space of X has strictly smaller cardinality than that of X and 
such that N is equal to N in distribution. One can also define strong reducibil­
ity for the backward representation of (X,N). We will not treat weak prob­
lems and problems for the backward representation. For this reason we will 
speak of miroimaHty and reducibility throughout this section when we mean 
strong forward minimality and strong forward reducibility. 
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The problem that we want to treat is the characterization of minimal count­
ing process systems. In view of remark 1 above we first focus our attention on 
functions of a Markov process. 

From the equivalence of F-Markov processes and solutions of certain linear 
stochastic differential equations (Propositions 5.1.7 and 5.1.8) it is easy to see 
when functions of a Markov chain again yield a Markov chain. We give a 
result that also holds for non stationary chains. 
To be specific let as before X be a F-Markov chain with state space~ Let H 
be another set and f :6-X,....+H a function. Clearly f (X) is again Markov if f is 
injective. To avoid trivialities let us assume that H={h 1, ••• , hm}, m<n and 
that f is onto. Write Z1 = f(X1). Associate with Z the indicator process W as 
usual: 

W:~X[O,oo)➔{O,Ir, W;, = l{Z,=h,}· 

Define FERm xn by FiJ=lffixi)=h,}· Notice that l~F=lI, where lm its a 
column vector with as elements + 1. Then W, =FY,. Notice that because f is 
onto F has rank m, i.e. it has full row rank. Let KERnx(n-m) be a fixed 
matrix such that it columns span KerF. Let as before A (t) be the matrix of 
transition intensities of X. We have the following. 

THEOREM 5.2.2: Let X be F-Markov with.finite state space 'X. Let f:6-X,....+H. Then 
f(X) is again F-Markov iff FA (t)K =0 where the columns of K span KerF and F 
is related to f as indicated above. If this condition is satisfie4 then the,. matrix 
B(t) of transition intensities off (X) is given by B (t) =FA (t)F, where F is any 
right inverse of F. 

PROOF: We have dY, =A (t)Y1dt+dmT. Hence 

dW1 = FA (t)Y1dt + FdmT 

Now Z is F-Markov iff dW,=B(t)W,dt+dmf for some matrix-valued func­
tion B and a F-martingale m w_ By the uniqueness of the special semimar­
tingale decompositiop Z is F-Markov if and only if there is a B(·) such that 
FA(t)=B(t)F. Let F be a fixed right inverse of F. It exists, since F has full 
row rank. Then the last equation implies B(t)=FA(t)F. Of q>urse for B to be 
well defined it ~hould not depend on the particular choice of F. A 
Starting from F all other right inverses G of F are given by G = F + KX, where 
X ER<:-m)Xm isA an arbitrary matrix. Hence B (t) is well defined iff 
FA(t)F=FA(t)(F+KX) or iff FA(t)K:=O. □ 

REMARK: The result as such is not new but can be found in a slightly different 
form in KEMENY and SNELL [10, p.126) where Markov chains in discrete time 
are considered. However the proof given here is shorter. 
We will work with a sF-al right inverse of F, the Moore-Penrose inverse 
which is defined as F =FT(FFT)- 1 Because of the prominent role that 
matrices Fas defined before play, we will refer to these as reduction matrices. 
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PROPOSITION 5.2.3: The pa}! (X,N) is_ reducible iff there exists a r~uction 
matrix F such that with A =FAF+ ,C=CF+ the equalities FA =AF and 
C=CF hold Moreover for the reduced system (X,N) the generator of Xis A 
and the intensity of N is given by CY,. In this case one says that F reduces 
(X,N). 

PRooF: Obvious in view of remark I after definition 5.2.1. 

Observe that the reduction procedure is transitive, which means the following. 
Suppose F 1 reduces (X,N) into a new system (X1,N) and suppose that F2 
reduces (X1,N). Then F 2F 1 reduces the original system (X,N). Indeed if F 1 
reduces (X,N) then F 1A =A 1F 1 for A 1 =F1AFt and C=C1F 1 for 
C1 =CFt . If then also F 2 reduces (X1,N), then we can write F 2A 1 =A2F2 
and C1 =C2F2. But then F2F1A =F2A 1F1 =A2F2F1 and 
C=C1F 1 =C2F 2F 1 which is what we have to prove. Notice however that 
given a reduction matrix F that reduces (X,N) one cannot always decompose F 
as F=F2F 1, where F 1 reduces (X,N) and F 2 reduces (X1,N). A simple 
example is the following. Suppose that X has generator 

A=[ - ~ _; ~i 
I 2 -4 

and N has constant intensity A=AlTY,. Then clearly F =[11 1) reduces (X,N) 
but no reduction matrix FER2x3 reduces (X,N) as can easily be checked. 

DEFINITION 5.2.4: Let the row vector CERn be given. Then Dis defined to be 
the diagonal ~atrix diag(C) which has as the J-th diagonal element cj. For 
uER,D(u)=(e'"- l)D. 

L~ 5.2.5: Let!.._ be a reduction matric, with right inverse F+ and kernel K. 
Let C = q+ and D = FDF+ . The following statements are equivalent 
(i) C=CF 
(ii) FDK=O 
(iii) FD=DF 

PROOF: (i) =? (ii): 

(FDK)ij = IkF;kckKkj = Ik,1F;kc1F0cKkj· 

Because of the special form of the matrix F, there is only one nonzero element 
in each column. Hence a product F;kFik equals zero if i=/=-1. Therefore the last 
summation can be written as 

~F;kciF;kKkj =c; ~FfkKkj = c; ~F;kKkj =o. 
k k k 

(ii)~iii): FDK=O means that FD is contained in the left kernel of K which 
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is F. Hence there is a matrix L such _!hat FD = LF. But then by postmultiply-
ing with F+ we o~tain L =FDF+ =D. _ 
(iii)~(i): FD=DF implies that tTFD=tTDF or tTD=tTDF. However 
tTD=C and tTD=C. □. 

LEMMA 5.2.6: Let F be a reduction matrix with kernel Kand let e; be the i-th 
basis vector of Rn. Let (X,N) be a stochastic system as in (5.8). Assume that 
FAK=O. Then F reduces (X,N) if C is such that Fek=Fej for some k and j 
implies ck =cj. 

PROOF: We only have to prove that we can write C=CF, where C=CF+. 
Observe first that 

(FFT)ij = ~F;kF'_jk = ~F;k8ij, 
k 

where 8ij is the Kronecker symbol. In particular (FF)[;= IkF;k Observe furth­
ermore that of all _j,j,k ckF;kFij =?,F;{Fij because of the assumption on C. 
Now we calculate (CF)j=(CFT(FF )- F)j= 

= ~ckF;k(FFT)ir 1Flj = ~ckF;kFu(FFT);-; 1 =cj 
i,k,I i,k 

So CF=C. □ 

To see whether a system (X,N) is reducible one may check whether the criteria 
of proposition 5.2.3 hold for a reduction matrix F. If the state space '!X. is very 
large this is of course quite a task. So we are looking for more easily verifiable 
criteria. In turns out the matrix W(u) to be defined below plays a crucial role. 
The usefulness of this matrix will be illustrated in theorem 5.2.8. This special 
matrix will be related later on to stochastic observability. 

DEFINITION 5.2.7: Wis then Xn matrix with J-th row equal to tT(D -Ay- 1. 

W(u) is then Xn matrix with j-th row equal to tT(D(u)-A)i- 1• 

THEOREM 5.2.8: Suppose that a reductio'!_ matrix F reduces _a SJ'_Stem (X,N). 
!Jzen W=WF, ~ere the j-th row of Wis given Pl:, tT(D-Ay- 1• Here 
D=FDF+ andA=FAF+. We also have W(u)=W(u)F,\fu, in analogous 
notation. 

PROOF: If F reduces (X,N) then by 5.2.3 and 5.2.5 FA =AF and FD=DF. 
We have to prove that tT(D-AY=tT(D-AYF for all j. The proof is by 
induction. It is certainly true for j =O. Suppose it is also true for some 
integer j . Then 

1T(D-Ay+ 1 =l(D-AY(D-A)=tT(D-AYF(D-A)= 
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= 1T(i5-A)i(DF-AF)= tT(i>-ly+ 1F. 

The proof for W(u) is similar. D 

Our goal is to prove a converse of theorem 5.2.8 We want to get a result such 
that by inspecting the matrix W(u) we immediately see which matrix F, if any, 
reduces the system (X,N). We need a series of technical lemmas. 

LEMMA 5.2.9: Let q,:R2➔cn be the solution of the equation 

T 

q,(t,1) = tT - f #..s,I)D(u)~(s -t)ds (5.9) 

Then q,(t,I)=lTexp((D(u)-AXt-1)). If q,1 =Req, and <1>2=Imq,, then 
q, = [ <1>1 'P2] satisfies 

a [(cosu- l)D-A D sin u l 
ai~t,1) = ~t,1) -sin uD (cos u-l)D-A 

REMARK: q, and q, also depend on u. In the notation we have suppressed this 
dependence. -

PROOF: Differentiate (5.9) to get 

a T 
-a q,(t,1) = q,(t,I)D(u) + f #..s,I)D(u)~(s -{)Ads 

t t 

= q,(t,I)D(u) + (IT -q,(t,I))A 

= q,(t,T)(D(u)-A). 

So q, satisfies the differential equation 

a 
atq,(t,T) = q,(t,T)(D(u)-A) 

(5.10) 

with terminal condition q,(T, 1) = 1 T, which has the unique solution 
q,(t,I)=lTexp((D(u)-AXt-1)). By splitting (5.10) in real and imaginary 
parts we obtain the differential equation for ,t,. 

COROLLARY 5.2.10: Let q, be the solution to (5.9). Then q, and W(u) completely 
determine each other. 

PROOF: q, is completely determined by the sequence 

ak 
{ atk q,(_T, 1)} r =O· 

Now 
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ak 
-k <P(_T,T) = tT(D(u)-Af. at 

For k;:.n (D(u)-Af is a linear combination of the (D(u)-A')i,J=O, ... ,n-1 
by Caley-Hamilton's theorem. Hence we know cf, as soon as we know W(u). 

Remark: In the sequel we repeatedly use the same symbol K both for the ker­
nel of a matrix considered as a subspace of some Rn and for the matrix whose 
columns span this subspace. 

LEMMA 5.2.11: Let A ERn xn be a generating matrix for a finite state Markov 
process. Let 

C,CERn, C = [c,, ... ,Cn], C = [c,, .. ,Cn]-

1ssume tf.,at A there exists p function f :R➔R such that ci = f(ci)- Let 
D =diag(C), D(u)=(e;:- t)D, D =diag(C), D(u),:=(eiu - l)D. Let W(u) be as 
in definition).2.7 and W(u) similarly defined with D taking the place of D. View 
W(u) and W(u) ~ elements ofe(Rn,cn) a'!d let A 

K= nuKerW(u),K= nuKerW(u). '[hen K is a D invariant sub_.space of Rn, K 
is a D invariant subspace of Rn and KC K., or equivalently, W( u )K = 0. 

PROOF: We first prove that K is D-invariant. Observe that W(u)K::::O iff 
<P(_t, T)K=O iff c/>i(t, T)K::::O (See the notation of lemma 5.2.9). Use the equa­
tion for cf,. Then we obtain 

[cf,1(t,T)((cos u- l)D-A)-4>i(t,T)sin uD]K-o. 

or 

cf,1(t,T)DKcos u-4>i(t,T)DKsin u-q,1(t,T)(D+A)K_O 

Since this has to hold for all u,t, T we obtain 

cf,1 (t, T)DK::::O, lf>i(t, T)DK::::O 

and cf,1(t,T)(D +A)K=O. In partipularAwe get <P(_t,T)DK_O which shows that 
K is D-invariant. The proof that K is D-invariant js similar. Observe that we 
also have that K is D(u),:invariant and that K is D(u)-invariant. We proceed 
with proving that Jf(u)4=0. Because of the relation between the diagonal 
matrices D(u) and D(u),K is also D(u) invariant. Hence 

A A A 

(D(u)-D(u))K=KN 1(u) 
A A A A 

for some matrix N 1(u). Since <P(_t,T)K::::O (cf, as in lemma 5.2.9 with D(u) 
instead of D(u)) we also have 

a A A A A A 

at<P(_t,T)K=O or <P(_t,T)(D(u)-A)K::::O, 

A A A 

which shows that there is N 2(u) such that (D(u)-A)K=KN2(u). Let cf, be as 
in (5.9). Then 
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q,(t,T) = tTexp((D(u)-.D(u) + D(u)-AXt-T)). 

Observe that (D(u)-Af is the sum of products of the form 

(D(u)- D(u)f (D(u)-AY' .... (D(u)-D(u)f (D(u)-AY' 
A A A 

Since K is both D(u)-D(u) and D(u)-AAinvariant we obtainl that it is also 
(D(u)-Af invariant, which yields q,(t,T)K=<). Hence W(u)K=O for all u. 

□ 

REMARK: The assumption in lemma 5.2.11 that such a function f exists is 
equivalent with the statement that if for some c; =cj then c; =cj. Consequently 
if C; =cj~i =cj then there eiust functions f and g such that C; = f(c;) and 
c; = g( c; ). So in this case K = K. 

What w~ have seen in the preceding lemma is the following. Starting with the 
matrix D ifA we r~lace it with another diagonal matrix D as in lemma 5.2.11 
the kernel K of W(u) for all u might be enlarged to get thAe kernel K of W(u) 
for all u. It is interesting to see what we have to add to K in order to obtain 
K. FromA the proof of lemma 5.2.11 we get that K is D(u) l!fld A invariant, 
whereas K is only D(u) i'fld A invariant. So if we write [K=K,K'], then pis 
D(u) invariant but not D(u) invariant. This means that gping from K=[K,K'] 
to K we have to delete that part K' of K that is not D(u) invariant. This 
observation forms the key to the proof of theorem 5.2.15 below. Before stating 
and proving this theorem we formulate some lemmas. 

LEMMA 5.2.12: Let C be such that all the C; differ from each other. If 
W(u)K=O,for all u then K=O. 

PROOF: Suppose K=j=O. Then tTK=O and all the colums of Kare eigenvectors 
of D ( u ). However in this case the only eigenvectors of D ( u) are multiples of 
the basis vectors of Rn and for those the sum of their entries is not equal to 
zero. 

LEMMA 5.2.13: Let W(u) be given and a reduction matrix F such that 
W(u)= W(u)F for all u. Assume that all the_c;'s appearing in th!_ second row of 
W( u) are different form each other. If W( u )K = 0 for all u, then K = 0. 

PROOF: Define D(i)=FD(u)F+. Observe that D(u) is_ again a dia_gonal 
matrix and th~ tTD(ul_is the second row of WQl). For K we have tTK=O. 
Since W(u)= W(u)F, W(u)= W(u)F+. So p+ K lies in KerW(u) for all u, 
which implies that p+ K is D(u) invariant for all u: 

D(u)F+ K = p+ KN(u) for some N(u). 

But then D(u)K=KN(u), which means that K is D(u) invariant. Because of 
the fact that all the diagonal entries of D(u) are different from each other, this 
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is not compatible with tTK=O, unless K=O. 

COROLLARY 5.2.14: Under the assumptions of lemma 5.2.13 one has 
nuKerW(u)=KerF. 

PROOF: Let K= nuKerW(u). Then W(u)FK=O, Vu. But then lemma 5.2.13 
implies that FK=O, so KCKerF. Since always KerFCKerW(u), the proof is 
finished. 

THEOREM 5.2.15: Let W(u) be given and assume that there exists a reduction 
matrix F such that W(u)= W(u)F, for al/ u. Assume that Fis such that no two 
columns of W(u) are identically the same. Let Ki =KerF. Then FAKi =O and 
FDKi=O. 

PROOF: We will consider two cases. In the first case Ki= nuKerW(u). We 
already know that Ki is D(u) invariant for all u. Hence FD(u)Ki =O and so 
FDKi =O. By Caley-Hamilton's theorem there exists a matrix M(u) such that 
W(u)(D(u)-A)=M(u)W(u). Hence W(u)(D(u)-A)K1 =O. So 

W(u)F(D(u) - A)Ki =O. 

In this case nuKerW(u)=O. Hence F(D(u)-A)Ki =O and by the above 
FAK1=0 

In the second case Ki is strictly contained in K= nuKerW(u). Hence we 
can write K=[K1,K2]. This implies that nuKerW(u)=FK2:;t=O, so that the 
procedure of the first case considered fails. We proceed_ as follows. Observe 
that we still have FD(u)Ki =O and FDKi =O. So C=CF in view of lemma 
5.2.5. Now we are going to change C a bit. If c; is such that C;=;t=Cj for all 
j=;t=i, then we define c;=c;. If e; is such that for some j<ie;=s, we pick a 
number J; that differs form all the other c/s. By this procesure we get a rpw 
~ector CA with ~lements all <!ifferent from each other.A Define AC=CF, 
D =diag(C) and D(u)=(e;" - l)D. Observe that ~till K 1 is D(u) and D inyari­
ant b1!_t any non-trivial subspace of K2 is not D-invariant. AConstrupt W(u) 
from D(u) as bef9re. Then in view of lemma 5.2.11, nuKerJJ::(u) is D invari­
ant and nuKerUJu)C nuKerW(u). So necessarily nuKerW(u)CK1. But 
then even nuKerW(u)=Ki in view of the discussion that follows the proof of 

..,.... A ..,.... 

lemma 5.2.11. Hence there exists a matrix W(u) such that W(u)= W(u)F for 
..,.... -

all u. Now the second row of W(u) equals (e;" - l)C, where the C; are all ..,.... 
different elements by construction. So from lemma 5.2.13 nuKerW(u)=O. 
the final step of this part of the proof is as in the first case considered. By 
Caley-Hamilton's theorem, there exists M(u) such that 

A A A 

W(u)(D(u)-A) = M(u)W(u) . 
..,.... A A 

Hence W(u)F(D(u)-A)K1 =O, which implies F(D(u)-A)Ki =O. Since we 
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already knew that FD(u)K1 =Owe get FAK1 =O. 

The next theorem is immediate from 5.2.8 and 5.2.15 

THEOREM 5.2.16: Let (X,N) be a counting process system with finite state space. 
Then (X,N) is minimal iff all the columns of W(u) viewed as functions of the 
variable differ from each other. 

Next we give a system theoretic interpretation for the above characterization. 
We will call (X,N) stochastically observable if for all t <T the conditional dis­
tribution of (Nr-N,lo(X,)) completely determines Xr, This definition (see 
below for a more precise formulation) differs slightly from what can be found 
in the literature. There one can find an alternative that uses the joint condi­
tional distribution of the vector (N,. -N,, _, , ... ,N,, -N,) given .X,. However for 
our purpose our definition suffices. 

DEFINITION 5.2.17: The pair (X,N) is said to be stochastically observable if 
Vt<Tthe map 

x, ..... E[exp(iu(Nr- N,))lo(X,)] 

is injective on the support of X,. In the particular case for conditoionally Pois­
son systems we have 

PROPOSITION 5.2.18: 

E[exp(iu(Nr-N,))lo(X,)] = tT exp(((e;" - l)D-AXt-T))Y, 

PROOF: With 

g(t, T)=E[exp(iu(Nr- N,))l~V~] 
T 

we have g(t,T) = exp((e;"-1) j CY3 dr) (cf. definition 5.1.3). Hence g satisfies 

the integral equation 

T 

g(t, T) = 1-(ei" - 1) j g(s, T)CYsdr (5.11) 

Take conditional expectations in (5.11) with respect to§; =~Vigf. Then 

T 

E[g(t,T)I§;] = 1-(e;" - l)E[jg(s,t)CY3 drl§;]= 
t 

T 

= 1-(ei"-l)E[jE[g(s,T)l<:fs]CYsdrl§;] (5.12) 

Because of the fact that (X,N) is a stochastic system 



E[g(t,T)l'?fi] = E[g(t,T)la(X,)i 

Hence there is a non random function h:R2-+Rn such that 

E[g(t,T)la(X,)] = h(t,T)Y,, 

where h(t,T) is written as a row vector. Hence (5.12) becomes 

T 

h(t, T)Y, = 1-(e;u - l)E[jh(s, T)YsCYstbl'?fi] 

with D =diag(C) we can write (5.13) as 

T 

h(t,T)Y, = 1-(e;u_I)jh(s,T)DE[Ysl'?fiJtb 
t 

Because Xis F-Markov E[Ysl'?fi]=4>(s -t)tb Y,. So (5.14) now yields 

T 

h(t,T)Y, = l-(e;u_I)jh(s,T)D4>(s-t)tbY, 
t 

Or 

T 

h(t, T) = IT -(eiu - 1) f h(s, T)D4>(s -t)tb. 
t 

In the notation that we previously used 

T 

h(t,T) = IT - jh(s,T)D(u)4>(s -t)tb 
t 
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(5.13) 

(5.14) 

This implies that his nothing else but the function q, of lemma 5.2.9. D . 

THEOREM 5.2.19: (X,N) is stochastically observable iff for all u all the columns of 
W ( u) are different from each other. 

PROOF: E[exp(iu(Nr-N,))la(X,)] is not an injective function if and only if 
some of the components of the function h in the proof of proposition 5.2.18 
are the same, in which case we can write h(t,T)=h(t,T)F for some other func­
tion h and a reduction matrix F. But this is the case iff 

Now 

ak ak -
-k h(T, T) = -k h(T, T)F, 't/k ~O. at at 

akk h(T,T) = tT((eiu_ l)D-Af = lT(D(u)-Af. at 

(5.15) 

So (5.15) holds iff W(u)= W(u)F for all u, which again means that at least two 
columns of W ( u) are identically the same. 
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Collecting the results of theorems 5.2.8, 5.2.15 and 5.2.19 we have the follow­
ing 

THEOREM 5.2.20: The next statements are equivalent 
(i) (X,N) is minimal 
(ii) (X,N) is stochastically observable 
(iii) All the columns of W(u) are different from each other, viewed as functions of 

u. 

REMARK: For backward representations a theorem like 5.2.20 can be proved 
that involves the concept of stochastic reconstructability. 

Theorem 5.2.20 seems to be not very satisfactory from the point of view that 
the matrix W(u) still contains the unknown variable u. But this is only 
appearance, which will be explained as follows. Introduce the new variable 
z =eiu - I. Then all the elements of W(u), with e;" - 1 replaced by z, are 
polynomials in z. Hence in order to check whether two columns of W(u) 
coincide, one inspects the coefficients of these polynomials. These coefficients 
appear to be functions of D and A. Therefore one can replace the inspection 
of W(u) with the inspection of the matrix that contains these coefficients. It is 
a cumbersome job to describe how this last matrix in general looks. Instead 
we give an example that illustrates the general procedure. Assume that n = 4, 
so l<XJ =4. The first row of W(u) is [1112). The second row is 

tT((eiu_ l)D -A)=tT(zD-A)=ztTD. 

The third row in termo of z is 

tT(zD-A)2 =z 21TD2 -ztTDA. 

The last row is given by 

tT(zD-A)3=z 3 tTD3 -z2 tT(D 2A +DAD)+z1TDA 2. 

Hence comparing the coefficients of equal powers of z leads to inspecting the 
matrix 

JT 

tTD 

tTD2 

z = tTDA 
tTD3 

tT(D2 A + DAD) 
tTDA 2 

The conclusion is that we can reformulate the statement of theorem 5.2.20 by 
replacing W(u) by a matrix like Z. So the criterion or stochastic observability 
is then that no two columns of the matrix Z are equal. 
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5. 3 Self exciting counting process systems 
In this section we study what are called self-exciting counting process systems. 
These can be considered as being on the opposite side of the whole spectrum 
of counting processes if they are compared to the conditionally Poisson sys­
tems. As shown in section 5.1, conditionally Poisson systems can be con­
structed by a measure transformation, where under the original measure the 
state process and the counting process were independent. As a consequence 
the state process and the counting process never have jumps at the same time 
with probability I. In this section we will see that for self-exciting systems 
(the previously made assumption that the state space 'Xis finite is maintained) 
the state process can only jump when N jumps. The motivation for studying 
this class of systems is roughly the following. From a practical point of view it 
is attractive when the state process evolves on a finite space. For instance 
finite dimensional filters for state estimation exist in this case. On the other 
hand one can argue, see also BoEL [13], that in the situation where cannot 
observe a state process and where there are no physical grounds that lead to 
an obvious choice of a state model, it is perhaps better to use self-exciting 
models for identification purposes. 
Here we adopt both these points and the question arises whether this yields an 
interesting model. To put it a little bit more precise, we want to characterize 
the class of counting processes that admit an intensity, which is a function of a 
finite state process which is Markov with respect to the flow of a-algebras gen­
erated by such a counting process. Or, to formulate it in terms of a stochastic 
realization problem, given a counting process, under what conditions can it be 
represented as the output of a stochastic system, where the state proces 
assumes finitely many values, and is Markov with respect to the filtration gen­
erated by the output. 
The purpose of this section is to present a solution of the above stated prob­
lems. In particular a detailed investigation is made of finite state processes 
which are Markov with respect to a given counting process. 

DEFINITION 5.3.1: A self-exciting counting process system is a stochastic system 
(X,N) such that 'fJf c'ff,',\ft~O. So (<Jf+ v~+ ,'!t,'ja(X,))ECJ. 

This definition implies that the state process X is Markov with respect to the 
filtration FN, whereas of course for N we still have the equation 

dN1 = ">..1(X1)dt+dm, 

where m is now an FN -adapted martingale. A good deal of this section is 
devoted to FN -Markov processes and we make again the restriction that the 
state space of Xis finite, so assumption 5.1.7 holds. 

Before we are treating these fN-Markov processes we present some preliminary 
results that will be used later on. Let (0, 'ff,P) be a complete probability space. 
Let N:OX[O,oo)➔!'\10 be a counting process and let~ =a{N3 ,s:is;;;t} be the a­
algebra generated by the collection {N3 ,s:is;;;t}. Write FN = {~,t~O}. Assume 
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that N admits the minimal decomposition 

dN, = )..,dt + dm, 

where )..:0 X [O, oo )-+R + is the FN -predictable intensity process of N and 
m:OX[O,oo)-+R is a FN -adapted martingale. 
The following lemma, known as the martingale representation theorem, plays a 
crucial role. 

LEMMA 5.3.2: 
(1) Let M:OX[O,oo)-+R be an FN -adapted martingale. Then there exists an 

fN -predictable process k :0 X [O, oo )-+R such that for all t ;;;i.O 
t 

M, =Mo+ fksCdNs - )..sds) 
0 

The process k is P(dw)A,(w) a.e. uniquely defined and for all t;;;i.O 

t 

f k3 A3 ds < oo a.s. 
0 

(2) Let S:OX[O,oo)-+R be an FN -adapted semi-martingale of the form 
S, =So+ V, + M,. Here V is a process of bounded variation which is 
assumed to be continuous, VO = 0 and M is a FN -adapted martingale. 

i) S can jump only when N jumps i.e. flS,=/=(J~Mv, = 1 
ii) If moreover S is a pure jump process (which is the case if it takes its values 

in a countable set), then 

t 

S, =So+ fksdNs 
0 

and V is absolutely continuous satisfying 

t 

V, = JksAsds 
0 

where k is as in lemma 2.1. 

PROOF: The proof of (I) can be found in [3, p. 76]. for (2) we have 
t 

i) From lemma 5.3.2 we know that M, = f ks(dNs -'>i.3 ds) for some FN 
0 

-predictable process k. But then from the assumption that V is continu-
ous as, =flM, =k,tuv,. 

t 
ii) Now S,-So =~11.,.,flS11 =~11 .,_,k11 Mv11 = f ksdNs and V, =S,-So-M, = , , , lo 

lo ksdNs- lo ks(dNs-Asds)= lo ksAsds. a.s. 

REMAiuc: The assumption that V is continuous implies that the given decom­
position of S is FN unique, since S is now a fortiori a special semi-martingale. 
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- -
PRoPosmoN 5.3.3: Let_N and N be two counting processes and let A and A be 
their F!" -, respectively FN -predictable intensities. Equivalent are _ 
(i) ~ C~, and~ and~ are conditionally independent given~-, 
(ii) N, = f l{i..>o}dNs and~,= lci..>o}At . 

0 

PROOF OF PROPOSITION 5.3.3: We will use the following result which is obvi­
ous. Consider two filtrations F and G, such that for all t;;;;,,O:~ c§,. Then 
there is equivalence between 
(i) Any F-martingale is a G-martingale 
(ii) <J00 and§, are conditionally independent given~-

(i)~ii): Write dN, =~1dt+dm,, the Doob-Meyer decomposition of N with 
respect to FN. From the above equivalence m is also an fN -martingale. 

- r' H~nce ,tn, = J, hsdms for a P(dw)®dN.h:i) a.e. uniq_ue process h. Then 
( dN, = (A1 - A,~1 )dt + h,dN,, which gives dN, = h,dN, and A1 = h,A1• Therefore on 
thJ jump_ time~ Tk of N we have h}. =hr.. Hence we can also write 
dN, =h,d_N, =hi.A, +h,dm, . From the fact that predictable intensities are unique, 
we find A1 = h,A, a.s., which implies that h, I {i.. >0} = I ci.. >0}. An obvious choice 
of h that satisfies this relation is h', = l{i..>O} · It is certainly FN -predictable and 

00 

E f l{h,=/,l(~><Ji} dN, = E ~ l(hT.=Fl(AT.><Ji} = 
0 n>I 

- -
which can be seen as follows. It hT = l, then N jumps at Tn, so that AT >0, - . - " 
and if hr. =O, then Ar. =O from">.., =h,A1• The uniqueness of the process h now 
gives the result. 

- - I 
(ii)~(i): Notice: first that~ c~, s~ce by the assumption N,= J, Ir>.,>o}dNs, 
the sequence { Tk} of jump times o( N is contained in the sequen~ { Tk}. It is 
now sufljcient to prove that any FN -martingale is a FN -martingale. So let M 
be a fN -martingale. Then there _is a FN -predictable process h such that 

r' -M, =Mo+ Jo hsdms. Now 

~,dt +dm, =dN, = l{i..>o}dN, = l{i..>o}A,dt + l{i..>o}dm, =~1dt + Ici..>o}dm, 
-

by assumption. Because of~ c~ l{i..>o} is FN-predictable, hence mis also a 
FN -martingale. But then the same conclusions holds for M. □ . 
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REMA.RIC: The formulation of condition (ii) of proposition 5.3.4 can be replaced 
by 
(ii)' There exists a FN -predictable process u such that 

t 

N, = J u3 dN3 and ~, = u,">..,. 
0 

Later on one can identify u as u, = I{~ >0}, showing that it even becomes FN -
predictable. 
The next object that we want to study is the class of FN -Markov processes. 
We will combine the results of corollary 5.3.3 and propositions 5.1.7, 5.1.8 
applied to the situation where F = FN in order to find an integral representa­
tion of a finite state FN -Markov process in terms of its infinitesimal charac­
teristics and the intensity of the counting process. Let as before 

Ai= { lp,,>O}, with the understanding that ~ =O. 

THEOREM 5.3.4: Let X be an FN -Markov process with state space { x 1, ••• , Xn} 
and let Y be the indicator process associated to X as before. Then 

I 

Y, =Yo+ j">..: A(s)Ys-dNs 
0 

(5.15) 

PROOF: Y is a pure jump process satisfying Y, = YO + f A (s) Ysds + mT where 
m Y is a FN -martingale. Hence a multivariate extensio'h of 5.3.2-(2) applies: 

Y,=Y0 + f'ksdNs, where k:OX[O,oo)➔Rn is FN-predictable. In the notation 
lo , 

of this corollary we have V, = fo A (s) Y3 ds. So k satisfies for all t ;;;;i:o 
I I 

jA(s)Ysds = JksA3 ds. 
0 0 

Hence, in order to ensure FN -predictability of k we have 

A(t)Y,_ = k1">..1 (5.16) 

Now define k by k, =k, lp,,>O} · Then k is FN-predictable and 

00 00 

O~E f l{k,'l'k,}A,dt~E f l{;\,=O}A,dt = 0. 
0 0 

Hence k and k ll!e P(dw)A,(w) a.e. the same. From the uniqueness result of 
5.3.2 we may use k as well as k. So we have 

A (t)Y,- = k,">..,. 

Hence 

A(t)Y,-Ai =k,">..,">..t =k,. 



Now drop the tilde on k and the proof is complete. D 

COROLLARY 5.3.5: We have the following explicit expression for Y: 
k 

Y, l{r • ..:t<Tu,} = Il(At,A(T,) + J)Yo l{r • ..:t<Tu,} 
/=I 
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PROOF: Immediate from theorem 5.3.4 by noting that Yr, _ = Yr,_, and the fact 
that Y is right continuous. D 

ExAMPLE: Assume that the intensity process A does not depend on t. Then 
A1(w)=A for some non random constant A since XoO is ~-measurable. 
Assume A>0. Assume further that Xis a homogeneous Markov process. Then 

Y,l{r • ..:t<T .. i} =(A-IA+ TfYol{r • ..:t<Tu,} 

or 

Y1 =(A- 1A +Jt•Yo 

Since Y1 is a unit vector for all t, A - I A + I is a semi-permutation matrix in the 
sense that each of its columns has exactly one + I entry and the other entries 
are zero. Of course two + I entries may occur in the same row. Consequently 
all the diagonal elements A;; of A are either zero or equal to - A. If some 
A;;= -A then there is in the i-th column A; of A exactly one AJi equal to + A. 
All the other entries of A; are zero. If A;; =0 for some i then the whole 
column A;= 0. 

A similar remark applies to the general expression in corollary 5.3.5. We 
have for all i A;;(T,):s;;;0. Then if A;;(T1)<0 there is exactly one j = j (i, T1) such 
that Ai;(T1)= -A;;(T1). Since T, can assume any value >0, we have that for 
each i and t there is exactly one j = j (i,t) such that Ai;(t) = -A;;(t), all the 
other entries in the column A;(t) being zero. 

We will now investigate how A and A are related. Equation (5.16) relates the 
intensity A1 of the counting process with the matrix A (t) of transition intensi­
ties of X by means of the intermediate process k. In this subsection we will 
study this relation a little further. 
Multiply (5.16) by YT- to obtain 

A,Yf_k, = Yf_A(t)Y,_ (5.17) 

At a jump time Tn of the counting process there are two possibilities. If X also 
jumps then Yr,=FYr,-=Yr,_, and YL,kr.=YL,(Y7,-Yr,_.)=-1. If X 
does not jump then YL,kr. =0. So assuming that Xjumps we get from (5.17) 

Ar. = - Yf,_,A(Tn)Yr,_, (5.18) 

This last equation (5.18) suggests the following connection between A and A: 
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">.., = -YT-A(t)Y,_ 

This connection will be studied in the sequel. First we need a definition. 
- - I Define N :0 X [O, oo )-+R by N, = 2[YT, Y]i. Here [YT, Y] is the optional qua-

dratic variation process of Y. It satisfies 
I 

YTY, = Y3°Yo + 2 fY[_dYs + [YT, Y1 (5.19) 
0 

Observe that N counts the transitions of the Markov chain. We now have the 
following proposition. 

PRoPosmoN 5.3.6: 
i) N is an fN and FY-adapted counting process with FN and FY -predictable 

intensjty ">.., = - YT-A (t)Y, -
ii) N - N is also a countin~ process. It is only FN -adapted and has FN -

predictable intensity ">.., + Y, _ A (t) Y, _ 
- I -

iii) N, = lo l{i>o}dN, and At= l{A.>o}">..., _ 
iv) ~and~ are conditionally independent given~ 

PROOF: 
i) In view of eq (5.19) we have 

I 
O= YTY, - Y'{Ys =2 i Y~ - dY11 +[YT, Y]1 -[YT, YJs = 

- J' T J' T Y - --2 s Y 11 A(u)Y11du+2 s Y 11 _dm11 +2(N,-Ns), 

By observing that fo Y~- dmr is again a FN and F y martingale we get the 

desired result according to the definition of intensity. 
ii) From known results in stochastic calculus we get 

- r' r' 2N, =[YT, Y1 = lo ktksdNs =2 lo l{Y,=/cY, _}dN, because we only need to 
know k at the jump times Tn. If X does not jump when N does then 
kr. = 0, and if it jumps then kt_ kr. = 2. Hence N, -,s;;,N, for all t and 

- I -
N,-N, = lo l{Y,=Y,-} dNs which yields in view of (i) that N -N has the 
described intensity. _ 

iii) N_?tice that l{Yn=/cYn _,} = l(>.n~O,Xn>O} = l{Xn>O}, since Ar. -,s;;,">,.T•· Hence 
dN,=l{A.>O}dN,. But then dN,=l<&>o}">...,dt+l{A_>o}dm,, which s_!iows 
that l{A.>O}">..., is the FN-intensity of N which is then also equal to ">..., by 
part (i). 

iv) This is an alternative formulation of (iii) in view of proposition 5.3.3. 

An important corollary of this proposition occurs when all the A;;(t) are 
strictly negative. It is stated as the next 
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THEOREM 5.3.7: 

i) Let all the A;;(t) be strictly negative. Then N=N, <JT =~ for all t>0 and 
A1 = -Y;-A(t)Y,-

11 •• ) k - T ( - I ( - ~ A;(t) h . 
,- -(Y,-A t)Y,-) A t)Y,- - -"" A--(t) Y;,-, w ere k satisfies 
- u 

dN,=k,dN, 

PROOF: 
i) From eq. (5.17) we have 

At_ Yt, _, kr. = Yt, _,A(Tn)Yr._, =~;A;;(Tn)l{x,. _, =c,} <0. 

Hence Ar. >0 and kr., =f=O, which means tl)at X always jumps as soon as N 

jumps. Hence N = N ._ Since always ~ c <JT C ~ we now also have 
~ =<JT. Finally N=N implies A1 =A1 = -Y;-A(t)Y,-. 

ii) This is a simple consequence of formula (5.15) and part i) of the theorem. 

It is appropriate to inspect the results of propositio:Q 5.3.6 and theorem 5.3.7 
a little closer. In general we have for all t;;;i.0 ~ c<JT c~. In the case 
described in theorem 5.3.7, we get equality of those a-algebra's. Since now N is 
also the total number of jumps (or transitions) of the Markov chain and 
'!ff=~ it seems logical to expect that we have in the general situation (where 
N counts the transitions of the chain) ~ =<JT, which means in words that if 
we have a Markov chain adapted to a counting process then it is also adapted 
to the counting process that d~ribes the total number of transitions of the 
the chain. One could say that N is sort of "minimal" counting processes to 
which X is adapted. _ 
Next we show that the claim~ =<JT holds true. It is a consequence of 

-
THEOREM 5.3.8: Let X be finite state FN -Markov, then Y, is ~ -measurable. 

PROOF: Let T 1,T2, ••• be the possibly finite sequence of jump_times of N. From 
the discussion leading to (5.18) we see that A7 = -Yf- 1A(T1-)Y7_, >0. Con-

- J l - l 

sider first T 1• Then Ar is a (measurable) function of T 1 only. Hence from 
Yr =(Ar 1A(1'i)+I)Y~ Yr is also a measurable function of 1'1 only. But 

I I I -

then by induction we find that Y7 =(A71A(Tn)+I)Y7_ is a measurable func-
- - .,, • A • I 

tion of T1, .... ,Tn, say Yr. =yn(T1, ... ,Tn)-
Consequently, by right continuity of Y, we get withy0 = Yo 

ex, - -

Y, = Yo + ~Yn(Ti, . .. , Tn)l{r.-.,<r.+,}· 
n=I 

Notice that Yn i~ i/..-measurable since _i{._ =a(T1, . .. , Tn)- Now we invoke 
the fact that ~ n{Tn:ie;;;t<Tntd=~ n"{Tn:ie;;;t<Tn+d (see BREMA.UD [3, 
p.308]) to see that indeed Y, is ~ measurable. □ 
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The statement of the theorem is sometimes immediately seen in specific cases. 
Consider for example the case wher~ A1=A>0 and A is a constant matrix. 
Then we have in fact Y, =(X- 1A + 1t• Y0• 

-
COROLLARY 5.3.9: If X is a finite state FN -Markov process, then it is also FN 
Markov. 

PROOF: Since a process that is Markov with respect to some filtration is also 
Markov with respect to any other smaller filtration to which is adapted, this is 
an immediate consequence of theorem 5.3.8. 

Thusfar we have seen the following result.s. Given the fact O!at we have a FN -
¥arkov process X, X _ is also FN-Markov and N has intensity 
A1 = - YT-A(t}Y1 _, where N is as before the process that counts all the transi­
tions of X. As such these results form necessary conditions that follow from 
the existence of such processes. One might raise the question how to formu­
late sufficient conditions on a given Markov matrix function A(·) such that 
there exists an associated FN -Markov chain X. 
Secondly, given that a process Xis FN -Markov, what other counting processes 
N do exist such that Xis also FN -Markov. 
Answering the first question will be postponed until the end of this section. 
Concerning the second one we have - as a converse of previous results -

-
PROPOSITION 5.3.10: Let X be FN -Markov. Let N be another counting process 
with FN -predictable intensity A such that 

I 

(i) N, = /1{>.,>0}dNs 
- 0 

(ii) A,= l{~>O}Ai 

Then Xis also FN -Markov. 

- -
PROOF: From proposition 5.3.3, w..e see that '¥,' c'¥,' and that ~ and '¥,' are 
conditionally indq,sndent given '¥,'. Hence Xis certainly FN -adapted. 
Observe first that X,=~YT-A(t)Y,-=O implies A(t)Y,-=O as a result of 
the {a~t that 4. (t) is a Markov-matrix. Since X is FN -Markov: 
dY1 =A1 A(t)Y,_dN, (theorem 5.3.4). Hence 

-+ -+ -
dY, = A1 A1A (t}Y1dt + A1 A (t)Y1 _dm1 

-+ -
=A(t)Y1dt +>.1 A(t)Y,-dm,. 

From the conditional independence relation (proposition 5.3.4) the last term is 
an FN -martingale. Therefore application of proposition 5.1.8 completes the 
proof. 

REMARK: In view of the remark following the proof of proposition 5.3.3 one 
- I 

can replace conditions (i) and (ii) in proposition 5.3.10 by N, = fo u3 dNs and 
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~, =u,">..1 for some FN-predictable process u. 

Until now we have studied processes X that are FN-Markov and thus F~ -
adapted. As mentioned before, one of the results is then, that X is also FN -
Markov (corollary 5.3.9). Kno~g this, one can prove all the results men­
tioned in the foregoing, such as >.., = Y; _ A (t) Y1 _ etc. 
An interesting question is to see whether a process which is Markov with 
respect to its own flow of a-algebras and which is FN -adapted, is also FN -
Markov. In general this is not true. For instance if N is standard Poisson pro­
cess and Xis defined by X,=N½,, then Xis Fx-Markov, but not FN-Markov. 
Theorem 5.3.11 gives a sufficient condition for an affirmative answer. Let us 
first remark that any bounded process that is a semi-martingale with respect to 
some filtration is special. See DELLACHERIE & MEYER [5, VII.25] 

THEOREM 5.3.11: Let X be a finite state Fx-Markov chain and assume that X is 
adapted to FN - for some counting process N. Assume moreover that the indicator 
process Y, being a FN - special semi martingale, admits a decompositipn such that 
the predictable process of fi,vte variation is continuous. Then 6if = '11," '1:/t ;;;i:o and 
Xis FN -adapted and thus FN -Markov. 

PROOF: From corollary 5.3.2 we la_!ow that d!, =k,dN, for rme fN_ 
predi:table process k. By definition of N we have dN, = T [yr, Y]1 = 2 k; k11N1• 

So flN, =0 iff k1 =0. Therefore we can write dY1 =k1dN1• Observe that N is 
F Y-adapted. As in BREMAUD [3, p. 2, 13], we can interpret k1 as a Radon-

Nikodym derivative d:1 on the FY -predictable sets. Therefore we may take k 
dN1 

to be FY-predictable. For N we have by its definition 

dN1 = -Y;- dY1 = -Y;-A(t)Y,-dt - Y,-dmT 

so 

dY, = k,dN, = -k,Y[_A(t)Y,_dt -k,Yf-dmT 

on the other hand 

dY, = A (t)Y,dt + dmT 

(5.20) 

(5.21) 

Since all processes in (5.20) and (5.21) are FY-adapted, we have from the 
uniqueness of the decomposition of a special semi martingale that 
-k,Y;-A(t)Y, - =A(t)Y, - a.s., which then leads to 
k,=-(Y;-A(t)Y,-)-i:_A(t)Y,-. As in the proof of the theorem 5.3.8 we can 
conclude that Y is FN-measurable. Therefore q;T c'?f," cq;T. Hence Xis Fx­
Markov is now equivalent to Xis FY =FN-Markov. □ 

REMARIC: The statement of theorem 5.3.11 indicates why N+, cannot be FN­

Markov. This is immediately seen by noting that N +1 is FN -predictable. 
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Hence its dual predictable projection with respect to FN is the process itself, 
which is discontinuous. 

We proceed with some consequences of the foregoing for the case where Xis a 
homogeneous chain. 

CoROLLARY 5.3.12: Assume that Xis a homogeneous chain 
i) If A;; <0, then in the co"esponding column A; of A there is exactly one 

j =j(i) such that Aji=-Au and all other Aki's are zero. If A;;=0 then the 
whole column A; = 0. 

ii) k is now a left continuous piecewise constant process and satisfies 

k, l{r.c;;,c;;T •• .} = - ~;t A; l{xT. =x,} l{r.<,c;;T •• .} 
i 

A 

iii) The sampled chain Xn: = X r.A is now a deterministic process and completely 
known given the initial state X O = X o-

iv) If there are no absorbing states, then the process A assumes only a finite 
number of values. Specifically A1 E { - A 11, ... , - Ann}. 

PROOF: i), iii) iv) follow immediate from the explicit ex_rression in corollary 
5.3.5 ii) requires a little work. Recall that we have k1 =>., A Y, _. J,et T be the 
absorption time of the chain. Then AY,-1{,>T}=°· Hence >.,>~t:i;;;;T. 
Therefore 

>., 1{,c;;T} =~ l{l"-T} = - Yf-AY, _ l{l"-T}· 

Hence k,=-I;AJ A;Y;,-1(,c;;T} =-I;AJ A;Y;, - , becauseA;Y;, - 1{,>T} =0. 

At this point one might raise the question in virtue of corollary 5.3.12 iv) 
whether A is also a Markov process. Oearly this is the case if all the A;; are 
different or when they are all the same. Interesting is the case when there exists 
at least one pair (i,j) such that A;; =Aji. We will answer this question by 
means of theorem 5.2.2. Assume that there are 2,e;;;;m,e;;;;n -1 distinct values 
among the A;; . Call these a 1, ... , am and denote for all j = I, ... , m by E; the 
set of of all} such that Aii=a;. Define FEAmxn by Fij=l{}EE;} We have 
the following result in the terminology of theorem 5.2.2. 

PRoPOsmoN 5.3.13: In the terminology of theorem 5.2.2: A is an fN -Markov 
chain iff FAK=O. If the last c;ondition is satisfied then the matrix B of transition 
intensities of A is given by F AF. 

ExAMPLE 
i) If 

-a 0 0 b 
a -b 0 0 

A= 0 b 0 -a 

0 0 a -b 
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then A is Markov with B = [ -:-:] and state space { -a, - b). Here we 

should take F = [ ~ ~ ~ ~ ] 
ii) If 

-a 0 0 b 
a -a 0 0 

A= 0 -b 0 a 
0 0 b -b 

[ a-bi then A is not Markov, which is seen by calculating F AK= _ a b 

. [1000] T rl-100] 
with, F= 0 0 1 1 'K = 0 0 1-1 

REMARKS: 
i) Although it might happen that A is not Markov of course (A,X _) is 

jointly Markov. 
ii) Since it follows from proposition 5.3.8 iv that the number of values that A 

can assume is always at most the number of states that X can assume, we 
see that a necessary condition for a process X to be Markov is, that it 
takes values in a set which is at least as big as the set of values of 
A:n;;;;,# {A,:t;;;;i,,O}. Hence a homogeneous chain X cannot have a finite 
state space if A has a continuously varying component. In the same w~y 
as checking, whether A is FN -Markov one can investigate whether there 
exist Markov processes X 1 with a smaller state space than X by consider­
ing all possible choises of F. Thus obtaining a description of a "minimal" 
Markov process. This is of some relevance in connection with the sto­
chastic realization problem to be posed at the end of this section. 

iii) The case where A is FN -Markov itself implies here that it changes value as 
soon as N jumps. Thus we can immediately see from the A-matrix 
whether A is FN-Markov or not. In the previous example i we see that at 
jump times A switches from a-to b or conversely, which is in agreement 
with the fact that it is Markov. In second part of the example we see that 
it is possible that A stays in a even when N jumps. 

We have seen that the existence of a homogeneous FN-Markov chain X does 
not necessarily imply that A is also FN -Markov. Hereafter we describe some 
consequences of the situation where indeed A is an FN -Markov process with 
finite state space. Since in this case A assumes only a finite number of values it 
follows that A (being predictable) may be taken as a left continuous process. 
Write X, =X, +, the right continuous version of A. We will apply the previous 
results to this particular choice of X. 
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Denote by {A1, .•• , Ari} the state space of X. If there are no absorbing states 
then A;; <0 and we have that A;= -A;; for all i in view of corollary 5.3.12 iv. 
So all A;>0. 
For reasons of completeness we will show what happens if some of the A;; are 
equal to zero or if one of the A; equals zero. The latter case clearly implies that 
the corresponding A;; =0. Hence this case is covered by the first one. Define 
B C { 1, ... , n} to be the set of integers i such that A; is an absorbing state. 
Define also T=inf{t;;;i.0:X,E{A;,iEB}}. 
Notice that T < oo a.s. if and only if B=fo 0, and for i EB we have A;;(t)=0, 
and hence the whole column A;(t):::::O. The principal result of this subsection 
is the next proposition which tells that for t =E;; T we can more or less identify 
the intensity A1 as one of the A;;(t)'s, and that A;;(t) only assumes the values 
-A; or 0. 

PRorosmoN 5.3.14: Assume that A is fN -Markov with state space {A1, .•• , An} 
and transition intensity matrix A (t). Let T be the absorption time as defined 
above and B the set of integers corresponding to the absorbing states. Then 

A,= Arl{1>T} + ~ A;lp,,=,\} l{A.(1)=0} - ~A;;(t)l{.\=A.} 
ieB' ieB' 

and for i EBc :A;;(t) = -">-.; if A;;(t)<0. 

PROOF: Let X,=A,+, then Y;t=l{x,=,\} and Yit-=1{.\=A.}· In the notation 
that we have used previously, N has rate 

~t = - Y[_A (t)Y, _ = -IieB'A;;(t)l{,\=,\} l{t<T} 

Since A,= {~>o}A, (proposition 5.3.6 iii) we have 

A,l{t<T} = 1{~>0} l{1<T}At + 1{~>0} l{1>T}A1 

= l{~>O}At, 
- -

since A, >0 implies t ,e;;; T and conversely t > T implies A1 = 0. Hence 

- ~;;(t)l{.\=,\} l{,<T} = l{~>O} ~; l{.\=A.} 
; ; 

Now let i EBc. Then 

-A;;(t)I{.\ =A.} 1{,<T} = l{~>O} l{.\=A,}A;­

Observe that 

l{,\>0} 1{,\=,\} = l{A.(t)<O} 1{,\=,\} 

and for iEBc )\1 =">-.; implies t.e;;;T. Hence we get 

-A;;(t)l{,\=,\} = l{A.(1)<0} 1{,\=A,}A;. 

Since we may assume that P(A1=A;)>0 we now get by taking expectations 



-A;;(t) = l{A.(t)<O}Ai 

which proves the second assertion of the proposition. Furthermore 

A1 = Arl{,>T} + A,l{t<T} = 

= Arl{1>T} + l{1<T} ~ lp,,=\}A; 
ieBe 

= Arl{,>T} + ~ l{\=\,A,(1)=0}A; + ~ 1{\=\,A,(t)<O}A; 
ieB' ieB' 

= Arl{,>T} + ~ l{\=;\,,A,(1)=0}A; - ~ A;;(t)l{\=;\,} 
ieB' ieB' 

which proves the first assertion. □ 

REMARKs: 
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1. If A is a homogeneous fN -Markov chain, then A is a constant matrix and 
we have for i EBc the identity A;;(t)=-X;. Hence 

A,= Arl{,>T} - ~Aul{\=\}· 
ieB' 

And of course if there are no absorbing states or if the value zero is the 
only one, then A;;(t)=-X; for all i and X,= -~7= 1A;;l{\=\} 

2. Now it is easy to see that for any function f which is not injective or con­
stant /(A) cannot be a FN-Markov chain, since we have tacitly assumed 
that all the A; are different. Hence the number of states of A is now the 
minimal number of elements that a set should have in order that it can 
serve as a state space for some FN-Markov process. In this sense one can 
say that A, if it is FN-Markov, is the minimal FN-Markov chain. 

We conclude this section by solving a certain stochastic realization ;roblem. 
The solution involves a technical result on the existence of F -Markov 
processes which is formulated in lemma 5.3.15. 

It is known that given a Markov-matrix function A :[0,oo)➔RNxn, one can 
always construct a probability space (0, 'F,P) and a Markov process 
X:O X [0, oo )➔{ 1, ... , n }, such that its transition probabilities are generated 
by A. This is a consequence of Kolomogorov theorem (2.12) 
In this section we are concerned with a version of this problem under a restric­
tive condition, namely given a complete probability space (0, 'F,P) a counting 
process N:O X [0, oo )➔No and a Markov matrix function A :[0, oo )➔Rn xn, does 
there exist an fN-Markov process X:OX[0,oo)➔{l, ... ,n} such that A gen­
erates its transition probabilities. We kpow from previous result§ that given 
such a process we have the identities X,=-YT-A(t)Y,- and X,=X,l{~>O} 
and that for each (i,t) such that A;;(t)<0, there exists only one j such that 
AJi(t)= -A;;(t). Hence for the existence of such a process X this imposes some 
necessary conditions on the matrix A (t). In lemma 5.3.15 we present a set of 
sufficient conditions that implies the existence of such a desired process X, and 
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we also give a construction for X. Before stating the theorem let us emphasize 
that one should not overestimate its content, since in a sense it loo.ks like a 
tautology. On the other hand it shows how one can extract a fN -Markov pro­
cess that is hidden in a suitable matrix function A. After having proved the 
theorem we give an example, how to use the construction of X. 

LEMMA 5.3.15 : Given a counting process N with FN-predictable intensity>. and a 
Markov matrix function A :[O, oo )-+An xn. There exists a FN -Markov process 
X:OX[O,oo)-+{l , ... , n} with A as its infinitesimal generator if there is a 
unique sequence of random variables {xm}m;;,.o,xm:0-+{l, . .. ,n} such that the 
following two conditions hold 
a) Ax.x.(TmXAx.x.(Tm)+Ar_/)=O,\fm. 
b) If Ax.x.(Tm)<O then Xm+I is such that Ax.+ix.(Tm)=-Ax.x.(Tm) and if 

Ax.x.(Tm)=O, then Xm+I =xm. 

PRooF: Let us define a process y-:OX[O,oo)-+{0,It by requiring that 
y,- 1{r __ ,<1..:r.} = Yi. l{r __ ,<1..:r.} and Y;r. = l{x.=i}· Then 

>-t.~ij(Tm)Yjr. = At_~ij(Tm)I{x.=j } = 
j j 

= >.+A· (T. ) = >.+A (T. )1 - · + T. ix. m T. x,... 1x. m {x.+1 - , } 

>.T+ A (T. )I{ - ·} + Ar.+ A · (T. )I{ ....,_ . ....,_ .} • x.x. m x.-, • vc. m x.-,-,,x. +1rl 

= - >. + A (T. 1 - · 1 + r. x.x. m) {x.+1 -1} {A_(r.)<0} 

At_Ax.x.(Tm)l{x.=i} + 0 

= ->-t_Ax_x.(TmXI{x •• , =i} - l{x,.=i}] 

= l{x •• ,=;} - l{x.=i} = Y;r •• , - Y;r.• 

So in vector notation we have 

Yi, - Yi, = At. A(Tm)Yi. 
• +I • • • 

(5.22) 

Notice that >-r. =O implies A(Tm)Yr. =O. Therefore with the usual conven­

tion that ~=Owe have from (5.22) · 

Yr •• , - Yr. = >-r.1A(Tm)Yr.• 

Define now Y:OX[O,oo)-+{0,l}n by Y1=Y1+. Then Yr •• , =Yr.• Hence (5.22) 
reads 

y: - y: ->.-IA(T. )Y: r. r. _, - r. m r __ , 

which can be rephrased as 

dY, = >.1 1A (t)Y,-dN1 
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or 

dY, = A(t)Y,-dt +A/A (t)Y,-dm, 

We now want to apply proposition 5.1.8. Therefore we have to verify that Y,_ 
is FN -predictable. Observe that 

(5.23) 

Now the sequence { Xm }m ;;,.o is such that Xm + 1 is selected on the basis of 
knowing Xm and Tm, or iteratively is selected on the knowledge of 
{T1, ... ,Tm}- Therefore Y;r. =Y;r •• , =l{x •• ,=i} only depends on 
{T1, ... , Tm}- From (5.23) and [3, p.307] we now find the desired result. □ 

ExAMPLE: Let A be constant between the jump times T; and evolve according 
to A1,A2,A3,A1,A2,A3 · · · etc. Let 

-Ai 0 A2 

A1 = A1 -A3 0 

0 A3 -A2 

Then we see that A I cannot be a transition matrix of a FN-Markov chain 
X:OX[0,oo)-{1,2,3}. Because from condition a) of the theorem we see that 
X, = 1 iff A, =A1, X, =3 iff A1 =A1 and X,=2 iff A1 =A3. From X, = 1 it can only 
jump to 2 according to A 1. But from the given sequence of A's it should jump 
from 1 to 3. However 

-Ai 0 A3 

Ai= A1 -A2 0 

0 A2 -A3 

is compatible with the sequence of A's as one can easily verify and thus A 2 can 
act as the transition matrix of a FN-Markov chain X:OX[0,oo)-{1,2,3}. 

Finally we will adress a certain stochastic realization problem, and see how we 
can solve it by means of lemma 5.3.15. Let us state the problem precisely. 
We are given a complete filtered probability space (0,~FN,P), where the filtra­
tion FN is generated by a counting process satis~g dN, = A1dt + dm,, where A 
is the FN -predictable intensity process and m a F -martingale. 
We pose the following question. Does there exist a homogeneous FN -Markov 
process X with finite state space 'X and a (measurable) function f :~R + 
such that">..,= f(X,-)? 
One can reformulate this question in terms that are used in stochastic realiza­
tion theory as follows. Given a counting process N on (0, ~P) can we find a 
stochastic system on (0,~FN,P) such that its state process Xis homogeneous 
and has finite state space 'X and such that the output processes is N with FN -
predictable intensity f(X, -) for some f:~R +. 
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Let us suppose that we can affirmatively answer this question. From corollary 
5.3.12 we see that the sequence {Ar.} is eventually constant or periodic. This 
observation also gives us a sufficient condition for solving the problem, which 
is the content of the next theorem. 

THEOREM 5.3.16: There exists on (U, ~FN ,P) a finite state FN -Markov process X 
with state space ~ and a function f :~R + such that A1 =f(X, - ) if and only if 
there exist a jump time Tk of N such that the sequence {Ar. } for Tn ~ Tk is either 
constant or periodic. 

PROOF: We only have to prove that this condition on A is sufficient for the 
existence of X. 
(i) Consider first the case where {Ar.} is eventually constant. Let k be the 

smallest integer such that Ar. =).rN for all n ~k. Now we can construct a 
fN -Markov process X with state space {I, .. . , k + 1} as follows. Define 
AER(k+I)X( +I) as follows A -- =-Ar. A-+1 ·=-A -- =Ar. - 1 for 

ll 1- 1' I , I II I ' 

i = 1, . . . , k and all other Au's equal to zero. 
-AQ 
+AQ 

A= 
-).k - 1 

+Ak - 1 0 

This matrix clearly satisfies the conditions of lemma 5.3.15, which yields 
the existence of the desired X. The function f:{l, . .. ,k+I}-R+ we 
are looking for is of course defined by f (i)=Ar, _, , i = 1, ... ,k + 1. 

(ii) Consider now the case where {Ar.} is eventually cyclic, which means that 
there exist integers k' and p' such that Ar,.,. =Ar, for i~k'. Let k and p be 
the smallest of such integers. Now we can construct an FN-Markov pro­
cess X with state space {I, ... , k + p} as follows. Define 
AER(k+p)X(k+p) byA;;=-).r,_, fori=l , ... , k+p, 

A;+ 1,;= -A;; =).r,_, for i = l, ... ,k +p -1 and Ak+l,k +p =).ru, -, . 

All other Aij are zero. 

A= 

-Ao 
Ao 
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As in the first case the existence of the X we are looking for is guaranteed 
by theorem 5.1 and/is defined by f(i)=Ar, _,,i= I, ... ,k +p □ 

REMARK: The behaviour of the system for t ~ Tk (Tk as defined in the proof of 
theorem 5.3.16) can be considered as the transient behaviour of the system. If 
one would assume that time runs from minus infinity, instead from zero, then 
the necessary and sufficient condition in theorem 5.3.16 would read: The 
sequence {AT. } is either periodic or constant. 

One other problem that remains to be solved is that of minimality of the solu­
tion of the realization problem. In our context minimality means minimality of 
the number of elements of the state space E. We have the following result. 

CoROLLARY 5.3.17: The solution of the stochastic realization problem as 
presented in the proof of theorem 5.3.16 is minimal. 

PROOF: In principle one can prove the corollary by applying the FAK=O cri­
terion. Here we give an alternative proof. Consider first case (i). Assume that 
there exists a function g such that g(X) is Markov and a function h such that 
h(g(X,))=f(X,)=A.1• Consider a state} of X,j~k. Then there is no i~J-1 
such that g(i)=g(j), otherwise the sequence {AT.} would reach a loop, which 
is forbidden by assumption. Similarly there is no i~k such that g(i)=g(k + I), 
otherwise the absorption time would be smaller than Tk, which is minimal by 
construction. This shows that g is injective, so that E is minimal. A similar 
argument applies to case (ii). Assume again that there is a function g such that 
g(X) is Markov. For the transient states we have the same argument as in case 
(i). For the cyclic part of the chain we have for each recurrent state j that 
there is by definition no transient state i <j such that g(i)=g(j), but also no 
recurrent state i<j such that g(i)=g(j), because that would contradict the 
minimality of the number (period) p. Again g is injective. □ 

The object that we have studied in this section was a stochastic process X that 
is FN -Markov, where FN denotes the filtration that was generated by some 
given counting process N, and has finite state space. The additional require­
ment that X is homogeneous resulted in the fact that then X has to be eventu­
ally either cyclic or constant. Consequently the idea of viewing N as the output 
of a stochastic system, with such a process X as state process, leads to a rather 
restricted class of counting processes that satisfy this requirement. This partly 
negative result answers a question posed in the beginning of this section, 
namely whether we get an interesting class of counting processes that obeys 
the afore mentioned conditions. 
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6. CONCLUSIONS 

In this thesis we have considered recursive parameter estimation algorithms 
and realization problems for counting process systems. As stated earlier one 
of the problems that show up in recursive estimation is the design of an algo­
rithm. It turned out that exploiting the asymptotic structure of the likelihood 
ratio process offered a way to find a possible form of a recursive algorithm. 
The use of the likelihood ratio process for this purpose motivated a detailed 
study of this process, which has been presented in chapter 3. In chapter 4 we 
have studied asymptotic properties of various recursive algorithms. The under­
lying model was a counting process with an intensity of the form A1 =(JT q,1• 

Because of this linear structure quadratic Lyapunov functions appeared to be a 
useful tool in establishing almost sure convergence of the recursive estimators. 
It is of course a serious restriction to confine oneself to intensity processes that 
exhibit this linear structure. The results that we obtained should be under­
stood as a first step towards an analysis of recursive algorithms for the general 
case where ">..1 depends on (J in a nonlinear way, which problem is of course a 
real challenge. This kind of problems occur for instance in adaptive filtering. 
Even if ">..1 = (JT q,1 where cp is a process that is not observed, nonlinear problems 
arise, because to compute estimates we have to use the conditional expectation 
of cJ,1 given the past observations of the counting process, which is in general a 
nonlinear function of 0. We feel that the procedure that we have followed to 
find a recursive algorithm for the situation, where the intensity has a linear 
structure, also yields useful algorithms in the nonlinear case. However proving 
that the resulting estimators converge is not as easy. The difficult point is to 
find a suitable Lyapunov function. It is not clear whether quadratic forms, 
which were helpful in the linear case, are again a good choice. Much research 
remains to be done. In chapter 5 we considered minimality questions for 
counting process systems. These questions arise in the context of stochastic 
realization theory. We presented a criterion that enables one to judge whether 
a given realization is minimal. For selfexciting counting processes we have 
also shown under what conditions such a process can be seen as the output of 
a stochastic system with a finite state space. For conditionally Poisson 
processes this is still an open problem, which is interesting enough to merit 
further research. 
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SAMENVATIING 

In dit proefschrift wordt een aantal problemen behandeld, die behoren tot de 
identifikatie- en stochastische realisatietheorie voor telprocessystemen. De 
identifikatieproblemen die aan de orde komen behelzen bet ontwerpen en 
analyseren van rekursieve parameterschattingsalgoritmen. Dit is een vraagstuk 
dat op natuurlijke wijze naar voren komt in bijvoorbeeld bet adaptief regelen 
van systemen met telproces waarnemingen, waarbij een terugkoppelregelwet 
gewoonlijk afhangt van de in bet algemeen onbekende parameters, die dan 
geschat dienen te worden. Men zoekt dan naar formules die aangeven hoe 
men op een betrekkelijk eenvoudige wijze nieuwe parameterschattingen kan 
uitrekenen, uitgaande van vorige waarden en de nieuw binnengekomen inf or­
matie. In de context van telprocessystemen worden deze algoritmen 
beschreven via stochastische differentiaalvergelijkingen, aangedreven door een 
telproces. Een eis waaraan zo'n algoritme dient te voldoen is dat de resul­
terende parameterschattingen in de een of andere zin konvergeren. De 
konvergentieanalyse van de door ons beschouwde algoritmen neemt in dit 
proefschrift een belangrijke plaats in. We beperken ons hierbij tot de situatie, 
waarin bet onderliggende toestandsproces, voor zover daar sprake van is, kan 
worden waargenomen. Indien dit niet bet geval is, en indien men konstateert 
dat een zekere algoritme niet konvergeert, of bij verschillende waarnemingen 
naar andere waarden konvergeert, kan dit als mogelijke oorzaak hebben, dat 
bet onderliggende toestandsmodel te ruim gekozen is. V oor konditionele Pois­
sonsystemen wordt bet probleem beschouwd hoe men een gegeven toes­
tandsmodel kan reduceren tot een nieuw model met hetzelf de uitgangsgedrag, 
maar dat een kleinere toestandsruimte heeft. We besluiten deze samenvatting 
met een korte beschrijving per hoof dstuk. 

Het eerste hoofstuk bevat een heuristische inleiding in de hierboven 
geschetste probleemstellingen. Op een inf ormele wijze wordt duidelijk gemaakt 
wat de voomaamste concepten, die in dit proefschrift een rol spelen, zoals tel­
processen, telprocessystemen, inhouden. In hoof dstuk 2 worden op beknopte 
wijze begrippen uit de theorie van de stochastische processen uiteengezet, voor 
zover deze van belang zijn in de verder hoofdstukken. Nieuw is een konver­
gentieresultaat voor semimartingal~. Hoof dstuk 3 gaat in op zwakke konver­
gentie voor semimartingalen. Deze theorie ligt ten grondslag aan de studie van 
likelihood ratio processen, zoals deze vederop in dit hoof dstuk aan de orde 
komt. Resultaten betreff ende de konvergentie van likelihood ratios zijn onder 
meer van belang voor the rechtvaardigen van de keuze van rekursieve schat­
tingsalgoritmen die in bet vierde hoof dstuk aan de orde komen. Dit hoof dstuk 
is gewijd aan bet ontwerpen en bet analyseren van bet konvergentiegedrag van 
dit soort algoritmen. Twee typen konvergentie worden besproken, te weten 
bijna zekere konvergentie en konvergentie in verdeling. Resultaten uit de 
hoofdstukken 2 en 3 spelen hierbij een belangrijke rol. In hoofdstuk 5 
tenslotte wordt nader ingegaan op telprocesssytemen, in bet bijzonder de 
voorwaardelijke Poisson systemen en de zelfexciterende systemen. Voor beide 
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typen systemen wordt een eindige toestandsruimte verondersteld. Naast 
representatieresultaten wordt een vorm van reduceerbaarheid behandeld. In 
het bijzonder worden kriteria geformuleerd, waaruit op eenvoudige wijze af te 
leiden valt of een gegeven systeem te reduceren valt, op een wijze die in dit 
hoof dstuk precies wordt omschreven. 
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1. Zij Xeen semimartingale met inf{X1,t~0}> - oo b.z. Veronderstel dat X 
te schrijven is als X1 =A1 - B1 + M 1 , waar A en B stijgende processen zijn 
en M een lokale martingaal. Indien limi-.00 A1 < oo b.z., dan geldt, dat 
ook limi-.00 X, b.z. bestaat en eindig is. 

2. De uitspraak van stelling 4.2.1.l van dit proefschrift blijft geldig indien 
00 E(0, oo l en indien in vergelijking (4.15) de vektor £ vervangen wordt 
door £1 1, waar { l f } een stochastisch proces is met waarden in (0, oo ), dat 
niet te snel naar nul konvergeert. Een voorbeeld van zo'n proces is 
£1 = (trQ1 )½. 

3. Zij (fin , <!r) een meetbare ruimte voor elke n EN en zij P een filtratie op 
(fin , <!r ). Zij N n een telproces, N n : fin X [0, l J-N0 . La ten An en pn niet 
negatieve processen zijn. Onderstel dat Nn de intensiteit >._n heeft onder 
een maat P8 en onder een maat P7 de intensiteit >._npn . Laat 

Z~ = dP71~ 
dP81~ 

Zij tenslotte W een Gaussische martingaal met kwadratische variatie 
<W> . 

I r I r 
Indien f l{lp'. - Jl;..•J(P: - 1)2>..:ds - 0 

> 0 en j(p:- 1)2>..:ds-0 
> <W>, , 

0 0 

e(P/l) I 
dan geldt zn--> exp(W- 2 <W>). 

4. Zij (0, '!}) een meetbare ruimte met filtratie F. Zij N :0 X [0, oo )-No een 
telproces. Zij 0<:R en zij {P8,0E8} een familie kansmaten op (O,'!}) z6 
dat N onder P8 een F-voorspelbaar intensiteitsproces {A1(0)} heeft. Zij 
00 E int 8 . Veronderstel dat er een funk tie M :[0, oo )-R bestaat met 
lim1__. 00 M(t) = 0 en 

1 A' (0 )2 
(i) Po, - limM(t)2 f { (Oo) = l 

1-+ 00 0 s 0 

(ll .. ) - . 21' >.',(IJ,> _, A's(Oo)2 - 0 "".,>0. Po, limM(t) 1(1--1;;.,M{t) } , (O) ds - , v~ 
1-+oo 

O 
,\,(80) l\s o 



(iii) Po. - limM(t)° SUD SUD I ~:s~o; I = 0, voor een aE(O, I) en 
t--+oo s<t 18 - 8ol<cM(t) s O 

alle C>O. 

Dan is de farnilie {P8,0E8} lokaal asymptotisch normaal in 00 . 

5. De klasse van zelfexciterende telprocessystemen met eindige 
toestandsruimte is te klein om als geschikte modelklasse te dienen bij het 
modelleren van de meeste verschijnselen waar telprocessen een rol spelen. 

6. Beschouw het diskrete tijd lineaire regressiemodel y1 = (JT x1 +f.1• De 
stochastische processen y ,x en f. zijn gedefineerd op een ruimte (0, '!I, P 8) 

en aangepast aan een filtratie F = { 'ifi} ?=o • Bovendien is x 1 'ifi _ 1-meetbaar 
en f. een martingaalverschilrij m.b.t. F. Veronderstel dat de verdeling van 
f. niet Vfil] (J afhangt. Zij g,=E[f.Tl'ifi - d. Indien g1 bekend is, kunnen 
schatters 01 van (J gedefinieerd worden door 

A A Q, + 1X1 + 1 AT 
(Jt + I = (J,+----(yt + l -(Jt X1 + 1) 

g, +1 

x, + 1xT+1 

g, +1 
Q - 1 - Q - 1 + t + I - t 

Gezien de resultaten in A hoofstuk 4 van dit proefschrift, kunnen van de 
aldus gedefineerde rij { 01 } betere asymptotische eigenschappen verwacht 
worden, dan van de gebruikelijke kleinste kwadraten schatte{S van 0. 
Indien de rij { f.1 } onafhankelijke en identiek verdeeld is, zijn de O,'s overi­
gens gelijk aan de kleinste kwadraten schatters. 

7. Indien we afzien van bet verschijnsel knoopsgat, zijn overhemden en broe­
ken topologisch equivalent. Het is echter de vraag of de konfek­
tieindustrie met deze konstatering haar voordeel kan doen. 

8. Het verdient aanbeveling om, de kranten uit te gaan geven op een formaat 
dat half zo groot is als het huidige. Dit maakt het lezen van een krant in 
de trein aanzienlijk plezieriger, ook voor de medereizigers van de kran­
telezer. 

9. Gezien het geringe aantal vrijheden, die een student zich met de tegen­
woordige studieprogramma's kan veroorloven, wint de Bargoense beteke­
nis van het woord universiteit aan gewicht. 

10. De onderhandelingen tussen supermachten over zaken als wapen­
beheersing kenmerken zich geenszins door het trachten wegnemen van 
wederzijds wantrouwen, maar door pogingen dit wantrouwen aan regels te 
onderwerpen. 



11 . Er vanuit gaande dat vorm en inhoud zoveel mogelijk in overeenstemming 
met elkaar moeten zijn, behoort ook in een moderne spelling conservatief 
met een c geschreven te worden. 

12. Stellingen behorende bij akadernische proefschriften vormen een verou­
derd instituut en bestaan slechts bij de gratie van een traditie. Dit is een 
onvoldoende rechtvaardiging om dit instituut te handhaven. (Zie ook de 
uitspraak van E. Husserl: "Tradition is the forgetting of the origins"). 

13. Hondekoppen moeten blijven. 




