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PREFACE

This study on topological dynamics is built up around some topics in the
structure theory for minimal transformation groups (minimal ttgs). The cen-
tral themes are:

a) quasifactors of minimal ttgs

b) (weak) disjointness of homomorphisms of ttgs

¢) the equicontinuous structure relation.

The notion of a minimal topological transformation group has existed as such
for more than 50 years, but the structure theory is quite a young branch of
mathematical research. Mainly under the influence of J. AUSLANDER, R. ELLIS
and H. FURSTENBERG that theory arose in the sixties and, supplemented by
the works of S. GLASNER, D.C. MCMAHON and T.S. WU, it was developed
further in the seventies. In the framework of a thesis it is unfeasible to draw
a complete picture of the history of the subject. However, arguments concern-
ing readability and notation and also the need for a consistent reference
called for a extensive introduction in the form of chapter I. This chapter also
contains some easy thoughts about semi-openness of homomorphisms that
are helpful in the chapters IV and VII.

In chapter II the action on the hyperspace is introduced as are quasifactors
and the circle operation.

The third chapter, as well, is chiefly introductory. The main theme here is to
determine the equicontinuous structure relation in the case that there is
enough almost periodicity to use the JF-topologies as introduced by
H. FURSTENBERG in [F 63]. The purpose of this chapter is not only the intro-
duction of the necessary notions but also the unification of the current

approaches.



The forth and fifth chapters are devoted to a special form of proximality:
high proximality. In chapter IV the highly proximal extensions themselves are
being studied. In particular, the lifting of homomorphisms to open
homomorphisms through highly proximal extensions is being considered as is
the question of what kind of properties are invariant under this process.
Moreover, some attention is paid to the Maximal Highly Proximal extension
of a minimal ttg. In chapter V this will be studied more deeply by consider-
ing the structure of MHP generators. These MHP generators are certain
closed subsets of the universal minimal ttg that generate the MHP extensions
as quasifactors. The MHP generator that generates the universal HPI ttg is
constructed.

Disjointness and disjointness relations are the main subject of chapter VI
Two minimal ttgs are called disjoint if the cartesian product again is
minimal. A typical result for this chapter is PINP+-CD* [ in words: a
minimal PI ttg which is disjoint from every minimal proximal ttg also is dis-
joint from every minimal ttg that is disjoint from every minimal distal ttg.
The results are put together in two pictures. The results are also applied to
the question whether or not two minimal ttgs are disjoint if they do not have
a common nontrivial factor.

In chapter VII weak disjointness is being considered (two minimal ttgs are
called weakly disjoint if the cartesian product is ergodic). An important role
is played by homomorphisms with an additional measure structure: RIM
extensions. Among others it is shown that for open RIM extensions of
minimal ttgs the regionally proximal relation is an equivalence relation.
Another question that is dealt with is to what extent weak disjointness of
homomorphisms is implied by the disjointness of their maximal almost
periodic factors.

The final chapter is mainly devoted to a study of a sharp form of regional
proximality. In particular, the question is studied whether or not the equality
of the regionally proximal relation and the sharply regionally proximal rela-
tion implies that the regionally proximal relation is an equivalence relation.
The answer turns out to be in the affirmative if the extension is open and also
if the spaces are metric.

The chapters IV and V contain the results of research done in collaboration
with J. AUSLANDER [AW 81], and the results in chapter VIII and in VIL3.
have been obtained together with J. AUSLANDER. D.C. MCMAHON and
T.S. WU [AMWW ?].



Reading through the text one will encounter the reference [VW 83]. This
concerns a not yet existent book, to be written in 1983 by J. DE VRIES and the
present author. In that monograph the preliminaries for the structure theory
will be dealt with in detail. It will also contain the results on the structure of
minimal ttgs known up to the present day. After its completion, this book
will be a good introduction to this thesis.
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BASICS, PRELIMINARIES AND GENERALITIES

1. transformation groups
2. the universal ambit

3. fibered products

4. miscellanea

5. remarks

The branch of mathematics called topological dynamics mainly emerged from
the qualitative theory of differential equations. It studies classical dynamics
from a topological point of view. This development was initiated by
H. POINCARE and carried on by G.D. BIRKHOFF in the first decades of this
century [Bi 27]. The latter explicitly generalized notions from the qualitative
theory of autonomous differential equations to those for one parameter
groups of transformations on abstract spaces. To him we owe notions like
minimality and recurrence.

At about the same time the study of geodesics lead to the concept of sym-
bolic dynamics (M. MORSE [Mo 21,66]). Other related branches of mathemat-
ics at that time were the theory of measure preserving transformations and
that of almost periodic functions.

At the end of the forties W.H. GOTTSCHALK and G.A. HEDLUND generalized
the classical dynamical systems to arbitrary topological transformation
groups (i.e., actions of arbitrary topological groups on arbitrary topological
spaces) thus unifying many aspects of the mathematics mentioned above
[GH 55].

From 1960 on the activity in the field of topological dynamics grew rapidly
under the impact of the work of R. ELLIS and H. FURSTENBERG.

As our main interest is the structure theory of minimal transformation groups
and their classification, this presentation of the basics of topological dynamics
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and its concepts is chosen from that point of view. We do not pretend any
completeness, in fact we try to omit everything not strictly needed for our
purposes.

In the first section of this chapter we present the basic definitions of transfor-
mation groups and of dynamical notions, with some of their most important
properties. The second section deals with the algebraic approach to the
asymptotic behavior of the action of a certain topological group 7T as
developed mainly by R.ELLIS ; ie., we discuss or rather picture the semi-
group action of the universal ambit &y for 7 . In section 3. we shall
prepare us for the comparison of transformation groups with each other (or,
rather, that of homomorphisms of topological transformation groups with the
same codomain), e.g. see IV.4. and VIL3..

If references are given, we let references to monographs prevail above others.
The reader is assumed to be familiar with standard notions in general topol-
ogy such as can be found in [Wi 70], [Du 66] and [KI 55].

I.1. TRANSFORMATION GROUPS

In this section we shall define some basic notions in topological dynam-
ics, as far as they are of interest for our purposes, which is mainly the
structure theory of minimal transformation groups. No efforts to com-
pleteness and selfcontainedness are made; on the contrary, as the
material is completely standard only the most urgently needed concepts
and properties are discussed. The reader interested in details or eager for
the motivation of this kind of mathematics is referred to such well organ-
ized texts as [B 75/79], [E 69] and [VW 83].

A topological transformation group (rtg for short) is a triple <T,X,7>,
where T is a topological group, the phase group; X is a nonempty topologi-
cal space, the phase space; and m: T X X — X , the action, is a (jointly) con-
tinuous map, such that
a) m(e,x)=x forevery x € X, where e €T is the unit element;
b) w(s,m(t,x))=m(st,x) forevery x€X and s,tE€T .

If T is a topological group then T, denotes the topological group with the
same underlying group as T , but provided with the discrete topology.
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Clearly, if <T,X, 7> isattg, then <T,,X,7> isa ttg too.

Let <T,X.m> be a ttg. Then the map #':X —X defined by
7'(x):=m(t,x) (x€X) is a homeomorphism and (7')” ==’ " for
every t&€T . So we can consider 7 as a topological homeomorphism
group for X . The map #,:7T — X defined by 7, (r)=7(t.x) (€T)
is a continuous map for every x € X . We call #, [T'] the orbit of x , and

7. [T] the orbit closure of x .

Unless stated otherwise, we assume 7 to be an arbitrary, but fixed, Haus-
dorff topological group; the phase space X of a ttg <T.X.7> will
always be a compact Hausdorff (CT,) space with the unique uniformity Uy .
Whenever misunderstanding is unlikely, which is almost always the case, we
shall suppress the action symbol and write the action as a “multiplication”.
So tx:=x(t,x) forevery x €EX , t €T ; then the axioms for a ttg (apart
from continuity) can be expressed as follows:

a)ex = x for every x € X , where e €T is the unit element in T ;

b) s(tx) = (st)x forevery x€ X, s, €T .

As a consequence, the orbit and orbit closure of x are denoted by 7x and
Tx respectively.

The phase group and the action being understood, we shall denote a ttg by
its phase space only, but in a different font (script capitals). Thus % will
always denote the ttg with X as a phase space and (the fixed) phase group
T (if misunderstanding is unlikely).

A subset 4 of X is called (T-) invariant if
TA ={ta |t€T,a €A} CA ;

A s called minimal if A is nonempty, closed and T -invariant and A4 is
minimal under that condition; i.e., if B C X is nonempty, closed and T-
invariant, and if BC A ,then B = A4 .

Clearly, if 4 is T-invariant then 4 = TA , and the sets A°, A and
X \ A are easily seen to be T-invariant. If A4 is a nonempty closed invari-
ant subset of X , then we may restrict the action of 7 on X to an action
of T on A ;ie. &=<T,A,7|rx 4> isattg. Suchattg @ is called
a subrtg of X . A ttg X is called minimal, if X is a minimal subset of X ,
and so % is minimal iff X does not have nontrivial subttgs. Note that by a
straightforward application of Zorn’s lemma it follows that every ttg has a
minimal subttg.
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1.1. THEOREM. Let X be a ttg. The following statements are equivalent:
a) X is a minimal ttg;
b) every x € X has a dense orbit; i.e, X =Tx forevery x € X ;
¢c) X =TU forevery openset UC X ;
d) for every open U C X, there is a finite subset FCT with
X=FU. O

A nonempty closed invariant subset 4 of X is called point transitive if
there isan a € A such that A = Ta ; and such a point « is called a tran-
sitive point for A . In addition, X is called a point transitive ttg if X is a
point transitive subset of X . Obviously a minimal ttg is point transitive and
every point in its phase space is a transitive point.

A nonempty closed invariant subset 4 of X is called ergodic if A does not
have an invariant closed subset with nonempty interior (in A ); and a ttg
X is ergodic if X is an ergodic subset of X . We could paraphrase this by
saying that %X is ergodic if X does not have a proper ”substantial” subttg.
Clearly every point transitive ttg is ergodic; hence every minimal ttg is
ergodic. Under several conditions the converse is true (see 1.2.b and 1.17.)
but not always (see 4.9. and 11.1.11.).

1.2. THEOREM. Let %X be a g

a) X is ergodic iff X =TU for every open U C X iff for every open
U and V in X thereexistsa t€T with UNtV %= @ .

b) If X has a countable pseudobase, the following statements are
equivalent:
(1) X is ergodic;
(i) X is point transitive;
(ii1) there is a dense G g-set of transitive points in X .

[Note that a collection ¥ of open sets in X is called a pseudobase if

for every open set U C X thereisa BE® with BC U [Wi70]] O

Let A be an index set and let for every A€ A a ttg X, be given. Then we
define the product ttg X =1II{X, | A€ A} as follows:

The phase space X of X is given by X =II{X,|A€ A} and the action
of T on X by tx =t(x\renr=(xarecn forevery t€T, xEX ; ie,
the action of 7 on X is defined coordinatewise. Clearly, %X is a ttg.
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One could ask several questions about products, for instance (¢l [I' 67)):

(i) when is the product of two minimal ttgs again minimal?
(it) when is the product of an ergodic ttg and a minimal ttg ergodic?

In chapter VI we discuss problems related to (i) and in chapter VII we deal
with variations on question (ii) (see also the discussion about (weak) disjoint-
ness in section 1.3.).

Note that if % is a minimal ttg, X X % is not minimal unless X = {*}
(where {*} denotes the trivial one point ttg), for Ay C X X X is a nonempty
closed invariant subset of X X X . However, if % is ergodic it can occur
that X X % is again ergodic; such a ttg is called weakly mixing (e.g. 4.8.).

Let %X and %Y be ttgs (for 7 ) and let ¢: X — Y be a mapping. Then ¢
is called equivariant if ¢(1x)=1t¢(x) for every xE€X |, t€T ; ie., ¢
commutes with the actions (of 7 )on X and Y . A continuous equivari-
ant map ¢:X —Y is called a homomorphism of tgs; as such it will be
denoted by ¢: X—%Y . If ¢ is surjective we use at random other terminolo-
gies like ” ¢ is an extension”, ” % is an extension of %Y ” or ” % is a factor
of X”. If ¢:X — Y s an equivariant homeomorphism, then ¢:X—>%Y is
called an isomorphism of ttgs. For ¢:X—% and ¢:%—Z, both homomor-
phisms of ttgs, the map 6:=yo¢ is a homomorphism of ttgs and if ¢ is
surjective, we call ¢ a factor of 6 (by ¢ ).

Note that a ttg X can be considered as a homomorphism from % to {*}.
We call a property absolute or relative whenever we consider the property for
ttgs or the corresponding property for homomorphisms of ttgs, respectively.

Let % be a ttg and let R be an equivalence relation on X such that R
as a subset of X X X is closed and invariant. It is not difficult to show that
the map 7:TX X/R — X/R , defined by #{(1.R[x])= R[tx] for every
teT, xe€X, is a continuous action of 7 on X/R . Hence
Y:=%X/R is a ttg and the quotient map k:X—>%Y 1is a surjective
homomorphism of ttgs with R, =R . Conversely, for a surjective
homomorphism ¢: X — % of ttgs we define

Ry:={(x1,x)EXX X |p(x))=¢(x2)} = U{e()Xd"()|yE Y}

Then R, is a nonempty invariant closed equivalence relation on X , R, is
asubttgof XXX ,and ¥ ZX/R, (Y = X/R,) .

So there is a one to one correspondence between the surjective homomor-
phisms with domain % and the invariant closed equivalence relations on X.
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Recall that a map f:X — Y of topological spaces is called semi-open if
inty [U] = @ whenever inty U = @& .

1.3. REMARK. Let ¢:X—%Y be a homomorphism of ttgs. Then:

a) if ACX s closed and invariant then ¢[A] is closed and invari-
ant; in particular, the image of an orbit closure is an orbit closure;

b) ¢[X] is a nonempty closed invariant subset of Y , so ¢[X] is a
subttg of %

c) if Y is minimal then ¢ is a surjective homomorphism of ttgs;

d) if Y is ergodic and ¢ is semi-open then ¢ is a surjective
homomorphism of ttgs;

e) if X is minimal, point transitive, ergodic or weakly mixing then
¢[X] has the corresponding property. O

Openness of homomorphisms plays an important role in our considerations;
e.g. see sections IV.3. and VIL.2. and the result in VIIL.3.4.. Although open-
ness is not always guaranteed, homomorphisms of minimal ttgs are open to a
certain extent (besides the following result see also 111.2.8.).

1.4, THEOREM. Let ¢:X— Y be a homomorphism of tigs with %Y minimal.
a) If X is minimal, ¢ is semi-open.
b) If X has a dense set of points with a minimal orbit closure then ¢

is semi-open.

PROOF.
a) For UC X nonempty and open let FCT be finite such that
FU =X (1.1.d). Then

Y =¢[X]=¢[FU]=F ¢[U]

and so, for some 7 € F ,t¢[U] has a nonempty interior. As left multiplica-
tion with ¢~ is a homeomorphism, ¢[U]=1¢ 't ¢[U] has a nonempty
interior.

b) Let UC X be nonempty and open and let Z C X be minimal
subset of X with UNZ % @ . As (by a) ¢| is semi-open, it follows
that ¢|z[UNZ] has a nonempty interior in ¢[Z]=Y . Hence, after
observing that ¢|z [UNZ]C ¢[U], the proof is completed. O



1.5. EXAMPLE.

Let X=<T,X,m> be a ttg. Consider X* equipped with the product
topology. Under the composition of maps, X* is a right semitopological
semigroup, and X* is a CT, space.

Define 7: 7 — XX by 7(t)=a'; ie., represent the elements of T as
homeomorphisms of X . Then the corestriction of 7 to #[7] is a continu-
ous homomorphism of groups. Define

E(X):=E{(<T X, 7>=):= ¢l w[T],

then clearly E(X) is a CT, space. One can show that E(X) is a sub-
semigroup of the right semitopological semigroup X* into which T is
densely mapped by 7 .

On E(X) we can define an action # of T by #(t,f):=a"of for every
teT, fEE(X). Clearly, E(X):=<T,E(X),#> is a subttg of the
product ttg X .

The set E(X) as well as the ttg E(X) are called the enveloping semigroup
of % . The following facts are standard (cf. [E 69], chapter 3):

a) E(X) is a point transitive ttg (every " t € T " is a transitive point)
and E(X) is minimal iff E(X) is a group.

b) For every x¢€EX the map b8, :1E(X)—>X, defined by
S_Y“(f)::f (xo) for every f € E(X), is a homomorphism of tigs;
and 8, [E(X)] = Tx,.

c) If ¢:X—%Y is a surjective homomorphism of tigs, then there is a
unique surjective homomorphism ¢: E(X)—> E(%) such that for
every xo€ X we have ¢od, = 8¢(>‘.“)o§5, and ¢ is a semigroup

homomorphism.

One could paraphrase b by saying that E{X) acts on every orbit closure in
X in such a way that it extends the action of 7 ; E(X) embodies the
limit behavior of T .

The investigations with respect to the algebraic properties of this action of
E(X) on X , that were initiated by R. ELLIS ([E 60]) turned out to be rather
important for topological dynamics. We shall deal with this in section 1.2..

Another way of constructing a new ttg from old ones is given by the inverse
limit.

Let » be an ordinal and let %X, be a ttg for every A<<wv . A tower of height
v, or an inverse system of height v will be a collection {¢f|a<B<r} of
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surjective homomorphisms  ¢£: %;— X, of ttgs such that for every
a< < y<rv we have ¢fo¢g =¢r .

Let X =invlim{X, | A<»} in the category of CT, spaces; we can represent
X as the subset of II{X,|A<v} consisting of all »-tuples (x))\<, such
that ¢f(xp) =x, for every a<B<w». Denote the projections by
¢r: X — X, , then ¢£o¢ﬂ = ¢, for every a<<f<». A base for the topol-
ogy on X is formed by the collection

{¢x [U]| U open in X, A<w»}.

As all spaces are compact, X is a nonempty closed subset of
IT{X)x|A<v} and clearly X is T-invariant, so % is a ttg and the projec-
tions ¢: X — X, are homomorphisms of ttgs.

The homomorphism  ¢;: X —>X, is called the inverse [limit of
(68 | a<p<v).

Note that if & is a ttg and

X = invlim{¢f: Ay - X, | a< B<»}
then
ZX X =invlim{id; X ¢£: T X Xp > I X K, | a< B< ).
It follows that

X X X = invlim{¢f X ¢f: ApX Ky — X, X X, | a< <}

1.6. REMARK. /et {¢£:%ﬁ—)9¢u | a< B<w} be an inverse system, and let
X =invlimX, . Then %X is minimal, ergodic or weakly mixing iff X
has that property for every A<<v . O

Let % be a ttg, then X is called strictly-quasi-separable if X is the inverse
limit of ttgs with metric phase spaces and X is called quasi-separable if X
is a factor of a strictly-quasi-separable ttg. Note that the definitions here are
slightly different from the usual ones (e.g. [E 69], [K 71] and [K 72]).

1.7. THEOREM. ([K 72]) If T is a locally compact o-compact topological
group, then every point transitive ttg (for T ) is strictly-quasi-separable. [

We shall now turn to some basical dynamical notions (after [GH 55]).
Fix a collection @ of subsets of T , the admissible sets, and let X be a ttg.
A point x € X is called ( locally) recursive if for every U €V, there is an



-9

A€® (and a VEYV, ) such that AxCU AV CU). The ttg X is
called pointwise (locally) recursive if every x € X is a (locally) recursive
point. %X is called uniformly recursive if for every index a€ Qy there is an
A €@ such that Ax Ca(x) for every x € X . The type of recursiveness
we are interested in in this monograph is almost periodicity. In order to
define almost periodicity we have to define a special collection of admissible
sets. A subset B of T is called ( right) syndetic if there is a compact sub-
set K of T suchthat KB =T . If welet @ be the collection of syndetic
subsets of T , recursiveness with respect to @ is called almost periodicity .
As being syndetic depends on the topology of T . almost periodicity seems
to depend on the topology of T ; however, it turns out it actually doesn’t
(see 1.9, 1.11.b and 1.12.). If T is endowed with the discrete topology,
BCT 1is syndetic if T =FB for a finite subset F of T . Almost
periodicity with respect to the discrete topology on T (T, ) is called
discrete almost periodicity.

Note that if X=<T,X,7> 1is a ttg for T then any statement about
discrete almost periodicity concerning X is in fact a statement about almost
periodicity concerning <7, ,X,m> . However, a statement about almost
periodicity concerning < 7,,X,7> is only a statement about discrete
almost periodicity concerning <7,X,7 > provided that <T,X,7> isa

ttg!

1.8. REMARK. Let X be atigandlet x € X .
a) If X is uniformly almost periodic, then X is pointwise locally

almost periodic.
b) If x € X s a locally almost periodic point, then x is an almost

periodic point. O

In the sequel a pointwise locally almost periodic ttg will be called a locally
almost periodic ttg.
The next theorem shows the dynamics interest of minimal ttgs.

1.9. THEOREM. Let X be a ttg and x € X . Then the following statements
are equivalent:
a) Tx is a minimal subset of X
b) x is a discrete almost periodic point in X ;
¢) x is an almost periodic point in X . O
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1.10. REMARK. Let ¢:X—%Y be a homomorphism of ttgs.

a)

b)

<)
d)

If x € X is an almost periodic point in X then ¢(x) is almost
periodic in Y .

If y€¢[X] is an almost periodic point in Y then there is an
almost periodic point x € X with ¢(x)=y .

If X is pointwise almost periodic, then ¢[X] is.

If Z is the inverse limit of a tower consisting entirely of pointwise
almost periodic tigs, then Z is pointwise almost periodic. O

For local almost periodicity we can formulate similar statements, but the
proofs are substantially harder (e.g. [E 69], [MW 72] and VL.5.6.).

1.11. THEOREM. Let ¢:X— Y be a surjective homomorphism of tigs, and let
x € X be a transitive point.

1.12.

a)

b)

d)
e)

The point x € X is locally almost periodic iff x'€ X is locally
almost periodic for every x'€ X ; so X is locally almost periodic
(IGH 55] 4.31.).

The point x € X is locally almost periodic iff x is discrete locally
almost periodic ([B 75/79] 2.8.43.).

If x"€ X s locally almost periodic and if ¢ is open, then ¢(x’)
is locally almost periodic.

If X is locally almost periodic, then so is % (cf. 111.5.6.).

If Z is the inverse limit of a tower consisting entirely of minimal
locally almost periodic ttgs, then Z is minimal and locally almost
periodic (cf. 111.5.6.). O

THEOREM. Let X = <T,X,m> be a ttg. Then the following state-
ments are equivalent (cf. [B 75/79] 2.8.3. and [E 69] 4.5.):

a)
b)
9]
d)
e)

X is uniformly almost periodic;

X s discrete uniformly almost periodic;

7[T] is an equicontinuous family of homeomorphisms;

7[T] is a uniformly equicontinuous family of homeomorphisms;

E(X) is a CT, topological group consisting of homeomorphisms of
X. O
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1.13. REMARK.

a) A factor of a uniformly almost periodic ttg is uniformly almost
periodic.

b) A subttg of a uniformly almost periodic ttg is uniformly almost
periodic.

c) Let v be an ordinal and let X\ be a ttg for every A<<v. Then
[I{X\ | A<w} is uniformly almost periodic iff X\ is uniformly
almost periodic for every A<v.

d) The inverse limit of a tower consisting entirely of uniformly almost
periodic ttgs is uniformly almost periodic. O

The uniformly almost periodic ttgs are the ”beautiful ones”. To illustrate
this: if the phase space of a uniformly almost periodic ttg is metrizable, there
is a compatible metric such that the T-translations {#'|r€ T} are
isometries. In order to indicate how special the uniformly almost periodic
minimal ttgs are, consider hT , the Bohr compactification of 7 ; bT is the
reflection of the topological group 7T in the category of CT, topological
groups. Then &= < T ,bT,n> is a ttg, with u: T X bT —bT defined by
w(t,x)=1(t)x ,where ¢: T —bT is the reflection.

1.14. THEOREM. Let X be a minimal ttg. Then X is uniformly almost
periodic iff X = &/H for some closed subgroup H of bT . In par-
ticular, it follows that the phase space X of a uniformly almost periodic
minimal ttg X is homogeneous (in the sense that for every x and x’
in X there is a homeomorphism f:X — X with f(x)=x"). O

No wonder that uniformly almost periodic minimal ttgs play the role of a
touchstone in the structure theory for minimal ttgs; i.e., one of the
approaches is to investigate to what extent a certain ttg differs from being
uniformly almost periodic. One of the first dynamical concepts that was
attacked in this approach was that of distality.

Let %X be a ttg and let x; and x, be elements of X . Then x, and x,
are called proximal, or (x,,x;) is called a proximal pair if
T (xy,x2)NAxy # @ ; in other words, x,; and x, are proximal if there is
anet {f,}; in T with limyx,=Ilimsx,. If x;=x, orif (x;,x,) is
not a proximal pair then (x,,x,) is called a distal pair, and x, and x,
are called distal. If (x,,x;) is distal for every x, &€ X then x, is called a
distal point for % . The ttg X is called distal (proximal) if every pair in
X X X is distal (proximal), % is called point distal if there is a transitive
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distal point for X .

Before we indicate the connection between distality and almost periodicity we
shall state some generalities on distal and proximal ttgs; the proofs of 1.15.b
and 1.18. depend on the algebraic theory in 1.2..

1.15. THEOREM. Let X be a 1tg. Then the following statements are
equivalent:
a) X is distal;
b) E(X) is a group (hence E(X) is distal and minimal; cf. 1.4. and
1.16:); [E 69] 5.3 59
c) X' is pointwise almost periodic for every n € N . O

1.16. REMARK. ([E 69] chapter 5)
a) A factor of a distal (proximal) g is distal (proximal).
b) A subttg of a distal (proximal) t1g is distal (proximal).
c) A product of distal (proximal) tigs is distal (proximal).
d) An inverse limit of distal (proximal) ttgs is distal (proximal). O

An interesting (and nontrivial) result is the following:
1.17. THEOREM. An ergodic and distal ttg is minimal ([E 78] 1.9.) . O

Part of the relation between uniform almost periodicity and distality is given
by:

1.18. THEOREM. A 1g X is uniformly almost periodic iff X is distal and
locally almost periodic ([E 69] 5.28.). O

That distality alone is not sufficient for uniform almost periodicity may be
seen from 4.5.(iii).

In the case of minimal ttgs the relation between uniform almost periodicity
and distality is given by the FURSTENBERG STRUCTURE THEOREM ((1.24.),
abbreviated:FsT), which is the germ of a considerable part of topological
dynamics.

Before we can state FST in full generality, we shall discuss the relative ver-
sions of notions such as almost periodicity. So let ¢:X— % be a surjective
homomorphism of ttgs. The extension ¢ is called a group extension if there
is a CT, topological group K and an action of K on X that commutes
with the action of 7 on X (i.e, thkx =ktx forevery x€X, t€T
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and k € K ) such that, in addition, ¢“¢(x) = Kx for every x € X .
The map ¢ is called an almost periodic extension if ¢ is a factor of a group
extension.

1.19. NOTE. A minimal ttg X is uniformly almost periodic iff ¢:X— {*x} is
an almost periodic extension (1.14.).

In studying uniform almost periodicity, the (relativized) regionally proximal
relation plays an important role. Define the regionally proximal relation for

¢ by
Q4= N{TaNR,|aEUy}.

and let Qg be defined as Qg:= Q, where y:X—{*}. Then Qg4 is
always a closed, T-invariant, reflexive and symmetric relation, but in general
Q4 is not an equivalence relation (see VIIL.1.5.).

Note that (x;,x;)€ Q, iff there is a net {(x},x5)}; in R, and a net
{t;}, in T such that

(x{,x5)—>(x,.x3) and ¢ (x},x5)—(z,z) forsome z € X .

Define the equicontinuous structure relation E g for ¢ as the smallest invari-
ant closed equivalence relation that contains Q. .

One of the main themes in the structure theory for minimal ttgs is the ques-
tion: under what conditions is E4 equal to Q4. The importance of this
question may be illustrated by the following theorem.

1.20. THEOREM. Let ¢:X—Y be a surjective homomorphism of tigs.
a) The following statements are equivalent:
(1) ¢ is an almost periodic extension;
(i) Qo= Ay ;
(iii) for every a€ Uy thereisa BE WUy with TaNRGCB.

b) Let k:X—->X/E, be the quotient homomorphism and let
ViX/Ey,—%Y be such that Yok =¢ . Then § is the maximal
almost periodic factor of ¢ . lLe., if 0:Z—% is an almost periodic
extension such that ¢ factorizes over @, then  factorizes over 6 .

c) If X is a metrizable space, then ¢ is almost periodic iff there
exists a continuous map d:Ryz—R which is T-invariant (i.e.,
d(tx,ty)=d (x,y) for every t, x, y), such that d is a metric on
each fiber (such a ¢ is called isometric!).
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PROOF. cf. [V 77] 2.4.3., [E 69], and [MW 76] 1.1.. O

The homomorphism ¢ is called distal ( proximal) if every pair (x;,x;)€ R
is a distal (proximal) pair, and ¢ is called point distal if there is a transitive
point x € X such that (x,x’) is distal for every x’'€ ¢~ ¢(x) (then x is
called a ¢- distal point).

Define the ( relative) proximal relations P, and Py for ¢ and % respec-
tively by

Py:= N{TaNRy|a€EUy} and Py:= N {Ta|aEUy}.

Then clearly, P, =PyNR,, P, is the collection of proximal pairs in R, ;
and ¢ is distal (proximal) iff P, =Ay (P,=R,). In general P, is not
closed and not an equivalence relation (4.7.(iii)). If P, is closed it is an
equivalence relation ([A 60]), but not the other way round ([S 70]).

We shall now state some properties of distal, proximal and almost periodic
extensions. (In the proof of 1.23.a,b the algebraic theory of 1.2. plays a role.)

1.21. THEOREM.

a) Let ¢:X—>%Y, 0:Z>X and ¢:Z—Y be surjective homomor-

phisms of ttgs such that ¢ = o6 .

Then ¢ is proximal iff 8 and  are proximal.

If ¢ is distal (almost periodic) then 0 is distal (almost periodic).

If %Y is pointwise almost periodic then ¢ is distal iff 0 and  are
distal.

If X is minimal and ¢ is almost periodic then 6 and + are
almost periodic.

b) Let A be an index set and let for every ANE A a surjective
homomorphism — of ttgs o :K\—>Yy  be given and let
¢: 11 K\ > 11\%\  be defined coordinatewise. Then ¢ is distal,
proximal or almost periodic iff ¢y is such for every A€ A .

c) Let ¢ be the inverse limit of a tower {¢f |a< B<wv}. Then ¢ is
distal (proximal) iff ¢&*" is distal (proximal) for every a+1<w.

PROOF. cf. [B 75/79] 3.12.28.,29. and [VW 83]. O

In general, the composition of two almost periodic extensions fails to be
almost periodic, as can be seen from 4.5.(iii) and FST (1.24.). Sometimes,
however, an almost periodic extension of a uniformly almost periodic ttg can
be shown to be uniformly almost periodic:
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1.22. REMARK. Let ¢:X—%Y be a surjective homomorphism of tgs. If R,
is open and closed in X X X | then Q4= Qg .
In particular. if card(Y) <8, and ¢ is almost periodic, then X is uni-
Sformly almost periodic (compare [MW 76] 2.1.).

PROOF. For some «ay€ Qy , TaC R, so Ta=TaN R, for every
aC «y . Hence

Qu= N{Ta|a€EUy}= N{TaNR,|aEU} = Q,. .

1.23. THEOREM. Let ¢:X—%Y be a homomorphism of tigs with % minimal.
a) If ¢ is distal then X s pointwise almost periodic.
b)  The extension ¢ is distal iff’ R is pointwise almost periodic.
c) If ¢ isproximal then X has a unique minimal subttg.
d) The extension ¢ is proximal iff R, has a uniqgue minimal subttg.

PROOF. cf. [G 76] IL.1.1..2. and [VW 83]. O

We shall now formulate the Furstenberg Structure Theorem ( FST ).

Although H. FURSTENBERG did not prove FST in its fullest generality, we still
call 1.24. ”the Furstenberg Structure Theorem” to honour the father of the
basic idea in revealing the structure of distality. (The same we do with the
Veech Structure Theorem IV.1.13.))

At first FST was proven by H. FURSTENBERG in the absolute case and for
metric ttgs [F 63]. R.ELLIS proved it in the relativized form for quasi-
separable ttgs [E 69]. In [E 78] R. ELLIS also could get rid of the countability
assumptions for the absolutc case. The definitive version was proven by
D. C. MCMAHON and T.S. WU [MW 81].

1.24. THEOREM. FST : Let ¢:X—Y be a homomorphism of minimal ttgs.
Then ¢ is distal iff ¢ is the inverse limit of a tower consisting of almost
periodic extensions. ]

1.25. COROLLARY. A minimal 11g X has a nontrivial distal factor iff it has a
nontrivial uniformly almost periodic factor. O

In some special cases, for instance for ttgs with manifolds as phase space and
a decent topological group as phase group, one can calculate the height of
the tower (in 1.24.), e.g. [IM ?], [R ?] and [B 75/79] section 3.17..
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The structure of point distal homomorphisms of minimal ttgs is determined
similar to FST , see the discussion in IV.1..

1.2. THE UNIVERSAL AMBIT

For several properties of ttgs there exists a universal ttg with that pro-
perty which is unique up to isomorphism. In particular, the universal
point transitive ttg Sy and the universal minimal ttg 9 for a given
topological group 7T are of considerable importance in topological
dynamics.

In this section we shall deal with &7 , 9 and their technical impact
on topological dynamics. But we shall also briefly discuss other universal
ttgs.

As the theory presented here is completely standard, and as it is only
incorporated in this monograph for the sake of notation and reference,
we shall omit proofs. For more details see [E 69] chapters 3 and 5,
[B 75/79] section 1.4., [VW 83] and [G 76] chapter I.

In the sequel a ttg %X together with a distinguished transitive point x € X
will be called an ambit; notation: (X,x). An ambit morphism
¢ (X,x)—>(%,y) will be a surjective homomorphism ¢:X—% of point
transitive ttgs, such that ¢(x)=y .

Note that every ambit morphism is unique.

As the phase space of a point transitive ttg is the image of B7, , the Cech-
Stone compactification of T, , there can only be a set of essentially different
ambits for T . So let A be a set of ambits for 7, such that for every
ambit (%,x) thereis an (€,a)€ A which is isomorphic to (X,x) . Let

=11{&| (@, a)EA} and z =(a)ga)ea -

and define ¥:=Tz . Then (%,z) is an ambit, which projects onto each
ambit for 7 . Hence (£,z) is the (unique up to isomorphism) universal
ambit for T ;say, (Z,2)=(<T,Z,{>.z).

We shall mention two other ways to describe the universal ambit.

Let <T,X,m7> be a topological transformation group with X a Haus-
dorff space which need not be compact. Then there exists a ttg
<T,BrX,#> and a homomorphism ¢y:<T. X, 7>-><T,BrX,7>
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with BrX a CT, space and «yx [X] dense in By X , such that every dense
equivariant map ¢: <T7T,X,7>-><T,Y,0> with Y a CT, space, fac-
torizes over <T,BrX,7#> ,[dV 75].

If «x is an embedding, <T,BrX,#> is called the T-compactification of
<T,X,m7>. Under some mild conditions such a T -compactification
exists, ([dV 77], [LV 80]). For example, if 7 is discrete and X 1is a
Tychonoff space, then the action of T can be extended to BX so
<T,BX,#> is the T-compactification of <T7,X,7> . If T is not
discrete, then the extended action of 7 on BX may fail to be jointly con-
tinuous, however.

An other simple example is the T-compactification of <T7,T,A> where
A denotes the multiplication on 7 . One can show that the map
i <T,TA>-><T,B;T,A> is an embedding, ([dV 75], [LV 80]).
Clearly, (< T.BrT A>,ir(e)) is an ambit. As {,:T—>Z is an
equivariant map that takes e to z , it factorizes over <T,BrT,A> say
$:<T,BrTA>—-<T,Z,{>, taking (x) to z. Hence
(<T,BrT.A>,ir(e)) is isomorphic to (£.z) .

Note that this shows that T acts effectively on Z ; i.e., for every t€T

with t = e thereisa z’'€Z with 1z’ % z".

For a third description of the universal ambit consider S(7'), the Gel'fand
dual of the Banach algebra RUC™(T) of bounded right uniformly continuous
functions on 7. Then T can be densely embedded in S(7°) by assigning
to each 1€ T the evaluation map §,: RUC'(T)—C . One can show that
the multiplication A on T can be extended to a jointly continuous action
p of T on S(T). Then (<T,S(T),np>,8,) 1s an ambit; moreover it
turns out that (<7 ,S(T),n>,8,) is isomorphic to (Z.z).

Using this characterization of the universal ambit, it can be shown that the
action of T on Z is strongly effective in case T is locally compact
([V 77)); ie., tz' %z’ forevery t €T with t * e and forevery z € Z .

In our studies the exact construction of the universal ambit will never play a
role. The pure existence of a universal ambit for 7 in which
(<T,T,A>,e) is densely embedded and which is unique up to isomor-
phism is sufficient.

We shall denote the point transitive ttg in the universal ambit by &r , with
phase space S7 , and we shall consider 7 as a subspace of S ; the unit
element e in T will always be the transitive point of the universal ambit.
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2.1. REMARK. The CT; space St has a semigroup structure which extends
the group structure of T ., such that the right translation
pp :€—E&p St — St is continuous for every p € St , and the left trans-
lation X, :é—1£: St — St is an homeomorphism for every t €T .
Moreover, the right translations p, are just the extensions to St of the
right translations p, |7 induced by the action of T on St , and the lefi
translations are just the ones induced by that action; (see [VW 83] and
[V 77] section 2.2.). (]

As for every ttg X the pair (E(%),e) is an ambit (here e is idy ), there
is an ambit morphism €y :(Sy,e)—(E(X),e) and ex:Sr—E(X) is a
semigroup homomorphism.

In a certain sense Sy acts on the phase space X of a ttg X (via E(X)):
assignto p €St and x € X the element ex(p)(x) in X . This is a kind
of right semitopological semigroup ”semiaction”, for Sy is a right semitopo-
logical semigroup which acts on X as a semigroup (and extends the action
of T ), but in general it lacks continuity.

As 6, E(X)—>%X is a homomorphism of ttgs for every x € X , the map
Py =0, 0€x:(ST.)—(X.x) is an ambit morphism; in particular, "evalua-
tion” in x is a continuous map from Sy onto Tx for every x EX . So
for p€ Sy and for a net {1}, in T converging to p in Sy , the net
{t;x}; converges to p,(p) in X for every x € X . This observation is
valid for every ttg X, so we may interpret Sy as a universal enveloping
semigroup; and so S embodies the universal limit behavior of T .

Define px:=e€x (p)(x)=p, (p) for every pE Sy, x € X . Note that for
every p,q € St , x €EX we have

a) p(gx)=(pg)x ;

b) pyirerx:Sr—X is continuous, but in general
A, iy py: X — X is not continuous.

If ¢:X—% is a homomorphism of ttgs, then ¢ commutes with the
"action” of St ;ie., ¢(px)=po(x) forevery pE Sy, xEX .

We can now apply the theory of compact right semitopological semigroups to
reveal some of the structure of S7 . Although the statements to follow are
valid in a more general setting, we shall state them just for S , except in
the case of 2.6.. As enveloping semigroups are homomorphic images of Sy ,
this theory is easily transferable to the enveloping semigroups in general.
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A subset E of S; is called a left ideal if S;y.E CE ; so a closed subset
E of St isa left ideal iff E is T-invariant, and this in turn implies that
the closure of a left ideal is a left ideal again. A typical example of a left
ideal is a subset of Sy of the form Sr.p (= fﬁ) for a pe Sy . This
observation shows that every minimal left ideal is closed and that every left
ideal contains a minimal left ideal (Zorn). Moreover, a subset E of Sy is
a minimal left ideal iff £ is a minimal subset of S .

Minimal left ideals of Sy (which are subsemigroups of S ) have a nice
structure:

2.2. THEOREM. Let I be a minimal left ideal in Sy andlet J =J(I) be

the set of all idempotents in 1 . Then the following statements hold:

a) J 7= @, (I isaclosed subsemigroup of Sy is sufficient!)

b) pv=p forevery pEl, vEJ

c) forevery veEJ theset vI (={wp |p€EI}) isa subgroup of I
with unit element v ,and vI ={p €1l |wp =p}

d) for every v.w€E€J the map A, :pw-wp:vl —wl is an isomor-
phism of groups with inverse A, ;

e) {vI|v€&J} isapartitioning of I ;

fy if u€J , then every p €Il has a unique representation as
p =wa , where weJ , a€ul . O

For convenience we establish some notation.

Let I be a minimal left ideal in S (orin E(X) for some ttg X ). Then
we denote the set of all idempotents in I by J(I).

Let p € Sy ; then A, will denote the left multiplication with p (gwpg .
¢ € St ) and p, will be the right multiplication with p (which is continu-
ous). If % is a ttg and x €X then p, denotes the evaluation at x

(“right multiplication” with x ); ie, p,:Sr—X is defined by
px(q)=gx (¢E€ST).

2.3. THEOREM. Let I and K be minimal left ideals in St .
a) For every v€J() there is a uniqgue v'€J(K) such that
w’'=v’ and v'v =v ; notation: v ~v’.
b) For every vEJ(I) the map p,:K —1 is a homeomorphism with
inverse p,:1 — K , where v'€J(K) with v’ ~v ; moreover, p,

is an isomorphism of semigroups and p, is equivariant.
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¢) Fix ueJ) and let peEl, say p=va for veJ),
a€ul . Then p,:K —1 s an equivariant homeomorphism with
inverse p,:1 —K , with g = va v, where v'€J(K) is such
that v' ~v . O

2.4. THEOREM. Let I be a minimal left ideal in St and let u € J(I).
Every equivariant endomorphism ¢:1 —1 has the form ¢ =p, for
some a €ul . In particular, it follows that every equivariant endomor-
phism of 1 is an isomorphism. O

The minimal left ideals of S and their idempotents are closely related to
the notion of almost periodicity; this is expressed in the next theorem.

2.5. THEOREM. Let X be a tig and let x € X . The following statements
are equivalent:
a) x is an almost periodic point in X ;
b) Tx is a minimal subset of X,
C) there exists a minimal left ideal I of St such that x € Ix ;

d) for every minimal left ideal 1 of St there is a vE€J(I) with
VX =X . g

Note that if x is an almost periodic point in 9%, then Tx = Ix for every
minimal left ideal / in S7 . Moreover, let %X be minimal and x € X,
then each minimal left ideal / of Sy is mapped homomorphically onto
X by the map p, :Sr — X . This shows that every minimal left ideal /

of S7 considered as a subttg § of &7 is a universal minimal ttg.

Let 9N be the universal minimal ttg. As ¢ is a minimal ttg there is a
homomorphism ¢: 90— 9 of minimal ttgs. But ¢ is a universal minimal
ttg; so there is a homomorphism ¢:%—9C of minimal ttgs. Hence
¢oy: I — 1 1is an endomorphism of / ; which, by 2.4., implies that ¢oy is
an isomorphism. Consequently, 9% and § are isomorphic ttgs. Therefore,
we may conclude that there exists a universal minimal ttg for 7 , which is
unique up to isomorphism. This universal minimal ttg will be denoted by
9% and its phase space by M . We shall always consider 9 as a subttg
of &7, ie., we consider M as a minimal left ideal in S; . As such, M

acts on every minimal ttg as a semigroup. Sometimes it is necessary to
specify a particular minimal left ideal in Sz , which is used as the universal
minimal ttg (for instance, if we want to apply 2.7. below).

In general the existence of 9N and its structure suffice. So if no minimal left
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ideal is specified its choice is irrelevant and we just assume M to be some
(fixed) minimal left ideal in Sy .

Note that 2.2. pictures the structure of M as a disjoint union of subgroups
“centered around the idempotents” in M . We shall denote the set of those
idempotents in M by J . Usually, for a fixed w €J we shall denote the
subgroup uM by G ; thenfor vEJ , vM =G .

We shall end our considerations about compact right semitopological semi-
groups by mentioning the following result ([E 69]).

2.6. THEOREM. Let E be a compact T topological space provided with u
group structure such that the maps p,:ye-yx:E —E are continuous
(x EE), and let M be a nonempty closed subsemigroup of E . Then
M is a subgroup of E . O

We shall now relate the structure of S; and M to the notions of proxi-
mality and distality.

2.7. THEOREM. Let X be a ttg. The following statenients are equivalent for a
pair (x,y)E XX X :
a) (x,y)E Py,
b) thereisa p € Sy with px =py ;
c) there is a minimal left ideal I in St such that px =py for every
pEIT.
Moreover, {vx |v €Sy .vw =v}C Py[x], if X is minimal, then

Pylx]={vx |veEJ) forsome m.Li. / in Sy}. -

2.8. REMARK. Let X be a ttg. For every minimal left ideal I in St and
for every v €J (1) we have that each pair in vX s a distal pair; here
vX ={wx |xEX}.
Paraphrased: if (x.y) is a almost periodic point in X X X , then the
pair (x,y) is a distal pair (compare 1.15.c for n =2 ). O



=22

2.9. COROLLARY.
a) Let X be proximal minimal ttg. Then the only equivariant

endomorphism of X is the identity idy on %X ([G 76] 1L4.1.).
b) Let T be an abelian group. then there are no nontrivial proximal
minimal ttgs for T (for a more general result see [G 76] 11.3.4.). [J

Let % be a minimal ttg and let / be a minimal left ideal in S7 . Define
Sr):={pESr|px=x}, I,:=IN(Sr)y and J, (I ):=JT)N(ST)x -

2.10. REMARK. Let ¢:X—%Y be a homomorphism of minimal tigs. A point
X E€X is a ¢-distal point iff J, =Jg4. Hence x € X is a distal
point iff J. =J and X is distal iff uX = X for every u€J . O

Fix u€J . Let % be a minimal ttg and let x € X be such that ux =x .
Then the Ellis group &(X,x) of X with respect to x in G (=uM) is
defined as

&KX, x):=M,NG={a€EGCG |ax =x}.

Clearly, &(X,x) is a subgroup of G .

2.11. NOTE that if ¢:X—>%Y is a homomorphism of minimal ttgs and
X =ux €X, then &(X,x)C &(%Y,p(x)).

2.12. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs and
x =ux€ X . Then ¢ s distal iff ¢“¢(px)=p&(Y,p(x))x for
every pEM . In particular, X is distal iff X =pX for every
PEM. a

2.13. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs and let
x =ux € X . Then the following statements are equivalent:
a) ¢ is proximal;
b) &X,x) =Y, ¢(x)),
C) forevery (x;,x)ER, thereisa vEJ with x,;=vx|. '
In particular, X is proximal iff S(X.x)=G iff X =Jx iff
uX ={x}. O

From these observations (2.12. and 2.13.) it follows easily that if ¢,y and
6 are homomorphisms of minimal ttgs such that ¢ = 6oy , then ¢ is distal
(proximal) iff # and i are distal (proximal).
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We shall proceed with some observations on other universal ttgs.

Let % be a minimal ttg. Then there is a set Aq of homomorphisms
¢:X—>%Y of minimal ttgs such that every minimal extension of ¥ is iso-
morphic to a unique member of Ag (i.e., for every homomorphism
0:%—%Y of minimal ttgs there is a Y€ Ag and an isomorphism £ such
that #o§{ =4y ). Let C be a property of homomorphisms of minimal ttgs
and let Ac-:= {¢E Ay | ¢ has property C}. Then every extension of %Y
with property C 1is isomorphic to exactly one member of Ac (so Ac is
the set of ”“essentially different” extensions of % with property C ). Define

Ze 1= T1{% | A€ Ac, A: %) — ¥},

and let q&c:i(—»“ym"

u€lJ, ; and let xy\€ X, be such that x) =ux, and A(x))=yo. Then

be defined coordinatewise. Let yo€ Y and

z 1= (xAhen, is an almost periodic point in Z- . So W:= Tz is a
minimal subset of Z. which is mapped onto ¥ by ¢+ (more precisely,
Zc 1s mapped onto the diagonal in "BIA‘ | )

Let ¢:UW—%Y be the restriction of ¢- to W . Then, clearly, ¢ factorizes
over each AE Ac by projection (i.e., each AE A is a factor of ). This
shows that :W— % is the universal minimal C-extension of % , provided
that ¢ has property C . and provided that uniqueness can be shown. For
several properties C this can be guaranteed. For instance, if C stands for
distality, proximality or almost periodicity, then i has property C by
1.21.b. The property of point distality behaves less well. But, if % is distal
then, for suitably chosen x, , the map ¢:W—Y is point distal. In all these
cases it can be shown that { is unique up to isomorphism.

Thus we obtain the following theorem:

2.14. THEOREM. Let ¥ be a minimal tig. There exists a universal almost
periodic (distal, proximal) extension of %, which is unique up to isomor-
phism.

If %Y s distal then there exists a universal minimal point distal extension
of % which is unique up to isomorphism.

In particular, there is a universal minimal almost periodic (distal, point
distal, proximal) minimal ttg for T , which is unique up to isomorphism;
notation: &7y ( Vry, pVry, ¥r))- O

Another construction of the universal almost periodic, distal or proximal
minimal extensions of % can be given as follows:
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Let y:9M—%¥ be a homomorphism of minimal ttgs.

Then ¢:9M/E,— % is the universal almost periodic minimal extension of
%Y (cf. 1.20.b).

Define S, to be the smallest invariant closed equivalence relation in R,
that contains P, . Then ¢:9M/S,—%Y is the universal distal minimal
extension of % (the P ,-analogue of 1.20.b).

Observe that

JR,={v(x1,x))|vEJ, (x1,X)ER,}

is just the set of all almost periodic points in R, , and that JR, is invari-
ant. Define N, to be the smallest invariant closed equivalence relation in
R, that contains JR, ([B75/79] 3.14.17.). Then ¢:M/N,—% is the
universal proximal minimal extension of % .

We shall end this section with a brief discussion of regularity (see [A 66],
[Sh 74]). Often universal minimal extensions have a neat automorphism
structure called regularity. A homomorphism ¢: X —% of ttgs is called reg-
ular if for every almost periodic point (x;,x,;)E€ R4 there is an equivariant
endomorphism §:%X— % such that £(x;) =x,. It follows that ¢ is regu-
lar iff for every (x,,x,)E R, there exists an (equivariant) endomorphism
£:X—X such that (§(x)),x)EP,.

Clearly, if ¢ is a regular homomorphism of minimal ttgs then the endomor-
phisms £ above are automorphisms. It is not difficult to show that a group
extension of minimal ttgs is regular (see 2.17.) and, evidently, every proximal
extension of minimal ttgs is regular.

2.15. REMARK. Let ¢:X—%Y be a regular homomorphism of minimal tigs,
uelJ and x =ux € X . Then &(X,x) is a normal subgroup of
(Y, ¢p(x)) . O

Let ¢:X—% be a homomorphism of minimal ttgs. The regularizer Reg(¢)
of ¢ is defined as follows: Let u€J and y =uy €Y ; and note that
udp () ={xE€X |ux =x,¢(x)=y} 5 @ . Define a point

z€EI{% | X=X, A€ ud (y)} =X by z = (%), cupriy

Then, clearly, z =uz , so X':=Tz is a minimal subset of X“*0)  Let
0: X —- % be the projection and define

Reg(¢): X' > %Y by Reg(¢p) = ¢of.
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It is not difficult to show that Reg(¢) is a regular homomorphism of minimal
ttgs, and that ¢ is regular iff ¢ and Reg(¢) are equal up to isomorphism
(i.e., @ is an isomorphism).

2.16. REMARK. Let T be an abelian group. Then every minimal uniformly
almost periodic ttg is regular.

PROOF. Let %X be a minimal uniformly almost periodic ttg. As T is
abelian, every element of E(X) commutes with every element of 7 . By
1.12., every element of E(X) is a homeomorphism of X , and so E(X)
consists of equivariant endomorphisms. As E(X)x = X for every x € X |
regularity follows. O

2.17. REMARK. let ¢:X—%Y be a group extension of minimal ttgs. Then ¢
is regular.
In particular, the universal minimal almost periodic extension of % is
regular.

PROOF. Let K be a CT, topological group such that K acts on X con-
tinuously and such that K and 7 commute and ¢ ¢(x)= Kx for every
x € X . Then the elements of K are the equivariant endomorphisms that
guarantee regularity. Let aq:@%)—% be the universal minimal almost
periodic extension of % . Then aq is a factor of a group extension. As aq
is universal it is a group extension itself. d

1.3. FIBERED PRODUCTS

Let %X and % be ttgs. Then the dynamical properties of the cartesian
product X X %Y seem to reflect a certain correlation between the
dynamical properties of % and % . For instance, if X and % are
minimal, then minimality of %X X % shows a kind of independency for
X and % ; in that case X and ¥ are called disjoint. This section is
meant to provide definitions and techniques necessary for the study of
disjointness and weak disjointness ( X X ¥ ergodic) in the chapters VI
and VII. In many cases only a sketch of proof is given.

The general setting is as follows:

Let ¢:X—>Z and ¢:Y—>Z be surjective homomorphisms of ttgs.
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Define Rgy:= {(x,y)EX XY | ¢(x)=1¢(y)} . the fibered product.
Clearly, Ry is closed and invariant and Ry = R, . This fibered
product may be interpreted as the relative version of the cartesian pro-
duct.

We shall comment on R, throughout this section.

Let ¢:X—%Z and ¢:%¥Y—<Z be homomorphisms of minimal ttgs. Then ¢
and ¢ are called disjoint if Ry, is a minimal subset of X XY ; nota-
tion: ¢ L. If € is the trivial one point ttg ( {*} ), then instead of ¢ L
we write X L % ; we say that the minimal ttgs %X and % are disjoint. If
¢ and ¢ are not disjoint we write ¢ 7|¢ Y.

Clearly, ¢ L id; and ¢Ju{/ for every nontrivial factor ¢ of ¢ (compare
VL.I.1.). From 1.23.ac it is easily deducible that a distal minimal ttg is dis-
joint from every proximal minimal ttg.

3.1. REMARK. Let ¢:X—Z be a homomorphism of minimal tigs.

a) Let y:Y—Z be a homomorphism of minimal tigs such that ¢ L { .
Then ¢ L 8 for every factor 8 of .

b) Let {xlzf:“yﬁ—a@a | a<<B<w} be an inverse system of homomor-
phisms of minimal tgs, with %= and such that y§ L ¢ for
every B<v. Let y=invlimyf . then ¢ L ¢.

c) Let :Y—Z be a homomorphism of minimal tigs with ¢ L.
Then there is a homomorphism of minimal tigs 0: U —Z that fac-
torizes over  and which is maximally disjoint from ¢ . That is,
¢ L0 and ¢ L& for every proper minimal extension § of 0.

PROOF.

a) Obvious.

b) This follows from 1.6. and from the easy observation that
R4y = inv lim{ng | B<v} ; here the maps

6:R ,—>R are defined as  0%:= idy X £ |x
ouf o

oYg W

c) Consider the collection A of homomorphisms £: % —Z of minimal
ttgs with &1 ¢, such that £ factorizes over ¢ ; i.e., §=4yoA for some
homomorphism A . Define an ordering on A by: &<n iff n=~£op for
some homomorphism p ({n€ A ). By b, every chain in A has an upper
bound in A . Hence, by Zorn’s lemma, the assertion follows. O

Clearly, R4y is minimal iffl Ry, has a unique minimal subset and R,
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has a dense subset of almost periodic points.
In order to know whether R, contains a unique minimal subset we have:

3.2. THEOREM. Let ¢:X—Z and :Y—Z be homomorphisms of minimal
rgs. Let uelJ, zp€uZ, xo€Eudp=(zg) and yoEuy(zg). Let
H=8%.,x¢), F=6%,y)) and K =&%Z,z,) be the Ellis groups
of X, %Y and Z with respect to xq,, yo and zy in G . Then
R4y has a unique minimal subset iff HF =K .

PROOF. Suppose that R, has a unique minimal subset. Let k € K ; and
remark that (xo,kyo) = u (xg,kyo) 1s an almost periodic point in R4y . As
(x0,y0) is an almost periodic point too, there is an a € G such that
(x0,kyo) =a(xg,yo). Clearlyy, a€H and a 'k€F. So we have
k =aa 'k € HF , which implies that KCHF . As HUFCK , it fol-
lows that K = HF .

Conversely, let W C Ry, be a minimal subset of R,, and assume that
K = HF . Clearly, for some a€&€ G the point (xg,ayo)€ W . Hence
a€K; say a=hf for certain h€H and [f€F . Then
(xg,ayo) =h (h 'xo.fve), and as h '€H, fEF, we have
(xg,ayp) = h (x9.y0) . This shows that WnN moa)’o) #* @ . As
T(xq,yo) is minimal (2.5.), it follows that W = T'(x(,yy) - O

3.3.  COROLLARY.

a) Let X and % be minimal ttgs. Then the following statements are
equivalent:
(1) X XY has a uniqgue minimal subset;
(i) &(Xx).&Yy)=G for some x EuX and y €uY ;
(iii) &(Kyx ). &Y,y )= G for every x EuX and y €EuY .

b) Let H and F be subgroups of G that can occur as Ellis groups
of certain minimal ttgs. Then HF =G iff HgF =G for some
gEG iff HgF =G for every g€ G . O

3.4, REMARK. Let ¢:X—Z be a homomorphism of minimal ttgs and let
V:Y—>Z be a proximal extension of (not necessarily minimal) ttgs.
Then R,y has a unique minimal subset.

PROOF. Define 6: R4, — % as the projection. Then 6 is proximal. As %X
is minimal, the remark follows from 1.23.c. (]
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Let ¢:X—% and ¢:¥Y—-Z be surjective homomorphisms of ttgs (not
necessarily minimal). Then ¢ and ¢ are said to satisfy the generalized
Bronstein condition (gBc) if J—Irw = Rgy ; ie., if the almost periodic points
are dense in Ry, . If JRT =R, then ¢ is said to satisfy the Bronstein
condition (Bc); we shall also say that ¢ is a Bc map or a Bc extension. Bc
extensions turn out to behave nicely with respect to the regionally proximal
relation and the interpolation of almost periodic factors, as will be made
clear in 4.4. and IIL.3..

Note that if the pair (¢,)) satisfies gBc, then X and Y , being factors of
R4y . both have a dense subset of almost periodic points.

3.5. REMARK.
a) Let ¢:X—Z be a homomorphism of minimal tigs and let

Y:Y—>Z be a proximal extension. Then ¢ Ly iff () satisfies

gBc (cf. 3.4.).

b) In particular, a proximal homomorphism of minimal ttgs is a Bc
extension iff it is an isomorphism. o

c) Let ¢:X—Z be a homomorphism of minimal tigs. If JR, is an
equivalence relation, then ¢ = £om where m is a Bc extension and
& is a proximal extension (cf. the discussion just below 2.14.). [

In case € is a minimal ttg, the fact that ¢ and 4 satisfy the generalized
Bronstein condition implies semi-openness for the canonical map
0:R4y—Z, defined by €(x,y)=¢(x)=y(y) for all (x,y)ERyy
(1.4.b).

Semi-openness has the following technical advantage:

3.6. LEMMA. Let ¢:X—>Z and :Y—Z be surjective homomorphisms of
tgs, such that the canonical map 0:%4y—Z is semi-open. Then for
every nonempty open W C R, there are nonempty open subsets U
and V in X and Y such that

¢[U]=y[V] and @ FUXVNRG,,CW.
PROOF. Let U’ and V'’ be open subsets of X and Y such that
@ F#U'XV'NRyyC W and let
O :=int(@[U'X V'N Ry = int(¢[UTNY[V]).
Then U:=U'N¢[0] and V:=V'NyYT[O] suffice. O
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3.7. COROLLARY. Let ¢:X—Z and y:Y—Z be surjective homomorphisms
of t1gs, and let W be an arbitrary open set in Ry, . In each of the fol-
lowing cases we can find open sets U and V in X and Y such that
oUI=y[V] and @ #UXVNRGC W .

(1) 2 is minimal and ¢ and ¢ satisfy gBc;
(ii) ¢ is open and  is semi-open;
(iii) X is minimal and  is open;
(iv) € is minimal, ¢ is open and Y =J¥.

PROOF.

(1) Follows from 3.6. and 1.4.b.

(ii) It is an easy exercise to show that # is semi-open; hence 3.6.
applies.

(ii1) Follows from (ii) and 1.4.b (interchange ¢ and v ).

(iv) Follows from (ii) and 1.4.b. O

If a pair in R,y can be approximated by almost periodic points in R, ,
then it can be approximated by almost periodic points with a first coordinate
in Tx (for some fixed x € X ), provided that ¢ is a homomorphism of
minimal ttgs. This is shown in the next lemma.

3.8. LEMMA. Let ¢:X—>Z and :Y—Z be surjective homomorphisms of
ttgs with X minimal, and let x € X and u € J, . Then

JRyy=T{x}Xuy=¢(x) (={(tx.ty)|1ET,y Euy ¢(x))).

PROOF. As {x}Xuy“¢(x) CJRy, theinclusion C holds.

Conversely, let (xl,_y,)Em and let UXVNR,, be a basic open
neighbourhood of (x;,y|)€ R4y ie, U and V are open neighbour-
hoods of x; and y; in X and Y . As UX VﬂJRj;ﬁ @ , there is a
point (x,,y2)€ UX VNJR,, ; say (x3,y2) =V (x2,y2) . By minimality of
% , there is an ¢ € G with x, =vax . So (xz,yz)zva(x,a_]yz), and
clearly, (x,a 'yy)€ {x}Xuy~¢(x) . Hence

(x2, 020 EUXVNT ({x}Xuy=¢(x)),

and as U and V are arbitrary, (x;,y)E T ({x } X uyT¢(x)). O

In the same spirit we have the following result, the easy proof of which is
omitted.
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39. LEMMA. Let ¢:X—>Z and ¢:Y—Z be surjective homomorphisms of
ttgs, with  an open map. If xo€ X s a transitive point and ¢ s
semi-open, then Ry, =T ({xo}Xy“¢d(x)). In particular, if X is
minimal, then R,y =T ({x }X{y“¢(x)) for every x €E X . O

The results in 3.6. through 3.9. show that openness of maps as well as density
of almost periodic points in R4, provide a (technically) convenient descrip-
tion of Ry, . Both aspects are almost “embodied” by the so called RIC
extensions, which we shall define hereafter (see IIL.1. for properties of those
RIC extensions).

A homomorphism ¢:X—Z of minimal ttgs is called a RIC extension
(abbreviation for Relatively InContractible) if ¢ L for every proximal
homomorphism ¢:% — £ of minimal ttgs. If & is the trivial one point ttg,
X is called incontractible.

Note that ¢ is RIC iff ¢ L k, where x:A(%)—Z is the universal minimal
proximal extension of €. In particular, it follows from 2.9. that every
minimal ttg for an abelian group T is incontractible.

If, for a certain topological group 7 , the universal minimal ttg %r is
trivial, then every minimal ttg for 7 is incontractible; for, obviously,
X L {x} . Such a topological group is called strongly amenable (the name
will be clear from VIL.1.11.).

It turns out that RIC extensions are open (III.1.4.) and that RIC extensions
satisfy the Bronstein condition in a strong way (III.1.9. and IIL.1.5.).

It is still unsolved whether or not an open Bc extension is a RIC extension.
We shall provide two partial results with respect to that question in IIL.1.9.
and V.3.7..

Another concept in relating homomorphisms of ttgs (not necessarily minimal)
is that of weak disjointness. Two surjective homomorphisms ¢: X —< and
V:Y—>Z of ttgs are called weakly disjoint if R, is an ergodic subset of
X XY ; notation: ¢ . If € is the trivial one point ttg and ¢ - ¢,
then we say X and % are weakly disjoint; notation: X _- % .

In contrast to the situation for disjointness, it is possible that a homomor-
phism of ttgs is weakly disjoint from itself. Such a homomorphism
¢:X—>Z with ¢_- ¢ is called weakly mixing. If Z is trivial then % is
called a weakly mixing ttg.

The following example of weakly disjoint ttgs and weakly mixing ttgs ori-
ginates from S. GLASNER [G 75.1]. We shall defer the proof until VII.2.14.,
where a relativized version is given.
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3.10. EXAMPLE. Let X be a proximal minimal ttg. Then X is weakly dis-
Joint from every minimal ttg. In particular, a proximal minimal g is
weakly mixing ([G 76] 11.2.2.). O

3.11. REMARK. A weakly mixing homomorphism of ttgs does not admit non-
trivial almost periodic factors.

PROOF. Let ¢:X— % be a surjective weakly mixing homomorphism of ttgs.

Then for every a€ Uy we have TaN Ry =R, . Hence Q4= Ry, which
shows that E,= R, and ¢ does not admit nontrivial almost periodic fac-
tors. O

1.4. MISCELLANEA

This section does not have a main theme. We intend to give some exam-
ples and we shall comment on the relations Py, Q, and E, fora
homomorphism ¢ of minimal ttgs.

We shall need the following lemma ([AG 77] lemma IL.2.; also compare
II1.3.1. in here).

4.1. LEMMA. Consider the next commutative diagram consisting of homomor-
phisms of minimal ttgs.

M .
X ;' z
| T
¢l e v
~
—~
D i
Y - —> U

Let ¢ be a proximal extension and let  be distal. Then there is a
homomorphism 6:%—Z such that p=00¢ and v =100 . O

Let ¢:X—%Y be a homomorphism of minimal ttgs. Since P,C Q,C E,,
PyoQyeUQuoPyC E, ; sometimes, however, we have E,= Q40P (e.g.
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[11.3.8. and VIL.1.19., 1.20.). The following holds with respect to Q4o P, :

42. REMARK. Let ¢:X—%Y be a homomorphism of minimal 1tgs. Then
QpoPy=PyoQy =

{(x1,X2)E R4 | v(x1,x2)E Q, for some m.Li. / in S; and some v EJ(])}.

PROOF. Follows easily from 2.7. and the fact that Qg is closed and invari-
ant. O

Consider the next commutative diagram of homomorphisms of minimal ttgs.

%X >

The following describes how P, and Py, Q4 and Q4 and E, and Ey
are related.

4.3. THEOREM. In the situation above, the following statements hold:
a) Y XY[Py] =Py
b) ¥ Xy[Q]l= Q4
c) ¢X\P[P¢°Q¢]:P0°Q0;
d) ¥XY[Eg]=Eg;
e) forevery x €EX, Y[Eyx]]= Eg[(x)].

PROOF.
a) This is a straightforward relativization of [E 69] 5.22.3..
b) This is a straightforward relativization of [MW 80.2] 3.2..
¢) Follows easily from b and 4.2..
e) [MW ?] 2.3..
d) Follows from e (but a direct proof is possible). |

In the previous section we already mentioned the use of dense sets of almost
periodic points. In chapter III we shall discuss a technique that is perfectly
fit to attack the regionally proximal relation in the situation of a Bc exten-
sion. In fact, it attacks the regionally proximal relation as far as the set
JRT is concerned.
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To that end define for a homomorphism ¢: X — % of minimal ttgs:
Qy:= N{TaNJR,| a€ AUy}

and note that Qg = M{TaNJR,|aEUy}. In other words,
(x1,Xx)€ Qg iff there is a net {(x},x5)};, in JR, and there are ,ET
such that

(x.,x5)—>(x1,x2) and  4(x).x5)—=(x1.x)).

Clearly, Qj is a closed, invariant, reflexive and symmetric relation in JR, .
and Q;, C Q,:if ¢ satisfies the Bronstein condition , then Q; = 0, .

44. LEMMA. Let ¢:X—%Y be a homomorphism of minimal tigs, and let
(x1,x3) be an almost periodic point in Q; s say (xp,x3) = u (x1,x,) for
some u€J . Then there are nets {xy));, in u¢p~¢(x,) and s; and
t, in T such that

si(xp.xh)—>(xx0) and  4(x).xh) > (xxy) in JR,

while s;u —-u and tiu—u in M .

PROOF. (See also [MW 74] 2.2.) By 3.8., JR, = T({x,} X u¢~¢(x;)) and so
it follows easily that

Qo = MA{TaNT({x} X u¢~(x))) | €€ Uy} .

This shows that we can find a net {z\}) in u¢~¢(x,) and s\ and ) in
T such that

sy (x1.20) = (xp,x2) and 1) (x1,2) = (x.x)).

Let gx€ G be such that z) =g)x; and note that g ¢(x;) = ¢(x;). After
passing to a suitable subnet we can find p,, p,, p; and p,; in M such
that

sx (u.g)—=(pi.p) and 1) (u.g))—(P3.pa);

note that p x| =p3x|; =pasx; =x; and prx; = x;.

Choose nets {r,}, and {r,}, in T with r,—u and r, —>upups ' .
Then there are nets {s?}, and {¢z}}, in T (subnets of the product nets
(s r), (¢',r")) such that

sy (u.g,)—>(upy,upy) and ¢} (u,g,)— (upy,upups 'pa),

for suitable g, € {g)|A} . By continuity of right multiplication with up; '
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we have s’up; ' supup; ' =u and t2up; ' —>u ; hence

spupy ' (u upig,) = (u,upy) and  tlupy ! (u,upig,) — (u upups 'pa) .

But then we can find (sub)nets {s;}, and {#,}, in T and g € {g,|»}
such that

s, (u.uprg)— (u,upy) and 1 (u,up\g)— (u.up\ups 'pa).
Hence s;u —u and tiu »u in M ;and wup,gx,€Eud~¢(x,). while
si(x1,upigixy) = (x,up2x;) = (x,x;) and

(X, upigixy) = (Xy upupy 'paxy) = (x1,x)) . 0

We shall turn to some examples. Although they are completely standard they
can serve as a link to reality.

It is left as an exercise for the reader to check the properties of the ttgs men-
tioned here.

4.5. (1) Let X be the circle, considered as the unit interval / with end
points identified. Define ¢: X - X by ¢(x)=x +a (mod 1) for some
irrational «€/ , and let the action of Z on X be defined by
(n,x)»¢" (x)=x +na (mod1). Then X, is a ttg for Z. X, 1is
minimal; and as ¢ is an isometry, %, is uniformly almost periodic.

(i) Let Y =XXX be the torus and define a homeomorphism
Y:Y Y by Y(x;,x)=(x;+a,x,+p) for irrational a,BE 1 such
that « /B is irrational too. Again, let the action of Z on Y be defined
by the iterates of ¢ . Then ¥ =X,xX Xz is the product of two uniformly
almost periodic minimal ttgs, so % is uniformly almost periodic. As a/f
is irrational, the point (0,0) has a dense orbit in Y , and it follows that %
is minimal.
Note that this means that the uniformly almost periodic minimal ttgs %,
and %z are disjoint iff @ and B are independent over Q .

(i) Let Z =XX X be the torus and define a homeomorphism
0:Z—->Z by 0{x,,x3)=(x;+a,x;+x;) for a transcendental a€E [ .
Let the action of Z on Z be defined by the iterates of 6.

Clearly, the projection 7:Z— %, is a homomorphism of ttgs; moreover, 7
is a group extension (every fiber is homeomorphic to the CT, group X ).
Hence Z is an almost periodic extension of a uniformly almost periodic
minimal ttg and so € is distal. As {(na, Yha(n?—n)) |n €27} is dense in
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Z it follows that € is minimal. This ttg £ is not uniformly almost
periodic, however, [F 63].

4.6. (i) Consider the uniformly almost periodic minimal ttg %, for T =2
asin 4.5.(1) . Let xo€ X and put E = Zx, the orbit of x(. Clearly, E
is a proper dense subset of X . Split every e € E into two distinct points

e', e and define

Y:=(X\E)U{et|e€E}U{e |e€E}.

Let ¢:Y — X be the obvious identification map. Provide Y with a CT,
topology by defining a base @ as follows:
Every full original (under ¢ ) of an open interval in X is an element of % .
For every e€E and every e>0 the sets (e —e,e)U{e’} and
(e,e +€)U{e } are elements of ¥ . We can extend the action of Z on
X toanactionof Z on Y by defining

(n,x)»x +na (mod 1) for every x € X\E ;
(n,e  )s(e +na)” (mod 1), (n,e )»(e +na)” (mod 1) (e€FE).

Then % is a ttg for Z and as every orbit is dense, % is minimal. The
map ¢: %Y —X is a homomorphism of minimal ttgs and ¢ is one-to-one in
the points outside E (i.e.,, ¢ is almost one-to-one or almost automorphic).
So ¢ is point distal, and every x € X \ £ is not just a ¢-distal point but
even a distal point for ¥, i.e., ¥ is a point distal minimal ttg.

Also ¢ is proximal, for e and e are proximal (e € E ). Hence %
is a proximal extension of a uniformly almost periodic ttg, a so called
proximal-equicontinuous ttg. As ¢ is proximal in a special way, ¥ is even
locally almost periodic (see I11.5.6.).

(ii) A point distal ttg does not have to be locally almost periodic, since
every minimal distal ttg is point distal; e.g. € in 4.5.(ii1) is point distal. If
Z were locally almost periodic, it would have been uniformly almost
periodic by 1.18..

47. (1) Let T:=T (a,b) be the free group on two generators (a and b),
and let X be the circle. Define a: X - X by a(x)=x +a (mod 1) for
an irrational a€/ and define b: X - X by b(x)=x?>. Then a and
b are homeomorphisms, and % is a ttg for T . By the action of a , ¥
is minimal and by the action of b , % is proximal.
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(i) Let Y be the circle and define c¢:Y —Y by c(y)=y + %a
(same « as in (i)) and define d:Y —>Y by d(y)=2y? for 0<y<1%
and d(y)=%+2y — %) for B<y<l1.

By the rotation ¢, % is a minimal ttg for 7 (=T (c,d)). Define
¢:Y >X by ¢()=2 (modl). Then ¢ is a homomorphism of
minimal ttgs. Moreover ¢ is a group extension, the CT, group being the
group consisting of two elements.

Note that Poq=Y XY \ {(¢.y +2)|y€E€Y} and Qq=Y XY, so
Qs =Es= PgoPy.

This map ¢ as well as ¥ is called the twofold covering of the minimal prox-
imal rotation. Obviously, we can define threefold and fourfold coverings
similarly.

48. Let X= <X ,0> be the shift transformation on two symbols, i.e.,
X = {0,1}Z and o: X - X isdefined by o(x), =x;+, forall i€Z.
Define blocks B, for k €N as follows:

By=00; B,=0010; B, =B,B,1B, for every nEN;
and let Y C X be defined by
Y = {x € X | every finite segment of x is a segment of B, for some k EN} .

Then Y is a closed shift invariant subset of X ; so % is a ttg for Z . It
turns out that % is a minimal weakly mixing ttg (cf. [J 82]). Moreover, ¥ is
a prime ttg, i.e., Y does not have nontrivial factors.

For more details on this so called Chacon transformation % see [J 82].

49. Let Z be a compact, nonseparable, nonmetric topological space and
define X =Z%. Let o be the shift on X . Then X isa ttg for Z . As
X is not separable, X does not contain transitive points. But it is easy to
see that % is ergodic.
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I.5. REMARKS

In this section we shall briefly discuss some more or less isolated subjects,
which are closely related to the material presented in the previous sec-
tions of this chapter.

5.1. In the literature one often encounters a function algebraic approach to
topological dynamics, especially in the mathematical environment of R. ELLIS.
It is just a matter of taste that we didn’t adopt this approach.

In short it comes down to the following (see [E 69] chapters 9 and 10). Let
% be a ttg and denote by €(X) the Banach algebra of all continuous com-
plex valued functions on X provided with the supremum norm. As a point
transitive ttg X is a factor of &r , we can consider C(X) as a subalgebra
of C:=C€(Sr). In this way there is a one-to-one correspondence between
the point transitive ttgs and the so called T-subalgebras of €. So the study
of point transitive ttgs can be transformed into the study of certain subalge-
bras of €. In this approach one rather studies point transitive ttgs with a
fixed base point.

5.2. Let T be an arbitrary topological group. If % is a ttg for T, , then
% is a ttg for T except the (joint) continuity of the action. in general, the
action will not be continuous; but under some conditions it is, as may be
seen from the ”theorem of Ellis” [E 57].

Let T be a locally compact T, topological group, and let < T, , X, m>
be a g for T, . If w:T X X — X s separately continuous then w is
Jointly continuous, (hence X is a ttg for T ).

This nontrivial result plays a role in the proof of 1.20.. The theorem is not
stated here in its fullest generality. For a short and transparent proof see
[T 79]. In[Cr 81] a “game theoretic” proof is given.

5.3. In section one we gave relative notions of distality, proximality and
almost periodicity. We did not define relative local almost periodicity. This
is studied in [MW 80.2]. There it turns out that a homomorphism ¢: X — %
of minimal ttgs is locally almost periodic if ¢ =408 with 6 highly proxi-
mal (see IV) and v almost periodic (for the absolute case this was shown in
[MW 72], cf. VL5.6.).
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5.4. NOTE. Let ¢:X—%Y be a homomorphism of tigs with %Y minimal.
Suppose that x € X is a ¢-distal point, i.e, X =T (x) and x is
distal from every x'€ X with ¢(x)=¢¢(x’). Then X is minimal.

Let vE€J, and note that ¢(vx)=v ¢(x)=vy =y =¢(x). By assump-
tion x and vx are distal. As vx =v.vx it follows from 2.7. that x and
vx are proximal. Hence x =vx , and x is an almost periodic point
(2.5). So X = Tx is a minimal set.

Note that 4.6.(i) shows that point distal is not necessarily distal.
The corresponding notion of a point proximal homomorphism of minimal
ttgs is not very useful, as is shown by the next observation:

NOTE. Let ¢:X—%Y be a homomorphism of minimal tigs and suppose
that x € X is a proximal point for ¢, ie, (x,x’)E Py for every
x"€X with (x,x")ERy. Then ¢ is proximal.

Let (x,.x3)ERy, say x,=px and x;=¢gx for some p and g in
M . Let ueJ, ; then

(x,upfqu)zupf'(xl,xz)e m:R(i,.

By assumption, x and up 'gx are proximal. By 2.8, x and up 'g¢x
are distal; hence x =up 'gx . But then upx = up (up 'gx) = ugx ; and
so, by 2.7., px and ¢x are proximal.

5.5. The notion of disjointness was introduced in [F 67] for not necessarily
minimal ttgs. Two ttgs % and % are called disjoint if for every ttg € and
all surjective homomorphisms ¢:Z—-%X and :Z—>%Y the induced
homomorphism 6: Z— X X % is surjective. Here @ is such that ¢ =00
and ¢ =mof , where m; and m, are the projections.

b 4

¢ la ¥

A xx ¥ >

Clearly disjointness is preserved under factors. If %X and % are disjoint
then one of them has to be minimal. Moreover, if both %X and % are

minimal, then %X and % are disjoint iff %X X % is minimal.
These facts are easy to verify, so their proofs are left for the reader.
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5.6. The notion of weak disjointness first occurs in [P 72], with the same
definition as we gave. A slightly different definition can be found in [M 78],
where two ttgs X and % are called weakly disjoint if X X % is a point
transitive ttg. Clearly the notions coincide if both X and Y have a count-
able pseudobase.

Of course this yields different definitions for the notion of weak mixing. Let
% be a minimal ttg.

wMl A ttg % is weakly mixing if X X % is ergodic ([P 72]).

wM2 A ttg X is weakly mixing if % X X is point transitive ([M 76.1]).
Other definitions occurring in the literature are:

WM3 A ttg % is weakly mixing if Qo= XX X ([B75/79] 3.13.14.).
wM4 A ttg X is weakly mixing if Eq = X X X ([E 81] 0.10.).

Clearly, WM2 = WMI = WM3 = WM4 and WM2 = WMI in case X has a
countable pseudobase. If % is incontractible or if % admits an invariant
measure, then WM1, WM3 and WM4 are equivalent (VIL3.11.).

Our definition of weak mixing will always be WM1.

5.7. In 4.5. through 4.9. we gave a few examples of ttgs and homomor-

phisms of ttgs. They just serve as an illustration. In the literature many other

(and more sophisticated) examples can be found; we shall name a few and

give some references.

(i) Many examples do exist based on shift systems e.g. 4.8.. In this area the
intertwining of ergodic theory and topological dynamics is quite strong,
[D 80], [Mt 71], [Mk 75].

(i) Let Y and Z be CT, spaces and let 06:Z —Z be a homeomor-
phism. Suppose h:Z —3C(Y) is a continuous map from Z into the
full homeomorphism group of Y (uniform topology). Define a
homeomorphism ¢ on X =Z XY by ¢(z,y)=(a(z),h()y)).
Then X is called a skew product of Z and Y . In fact in 4.5.(iii)) Z
is a skew product of X and X , where h:X —J(X) is defined by
h(x)x)=x +x".
Many examples are made using skew product constructions e.g. [GW 79],
[G 80], [GW 8l1].

(iii) Our example 4.6.(1) can be generalized considerably (see for instance
IV.1.4.). In [M 76.1] and [M 78] many examples are constructed with the
method which is discussed in 1V.1.4..
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(iv) In [B 75/79] one can find a lot of examples coming from the qualitative

v)

theory of differential equations.
By way of anthology of other examples we shall just mention some

papers in which interesting examples can be found. This list is not
meant to be complete so a lot of other interesting examples may remain
unmentioned: [E 65], [FKS 73], [G 74], [G 75.1], [M 76.2], [MW 72],
[MW 76], [P 71], [S 70], [W 67].
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I1

HYPER TRANSFORMATION GROUPS

1. hyperspaces and ergodicity

2. recursiveness

w

quasifactors

4. remarks

In the structure theory of minimal ttgs it turns out to be useful to study the
behavior of subsets of the phase space under the given action. One of the
first (rudimentary) occurrences of the hyperspace in that respect was in
[V 70], in which the study of the phenomenon of the shrinking of a fiber to a
point was started (cf. IV.1.).

In this chapter we shall briefly discuss the action of 7 on the hyperspace
2% of the phase space X ., which is induced by the action of T on X .
The first section is just an introduction with some emphasis on ergodicity.
Recursiveness, in particular almost periodicity, is discussed in the second sec-
tion. In the third one the induced action of S on the hyperspace (“the cir-
cle operation”) is introduced, as are quasifactors. These notions will occur
frequently in the sequel.

II.1. HYPERSPACES AND ERGODICITY

Many standard constructions do exist that build new ttgs out of old ones
(cf. section I.1.). In this section we introduce the hyper ttg 2% induced
by the ttg X . We also define the so called “circle-action” (or ”circle-
operation”) of Sy on 2% . Both concepts play a major role in this
monograph. We end this section with observations on ergodicity of 2%,
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Let X be a topological space. The hyperspace 2* of X is defined to be
the collection of all nonempty closed subsets of X .

On 2% we can define the Viertoris topology as follows:

For an open set U in X define

<U>:={B€?2*|BCU)} and <U>":={B€2¥|BNU # &)
and let
$:={<U>|U openin X}U{<U>"|Uopenin X} .

The Vietoris topology on 2* is the topology generated by the subbase & .
Note that a base for the Vietoris topology is formed by the sets of the form

C-=

<U),...,U">::<

I

n
Uu>nNO<U>"
1 i=1

]

Note that <U > =< X,U > .

1.1. THEOREM. Let X be a topological space.
a) If X is a T,-space, then X can be homeomorphically embedded in
2% by the map xw{x} .
b) X is metrizable iff 2% is metrizable.
¢ X is CT, iff 2*¥ is CT,.

PROOF. Cf. [Mi 51]. )

1.2. Let X be a CT, space and let U be the unique uniform structure for
X . Then the Vietoris topology is just the uniform topology on 2% induced
by the unique uniform structure @ , which is generated by the collection
{a" | @€ A} ; here

a :={(A4,B)E2*X2¥ |A Ca(B) and BCa(d)}.
For a proof of this we refer to [Mi 51].
Let ¢: X —» Y be a closed continuous surjection. Then ¢ induces maps
22:2% 52° and  §:2F =¥

defined by 2%°(4)=¢[4] for all A4 €2X and ¢,4(B)=¢"[B] for all
Be2t.
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1.3. THEOREM. Let ¢:X —Y be a continuous surjection of CT, spaces.

Then

a) 2% is continuous;

b)  ¢ag|y: Y =2X is an upper semi continuous (u.s.c.) map, i.e.,
(VEY | aa(y)=¢"(y)C U} isopenin Y foropen U in X ;

c) ¢ad|y is continuous in y €Y iff ¢ is open in every point of
()

d)  aq is continuous iff ¢uq|y is continuous iff ¢ is open;

e) if X is metrizable then there is a dense Gg-set Y’ in Y such that

bad IS continuous in every point of Y.

PROOF. For a, b and d see [Mi 51]; c is straightforward. A proof for e can
be found in [Fo 51]. O

1.4. REMARK. Let X be a CT, space. The map u,: X" —2X  defined by

(x1, ..., x){x1,...,x,} is continuous. Moreover, it is locally
one-to-one in the points (xy, ..., x,) with x; % x; forall i % ] .
Also note that | J {t,[X"]| n €N} is dense in 2% . a

The following remark on convergence in 2% seems useful, the easy proof is
omitted.

1.5. REMARK. Let {A;}, be a convergent net in 2¥ . Then A =1limA, in
2% iff the following conditions are satisfied:

(i) A contains all convergence points of every net {a;};, with a; € A; ;

(1) for every x € A there is a net {a;}; with a; € A; (after passing

to a suitable subnet {A;}; of {A;}; ) such that x is a convergence

point of {a;}; . |

Let X=<T,X,7> be a ttg (note that X is a CT, space unless stated
otherwise). Then, clearly, <T, 2 2"> s a ttg, where the map
2": Ty X 2% 2% is defined by 27(t,A)==[{t}X A] for all tET and
A €2% (or, suppressing the action symbol, (¢,4)~1tA4 ). Indeed, every
homeomorphism 7' of X extends to a homeomorphism 2) = 27y of
2% (by 1.3.a).
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1.6. THEOREM. Let X = <T ,X ,m> be a ttg for an arbitrary topological
group T . Then %= T 2X ¥ o g ttg and X can be equivari-
antly embedded in 2% .

PROOF. By the above, we only have to prove the continuity of
2:TXx2¥ 52%  Let t€T and 4 €2¥ and take a subbase neighbour-
hood <U> of 2"(t,A). Then #[{t}X A]C U , so by continuity of =
there are open neighbourhoods ¥V and W of ¢+ and 4 in T and X,
such that #[V'X W]C U . Hence 2"[V X <W >]C <U > . Next consider
a subbase neighbourhood <U>" of 2"(t,A) ; ie., thereisan a € A with
m(t,a)Ew[{t} X A]NU . By continuity of = there are open neighbour-
hoods V and W of ¢+ and @ in T and X such that #[V X W]CU .
Hence 27V X <W>"]C <U>". The second part of the statement is
obvious. O

2"’X
296

1.7. Note that 2%* contains % as a closed invariant subset; thus is
minimal iff % is trivial. Further on, however, we shall see that

very well be ergodic and nontrivial (1.11.). We omit the easy proof of the

can

following theorem.

1.8. THEOREM. Let ¢:X— %Y be a surjective homomorphism of ttgs. Then
a) 2%:2% 2% is a homomorphism of tigs;
b) ¢.q:2¥—>2% is an equivariant u.s.c. map, it is a homomorphism of
ngs iff ¢ is open;
C)  ¢aq and ¢uq|y are embeddings iff ¢ is open. O

From now on we shall (again) forget about the action symbol, i.e.: if X is a
ttg then 2% is a ttg and the action will be denoted by (1,4 )14 . How-
ever, this notation may cause some ambiguity with respect to the action of
S; on % and 2% . To circumvent misunderstanding, we shall denote the
action of S7 on 2% by the “circle operation”.

Let A €2¥ and p € Sy, then

pA:={pa|a€A} and
pod:=limyA in 2¥ for some net {1}, in T with p =limy

=limyA in 2X foreverynet {1}, in T with p =limy .
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1.9. LEMMA. Let X be a ttg, A€, p.qESr and tE€T .
a) Let {t;}; beanetin T with p =1lim¢; . Then

peoA ={x€ X |x =lim¢a; for a subnet {;}; of {t;}; and fora; €4 }.
b) pACpoA and tA =toA ,
C) po(qoA)=pgoA .

PROOF.
a) Clear from the definition above and 1.5..
b) Follows immediately from a.
c) Follows from the fact that S; acts as a semigroup on 2% . O

1.10. For nonempty subsets 4 of X which are not (necessarily) closed, we
define pod:=pod . Clearly, (also if 4 is not closed)

ped ={x€X|x =limta; for a;€EA and 1; >p}.
Note that if 4 is finite we have p4 =poA forall p € S; . As was men-
tioned earlier, 2% can never be minimal (in a nontrivial way). We shall see
now that 2% can be ergodic (cf. 1.15.).

1.11. THEOREM. For all n €N let X" be an ergodic ttg. Then (2% is
ergodic for all n €N . [Hence Q% s ergodic for all n €N and so
on.]

PROOF. Let W' and W? be nonempty open sets in (2*)" . We have to
finda t€T with tW'NW? @ . Let mEN and open sets Uj and
Viin X for i€{l,...,n} and jE{l,...,m} be such that

@AE<Ul,...,Ul>x - X<U},...,Ut>Cc W' and
@AE<V!,. .. VisxX - X<V}, ...,VE>CW?.
As X™ s ergodic thereisa ¢ € T such that
HU} X ~~- XUV X -~ XVY=L & &,
say (x!,....,%p.x¢,...,xt)EL . Then clearly
(X1, XX e XX, xR ewInw?

so tW'NW?s @ , which proves the theorem. O
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1.12. REMARK. Let X be attgand n €N . If 2X) is ergodic then X" is
ergodic. In particular, if 2% is ergodic (weakly mixing) then X is
ergodic (weakly mixing).

PROOF. Let U;X --- XU, and VX --- XV, be basic open (and
nonempty) in X" . Then

U:=<U;>X - X<U,> and V:=<V|>X - XV, >

are open in (2¥y" . So there isa t €T such that tUNV = @ ; hence
there are x; € U; with r{x;} = {tx;} € <V,;> . But then

1X1 - X )ELULNX - XUNNVIX - XV, ,

and X" is ergodic. £

1.13. LEMMA. Let X be atg. If 2% is ergodic then Qo = X X X .

PROOF. Choose a€EQ® and U open in X such that UX U Ca. Let
(x1,x2)EX XX andlet V; and V, be open neighbourhoods of x, and
X, in X . As the ttg 2% is ergodic we can find a +€ T such that
t<U>N<V,,V,> % & . In particular, there are points y, and y, in
U with t(y,,y2)€ VX V,. Hence

%] # le sz‘lt(UX U)Q V]X VzﬂTa,

So XX XCTa forall a€ %y and, consequently, X X X = Qy . O

For 1.14. and 1.15. we need some results from chapter VII. which do not
depend on the results in this section.

1.14. COROLLARY. Let X be a minimal ttg such that X X X has a dense
subset of almost periodic points. If 2% is ergodic then X is weakly mix-

ing.
PROOF. By 1.13., Qy = X X X ; hence by VIL3.17. (absolute case), %X is
weakly mixing. O
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1.15. THEOREM. Let X be a minimal ttg. If X has an invariant measure, or

if X is incontractible, then the following statements are equivalent:

a) X is weakly mixing;

b) X" is ergodic for all n EN;

¢) 2% is ergodic;

d %" is ergodic for all n EN .
PROOF. By VIL3.11.,, the statements a and b are equivalent to
"Eqx=XXX". By L.11, d follows from b; and, of course, ¢ is implied by
d. Assume c ; then, by 1.13., it follows that Q« = XX X . Hence
XXX =0qgCEg,s0 Ex=XXX . O

1.16. In particular this means that the equivalence of a through d of 1.15.
holds for every minimal ttg % in the case of an amenable (e.g. abelian)
phase group 7 (every minimal ttg for an amenable group has an invariant
measure (cf. VIL.1.11.)).

1.17. LEMMA. Let X be a tig and let n €N . If 2% s ergodic then for
any n open sets Vy,...,V, in X thereis a minimal left ideal I in
St with poV;, =X forall pE1 andall i€{1l,...,n}.

PROOF. As the collection
(pEST|poVi=X for i€(l,...,n}}

is closed and T-invariant in S7 , we only have to prove it is nonempty.
For every yE€ Uy choose a finite y-dense set {x7{, ... ,x,,*y} in X ,ie.,

UM |ie{l,....,n} }=X.
Then <V ,>X -+ X <V,> and (<y(xY{),... ,y(x,,’y)> )" are open
sets in (2%)" . So there is a t,€ T such that

tY<V,->ﬂ<y(x17),...,y(x,,yv)>7é @ for i€{l,....n}.

Note that this means that 7, V;Ny(x)# @ forall ie{l,...,n} and
all je€{1,...,n,}. Let p=Ilimt, €Sy (for a suitable subnet). Let
x € X andlet U be a neighbourhood of x in X ; choose a€ Uy with
a(x)CU and BEUy with B=B"" and B*Ca. Then for all yE Uy
with yC B thereis an x,€ {x7, ... ,x,,’y} with y(x,)C a(x). Hence

B # 1,V NY(xy)C 1,V Na(x)
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forall yCB andall i€{],...,n}. Butthen poV,Na(x)* & for all
i€{l,...,n} and so poV,NU*@. As U was arbitrary,
XEP—O—VT:poVi for all i€{l,...,n}. As x€X was arbitrary,
poVi=X forall ie{l,...,n}. a

1.18. THEOREM. Let X be a t1g. Consider the following statements:
a) X' isergodic forall n €N .
b) (%" is ergodic for all n €N .

c) For every finite collection {V,,...,V,} of open subsets of X
there is a minimal left ideal 1 in Sy such that poV; =X forall
pEI andevery i€{l,...,n}.

d) For every countable collection < of open subsets of X there is a
minimal left ideal 1 in St such that poV =X forall pEl
and every V € V.

e) There is a minimal left ideal 1 in Sy such that poV =X for
all p €1 and every open set V in X .

The statements a , b , ¢ and d are equivalent and they are implied by e .

If X has a countable pseudobase (e.g., X is metric) then all five state-

ments are equivalent.

PROOF.

e = d = ¢ Trivial.

c=alet U;X - -+ XU, be a basic open set. By c there exists a
pESr with poU;, =X for i€{],...,n}. Butthen

X" =polUX - XpolU, =po(U X -+ XU)CTU X - XU,).

As n€N and U,;X -+ X U, isarbitrary, X" is ergodic for all n € N.

a=DbCf LIL.

b = ¢ Follows from 1.17..

c=>dLet V={V,|i€EN}, then for all nEN we can find
pn €Sy such that p,oV; =X for I<i<n . Let p =limp, , for a suit-
able subnet. Then «clearly poV =X for all VeEV. As
{(pESTr|poV =X for all YEY} is a nonempty closed T-invariant
subset of St , it contains a minimal left ideal.

d=-eLet @ be the countable pseudobase for X and let / be a
minimal left ideal of S; such that poB =X for all p€&€/ and all
BE® . Let V be an open set in X , then there is a BE€® with
BCV . Hence X =poBCpoV so poV=X. O
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I1.2. RECURSIVENESS

In order to illustrate to what extent properties of ttgs relate to properties
of the induced hyper ttgs, we shall in this section remark on recursiveness
in hyper ttgs (also see [Ko 75]).

Fix a collection @ of subsets of 7 , to be called the admissible sets, and
recall the definitions of (uniform) (pointwise) (local) recursiveness (just after
1.1.7.).

2.1. THEOREM. Let X be a ttg. Then
a) 2% is uniformly recursive iff X is uniformly recursive;
b) if 2% is pointwise recursive then X is pointwise locally recursive.

PROOF.

a) Suppose X is uniformly recursive. Let a€ @y with a=a ' and
remember that {8 |B=pB '€y} forms a base for A" (1.2.). Let
H €@ be such that Hx Ca(x) for all x€ X and let 4 €2% . Then
hA C a(A) and by symmetry, 4 Ca(hA) forall h€ H ,so0 hA € o’ (4)
for all h € H ; hence 2% is uniformly recursive. Obviously, if 2% is uni-
formly recursive then % as a subttg is uniformly recursive too.

b)Let x€EX and let UEY, . If VEY, with VCU, then
V €2¥ is a recursive point and <U>€ V;; . So there isan H €@ with
HV C <U> ,hence HV°C U ,and x is a locally recursive point. O

1

2.2. THEOREM. Let T be an abelian group. Then x € X s (locally) recur-
sive in X iff every finite subset of Tx is (locally) recursive in >,

PROOF. We shall prove the theorem for local recursiveness; modification for
recursiveness is obvious.

Suppose that x &€ X is a locally recursive point in % and let
A={tix,...,t,x}€2% . Let O be a neighbourhood of 4 in 2¥ and
note that, without loss of generality, we may assume that
O =<U,,...,U,> such that y,x€ U; for all i€{l,...,n} and
U =U; it UNU;#* @ (e, repetition in the U;’s is allowed!).
Choose V, €V, with ,V,CU; andlet V:= {V.|i€{l,...,n}}.
As x is a locally recursive point, there isan H €& and a W€V, with
HW CV . Hence

HLW =tHW CLV CLV,CU,
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and so
H<uW,... ,t, W>C<U,,...,U,>.

Clearly, <t,W,...,t, W> isa neighbourhood of A4 . O

2.3. COROLLARY. Let T be an abelian group and let X be the orbit closure
of a (locally) recursive point. Then 2* has a dense set of (locally) recur-
sive points.

PROOF. By 2.2, it is sufficient to prove that
(A €2 |ACTx with |4]| <R}

is dense in 2¥ . But this follows immediately from the fact that 7x is dense
in X , because for every basic open set <U,,...,U,> in 2% we have
UNTx # @ for i€{l,...,n}. O

2.4. REMARK.
a) If (x\,....x,)EX" s a (locally) recursive point in X" then
(x1,...,x,) isa(locally) recursive point in 2*.
b) If X" has a dense set of (locally) recursive points for all n €N,
then (2% has a dense set of (locally) recursive points for all
neN.

PROOF. Follows immediately from 1.4.. Ll

Let @ be the collection of (left) syndetic subsets of 7 . Then the
corresponding notion of recursiveness is called almost periodicity.

2.5. REMARK. Let X be a ng. Then (x,,...,x,)EX" is an almost
periodic point in X' iff {x,,....,x,} is an almost periodic point in
2%,

PROOF. Suppose A = {x,,...,x,} is an almost periodic point in 2% .

Then there is a minimal left ideal K in Sy and an idempotent u € J(K)
such that wod = A . As A s finite, 4 —uoAd —uAd ; so x; =ux; for
all ie{1,...,n}. Hence, (xy,...,x,)=u(x),...,x,) and the point
(x1,....x,) is almost periodic in %" . The other way around is contained
in 2.4.a. O
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2.6. THEOREM. X is a distal ng iff every finite subset of X is an almost
periodic point in 2% .

PROOF.

"If”: Let x and y in X .Then {x,y} is an almost periodic point
in 2% . Suppose x %y and let U and V be open neighbourhoods of
x and y in X suchthat UXVNAy =2 . As <U,V> is a neigh-
bourhood of {x,y} in 2%, we can find an HE® with
H {x,y}C<U,V>. But then H. (x,y)CUXVUVXU and so
clyx x(H(x,p))CUXVUVXU; hence, clyxy(H(x,y))NAy =@ .
Let K be a compact subset of 77 with KH =T . Then

K.clyx x(H(x,y)) =clyx x(KH(x,y)) =T(x.,p)

and clearly K. clyyx y(H(x,y))NAy = @ ,s0 x and y are distal.

"Only if”: Suppose % is distal. Let 4 ={x,,...,x,}CX,
then (x,...,x,)E X" . As X" is distal, it is pointwise almost periodic
(I.1.23.a). Hence (x,, ..., x,) 1is almost periodic in %" and so by 2.4.a,
A is an almost periodic point in 2% . O

27. THEOREM. Let X be a ttg. The following statements are equivalent:
a) X is uniformly almost periodic;
b) 2% is uniformly almost periodic;
¢) 2% is pointwise almost periodic.

PROOF. (See also [Ko 75]) By 2.1.a, a and b are equivalent. As c follows
from b , we only have to prove that c = a . By 2.1.b, % is pointwise locally
almost periodic, and by 2.6., % is distal. So from I.1.18. it follows that %
is uniformly almost periodic. O

2.8. REMARK. Let X be a distal minimal ttg which is not almost periodic.
Then for every x € X there is a neighbourhood U of x such that no
closed neighbourhood V of x with V C U is an almost periodic point
in 2%.

PROOF. (WU) Suppose that there is a x € X such that for every neighbour-
hood U of x there is a closed neighbourhood V of x with VCU
which is an almost periodic point in 2% . Then that x is a locally almost
periodic point in % . For let U be an open neighbourhood of x and let
V' be a closed neighbourhood of x with V' C U which is almost periodic
in 2% . Then ¥V € <U> so there is a syndetic subset H of T such that
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hVE <U> forall h€H . Hence HV°CHV =HVCU . As X is
minimal and X contains a locally almost periodic point, % is pointwise
locally almost periodic (I.1.11.a). But then, as % is distal, % must be uni-
formly almost periodic (I.1.18.), which contradicts the assumption. O

11.3. QUASIFACTORS

Minimal subttgs of the hyper ttgs (quasifactors) are studied in this sec-
tion. We state some easy facts and we introduce a kind of relativization
of hyper ttgs (25} ). Especially the relation between an almost periodic
homomorphism ¢ and the minimal subttgs of 2;,‘ will be considered.
We end this section with some technicalities on the circle operation and
an observation on the points of openness of a homomorphism of minimal
ttgs.

Let %X be a ttg. A quasifactor of % is a minimal subttg of 2% . There are
several obvious quasifactors. For instance the trivial ttg is a quasifactor of
every ttg, it is the quasifactor generated by the phase space of the ttg. Also
the minimal subttgs of X" (n €N) are quasifactors of %X (cf. 2.5.).

Let Z be a quasifactor of % . Then € is the orbit closure of some almost
periodic point 4 € 2¥ sie, T=9%(4,%) where

F(A,X):={pod |pEM)

and we say that & is generated by A . Note that we can choose 4 €Z
arbitrarily.

Remark that 2%(4,%) is well defined only if A4 €2* is almost periodic;
otherwise 2%(4,%) depends on the choice of M in Sy .

3.1. EXAMPLE. Consider example 1.4.7.((i) and (ii)), the twofold covering of
the proximal circle.
a) The quasifactors of (this specific) X are just 2F(X,%X) (= {*})
and 25({x},%) (=%).
b) The quasifactors of % are {*x},%,25({0,%2},%Y) (=X) and
25([0,%2],%) (= %) .
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PROOF.

a) Let Z be a nontrivial quasifactor  of X (ie.,
Z+# {x} and £ X ). Then there is an 4 €Z and an € with
0<e<1 such that 4 C[0,e]. Applying b ( xm x?) infinitely many times
shows that {0}€ T4 . Hence = 2%({x}.%).

b) Clearly, the subttgs of 2% mentioned are quasifactors of % . To
show that these are the only ones, the same argument as in a is used. O

3.2. There can be many quasifactors of a ttg X . For instance, if % is
uniformly almost periodic then every closed subset of X generates a quasi-
factor (2.7.). If X" has a dense subset of almost periodic points for every
n €N, then there is a dense set of points in 2% that generate quasifactors
(1.4. and 2.5.). Note that this occurs if % is minimal and incontractible
(IT1.1.9.).

3.3. REMARK. Let ¢:X—%Y be a homomorphism of ttgs.

a) If L=99(A,%) is a quasifactor of X, then 2°(Z] = 2F($[A],%)
is a quasifactor of %. 2%%| is trivial iff ¢[A]=7Y for some
(hence all) A € Z .

b) If W=2F(B,%Y) is a quasifactor of %Y, with B C ¢[X] then there
exists a quasifactor W of X such thar 2°[UW] = A .

c) If ¢ is open and surjective then every quasifactor of %Y s
homeomorphic to a quasifactor of X .

PROOF.

a) Follows from the continuity of 2¢.

b) Define U := 2% (uo¢[B],X), then 2%(uo¢p[B])=uoB hence
29[ = U .

¢) If ¢ is open then ¢,q:2%—2% is a topological embedding. 0

Let ¢:X—% be a homomorphism of ttgs. Then define

2):=2¢Y], ie, 2f={4€2¥ |¢[Ad]=y for some yEY}.

It is easy to check that 2 is closed and invariant (so 2% is a ttg) and that
X is embedded in 2% .

The relative version of 1.4. would be: R} is embedded in 2J for every
n €N ; where

Ry:={(x1,....%,)EX" |d(x))= "+ =¢(x,)}.
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It is readily shown that | {R} | n €N} is densely embedded in 2 .

The following theorem is a straightforward generalization (relativization) of
1.11. and 2.5.. We leave the proof (which is an obvious modification of that
in the absolute case) for the reader.

34. THEOREM. Let ¢:X—%Y be a homomorphism of tigs, and let
¢:=2¢|2X:23{—>"y. If for all n €N, RY has a dense subset of
¢

almost periodic points (is ergodic), then R, has a dense subset of almost
periodic points (is ergodic) for all n €N .

Consequently, if for all n €N, Rj has a dense subset of almost
periodic points (is ergodic), then 2, as a factor of R} , has a dense sub-
set of almost periodic points (is ergodic). a

3.5. THEOREM. Let ¢:X—%Y be a surjective homomorphism of ttgs. Then

the following statements are equivalent:

a) ¢:X—%Y is almost periodic;

b) 2°:2%X 5% is almost periodic.

If %X is minimal then a and b are equivalent to

c) 2% 2? — %Y s distal;

d) 2;% is pointwise almost periodic.
PROOF. Equivalence of a and b is a straightforward generalization of 2.7..
Suppose X is minimal, then the implications b = ¢ and ¢ = d are obvious.

d=a ([Sh76] 1.4 If 2;;‘ is pointwise almost periodic then, clearly,
¢ is distal. By I.1.20.a, it is sufficient to prove that Q4 =Ay . So let
(x1,x)EQyC R, and let u €J,(=Jx); then, by 1.1.23.b, we have
(X1,X9) =u(xy,x2)€E uQ; . By 144, we can find nets {t;}, , and {s;},
in 7 and elements x5 € ¢ ¢(x))=ud"$(x;) in such a way that
tu—u, siu—u, ti(x,,x5)—>(x;,x;) and s;(x;,x5)—>(x;,x;). Let
x3=limx} € ¢“¢(x,). Then, for each i, A= {xh |i=ig}U{x3} is
closed and 4, €27 . As 2 is pointwise almost periodic, there is a v € J

with v oA,-0 = A,~0 . But A T d(x)) = udp¢(x)) (1.2.12.), so we have

Aj,=ud; Cu(uod;)=uv(uod;)Cu(vo(uod;))=u(od,;)=ud; .
As f;xy >x; we have x;Euocd,; and similarly x;Euocd; . By the

choice of u , xy=ux,, x,=ux, so {x1,x2}Cu(uod,;)=A,; . Hence

(x1.22)C M {Ay, |io} = {x3) , i x1=x,. O
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3.6. THEOREM. Let ¢:X—%Y be a homomorphism of tigs with % minimal.
Then the following statements are equivalent:
a) ¢:X—>%Y is distal;
b) every finite A €2 is an almost periodic point in 2% ;
c) X is pointwise almost periodic and 2°:Z—% s distal for every
quasifactor & of X with Z C 2} .

PROOF. The equivalence of a and b is an obvious modification of 2.6..
c=alet (x;,x;)€ERy. Suppose that x; and x, are proximal;
then Tx,N 772;& Z . As X is pointwise almost periodic, 77, and TTZ
are minimal. So 7712 fz and in particular x, € 7T| Now observe
that the minimal subttg <T, Tx,> of % can be considered as a quasi-
factor of %, namely <T,KTx,> = 9%({x}.%). By assumption,
2°: 99 ({x,},%)—>9%Y is distal, so ¢|TX—[: <T,Tx;,>->% is distal. Since

x,E Tx, and ¢(x;) = ¢(xy) it follows that x, and x, are distal.

a = ¢ ([AG 77] lemma II.1.) Note that from the assumption it follows
that % is pointwise almost periodic (I.1.23.a) and that for all y €Y ,
uelJ, we have ¢“(y)=u¢(y) (1.2.12)). Let A4 and B be almost
periodic points in 2;% and suppose that they form a proximal pair while
2%4)=2%B)={y} so ¢[A]=¢[B]=y . By 1.2.7. there is a minimal
left ideal / in S7 such that poA4 =poB forall p €1 . In addition, let
u,veJ() be such that 4 =uoA and B =voB ; and note that
u,v€J,(I). By the distality of ¢ we have 4 =v4 so

A=vACvoA =voB =B .

Similarly BC A , hence 4 =B . O

3.7. COROLLARY. Let X be a minimal ttg. Then X is uniformly almost
periodic (distal) iff every quasifactor of X is uniformly almost periodic
(distal).

PROOF. Cf. 3.5. (3.6.). a

3.8. REMARK. If % is minimal and ¢:X—%Y is distal, then every orbit clo-
sure in  2;% contains a unique minimal subset. In particular, if
yi=2%, ¥ then P is an equivalence relation.

PROOF. Let 4 €2} andlet / and K be minimal left ideals in Sr . Let
y =¢[4] and let wu€J,(I) and vEJ(K) with wu~v, hence
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vEJ,(K). As ¢ is adistal map, v¢~(y)=¢"(y);so v4 =4 and
UoA =uovA CuvoA =voA (u~v).

Similarly, voA CuoA and so voA =uoA . Hence the minimal sets
{poA|p€Il} and {poA |p€EK)} are the same. Since every minimal
subset of the orbit closure of 4 in 2 is of the form {poA |p€1’} for
some minimal left ideal 7/’ in Sz , this proves the first statement.

Let ¢:= 2"’|2§: 2, >% and suppose (4,B)e P, and (B,C)EP,. Put

y =yA)=¢B)=¢(C),andlet I and K be the minimal left ideals in
St such that pod =poB for all p€l and poB =poC for all
pEK . Let ueJ,(I) and v€J,(K) with u ~v . Then, by the argu-
ment above, uoAd =voA , uoB =voB and uoC =voC s0

oA =uoB =voB =voC =uoC.
u u 4 v u D

Let ¢:X—% be a distal homomorphism of ttgs and let % be minimal.
Let Reg(¢): X' —>% be the regularizer of ¢ (recall the definition just below

1.2.15.); i.e., X’ is the orbit closure of z in X'*" 0 for some

=), e g

x o)
fixed y €Y . Then z is an almost periodic point (note that, by distality of
¢, up=(y)=¢"(y) forall ueJ, ) so X is minimal and Reg(¢p) is
defined by Reg(¢)(pz) =py for all pEM . Note that if Y= {*}, then

X =E(%X).

3.9. REMARK. With notation as above (so ¢ is distal!):
a) Reg(¢) is (well defined and) distal. ;
b) For aEM wehave az =z iff ax =x forall x €$~(y).
) Let A€é"(y), u€l, and acuM . Then az =:z implies
UuoA =aoA .

PROOF. a and b are obvious.
c)Let A C¢(y) and az =z then ax =x for all x €E¢(y) so
aA =A . Then A =aA Cao-A , hence

UoACuo(@aoA)=uaoA =aoA .
Also a 'x =x forall x €E¢(y), sosimilarly uo4d Ca 'o4 and

aoA =ao(qu)gao(a*loA):aa_]oA =uoA .
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3.10. THEOREM. Let ¢:X—Y be a distal homomorphism of tgs and let %
be minimal. Then for every quasifactor ¥ of X which is a subtig of 2,*
the map 2°:Z—% is a factor of Reg(¢). le., there is a homomorphism

0: X —Z with Reg(¢p)=2%00.
In case %Y = {*} this means that every quasifactor of X is a factor of
E(%) .

PROOF. Let y €Y andlet z € X' be as in the discussion just before 3.9..
Suppose that € is a quasifactor of X with ZC2). Let 4 €Z with
2%(4)=y and define 6:X' ->Z by O(pz)=poA for all peM . It
suffices to prove that 6 is well defined. Let p and ¢ in M be such that
pz =gz . Then wupz =ugz and py =gy . By 3.9.c, it follows readily that
upoA =ugoA ; hence poAd and goA are proximal. As

2pod)=py =qy =2%goA),

poA and ¢goA aredistal (3.6.c), hence poAd =¢goA . !

The following facts concerning the “circle-arithmetics” are collected for the
convenience of the reader and the author.

3.11. REMARK. Let X be a minimal ttg. Then
a) u(oA)=u(oA) for ACX and for every u,velJ ;
b) wuouAd =uovA for ACX and forevery u,veJ ;
¢) poA =wopA for ACvX ,vEJ and weJ, .
If ¢:KX—%Y is a homomorphism of minimal tgs, y€Y K pEM,
wedJ, and u,v€J then
d) pove ™ (y)=woud (py),
€) podT(y)=wod (py).
PROOF. a) As u —uv and v =vu (1.2.2.b),
U(UoA)=uw(uoA)Cu(vo(uoA)) =u(vuoA)=u(voAd)

and also u(voA)=uu(voA)Cu(uo(woAd))=u(uvoA)=u(uoA).
b) As u =uv and v =vu we have

UoUA =uouvA Cuo(uovA)=uovA
and uovA =uovuA CuovouAd =uvouAd =uouAd .
¢) Since A C vX , it follows that 4 =vA4 . So

poA =povA =powp 'pACpwp 'opd

and, as w €J, (which means that w €J with wp =p ),
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PVP_l = Wpr~1 = wpwp" =w ; hence poA CwopA .
Conversely, wopA Cwo(poA)=wpod =poA .

d)Let ¢,y,p,u,vandw be as in the assumption. Then by c,
poveé (y)=wopod(y), and as p¢(y)Cwo(py) it follows that
Peve (P)Cwowd (py)=woud (py) (b).
Conversely, u = upwp ™', so

woud(py) =woupyp ' (py)C wup ovp ¢ (py)C
Cwpove (y)=pove (y).
e) Clearly, as p o ¢~ (y)C ¢ (py) . we have
Pod () =wopod (y)Cwod (py).

Conversely, for u’€J, we have wod (py)=wpu'p 'o¢ (py) and
u'p Lo (py)COT(y) . So wpu'p lodT(py)CwpodT(y)=pod(y). O

We end this section with some observations on the points of openness for a
homomorphism ¢: %X — % of minimal ttgs.

3.12. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs and let
YEY . Then {xE¢~(y)|popeninx} = ({uodp=(y)|u€el,}.

PROOF. Note that ¢ is open in x iff for every net {y;}, in Ty converg-
ing to y there is a net {x;}; in X converging to x with ¢(x;) =y,
(Ty is densein Y !). Suppose ¢ isopenin x €E¢~(y) andlet ueEJ, .
Let {t;}; beanetin T with ;, >u . Then t,y —y . So by openness of
¢ in x , there are x; in X such that 7,x; >x and ¢(x;)=y . This
shows that x =lims,x; Euo¢p™(y) (1.9.a).

Conversely, let x € (M {uo¢p~(y)|u€J,}. Let {fy}, be anetin Ty
converging to y andlet ¥ €J, . Then {fu}; convergesto pE M (fora
suitable subnet). Let w €J be such that wp =p ; then weJ, , for

wpy =py =limtuy =limty =y .
By assumption, x €Ewo¢~(y) and, by 3.11.¢,
Wod () =wod (py) =wpood(y),

SO XEwWpod (y)=pood~(y). As the net {r,u}, converges to p , there
are x; €E¢“(y) such that x =limzux; . The arbitrary choice of the net
{t;y }; shows that ¢ isopenin x . O
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3.13. COROLLARY. Let ¢:X—%Y be a homomorphism of minimal ttgs.
a) If x is a ¢-distal point in X then ¢ is openin x .
b) If ¢ is distal then ¢ is open.

PROOF.
a) If x is a ¢-distal point then, by 1.2.10., J, =J4). So for every
uEJyyy, x=ux; hence xEu¢p ¢(x)Cuod~¢(x) for every

u €Jg4) . Butthen, by 3.12., ¢ isopenin x .
b) If ¢ is distal then every x € X is a ¢-distal point. By a , ¢ is
open in every x € X ; so ¢ is open. i

I1.4. REMARKS

4.1. The notion of hyper ttg occurs naturally in topological dynamics. One
could imagine that the action of 7T on closed subsets of X yields some
extra information about ?X . In 1970 W.A. VEECH used a special kind of
quasifactor ([V 70]) and R.ELLIS ([E 73]) and D.C. MCMAHON and T.S. WU
(IMW 74]) mention the action of 7 on 2¥ more or less explicitly. In
[G 75.1], [G 74] and [G 76] S. GLASNER studies this action in more detail.
However, all occurrences of hyper ttgs deal with hyper ttgs for discrete topo-
logical groups. S.C. KOO ([Ko 75]) was the first (and only one) to publish a
proof of the fact that the topology of T didn’t destroy the existence of
hyper ttgs. His proof uses the uniform structure; we gave a proof (1.6.) using
the Vietoris topology, which is “easier to handle”.

The remainder of section IL.1. is devoted to the question: what do we know if
2% is ergodic. As far as we know no related results were published until

now.

QUESTIONS

a) If % is minimal and proximal then % is weakly mixing (cf. [G 76]
I1.2.2. and, in here: VII.2.14.); what can be said about the ergodicity of
%" for n=3, and what about 2* ? (Note that in general they are
not ergodic!)
Note that ”“with respect to” this question the notions of totally proximal
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[ 2% has exactly two quasifactors ] and extremally proximal [ 2* has
exactly two quasifactors of which {%} is isolated ] were introduced in
[G 74].

b) Is it possible to extend theorem 1.18. to a collection of statements in
which not just a particular minimal left ideal can be chosen, but in
which any minimal left ideal suffices?

4.2. In section II.2. we state some generalities on recursiveness in hyper ttgs.
The main purpose was to give a hyperspace proof of 2.7. (see also 3.5.).
Here we follow [Ko 75], but the proofs are shorter and easier (e.g., 2.5. and
2.6. compared to [Ko 75] theorem 4.2. and corollary 4.1.; and note that 2.6. is
almost evident if we use the idempotents in S7 ). Theorem 2.2. slightly gen-
eralizes [Ko 75] theorem 2.2.. The result in 2.8. is due to T.S. WU (private
communication).

QUESTIONS

a) Can we weaken the condition on 7 in 2.2. and 2.3.7

b) By l.4. and 2.5. we know that 2% has a dense set of almost periodic
points if X" has a dense subset of almost periodic points for all
n € N . Under what extra conditions does the inverse implication hold?

The following example shows that extra conditions in the question b above
are needed.

EXAMPLE: (S. GLASNER)

Let X = {0,1}* with the usual product topology. Let o be the shift, i.e.,
(6(x))y =x,4, for all n €Z ; and define 7y: X - X by ty(x)[n]=x[n]
for all ne€Z\ {1}, to(x)[11=x[1] if x[0]=1, to(x)1]=1—x[1] if
x[0]=0; and define 7,: X - X by #(x)n]=x[n] forall neZ\ {1},
Lo =x[1] if x[0]=0, r,(x)[1]=1—x[1] if x[0]=1.

Let T be the group generated by 0,7y and ¢;. Then X=<T.,X > is
minimal and proximal, so %" does not have a dense subset of almost
periodic points for all n €N with n=2. But 2% has a dense subset of
almost periodic points! For:

Let n€N and BE {0,1}> ! . Define

Ap:={xE€X | x[m 10" —n , m 10" +n]=pB forall meN}.

Then one can show that A% is an almost periodic point in 2% . Moreover,
choose Bi,....B; in {01} then J{Ap |jE(L...,[}} isan
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almost periodic point in 2% . But as 2% has a dense set of points of this

form, it follows that 2% ha a dense subset of almost periodic points.

4.3. In section II.3. we describe some facts about quasifactors and relativ-
ized hyperspaces. Remark 3.8. is based upon a note of T.S. WU (private com-
munication) and it generalizes [G 79] 4.3.. Theorem 3.10. is a relativized ver-
sion of [G 75.1] 2.5.; but the proof is different from the (rather unconvincing)
one there.

QUESTIONS

a) How do properties of ¢ reflect in properties of 2® ? In particular, what
can be said about quasifactors of point distal or proximal ttgs? (cf. 3.7.).

b) With respect to 3.8.: is P, closed?

c) If every quasifactor of % is a factor of E(%X), what does that imply
for X ?
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111

&-TOPOLOGIES, A TOOL IN STRUCTURE THEORY

1. RIC extensions

2. P¥-topologies

3. the equicontinuous structure relation
4. PI extensions

5. remarks

One of the most important issues in the structure theory of minimal ttgs is to
determine the almost periodic factors of a given homomorphism ¢ , i.e., to
understand E, . In general we do not know very much about E,, but
there are conditions to be laid upon ¢ that enable us to describe E, pre-
cisely. One of them is the existence of a relatively invariant measure, which
is treated in chapter VII, the other is ¢ being a RIC extension (Bronstein
condition already suffices).

In 1973 1.U. BRONSTEIN proved that for an open Bc extension ¢ the region-
ally proximal relation is an equivalence relation ([B 73], in Russian, so not
really recognized at that time). The method was in a certain sense elemen-
tary: he just uses properties of uniform structures and syndetic sets.

In 1977 W.A. VEECH published a proof of that fact (without openness) heavily
depending on the construction of weak topologies on w-invariant parts of
fibers (which was initiated by H. FURSTENBERG in [F 63]).

It turns out that these weak topologies (¥-topologies) are perfectly fit to
describe the regionally proximal relation in JT; :

We shall deal with RIC extensions in section 1., and among others we shall
see that every map is a RIC extension up to proximality. In section 2. we
describe the ¥-topologies and we use them in section 3. to understand E,
for a Bc extension ¢ . Section 4. deals with PI extensions; there we apply
the foregoing to the structure theory.
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In this chapter no substantially new results can be found. It is more or less a
recollection of what is known in this part of the theory, arranged in a way
suitable for our purposes in other chapters, and some times slightly general-
ized (e.g. 3.10.a).

II1.1. RIC EXTENSIONS

In the structure theory of minimal ttgs, RIC extensions play an impor-
tant role. The reason will be clear in the sections II1.3. and II1.4. (also
see VIIL.1.4.). In short it comes down to the following observations:
Every map ¢:X—% is RIC up to proximal extensions (1.11.), and
RIC extensions behave nicely with respect to almost periodic factors
(3.9.).

In this section we shall have a close look at RIC extensions.

Remember that an extension of minimal ttgs ¢:X—% is called relatively
incontractible (RIC) if ¢ Ly for every proximal extension :Z—%Y of
minimal ttgs (I. below 3.9.). For example a distal extension is RIC.

1.1.  The following observation with respect to Ellis groups is useful.

Let ¥ be a minimal ttg, u€J and y =uy €Y . Let F =®&®,y) be
the Ellis group of % with respect to the point y (in G =uM ). Then
u(uoF)=F . The proof is as follows:

As Fy =y ,and as p,:prpy:IM—%Y is continuous, we have

(uoF)y :(uol-_')y :uofy :uof)j:uoy =up =y .

So u(moF)y =uy =y, which shows that wu(uoF)CF . As, clearly,
F =uF = uuF Cu(uoF), it follows that u(uoF)=F .

1.2. LEMMA. Let % be a minimal ttg, u€J and y =uy . Let
F =®(%,y) be the Ellis group of % with respect to y (in G ). Then
& (o F,M),uocF)=F and k:2uoF ,M)—>%Y is a proximal

homomorphism of minimal ttgs, where « is defined by k(p o F)=py for
all peM .

PROOF. Cf. [G 76] IX.3.3.. O
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We shall give several descriptions of relative incontractibility in 1.3., 1.5. and
1.9.. In fact these are characterizations that can be used to define RIC exten-
sions; indeed, 1.3.b and 1.3.c occur as such in the literature (cf. [G 76] and
[V 77]). Our definition of RIC extensions, or better our choice of the
equivalent statement to be definition is based on personal taste rather than
theoretical considerations.

1.3. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs. Let
X0EX, yo=¢(xo) and u€l, ; let F =, yo) be the Ellis
group of %Y with respect to y, in G . Then the following statements
are equivalent:

a) ¢ is a RIC extension;

b) ¢ (pyo) =poFxqy forevery pEM ;
¢) ¢ (y)=vove (y) forevery yEY and vEJ, .

PROOF. The equivalence of a and b may be deduced from [G 76] X.1.3.. The
equivalence of b and c is an exercise for the reader (use 11.3.11.). O

1.4. COROLLARY. A RIC extension ¢:X— %Y of minimal tigs is open.

PROOF. We shall show that ¢,4: Y —2% is a continuous map; hence, by
I1.1.3.d, ¢ is an open map. As follows:

By 1.3.b, for all p €M we have ¢ (pyo) =po Fx,. Hence the mapping
£&:M 2% | defined by pr®ad(pyo), 1s  continuous. Since
N:pepye: M —Y is a quotient map and & = ¢,407, it follows that ¢4 is
continuous. 0

In the literature the only proof of the next theorem is not quite correct so we
provide the (easy) proof here.

1.5. THEOREM. Let ¢:X—% be a homomorphism of minimal ttgs. Then
the following statements are equivalent:
a) ¢ is a RIC extension;
b) for every homomorphism y:Z—% with Z =JZ we have that
(p.) satisfies the generalized Bronstein condition,
c) for every homomorphism :Z—% of minimal ttgs, we have that
(9,¥) satisfies the generalized Bronstein condition.

PROOF.
a=bLlet W be an open setin Ry,. As ¢ is open and Z =JZ
it follows from 1.3.7.(iv) that there are open sets U and V in X and Z
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such that @ A UXVNRGCW and ¢[U]=¢[V]. Let zEV be an
almost periodic point and let v €J, , then for y =y(z) we have v E€J,
and, by 13, ¢“(y)=vove~(y). Let x€&€U be such that
¢(x)=y(z)=y ,then xEvove~(y). Let {#,}; beanetin T be such
that v =limz; and let x;€vé¢~(y) with x =limsx; . Then
(xi,z)=v(x;,z) and (x;,z2)ERg4y. As (x,z)=lims(x;,z) and as
W is a neighbourhood of (x,z) in Ry, it follows that #(x; ,z)E W
eventually, and so that W contains an almost periodic point. So R,y has
a dense subset of almost periodic points, hence (¢,)) satisfies gBc.

b = ¢ Trivial.

c=alet y:Z—>%Y be a proximal homomorphism of minimal ttgs.
Then, by 1.34., R4y has a unique minimal subttg. By assumption ¢, R,
has a dense subset of almost periodic points, hence R,y is minimal and so
¢ L. As ¢ was arbitrary, ¢ is a RIC extension. O

1.6. COROLLARY. Let ¢:X—%Y be a RIC extension of minimal tigs and let
V:Z—>%Y be a homomorphism of minimal tigs. Let xo€ X , u€lJ, ,
zo=uzgE Y (xg) andlet H , F and K be the Ellis groups of %X,
%Y and Z with respect to xo, ¢(x¢) and zo in G . Then ¢ Ly iff
HF =K .

PROOF. By 1.5.c, we know that R,, has a dense subset of almost periodic
points. Hence R, is minimal iff it has a unique minimal subset. This is,
by 1.3.2,, equivalent to HF =K . O

We say that a homomorphism ¢: X — % satisfies the n-fold Bronstein condi-
tion for certain n €N if

Rg:: {(xls RO ,X,,)EX" '(b(xl): T :¢(xn)}

has a dense subset of almost periodic points (notation: ¢ is n-Bc).

1.7. COROLLARY. If ¢:X—% is a RIC extension of minimal ttgs, then ¢
satisfies the n-fold Bronstein condition for every n € N .

PROOF. For n =2 the statement follows from 1.5.c.

Suppose that the statement is true for some k €N with k=2.So R}
has a dense subset of almost periodic points. Define ¢:®;—% by
Y(xy,...,x¢)=¢(x;). Then, by 1.5.b, Ry, has a dense subset of almost
periodic points. Clearly R4, = R5™' so the statement is true for & + 1,
which proves the corollary. 0
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1.8. In particular, it follows from 1.5. and 1.4. that every RIC extension is
an open Bc extension. It is still an unsolved question whether or not an open
Bc extension is RIC extension. Some partial answers can be given:

(i) If ¢ is a regular homomorphism of minimal ttgs which is open and
which satisfies the Bronstein condition, then ¢ is a RIC extension
(V.3.7.).

(i1) Theorem 1.9. below.

1.9. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs. Then
¢ is a RIC extension iff ¢ is an open map that satisfies n-Bc for every
neN.

PROOF. By 1.4. and 1.7. we only have to prove the ”if”-part. So suppose ¢
is n-Bc for every n €N . First we show that for arbitrary y € Y and
u€J we have

U{{t{x1,...,x,}|tET,nEN, x;, Eu¢p=(y)} is dense in 2} =

(for 2% see the discussion just after 11.3.3.).

Let U be a basic open set in 24’,‘{ ;le,let meN andlet Uy, ..., U,
be open sets in X such that U:=<U,,...,U,>N2 5 @ (seeILl.).
Let A€U .Then ANU, # @ for i€{l,...,m};say x, €ANVU; .
Hence

(x'],...,x'm)E UIX XUman 5

so U;X --- XU,NRY is anonempty open set in R7 . As ¢ is m-Bc,
there is an almost periodic point

V(X o v o s Xy Y =X 155 505X ) E U LXK w0¢ X U, ARY ,

(for some veEJ ). Let ¢(x;) =y’ and let p EvM with y’=py . Then
up_'x,- Eu¢p(y) forevery i€ (1, ...,m}, and, clearly, we have

(xl,...,xm):vpup_'(xl,...,x,,,).
Let {;}; beanetin T with 1, »yp then for some 7; we have
tiup Y(xy, .., xp)EUX -+ XU, NRY
for every i=1i,. For those i,
L {upilxl,...,up_'xm}E<U,,...,U,,,>02¢f(,

and =& holds.
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If yEY , then ¢~(y)E2y; so by =&, there is a net {1}, in T and
there are {x),..., x5 } € 28 with x{€u¢p=(y) for ke(l, ..., n;}
such that 7 {x{,...,x; }—>¢7(y) in 2. Let, for a suitable subnet,

p =limtu , then
¢~ (y)=limy {x}, ... Xy JClimyug(y) =
=(limzu)oud™(y)=poud(y).
As pEM ,thereisa vEJ with vyp =p . Then veEJ, ; for
Y=ol 0IColpous™ () =podlusT() =pou =py
so y =py and vy =wpy =py =y . ByIL3.11.d, we know
O"()Cpoud™(y) =voveT(y).

As vwpo () =veo~(y) we have ¢~ (y)Cvove (y). And so it follows that
¢(y)=voveT(y); for, obviously, vove=(y)C ¢ (y) .

We have shown that there exists a vE€J, with ¢7(y)=vove (y). In
order to conclude that ¢ 1is a RIC extension we have to know that
¢ (y)=wowo™(y) forevery weJ, . As ¢ is open, ¢,q is continuous
so ¢7(y) =wo¢(y) forevery weJ, . Hence

PT(V)=wodT(y) =wo(Vove (y)) =wvoveT(y) =woveT(y),

and , by IL3.11b, it follows that ¢“(y) =wove (y)=wowe (y) for
every w €J, , which proves the theorem. O

1.10. REMARK.
a) A factor of a RIC extension is a RIC extension.
b)  The composition of two RIC extensions is a RIC extension.
c) The inverse limit of RIC extensions is a RIC extension.

PROOF.

a) Immediate from the definition of RIC extensions and from [.3.1.a.

b) Let ¢:X—%Y and ¢:Y—>Z be RIC extensions. For xo€ X and
ueld, let yo=¢(xo), zo=¥(o) and let F and K be the Ells

groups of ¥ and € with respect to yo and z; in G (=uM). Then
(Yod) (pzo) = ¢ [Y (pzo)] = ¢ [p o Kyo] .
and as ¢ is open, we have ¢ [p o Kyg] = p oo~ [Ky(] ., hence
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(o) (pzo) =p o [Kyol =pol U{koFxo| k EK]}].
By I1.3.11.c ko Fxog=uokFxq, so
Uf{koFxg|kEK}CuoKFxo=uoKxg,
for by 1.2.11,, FC K . But then
(Yod) (pzg)CpouoKxg=poKxg;

clearly poKxoC (Yodp) (pzo), S0 (Yod) (pzg) =poKxy and yYo¢ is a
RIC extension by 1.3..
¢) Follows immediately from b, I1.3.1.b and the definition of RIC exten-

sions. O

Note that the converse statement for b is not true. For, if 7 is abelian
every minimal ttg for 7 is incontractible (note that 7 does not admit non-
trivial proximal ttgs), but there do exist nontrivial proximal extensions
between minimal ttgs. [E.g., by IV.2.8., & is a nontrivial (highly) proximal
extension of & for every discrete topological group 7 with [bT |= N, ]

Now that we have some basical knowledge about RIC extensions, we shall
discuss one of the phenomena that make them interesting, i.e., the fact that
every homomorphism of minimal ttgs can be related to a RIC extension in a
canonical way.

Let ¢:X—% be a homomorphism of minimal ttgs and fix wu€J ,
xo=uxgE X and yo=¢(xg). Let F =®&(%Y,yy) be the Ellis group of
%Y with respect to y, in G . We define a (shadow) diagram EGS(¢) for ¢
as follows.

X > X
¢'l lﬁb
oy’ - > @

Define a quasifactor % of X by Y ={poFxog|pEM} and let
X' ={(x,A)|xEAEY'}) be a subset of XXY’'; o¢:X'>X and
¢’:X'—Y’ are the projections and 7:Y’'—Y is defined by

T(poFxp)=pyo.
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1.11. REMARK.
a) Y ={vove (y)|yeEY.vEJ, ) and 7:Y¥—>% is a proximal
homomorphism of minimal ttgs.
b) X' is a minimal ttg and o:X — X is a proximal extension.
¢) ¢ is a RIC extension.

PROOF.
a) [EGS 75] 5.2. (use I1.3.11. for the description of Y’ ).
b) [EGS 75] 5.6..
¢) [EGS 75] 5.9.1.. O

So our shadow diagram EGS(¢) is a commutative diagram consisting of
homomorphisms of minimal ttgs. It shows that every homomorphism of
minimal ttgs can be lifted to a RIC extension by means of proximal exten-
sions.

The diagram EGS(¢) is minimal in the following sense

¢II ¢I1

71//—7 Y \
(,yu = = >
1

. 5 X
\\‘\\.%’ /
¢ ¢
.
%y

Consider the diagram above with ¢”:X” —%” a RIC extension of minimal
ttgs and p:%Y”—%Y proximal. Then there are maps 7:%”—>% and
§E: X" —>X such that ¢’ 0§ =nog’ .

The proof of this fact is left as an exercise for the reader.

Thus, indeed, EGS(¢) is in a certain sense the minimal lifting of ¢ to a RIC
extension. Also we can construct a maximal lifting, but first we shall con-
struct the universal proximal extension of a minimal ttg using an EGS sha-
dow diagram (see also 1.2.14. and the remark just below that item).

1.12. Let % be a minimal ttg and let y:9M—% be a homomorphism of
minimal ttgs, say y(u)=y,; and let F be the Ellis group of % with
respect to yo in G . Construct EGS(y).
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M = K — X
AF) =Y . > 9

Then Y’ ' ={poFu|pEM}=QF (uoF9) (which will be denoted by

A(F)); and M = 9, for 9 1is the universal minimal ttg, so o is an
isomorphism. If we identify 9 with 9 via o, then it is clear that
Y:M—->%Y is given by y'(p)=poF . Note that this implies that
{poF |p €M} is a partitioning of M .

1.13. REMARK.
a) Every homomorphism :Z— A (F) is a RIC extension.
b) T:UA(F)—Y is the universal minimal proximal extension of % . In

particular, N(G) = Pr .

PROOF.

a) Let ¢:9M— A(F) be the map defined in 1.12., so Y (p)=poF
for peM . Let ¢:Z—-A(F) be a homomorphism of minimal ttgs. Let
zo=uzg€EZ be such that Y(zo)=uoF and define 6:M—>Z by
O(p)=pzy for every pEM . Then y =yob, so ¢ is a factor of ¥ .
Hence, by 1.10.a, ¢ is a RIC extension.

b) We know already that 7 is a proximal extension. Let ¢:X—% be
a proximal homomorphism of minimal ttgs. Construct EGS(¢) and consider
the next diagram.

A(F) — > 9

Note that ¢ is RIC and proximal; hence ¢’ is an isomorphism. By the
discussion just above 1.12., it follows from the facts that ¢ is RIC (1.13.a)
and 7 is proximal that there is a homomorphism 7:%(F)— % . But then
7 factorizes over ¢ , which shows that 7 is universal. O
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1.14. Let ¢:X—% be a homomorphism of minimal ttgs. Let u€&J ,
Xo=uxgE€E X , yo=¢(xg), H=08X,xp) and F = &%Y,yo). Then the
following shadow diagram A(¢) is the maximal lifting of ¢ to a RIC
extension.

A(H) 2 > X
¢:).l "
A (F) e —> Y

Note that AH)=2Q(uoH, M), o:AH)—>X is defined by
o(poH)=pxy and ¢": A(H)—A(F) is defined by ¢"(poH)=poF .

That ¢" is well defined follows from 1.1. and:

1.15. REMARK. Ler H and F be subgroups of G . Then H Cu(uoF) iff
the map poHwpoF :A(H)—A(F) is a well defined homomorphism
(which is RIC).

PROOF. Let poHwpoF define a homomorphism. As, by IL3.1l.c,

hoH =uoH for every h&€H , it follows that hoF =uoF and so

h€uoF for every h€H ; hence HCu(uoF). Let HCu(uoF);
then poH Cpou(uoF)CpoF for every p€&M . Suppose that
poH =qgoH , then pEpoH =goH CqoF . Choose a net {t}; in

T with 1, -¢q andlet f, € F besuch that p =lim¢ f; . Then

poF =(imt;fi)ouoF =limtj(uoF)=¢qoF

(I1.3.11.c). D
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I11.2. 5-TOPOLOGIES

The proof of the structure theorem for metric minimal distal ttgs as
presented in [F 63] by H. FURSTENBERG had an enormous impact on the
study of ttgs; may be it was even more important then the result itself.
The big contribution to topological dynamics in that proof is the tech-
nique of the F-topology, a weaker topology on the phase space X of a
minimal distal ttg X to make the elements of E (%) homeomorphisms
of X provided with the §-topology (compare 1.1.12.¢).

One can extend that technique to the construction of suitable (weak)
topologies on the “maximal distal parts” of the phase space X of a
minimal ttg % : Let u €J , then one can construct an F(X,u)
topology on uX which is weaker then the relative topology, but still
has nice properties.

In [E 67] R. ELLIS introduces a weakening of the topology on uX in a
different way, the 7-topology, which is beautifully characterized in
[EGS 75] using the circle operation. Also it is shown in [EGS 75] that the
two topologies introduced by H. FURSTENBERG and R. ELLIS are in fact
identical.

In this section we shall describe the Fj-topologies based on the 7-
topologies. We do not intend to give a complete exposition of the subject,
so most of the proofs will be omitted. For more details we refer to
[V 77]. [G 76], [EGS 75] and [VW 83].

We shall use almost the same notation as in [V 77].

Let T be an arbitrary topological group and fix a minimal left ideal 7/ in
Fix u€J({) and let VCT be a set such that u € intsrcler .

St .

define the open subset V(u) of T by:

2.1

V):={t €T | Eint, ((clg, V)N )} .

REMARK. With notation as above the following statements hold:
a) if ue int57cler then V(u)u)=V(u),

b) a base for the neighbourhoods of u in I is formed by the collection

{cls, V)NI |VCT,ue intSTclSTV, Vu)y="vy};

c) let x =ux be an almost periodic point in a ttg X and let
U€E, , then there exists an open subset V of T such that

ue intSTcler , Vu)=V and VxCU .

PROOF. For a and b see [V 77] page 811 or [VW 83]; ¢ follows immediately
fromb .

a
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Let % be a minimal ttg and let x€uX . If VCT is an open set such
that u €intg clg V' and V(u)=V ,and if U is a neighbourhood of x

in X (provided with its original CT, topology) then define
w,vi:=vlu=@u"'v|tevy.
Dencte by 9, := 9 the following collection of subsets of uX :

{lU.VINuX |UEY,, V(u)=V openin T with u Eintg clg V'} .

2.2. REMARK. The collection | J {9 |x €EuX} of subsets of uX forms a
base for a topology on uX , in which every N is a neighbourhood base
for x . This topology will be called the (%X .u)-topology on uX . 0

The above description of the F(%X,u)-topology is the one we shall use
mostly. Another description uses the circle operation.

Let X be a minimal ttg. Then define a closure operator on uX as follows:
For A CuX let

cly(A):=uoANuX =u(uoA)
(note that uoAd :=u oA ). It is not difficult to see that cly indeed is clo-

sure operator.

2.3. REMARK. The topology on uX generated by the closure operator clx is
Just the (X, u )-topology on uX . O

The generalized Furstenberg method to introduce the -topologies on uX is
as follows:

Let % be a minimal ttg and let ¥ be the set of continuous pseudometrics
on X . For o€ X define a T-invariant upper semi continuous real valued
map F,: XX X >R by

Fo(xy1,x7)=inf{o(tx,,txy) |t ET}
Then for every x € X and €>0 the set

U(x,0,€):={x"€EX | Fo(x,x’) <e}
is an open set in X .

2.4. REMARK. The collection {U(x,0,e)NuX |x EuX,0€Z,e>0} of
subsets of uX forms a base for the 3§(X,u)-topology on uX . O
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Almost everything studied in topological dynamics is essentially independent
of the topology of the phase group 7 . Only the existence of ttgs, or better
the joint continuity of actions does depend on it. So it will not be very
surprising that the (%, u)-topology on uX does not depend on the topol-
ogy of T ; as follows.

2.5. REMARK. Let %X be a minimal ttg for T and let 1 and K be
minimal left ideals in St and St respectively ( T, denotes the topo-
logical group T provided with the discrete topology). Then for every
ueJ(l) thereisa v €J(K) such that

(uX, (X, u)) = (X, F(X.v)).

PROOF. First note that the sets U(x,0,¢) do not depend on the topology of
T ,noron I, K or ueJ(l), veJ(K). So the remark is proven if for
every u €J(I) wecanfinda veJ(K) with vX =uX .

Let u€J({).As <T,,I > isa minimal ttg and as K is a minimal left
ideal in STJ there is, by 1.2.5.d, an idempotent v €J,(K) ; i.e., vu =u .

But then u«uX =vwuXCvX . On the other hand, if x’€vX then
ux'€EuX CvX ; so, by 1.2.8., x’ and ux’ are distal under 7, , hence
under 7 (distality does not depend on the topology of 7 ). By 1.2.7., x’
and wux’ are proximal under 7 , so ux’= x’. This shows that every point
in vX 1s u-invariant; i.e., vX C uX . J

In 2.2, 2.3. and 2.4. we gave three descriptions of the (X, u)-topology
each of which has its own (dis)-advantages. The three together give a lot of
nice properties. The easy proof of the following theorem is omitted.

2.6. THEOREM. Let X be a minimal ttg and let u €J . Then

a) (uX,3(X,u)) is a compact T\-space;

b) the map A,: (uX,F(X,u))—uX,¥(X,u)) is a homeomorphism
for every a € G (recall that N,(x):= ax for every x € uX );

c) the map A, :(uX,FXK,u)—> X, F(X,v)) is a homeomorphism
for every vEJ ;

d) for every pEM and for we&J with wp =p the map

Ap i (uX, (X, u))— (WX, F(X,w)) is a homeomorphism. O
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27. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs and let
u €J . Then for the surjective map ¢, = ¢|,x:uX —uY we have
a) ¢, is continuous with respect to the 3-topologies,
b) ¢, is closed with respect to the 3-topologies;
c) ¢, is an F-homeomorphism iff ¢ is proximal.

PROOF. a and b are easy exercises for the reader (use the r-topology and the
closure operator for a and b respectively). Statement c follows immediately
from the observation that ¢, is one to one iff ¢ is proximal. O

2.8. THEOREM. Let ¢:X—% be a homomorphism of minimal ttgs and let
u€lJ . Then ¢, :(uX,5(X,u))— WY, 5(Y,u)) is an open map.

PROOF. Consider EGS(¢) restricted to the u-invariant parts.

oll
uX’ > uX
qvul l%
uY’ —>» uY

Tu

Then, by 2.7.c, it follows that o, and 7, are F-homeomorphisms, so we
may conclude that ¢, is an ¥-open map iff ¢}, is F-open. So it suffices to
prove the theorem for the case that ¢ is a RIC extension.

Suppose that ¢ is a RIC extension and let x =ux € X . Let U€ Y, and
let V' be an open subset of 7 with u €intg clg V' and V = V(u), then

[U,V]NuX 1is a (basic) neighbourhood of x in (uX,F(X,u)). We shall
prove that ¢, [[U,V]NuX]=[¢[U],V]NuY . As ¢ is an open map (1.4.)
it follows that [¢[U],V]NuY is an F(%Y,u)-neighbourhood of ¢, (x).
Hence ¢, is an ¥-open map.

First note that

6. [[U.VINuX1C o[[U, VIIN$[uX]=[6[U], VINuY .

Let y =uy €[¢[U],V]NuY , then y =¢(t 'x’) for some rE€V and
x'€U . As ¢ is RIC we have z:=1 'x'€¢ (y)=uou¢p=(y). Let
{t;}; be a net in T with ,—>u and let x; Eu¢(y) be such that
z =limyx; . Since left multiplication with ¢ is a homeomorphism we
have #;x; >tz =x’ and #; -t , hence ttiu —>tu . Ast€V =V (u) we
have tuEintM(clSrVﬂM), SO tt,uEintM(clSTVﬂM) eventually, hence
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i; € V(u) =V eventually. Also t;x; € U eventually, so we can find some
ig such that 1; x; € U and #; € V . This shows that

- 1 -1
x,’U == (ttl'“) .tt,’nxiue V U 5

so x; €[U,V]Nué~(y). Hence x; €[U,V]NuX , while ¢(x;)=y and
so it follows that y € ¢, [[U, V]NuX], which implies

o [[U.V]INuX]=[¢[U].V]NuY

in case ¢ is a RIC extension. O

As every minimal ttg % is a factor of 9, it follows from 2.7. and 2.8. that
(uX,5(X,u)) is an open, closed and continuous image of (uM,F(IM,u)) .
So (uM,F(9N,u)) plays a central role in the observations about -
topologies.

We shall collect a few theoretical aspects of (uM,F (M, u)) .

2.9. THEOREM. The group uM provided with the ¥ (9,u)-topology is a
CT, space with continuous right and left translations and with a continu-
ous inversion (these are even homeomorphisms) (cf. [V 77] 2.5.9.). O

The next theorem characterizes the Ellis groups as the (9, u)-closed sub-
groups of uM .

2.10. THEOREM. Let F be the Ellis group in uM of some minimal ttg %
with respect to a certain point y =uy € Y . Then F is an F(9M,u)-
closed subgroup of uM and so all left and right translations as well as
the inversion are (9, u )-homeomorphisms.

Moreover, every & (I, u)-closed subgroup K of uM is the Ellis group
of the minimal ttg N(K):= % (u o K,O) (which is maximal proximal in
the sense that it does not admit nontrivial minimal proximal extensions).

PROOF. The first part of the theorem is immediate from 2.9., 2.3. and 1.1..
Let K be an ¥ (9,u)-closed subgroup of uM . Then one shows easily,
using II1.3.11.c, that K =®A(K),uoK) which by 1.13.b proves the
theorem. O

In the sequel we need the following technical lemma. For a proof see for
instance [G 76] IX.1.10., 1.11.. Note that the techniques to be developed in
section V.1. enable us to give an alternative (and easier) proof.
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2.11. LEMMA. Let u €J and consider (uM ,% (O, u)) .
a) If A and B are ¥ (9, u)-closed subsets of uM then AB is an

& (O, u ) -closed subset of uM .

b) Let {A; |i € A} be a collection of (M, u)-closed subsets of uM ,
which is directed by inclusion and let K be an (9, u)-closed sub-
set of uM . Then for A:= (\{A4,|i€A} we have
AK = N{A4,K|i€A} and KA = ("N {KA; |i EA}. O

The reason why this ” ¥-stuff” was invented is (somewhat hidden in) the
theorem to follow, compare 2.12.b with 1.1.12.e.

First we need a definition:

Let F bean (9, u)-closed subgroup of uM , then define

H(F):= N {czenun(FNU) | U ENR, }

where 9, is the ¥ (9, u)-neighbourhood filter of u in uM .

2.12. THEOREM. With notation as above:
a) H(F) isan ¥ (9, u)-closed normal subgroup of F ;
b) F/H(F) provided with the quotient topology is a CT, topological
group;
c) H(F) is the smallest (9 ,u)-closed normal subgroup K of F,
such that F/K is a CT, topological group.

PROOF. Cf. [G 76] IX.1.9.. O

Let F be an & (9W,u)-closed subgroup of G = uM |, then define for every
ordinal a=1 an ¥ (M, u)-closed normal subgroup H,(F) of F as fol-
lows:

Hu(F):= H(F) ;
let H(F) be defined, then define

Hy 1 1((F):= H(H(F)) ;
let « be a limit ordinal and let Hg(F) be defined for all B<a, then
define

Hy(F):= M {Hp(F) | B<a}.
As {Hy(F)|a} is a descending family of (9, u)-closed subsets of uM |,
there is an ordinal v, for which H,(F)=H,, (F). Then H/(F)= H,(F)
for every y=v» ; this H,(F) will be denoted by F, .
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2.13. LEMMA. Let A and B be ¥ (I, u)-closed subgroups of G = uM .
a) If AB is a group, then A .H(AB)=A.H(B) (and, also,
H(AB).B = H(A).B ).
by If AB is a group, then AB, =A.(AB), ; in particular, if
AB =G then AB, = AG, .
c) If ABH(G)=G , then ABG,=G (AB not necessarily a
group!).
PROOF.
a) [EGS 75] 3.12..
b) Straightforward corollary from a.
c) [EGS 76] 2.3.. O

2.14. REMARK. Let F be an (9, u)-closed subgroup of uM , and let
veJ . Then
a) VvF is an §(OR,v)-closed subgroup of vM and H(vF)=vH(F),
in particular (vF ), = VvF, ;
b) for every pEM we have HpFp ")Y=pH(F)p ', where
H(pFp ") is calculated in wM  for w € J, .

PROOF. Follows easily from 2.6.c and 2.9.. O

After these observations about (uM,% (9, u)) (or (G,F(IM,u))) we shall
now return to the (more general) case of (uX,%(%X,u)) or rather to the u-
invariant part of a fiber with the relative §-topology (in the spirit of [V 77]).
Let ¢:X—% be a homomorphism of minimal ttgs. Let y €Y and
uel, ,andlet F=®&%,y) be the Ellis group of ¥ with respect to y
in G. Then u¢p™(y)=u¢p"¢(x)=Fx for every x €¢"(y). Define for
every x EuX theset E(x):=E(x,¢,u)Cud=¢(x) by

E(x):= () {clyo.u(M Nug™(x) | U EN, ).

Beware that E(x) depends on the choices of M and u€E€J .
In the remark to follow we link the approaches as can be found in [V 77] and
in [G 76] and [EGS 75].
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2.15. REMARK. With notation as above:

a) E(x)=HF)x for x€Eudp=(y);

b) E(px)=pE(x) for all pE M ; where E(px)=E(px.,¢,v) and

vEJ suchthat vp =p ;

c) {EX)|x'€ud=¢(x)} is a partitioning of ud=¢(x).

PROOF.

a) Define the map y=p,:M—->X by y()=px . Then y is a
homomorphism of minimal ttgs. So by 2.7. and 28. the map
Yo (M, F (O, u))— (uX,5(X,u)) is an open, closed and continuous sur-
jection. As F =y, [u¢p~¢(x)], the restriction

Yu |F:(F’w(%’u))—)(u(ﬁ_(p(x)s?f((-,x’su))

is an open, closed and continuous surjection too. But then

(VN ug=¢(x) | VER) = (v [UNFI|UEN,) .

and as the collection {cly@ep. ., (U NF)|UEN,} is directed by inclusion
and vy, is closed and continuous, it follows easily that E(x)= H(F)x .

b)yLet pEM and vEJ with wp =p , and define y’=py . Then
&(%Y,y’y=pFp~ " is the Ellis group of % with respect to y’ in vM .
Hence E (px)= H(pFp ")px and so by 2.14,,

E(px):pH(F)p"px =pH(F)x

which by a proves that E(px)=pE(x) .
c)Let z€E(x’), then z€ H(F)x', say z = fx’ for fe€H(F).
But then

E(z)=H(F): =(H(F)f Yz =HF)f 'z =H(F)x'=E(x’). .

Similar to the definition of the normal subgroups H,(F) we can define sub-
sets E (x)= E x,¢,u) for every ordinal a, as follows:

Eyx):=E(x);
let E (x) defined, then define

Eqei(x):= () {clyee.u8 NEq(x) | U EN,Y
let a be a limit ordinal and let for every B<a the set Eg(x) be defined,
then define

Efx):= M {Efx)| B<a) .
As {E,(x)|a} is a descending family of & (%X,u)-closed subsets of
u¢~¢(x) there is an ordinal », for which E (x)=E,;(x). For that
ordinal » we define E_(x):= E (x).
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2.16. REMARK. With notation as above.
For every ordinal a we have E(x)=Hy(F)x (F =&%,¢(x))) In
particular, E (x)= Fyx .
PROOF. We prove the theorem by transfinite induction.
For a =1 the statement is true by 2.15.a.
Suppose « is a limit ordinal and let Eg(x)= Hg(F)x for every B<a.
Then

E x)= M{Ep(x)|B<a}= M {Hp(F)x | B<a}.

As {Hg(F)|B<a} is a family of F(9,u)-closed subsets of F , linearly
ordered by inclusion, while vy,:F —-u¢“¢(x) is an F-closed and 3HF-
continuous map ( y as in the proof of 2.15.a) it follows that

Yu [Ho(F)] = v, [ N {Hp(F) | B<a}]= M {vu[Hp(F)] | B<a} .
Hence
Hy(F)x = M {Hp(F)x | B<a} = N{Epx)| B<a}=Eyx).

Let a=1 be an ordinal and let E ,(x) = H,(F)x . Then it is easily checked
that v, [Hy(F)x] = Hy(F).H , where H = &X,x), the Ellis group of %
with respect to x in G . So vy,:HJF)H — E,(x) is an -open, 3-closed
and F-continuous surjection, which implies that

Yul N {Clgon.uy U NHAF)H) | U E N, }] =

= N {clg@.uy(VNELx))|VENR, };

hence HH(F)H)x = E +(x). Since x =Hx , it follows that
E,i(x)=H(H(F)H)Hx and so, by 2.13.a,

Eo41(x) = HHy(F))Hx = Hg((F)x . 0

In order to shed some light on the foregoing $-manipulations we just men-
tion the following result (e.g. see [G 76] 1X.2.1.4.):

2.17. THEOREM. Let ¢:X—%Y be a distal homomorphism of minimal ttgs.
Then ¢ is almost periodic iff E(x)={x} for some (hence all)
xEX. O

We shall end this section with a rather technical theorem, which is the final
blow in understanding the equicontinuous structure relation as will be shown



- 81 -

in section IIL.3.. This result (2.20.) can be found in [V 77], hidden between
other technicalities. The present form of 2.20. is due to T.S. WU.

Recall that ¢: X — % is a homomorphism of minimal ttgs, x € X , u €J,
and that H = ®&®X,x) and F = &@,¢(x)) are the Ellis groups of X
and ¥ with respect to x and ¢(x) in uM .

For x’€uX we denote the ¥ (%, u)-neighbourhood system of x’ in uX
by M, and N¢ denotes the relative F(X.u)-neighbourhood system of
x" in ud“¢o(x). Soif x'€Eud~¢(x)= Fx , then

NE ={(UNFx |UEN,) .
The ¥ (9N, u)-neighbourhood system of u in uM is denoted by 9, .

2.18. LEMMA. Let V C Fx be a nonempty §(%X,u)-open subset of Fx
(relative topology). Then clx o  \H(F)V = clyo )V .

PROOF. Let x’€V ; then Vv € NY . By 2.15. and the fact that Fx’= Fx ,

we have
HF)x'=E(x')= N{cdz@x.o(UNFx)|UE N} =
== ﬂ {C]Tv(‘.’x,u)u | u E@L?} '

Hence H(F)x'=E(x")Ccly«x.,)V . As x’€V was arbitrary, we have
H(F)V Cclz .,V and so

Cly o, u)V C Cly e,y H(F)V Ccly o u)V - 0

2.19. LEMMA. There is an & (%X, u)-neighbourhood base at x in Fx consist-
ing of "symmetric” sets; i.e.: for every V € N there isa Vo€ NY with
VoCV and (Vo) 'i={(f"'x|fxEVy fEF}=Vy. Note that
Ccly .V is symmetric if V€ RY is symmetric (with respect to x ).

PROOF. A neighbourhood base at x in Fx is formed by the sets of the

form U(x,o,e)N Fx with 6€Z and e€>0. These sets U(x,o0,€e)N Fx

are symmetric. For let f € F be such that fx € U(x,0,e)N Fx . Then
F,(fx,x)<e and so

Fo(f ~'x,x) = Fo(f 7' (x.fx)) = Fo(x,fx)<e

hence f 'x € U(x,0,e)NFx . (The second equality follows from the
definition of F, and from the almost periodicity of (x,fx) in X X X .)
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Let VEN? be symmetric with respect to x , then the set

W:={f€EF|fx €V} is symmetric with respect to u . As the map
p.-»p“:F—)F is an  {(9M,u)-homeomorphism it follows easily that

clyon..yW is a symmetric set in F  with respect to u . Since

clyon. )V = (clz@r.,y)W ).-x we have that cly g )V is symmetric. O

2.20. THEOREM. With notation as above.
Let VEN? ; then JH(F)x NuoFx CuoV .

PROOF. By 2.19. we may assume size 14 v to be symmetric. Define

A :=inty e, Clyo.)V  in the relative F(%X,u)-topology on Fx . We
claim that

{A}U{gV |g € F and gx & clya.u)V }
is an ¥ (%, u)-open covering of Fx . As follows:
Let f € F besuch that fx €4 ;ie.,

fX € Fx \A — CIE(‘X.M)(FX \ley(ﬁx.u)v) .
So we can find a net {f;x}; with f,x € Fx\cly«. )V such that
fix = fx in the &(%X,u)-topology. Since

Ay (Fx 5 (X, 1) — (Fx 5 (X, 1)

is a homeomorphism, f~'f,x —x in the J(X,u)-topology. As V € N¢,
there is an i, with f"f,-“xEV and by symmetry of size 14 v |

fi, 'fxev . Hence fx €fiV, where f, €F is such that
SiX € Fx \ cly@. )V . which establishes our claim.

By compactness, there are finitely many g € F with g x & cly o )V . say
g1, .- .,8n »such that

FxCAU J{gV|ie{l,....n}}
As {A}U{gV |i€{]l,...,n}} isa finite collection it follows that
uoFx =uo(AU | J{gV|i€Ll...,n}}=

=uoAU J{uogV]|i€(L,..., n}y}.

By I1.3.11.c we know that uogV =g oV ,so
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qux:quUU{g,oV|i€{l,...,n}}.

Now let x"€JH(F)xNuoFx , say x'"=vwpx for some ve&EJ and

pEH(F). We shall prove that x'=wpx¢&goV for every
i€{l,...,n} . It then follows that

x'€EuoA Cuoclyx )V =tou(uoV)CuoVv ,
which proves the theorem. Suppose wpx € g;oV | then
x=ux =up 'ypx €up N(gioV)Cu(moup 'gV)=cly.tp 'gV .
As H(F) is a normal subgroup of F and g € F we can find ¢ € H(F)
such that up 'g, = g,¢q . so
x Ecly@ngiqV = &clyaungV C & cly@.HIEF)V.
By 2.18. it follows that
x € gicly . HIF)Y Cgiclyo,u)V

hence g 'x € cly«.,)V . Since by 2.19. cly« )V is symmetric we have

giX € cly«.,)V . which contradicts the choice of g; . O

II1.3. THE EQUICONTINUOUS STRUCTURE RELATION

In this section we consider the equicontinuous structure relation for Be
extensions and we give a foretaste of chapter VII in proving that the
equicontinuous structure relation E is equal to the regionally proximal
relation Qg in case of a Bc extension ¢ . This result is not new. In
1973 1.U. BRONSTEIN proved this for open Bc extensions [B 73], hence an
EGS diagram and some easy observations as will be discussed in 1V.4.3.
finish the job. In 1977 another proof of this fact was given in [V 77],
heavily depending on the techniques of j-topologies, whereas Bronstein’s
proof is ”elementary”. We give a slightly different proof, but, as in
[V 77], the key is 2.20..

Let ¢:X—% be a homomorphism of minimal ttgs, x€ X , v €J, and
let F=O(%,¢(x)) be the Ellis group of ¥ with respect to ¢(x) in uM .
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We shall relate the sets
E(x)=E(x,¢,u) and Q4[x]={x"€E¢"¢(x)|(x,x")E Q4)} .
with each other.

For z€ X and v €J define the subset L"[z] of ¢“¢(uz) by

L'[z]:= N{velU |UENRL),
where Y is the & (X, u)-neighbourhood system of wuz in u¢p~¢(z).

3.1. REMARK. E(x)=uL"[x]=uL"[x] for every vEJ .

PROOF. Clearly, E(x)C L"[x]; for cly. U =u(uoU)Cuoll for every
UENR?. So we have E(x)=uE(x)Cul“[x], and the equality
ulL“[x]=uL"[x] follows from II.3.11.a.

Conversely, uL“[x]Cu(uold) for every UE NE, so ul“[x]C clyx..l
for every U € N? ; hence uL“[x]C E(x) . O

3.2. LEMMA. Let (x;,x;)€ Ry be an almost periodic point, and let U, and
U, be open neighbourhoods of x, and x, in X . Then

L¥[x\] X uo L*[x5]C T(U; X UsNJR,C T(U, X U;NRy).

PROOF. Let v €J be such that (x;,x;) = (vx,,vx;). By 2.1l.c, we can find
an open set V' C T such that v € intSTclSI V, V(v¥y=V and Vx,C U,.

Define U, € %";] by
Up:=[U, VINveTo(xy) .

Choose z€MU,, then z =t 'z’ for some tEV and z'€ U,, while
¢(z) =¢(x,). Hence (z,x,)EJR, and

(2.x)) =tz 1x)) €1t U X Vx))NJRG,C T(U X Up)NJR,,
SO
U X {x,}) CT(U X Uy)NJR,=T(U X UyNJRy).

If x’€u,, then x"=vx’ and (x",x2)Eto(U;X U;NJR,) for some
to€T . By 2.1.c, there is an open set V', C T such that v € intg clg V|

Vi(v)=V, and V,x’CtyU,. Define uze%’_’,.: by
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Uy:=[toUy, V1INV~ (xy) .
As above, it follows that

(X"} X Uy C Tto(U X U)NJR = T(U; X U3NJRy).

But then {ux’}X ull;C T(U;X U;NJR,) and so

{ux "} X uouldy = uo({ux'} X ully)) C T(U X Uy;NJRy) .

By 2.6.c, ully€ MY so L“[x;]C uould; ; hence

{ux"}X L*[x,]C T(U, X U;NJR,).

As x’€ U was arbitrary, we have

uulx LM[XZ]Q T(UIX UszR¢) s

and so

uouulX uoL“[Xz]: uo(uu1>< L“[Xz])g T(le UszR¢) 8

Again by 2.6.c, ull;E N, ; so L"[x;]Cuould; ; hence

L¥*[x\] X uo L“[x,]C T(U X U;NJR,). .

Remember the definition of Q, = (M {T(aNJR,) | a€ AUy} . and note that
Q= Q; if ¢ is a Bc extension (see the discussion just before 1.4.4.).
The following notation will be used:

Jyodi= | J{ved |vEL},

where A4 is a subset of a ttg. (For example: J,ou¢p“¢(x), J,oFx , or

Jxouy™(z).)
In chapter V. we present an extensive study of this “circle operation for sets”.

3.3. LEMMA. With notation as before, the following inclusions hold:
a) L'[x]XvoL"[x]C Q4 C Q4 forevery vEJ ;
b) U{LY[x]|wEJLIC N{Jsolh |UERE) CQ4lx]1C Qylx]:

©)  E(x)CuQylx]CuQylx],
d) Je)H(F)x CQ4oPy[x]C Eylx].
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PROOF.
a) Note that the choice of u €J is not relevant in (the proof of) 3.2..
Let vEJ and a€E Uy . As (x,x)€E « it follows from 3.2. that

L'[x]XvoL'[x]C T(aNJRy).
Since a € AUy was arbitrary, we have
L'[x]XveL'[x]C N{T(@NJRy) |aEUx} = Q43 C Q4

for every veJ .
b) As L*¥[x]Cwol forevery U € N?, we have

U{L¥Ix]|wEJ}C ol

for every U € N¢ .
Let a€QUy andlet UE Y, besuchthat UXUCa.Let V=1V(u) be
an open set in 7 with u€intgclg V' such that Vx CU . Define

VEN? by V:=[U,V]Nu¢p~¢(x). Then
(X}XVCT(UXUNJR),

SO

{(x}X o V)CTWUXUNJRYC TaNJR,;
hence
(X}X N Yo U |UERLYC {x}X (U, oV)C TanNJR,.
As «a was arbitrary it follows that
(x}IX NUcoU |UENRYC N{TaNJRy|a€E U} = Q,
and so
U (L¥Ix]|w €J,)C N {Jxold | UE R C Q4lx]C Qylx].

¢)By 3.1, E(x)=uL"[x] so E(x)CuQy[x]CuQ4[x].
d) Let x'€J,H(F)x , say x"=wpx for certain v&Jy,, and
p €EH(F). Then
px EH(F)x = E(x)CuQq4[x]C Qqlx],

o) (x,px)EQ; and (vx,x’)Z(vx,vpx)EQ;. As (x,vx)E P, we have
(x,x")E Qg 0Py ; hence J 4 )H(F)x C Qg oPylx]. 0
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3.4. THEOREM. With notation as agreed upon earlier the following equations
hold: E(x) = H(F)x = uQ;[x] ;
In  particular, if ¢  satisfies the Bronstein condition then
E(x)=uQ4[x].

PROOF. By 3.3.c and 2.15. we know already that E(x)= H(F)x C uQ;[x] .
Let x'€uQgx], ie, (x,x")=u(x,x’)EQ, . Applying 1.4.4. there are
nets {x7}, in u¢p"p(x’)=u¢"¢(x) and {r,}; and {s;}, in T such
that

si(x,x7)>(x.,x"), ti(x,x;)>(x,x), s;u >u and tiu —>u.

Let # and V be ¥ (%X,u)-neighbourhoods of x and x’ in u¢~¢(x),
say

U=[U,VINup=dp(x)EN? and V =[U" V' INuop=¢(x)E N ,

where UEY,, U'€Y,, and V =V(u), V'=V'(u) are open sets in
T with u€intg clg V' Nintg clg V. As clg VNM and clg V'NM
are neighbourhoods of u in M (2.1.b), we can find an i, such that for
every (=i, we have

siu € intM(cler'ﬂ M) and tiue intM(cls7 VM),

so s;€V'(u)=V’ and ,€ V)=V, while s;(x,x;)€UX U’ and
ti(x,x7)€ UX U . But then, for every i=ij:

xies; \U'cWV) LWU'=[UV’'] and x,E, ' UCV LU =[U,V]
SO
xieU,VINue~op(x)NU V' INud“p(x)=UNV .
Consequently, it follows that x’€ cly ., U for every U € NY, hence

x'e ﬂ{clmxu)u|u6‘3{,§’}:E(x). 0

In order to characterize Q, we need the following observations with respect
to the almost periodic points in Ry (and Rgy ).

Only for the following lemma (3.5.) and theorem (3.6.) we do not assume our
choice (fixation) of ¢ and x .
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3.5. LEMMA. Let ¢:X—>Z and ¢:Y—>Z be homomorphisms of tigs with
X minimal and let u€J be arbitrary. Then (x,y)EJRy, iff

yEJ ouyT(x).

PROOF. Let yEJ,ouy ¢(x), vEJ, with yEvouy ¢(x), and let
{t;}; beanetin T with #; -»v . Then there are y; € uy~¢(x) such that
y =limgyy, . As (ux,y;)€JRyy and (x,y)=Ilims(ux,y;), we have
(x,y)ETIR4y=JRyy .

Conversely, let (x,y)€E m and remember that by 1.3.8. we have

JRyy=T({x}Xvy~¢(x)) foreveryvel, .

Let {#;}; in T and y, Ev{y~¢(x) be such that (x,y)=Ilim¢(x,y;), and
let p €M be the limit of {#,v};, for a suitable subnet. Then

x =lims;x =limgvx = (limgv)x = px
and
y =limgy;, =limtvy; Elimyw=¢(x) =povy ¢ (x).
Let w€J be such that p =wp , then w €J, and
Povy o (x)=nwpovyTo(x) =wo(up ovi o(x)).
By I1.3.11.b, we have
up o vy h(x) = up ouy P (x) =uoupyT(x).

As px =x , upyTP(x) = uyTP(x) 50 upovyTP(x)=uouy ¢(x) and

YEPoVYTH(xX)=wo(upovyd(x)) = wo(uouy d(x)) =

= wouy " (x)CJy o U o (x). .

3.6. THEOREM. Let ¢:X—>X and ¢:Y—>Z be homomorphisms of tgs, let
X be minimal and u€J . Then ¢ and  satisfy the generalized
Bronstein condition iff Y~ (z)=J,ouy~(z) for every z € Z and every
x €¢(z). In particular, ¢ satisfies the Bronstein condition iff
O P(x)=Joudp ¢(x) forevery x €EX .

PROOF. Follows immediately from 3.5.. O
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3.7. THEOREM. With notation as agreed upon earlier:

Qlx1 =Ty HF X NI, o Fx = J({L*[x]|wEJ ) =
= N {Jxoll |UENRE}.

PROOF. Clearly, Q; CJR,; 5o by 3.5.,
Qu[x]1CJ oudp ¢p(x)=J,0Fx .
By 3.4., Q4[x]CJH(F)x , and so
Q4[x]ICIJH(F)x N~ (x) =J 5 H(F)x .
Consequently,
Q41x1C J 4 H(F)x NJy o Fx .

Next, observe that for we&J,, by IL3.11.Lb, woFx =wowFx and
W, ={(wl |UENR?)}. So by 220, Jo H(F)x Nwo Fx Cwowld for
every UENY. And as wowld =wold (IL3.11.b), it follows that
J o yH(F)x Nwo Fx C L"[x] ; hence

JoyHIF)X NJ o Fx C \J{L"[x]|weEJ,}.

The proof is finished by applying 3.3.b. O

Define a subset § of Ry by
S:={(x1.X2)E Ry | (ux,,ux)€ Q4 } .

Then clearly Q, CS C Qy0P,CE,.

3.8. LEMMA.
a) S is an equivalence relation and S|[x]=J 4 H(F)x .
b) If JQ,C Qy then S =E,=QyoP,. Inparticular, if ¢ isa Bc
extension then Qy[x]=J 4 H(F)x .

PROOF.

a) Clearly, x’€ S[x] iff ux’€uQy[x]= E(x)=H(F)x . and so we
have S[x]=J4 )H(F)x .
Let (x;,x;) and (x;,x3)€S and let a €uM be such that ax, =x .
Then (ax;,x)=a(x,,x)€Q; and (x,ax3)€ Q, , so ax,;€ E(x) and
ax3;€ E(x). By 2.15.c, ax;€ E(ax;) = E(ax,) ; so, applying 3.4. to ax,
in stead of x , it follows that ax;€ uQg[ax;]. But then u(x,,x3)€ Q,
and so (x;,x3)E S .
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b)If JQ,CQ; then Q,CS . Bya, S isan equivalence relation,
SO

Q¢0Q¢QSOS =8SC Q;0P¢g Q¢0Q¢.

As Q, 1is closed and T-invariant, S = Q400 is closed and T-invariant.
Since Q,C S CE, itfollowsthat S =E,=Q;0P,. O

3.9. THEOREM. If ¢ is a Bc extension, then E,= Q..

PROOF. If ¢ is a Bc extension, then Q,=Q, . By 38. we know
Eglx]=S[x]=J4o)H(F)x , but also Ey[x]C o ¢p(x)=J,0Fx (3.6.).
So E4[x]CJ s H(F)x NJ, o Fx ; hence by 3.7., E4[x]C Q4lx]= Q,lx].
As the choice of x in the beginning of this section was arbitrary, it follows
that E,=0Q,. U

3.10. REMARK.
a) If ¢ is a Bc extension, then E [x]CJ.oU for every UE NS
and every x'€ ¢“d(x).
b) If ¢ isa RIC extension, then E,[x]Cuol forevery U E NS .

PROOF. By 3.8., E [x]=J4 H(F)x .
a) Since, by 3.6., ¢"¢(x)=J, 0 Fx it follows that

Ey[x]CJ 4 )H(F)x NJ 0 Fx

and so by 2.20., E4[x]CJ,.oU for every U E N (compare the proof of
3.7.):
b) If ¢ is a RIC extension, then ¢~ ¢(x) = uo Fx (cf. 1.3.); hence

E¢[X]§J¢(\)H(F)X NuoFx

and so by 2.20., E4[x]Cuold forevery U € NY . O

3.11. Now that we exactly know what the equicontinuous structure relation
looks like for Bc extensions, it is not difficult to describe the maximal almost
periodic factors of those extensions.

So let ¢:X—% be a Bc extension and let k:X—%X/E, be the quotient
map, and 6:%X/E,—% the extension of % defined by E,. Let
H =®&%,xp) and F = ®&(%¥,¢(xo)) be the Ellis groups of X and %
with respect to x¢ = uxo and ¢(xq) in uM . Then
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a) The Ellis group S(X/Eg.k(x0)) of X/E, with respect to k(xg)
in uM is H(F)H ;
b) Myx,) = )yHE)H .

PROOF.
a)Let a € H(F)H , say a = fh for some f€ H(F) and hEH .
Then

ak(xg) = k(axg) = k(fhxg) = k(fxq) .

By 3.3.d, we have [fxo€ E4[xg] so «(fxg)=«(xg). which shows that

a € G(X/Ey,k(xp)) .

Conversely, let a € G(X/E ., k(xg)) . s0 ak(xg) = r(xp). Then by 3.9. and

3.4., we have axo€ E4[xo] = Qg4lxo]. hence by 3.4.. ax,€ H(F)x,. say

axg= fxo for f € H(F). Hence fﬁia €H andso a€ fH C H(F)H .
b) As 0:X/E;,;—% is almost periodic, it is distal and so k(x() is a

0-distal point; hence by 1.2.10., ey = oy = Joxy) - Clearly,

MK()(“) - Jx(.\-“)- & (%/E¢, Kk(xg)) = J¢(,\'“)H(F)H . .

The easy proof of the following remark will be omitted (for ”if” use 1.2.13.).

3.12. REMARK. Let ¢:X—% be a Bc extension. Let xo€ X, uel, ,
yo=9(xg) and let H = &K,xo) and F =&Y,yy) be the Ellis
groups of X and Y with respect to xo and vy, in uM . Then
E,=Ry iff H(F)H = F . O

More details on the equicontinuous structure relation for Bc extensions will
be given in chapter VIII..

The final observation in this section concerns the Ellis group of the maximal
almost periodic factor of a homomorphism ¢:%X—% of minimal ttgs that
does not necessarily satisfy the Bronstein condition.

3.13. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs, xo€ X
and let H and F be the Ellis groups of X and % with respect to
xo and ¢(xg). Then K:= & (X/E 4, Eylxo]) = HAq, where Aq is
the Ellis group of the maximal almost periodic extension oaq: AY)— %Y
with respect to some z € ag (P(xyp)) . In particular,
& (X/Ex,Ex[xo]) = HE , where E s the Ellis group of the universal
uniformly almost periodic minimal ttg & .
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PROOF. First observe that aq:®&%)—Y is a regular extension (cf. 1.2.17.).
So Aq is a normal subgroup of F and HAg is an & (9, u)-closed sub-
group of F . As the induced map 6:X/E,— % is a factor of both ag and
¢ , it follows easily that HA4C K . If there exists an almost periodic exten-
sion W of Y between X and Y with Ellis group HAg , then the
theorem will be proven.

Consider the following diagram of homomorphisms of minimal ttgs:

o
S > )

&(%) 15 . A(K)

a 2

- X/E 4

Here =, and @, are the universal proximal extensions of &%) and
X/E,, and a and B are the obvious RIC extensions (1.15.). Define
§:=agomy and wv:=60omof, and note that §=vwoa. Clearly,
E; =R, = P;.so from L.4.3. it follows that

E,=aXalE]=aXa[P]=P,.

This shows that » = Aopu , where p: A (HAq)— A(HAq)/E, is proximal and
A:A(HAq)/E,—%Y is almost periodic. From 14.1. and the following
diagram it follows that ¢ factorizes over A(HAgq)/E,, which proves the
theorem (here y is the obvious RIC extension (1.15.)).

Y p

A(H) > A (HAq) > 9 (HAs)/E,

7’31 A

X%, —» Y
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I11.4. P1 EXTENSIONS

One of the ways to tackle the problem of determining the structure of a
minimal ttg is to build that ttg with elements we (pretend to) know.
From this point of view H. FURSTENBERG and W.A. VEECH tried to under-
stand distal and point distal ttgs respectively. Their method was general-
ized in [EGS 75] to the theory of PI extensions as will briefly be exposed
in this section.

4.1. A homomorphism ¢:X—% of minimal ttgs is a swrictly-Pl extension if
there is an ordinal » and a tower for ¢ of height », (i.e., an inverse sys-
tem {¢,{3 |a<B<w} of homomorphisms ol Xp— X, of minimal ttgs)
such that: '
a) % =%, % =% and ¢ = invlim{¢f | a<p<v)} ;
b) for every a<<v the map o2t s either proximal or almost
periodic.

The homomorphism ¢ is called a PI- extension if there is a strictly-PI exten-
sion Y:Z—%Y such that ¢ is a factor of ¢ ie., ¢y =¢of for some
homomorphism 6: £— %X of minimal ttgs.

4.2. EXAMPLE. Let A and F be (9. u)-closed subgroups of G = uM
with A C F . Then the homomorphism ¢: A (F,A)—A(F), defined by
¢(poF A)=poF (cf. 1.15)) is a strictly-Pl extension. (Remember
that A(K):= 2F(uo KON) for every subgroup K of G .)

PROOF. We shall prove that ¢,: A (H(F)A4)—A(F) is strictly-PI for every
ordinal a=0, where Hy(F):= F .

For a« =0 we have H(F)A4 = FA =F . and clearly ¢q: A (F)—=U(F) is
a strictly-PI extension.

Suppose that ¢g: A (Hp(F)A)— A(F) is a strictly-PI extension. As F_A4
is a group and F,A4 C Hg(F)A it follows from 1.15. and 1.13.a that the
map ¢:A(FyuA)—A(Hp(F)A) is a well defined RIC extension. Let
k:A(FuA)—A(F,A)/E, , then by 3.11.:

K:=®U(FxA)/Eyx(uoFyA)) =HMHg(F)A)F A |
and as F A = AF,, it follows from 2.13.a that

K = H(Hy(F)A)AF,, = HHy(F)AF., = Hg . \(F)A .
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By 1.13.b, A(Hg,(F)A)—A(FA)/E, is a proximal extension, so the
map 6:A(Hpg (F)A)—A(Hp(F)A) is strictly-PI. Hence ¢g | = dpgof is
strictly-PI.

As an inverse limit of strictly-PI extensions is strictly-PI, the example is pro-
ven after the observation that ¢ = invlim ¢ . O

4.3. THEOREM. Let % be a minimal g and let yo€Y , u€&J, . Then
the map ¢: A(F)—>%Y defined by ¢(poF,)=pyo is the universal Pl
extension of %Y ; ie., if n:X—>%Y is a Pl extension and x,€ un=(y)
then there is a homomorphism v: A (F,)— X with v(uoF,)=x, and
mov=¢. Here F =&(Y,yq) is the Ellis group of Y with respect to
yo in G .

PROOF. By 4.2. with 4 = {u} , it follows that A (F,)—A(F) is strictly-PI
and as A(F)—%Y defined by po Fwspy is proximal by 1.13.b, it is clear
that ¢: A (F,)—% defined by po F poFispyq is strictly-PL

We shall show that every strictly-PI extension of % is a factor of ¢ (no
matter what base points are chosen). Note that it suffices to prove that for
an arbitrary factor 0:Z—% of ¢ the map 00&:W—Y is a factor of ¢
for every proximal or almost periodic extension §&:U—%Z (proceed by

induction).
Consider the following diagram of homomorphisms of minimal ttgs:
A(F,) ® > o
i
! K
: 0
v
U > Z
3

Let zo€ub~(yg) and K:=&Z,z¢). Forsome a€ F , k(aoF,)=1z;
and so, by 1.2.11., GA(F,).aoF,)CKCF . As F, is a normal sub-
group of F , we have that F, =& (A (F,),aoF,) .

First suppose that ¢ is proximal. Let wo€uf~(z¢); then by 1.2.13.
K = &, wp) . But then by 1.15. and 1.13.b, there is a map

poF(mpoK)mspwy: A(Fy)—W

and so 00§ is a factor of ¢ .
Suppose that £ is almost periodic and let wo€ £7(z) , then wy=uw,. As
¢ is RIC and U = W/E; it follows from 3.11.a that H(K)C &(UW,wy) .
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Since F,C K and F_, = H(F,) we have
Foo = H(F.,)C H(K)C &, wo) .

By 1.15., there is a homomorphism A (F,)— A(BHUW,wp)); hence
p o Fompwy is well defined and #0£ is a factor of ¢ .

This shows that every strictly-PI extension of % is a factor of ¢ . But then
every PI extension of % is a factor of ¢ . O

44. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs. Let
X0EX, u€J, and yo=¢(x0)E€Y and let H=®X,xq) and

F =®&%,yo) be the Ellis groups of X and %Y with respect to x, and

yo in G . Then the following statements are equivalent:

a) ¢ is a factor of a strictly-Pl extension under a proximal map; i.e.,
there is a strictly-Pl extension  and a proximal extension 6 with
Y=ol

b) ¢ is a Pl extension,

c) F,CH (equivalently: F, =H, or E.(xo) = {xo} )

PROOF.

a = b Trivial.

b= cLet ¢ be a PI extension. Then by 43.. %X is a factor of
WA(Fy),say §&:A(F,)—>X,and §(uoF,)=x,. By L2.11, it follows that
Foc H .
The proof of the equivalence of F,CH . F,=H, and E_(x¢) = {x¢} is
left as an exercise for the reader.

c=alf F,CH ,then F,H =H . Hence by 4.2., the map

poHispoF:A(H)-AF)

is a strictly-PI extension. As the homomorphism p o H mpx: A(H)—% is
proximal, the theorem is proven. O

4.5. COROLLARY. Let ¢:X—%Y be a homomorphism of minimal ttgs. Then
the property for ¢ of being a Pl extension does not depend on the topol-
ogy of T, ie, ¢$:<T;,X>-><T,;,Y > s a Pl extension iff
¢:<T,X>—-><T,Y > isa Pl extension.

PROOF. By 4.4. ¢ is a PI extension iff E.(xg) = xg. As E,(xg) is calcu-
lated in (uX,3%(X,u)) and as the §(X,u)-topology does not depend on the
topology of T (2.5.) the corollary follows. O
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We shall now describe the construction of the ”“canonical PI tower” for a
homomorphism ¢: X —% of minimal ttgs. For full details and proofs see
for example [G 76], [V 77] and [VW 83].

46. Let ¢:X—% be a homomorphism of minimal ttgs, let x,E X ,
uelJ, and yo=¢(xo) andlet H =&X,xo) and F =&Y, y,) .
Define X5:=%, %Y :=% and ¢);:=¢, and note that we have
& (Y, y0) = Hy(F)H(=F) .

Let a be an ordinal and let ¢,: X, > %Y, , x,EuX,, yo= ¢,(x,) and the
homomorphisms ¢/,: X, —> X, 7,:%,—% be defined for «, such that o),
is proximal and o (x,) =xo, 7, is strictly-PI and 7(y,) =y, . while
& (Yy.ya) = Hy(F)H . Construct EGS(¢,), let y,:=uou¢py(v,) and

X0 = (Xgop) -

oa
Kot1 = Xa > X
¢a+| lqb,a ‘p"‘
Xe/Ey, =Yat1______, %, - > Y

a+1

Let E(,H:‘%;/Eq,:‘—)“y:, be the maximal almost periodic factor of the RIC
extension ¢/, . Then define (X, :1,Xq11):=(Xy.x%), "ZJ(,H::?X’,,/E%
and  ¢p41:Kyr1—> %41 as  the quotient map. Furthermore let
YVat1: = Pat+1(Xa+1) »  0Oa+1:= 0500, and To41:= 7407406+ . Then
o4y is proximal, 7,4, is strictly-PI and, by 3.11., we have
& (Yas1.ya+1) = HHL(F)H )H ; hence by 2.13.a,

(%(Gya+]a,ya+l): H(Ha(F))H = Ha+l(F)H .

If « is a limit ordinal such that ¢g: X5 — g is defined for every B<a as
described above, then define x,:= (xp)p<EII{Xp|B<a}, X,:=T(x,)
and y,:=(Vp)p<aE{Yg|B<a}, Y,:=T(y,) . Then clearly %, and
%Y, are minimal ttgs, and & (%Y,,y,) = H(F)H . Define ¢,: X,—%Y, as
the induced ambit morphism, and let o, :=invlim{o}|B<a} and
To:=invlim{7s | B<a}. Then o is proximal and 7|, is a strictly-PI

extension.
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4.7. In this construction there are two possibilities

A For some ordinal v : H(F)H = H .

Then ¢, is proximal, the construction stops (the tower ends) at height »
and the map :=7,0¢, is a strictly-PI extension of which ¢ is a factor.
This shows that ¢ is a PI extension.

Note that if ¢ is a PI extension, F,C H , so there does exist an ordinal »
with H(F)C H (and so H(F)H = H ).

B F,H#H.

Then the tower ends at height oo+1. For ¢, : X, — %, does not admit a
nontrivial almost periodic factor, which follows by 3.12. from the observation
that & (%, ,y) = FoH and that H(F H)H = H(F,)H = F H .

This leads to the situation depicted in the following diagram:

’

000
X' > X
qs;cl l(p
¥, : > %
TOC

where ¢, is a RIC extension, but Ey =Ry , o), is proximal and 7. is
strictly-PI.

One could paraphrase this as follows: Every homomorphism ¢ is a PI exten-
sion modulo some junk in ¢, .

Much work is done in understanding the ”junk” in ¢, (e.g. [E 73],
[EGS 75], [M 76.1] and [V 77]). For instance it turned out that ¢ is a
weakly mixing extension (see chapter VIIL.) and that ¢, is an isomorphism
in case Py[x] is countable for some x € X ([G76] for X is metric;
[MN 80] in the general absolute case; open in the general relativized case).

48. NOTE. If ¢:X—%Y is a homomorphism of metric minimal tigs then the
height of the Pl-tower for ¢ is countable.

PROOF. By IL.1.1.b, we know that every ttg in the Pl-tower is metric. Con-
sider %, , then every map 75:%, —%, defines a closed equivalence rela-

tion R, on Y, . Clearly, the collection {R ,|a<oo} is a linearly

ordered (by inclusion) collection of closed subsets. It is not difficult to see
that there can be at most ¢(Y,X Y,) different subsets in that collection,
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where ¢(Y,, X Y,) is the cellularity number of Y, X Y, .As ¢(Y, X Y,)
is smaller than d(Y, X Y,), the density number of Y,X Y, . and as, by
metrizability, d(Y, X Y,)<®;, the remark follows. U]

We shall end this section with a remark (the proof of which is omitted cf.
[VW 83]) that states that the canonical tower as presented here is just the
tower presented in [V 77].

4.9. REMARK. With notation as in 4.6.. For every a=0 we have
Yy = OF (4 o E J(%0),X) and X, = {(x,.3) | xEy'EY,},

where Eo(x¢):=u¢=(v,). Then 0,:X,—>K and ¢ Ky—>%Y, are
the projections and T: ¥, —% is defined as T,:= 2%| 7, s 0

I11.5. REMARKS

The notion of RIC extension is introduced in [EGS 75] as an extension satis-
fying the property 1.3.b. In that paper the EGS(¢) diagram for ¢ is studied
in a way leading towards the canonical PI tower for ¢ (4.6. and 4.7.). A
similar approach can be found in [MW 74].

The relation Q; occurs in [B 75/79] and plays a major role in [B 75/79]
section 3.13.; note that the notation differs: our Qj is denoted there by

Q(RY) .

With respect to the question whether or not the Bronstein condition implies
relative incontractibility, the following observation can be made.

5.1. REMARK. Let ¢:X— %Y be a Bc extension of minimal tigs.
If X=U(F) for some & (M, u)-closed subgroup F of G then ¢
is a RIC extension.

PROOF. Construct EGS(¢), then ¢oo = T0¢’ (notation as in the discussion
just before 1.11.). As % does not admit nontrivial proximal extensions
(1.13.b), o is an isomorphism and so ¢oo is a Bc extension. But then 7,
as a factor of ¢oo, is a Bc extension; hence, by 1.3.5.b, 7 is an isomor-
phism. This shows that ¢ is a RIC extension. (Note, that ¢ is open and
also that % = A (F’) for some subgroup F’ of G with FCF’.) O
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Some knowledge about Qg could be derived from the knowledge about
RIC extensions; as is shown by the next theorem. But first we need a lemma.

52. LEMMA. Let ¢:X—%Y be a homomorphism of minimal ttgs and let
¢ X > be the "RIC lifting” of ¢ in its EGS diagram. Then
o X o[Ry] :J—R;, where o: X' —> X is the proximal map in EGS(¢)
(compare 1V.4.5.).

PROOF. As ¢’ is a RIC extension, Ry :.I_R_(pr and so o X o[Rq,f]g.IRﬁ.
Let (x;.x2)€EJRy, say (x;,xp)=v(x,,x;) for some ve&EJ . For
x1=vw1€07(x;) and x5=vwvx52E€07(x,) we have ¢'(x)=ved'(x))
and ¢'(x%) =v¢'(x5)., so ¢'(x)) and ¢'(x%) are distal. On the other
hand

TP (x) = Po(x)) = P(x) = ¢(x2) = Po(x)) =7¢(x2)

so ¢'(x) and ¢'(x%) are proximal. Hence (x'.x%)€ R, , which implies
that JR,C o X o[R,]. ]

5.3. THEOREM. Let ¢.¢" and o be as in the lemma. Then
oXa[Qy] =0, -

PROOF. From 5.2. it follows easily that oXo[Qy]C Q4. Let
(x1,x2)€ Qp and let {(x}.x5)}; beanetin JR, and {1}, a netin
T such that

(x},x3)—=(x1,x3) and f;(x],x3)—(x;,xy).

Let (xX},¥3)E Ry be such that o X o(xX|,x5)=(x},x5). Then after
passing to suitable subnets:

(X} . X5) = (xX1,Xy) and £;(X) ,X5)—(z1.,22).

Clearly, o X o(x,X;)=(x;,x3) and o Xo(z,,z3) =(x;,x),s0 z; and
z, are proximal.

Let a€ Uy ; then (z,,z;)E TaN Ry and so L(x) ,x3)€ Tan Ry even-
tually. Hence (x} ,X5)E Tan Ry eventually; consequently,
(x1.Xx2)€E TaN Ry . This holds for every a€ Uy, so (x;.X2)€ Q4 and
(x1,x2)E0Xa[Qy]. O
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In section 3. we have seen that one can understand a lot about the (relative)
regionally proximal relation as far as enough almost periodicity is assumed.
In particular, 3.7. shows that (with the usual notation):

Q4lx1=J s H(F)x NJ, 0 Fx .

For some points x € X we can be a little more specific as is shown in the
next corollary (of 5.3.).

5.4. COROLLARY. Let ¢:X—%Y be a homomorphism of minimal tgs, let
XEX and u€lJ,. If x€ (M{voud™d(x)|vEJ4n) then
Q4lx1=J 4 \H(F)x , where F =&%¥.¢(x)) is the Ellis group of ¥
with respect to ¢(x) in G .

PROOF. Construct EGS(¢) and let ¢ : X' - % and o:%X —% be as usual
(e.g. see 1.11. and the discussion preceding it). By 5.3., it follows that

Qulx1=0[ U {Qulx]| x' E0 (x)}] =
=o[ U {Qsl(x.voudp™¢(x))] | x Evoud™¢(x).vE Sy}l

As ¢ is a RIC extension (hence a Bc extension), we know from 3.8. and 3.9.
that

Qul(x.voud™p(x )N =J, oy HE) (X Voudp™e(x)).
By assumption, x Evou¢~¢(x) forevery v EJ . s0
Qslx1=0lU ) sugoo HU (X v 0 ud™0(x)) [V EJg(1)}] =

- U {‘Ivou¢*¢(x)H(F)X I v EJWX)} - Jd,(‘\,)H(F)X . 0

As we do have some knowledge about Qg without restrictions on ¢ . one
could ask whether that helps in determining E, without restrictions on ¢ .
So we have the following (unsolved) question:

5.5. QUESTION. Let ¢:X—%Y be a homomorphism of minimal ttgs. Does
Qo= Qg imply that Q, is an equivalence relation?

Related to 5.5. is the question whether Qg itself is an equivalence relation.
some results concerning that question are gathered in 5.6.. The (almost obvi-
ous) proofs are omitted.



- 101 -

5.6. REMARK. Let ¢:X—%Y be a homomorphism of minimal tigs.

a) Consider the following three statements:
(1) Q; is an equivalence relation;
(i) QgoQyCJRy;
(i) {x} X J g )E(ux)CJIRy forevery xEX (u€J fixed).
Then (i) and (ii) are equivalent and they are implied by (iii).

b) If P,C Q. or equivalently P,CJR,, then
(1) Q; ° Q; — Q; oPy and Q; ° Q; is an equivalence relation;
(i1) the three statements in a are equivalent. O

In [B 77] and [MN 80] characterizations are given for PI ttgs. The philoso-
phy there is to give descriptions that do not depend on the rather “abstract”
co-construction. So they are presented as “internal” characterizations.

5.7. In order to describe the characterization of 1.U. BRONSTEIN define a C-
extension to be a homomorphism ¢: X — % of minimal ttgs such that every
point transitive subttg of &, which has a dense subset of almost periodic
points is minimal.

In [B 77] the following theorem is proven:

THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs with X
metric. Then ¢ is a Pl-extension iff ¢ is a C-extension. (I

A slight generalization of this result will be given in the remarks on chapter
VIIL. namely VI1.4.6. through VII.4.8..

5.8. Let X be a minimal ttg and let K C X be a subset of X containing
at least two points (we shall call such a K nontrivial). A point x € K is
said to be strongly regionally proximal to y in K if y € K and if there are
nets {k;}, in K and {#;}; in T such that

(x,kj)—>(x,y) and t;(x.k;)—>(x.x)

(notation: x € SRP(K,y) ).
In [MN 80] the following theorem is proven:

THEOREM. Let X be a minimal ttg. Then X is not a Pl ng iff for
some w €J there is a closed nontrivial subset K of X such that
K = wK and such that for some (each) x € K, x € SRP(K.y) for all
yeK. O
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This result together with the techniques developed in [E 78] enabled
D. C. MCMAHON and L. J. NACHMAN to generalize the knowledge about metric
PI ttgs to the nonmetric case. For instance they show that every minimal ttg
that has a point with countable proximal cell is a PI ttg. In particular it fol-
lows that a point distal ttg is a PI ttg (Veech Structure Theorem).
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IV

HIGH PROXIMALITY

1. some history

2. irreducibility

3. highly proximal lifting
4. lifting invariants

5. HPI extensions

6. remarks

This chapter is devoted to the study of a special kind of proximal extensions,
namely, highly proximal extensions. These are extensions for which the
points in any fiber are “uniformly proximal”; i.e., the whole fiber shrinks to a
point under the action of M on the hyperspace of the domain.

In the first section we picture the historical perspective of this chapter by way
of a short (hence incomplete) description of almost automorphic extensions
and the Veech Structure Theorem (the point distal equivalent of FST ).

Then, in section 2., a purely topological characterization of high proximality:
irreducibility, is discussed.

In the third section we relate highly proximal extensions to open extensions,
via diagrams AG(¢) and *(¢), in a way similar to the relation between proxi-
mal extensions and RIC extensions, via EGS(¢) and AG(¢), as discussed in
section III.1.. As a result of the comparison of AG(¢) and EGS(¢) it is
shown that in the canonical PI tower for a point distal homomorphism of
minimal ttgs the proximal extensions actually are highly proximal.

The forth section starts with some general considerations with respect to lift-
ing properties in EGS and AG type diagrams. Using these general results we
show for instance that the property of the relative regionally proximal rela-
tion being an equivalence relation is invariant under highly proximal lifting
(by AG(¢) or *(¢) ). The irreducibility result in IV.4.14. enables us to show
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that disjointness and (to some extent) weak mixing are highly proximal lifting
invariants. The intuitive outcome of section 4. is that in many cases we may
study properties of homomorphisms of minimal ttgs just by studying those
properties for open homomorphisms.

Section 5. deals with the highly proximal equivalent of PI extensions, namely
HPI extensions.

In section 6. we give information about what is (well) known and what is
known by now.

Many of the results in this chapter can be found in [AG 77] and [AW 81].

The study of high proximality will be continued in chapter V. in a somewhat
different way. There the maximally highly proximal extensions are related to
certain closed subsemigroups in M .

IV.1. SOME HISTORY

In the seventies one of the main issues in the structure theory of minimal
ttgs was the Veech Structure Theorem. The objective was to find a struc-
tural concept for point distal homomorphisms of minimal ttgs in the
same spirit as FST (1.1.24.).

From this endeavour originated the study of almost automorphic exten-
sions ([V 70]) and, in the generalization to nonmetric ttgs, the concept of
high proximality ([E 73], [Sh 74.76], [AG 77] and [AW 81]). Although
the intention was different, this concept was in fact studied in [Ar 78]
too.

In this section we shall provide some background. Also two examples
are given.

Let ¢:X—% be a surjective homomorphism of ttgs. We call ¢ an almost-
automorphic (a-a) extension if there is a transitive point x € X such that
¢ isonetoonein x ,ie ¢~ ¢(x) consists of a single point.
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1.I. REMARK. Let ¢:X—%Y be a homomorphism of tgs and let % be
minimal.
a) If ¢ is an a-a extension, then X is minimal.
b) ¢ is an a-a extension iff ¢ is proximal and point distal.
c) If ¢ isopen and a-a then ¢ is an isomorphism.
d) If X is metric and ¢ is a-a, then there is a dense G g-set of points
in which ¢ is one to one.

PROOF.

a) Let x € X be a transitive point such that ¢ is one to one in x .
As ¢(x) is an almost periodic point, there is an almost periodic point
x'€X with ¢(x’)=¢(x). Since ¢ is one to one in x ., we have
x =x’ and so x is an almost periodic point with a dense orbit in X |, so
X is minimal.

b) If ¢ is proximal and point distal, then clearly ¢ is one to one in
the ¢-distal points. If ¢ is a-a then ¢ is point distal, for every one-to-
one-point for ¢ is a ¢-distal point. As X is minimal and as a one-to-one-
point for ¢ is a ¢-proximal point, it follows from the second part of 1.5.4.
that ¢ is proximal.

c)Let x€ X be a one-to-one-point for ¢ and let y €Y and
p €M be such that py =¢(x). By IL.1.3.d. Gaa: Y— 2% is continuous,
SO

Pod (V) = (podaa(y) = daapy)) = 7 (py) = ¢7(x) = {x} .
Then for veEJ, :
() =ved (1) =vp lo(pod ()= {p 'x)

and ¢ isone toonein ¢~ (y).
d) Let (X.d) be a metric space and let

B(x.e):={x"€X |d(x.,x")<¢€}.
Then for every x € X and every n €N the set
Ax,n):={y |¢=(r)C B(x.27")}
is open by the upper semi continuity of ¢,4 . Hence
A= UJ{AKx.n) | xEX)

is open for all n €N . Clearly, 4:=¢~ () {4, | n €N} is the collection
of points in which ¢ is one to one; since this set is invariant in X | it is
dense. Moreover,
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A =6 {4, [nENY = M {¢714,]| n EN}.

Hence A is a dense G s-set. O

In [V 70] W.A. VEECH proved that every metric point distal ttg with a residual
set of distal points can be obtained as a factor under an a-a extension of a
strictly-Al ttg (i.e., a strictly-PI ttg in whose tower the proximal extensions
are even almost automorphic). R. ELLIS proved in [E 73] the analogue of this
for the relativized case without requiring the set of ¢-distal points to be resi-
dual. He even generalized it by replacing the metrizability condition by a
somewhat weaker countability assumption (strict-quasi separability). In
doing so he implicitly gave the notion of high proximality.

Let ¢:X—% be a homomorphism of minimal ttgs. Then ¢ is called highly
proximal (hp) if for some y € Y thereis a net {7}, in T such that the
net {1,¢=(y)}, in 2% converges to a singleton.

1.2. REMARK. Let ¢:X—Y be a homomorphism of minimal tigs and let X
be metrizable. Then ¢ is a-a iff ¢ is hp.

PROOF. Clearly an a-a extension is hp. For let x € X' be a one-to-one-point
for ¢, then 1¢~¢(x)= {rx} so the constant net {7, =}, suffices.
Conversely, let ¢ be an hp extension and let X be metrizable. Let
y €Y be such that ¢, is continuous in »° (IL13.e) and let
x"€¢(y"). By assumption, there is a y €Y and a net {1}, in T
such that {7,¢=(y)}, in 2¥ converges to a singleton, say {x}. As X is
minimal there is a net {s;};, in T with s;x —x " . So there is a (diagonal)
net {rj\}x in T with {r%¢"(y)}» converges to {x }. Then
limsy =¢(x")=y" . Since ¢, is continuous in y’ we have

{X* } = ]im[’}\q)"(y) == ¢"'(|im[')v‘,) - ‘1)._0)*) )

hence x” is a one-to-one-point for ¢ . 0

Note that there exists no absolute counterpart of high proximality; i.e., there
is no such thing as a highly proximal ttg. Forif #,X —{x} in 2% then

{x}=Ilimx X =limX =X ;

re., X istrivial.
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The ultimate form of the Veech Structure Theorem would be

1.3. VST. Let ¢:X—% be a point distal homomorphism of minimal trgs.
Then there are a minimal ttg X' and homomorphisms o: % — % and
7:X =% such that ™= ¢oa, o is hp and 7 is strictly-HPI (ie, T
is strictly-Pl and every proximal extension in the tower for T is hp).

X’ d — X,
\7\ /
Y

The theorem is known to be true for the absolute case ( % = {*} ) [MN 80],
[MW 81] and for the case that X is strictly-quasi separable, [E 73] (hence in

case T is locally compact and o-compact).

1.4. EXAMPLE.

Let 7 be a discrete topological group and let % be a minimal ttg for 7 .
Let xo€ X . Then Tx, provided with the relative topology is a completely
regular Hausdorfl space. Let Y = B(Tx) . the Cech-Stone compactification
of the orbit of x(, and let ¢:Y — X be the canonical extension of the
embedding ¢: Txy— X .

Since every continuous map f:7Tx,—Z .with Z a CT, space, extends to
B(Txq), T acts as a group of homeomorphisms on B(Tx;). So % isa
ttg and ¢: Y —X is a homomorphism of ttgs. As the remainder of Y . i.e..
B(Tx¢)\ Txq . is mapped onto X \ Tx, (cf. [G] 60] 6.11.) it follows that
the map ¢ is an almost automorphic extension. Hence, by l.l.a, ¥ is
minimal.

Note that % is the maximal almost automorphic extension of X which is
one to one in the fiber of xg .

1.5. EXAMPLE.

Let T:=2Z ,let Y be the circle (unit interval with end points identified)
and let :=<T,Y.,a> be the rotation over an irrational angle
(a(n,x)=x+na(mod 1), a irrational). Define X:=Y X {0,1} and
provide X with a O0-dimensional CT, topology as follows:

A neighbourhood base at (x,0) is formed by the sets of the form
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(x—€,x] X {0} Ux —e,x) X {1} (€=>0),
and a neighbourhood base at (x,1) by the sets of the form
(x,x +e) X {0} U [x,x +e) X {1} (e>0).

Define an action & of Z on X by a(n(x.k))=(x+na,k) for
k€ {0,1}. Then X:=<T.,X.a> isa minimal ttg (the Ellis minimal set
[E 69] 5.29.).

Let ¢:X—% be the projection; then ¢ is a two to one homomorphism of
minimal ttgs, which is not open. Moreover, ¢ is proximal and, as every
fiber is finite, ¢ is even highly proximal. But ¢ is not almost automorphic
(from this it is clear that X is not metric!).

IV.2. IRREDUCIBILITY

For homomorphisms of minimal ttgs. the notion of high proximality
turns out to be equivalent to the notion of irreducibility for maps known
from general topology. So if equivariance is assumed, high proximality
can be deduced from the topological properties of the map alone.

We shall construct the universal highly proximal extension of a ttg in a
way similar (even equal) to the construction of projective covers (e.g., see
[Wa 74]). This leads to the characterization of the Maximal Highly Prox-
imal ttgs (MHP ttgs) as the Gleason spaces (in case 7" = T, ); and to
the conclusion that a minimal distal ttg is never MHP (unless is it
"trivial”).

Let f:X — Y be a continuous surjection of CT, spaces. Then f is called
irreducible if the only closed subset 4 of X with f[4]=7Y is X itself.

2.1. LEMMA. Let f:X —Y be an irreducible map of CT, spaces. Then
for every nonempty open U in X there exists a nonempty open U’ in
U such that U =U" and U’'= f<f[U’], in particular, f[U’] is

open.

PROOF. Let Ucx be open and nonempty and define
U':=f[Y\fIX\U]l. Then clearly, U’'=f"f[U']CU and U’ is
open and nonempty by irreducibility. Let x€ U and VE, ; then
UNV s @ and open, so V=Y fIX\NWU NV is open and
nonempty. Clearly, V'CU'NUNVCU'NV ; hence UNV #£= & . As
V' was arbitrary, x € U’ . O
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2.2, LEMMA. Let ¢:X—Y be a surjective homomorphism of ttgs and sup-
pose that ¢: X — Y s irreducible.
a) If Y is minimal then X is minimal.
b) If ¥ is point transitive then X is point transitive.
c) If % isergodic then X is ergodic.
d) If Y has a dense subset of almost periodic points then X has a
dense subset of almost periodic points.

PROOF.

a) Let ZC X be a minimal subset. Then ¢[Z]=Y ,s0 Z =X by
irreducibility.

b) Let y € Y have a dense orbit and let x € (1) .
Then ¢[Tx]= Ty =Y : so by irreducibility, Tx = X .

c)Let U be a nonempty open subset of X . By 2.1., there is a
nonempty open U’'C U with ¢[U’] is open in Y . As ¥ is ergodic,
To[U']=Y .so

Y =T¢[U'] = ¢[TU|C¢[TU].

By irreducibility of ¢ . it follows that TU = X .so % is ergodic.

dyLet X'CX and Y'CY be the collections of almost periodic
points in X and Y  respectively. By L10.b, ¢[X']=Y", so
#[X'] =Y’ =Y . Irreducibility of ¢ implies X = X" . a

The following theorem shows the dynamical properties of irreducible maps, it
also explains why we are interested in irreducibility.

2.3. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs. The fol-
lowing statements are equivalent:
a) ¢ is highly proximal,;
b) ¢ is irreducible;
o) 2%:2.8 59 is proximal;
d) 2(;‘ has a unique minimal subset;
e) pod~(v)={px} forall yEY K xE¢"(y) and pEM .

PROOF.

a=blet yeEY, x€X and the net {t,};, in T be such that
lim,,;,¢6"(y) = {x}. Let U be an arbitrary nonempty open set in X .
Let t€T with tx€U ; then ¢t 'UEY, . So for some i, we have
Le(y)C t 'U forall i=i,. Hence U contains a fiber, so ¢ is irredu-
cible.

b=cLet 4 and B in 2J be such that 2*(4)=2*(B)=y €Y
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(e, A and B are closed subsets of ¢~())). Let x € X | and for every
aE Uy let U, be an open set in X with U, =¢"¢[U,JCa(x) (2.1.).
As ¢[U,] is open and nonempty thereisa t,€ T with 1,y €¢[U,]. So

1:97()C 9 ¢[Uo = UsCa(x).
Clearly, 7,6(y)—{x} in 2¥  and so
lim,, 1,4 C limy, 1,6 () = {x} .

Similarly lim,,7,B = {x},s0 4 and B are proximal.

¢ = d Follows from 1.1.23.c.

d=eAs XC2), % has to be the unique minimal subttg of 2,*.
Since for all y €Y and pE€M the set podp~(y) is an almost periodic
point in 2}, we have px€po¢=(y)EX for all x €¢~(y): hence
pod ()= (px} .

e = a Trivial. d

2.4. REMARK.

a) Let ¢:X—%Y be a homomorphism of minimal ttgs. Then ¢ is
open and highly proximal iff ¢ is an isomorphism.

b) Let ¢:X—>%Y and y:Y—>Z be homomorphisms of minimal tigs.
Then o is highly proximal iff ¢ and  are highly proximal.

¢) Let {¢f:Xp—X,|a<B<v) be an inverse system (tower of
height v ) consisting of homomorphisms of minimal tgs. Then
¢ =invlimof is highly proximal iff every of is highly proximal.

PROOF.

a) If ¢ is an open map, then ¢,4 is continuous. So for all y e Y |
x€¢(y) and u€J, we have ¢"(y)=uo¢™(y)= {ux} (2.3.a), hence
¢ 1s one to one.

b and ¢ Follow from the equivalence of a and b in 2.3.. O

2.5. THEOREM. For every minimal ttg %Y there is a universal highly proximal
extension which is unique up to isomorphism (i.e., there is an highly proxi-
mal extension x:% —%Y such that for an arbitrary highly proximal
extension ¢:X—%Y thereisa V: Y —X with x = oy ).

PROOF. As every minimal hp extension of % is a factor of 9, there is only
a set of essentially different hp extensions of % . say {¢:X)—>Y|AE A} .
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Define
O I1{X\ [ A€ A} > by D((xprer) = (DA (X\)he s -

Let X:=®[A#] and ¢:= Qly: XY = A . Then ¢ is a homomor-
phism of ttgs, which is proximal by I.1.21.b. Let € be the unique minimal
subttg of X and ¢:=¢|, . Clearly every hp extension of @ is a factor of
Z under projection (up to isomorphism).

In 2.6. below it will be proven that ¢ is an hp extension.

So ¢:Z—%Y is a universal minimal hp extension. We shall show that it is
unique up to isomorphism.

Suppose ¢':Z — % is a universal minimal hp extension too. As ¢ is an hp
extension of %, thereisa §: 22— such that ¢ =¢'o&. As ¢ is univer-
sal and ¢ is hp, thereisa 1: ¥ —>%Z with ¢’ = ¢pon s0 ¢ = pomnof .

¥ ® > g
sl P ,
¥ >

n S

Let z€ Z |, then ¢(z)=¢(noé(z)); by proximality of ¢, the points :

and noé(z) are proximal in Z. As J.CJ, -, it follows that
(z,m0&(z)) 1s an almost periodic point in ZX Z; so z =noé(z). Hence
noé =1id, andso Z and €' are isomorphic ttgs. O

2.6. LEMMA. (With notation as above:) ¢:Z— % is highly proximal.

PROOF. We shall show that every open set in Z contains a fiber of ¢ . Let
U C Z be basic open and nonempty; i.e., there are «, ..., a, €A and
open sets U, C X, such that U =U'NZ % & , where

U'=UX - - XUy X TI{Xo | a€ A\ {a. . . ., a ).

Note that ¢[U'NX]= (N ¢e (U] 7 & . As U'NZ % @, U’ contains

=1
an almost periodic point, and so W:= inty([U'NZ]) 5% @ (1.14.a). By
2.1., there are open V; C X, such that

B # V=956, [VIIC UiNgs W]
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and for i€ {1,..., n}
B F Vi = 9a[ViIC Ui Ny by [Vi-i].
Define V:=V'NX with
=X s XV, X I X, | a€ AN {a, ..., a, })

Then V = &)“Jb[V] is nonempty, hence VNZ %= & and VN Z contains
a fiber under ¢ . O

The universal (minimal) hp extension of a minimal ttg % will be denoted by
Xo: Y —% . If xq isanisomorphism ¥ will be called a Maximally Highly
Proximal ttg (MHP ttg).

In section 1V.3. we will characterize the MHP ttgs in terms of quasifactors of
M .

In case T is provided with the discrete topology, we can give a topological
characterization of MHP ttgs: as follows:

277. THEOREM. Let T be a discrete topological group and let the ttg
X:=<T,X > be minimal. Then X is an MHP wng iff X s
extremally disconnected (the closure of every open set is open).

In particular, the universal highly proximal extension of a minimal ttg is

Just its Gleason extension.

PROOF. It is well known ([Wi 70] 14.2.5.) that an irreducible extension of an
extremally disconnected CT, space is a homeomorphism. Since the universal
hp extension is irreducible, a minimal ttg with extremally disconnected phase
space is an MHP ttg.

Conversely, let X be a minimal ttg. Let xy:G(X)— X be the Gleason
extension of X (e.g. [Wi70] 14.2.2.), then xy is irreducible. As every
homeomorphism on X extends to a homeomorphism on G(X) and as T
is discrete it follows that G(X)=<T.G(X)> is a ttg and that
Xy : G(X)—X is an irreducible homomorphism of ttgs. By 2.2., G(%) isa
minimal ttg, and G(X) is extremally disconnected. If % is an MHP ttg,
the irreducible map G(X)—% is an isomorphism, so X is extremally
disconnected. O
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2.8. COROLLARY. Let T be a discrete topological group, and let
X=<T,X > beaminimal tig. If X is a distal MHP ttg then X s

finite.

PROOF. Let %X be distal and let ¥ be the maximal almost periodic factor
of X. As k: X > X/Ex =Y isopen and X is extremally disconnected,
Y is extremally disconnected too. However, Y = bT/H for some closed
subgroup H of the Bohr-compactification b7 of T (L.1.14.); so Y is
homogeneous. By [Ak 78] III section 3, it follows that an extremally discon-
nected homogeneous CT, space is finite. Hence Y is finite. Suppose
k:X—% is nontrivial. Then « is distal and, by FST (1.1.24.), it follows that
0: X/E,— Y is a nontrivial almost periodic extension. As Y is finite it
follows from 1.1.22. that X/E, is almost periodic, which contradicts the
assumption of % being the maximal almost periodic factor of X . O

1V.3. HIGHLY PROXIMAL LIFTING

Similar to the construction of the EGS diagram we construct an AG
diagram ([AG 77]). The objective is to show that every homomorphism of
minimal ttgs is open up to high proximality. Using an AG diagram we
characterize the MHP ttgs as quasifactors of 9 generated by the so-
called MHP generators. Also we compare the EGS and AG diagrams
and conclude that, in case ¢ is a point distal homomorphism of
minimal ttgs, AG(¢) equals EGS(¢). Hence it follows that a point distal
map is PIifl it is HPL

3.1. THEOREM. Let ¢:X—Y be a homomorphism of minimal tigs and let
Z be a quasifactor of % . Then there is a quasifactor ¥ of X such
that 2°: % —E is highly proximal.

PROOF. Let 4 =uoA be an almost periodic point in 2" such that
T=9F(A,%) and define ¥:=W(uodp[4],%X). Then 2*:¥ >Z is a
homomorphism of minimal ttgs. Define

ClA]:={BEZ'|BC¢[A]}.

Then wuo¢p[A]€EC[A], so C[A4] is nonempty and clearly, C[4] is a
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closed subset of &' . Let ¥ be a chain in C[4] (ordered by inclusion).
Then L = N{K|K€&€X} is a lower bound for ¥ in €[4], for
L 5 @ and L =lim,,X€cl,\C[4]=C[4]. So, by Zorns lemma, there
is a minimal element C €C[4]. Let p €M be such that C =pog¢p[A4].
Denote the circle operation of M on 2*' by o .

We claim that p 0(2?)~(4) = {C} ; note that

(2 (A)={qodpT[A]|goAd =A}.
Let BEp 01(2°)(4) and let {1}, beanetin T convergingto p . Then,

after passing to a suitable subnet, B =lim#,q, 0 ¢~ [4] for certain ¢, € M
with q,'OA =A . As

Plgiod (Al = qiod[dpT[A]] = ¢iod = A,
we have ¢;0¢[4]C ¢ [4] ; hence
B =limt,q 0 [A]C lims¢ [A]=pod[A]=C .

But C was a minimal element in €[4] so B = C , which proves the
claim.
This shows that 2?: 2 — € is highly proximal. O

3.2. Note that in the above Z={po¢[B]|pE M and BE Z} . For, let
pPEM and BeEZ then B =goA for some ¢g&EM and also
A =vg~'oB for vEJ, . Hence

podT[Bl=pqvg 'odp [BIC pgodp[vg 'oB]=pqodp[A]C
CpodlgoA]l=po¢T[B].

3.3. Remark that % can be represented as a quasifactor ¥ of % uptoa
highly proximal extension 7 by taking =% (in 3.1.), as follows:

Define Y'={po¢p (v)|pEM,yEY} and 7=2%,:% >%. Note
that 7 is one to one in po¢p~(y)E Y’ iff ¢ 1is open in all points of
¢ (py) (use 1IL.1.3.c resp. II1.3.12., 1II3.1l.e to conclude that
¢ (py) =qodp (y) for every g €M with py =gy ). In particular, 7 is
a homeomorphism iff ¢ is open.

34. Let ¢:X—% be a homomorphism of minimal ttgs. We shall con-
struct a shadow diagram AG(¢) for ¢ ,
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X = > %
¢’l l‘i’
ay = > 9

consisting of homomorphisms of minimal ttgs. with the following properties:
agl o and 7 are highly proximal;
ag2 ¢’ Iis open.
Moreover, the diagram is minimal under those properties.
Define %’ as the quasifactor representation of % in % . so
Y= {(pod () [pEM.YEY) = (pod (ro) [ pEM)
for some fixed yp€Y . Let X:={(x,A)EXX Y’ |xEA)} and define

0:X'—>X and ¢': X’ Y’ as the projections, and let 7:=2°|. .

3.5. LEMMA. Let Z=929(A.%X) be a quasifactor of X and let

WCXXZ bedefinedby W:={(x,B)|xeEB&Z}. Then W s

closed and T-invariant and the projection w:W—Z is an open
homomorphism of tigs.

PROOF. Let (x,B)& W ,so x ¢ B . Then there are open sets U and V
in X suchthat UNnV =0, x€U and BCV . Clearly, UX <V>
is an open neighbourhood of the point (x.B) in XXZ and
UX<V>NW =@ ,so W isclosed.

T -invariance is obvious.

Let U'=UX<V,,...,V,>NW be a basic open set in W and note
that,  without loss  of  generalityy, ~we may assume that
Uc U{Vili€(l,...,n}}. Itis easy to verify that

U 1=<Vi,...,V; . U>NZ ;
so 7 is open. O

From 3.5. it follows that, in 3.4., X' = <T ,X’> isa ttg and that ¢’ is an
open homomorphism of ttgs, which shows ag2. As 7 is irreducible (3.1. and
3.3.) o isirreducible too.

For, let (U'=UX<V,,...,V,>)NX" be basic open, nonempty, and
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(without loss of generality) let UC (J{V,|i€{]...., n}} . Then it is
easily seen that ¢'[U’]=<V,,..., Ve, U>NY". So, by irreducibility of
7,thereisa y €Y with 7= (y)C¢[U']C <V,,..., Vo> . Let w€J; ;
then uod™(y)ET(y), so uod™(y)NU # &, say x Euodp~(y)NU .
But then (X IX1T)IC UX <V 065, V,>. As

o (x)=({x}X7r7(y)NX", it follows that U’ contains a full o-fiber.
Hence o is irreducible and, by 2.2.a, it follows that %X’ is minimal; so by
2.3., o is highly proximal, which shows agl.

3.6. The diagram AG(¢) for ¢ is minimal under the conditions agl and
ag2. Consider the following commutative diagram consisting of homomor-
phisms of minimal ttgs, with on the right hand side AG(¢).

w

i -
¢
S

Let ¢ be open and let ¢ and = highly proximal. Then there are
homomorphisms p and » with sop=¢ and 7ov =n. As follows:
Let yo€Y, u€J, . zo=uzgEn(ro), wo=uwoEY(z9) and let
xo=4§&(wg) . Define v:Z—-%Y by v(pzg) =pod~(vo). and p: W—-X" by
1(pwo) = (pxg.p o~ (yo)) -
Note that in order to show minimality of AG(¢) it is sufficient to show that
v is well defined.
Suppose that pzy=gzo. As n is highly proximal, zy=wuon"(yy). By
continuity of ,4 (IL.1.3.d), we have ¢ (z9) =u oy n"(yo) =uo& ¢~ (yo) :
hence ¢ ~(z9) = uo ¢~ (yy) . Again, by continuity of ,4, we have
Pov(z0) =¥ (pzo) =¥ (gz0) = g oY (29) .
So
Pod (Vo) =poéd(z0) = &P oy (20) = £(g 0¥ (20) =
=qo&yY(z0) =q o9 (Vo) :

and » is well defined.
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With the help of the AG diagrams we can characterize the universal highly
proximal extensions as quasifactors of 9 .
Let X be a minimal ttg, xo€ X and ueJ, . Define y:M—X by

Y(p) = px¢ . Consider AG(y):

o
m > o
Yi l?
X > %
T

SO
X'={pevy (x)|pEM)={poM, |pEM}=
={poy(x)|pEM , xEX})={poM, |pEM . xEX)},
and
M ={(p.qov (x0) |p.g EM .pEqoy(xg)} =
={(p.goM)|p.gEM . pEGoM,} .

while y" is open, o and 7 are highly proximal.

3.7. LEMMA. (Situation and notation as above.)
a) {poy (x)|pEM. Xx€EX)} isapartitioning of M .
by The map vy :M—X defined by prpoy (xo) is an open
homomorphism of minimal tigs.
c) X' isan MHP ug
d) X isan MHP ug iff X = X' .

PROOF.

a) As 9 is the universal minimal ttg, o is an isomorphism. Now
suppose that for some p,gEM and some x.x’€X we have
PoY (x)NGgoy (x)5#= T, say rE€Epoy(x)Ngoy (x')* & . Hence
(r.poy~(x)) and (r,qoy (x’)) are elements of M’ that are both
mapped onto r by o ; but o is injective, s0 poy T (x)=¢goy (x').

b) Follows from the fact that o is an isomorphism.

¢) Suppose there is an hp extension ¢:Z—X . For z =uz € Z with
V(E)=uoy(xg) let 8:9M—Z be defined by 8(p)=pz. Then
Y =08 and, since y is open, Y is open. By 2.4.a, it follows that ¢ is
an isomorphism.
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d) If X is an MHP ttg, 7: X' — %X is an isomorphism, so X = X ;
the other way around is c. a

3.8. Let CCM be an almost periodic point in 2 . Then C is called a
Maximally Highly Proximal generator (MHP generator) if CNJ % & and
{poC |p €M} is a partitioning of M .

We shall study MHP generators in chapter V.. The terminology is justified
by the equivalence of a and d in the following theorem.

3.9. THEOREM. Let X be a minimal ttg. Then the following statements are
equivalent:
a) X isan MHP 1g (X = X" see the definition just before 2.7.);
b) every homomorphism ¢:%Y— X of minimal tigs is open;
c) X isafactor of M under an open homomorphism;
d) X =29(C.9%) for an MHP generator C .

PROOF.

a = b Consider AG(¢). Then X = X", for ¥ is an MHP ttg; so
Y=  and ¢ =4¢ isopen.

b = ¢ Trivial.

c=dLet y:9M—>X be open, say y is defined by y(p)=px, for
some xo€uX andall pEM . By Il.1.3.d, vy~ (px¢) =p oy (xyp) . s0

Poy (xo)|pEM} = {y"(pxo) | p EM}

which is a partitioning of M . As u€uoy~(xg), uoy (xg) is an MHP
generator. By 3.3, y:=2":2F(u oy (x(), M) —X is hp. As ¥ is a factor
of vy, y' isopen and so Yy’ is an isomorphism.

d = a Define y:9M—%X by y(p)=poC . Then

Y (poC)={qEM [goC =poC}=poC,

as follows:
Let poC =¢goC .As CNJ # @, u€uoC andso

q=quEqgouoC =quoC =qoC =poC.

Conversely, let gEpoC . As g€EgoC, gEPpoCNgoC ; but C isan
MHP generator, so poC =¢goC .

This shows, with notation as in the discussion preceding 3.7., that X = X’
and so by 3.7. that % is an MHP ttg. O
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3.10. Let ¢:X—%Y be a homomorphism of minimal ttgs. We can construct
a kind of maximal AG diagram for ¢ . which will be called *(¢), as follows:

Xx
' Ll 3
¢‘l l¢
@y’ —> Y
X%

Let u€J and choose xy=uxoE X , yo=¢(xg). Define y:9M—%X by
Y(p)=pxo and §:M—Y by 8(p)=pyo. Then 8§ =¢oy. Analogues to
I11.1.13.b, but using 3.6., one shows that

xoc: X =W (u oy (x0).M)—>X and XY =X (uod (yo),M)—>%

are the universal hp extensions of % and %. Define ¢ :X —% by
¢ (poy(xg) =pod(xg) forall peM . Then ¢ is well defined; for,
let poyT(xg) =g oy (xg), then clearly

PoY (X)) =goyY (x0)Cpod(yo)Ngod(yo).

As {po6~(yo)|p EM} partitions M , we have pod=(yg) =¢ o8 (yy) .
Obviously ¢~ is open and the diagram commutes.
Note that ¢° is an isomorphism iff ¢ is hp (use 2.4.b).

In section IV.4. we shall search for properties on ¢ that will be preserved
under hp lifting; i.e., properties of ¢ such that ¢ in *(¢) and ¢ in
AG(¢) have (almost) the same property.

3.11. If %X is metric, then AG(¢) consists entirely of homomorphisms of
metric minimal ttgs (II.1.1.b); whereas, in general, *(¢) does not (cf. 2.7.).

The next theorem deals with the question whether or not AG(¢) and EGS(¢)
coincide for a homomorphism ¢: X — % of minimal ttgs.

3.12. THEOREM. Let ¢:X— %Y be a homomorphism of minimal ttgs.
a) AG(¢) and EGS(¢) coincide iff for some y €Y and u€J, we
have uo¢p=(y) =uou¢p=(y) (e.g ¢ in AG(¢) is RIC).
b) If ¢ is open, then AG(¢) and EGS(¢) coincide iff ¢ is RIC.
c) If X is metric, then AG(¢) and EGS(¢) coincide iff for some
YEY : M{uoup™(y)|uel,} # .
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PROOF.

a) If AG(¢) and EGS(¢) coincide, then wuo¢p™(y) =uou¢™(y), for all
yeY and u€J, . If uo¢p™(y)=uou¢=(y) for some y€Y and
u€J, , then ’

QF (uod™(y), M)NQF(uougp=(y), M) # 2 ,

so they are equal and AG(¢) equals EGS(¢).

b) Let ¢ be open; then ¢ in AG(¢) is just ¢ . Clearly, AG(¢) and
EGS(¢) coincide iff EGS(¢) reduces to ¢ , which is the case iff ¢ is RIC.

c) Let » be such that baa: ¥ — 2% is continuous in y (IL.1.3.e). So
for every u€J, we have uodp™(y)=¢"(y). If AG(¢) and EGS(¢) coin-
cide, then u oﬁb‘_(y) =uoudp=(y); hence ¢~ (v)=wuou¢(y) for every
u€J, andso

6= M{uoud () [u€J,) # 2.
The other way around can be found in [V 77] 2.3.7.. O

3.13. THEOREM. Let ¢:X—%Y be a point distal homomorphism of minimal
1gs.
a) Let y:Z—%Y be a homomorphism of minimal tigs. If ¢ or ¢ is
open then (o) satisfies the generalized Bronstein condition.
b) If ¢ is open then ¢ is RIC.

PROOF.

a) Let UXVNR,,7# & be a basic open set in Ry . By 1.3.7.(iii),
we may assume (without loss of generality) that ¢[U]=¢[V]. Let x €U
be a ¢-distal point, then for z&€V with ¢(x)=4v¢(z) we have
J. CJyey=J o) =4y (12.10.), so (x,z) is an almost periodic point in
Ry « '

b) Let ¢:Z—%Y be proximal. By a , R,, has a dense subset of
almost periodic points. Define #:%®,,— % as the projection. Then clearly
6 is proximal, so R4, has a unique minimal subset. Hence Ry, is
minimal and ¢ L ¢ . So, by definition, ¢ is RIC. O
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3.14. COROLLARY. Let ¢:X—Y be a point distal homomorphism of minimal
tigs. Then
a) AG(¢) and EGS(¢) coincide;
b) the canonical Pl tower for ¢ is an HPI tower.

PROOF.

a) We show that the map ¢’ in AG(¢) is point distal. Then it follows
from 3.13. that ¢’ is RIC and so that AG(¢) and EGS(¢) coincide (3.12.b).
Let x€ X be a ¢-distal point, y =¢(x) and let we&J, . Then
(x,uodp"(y)E X" (in AG(¢)), and (x,uo¢"(y)) is a ¢'-distal point; as
follows:
Let (x",uo¢™(y)) € X’ : then by minimality of X', thereisa v€&J with
(x" uodp™(¥)=v(x" uod=(y)) . So v EJ i Cd gy =J; and as

Iy =Jdy ved, . Hence (x uod™(y)) =vi(x,uod=(y)) . SO
(x,uo¢p™(y)) and (x",uo¢=(y)) are distal.
b) Follows immediately from a. |

3.15. REMARK. Let X be a point distal MHP 11g, then X is a strictly Al-tg,
(i.e., every proximal extension in the strictly-Pl tower for X is a-a).

PROOF. By 1.3. (VST in the absolute case) and the fact that %X is MHP, it
follows that there is a strictly-HPI tower for %X . As X is point distal, every
map in the tower has to be point distal, which is obvious for the almost
periodic homomorphisms, but which can only occur for the highly proximal
homomorphisms if they are almost automorphic (1.1.b). O

We shall conclude this section with a characterization of open maps which
resembles the definition of RIC extensions (just after 1.3.9.).

3.16. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs. Then ¢
is open iff & L for every hp extension y:Z—%Y of minimal trgs.

PROOF.

"=" Let ¢ be open and let { be hp. Define 6: %Ry — X as the pro-
jection. We shall prove that @ is irreducible (and so, by 2.2.a, that ¢ L ).
Let UX VNR,, bea nonempty basic open set in Ry, . By L3.7.(iii), we
may assume that ¢[U]=¢[V]. By 2.1. and 2.3, there is a y € Y with
Y(y)C V. For x €U with ¢(x)=y we have

0-(x) = {x )X 4~ ())CUX VN R,,.

Hence € is irreducible.
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"«<" Note that it is sufficient to prove that ¢ is open if ¢ _L xq.
where xq:% — % is the universal hp extension of ¥ . For y€Y and
u€J, , we shall prove that ¢“(y)Cuod=(y). Then, it follows that
¢ (y)=uo¢"(y) and, as y and wu€J, are arbitrary, ¢ is open
(IL3.12). Define y:9M—% by vy(p)=py for all pEM . Then
Y =W (uoy(y), M) and xe(poy (y)=py for all pEM . Let
XE¢"(y),then (x,uoy"(y))€E Ry, . So by minimality of %R, . there is
a vEJ with x =vx and uoy (y)=voy (y). As vEvoy (y) we
have

X =VvWXEWoy ()X =voy (y)x =uoyY (y)xCuodp=(y),

for ¢(Y“()x)=Y"()o(x)=y"(y)y =y . =

IV.4. LIFTING INVARIANTS

In this section we deal with the problem: what is left of ¢ after lifting it
using AG (or EGS) type diagrams. We start with general considerations
concerning this problem (4.2. and 4.3.). Those results that are interesting
in their own right, lead to to the conclusions in 4.8., telling us about

E¢., Q¢. and P¢. in relation to Ey, ., Q, and Py . After that

we generalize the point of view to lifting a pair of homomorphisms, and
we show that properties like ” ¢ L ” are carried over to ¢ and ¢

(4.16.).

4.1. Consider the following commutative diagram consisting of homomor-
phisms of minimal ttgs.

&
L /
R

Y > Y

T

Assume that ¢ is proximal and that ¢ X o[Ry] =R, .
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4.2. THEOREM. Under the circumstances of 4.1.:
a) oXo[Py]=Pgy,even Py=(0X0o)[Py]NRy;
b) oXo[Qy] =04
c) Q¢roP¢/ = (o X U)F[Q¢OP¢]Q qu , 50 oX 0[Q¢10P¢/] - Q¢0P¢ .

PROOF. Note that in all cases the inclusion C is straightforward.
b) Let (x,,x;)€ Q4 and let {(x}.,x%)}, and {4}, be netsin R,
and T , such that

(x}.x5)—>(x1.xy) and £;(x},x5)—(x),x)).

Then there are (X}.X3)ER, with o X o(X).X5)=(x},x5). Let
(Xy,X2) =lim(x] ,x3) and (z,.z;) = limy (X .x}) . after passing to suit-
able subnets. Then o X o(x;,x;) =(x;.,x3) and o Xo(z,,23) =(x,x)).
SO (21,2)EPyxNRy =Py . Let aE Uy be open. Then
(21,2))EP4CTaNR,, so 4(xy,x3)ETanR, for all i=i,. Hence
(xy,x5)ETaNR, for all i=i,, and so it follows that
(X,,X,) =lim(x} .X5)E TaNR,. As a was arbitrary, (X,,X,)€ Qy ,
and (x;,x3)=0Xo0(x,.X;)CoXa[Q4].

c)Let (x,,x2)€Q4oPy and let (x7,x%2)E Ry be such that
o Xo(x",x%) =(x;,x3). We shall prove that (x',x%)E QyoPy . Let
z3€ X be such that (x,,z3)€ P, and (z3,x2)€ Q, . By 1.2.7., there is a
minimal left ideal 7/CS; with px,=pz; for every p&€Il . Let
vEJy (1), Then, as J Cy ,

(V23,X2) =v(23,X)E TQy= Q.

Let (z5,z5)€ Q4 be such that ¢ X 0(z%,z5) = (vz3,x3) (by b!) and such
that (z5,z%) =v(z%,z%). Then

o(vx))=vx|,=vzz3=o0(z%) and o(x%) =x;=0(z%).

so vx and z’5 are proximal. As they are both v-invariant, they are distal
too (1.2.8.), hence vx'|1=1z%5. Similarly, xh=2z5. As
¢’ (vx) =¢ (x3) =¢'(x)), we have (x',vx))ERyNPy =Py . Since
(vx.,x%) =(z5,25) € Qg , it follows that (x'),x2)E QgoPy .

a) The proof of this statement is a special case of the proof of ¢
(replace z3 by x;). (]
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4.3. THEOREM. Under the circumstances of 4.1.:
a) Py is a(closed) equivalence relation iff P4 is.
b) If Qy,=Ax then Qy=Py(=Ey).
€) Ey=0Q40Py iff E¢y=QyoPy.
d) If Ey=Qy then Eg,=Q,.
e) If E4=Q¢oPy then o Xo[Eyg]=E,.

PROOF.

a) From 4.2.a it follows that if P, is a (closed) equivalence relation
then Py is a (closed) equivalence relation too.
Suppose that P, is an equivalence relation. First note that this is
equivalent to:

(x1,x5)E Py iff (x1,x5)E Ry and px) =pxsforeverypEM . <

Clearly, if <& holds then P, is an equivalence relation.

Conversely, let P, be an equivalence relation. Obviously, the ”if”-part of
<& is true. Let (x,x%) € Py and let u EJy . As (x5,ux?)E Py and as
P4 is an equivalence relation, (x,ux%)€ Py ; so by 1.2.8., x| =ux}.
Hence for every p € M |, px'} = pux’ = px’ . This proves <.

Let (x;,x;) and (x;,x3) be elements of P, andlet (x;,x3)E Ry with
0 X o(x)],x3)=(x;,x3). By4.2a, wecan find (x7,x%) and (x5,x%) in
Py with oXo(x),x5) =(x1,x;) and o Xo(x5,x%5) =(x;3,x3). Let
u EJX; and v E€J . ; then by proximality of o we have x] =ux and

x3 =vx%. As Py is an equivalence relation it follows from <& that
X} =uxy=ux’ and x3 =vx3=vx5. But then (ux3,vXx3)E Ry . Since
o(ux’) = o(ux’) = ux,, we have by proximality of o that wux’=ux"%;
hence (ux’,vx%)€ Py and

(x).,x3) = (ux4,vxH) € RyNPy =Py.
Consequently
(x1.x3) =0 Xo(x].x3)E0Xo[Py]=P,.

If Py isclosed then, obviously, P, is closed.
b)As QyC(0X0) 0 X0o[Qy] and as, by 42.b, o X 0[Qy] =0,y .
we have by 4.2.a,

QyC (0 X0)[Ax]C (6 X o) [Py]NRy =Py ;

andso Qy=Py(=Ey).
c¢) The “only if”-part follows from 4.2.c.
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Conversely, suppose that for ¢’ we have Ey = QgoPy . We shall prove
that QuoPyoQyoPyC QuoPy . (Then, clearly, Q40P is an equivalence
relation and it is closed. Indeed,

Q400Q46C Q40P 30Q40P3C Q40P C Q400 .

SO Q4oPy=0Q400Q, and, obviously, Q4oQ,4 is closed. Consequently,
E,= Q40P ) As follows:

Let (x;.x3) and (x;,x3) in QgoPy and let (x] .x3)E Ry be such that
0 Xo(x],x3)=(x;,x3). By 42c, there are (x}.x%) and (x5.x3) in
QgoPy with oXo(x.x5)=(x1.x) and o Xo(x5.x%) = (x2.x3).
Let uEJ",; and vEJi‘,; ; then, by 1.2.8. and by proximality of o,

x) =ux’ and x3; =vx45. So
(x) . uxy) =u(x,x2)ET(QyoPy)=TEy =Ey

and, similarly, (vXh.x3)€E Ey, . Clearly, (ux5.vx2)€EPxyNRy=Py .
hence (x| .,x3)E EyoPyoE, = E, . Consequently,

(x1,x3)=0 X a(x) .xS)Ea Xo[Eg] =0 X a[QgoPy]l= Q40P

which proves the ”if”-part.
d) Completely analoguous to the proof of c.
e) Follows from ¢ and 4.2.c. O

4.4. We shall now look for situations in which the conditions of 4.1. are
satisfied. To that end consider the following commutative diagram of
homomorphisms of minimal ttgs.
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4.5. LEMMA. Consider the diagram above. If 1 is proximal and if ()
satisfies the generalized Bronstein condition then o X {[Ryy]= Ry, .
(compare I11.5.2.)

PROOF. Clearly, o X {[Ryy]C Ry, .

Conversely, let (x,z) be an almost periodic point in Ry, say
(x,z)=u(x,z) for some u€J , and let (x’.z)=u(x',z)EX'XZ’
with o X {(x",z’)=(x,z). Then (¢'(x"),.¥(z") =u(d' (x").¥(z')ER,,
for

T(@ (X)) = doo (x') = ¢(x) =Y(2) =Yol (2) =TW ().

As 7 is a proximal map, ¢'(x")=¢/(z'): so (x'.z')E Ry, . Therefore
JR4yCoX{[Ryy]lC Ry, . Since the almost periodic points are dense in
R4y and o X {[Ryy] is closed, the lemma follows. O

46. LEMMA. Let ¢:X—>%Y and ¢:Y—>Z be homomorphisms of minimal
tigs with ¢ open and  hp. Let z€Z , yEY(z) and pEM .
Then ¢~ (py)=pod Yy (z).

PROOF. As ¢,q Is continuous, po¢d Yy (z) =¢"(poy(z)). But ¢ is hp

SO poyT(z)={py}. d

4.7. LEMMA. Consider the diagram in 4.4.. Let v be hp, and let ¢’ and /'
be open. If ¢ or { is openthen o X{[Ryy]= Ry, .
PROOF. Assume ¢ to be open,let y €Y , y’€77(y), and observe that
Ryy= U @)X¥~ @) |peEM}.
By 4.6., it follows that
Ryy = U{ped™m()Xpey 1 () [pEM]}.
As ¢ 17(y)=0"¢"(y) and Y 77(y) =Y (y) we have
Ryy = U{poo o7 ()Xpol ¥ () |pEM]}.
So
o X §[Ryyl= U{0(p oo ()X E@ oty () |pEM) =
= Ufped™()Xpey () [pEM} =
U™ @) Xpey™ ()| pEM)
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by openness of ¢ . Since y"(py)= (J{god (y)| g EM with gy =py} it
follows that

o)XY (py)= U {7 (gp) X goy(v)| g EM with gy =py},

hence that o X {[Ryy]l = U {o" (@)X (@y)|pEM} =Ry, . O

From 4.5. and 4.7. it follows that the conditions in 4.1. are satisfied in the fol-
lowing situations (notations as in 4.1.):

a) o, 7 proximal and ¢ satisfying the Bronstein condition. For
instance: EGS(¢). U (¢), AG(¢) and *(¢) with ¢ a Bc extension.

b) o proximal, 7 hp, ¢ and ¢ open. For instance: *(¢) with ¢
open.

4.8. COROLLARY. Let ¢:X—Y be a homomorphism of minimal tigs and let
¢ X % be the induced map between the universal highly proximal
extensions of X and %Y ( as in *(¢), see 3.10.). Let ¢ be open or let
¢ satisfy the Bronstein condition then
a) P, is a(closed) equivalence relation iff P ” is;

b) if Qy=Ax then Q¢. :P¢.(:E¢.);

) Ey=QuoPy iff Ep=Q 0P,

d if E¢' = Qq). then By= Q4

e) if ¢ is almost periodic (distal) then ¢ = 0ok, where K is hp and
0 is almost periodic (distal).

(compare VIIL.2.1.).

PROOF.

a, b, ¢ and d are immediate from 4.3. and the discussion above.

e) Suppose ¢ is distal. Then P, is a closed equivalence relation, so
P . is a closed equivalence relation by a, and ¢ =00k with k the proxi-
mal quotient map defined by P, and 6 distal. If ¢ is almost periodic.

then Qy, =4y .s0 Q. = P, and @ is even almost periodic. So we only

have to prove that k is hp. As follows:
Let Z = X‘/P¢. and define ¢:Z—% by Y(x(x)) =o(x).
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ol 5
B

i‘b
Y

Observe that it follows from 2.4.b that ¢ and k are hp if ¢ is well
defined.
Suppose that k(x)=k(x’) then (x,x")€E R¢. .80 (o(x),0(x")ER,. As

»

f’X,' o
\ -
¢t i - -~ ¢
S
Gyl
T

¢ s distal (almost periodic), o(x) and o(x’) are distal. As k is proxi-
mal, (x,x’)EPd). , 0 (6(x),0(x")EP,; hence o(x)=o(x") and so
Y(k(x)) =y¢(k(x")) ; e, ¢ is well defined. O

4.9. Consider the next commutative diagram of homomorphisms of minimal
ttgs, considered on the phase spaces.

o
o = X
X /
¢’ X/E ¢ -—£—+ X/E, j‘i’
/ N
Y’ = I §

Let o be proximal. Note that §&:X/Ey— X/E, always exists as a
homomorphism of minimal ttgs, because o X o[E4]C E .

4.10. LEMMA. Consider the diagram of 4.9..
a) If o Xa[Ey]=Ey then & is proximal.
b) If & is proximal and o X 6[Ry] =Ry then o X o[Ey]=E,.

PROOF.

a) Suppose £(k'(x7)) =&(k'(x%)) . We shall show that «’(x7) and
K (x%) are proximal. As {ok’ = koo, we have (o(x)).0(x5)EE,. By
assumption, we can find (z,,z7)€ Ey with 06X 0(z),22) =0 Xo(x),x5).
Then, by proximality of o X o, it follows that (z,,z,) and (x',x%) are
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proximal in X'>X X’ hence (x'(z)).x(z3)) and &"(x').k"(x%)) are proxi-
mal in X/EyX X/Egs. But as (z,.z2)€EEy. K(z))=k'(z3). s0
(k"(x).k"(x%)) is proximal to a point in the diagonal; ie., x(x’) and
k’(x%) are proximal.

b) Let (x;,xy)€E, and let (x7.x5)ERy be such that
o Xo(x7.x% =(x;.x3). Then

E(K' (x) = Koo (X)) = k(x)) = k(x3) = &(k'(x4)) .
so k'(x7) and «'(x%) are proximal. As
(K (x7) .k (x5) =K XK' (x| x5)EK XK' [Ry] = Ry

and as € is almost periodic it follows that &'(x’) = «"(x5) and so that
(X1 x)EEy . []

4.11. In particular, 4.10 applies to AG(¢). EGS(¢) and A(¢p) in case ¢
satisfies the Bronstein condition (compare 4.5. and I111.5.2., 5.3.) and to *(¢) in
case ¢ isopen or ¢ isa Bc extension.

4.12. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs. Con-
sider *(¢) and let the map §&: X*/E¢. —X/Ey be as in 49. If
o X o[E 1= Ey then & is highly proximal. In particular, & is highly
proximal in each of the following cases:
a) ¢ is a Bc exrension,
b) ¢ isopen and Eyz= Qu4oP,.

PROOF. First note that, by 4.5., 4.7.. 43.e and II1.3.9.. both cases (a and b)
imply that ¢ X 6[R .]= R, and o Xa[E]=E,.

As 0:X/E,—Y is almost periodic (notation as in 4.9.), it follows from
48.e, that 6 AX/Ey) — Y" can be written as 6 =wvop., where
p:(X/Ey) —Z ishpand »:Z —Y" isalmost periodic. Clearly, Z isa
factor of X" . and as 6:X'/E_.—7Y" is the maximal almost periodic
extension of Y between X and Y . there is a map n:X/E . —Z

with @ =von. By L.1.21.a, n is almost periodic and so by 4.8.e, the map
7 :(X*/E(p.)' —Z" can be written as 1" =aof3, where B is hp and a
is almost periodic. Note that by high proximality of p., Z* =(X/E,) . so
n =¢ . However, by the assumption, it follows from 4.10. that ¢ is proxi-
mal; hence ¢ is proximal. But then 7" is proximal and, by 1.1.21.a, « is
proximal, so a is an isomorphism and " = B is highly proximal. As ¢’



is open, n° is an isomorphism, so ¢ is highly proximal (for ¢ =7 is an
isomorphism). (.

4.13. THEOREM. Consider the next commutative diagram consisting of
homomorphisms of minimal ttgs. Let o and § be highly proximal.

If ¢ or ' is open, orif (¢'3) satisfies gBc, then
o0 X{:Ryy—0X{[Ryyl
is irreducible.

PROOF. If ¢" or ' is open, or if (¢'.y/) satisfies gBc then for every open
W C Ryy there are nonempty open U and V in X' and Z’ such that
¢'[U]=¢[V],while UXVNRyyCW (byl3.7).

Let W beopenin Ryy andlet U and V' be as above. By 2.1., there is
a nonempty open U’ =0"c[U']CU . As @ # (¢'[U'])°C Y [V] there is
a nonempty open V' ={"{[V’'] with V'CVNY[(¢[U'])°]. Clearly,
UXV'=(@X{ (6 XU X V'], hence U'XV'NRy, contains a full
fiber under o X {:Ryy—0X{[Ryy]. Since U'XV'NRyyC W this
shows that o X {:Ryy—0 X {[Ryy] is irreducible. O

4.14. There are two ”standard” diagrams of the type as exposed in 4.13..
A The one obtained by the *-construction.

Let $:X—>% and y:Z—% be homomorphisms of minimal ttgs. Then we
can construct *(¢,y) as follows:
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Note that ¢" and ¢  are open!
B The one obtained by a double diagram construction.
Let yo€Y and u€J, . Define
Y':={(pod~(ro).pod (vo) | pEM}C2¥x2% .

Then, clearly, %’ is minimal and 7:% —% is hp, where 7 is defined by
TP oo (Vo).p oy (yo) =pyo forall pe M . For let

Tx 2 (Uod (o), X)>Y and 77 : W(uoy~(yo).Z2)—>%Y
be the maps in AG(¢) and AG(¥). Then 77 (y¢)C 7x (yo) X 77 (o) ; hence
uUot (o) Cuol(ry (yo) X 72 (ro)) =
=uoty(yo)Xuotz(yo) = (Uod™(yo),u oy (yo)) ,
and 7 is highly proximal. Define X’ and Z’ by
X :={(x,(4,B))|(A,B)EY " and x €A}
Z':={(z,(A,B))|(A,B)EY andz € B} .

Let ¢/: X' ->%Y, 0:X >%X, ¢V:Z->%Y and {:Z —>Z be the projections.
Using our knowledge about AG(¢) and AG(Y) it is straightforward to show
that ¢’ and ¢/ are open and that ¢ and { are irreducible; hence that
X’ and € are minimal, and so that ¢ and { are hp.

This diagram will be called AG(¢,). Note:

(1) if ¢ and ¢ are open, AG(¢.y) reduces to (o).
(i1)  *(¢.9) and AG(¢,¢) are just two times *(¢) and AG(¢) respectively.
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4.15. Consider *(¢,¢) and AG(¢,¥), with notation as in 4.13..

If (¢.4) satisties gBc or if ¢ or ¢ is open then o X {[Ryy]= R4y . s0
0 X {:Ryy— Ryy isirreducible.

In particular, if ¢ is open or if ¢ is a Bc extension, then o X 0:Ry— R,
is irreducible (in case ¢ is open this is only meaningful in the * version).

4.16. THEOREM. Let ¢:X—%Y and ¢:Z—Y be homomorphisms of minimal
ttgs. Let : refer to *(¢)) and ' to AG(¢p.)).
a) If (o) satisfies gBc then (¢" ") and (¢' /) do.
If ¢ Ly then¢ Ly and ¢ Ly .
b) Let ¢ or y be open. Then (p) satisfies gBc iff (¢ W) satisfies
gBc iff (¢' ) satisfies gBc.
c) Let ¢ or  be open or let (p.)) satisfy gBc. Then
oLy iff ¢ Ly iff ¢ Ly, and
by iff ¢ Y i &Y
PROOF. Notation as in 4.14..
In all cases o X{[Ryy]= R4y (4.5. and 4.7), so o X{:Ryy— R4y is
irreducible by 4.13.. The theorem now follows from 2.2.. a

4.17. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs. Let "
refer to *(¢) and ' to AG().
a) If ¢ is a Bc extension then ¢ and ¢ are Bc extensions.
If ¢ is open then ¢ is a Bc extension iff ¢ is a Bc extension.
b) If ¢ is open orif ¢ is a Bc extension then ¢ is weakly mixing iff
¢ is weakly mixing iff ¢ is weakly mixing.
c) If ¢ isopenthen ¢ is a RIC extension iff ¢ is a RIC extension.

PROOF.

a and b Follow immediately from 4.16..

c) Let ¢ be open. Suppose that ¢ is a RIC extension and let
k:A(Y )—>%Y  be the universal minimal proximal extension of %" . Then
Tok: AWM )Y s proximal, so ¢ L 1ok . Clearly, (tok)” =k, so by
4.16.a, it follows that ¢ L k ; hence, by definition, ¢ is a RIC extension.
Conversely, suppose that ¢  is a RIC extension and let «": (%) —% be
the universal minimal proximal extension of % . Then there is a map
n:A(¥)—>Y with Ton=x". As ¢ is a RIC extension, ¢ L7, and by
openness of ¢, it follows from 4.16.c and the fact that n = (x’)" that
¢ L k" . Consequently, ¢ is a RIC extension. O
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4.18. Note that, by 4.16.c with ¥ = {x} . it follows that X L & ififl X' L &
whenever X and X' as well as € and €' are hp equivalent (two minimal
ttgs are called hp equivalent if they have isomorphic MHP extensions). For,
clearly, every map X — {*} 1is open.

IV.5. HPI EXTENSIONS

We shall briefly discuss HPI extensions. Among others we show for a
homomorphism ¢ = oy of minimal ttgs that ¢ is an HPI extension
iff @ and Y are HPI extensions.

5.1. In 1.3. we already mentioned the concept of an HPI extension. For
completeness we shall define it again:

An extension ¢:X— % of minimal ttgs is called a strictly-HPI extension if
there is an ordinal » and a tower {¢f:9€ﬂ—>9€“ | a< B=<wr} consisting of
homomorphisms of minimal ttgs with X, =% and %, =% such that for
every ordinal a<» the extension S X, —>X, is either almost
periodic or highly proximal.

An extension ¢: X — % of minimal ttgs is called an HPI extension if there is
a minimal ttg X’ and homomorphisms 6: X' —%X and ¢: X' —% such
that ¢ =¢of. @ is highly proximal and  is strictly-HPI (compare
111.4.1.).

* > 9

52. LEMMA. Let ¢:X—%Y be an HPI extension of minimal 1tgs. Then
¢ X —Y s a strictly-HPI extension.

PROOF. Let %' be a minimal ttg such that there is an hp extension
0:%X —% and a strictly-HPI extension ¢: X' =% . As X" =% it is
sufficient to prove that ¢’ : X" - %" is strictly-HPI (for, clearly, ¢ =¢" ).
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Let {¢£:9€B—>9¢a|a<3<u} be the HPI tower for ¢, so X,=X",
Xo=%. Then (5" s either trivial (if y&*' is hp) or, by 4.8.e,
W&t =ton with 7 hp and £ almost periodic (if Y1 is almost
periodic). Hence {(42") :%esr1—Xs | a<v} is an HPI tower for ¢

and so ¢ is strictly-HPI. O

5.3. THEOREM. Let ¢:X—%Y be an open HPI extension, then ¢ is a RIC
extension.

PROOF. As is shown in 52, ¢ has a tower consisting of extensions
W& =é&on: Xys ) — X, with ¢ almost periodic and 1 hp, coming from
almost periodic extensions $E L iR By 4.17.c. it follows that
W& is a RIC extension for every a<<v. As ¢ is the inverse limit of

RIC extensions, ¢ itself is a RIC extension (II11.1.10.c); hence. again by
4.17.c, ¢ is a RIC extension. O

For the following it would have been more elegant if we would have used
pointed ttgs, especially to see that the diagrams involved are commutative.
In spite of that, we don’t, and leave the checking of the commutativity of the
diagrams as exercises for the reader.

54. THEOREM. Let ¢:X —% be an HPI extension of minimal 1igs. Sup-
pose that ¢ = o,

then s strictly HPL

PROOF. We shall prove that " s strictly-HPL. As ¢ = xgoy’ , where
xe: L —Z is the canonical maximal hp extension of Z. it follows that
is strictly-HPI too.

First note that, by 5.2., ¢ is a strictly-HPI extension. So let

(68 :Xp— K | a<B<v}, with X, =%X" and %o =¥’

be a strictly-HPI tower for ¢ (as in the proof of 5.2.).
Let %=%:=% and define y§:X =% by f:=¢

*

and
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6p=105:% —% =% by 6:=8 . Note that (¢§) = oy .

Suppose that %, , Ya:X —%, and 6,:% —X, are defined for all ordi-
nals a<< B in such a way that (¢.)" = b0 .

If B isa limit ordinal define %5 . Y4 and 6; by taking inverse limits.
Suppose that B is a nonlimit ordinal, then i/;,, . Y1 and Oz | are
defined such that (¢f—1)" =g ogf .

(¢§—1)t .
> ("X.’ﬁ—l
Vg1 %,
2
Clearly Q% IQQ(% . . hence E\L/; .ng,‘; o Define iﬂ::‘%/E% -
Then there is a map E:%,;—»@C/EW{. E hence there is a map n:Zp— Xy

(%ﬁ—ﬂx,,;,, almost periodic in the tower for ¢ ). Let 0/3::1)* and
¢,§._1:9(‘ —>%[§ by Yp- = k., where k:% —>GX,*/E¢/,‘, ]:%B is the quo-
tient map. It is readily seen that ()" = fgoys . Observe that Zz—Zz_ is
almost periodic (by definition of %) and so that €3 — %z ;| is strictly-HPLI.
By transfinite induction 2 . ¢/ and 6, are defined such that
(@) =6,00) . As (¢)) = idy- . 1t follows that ¢, 1s an isomorphism:
hence X' =~ ¢, and &, is a strictly-HPI extension of ¥ (by construc-
tion), which proves the theorem after observing that 95:-»%* is just xf . g

5.5. THEOREM. Let ¢:X—Y be a homomorphism of minimal ttgs and sup-
pose that ¢ = fo . If ¢ is an HPI extension then so is .

PROOF. As ¢ =80 oy  and as, by 52.. ¢ s (strictly) HPL it follows
from 5.4. that ¢ s strictly-HPL. Let ¢:X—%, then ¢ is a factor of
xgoy  under an hp map (see the construction of the * diagram). As
xgoy s strictly-HPI, ¢ is HPL O

5.6. Note that for an HPI extension ¢:X—% the diagrams AG(¢) and
EGS(¢) coincide. For, ¢ is strictly-HPI and open, so ¢  is a RIC exten-
sion. Hence, ¢ in AG(¢) is a RIC extension (4.17.). So, by 3.12.a, AG(¢)
and EGS(¢) coincide.
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5.7. THEOREM. Let ¢:% —% be a Pl extension of minimal ttgs. Then ¢
is an HPI extension iff every open { such that ¢ = 8oy (for some 0 )

is a RIC extension.

PROOF. Suppose that ¢ is an HPI extension. Then, by 5.5., a map ¢ asin
the theorem is an HPI extension. Hence, as such a ¢ is (assumed to be)
open, it is a RIC extension by 5.3..

Now suppose ¢ is a PI extension such that every open ¢ with ¢ = 6oy
for some @ is a RIC extension. In particular, ¢ : X" —®" is a RIC exten-
sion, for ¢ = xqo¢ and ¢ is open. Let % = %*/E¢. . Then the map
¢1: X" — %, has the property that its EGS diagram coincides with its AG
diagram. For, clearly, the following diagram is the AG(¢, ) diagram.

%t
o &

>
% X, %

As, by assumption, ¢>f 1s a RIC extension it follows that this i1s also the
EGS(¢,) diagram. Iterating this procedure we construct the canonical Pl
tower for ¢ . and it consists entirely of highly proximal and almost periodic
extensions. As ¢ is a PI extension, it follows that %, = %_ : but also, as
all the proximal maps in the tower are hp, %X, =% . So X' =%, ->% is
a strictly-PI extension, which consists of hp and almost periodic extensions,
hence X" —% is strictly-HPIL. O

5.8. Note that from 5.7. it follows that if ¢:X—% s HPI then
¢ X —% can be constructed by taking maximal almost periodic exten-
sions under %X° and maximal highly proximal extensions successively.

5.9. THEOREM. Let ¢:X—%Y be an HPI extension of minimal ttgs. Let 0
and  be homomorphisms such that ¢ =00y . Then 6 is an HPI
extension. (In other words: a factor of an HPI extension is an HPI

extension.)

PROOF. Let ¢:X—% and 6:2—-%. Define ¢=doxa:X —%. We
shall prove that foxs: & — % is an HPI extension. Hence, by 5.2., foxg is
strictly-HPI and, by definition, # is an HPI extension.

As ¢ is a PI extension, foxs (as a factor of ¢ ) is a PI extension. Let £



- 137 -

and n be homomorphisms such that foxsy = no& and let £ be open.

é

= o !

%' X% —> (i) > GB
" ‘l"l \ X‘ /
¢ Y (]

g ¥ i g
“ 7
K

Then éoy’ : X — Q0 is open; hence. as ¢ is HPL it follows from 5.7. that
¢oy” is a RIC extension. Consequently, & is a RIC extension (I11.1.10.a).
By 5.7., it follows that foxg is HPL O

5.10. COROLLARY. Let ¢, ¢ and 0 be homomorphisms of minimal tgs such
that ¢ = 6oy . Then ¢ is an HPI extension iff 6 and  are HPI

extensions.

PROOF. The “only if”-part follows from 5.5. and 5.9.; for the "if”-part use
3.2 n

5.11. THEOREM. Let ¢:X—%Y be an HPI extension of minimal tigs. Then
the canonical Pl tower for ¢ is an HPI rower.

PROOF. Construct AG(¢):

o
X’ Ll
¢’l l¢
Yy’ = > Y

As o is hp, ¢oo is an HPI extension. By 5.10., ¢" is an HPI extension and
as it is open, it is a RIC extension by 5.3.. So AG(¢) and EGS(¢) coincide.
Define X;:=%X'., ¥ =%X/Ey and ¢;: X, —% as the quotient map.
Then, by 5.10., ¢, is an HPI extension.

Iterating this procedure we construct the canonical PI tower for ¢ . which is
build up by AG diagrams; i.e., the PI tower is an HPI tower. O
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For the next theorem, which characterizes HPI extensions of metric minimal
ttgs, we need the following lemma.

5.12. LEMMA. Let ¢:X— %Y be a surjective homomorphism of tigs and let X
have a dense subset of almost periodic points. If Y, CY s a residual
set then ¢~[Y] is residual in X .

PROOF. Let {A4, | n €N} be a collection of closed nowhere dense subsets of
Y such that

Y\Y(): U{A""’IEN}

Then clearly X \ ¢ [Yo]= U [4,]. So it is sufficient to prove that the
full original of a nowhere dense closed subset in Y is nowhere dense in X .
Let A =ACY be nowhere dense. Suppose that U C ¢ [4] for some
nonempty open U in X | then ¢[U]C oo [A]=A . As X has a dense
subset of almost periodic points, ¢ is semi-open so ¢[U] has a nonempty
interior in Y (I.1.4.b), which contradicts the nowhere density of A4 . O

5.13. THEOREM. Let ¢:X—%Y be a homomorphism of metric minimal t1gs.
Then ¢ is an HPI extension iff ¢ is point distal.

PROOF. If ¢ is point distal then, by 1.3. in the metric case, ¢ is an HPI
extension.

Conversely, suppose that ¢ is an HPI extension. Then. by 5.11., the PI
tower for ¢ is an HPI tower. As X is metric, the height of the tower is
countable (II1.4.8.), and all ttgs in it are metric. Hence there is a metric
minimal ttg X’ and a map o: %X’ — X, which is highly proximal and for all
n €N there are metric minimal ttgs X, and %, such that 7,: %, —%,
is hp and §,:%, ->%,_,; is almost periodic, with =%, and
X' = invIiim%), .

We shall prove that ¢": = ¢poo: X' — Y is point distal; hence that ¢ is point
distal. As all minimal ttgs are metric, the maps %, — %,, are almost auto-
morphic. Let W, C X', be the collection of automorphic points. Then, by
1.1.d, W, isresidual in X/ . Let ¢,: X =X, ; then, by 5.12., ¢, [W,]
is residual. Hence

W:= M{¢n [W.]|n EN}

is a residual subset of in X’ . Let x’€ W and define for every n €N the
points x,:=¢,(x’) and x,:=7,(x},). Then, in particular,
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¢ (x") =Tgodp(x’) =xy. As x'€W , 7, is one to one in xj . hence
J., =J . Bydistality of & . it follows that Jo, =y 050 o =y

Countable induction shows that J,..=J, : hence x’ is a ¢'-distal point

(1.2.10.). ]

5.14. Let ¥ be a minimal ttg. Then there exists a maximal HPI extension of
Y as follows:

First take %" and let %, be the maximal almost periodic extension of %"

(under 9N ). Suppose %X, is constructed. then construct %,.; as the maxi-
mal almost periodic extension of % . If a is a limit ordinal and if Kp s
constructed for all S<<a, then define X,:= invlim{Xg | B<a} . For some
ordinal v, %, =%, (for there is just a set of essentially different
minimal ttgs). Clearly, %, is an HPI extension of &% .

That this is a universal HPI extension of % follows from the next observa-
tion: Let ¢:W—Z be a homomorphism of minimal ttgs. Let kg5 U — W
and kg: % —Z be the maximal almost periodic extensions of W and £
respectively. Then there is a 6: W — % such that kgo = Yorq;. For let
Yas: M— W and yg: M—Z be such that Yoye=7vg. Then Q, C O, .
hence £, CE, . As W=M/E, and L= M/E, . this shows that there
isamap 0: W —Z with kgol = Yokq.

Obviously the universal HPI extension is unique up to isomorphism (note
5.5.). Let ¢y : %y —%U be an HPI extension (A€ A ). Using 2.6. and the
corresponding property for almost periodic extensions it is routine to check
that for every minimal

ZC R4 12en) C IT{Xx

AE A}

the map Z—% is HPL

So we showed the following:

5.15. COROLLARY. Let % be a minimal ttg. Then there is a universal minimal
HPI extension ¢:X— %Y, which is unique up to isomorphism, and ¢ is
regular. In particular, there exists a universal minimal HPI ttg, which is
unique up to isomorphism and which is regular (see V.4. for an other con-
struction). O
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IV.6. REMARKS

6.1.  Section 1. contains some generalities on almost automorphic extensions
and highly proximal extensions, which can be found for instance in [V 70]
and [Sh 76]. The main purpose was to give a glimpse at the historical context
of the rest of this chapter.

The example in 1.4. is the basis for many examples in topological dynamics
(e.g. see [Mk 72] and [M 76.1,78]). Note that for an arbitrary topological
group T, B(Tx,) does not have to be a ttg; i.e.. the action is in general
not jointly continuous. However, there is a maximal compactification-flow
Br (Txy) for Txq in which Tx; is isomorphically embedded (see the
beginning of section 1.2.). Then By (Tx) is the maximal a-a extension of
X which is one to one in the fiber of xg .

QUESTION
Does every nontrivial highly proximal extension admit a nontrivial a-a fac-
tor? lLe, let ¢:X—% be hp and nontrivial. Do there exist a nontrivial a-a
extension ¢:Z—% and some homomorphism 6#:X—Z such that

o =yol?

6.2. In section 2. we study hp extensions with emphasis on the topology.
For that reason we gave a proof of 2.5. and 2.6. without using the action of
St (compare [Sh 76] and [AG 77]).

The results except for 2.7. and 2.8. are standard; 2.7. is basically contained
in [Ar 78] and 2.8. appeared in [AW 81]. With respect to 2.8. we remark that
it was already known that a distal minimal ttg for Z with a 0-dimensional
phase space is equicontinuous ([E 58]). In a stronger version:

THEOREM. [MW 76] If T s the direct product of a compactly generated
separable group with a compact group and if X is a minimal distal tig
with O-dimensional phase space, then X is equicontinuous.

For more details on distality and homogeneity see [B 75/79] 2.11.7. through
2.11.21.
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QUESTIONS

a) Can 2.8. be proven without using the heavy tools (i.e., FST and the
theorem that states that every homogeneous extremally disconnected CT,
space is finite)?

b) Can we give a topological characterization of MHP ttgs in case T does
not have the discrete topology?
Note that if the answer to the question in 6.1. is affirmative, we have:

X is MHP iff X = By (Tx() for every xp€ X .

(g}
~

Do there exist nontrivial MHP ttgs which are point distal?

6.3.  The main part of section 3. is devoted to the construction of "hp” sha-

dow diagrams. The idea of constructing shadow diagrams stems from [V 70].

The intention is to change the homomorphism slightly, but in a canonical

way, such that it has nicer properties and still reflects much of the original

homomorphism.

Although those shadow diagrams can be found in [Sh 76], [AG 77] and [V 77]

we also introduce them here. The proofs are somewhat shorter and the set-

up is chosen similar to the one in [V 77] (especially see 3.6. and [V 77] page

819). Running through the section the following remarks occur:

(i) Theorem 3.1. slightly generalizes [Sh 76] 2.9. and [AG 77] lemma 1.1.
(and the note before lemma 1.2.).

(it) 3.8. and 3.9. can be found in [AG 77]. They form the basis for the study
presented in chapter V..

(ii1) In [V 77] 2.3.5. it is stated that (our) 3.13.c is true for strictly-quasi
separable minimal ttgs (so not necessarily metric). However, this is not
correct as the following example shows (T.S. WU)

Consider example 1.5.. As ¢ is highly proximal, clearly, its AG and
EGS diagrams coincide. But for every y € Y . u €J, we have
uoudp ™ (y)=uo¢p=(y)=u¢d=(y). hence M {uoudp=(y)|u€J,}=2
As T =127, X is strictly-quasi separable (I.1.7.).

(iv) Theorem 3.13. slightly generalizes [E 73] 6.4.. this generalization makes
3.14. easily accessible.

(v) It seems no proof of 3.16. has been published until now.

QUESTION

Can we give an internal characterization of ttgs for which the AG and EGS
diagrams coincide? Note that together with an internal characterization of
PI ttgs (II1.5.7., 5.8.) this could give an internal characterization of HPI ttgs.
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6.4. The forth section is meant to give some justification for the construc-
tion of hp shadow diagrams. We show that the hp lifting has much in com-
mon with the original homomorphism of minimal ttgs. Some of the
preserved properties are preserved under more general circumstances, as is
shown in 4.2. and 4.3.. In those theorems we extend [M 78] 2.1.. In the case
of hp lifting much more can be done as a result of the irreducibility. So for
instance in 4.16. we gave relativized versions of [Ar 78] prop 7., [AG 77]
lemma 1.3., theorem 1.2. under fairly general conditions.

The results in this section are published in [AW 81]. except for 4.2.. 4.3, 4.8.
through 4.12. which are not in the literature.

Note that in 4.17. openness is necessary:

Let ¢ be hp and nontrivial then ¢  is an isomorphism and so it is RIC
and Bc, but clearly ¢ is neither RIC nor Bc.

Also there are examples of homomorphisms ¢ which are not weakly mixing,
while ¢ is RIC and weakly mixing (cf. [M 78]).

QUESTION
a) What about the converse of 4.3.d ?
b) Characterize the homomorphisms ¢: X — % with ¢ X o[R¢.] =Ry,.

6.5. The material in section 5. is the relativized version of a part of [AG 77].
It is contained in here for the sake of completeness and to facilitate the study
in section V.4..
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MAXIMALLY HIGHLY PROXIMAL GENERATORS

I. the circle operation extended
2. generators and quasifactors
3. some dynamical properties
4. the universal HPI g

5. remarks

This chapter is devoted to the study of a special kind of quasifactors of 9 .
namely the ones that represent the MHP tgs.

The techniques originate from the idea of 1. AUSLANDER to extend the action
of Sy onattg X toan action of 2% on 2V,

The first two sections are mainly spent on investigations of the techniques
themselves. In section 1. we define the action of 2™ on 2Y (more or less)
as an extension of the circle operation (I1.3.). which results in a semigroup
structure on 2" . The idempotents in (2Y.0) are the subsets of M that
generate the MHP tigs as quasifactors of I .

In section 2. we study those MHP generators of 9 and the quasifactors
thereolf.

Several dynamical properties can be characterized in terms of the idempo-
tents in (2M o) : in section 3. we do this, for example. for regularity and the
Bronstein condition. In particular, we give a partial answer to the question
whether or not an open Be extension is a RIC extension. We show that this
is the case if the map is regular.

In the forth section we construct the universal minimal HPI ttg for 7. In
doing so we construct idempotent sets in 2" that generate interesting incon-
tractible ttgs, that will be useful in chapter VI..

Almost all results of the sections 1., 2. and 3. appeared in [AW 81] as a result
of the cooperative research with (and initiated by) J. AUSLANDER.
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V.1. THE CIRCLE OPERATION EXTENDED

We introduce a semigroup structure on 2% and for every ttg X a
semigroup action of 2% on 2¥ . which in a certain sense extends the
circle operation (as discussed in I1.3.). Anticipating on that we shall
denote the operation under which 2% s a semigroup as well as the
semigroup action of 2> on 2¥ with "o ",

Special attention will be given to (the internal form of) the idempotents
in the subsemigroup M o) of (25’,0 ) . For instance we show that
an idempotent C in (2" .0) s fully determined by two components.
an idempotent part C NJ and a group part C NuM for some
(every) ue CNJ .

Let %X be a ttg. Remember that the circle operation is defined as the exten-
sion to Sy of the action of 7 on 2% . In that respect it may be useful to
memorize that for every 4 C X' the map

ps:Sr—2" defined by prpod (p € Sy)
is continuous; i.e., if {p,}, 1sanetin Sy convergingto p andif A CX
then {p, oA}, convergesto poA in 2Y (NB: poA:=p oA )
Now let R C Sy and 4 C X . then define a subset RoA4 of X by

RoA:= U{I‘OA II‘ER}.

I.LI. THEOREM. Let X be atig. A C X nonempty and R C Sy .
a) If RE2" then RoA 2"
b) Rod =RoA . ’
¢)  The map py 2% 2K defined by S+ S oA for every S € 9,

IS continuous.

PROOF.

a) Let {x;}, be a convergent netin RoA andlet x =limx; be its
limit in X . Let r,€R be such that x,€r,0o4 for all i . As Sy is
compact, there is a subnet {r;}, such that r, -r for some r & Sy . Then
reER =R andso roACRoA . But

X = limx/ € limz\(rl 0oA)
and by continuity of p, we have

limz\(l‘/ 0A)= (limrl-)oA =roA .
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Hence x€EroA CRoA and R oA is closed.

b) As RoA gﬁoA and RoA is closed (by a), it follows that
mg EOA :
Let xERoA ,say xEroA for some rE R . Then there exists a con-
vergent net {r;}, in R with r =limr, . Hence, by continuity of p, .
roA =limy,rioA . Let U be an open neighbourhood of x in X , then
<X,U>(=<U=>") is an open neighbourhood of red in 2¥. So
rioA € <X,U> for some i, hence r,oANU % @& and, consequently,
RoANU % @ . As U was chosen arbitrarily, we have xERod ;
hence RoACRoA .

c)Let ACX, RE 2" and let L=l U,> be a neighbour-
hood of RoA in 2¥ . We shall construct a neighbourhood ¥ of R in
2% such that

SoAde <U,, ..., U,> for all SeV.
As RoANU, #= @ for ie{l, ..., n} . we can find r, € R such that
rieANU, 5= @ forevery i€(l,..., n)y. As py:Sr—2% is continu-

ous, there is a neighbourhood V, of r, in S7 such that voANU;, % &
for all v €V, (for <X.U,> isa neighbourhood of r,oA4 in 2% ). Let

Then R oA C U : so, by continuity of p, and by compactness of R. there
isanopen W in Sy with RCW and WoA C U . Define

Vi=<W.,V\0NW, ..., V,NW>.

Then V' is a neighbourhood of R in Sy and SoA4 € <U,, ..., U, >
forevery SEV . O

1.2. LEMMA. Let X beattg ACX andlet R and S be subsets of Sy .
Then So(RoA)=(SoR)oA .

: s
PROOF. First suppose that R €2" .
It is clear, that for each 1 € T we have

(toR)oA =tRoA =t(RoA)=1to(RoA).

As the mapping pp o R is continuous, it follows from I.1.c that the map-
ping p-(poR)oA is continuous. Also the mapping prHpo(RoA) is
continuous. Since 7 is dense in S; and as the mappings pr(poR)o A
and prpo(RoA) coincide on the dense subset T , we have
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po(RoA)=(poR)oA forevery p € Sy . But then
(SoR)oAd = J{(soR)oA |sES} = J{s0(RoA)|sES} =
=So(RoA).

Now suppose that R C Sy is not necessarily closed.
As. by definition (I1.3.). poR =poR for every p€E€S; . we have
SoR =SoR and similarly So(RoA)=So(RoA). Soby LLb.

So(RoA):So(RoA):So(EoA).

As Re2 it follows that
So(ﬁoA):(SoE)oA =(SoR)oA :

hence So(RoAd)=(SoR)oA . which proves the lemma. O]

1.3, THEOREM. With respect to the circle operation 27" is a CTy semigroup

with continuous right translations, in which 2™ is a closed subsemigroup.

PROOF. The statement for 2°" follows immediately from 1.1. and 1.2..
For 2™ note thatif RCM and SCM then SoRCM . O

1.4. It is obvious that 2" contains idempotents under the circle operation
(2" ) is a CT, semigroup!).  We shall call them idempotent sets in
(2".0). A subset C of M will be called an idempotent subset of M if
CoC = C . Some examples are:
(i) Every idempotent in M | considered as a singleton set. is an idempotent
setin 2M.0).
(i) The set M is an idempotent set in @M q) .
An interesting collection of idempotent sets is formed as follows:
(ii1) Let X be a minimal ttg and let x € X .
Then M,:={p €M |px =x} is an idempotent subset in (2" o).
For

MyoM)x =(MyoMy)o{x} =M oM, o{x})=M,o(M,.x)=
=M. o{x}=M,x =x .
and so

M.oM . C{peEM|px =x}=M,.
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Let vE€J, ; then
M.\' = M‘.,l' = M‘.o{\’}’; M,\'OM.\ %

hence M, oM, =M, and M, is an idempotent set in M .0).

It is still an unsolved question., whether or not every idempotent subset
in (2¥.o) can be obtained in this way (for almost periodic idempotents
see 2.1.).

Idempotent sets in (2".0) give rise to interesting quasifactors of I (see
section 2. below). Therefore we shall study them now more closely.

1.5. REMARK. Let C be a nonempty subset of M .

a) If CoCCC ,then CNJ #* & and CoC =C ,ie, C isan
idempotent subset of M .

by Let uwelJ . If C is an idempotent subset of M . then C and
uoC are idempotent sets in (M .03,

c) Let B, be an idempotent subset of M  for all a1l . If
B:= M {B.|aEIl} 5 @, then B is an idempotent subset of
M .

PROOF.
a) For every ¢ € C we have

(€coC)(coC)C(coC)o(coC)C(coC)o(CoC)C(coC)oC
so by 1.2,
(¢oC)(coC)C(coCloC =¢o(CoC)=coC(C.

Then ¢oC is a subsemigroup of M and clearly it is closed. Hence. by
[.2.2.a, it follows that ¢oCNJ 5= @ . Since ¢coCCCoC =C , we have
CNJ # @ .say veCnJ . By l1.22b, Cv =C , so

C=Cvr=Co{y}CCoCCC,

and so C is an idempotent subset of M .
b) By definition, CoC =CoC ,and by 1.1Lb, CoC =CoC . If C
is an idempotent subset of M we have

50(-‘:(_“0C:C0C:5,

so C is an idempotent set in M .0).
Let u€J , then by 1.2, we have (o C)o(uoC)=uo((Cou)oC). As
Cou =Cu =C , it follows that (uoC)o(uoC)=uo(CoC).Soif C 1is
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an idempotent subset of M we have
(UeClo(UoC)=Uuo(CoC)=uoC ,

and uoC turns out to be an idempotent set in (2" ,0) .
) Suppose that B:= (\{B,|aE 1} @ | then for every aE 1 we
have

BoBCB,oB,=B,.

Hence BoBC (N {B,|a€E!l} =B and by a, it follows that B is an
idempotent subset of M . O

1.6. LEMMA. Ler C and D be subsets of M andlet ueJ .
a) If C =uoC then uC =CnNuM and uC is J5(OM.u)-closed in
uM .
b) u(oCoD)=uuoClu(uoD)=(uoC)NuM).((uoD)NuM) .
¢) If C isan idempotent subset of M and u € CNJ | then

uC = CNuM :(-‘ﬁuM:u(-’:u(uoC)

and uC is an N (IM.u)-closed subgroup of uM (which is con-
tained in C ).
d) Let KCJ ,then u(uoC)=u(KoC).

PROOF.

a)As uC CuoC =C , we have uC C CNuM . On the other hand
CNuM =u(CNuM).,.so CNuM CuC . Hence C NuM = uC .
To show that uC is F(I.u)-closed, we have to prove that
uC =u(uouC) ., which follows from the following sequence of equations
and inclusions:

U(UouC)=uuo(CNuM))C u(uoC)=uC = uuuC Cu(uouC).

b)By a, (uoC)NuM)=u(uoC) and ((uoD)NuM)=u(uoD),
SO

(o C)YNuM)((uoD)YNuUM) = u(uoC)u(uoD)C
Cu(uoCouoD)y=u(uoCoD).

Conversely. let pEu(uoCoD). Then p =up and pEcoD for some
¢ =uc€uoC . For, there is an r€EuoC with pEu(roD)CuroD .,
and, clearly, ur €u(uoC).
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Then it follows that
(ue) 'p =uue "peuc tocoD =uoD .
which implies that (uc¢) 'p € u(uo D) and
p =ucu(uoD)Cu(uoClu(uoD).
Hence u(uoCoD)C u(uoC)u(uoD) and so
UWoCoD)=u(uoC)lu(uoD).
¢) Clearly,
uC CCoCnNuM :(‘ﬂuMgfﬂuM :u(gﬁuM)guf
and
ug:u.u(:(;u(uo(-"):u(uo(‘)gu(Co(‘):uC .

which shows that the desired equalities hold.

As uoC =uo(uoC), it follows from a and from II1.2.3. that u(uoC) 1is
SO, u)-closed in uM . But uC =u(uoC).so uC is (I, u)-closed in
uM .

From b it follows that

UUo C)=u(UoCoC)=u(uoClu(uoC).

Hence uC = uCuC and so uC is an §(9M,u)-closed subsemigroup of
uM . By 1.2.6., uC is a subgroup of uM .

d) By IL.3.11.a, we have u(voC)=u(uoC) for every veEJ . But
then

UKo C)= J{u@oC)|vEK} =u(uoC). 0

1.7. THEOREM. Let C be an idempotent subset of M . Let K =CNJ ,
ueJ and A =uC . Then C =KA =KoA . In other words: C
can be written as the product of its "idempotent part” and its " group part”,
and for a fixed u , this decomposition is unique.

PROOF. Let vE K ( K is nonempty by 1.5.a); then by IL.3.11.b, we have
vovC =voA . Hence

KACKoA = |J{voAd |vEK})= |J{vovC |vEK].

But for every v € K
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VovCCKoKCCCoCoC =C

soO KACKoACC .

Conversely, if ¢c€C and weJ with we =c¢ . then w =c(ue) ', By
1.6.c, vC is a F(9.,v)-closed subgroup of vM for every vEK : so
A=wC is a JF(9M,u)-closed subgroup of uM . As uce€uC =4 .
(uc) 'eA4 andso w =c(uc) '€ CA . But

CA=CuCCCouoC =CoC =C,

so weC , hence welCnNJ =K and ¢ =wuc€ KA . Consequently,
CCKA and C = KA = KoA .

It is obvious that the way in which C can be written as the product of sub-
sets of J and uM is unique. O

1.8. REMARK. Let u€J and F a subgroup of uM . Then clyop ,F is
an 5 (M, u)-closed subgroup of uM and uo F s an idempotent set in
(2" .,0).

PROOF. We shall prove that u o F is an idempotent set in (2" o). Hence,
by 1.6.c, it follows that wu(uo F) is an §J(9M,u)-closed subgroup of uM .
As by 111.2.3., clyop ., = u(u o F) , this proves the corollary.

By I1.3.11.c and by the assumption of F being a subgroup of uM . we have
foF =uofF =uoF forevery fE€F ;so

FoF= | J{feF|fEF}=uoF.
But then it follows that
UoFouoF =uoFoF =uouoF =uofF

or, in other words, u o F is an idempotent set in (2¥ o). O
In theorem 1.7. a structure is given for the idempotent subsets of M (com-
pare this with the structure of M itself given in 1.2.2.¢). It is not yet known
whether or not every subset of M which has that structure is an idempotent
subset; i.e., necessity of that structure for idempotent subsets of M s

shown, but sufficiency is still an open question.
The remainder of this section will be devoted to this sufficiency problem.
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1.9. LEMMA. Let KCJ, u€J andlet C be an idempotent subset of

M .

a) KoC =K'A=K'oA for A =uC and K'=(K-C)NJ .

b) If u(uoK)CC then uoKoC =K'Ad =K'oA for A =uC
and K' = (uoKoC)NJ .

In particular, this applies to the idempotent subset uoA of M . for an

N (O, u)-closed subgroup A of uM .

a) KoA =K'A=K'oA for K'=(KoA)NJ .

b) If u(uoK)CA then for K’ =(uoKoA)NJ we  have
UoKoA =K'A =K'oA .

PROOF.
a) Clearly,

K'ACK'oA =K'ouCCKoCouCCKoCouoC =KoC ,

so we only have to show that KoCCK'A . Let pEKoC and veEJ
with vp =p . As, by 1.6.c and 1.6.d.

up EU(KoC)=u(uoC)=uoC =4 ,
it follows by 1.6.c that up '€ A . So
v=pup "NEKCYACKoCouCCKoC .

which implies that v € K" and p =vup € K'A .
b) Clearly,

K'ACK' oA =K' ouCCuoKoCouCCuoKoCouoC =tioKoC ,
so we only have to show that wo Ko C C K’A . Note that, by 1.6.b,
U(UoKoC)=u(moK)u(uoC).
By 1.6.c and by the assumption, we have
UUo Ko C)=uuoK)u(uoC)CuCuC =A.A =A .

From this the statement follows in a way similar to the proof of a. (]

1.10. REMARK. Let u€J and let A be an ¥ (IM,u)-closed subgroup of
uM , such that u(uoJ)CA . Then JoA and uoJ oA are idempo-
tent subsets of M .
In particular, if A contains the Ellis group of the universal minimal point
distal 1tg with respect to a distal point, then JoA and uoJoA are
idempotent subsets of M .
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PROOF. By 1.6.d, u(JoAdoJoA)=u(uoAoJoA), and by 1.6.b,
U(moAoJoA)=u(muoA)u(uoJ)u(uoA):
so by assumption, it follows that
U(JoAoJoA)=u(woA)u(uoJ)u(uoA)CTAAA = A .
But then
JoAoJoACJu(JoAoJoA)CTJACSoA :

hence JoA is an idempotent subset of M . By 1.5.b. it follows that
uoJoA isanidempotent subset too.

Let B = (%X,x) ., where % is the universal minimal point distal ttg for
T and x, isadistal pointin X . Then Jx;= x, and so

Uuold)xg=u(uoldxg) = uxy= xg .

which implies that w(uoJ)C B . If A is an J(9M,u)-closed subgroup of
uM such that BC A then u(uoJ)C A . Hence, by the above, JoA
and uoJ oA areidempotent subsets of M . O

1.11. THEOREM. Ler C be an almost periodic point in M und let C have

the form C =KoA for some K CJ and some 5(OM.u)-closed sub-
group A of uM . Then C is an idempotent set in M o) iff
cCNJ =CoCnNJ.

PROOF. If C is an idempotent subset of M | then clearly.
CoCNJ =CNJ .

Conversely, suppose that CoCNJ =CNJ ; we have to show that
CoC=C. Let w€Je ;then woCoC =CoC . and by 1.6.b,

WwoCoC)=wwo(C)wwoC)=wCw(C .

As C =KoA , it follows from 1.9.a" that C =K’A for K'=CnNJ . So
wC =wA and

wwoCoC)=wAwA = wA .
Let p€ CoC ; thenfor vEJ with vp =p we have
v =pwp) 'ECoCowd .

But from IL.3.11.b it follows readily that CowAd = CoA . s0
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Cowd =CoA =KoAoA =Ko(AoA)=KouoAd =KoAd =C .

Hence vECoCowA =CoC, and by assumption, it follows that
vECCNJ =CNJ ;so

p=vwpe(CNJ)wA =K'.wA =K'A=C.

Consequently, CoC C C and C isan idempotent subset of M . O

1.12. THEOREM. Let C be an idempotent subset of M , ueJ , KCJ
and K'= Ko CNJ . Then the following statements are equivalent:
a) KoC isan idempotent subset of M ;
b) voCoKUKoKCKoC forsome vEK ;
¢) voCoKUKoKCK'M and u(uoK)C uC for some v €K .

PROOF.
a=b By assumption, KoCoKoCCKoC . Let vEK and
we CNJ : then

VoCoK =voCoKowCKoCoKoCCKoC

and KoK =KowoKowCKoCoKoCCKoC .
b=cByl9a, KoC=K'A for A =uC : so

VoCoKUKoKCKoC =K'ACK'M .
By 1.6.d. u(uoK)=u(KoK): so
UUo K)YCu(KoC)=u(K'A)y=uA = A =uC .

¢ = a We shall prove that voCoKCKoC and Ko KCKoC . It
then follows that

KoCoKoC =Ko(voCoK)oCCKo(KoC)oC =KoKoCoC(C ,
and so that
KoCoKoCC(KoK)oCC(KoC)oC =KoC .

Hence Ko C is an idempotent subset of M .
As, by 1.6.d, u(KoK)=u(uoK), wehave u(KoK)CuC . So

KoKCK'MNJuC = K'uC

and, by 19.a, KoKCKoC .
By 1.6.b,
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UUoCoK)=uoClu(uoK)C u(uoC)uC C
Cu(uoCouoC)=u(uoC).
Let we CNJ then u(uoC)=uw(woC): soby l.6.c. it follows that
u(uoC)=uwwoC)=uwC = uC .
As, by I1.3.11.a, u(voCoK)=u(uo-CoK), we have
UWoCoK)=uuoCoK)Cu(uoC)=uC ,
sO vo(C oK CJuC . But then
voCoKCK'MNJuC = K'uC =KoC

which proves the implication. O
The proof of the following remark is left as an easy exercise for the reader.

1.13. REMARK. Let u€J , KCJ andlet A be an (M, u)-closed sub-
group of uM . Define C:=uoKoA and K’ = CNJ . Consider the
following statements:

a) C isan idempotem set in (2M.o )

b) uoAdoKUuoKoKCC;

¢) u(uoK)CA and uoKoAoKCK'M .

Then a and b are equivalent and ¢ implies a and b .

If A =uC then a, b and ¢ are equivalent. |

V.2. GENERATORS AND QUASIFACTORS

In 1V.3.8. we introduced the notion of MHP generator, which was
defined to be an almost periodic point C in 2 with CNJ # &
and such that the collection {poC |p €EM} forms a partition of
M | and which is characterized by the property that 2F(C,9R) is an
MHP ttg. We shall characterize the MHP generators as the almost
periodic idempotent sets in (2™ ,0) . We shall study the quasifactors of
O generated by MHP generators and the quasifactors of MHP ttgs
from that point of view. For instance we give a necessary and sufficient
condition (in terms of idempotent subsets of M ) for an MHP quasifac-
tor of an MHP ttg to be a factor of that MHP ttg.
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2.1. THEOREM. Let C be an almost periodic point in 2™ | say C =uoC .
Then C is an MHP generator iff C is an idempotent set in (2™ o) .

PROOF. Suppose that C is an MHP generator. As CNJ # & . say
ve CnJ , it follows that for every ¢ € C we have ¢ =cvEcCCcoC .
Hence CNcoC % &, and as {poC |pEM} is a partition of M |
C =coC for every c€C . But then CoC = | J{coC|cEC}=C
and C is an idempotent set in (2" o).

Conversely, let C be an idempotent set in (2M o). Then by 1.5.a,
CNJ # @ . Define §:= {coC |c€C}: then F is partially ordered by
inclusion. It is not difficult to show that, for every chain (under inclusion)
{¢;ioClier in G, theset (M {¢oC|i€l} isof the form ¢oC , with
¢ a cluster point of {¢;}; in M (so, certainly, ¢€ C ). By Zorn’s
lemma, the family % contains a minimal member (under inclusion), say
C’'=c¢"oC for some ¢’'€C . As C is an almost periodic element in
2M it follows that the orbit closures of € and C’ coincide, i.e..

(poC|lpEM)={poC'|pEM]}.

So it is sufficient to show that {poC’|p € M} forms a partition of M . As
follows:
First note that

C'oC'=¢"0oCoc¢’'oCCc¢'0CoColC =¢'oC=C",

so €’ is an idempotent subset of M and C'=c¢’oCCCoC =C . Let
pEC’ then poC’"=pc’oC and pc’'€EC'CCCoC =C .50 poC'EYF.
As C’ is minimal in &, from the fact that po C’C C'o C’" = C’ it follows
that peC'=C".

Next, consider p and ¢ in M such that poC'NgoC’' 5 @ | say
repoC’'NgoC’. Then for a net 1, -»p and for p,E€ C’ we have
r =lim¢;p; and so

rOC':(limtipi)OC':limz\f,p,OC':]imz\t,(p,OC').
As p€C’, pioC’'=C" and s0 roC’'=1lim,;C"=poC’. Similarly,
roC’"=qoC’” and so poC’=¢goC’.Hence {poC’'|pE M} isa parti-

tion of M if {poC’|pE M} is a covering. But that is evident by the
fact that C'NJ 5= @ (1.5.a). O
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2.2. COROLLARY. The MHP tigs are just the quasifactors of M  generated by
the almost periodic idempotent subsets of M .

PROOF. Cf. 1V.3.9.. O

So the MHP ttgs are fully determined by the idempotent subsets of M .
This is similar to the characterization of the universal proximal extensions by
the Ellis groups (I11.2.10.). More of this similarity may be seen in V.3.9. in
relation to II1.1.6..

2.3. REMARK. Let C be an almost periodic idempotent set in (2™ o). Then
PEGoC iff poC =¢oC and pEC iff poeC =C.
In particular, for u € C NJ | the Ellis group of 2%5(C.9N) with respect
to C in uM is equal to uC .

PROOF. As C is an almost periodic idempotent set in (2" .0) it follows
that CNJ #* @ (1.5.a). So for every pEM ., pEpPC CpoC . Hence
the first two statements follow from the fact that {poC |p € M} is a parti-
tionof M. Let u€CNJ and a€uM . Then uoC = C and, clearly,
aoC =uoC iff a€uoC |so

GF(C.M).C)=uoC NuM = uC . .

Let CCM be an almost periodic element of 2™ . Then we shall denote
the ttg 2%(C.9) by €. If no base point is specified, then we shall consider
C to be the base point. A homomorphism ¢:C— 9 must be understood
as an ambit morphism

¢ (2F(C,M).C)—(25(D.,M).D)

(unless stated otherwise).

2.4, THEOREM. Let u€J and let C and D be MHP generators with

uecny .

a) Theset poC(up) ' is an MHP generator for all p E M .

b)  There is a homomorphism ¢:C—D iff CCD .

¢) The tgs C and D are isomorphic iff C =aoDa ' for some
a € uM .

d) Let ¢:C—9D be an ambit morphism, then ¢ is regular iff
C=doCd™" for all d€uD . In particular C is regular iff
aoCa '=C. forall a€uM .
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PROOF.

a)Let pEM and note that poC(up) ' =(poC)(up) ' . As the
map P, i M —M is an isomorphism ([.2.3.c), the collection
{gopoC(up) '|gE M} partitions M . Let vEJ with wp =p . Then
v =p.(up) '€EpoCup) ' 50 poClup) 'NJ 5* @ and poC(up) ' is
an MHP generator.

b) Suppose that C C D ., then ¢:poCrpoD:C—-D is well defined.
For, let poC =¢goC . Then poCCpoD and poC =goCCqgoD |, s0
poDNgoD % & ;hence poD =¢goD .
Conversely, let ¢:C—® be well defined. Let ¢ € C ., then C =c¢oC
(23)andso D =¢(C)=¢(coC)=coD . Hence, by 2.3., ¢ € D ; conse-
quently, CCD .

c) Suppose there is an isomorphism between € and @ , say ¢:C—D
with ¢(C)=aoD for some a€EuM . As P, M- M, defined by

e, (p) = pa ' . is an isomorphism of ttgs, it follows that 2" ' a® L 0M g

an isomorphism of ttgs. Hence
2p" I:(GD.a oD)—>(W(aoDa 'M),aoDa ")

P .
is an ambit isomorphism. But then 2° 0¢:(C.C)—(9,F) is an ambit

isomorphism, where F =aoDa '. As F is an MHP generator (a) it fol-
lows from b, that C = F .
Conversely, let C =aoDa ' for some a€&uM . Then the map

2P, (C.C)—(D.aoD) is an isomorphism of ambits. For 2P R, 2R s
an isomorphism and 29"(C) =Ca=(aoDa “a=aoD .

d) Suppose that ¢ is a regular map and let 4 &€ uD . Then, as
deuDCDDCD ., we have ¢(doC)=doDCDoD =D =¢(C): so
(C.doC)EJR,. Hence there is an isomorphism 6:(C,C)—(C.doC)
(see the discussion just before 1.2.15.). As

2 (@.doC)—>(9F(doCd ™"\ M).doCd ")
is an isomorphism,
2 0:(C.C)—(F(doCd ' \M).doCd )

is an isomorphism. Since by a, doCd ™' is an MHP generator, it follows
from b that C =doCd ".

Conversely, assume that C =doCd ' for every d €uD . Let poC and
goC in € with (poC,goC)EJR,,s5ay (poC.goC)=(poC,vgoC)
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for some v €J . Then

(uoC,up 'goC)=up '(poC,qoC)ER,,
so for d =up 'qg we have

dsD =pldeCy=¢licCl=usD=D

and d € D NuM =uD . By assumption, it follows that doCd ' = C . But
then

2%:(@,C)—(2WF(C,M),doC)
is an ambit isomorphism, and
2p"(vpoC):vpoCd:vpo(doCdfl)d:vpdoC :vpupflqu =vgoC .

This shows that there exists a map 2":@— @, such that poC is mapped
onto ¢ o C ; hence it follows that ¢ is regular. a

In the remainder of this section we shall study quasifactors of MHP tigs.
For that we need some notation.

As we use the circle operation with respect to quasifactors of M as well as
to quasifactors of quasifactors of 9 it seems convenient to distinguish

between them by denoting the action of S on 22" by 1 . Soif §c2M
is a closed set in 2" (with respect to the Vietoris topology) then
poS =lim;S in 22" for some (every) net 1, —»p .

A source of ambiguity is the fact that we shall consider a closed subset C of
M both as a closed subset of M and as an element of 2¥ . Let D C Sy
and let C be a closed subset of M . Then define

D . C:={doC|deD}C2" ; compare this with:

DoC=|J{doC|dED})CM and

DC = | J{dc |deED.ceC}CM.
If we consider C as an element of 2" | then we can define a map
pc:Sr—2M by ppoC ;ie., pc is the right multiplication with C of
elements of S7 ( the evaluation mapping in C ., induced by the action of
Sy on 2¥ ).
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2.5. LEMMA. Let C be an almost periodic element of 2™ and let D C Sy

be a closed set.

a) D C isa closed subset of 2™ | hence of 2F(C,9M).

b) pa(D C)=(poD) C forevery pE Sy .

¢) The almost periodic elements of 2% are just the subsets of
QF(C.,9%) of the form B C , where B is an almost periodic
element of 2M .
Hence the quasifactors of 2F(C,9) are just the tigs of the form
WX(B - C,2(C,9M)) for BE2M almost periodic.

PROOF.

a) As pc: Sy —2M s continuous, it is a closed map. Hence it follows
that D . C =pc[D] is a closed subset of 2™ . and so a closed subset of
QF(C.,9n) .

b)AS ppiSr—2¥ s a homomorphism, also b :ZS’ -2 is a
homomorphism; so pc[poD]=p ipc[D] and

@poD) C=pclpoD]=pupcD]=pur(D C).

¢) Let B be an almost periodic element of 2¥  say B =voB for
some v €J . Then by b,

B.C=(@eB) C=va(B-C):

hence B C is an almost periodic element of 29F(C-T0)

Conversely, let 4 be an almost periodic element of say
=woAd forsome weJ .Let B'={p&eEM |poCEA}; then,as C

is an almost periodic element of 2" | we have 4 = B’. C . Hence, by b, it

20F(C.M)

follows that
A=woAd=wnoB" C)=woB’") C

and, clearly, wo B’ is an almost periodic element of 2 . a

2.6. THEOREM. Let C be an MHP generator, C=24(C.,9M) and let

uelJ .
a) Let D be an almost periodic element of 2M  Then 5(D - C,C)

is homeomorphic to 25(D o C.9) by the map p defined by
pp oD C)=poDoC forevery peEM .

b) The quasifactors of C are just the quasifactors of W of the form
W(DoC., M) for D=uoDE g (up to the isomorphism men-

tioned in a).
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PROOF.

a) Note that it is sufficient to prove that for every p and ¢ in M
we have pu(D C)=qu(D C) iff poDoC =goDoC .
Suppose that po(D C)=¢go(D - C). Then by 25b, we have
(poD) C=(qoD) C. Let rEpoDoC ; then rE€soC for some
SEpoD . As soCE(PoD) C ,also soCE(gqoD) C ; so there is an
s'’€qoD with s0C =5s'0C . But then

r€soC =5soCCqgoDoC ,

and so poDoCCqgoDoC . Similarly, goDoCCpoDoC ; hence
poDoC:quoC.

On the other hand, suppose that poDoC =goDoC ,andlet rEpoD .
Then

roCCpoDoC =goDoC ,

s0 roCNsoC #* @ forsome sEgoD . As C is an MHP generator it
follows that roC =s0oC , which shows that roC =s5s0C€E(qoD) C .
So (peD) CC(gqoD) C andsimilarly (goD) CC(poD): C . hence

puo(D: C)=@oeD) C=(qoD) C=gn(D C).

b) From 2.5.c and 2.6.a it follows immediately that the quasifactors of
C are just the quasifactors of 9N of the form 2F(D’oC.IM) for
D’e2M  almost periodic (up to isomorphism). Clearly, the ttgs
QW(D'oC. M) and 2F(uoD’'oC . 9M) are equal, and D:=uoD’ is such
that D =uoD . O

As every extension of an MHP ttg is open, it follows from IV.3.3. that every
MHP factor of a minimal ttg % is an MHP quasifactor of %X .

We shall now be concerned with the converse in the case of X being an
MHP ttg.

27. THEOREM. Let C be a regular MHP generator (i.e., C is regular).
Let % be a quasifactor of €., say Y= (D C.C) with
D =uoD €2M and suppose that D can be chosen to be an MHP
generator. Then % is a factor of € iff Do C is an MHP generator.

PROOF. If DoC is an MHP generator, then by 2.4.b. there is an ambit
morphism

O (CuoC)=(W(D-C,M),DoC).
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For uoCCuoDoC =DoC (DNJ # @ )and uoC is an MHP gen-
erator (see 1.5.b and 2.1.). By 2.6.a, ¥ is isomorphic to 2¥(D o C.9M) ; so
% is a factor of C.

Conversely, suppose that % is a factor €. so there is a homomorphism
Y:C—Y such that Y(uoC)=a (D C) for some a EuM . As uoC
is an MHP generator we have (1o C) (4o C)= {uoC}, hence (identifying
Y with 25(D o C,9) by the homomorphism indicated in 2.6.a):

aoDoC =yY(uoC)=y[(uoC) (uoC)|=(uoC) (aoDoC).

But then for every ¢E€wuoC we have aoDoC =couoDoC and so
doDoC =CoaoDoC ; hence

DoC =da 'oCoaoDoC .
As C isregular, ¢ 'oCa = C ; so
DoC=a '"oCoaoDoC=CoDoC .
This implies that
DoCoDoC =Do(CoDoC)=DoDoC =DoC.

in other words, D o C is an MHP generator. 0

2.8. THEOREM. Let X be an MHP 11g, say X = 25(C.9) ., where C is
an MHP generator with  C =uoC for some u€J . Let ¥ be an
MHP g which is a quasifactor of X.. Then % is a factor of X iff %
is homeomorphic to 2¥(D.9N) for some MHP generator D with
D =uoD and CCD .

PROOF. The "if”-part follows immediately from 2.4.b.

Conversely, let Y = 5(D o C,9) for some D with D =wuoD € oM
(2.6.b) and let ¢:X—% be a homomorphism of minimal ttgs. Let
a €uuM be such that ¢(C)=aoD oC and define

D'=uo{pEM |paoDoC =aoDoC}=uoM, p_ c.

Then by 1.4.(iii) and 2.1., D’ is an MHP generator and as C . C = {C} ,
we have

aoDoC =¢(C)=¢[C - C]=CoaoDoC,

so CCD’. But, ¥ =95(D’,9M) , and so by the assumptions of % being
an MHP ttg, it follows that Y = 25(D",9) .
O
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V.3. SOME DYNAMICAL PROPERTIES

In this section we consider dynamical properties in relation to the theory
developed in the previous sections. In particular, for two homomor-
phisms ¢:X—>% and ¢Y:Z—Y of minimal ttgs we give a criterion
in terms of MHP generators that guarantees ¢ and ¢ to satisfy the
generalized Bronstein condition. As a result we prove that. in case the
homomorphism under consideration is regular. an affirmative answer can
be given to the question whether or not an open Bc extension is a RIC
extension. Also we shall discuss disjointness from the point of view of
MHP generators.

3.1.  The situation we shall study comes down to the following:

Let ¢:X—% and ¢:Z—Y be homomorphisms of minimal ttgs and let
¢ X - and ¢ :¥ —%Y  be the MHP liftings of ¢ and ¢ (see
IV.3.10.). To be more precise. fix vu€J . yo€uY . xo€udp~(ry) and
Z0E uyT(ro) . Define C:=uoM, =uo{peM |pxy=xgp}.
D:=uoM, and F:=uoM. . Then C . D and F are MHP genera-
fors, X' =€, ¥ =@, € =9 and ¢ :C—D and ¢ :F—D are the
MHP liftings of ¢ and ¢ (note that CUF C D !).

3.2. THEOREM. Let ¢ and ¢ be homomorphisms as in 3.1.. Then with nota-
tion as in 3.1. we have:
a) the maps ¢ and " satisfy the generalized Bronstein condition iff
D =CouDoF Iﬁ D =FouDoC ;
b) ¢ satisfies the Bronstein condition iff D = CouD o C .

PROOF. Obviously, b follows from a; so we only have to prove a.
Suppose that ¢ and ¢~ satisfy gBc. Then by 1.3.8..

Ry, =THC)Xuy "¢ (C)).
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As uy "¢ (C)={aoF |aoD =uoD and a € uM} it follows that
uy "¢ (C)={uoF|a€EwWoDNuM)=uD}=uD  F,

and so

R, , =T{C}XuD F).
Let d€D . Then (C.doF)ER . . for ¢ (C)=D =doD =y’ (doF).
So there is a net {¢}, in 7T and there are d; € uD such that
1(C.dioF)—>(C.doF) in R. ..
Let p =limzy,u € M (after passing to a suitable subnet). Then
C=limtoC =limti(uoC)=IlimtiuoC =(limtiu)oC =poC ,
and as u € C it follows that p € C .
As d;, = ud; , we have that limrs,d; = limtud; € p ouD ; so it follows that
doF =limr(dioF)=(limt;d;)o FE(pouD) F .
Hence do FCpouD oF and so
d€doFCpouDoFCCouDoF .

As de€eD was arbitrary it follows that D C CouDoF . Clearly,
CouD o FCD whichimplies D = CouDoF .

Conversely, suppose D = CouDoF and let (poC,qcF)ER¢.¢., SO
poD =goD .Then as u € CouD o F , we have

g =queqoCouDoF =goD =poD =
=poCouDoF =(poCouD)oF ,

say g EroF forsome rEpoCouD =(poClouD .

Note that g EroFNgoF so roF =¢golfF .

Let s€poC such that r&€souD ; then sEsoCNpoC 5o
soC =poC . Let {t;}; beanetin T with 7, »s andlet d,€EuD be
such that 7,d; —r . Then (C.d;joF)=u(C,d;joF) is almost periodic in

R¢. v and

limlj-(C,d/oF):(liijC,]imljd/-oF):(SOC,rOF):(poC,qu):
hence (poC.goF) is the limit of a netin JR . .. As (poC,qoF) was

arbitrary in R . . it follows that R . . has a dense subset of almost
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periodic points; i.e., ¢  and ¢ satisfy gBc.

So we proved that ¢ and ¢ satisfy gBc ifft D = CouDoF . Inter-
changing the roles of C and F completes the proof. O

3.3. THEOREM. Let ¢ and + be homomorphisms of minimal tigs, and let
¢ be open. Then with notation as in 3.1. we have
a) the maps ¢ and  satisfy the generalized Bronstein condition iff
Dxy= FouDx,
b) ¢ is a Bc extension iff Dxo= CouDxy=J, ouDxy.

PROOF.

a) By 1V.4.16.b, (o) satisfies gBc iff (¢ 4") satisfies gBc. So by
32.a, ¢ and ¢ satisfy gBc ifft D =FouDoC . As C=ueM, CM,
we have Cxy = x, ; hence

Dxyg=FouD oCxy= FouDx,.

Conversely, suppose that Dx, = FouDx . Since ¢ is open, it follows from
1.3.9. that Rgy=T(d"(yo) X {z¢}). So. in order to prove that (¢.))
satisfies gBc, it is enough to show that

o (o)X {20} CIR 4y .
First note that

Dxy=(uoM, )xg=uo(M,xg)=uod™(yg)

and as ¢ is open this implies that ¢ (y() = w0 ¢ () = Dxy .

Let x'€¢ (yg). then x'€ ¢ (vg) = Dxg= FouDxg, say x'€ fouDx
for a certain f € F . Let {1}, be anetin T with f =Ilimz; and let
d; € uD be such that x’=limtd;xy. As fE€F wehave fz;=1z, and

(x".z0) = (x', fz0) = limt;(d; x0.20) -

Clearly, (dix¢.z0)€EJRyy and so t;(d;xg.z9)EJR,, for every i, hence
(x",zo)EJRyy. As x'E€¢"(vg) was arbitrary it follows that
¢~ (¥0)X {20} CJR4y . and so Ryy=JR,y .

b) By a and the proof of a, Dxy= CouDxy=¢"(yo), and obviously,

J.,ouDxgC ¢ (yo) = Dxy .

Let. K=CNJ; then K=@uoM )NJCM NJ=J,. By 17,
C = KouC ; and, as uC CuD , it follows that
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CouD =KouCouD =KouD CJ, ouD .

Hence Dxy= CouDxoCJ, ouDxy and so Dxy=J, ouDxy . n

By III.1.5. it follows that the characterization of gBc in terms of MHP gen-
erators gives rise to a characterization of RIC extensions in terms of MHP
generators, as follows.

3.4, THEOREM. Let ¢ be a homomorphism of minimal ttgs. Then, with nota-
tion as in 3.1, ¢ is a RIC extension iff D = CouD .

PROOF. By IIL.1.5., ¢  is a RIC extension iff (¢ .f) satisfies gBc for every
homomorphism  6: W —-%" . Suppose ¢ is a RIC extension. Define
BCM by B:=uouD . Then B is an MHP generator, and by 2.4.b,
there is an ambit morphism 6: 8 —-® . As (¢ .0) satisfies gBc it follows
from 3.2. that

D =CouDoB =CouDououD ;

hence D = CouD ouD = CouD .

If. conversely, D = CouD . then for every MHP generator F with
F=uoFCD wehave DCDoF =CouDoF ,5s0 CouDoF =D .

As FC D | there is an ambit morphism 6:%—9 (2.4.b), and so by 3.2,
¢ and 6=6" satisfy gBc. Let ¢y:Z—9% be a homomorphism of
minimal ttgs and let zo€uZ be such that (zg)=D . Define
F=uoM. . Then F is an MHP generator with F C D , and the ambit
morphism 6:5—® is the MHP lifting of ¢ (i.e.. ¢ =48 ). By the above
¢ and ¢ satisfy gBc. As ¢ is open, it follows from IV.4.16.b, that ¢
and ¢ satisfy gBc. As ¢ was arbitrary, it follows from IIL.1.5. that ¢ is
a RIC extension. O

3.5. THEOREM. Let C =uoC and D =uoD be MHP generators such
that C C D and the map ¢ :C—D is regular. Then
a) CouD is an MHP generator,
b) ¢ =6 ox,l/* , where x[z* is a RIC extension and 6" is a proximal
extension;
c) ¢ isa RIC extension iff ¢ satisfies the Bronstein condition.
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PROOF.
a) By 2.4.d, we have doCd '=C forall d€uD . So

uD o C = (J{doC |dEUD} = \J{Cd |d€EUD} =CuD C CouD ,
which implies that
CouD oCouD = Co(uD oC)ouD C Co(CouD)ouD = CouD

so it follows that C ouD is an MHP generator.

b) Define F = CouD .then F =uoF and F isan MHP generator
(a). By 1.6.b, it follows that uF =u(uoC)u(uouD)=uCuD , and as
uC CuD we even have uF =uCuD =uD . As uF =®&%,F) and
uD = (D, D) it follows from 1.2.13. that the ambit morphism 0 G50
is proximal. (Note that F = CouD CDouD =D , s0 6" exists by 2.4.b.)
Since CCF and CouF = CouD = F | it follows from 2.4.b that the map
Y"1 C—F exists; and by 3.4.. it follows that ¢" is a RIC extension.

¢) If ¢ isa RIC extension, then ¢ is a Bc extension by II1.1.9..
Suppose that ¢ is a Bc extension. Then, with notation as in b, 6" as a
factor of ¢  is a Bc extension. Hence. as 8" is proximal, 6 is an isomor-
phismand F =D ,so ¢ =4 . Butthen ¢ isa RIC extension. O

3.6. LEMMA. Let ¢:X—%Y be a homomorphism of minimal ttgs and let
¢ :C—D be the MHP lifting of ¢ as in 3.1..
a) If ¢ is regular then o s regular.
b) If ¢ is distal then ¢ is regular iff ¢ is regular.

PROOF.

a) Suppose ¢ is regular. We shall prove that doCd 'C C for every

deuD . As uD is a group, it follows that doCd '=C for every
d € uD and so, by 2.4.d. that ¢ is regular.
Let deuD . As uD =u(uoM,)C uM, . itis clear that (xp.dxo)EJR, .
Regularity of ¢ implies the existence of an isomorphism 6#:%X— % such
that 6(x¢) =dx, . Define C':=uoM, :then § :C—¢€ isthe MHP lift-
ing of 6 and so 6 is an isomorphism too. By 2.4.b, it follows that
C=C". As

(dOCdgl)dXO — dOC‘XO = dX() B
we have that do Cd 'C M, and so that

doCd™'=uodoCd 'CuoMy =C'=C.
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b) Suppose that ¢ is a distal map and let ¢ be regular. Let
(x1.x)ERy=JR, (¢ is distal!), say (x,.xp) =v(x;.xy) for veEJ
and let y;:=¢(x))=¢(xy). Then there is an « EvM such that
Xy =uaxg and so y, =ay,. Let b €vM be such that bx;= x, and note
that y, =byy, so ua 'byy=yy, and wua 'b€uD : hence ub 'a € uD
and. by regularity, of ¢ ub 'aoCa 'b =C . Define 6:X —X by
O(pxo) = pa 'bx, for every pe M . If 6 is well defined then 6 is a
homomorphism of minimal ttgs such that

8(x,) = B8(axg) = aa~"bxg =vbhxg=bxg= x5 ;

hence ¢ is regular.

Let p and ¢ in M be such that pxg=g¢x,. so pro=¢qyo. Then
up lqxo=x0, 50 up 'g€C . As C=ub 'aoCa 'b it follows that
ub 'ap 'gqa 'b€ C and so wupa 'bx,=uga 'bx,. which implies that
pa 'hx, and qa “'hx, are proximal. On the other hand. we have that

o(pa 'bxg)=pa 'byy=pro=qvo=qa 'bvo=o(ga 'bx) :

so by distality of ¢. pa 'bx, and ga 'bx, are distal. But then
pa gy = qa - 'hx, : hence it follows that 6 is well defined, which com-
pletes the proof. u

By now we can give a partial answer to the question whether or not an open
Be extension is a RIC extension (see II1.1.8.), which says that this indeed is
the case if we put on the map the additional condition of being regular.

3.7. THEOREM. Let ¢:X—%Y be a regular homomorphism of minimal tigs.
Then ¢ is open and satisfies the Bronstein condition iff ¢ is a RIC

extension.

PROOF. If ¢ is a RIC extension then we already know that ¢ is an open
Bc extension (I11.1.9.).

Suppose that ¢ is open and that ¢ is a Bc extension. Let ¢ : X" — %" be
the MHP lifting of ¢ . Then by 3.6., ¢" is regular and, by IV.4.17.a, ¢  is
a Bc extension. Hence by 3.5.c, ¢" is a RIC extension. As ¢ is open it fol-
lows from 1V.4.17.c that ¢ is a RIC extension. O
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38. REMARK. Let C =uoC and D =uoD be MHP generators with
CCD . From 35.a we know that CouD is an MHP generator if
¢: C— D is regular. The converse of this statement is in general not true.

PROOF. Let X be a minimal distal ttg which is not regular (note that such a
ttg exists [PW 70]). Then by 3.6.b, the MHP extension X" of % is not reg-
ular. Let x €uX and define F:=uoM, . Then X =9 and the map
Y: X" — (%} is not regular. In terms of MHP generators we can write {
as the ambit morphism

Y (9 (F. ), F)—(29(M,9M), M) .

As % is distal, x is a distal point and J C M, . Hence F =uoJoA | for
A =uM, . So

FouM =uoJoAouM =uoJouM =uoM =M .

So FouM = M while ¢ is not regular! O

We shall now turn to a description of disjointness in terms of MHP genera-
tors. To that end consider the situation as sketched in 3.1. and, in particular,
the upper half of the diagram. So let C =wuoC . D =uoD and
F =uoF be MHP generators with CUFCD and let ¢ :€—®D and

*

Y 19— be the canonical homomorphisms.

3.9. THEOREM. With notation as above, the following statements are

equivalent:
a) ¢ Ly,
b) R oy has a unique minimal subset and (0" ") satisfies the gen-

eralized Bronstein condition,
¢) CoF =D (andalso FoC =D );
d) (poC)N(goF)5*= @ for all elements p and ¢ of M with
p oD = g o D .
PROOF.
a = b Trivial.
b = c By 3.2.a, we know that D =CouDoF(=FouDoC). By
1.3.2., R¢. v has a unique minimal subset iffl (D,D) = &C,C).&F,F).
Hence 2.3. implies that uD = uC.uF ( = uF.uC) , and so we have

D =CouDoF =Co(uCuF)oFC(CouC)o(uFoF)=

=CoFCDoD =D,
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Similarly one proves that D = FoC ,50 D =CoF = FoC(C .

¢=dSuppose CoF =D andlet p and ¢ in M be such that
poD =qgoD . Then poCoF =¢goCoF ,s50 gEpoColF and there is
an r€poC with g€roF . As C and F are MHP generators it fol-
lows that roC =poC and goF =roF ; hence

re(roC)NroF)=@EoC)N(goF),
SO (poC)ﬂ(({oF)#@.
d=alet (poC.goF)ER . . ie, let p and ¢ in M be such

that poD =¢goD . Then there is an rE(PoC)N(goF). As C and
F are MHP generators it follows that roC =poC and roF =¢goF | so

(poC,qu):(roC,roF):l‘(C,F).

But this shows that R . . is the orbit closure of the almost periodic point

(C.F)e R¢. v hence R¢. is minimal and ¢ L4~ . O

&

3.10. COROLLARY. Let X and %Y be minimal rgs and let xo € uX and
voEuY . Then X LY iff M, oM, =M .

PROOF. Suppose X L % : then (xg,y) is an almost periodic point in
XXY . Let v€J be such that vxy=x, and wyy =y, . By 3.9, it fol-
lows that voM, ovo M, =M . As

14 OM\.‘ oV OM\,” =¥ OMY“O M,«“g Mr“OMy 5
X0 L, £ J = il

we have M C M, oM, ; hence M =M, oM, . s
Suppose M, oM, = M and remark that for every u €J thesets uoM,
and uoM, are MHP generators. Let (pxo,qro)€ X XY and note that
qEpeM =M. So qEpoM,oM, say qgEroM, for certain
repoM, . Then goM, =roM, and roM, =poM, ;hence

Pxo.qyo) =((p oM, )xo(goM, )yo)=((roM,)xo.(roM,)yo) = (rxg.rvo) .

which implies that X XY is the orbit closure of (uxy,uy(), and so that
X X %Y is minimal. O
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3.11. REMARK. Let ¢:X—Y be an open homomorphism of minimal ttgs, and
let Y:Z—%Y be a homomorphism of minimal tigs with ¢ L. Then
there is an MHP generator B = u o B and a homomorphism &: % —Z
such that o€ is maximally disjoint from ¢ ; i.e., if ¢ Lyo&on then
n = idg (see also 1.3.1.c).

PROOF. Let yo€Y ., u€lJ, and xo€ud™(vo). zo€uy (yo). Define

i=uoM, :=uoM, and F:=uoM. ; then ¢ :C—9D and
Y :F—>D are the MHP liftings of ¢ and ¢ . Hence by IV.4d.lé.c,
¢ Ly, and so by 3.9.,, CoF =D . Let

§:={A|A=uoACM,A=A0ACF and Cod =D}

be the collection of all MHP generators 4 such that 6:@-—-9 exists and
¢ Ly of. Clearly §5% @ and § is inductively ordered. So by Zorn’s
lemma, there is a minimal element B &€§. Then the ambit morphism
£:(B.B)—>(Z,z¢) is well defined and the MHP lifting of § is just
£ :B-F, while (yof) =y o . By construction, ¢ Ly 0§ | hence by
IV.4.16.c, ¢ Lyoé.

Suppose ¢ L yoon, then ¢ Ly o&on” . Let B’ be the MHP generator
such that the map 7" is defined as the ambit morphism 7" : %' —% . Then
B'CB (24b),s0 B'CF andas ¢ Ly o&on it follows from 3.9. that
CoB’'= D . Hence, by minimality of B , it follows that B’= B and so
n" turns out to be an isomorphism; hence n is an hp extension. As the
codomain of n is an MHP ttg, it follows that % is an isomorphism, which
proves that {o¢ is maximally disjoint from ¢ . O

3.12. REMARK. Let C =uoC, D =uoD, F=uoF and H =uoH
be MHP generators such that CUD UF CH . Then the following

statements are equivalent:

a) uo(CﬂD)oF:H and CoD =H ;
b) uo(FNC)eD =H and FoC =H ;
¢) uo(DNF)oC=H and DoF =H .

PROOF. Consider the ambit morphisms ¢:C—9%, ¢:9D—-I and
6:%— 3. We shall prove that

R¢¢0:{(P°C"/°D~r°F)|P°H =qgoH =roH)

is minimal iff uo(CND)oF =H and CoD = H . As this statement is
symmetric in ¢, ¢ and 6 the remark follows.
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Suppose that R, is minimal. Then, clearly, R, is minimal and by 3.9.,
CoD =H . Define £&:Ryy—I by E(poC.goD)=poH (=¢qoF) and
let the MHP generator B =uoB be defined as B:=uo(CND). Then
B=uo{peM |p(C.D)=(C.D)} and the MHP lifting & of £ is just
the ambit morphism ¢ :B—-3. As R,y = Ry it follows from the
minimality of R, that £ 1 6. Hence, as =6 . it follows that ¢ L6
and so, by 3.9.. that BoF =H ;ie., uo(CND)eF =H .

Conversely, let CoD =H and wuo(CND)oF =H . Then, by 3.9,
¢ L. As above, define the homomorphism £&: %R, — 3 of minimal ttgs.
Then, for B:=uo(CND). we have £ : B -9 is the MHP lifting of £ .
So by 3.9. and the assumption, it follows that ¢ 1 . Since 6 is open it
follows from IV.4.16.c that &L @ : hence Ry is minimal and clearly
Ry = R,y - This proves the remark. O

3.13. NOTE. Let ¢:X—%Y and :Z—Y be homomorphisms of minimal tigs
such that < is maximally disjoint from ¢ . Let &:Ryy— Y be the
induced homomorphism of minimal tgs. If for some homomorphism
0: U —Y of minimal ttgs £ 1L 6, then 6 is an isomorphism.

PROOF. Let Ry p:={(x .z, W)EXXZX W |d(x)=y(z)=0(w)} .

A
\¢\:Gy 4/0 )

Clearly, Ryy9 = Ryp and Ryy9 = Ry, . where n:Ryy— Y is induced by
6 and ¢ . Hence, if 6 L7, then Ry, is minimal. so R, is minimal
and ¢ L 7n. Since n=4yom, and ¢ is maximally disjoint from ¢ . it fol-
lows that 7, is an isomorphism. But then # is an isomorphism. O

3.14. COROLLARY. Let X, %Y and Z be minimal tigs. Let %Y be maxi-
mally disjoint from X, then Z L (X X %Y) iff €= {*}.

PROOF. Clearly, L (X X %) if L= {*}.
Suppose that Z 1L (X X %), then by 3.13., the map 6:Z—{*} 1is an
isomorphism. |



193 -
V.4. THE UNIVERSAL HPI TTG

In this section we shall construct the universal minimal HPI ttg for 7 .
In fact, we construct the MHP generator by which it is generated as a
quasifactor of 9R . The construction uses transfinite induction except for
the case of 7 being locally compact o-compact, where the smallest
MHP generator that contains u oJ o G, is the one that generates the
universal minimal HPI ttg (4.9.b).

In order to facilitate reading and writing we shall fix v €J and denote the
set uM by G (as many times before). In this section only, we shall under-
stand an MHP generator C to be an idempotent subset of M such that
uoC =C ,hence ueC .

Most of the techniques which we shall use were developed in section 1. and
they are stated there more or less explicitly, in this respect we mention 1.1.,
1.5, 1.6. and 1.7.. A lemma which is used frequently in the sequel is
I1.3.11.c; we shall repeat it here.

4.1. LEMMA. Let H be an arbitrary subset of G and let g€ G ; then
goH =uogH . In particular, let A and B be subsets of G ; then
UuoAoB =uoAB .

PROOF. The first statement is I1.3.11.c.
Let A and B be subsets of G ; then

AoB = |J{aoB|a€EA}= |J{uoaB |aEA}CucAB .

SO UoAoBCuouoAB =uoAB CuoAoB and uoAoB =uoAB . 0O

We shall now define some ” incontractible MHP generators”:
Define a family %" of subsets of J as follows
K =(KCJ |uoKoG =M} .
For every K € J define dx to be the smallest idempotent set in M .0)

that contains uoK . Note that by 1.5.c, dx exists. Also we know that

dx =uody . For, clearly, u€uoKk ,so
Uolyx C(uoK)oly Cdygoldg = dy .

By 15b, wuodgx is a closed idempotent subset of M , and as

uoK =uo(uokK), we have uoK Cuodg . So, by minimality of g , it
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follows that uodyx = dg . By 2.1., dx is an MHP generator.

We call dg an incontractible MHP generator, because the quasifactor @
of 9 generated by the MHP generator dy is an incontractible ttg. For, as
M =uoKoGCdgoG we have that dgo(uoG)= M , hence by 3.9.,

%(ak ,%)_L%(MOG.%)( :@T) 6

Define Ag to be the smallest ¥ (9, u)-closed subgroup of G that con-
tains u(uoK).

Note that Ax Cudy . For by 1.6.c. udg is an {F(9.u)-closed subgroup of
G and, clearly wu(uoK)Cudg ;: so, by minimality of Ayx . we have
Ax Cudyg .

It is not yet clear whether or not Ax = udy for every K € % . However,
for some specific kind of K € K this indeed is the case, as is shown in the
following remark.

42. REMARK. Let K€ X . As dax is an MHP generator, it follows from
1.7. thar Qg = K'.udx = K'ouly =uoK'oulyx for K' =dxNJ .
Then
a) K'€X and Qg Cdy ;
b) Ay =uoK’'oAg and Ax = udyg
c) udyg is the [F(OM,u)-closed subgroup of G  generated by

Ag UAg .

PROOF.

a) As dg =uoK’'oudyg we have by 4.1,

g oG =uoK'oulyoG =ucK'oG .

Hence M =uoKoG C koG =uoK’oG and so M =uoK'oG ; ie.,
K'e¥X . Clearly, uoK’'C Qg ,s0 dg Cdg .

b) Obviously, uoK'oAx Cdg and uoK'CuoK’'oAg . We shall
prove that uoK’o Ak is an idempotent subset of M ; then it follows that
e = o s A
First note that

UOK’OAK'OMOK,OAKIQ aKVOaK' = aK'Q aK = K'.uakg K’ .uM .

On the other hand. by 1.6.b,
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u(uoK'ocAgouoK oAg) =u(uoK" ) u(uoAg)u(uoK" ) u(uoAg:) .

hence
U(WoK oAgouoK o Ax)C A AgAg A = Ak .
But then
UoK'oAgouoK oAy CK' uMNJ. Ay = K" Ak ,
hence
Uo K Agy CuoK'oAx CuoK'oAgouoK o Ax CuoK' Ak,
and so

MOK/AK':UOKloAK':uoK'oAKrouoK'oAK;.

This shows that woK’oAyx is an MHP generator and that
Ay =uoK’'oAg . Also it is evident that

udg =u(uoK')u(uoAdg)= Ak .

C) As aK'UAK aK , it follows that AK'UAK (- uaK and so

[Ag-UAg]Cudy , where [Ag U Ag] denotes the ¥ (9N, u)-closed subgroup
of G generated by Ax UAg . We shall prove that

Ay —uoK'o[Ag UAg]:
it then follows that
udy = u(uoK')[AgUAg]=[AxUAk].
As uoK'U[AgUAg]C Ak it follows that
UoK'o[Ax UAg|C Agoldy = Ay .
Since uoKCdAx CK'.uM and uoK CJu(uoK)CJ Ag it follows that
UuoKCK .uMNJ. Ay = K" Ag .
hence
UoKCuoK' Ay CuoK’'o[AgUAk].

If uoK’o[AxUAg] is an MHP generator, it follows from the minimality of

Qg that Ay —uoK'o[Ax UAg]. As uoK’'o[Ax UAg]C dg , it follows
that
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UoK'o[Ax UAglouoK'o[Ax UAK]C K'.uM .
and since u(uoK'o[AxUAg]ouoK o[Ax UAg]) = [AxU Ag] . we have
UoK'o[Ax UAglouo K o[AxUAg]C
CK.uMNJ. [Ag UAg] = K" [Ag U Ag] .
Hence
uoK' o[Ag - UAglouo K o[Agp UAx]CuoK' o[Ag U Ag].

which shows that woK'o[Ax UAg] is an MHP generator and so that
a,\- :MOK’O[AK'UAK] < D

Let K€% . For every ordinal a define the sets a: and Ag inductively
as follows:

a,?::a,\. and AQ:=udly .
If a,ﬁg and Af are defined. then we set L := afﬂj . in 4.3. below we
show that L € K . Define

a,f»% I:: d,; . the smallest MHP generator that contains wol (d;
exists by 2.1., 1.5.c and the almost periodicity of wuo L ); and

A=A, . the smallest (9. u)-closed subgroup of G that con-
tains u(uol).
If y is a limit ordinal and if Cl,f and A are defined for all B<<7v . then
define

aZ::uorHaf|ﬁ<y}amiAg::ruﬁ£|ﬁ<yy

4.3. THEOREM. Let K €K . Then
a) AL =[ARU Ag]. the J(M.u)-closed subgroup of G generated by
AUy ;
b) for every a=0 we have a,?mJ EX .
c) for every ordinal a we have Ag = ucul,gl 2 ,

d) for some nonlimit ordinal v, dyx =dx and ALT'=AR .

0 14
(notation: dg :=dx and Ag°:= Ag .)

PROOF.
a) This is just 4.2.c, since it is clear that Ad=dg .
b) We shall prove this by transfinite induction.

For a =0 the statement is proven in 4.2.a.

«
Suppose the statement is true for every ordinal S<a. Let L:=dxNJ ;
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a+tl
then, by assumption, L €% and by definition, dx =4, . Set

at+1
L':=@a;,NJ ;thenbyd2a, L'€K ,sowehave dy NJEK .

Let a be a limit ordinal and suppose the statement is true for every ordinal
+1

B B
B<a. Then wuo(dxNJ)oG =M and so dx oG =M for every

B<a. As {dx |B<a} 1is a collection of closed sets in M . linearly
ordered by inclusion, it follows that

B . B

N {Ak | B<a} =lim,, (A | B<a} .
By 1.1.c, we have

B . B

(N {ax | B<a})eG =lim,, {Ax oG | f<a} =M ,
SO
a B
koG =uo () {dxk |B<a}oG =uoM =M.

Since, by 1.5.c and 1.5.b, a,? is an MHP generator it follows from 1.7. that
Qy = (Ax NJ )oudy . which implies that

uo(aKﬂJ)oG:uO(a,’:ﬂJ)ouaKOG =uolygoG =dygoG =M .

Consequently, it follows that a,?r;J € K ; so b is proven.
¢)If a=0,then 40 = uay by definition.
Let « be an ordinal, then a,f =LAg is an MHP generator, where
L:= a,:ﬂJ . So, as in 4.2.b, it follows that d; =wuolL oA; and so that
A, =ud; ,hence A = ua,ﬁ‘+I
If o« is a limit ordinal, then it is an easy exercise to show that Ag = ua,? .
d) Note that the family {uo(a,:ﬂ.l) | «=1} is linearly ordered by
inclusion. As uo(a,?mJ)g uolJ , there can be at most |uoJ | different
clements in the family {u o(@xNJ)|a=1). But this means that

a « at1 a+2
uo(@xNJ)y=uo(dx NJ) for some ordinal «, hence dx = dg
B a+1
and Ag"'=A42%?. By construction, it follows that @y = dy and
A=A forevery f=a+1. O

In 4.3.d, we have seen that for every K € % we can construct a kind of

minimal incontractible MHP generator a,(w. Let K% :ameJ . Then
o 2]

dx is the MHP generator generated by the set woK* and, clearly,
a o0 o

a,. =4a,.=dag forevery ordinal «; so in this respect dx is minimal.

K
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Let
K:={KeXK |ag :a,f}

be the family of subsets of J that generate the minimal incontractible MHP
generators.

4.4. THEOREM. Let X be a minimal ttg. Then X is incontractible iff X is
a factor of @k := 2F(dg M) for some K€ K.

PROOF. As discussed before 4.2., @ is incontractible and so every factor of
@k 1s incontractible for every K € ¥ .

Conversely, let X be incontractible. By 1V.4.17.c, X" is incontractible. Let
C =uoC be an MHP generator such that X" = €. As € is incontracti-
ble, it follows that CoG =M . Let K =CNJ : then, by 1.7.. we have
C =uoKouC , hence

M=CoG =uoKouCoG =uoKouCG =uoKoG and KEK .

Construct the minimal MHP generator a,f and let L:= a,:C NJ . Then,
clearly, LE¥X and 4, Cdx CC . So, by 24b, € isafactorof @ . [

We shall now discuss the construction in the special situation of K =J .
Note that JEK ,for M =uoM =uoJG Cuold oG CM . After a short
discussion we shall formulate a lemma and a theorem for this situation, but
those statements can easily be reformulated for the general case of K € K .
This is a kind of lazyness intended to serve the clarity of the story.

Let a be an ordinal, then we denote aj" and A/ by d, and A4,. So
a, is the smallest MHP generator that contains woJ and A, =ud, .
The sets Cljac and A, will be denoted by @ and A respectively. Note
that in this case A, =4, equals A4, . the smallest §(9M,u)-closed sub-
group of G that contains wu(uoJ ), which is clear from the observation that
Ao=da; =uoJoA; .

(By 1.10., uoJ oA, is an idempotent set in ¥ o). As uoJUA,CaQ, .
uoJoA;Cdyod; =d; . So by minimality of d, . uoJoA; =4, .
Clearly, ua; = A;. Ay =A; .)

Define @ _:=M and A ,:=G . Then d_, and A4 _; behave in accor-

dance with the construction. For / =M NJ =d NJ and so d, 1is the

smallest MHP generator that contains wuo(d_NJ)=uoJ ; moreover,
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A_=ud_=uM =G , and A, is the smallest F(IM,u)-closed sub-
group of G that contains u(uoJ).
(In the sequel we consider —1 to be an ordinal preceding 0 .)

As in the preceding sections we shall denote the pointed ttgs
(2%@a,.om).a,) by @ . so the map & — @ will be the canonical
homomorphism from 2%(d,,.9M) 10 2F(Ag,9M) that carries d, over in
dg (a=p). Note that €, is the trivial ambit ( {*},%).

4.5. LEMMA.
a) Forall a= —1 the map @, — &, is a RIC extension.
b) For every a=p the map @,—@& is a RIC extension, hence

A,0Apg=Ag. Inparticular, AoApg=dg for every = —1.

PROOF.
a) By 3.4., we have to prove that d,,04,=d,.
As, by 1.7., A,=(@,NJ)oA,, it follows from uo(d,NJ)C d,4+, that
Ay =uoQu=uo(@NJ)oACAu1104,C A0y =0, ;

so, indeed, d41104,=d, and &, — &, is a RIC extension.
b) As the composition as well as the inverse limit of RIC extensions is
again a RIC extension (IIL.1.10.), it follows from a that &, —@&; is a RIC

extension ( @= B ). From 3.4., it follows that d,0cAg=dz if B<a. So,
in particular, d oApg = dp for every ordinal B . O

4.6. THEOREM. For every ordinal a= —1, doH(A,) is an MHP genera-
tor and the MHP extension of the maximal almost periodic extension of

&, is 2 (Ao-H(A,) ), and for every ordinal = a the following
equations hold:

ApoH(A,) = AoAgH(A) = A oA HA,) =
:aa+l°H(Aa):a°H(Au)-

In particular, & =2%(A oH(G), M) =2 (A0 H(G), M) for every

a=0.

PROOF. Let (%X,x) be the ambit with x = ux , such that 6:(%X,x)—@, is
the maximal almost periodic extension of @, . Then M, =J,.&(%,x) and
X =2F(C.9M), where C =uoM, . As 6 is an almost periodic map,
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x is a f-distal point. Hence

I =1 ={@ed|vrel,=a,3=0a,nJ,
a,

so uo(d,NJ)=uoJ,CuoM,=C , which shows that d,.,CC.
Hence (%X,x) is a factor of @, : moreover, (X.x) is a factor of @ for
every ordinal 8 with B=a+1.

Consider the next diagram with f=a+1 .

¢
@ > @,
€,0) = > (X, x)

Note that ¢: @ — @, is a RIC extension (4.5.a) and that Az and A, are
the Ellis groups of the ambits @ and &, . By IIL3.13., it follows that
(X ,x)=AgH(A,) . As this is true for every B=a+1, it follows that
AgH(A,) = AH(A,) forevery B=a+1.

We may now conclude that C =d,,0oH(4,). For

M, =(@,NJ)As+1H(A4,),
and so
C=uoM,Cuo(@aNJ)oAysi10HAHYC Agi10H(A4,) .
But, on the other hand, d,,, C C and uoH(A4,)C C , so
C=uoM,Cd, cHA)C CoC =C.
By 4.5.b, we know that d,., =d oA ,4+, . Hence (using 4.1.) it follows that
C=Qu1cHA)=AoAyr 0 HAY=A oA, H(A,.
By the above, A4,, HA4, =AHMA, =AzH(4, for every ordinal
B=a+1, hence

C=QAoA, HA)=AoAHA) =AoAgH(A,) (B=a+1).

But this shows, by 4.5.b, that C =doH(4,) = dgoH(A4,) for every
B=a+1. Hence X = 2F(doH(A,), M), doH(A,) is an MHP gen-
erator and the equations in the theorem hold.
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In particular, this holds for a = —1, and as @, is the trivial ambit it fol-
lows that the maximal almost periodic extension of & is just & ; hence

& =% (AoHA_)),M)=25(AoH(G),9M) . =

4.7. THEOREM. For every ordinal «= —1, the maximal HPI extension of
@, between R, and @, is

(%(aa-ﬂc’ (42w ~%)‘aa+ 1o (A4 a)eo)

and Ayi10(Ap) = A oAy 1(Aa) -
As a result in between, we have that A, 0 Hg(A,) is an MHP genera-
tor for every ordinal =1 .

In particular, Qg0 G, is an MHP generator, Qoo G, =doAyG,, and
W (Ao G, , M) is an HPI 1g.
PROOF. First we prove the following claim:
CLAIM:
a) Let F be an J§(9,u)-closed subgroup of G such that
Ay \CFCA,. Then A, o F isan MHP generator.
b) Let C be an MHP generator with d,,,CCcCd,. Then
C =d,0uC ; and, consequently, the map @,,,—€ is a RIC

extension.

PROOF (CLAIM):
a) By 1.6.b and the assumption, we have u(d, 0o Fol,i 10 F)CF ;
and as A,y 10 Fody, 0 FCd, itfollows that

Aui10FoQyi o FC(A,NJ).FC(@uNJ)oF .
So,as uo(d,NJ)CAyy,
Aui10Folyi10oF =uolyi10oFolyi o FC
Cuo(@yNJ)oFCdyysioF

and d,; o F turns out to be an MHP generator.

b) Clearly, A, 10uCC CoC =C .
By 1.7., we know that C =uo(CNJ)ouC . As CNJCdaA,NJ and
uo(@,NJ)Cd,+, we have
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C=uo(CNJ)ouCCuo(@,NJ)ouC Cdys ouC .

So C =d,4+10uC ; and by 3.4., the map &, —C is RIC. [ ( CLAIM)

For every ordinal fB. Hg4, is a normal subgroup of A4,; so
Ao i1Hp(A4,) is an ¥ (9. u)-closed subgroup of G between A,.; and
A,. By 4.1. and claim a, d,;,0cHg(A,) (= dy 1104, 1Hp(A,)) 1s an
MHP generator.
In particular, d,;0(4,), is an MHP generator (for example oG,
(a=—1)). Let

(z.:): (%(aa#lo(Aa)acﬂ%)ﬂaa+lo(An)3€) 5

then NZ,z)=A,41(A ) -

By Ill.4.4.c, the map ¢:(Z,z)— @, is a Pl extension. We shall prove that
every open map ¢:(Z.,z)—(X.x) for which ¢ =60y . is a RIC extension.
By IV.5.7., it then follows that ¢ is an HPI extension.

As such a ¢ is open, % is an MHP ttg (IV.3.9.). So there is an MHP gen-
erator C with (X, x)=¢€ and d,,CCCd,. By claim b, the map
£:@,,1—C is a RIC extension; hence ¢ as a factor of ¢ is a RIC exten-
sion.

It is an easy exercise to show that ¢ is the maximal PI extension of @&,
between &,., and &, : so, certainly, ¢ is the maximal HPI extension of
&, under &, . O

At the moment we know that 25(do G, .9) is an HPI ttg. However, in a

special situation we may conclude that 2%(do G, .9M) is the universal
minimal HPI ttg for T ; as follows:

48. LEMMA. [If X is a metric minimal HPIl ttg then X is a factor of
(Ao Gy, M) .

PROOF. By IV.5.13., we know that a metric minimal HPI ttg is point distal.

So let x € X be a distal point. Then J, =J , hence uoJ CuoM, . As

uoM, is an MHP generator it follows that doCuoM, . As X is a Pl
ttg it follows from I111.4.4.c that G, C &(%X,x). Hence G, CuoM, and

Ayo G, CuoM,ouoM, =uoM, .

By 24b, X' (=2 (uoM, ,9)) is a factor of 2F(Ayo G, , M), s0 X is

a factor of 29 (dyo G, ,9M) .
U
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4.9. THEOREM.
a) If X is a strictly-quasi separable minimal HPI 1tg then X is a fac-
tor of 25(Ayo G, M) .
by If T is a locally compact, o-compact topological group then
W5 (Ago G, \ON) is the universal minimal HPI 1tg for T .

PROOF.

a) If X is strictly-quasi separable then % is the inverse limit of
metric minimal ttgs; say %X = invlim%, , where %, is a minimal metric ttg.
As %, is a factor of X for every «a it follows from IV.5.9. that every %X,
is an HPI ttg. So by 4.8., every %, is a factor of 2%(d0G,,.9M). But
then % is a factor of 2¥(dyo G, ,9M) .

b) If T is locally compact, o-compact, we know from 1.1.7. that every
minimal ttg is strictly-quasi separable. Hence every minimal HPI ttg for T
is a factor of 2¥(dpo G, ,IM). As by 4.7., 2 (dyo G, ,9M) is an HPI ttg
itself, it follows that 2¥(dyo G, .9M) is the universal minimal HPI ttg for
i O

Among others, the following remark is made in order to facilitate things to
be done in chapter VI..

4.10. REMARK. For every K € X we have
a) AxCdAy and Ax C Ay,
b) a,?c Cca and AZFCA . hence for every K& X it follows that
Ay Cda and Ax CA ;
c) AH(G)=A\H(G)=AxH(G) is the Ellis group of & and so it is a
normal subgroup of G .

PROOF.
a)As KCJ ; uoKCuoJ ,so,clearly, dyx Cd, and

AkguakguCIO:AO.

b) Since dyx C d, it follows that for every ordinal «=0 we have
a:g a, . Hence a,(wg aA,=a and Ag° = ua,?og ud = A (43.c). If
K € X then aszaK ,80 AxC A and Ax C A .

c) As & is a factor of &, itis a factor of @ forevery K€ % (by
a and 2.4.b). So & is the maximal almost periodic extension of {*} under
@ for every K€ X . As @ is an incontractible ttg it follows from
II1.3.11. that the Ellis group of & equals AxH(G) for every K€ X .
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This shows that AxH(G) = A H(G) for every K€K . In particular, for
L=anJ wehave AH(G)=A, H(G)=AH(G) (LEXK!). As & 1sa
regular ttg (1.2.17.), it follows from 1.2.15. that A4 H(G) is a normal sub-
group of G . 0

In 4.9. we have seen that 2¥(dyo G, .9) is the universal minimal HPI ttg
in case T is locally compact, o-compact. It is unlikely that this is true
without the restriction on the phase group. But we can construct the univer-
sal minimal HPI ttg in general, in a way similar to the construction of the
&;'s.
Define

Co:=Aay and Co=uCy=4Ay.
Let a be an ordinal and suppose that ¢, and C, are defined. Then
define

C.+1 to be the smallest MHP generator that contains the set
Uo((CaoGy)NJ) and let Coi:=uCyoy -
If B is a limit ordinal and if ¢, and C, are defined for all a<f . then
define

Cp:=uo ({Cy|a<PB} and Cp=uCy.
As the collection {C, | «=0} is a descending family of subsets of M | there
is an ordinal » such that ¢,=¢C,,,=C, for every y=». We shall

denote this “smallest” ¢, by ¢ and C, by C .

4.11. REMARK. For every ordinal a=0 we have
a) aA,CC, and A,C C, . in particular, A CC and A CC ;
by CHG)=AHG)=A4H(G)=CH(G)=CH(G)=AH(G);
c) CuoG, is an MHP generator and u(C,o0G,) = C,Gy . In partic-
ular, Co G, is an MHP generator and CG,, is the Ellis group of
QF(C o Gy, M) with respect to Co G, .
PROOF.
a) Obvious.
b) For every ordinal «a=0 we have 4,C C,C Cy =4y, so

AH(G)C CH(G) = CoH(G) = 4,H(G)
and, by 4.10., it follows that
AH(G) = 4,H(G) = C,H(G) = CoH(G) = 4 H(G) .
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while
AH(G)C CH(G)C CoH(G) = A H(G) .

¢) We shall prove this by transfinite induction.
As Co=dy and s0 CpoG, = Ayo G, , it follows by 4.7. that Cyo G, s
an MHP generator.
Let a be an ordinal and suppose that C,o G, is an MHP generator. Then,
by 1.7., Co0Gyp = L.CyG, for L =(CauoGr)NJ . So

Cous19G50Cu419G s C Cao G0 CpoGyy = CuoGyyC LG
and, by 1.6.b and by the normality of G .

(€110 G0 C41000) = Ci1105Ca+100 = Cas 1l -
So it follows that

Co410G0Ca410G,CLGNJ.Cyi1Gyp =L CoiGoy .
Hence

Coat10G00Ca410G0 mU0Ca110G00Ca4+19CGC UL Cyi oGy
and as oL UCyy1C Cuyy, it follows that
Uo L oCai10GC Coa410Ca+19Gp = Co410 0y .

This implies that C, 4,0 G, is an idempotent subset of M , hence an MHP
generator.

Let a be a limit ordinal and suppose that Cgo G, is an MHP generator
for every B<<a . Then by 1.5.c, 1.5.b and 2.1.,

D:=uo (M {CpoGy|B<a}
is an MHP generator. By 1.1.c, “right circling” with u o G, is continuous, so
N {CpoGx | B<a} =(MN{Cp|B<a})oG .
hence
D =uo MN{CpoGy|B<a})=uo(({Cp|B<a})oGy =CaoGy .

which implies that C,0 G, is an MHP generator.
The additional statements are obvious. d
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4.12. THEOREM.
a) 29(Cyo Gy . M) is an HPI ng for every ordinal a=0 ;
b) 2F(Co G, M) is the universal minimal HPI wtg for T .

PROOF. First we shall prove that if D is an MHP generator such that

Cat10G,CDCCloG, then D =Cuyij0oGrouD | and so, by 3.4., that
the ambit morphism

n:(%(ca+locx~%)vcﬂ+|°Gac)—"6‘)

is a RIC extension. As follows:
Obviously, Coi10GouD CDoD =D (note that G, CuD ).
Conversely, D CJuD and D CC,oG,C(ChoG,NJ).G ; hence

D C(CaoGoNJ)uD C(CroG NI )ouD .
As Uo(CroG,NJ)C Cy+y and as G, CuD , it follows that
D =uoD Cuo(CaoG,oNJ)ouD CCxijouD =Cuy10GpouD .

Hence D =C,410GouD ; and by 3.4.. 7 is a RIC extension.
a) Since (C,G ) =G, C Chyi1G, . it follows that the map

G (W (Coar10G M), Cri10Gs) = (2F(Cro Gy , M), CroGy)

is a PI extension. Using the above (which is analogues to claim b in the proof
of 4.7.) it follows, as in the proof of 4.7., that every open ., with ¢ = foy |
is a RIC extension. So by IV.5.7., ¢ is an HPI extension.

As CpoGy =dyo G, , the ttg 25(Cyo G, M) is an HPI ttg (4.7.). So
every 2F(C,0 G, ) is an HPI ttg.
b) In particular, 2%(C o G, .9) is an HPI ttg. Let

§:(9€.x)—»(%((‘oG%,%),('o(;w)

be an almost periodic extension. Then %X isa Pl ttg and J, =(CoG,)NJ |
SO

Uo(CoG,NJ)o G CuoJy oG, CuoM, oM, =uoM, CCoG, .

As € was "minimal” it follows that uoM, = Co G, . and so that £ is
an isomorphism. Hence £ is an hp extension, so by almost periodicity of &,
£ is an isomorphism. This and the fact that 25(C o G, ,9) is an MHP ttg

and the existence of a universal HPI ttg (IV.5.14.) show that 2%(C o G, ,9N)
is the universal minimal HPI ttg. (]
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4.13. REMARK. For all ordinals o« and [ with «a=B=0 we have
Cpo Gy = Coo CpGy, v in particular, Cuo Gy = CoCoGy .
PROOF. By the proof of 4.12. the map
¢:2F(Coo Gy M) —2F(Cpo Gy , M)
is a RIC extension. By 3.4., it follows that

CﬂoGr :CaonoCﬁGw =Cyo CBGac-

4.14. REMARK. For every ordinal a=0 we have
CoH(G)=C,oH(G)=ayoH(G)=A-H(G).
In particular, & = F(d o H(G), M) = 2F(C o H(G). M) .
PROOF. First note that A CCC C,CCy=4d,, s0
aAoH(G)CC-H(G)C C o H(G)CT Ao H(G) .

As, by 45., dy=do-A, and by 4.10., AH(G)=A3H(G), the following
inclusions hold:

aAH(G)=AoAypo HG)=A o AH(G) =d c AH(G)C
CdoA-H(G)=d--H(G).

But then Ao H(G)=CoH(G)=C,o H(G) =dyo H(G) . O

V.5. REMARKS

5.1. In theorem 1.7. we have seen that an idempotent subset C of M can
be written as C =K4 =KoA where A =uC =uoCNuM and
K=CnNJ . So C is the product of its idempotent part and its group
part. The subsets of wM that can occur as group parts of idempotent sets
in 2M.,0) are already described as all (9, u)-closed subgroups of uM
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(1.6.c and 1.8.). But at the moment there is not a theory available that deals
with possible structures on J . So we do not know what kind of subsets of
J can occur as the idempotent parts of the idempotent sets in (2" o) .

QUESTIONS

a)  Which subsets of J can occur as idempotent parts of idempotent sets
in M . In particular (motivated by 1.8.), if F is an §(9,u)-closed
subgroup, what are the sets (vo F)NJ for veEJ ?

b) Let KCJ . What do the sets uoK and wu(uoK) look like? (see
also section V.4. and 5.4.a).

5.2. In the sections 2. and 3. one of the problems (under the surface) is the
question whether or not the “circling” of two MHP generators is again an
MHP generator. One could extend that question to a :

QUESTIONS

a) Let C=uoC and D =uoD be MHP generators. What is the
smallest MHP generator F = uo F that contains C and D . In

n

what situation do we have F =(CoD)" for some neEN. (ie..
F=(CoD)o - o(CoD) (n-times)).
b)  Another, more elementary, question which is already stated in [AG 77]

is whether or nor every quasifactor of 9U is an MHP ttg.

5.3.  We investigated a limited amount of dynamical properties in relation to
MHP generators in section 3.. A lot of other problems could be stated in that
respect, some of which are:

QUESTIONS

a) How do we characterize minimal weakly mixing ttgs in terms of MHP
generators, and is there a relation of the sets @, to weak mixing?

b) How do we characterize MHP generators that generate MHP ttgs
which are prime up to high proximality? In other words: for what kind
of MHP generator C =uoC do we have [CU{p}]=M for every
pEM , where [CU{p}] denotes the smallest MHP generator that
contains C U {p} (ie., what kind of MHP generator is “maximal”).
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¢)  Which minimal ttgs X satisfy the following property: if X L £, then
Z= {*} . In other words: for what kind of ttg % is {*} maximal
disjoint from % (see also 3.14.).

5.4.

QUESTIONS

a) Let K be an arbitrary subset of J , what do dx and Ag look like,
and whenis dxg —uoKoAg (seealso 5.1.b)? Is a,f regular?

b)  Under what conditions is d,o G,, an MHP generator for every ordinal
a?Whenis AoGy,=CoG,?

c) In several studies a specific kind of incontractible ttg is given much
attention to, namely the kind of ttg X for which uX = TuX (for
instance, see [E 69], [EK 71], [EGS 76]). Note that if 7 is abelian then
TuX =uTX =uX for every minimal ttg % . How are those ttgs
related to our ttgs @ for K € X |, or better: what kind of MHP gen-
erators generate MHP extensions of those ttgs?
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V1

DISJOINTNESS

1. disjointness and quasifactors

(3]

disjointness classes
3. classes and extensions
4. disjointness and relative primeness

remarks

i

In structure theory it is not only important to know how minimal ttgs are
built up, but also how they are related to each other. A typical example of
non-relation is disjointness. In this chapter we try to figure out (in rough
lines) to what extent minimal ttgs are “classwise” non-related.

In section 1. we pay attention to the role quasifactors can play in this prob-
lem.

In the second section we change our point of view to classes of minimal ttgs
that are in a certain sense consistent in their behavior towards disjointness;
and we describe some of them with their relation to others. For instance in
2.13.a we show that P+ NPIC D"+ | in words: every minimal incontracti-
ble PI ttg is disjoint from every minimal ttg without nontrivial uniformly
almost periodic factors (compare [G 76] X.4.4.).

Section 3. deals with the question how those classes behave with respect to
extensions, and we end the section with a picture of how the disjointness
classes under view are related. In section 4. we apply some of the previous
results to the problem to what extent disjointness is implied by the fact that
the ttgs in question are relatively prime (i.e., do not admit a nontrivial com-
mon factor).

Most of the material in this chapter can be found in [Wo 79.1] and [Wo 79.2],
but some results here are stronger by application of the results in chapter V..
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VI.1. DISJOINTNESS AND QUASIFACTORS

In this section we establish some disjointness relations between factors
and quasifactors of a minimal ttg.

1.1. THEOREM. Let ¢:X— %Y be a homomorphism of minimal ttgs.
a) Let Z be a nontrivial quasifactor of 4. Then Z ) X.
b) Let Z be a nontrivial quasifactor of X. If 2°[Z] % {*} then
ZLr9.
In particular, it follows that a minimal ttg X is not disjoint from its non-
trivial quasifactors.

PROOF.

a) Define W:={(x,A)EXXZ |¢(x)EA} . Then, clearly, W isa
nonempty closed invariant subset of XX Z and as € is nontrivial
W = XX Z ; hence %X X Z is not minimal.

b) Define W :={(y,A)EYXZ |y€E¢p[4]}. Then W is a
nonempty closed invariant subset of Y X Z . As 2?[Z] 5= {*} , there is an
A€Z with ¢[A]# Y (so, as is easily seen, ¢[4]# Y for every
A€ Z ). Hence W 5= Y X Z and % X Z is not minimal. O

The conclusion of statement 1.1.b cannot hold for all nontrivial quasifactors
of % without any further condition. Forlet X L % andlet ¢: X X YU
be the projection. As the projection : X X Y—X is open, X is a quasi-
factor of X X % (IL.3.3.c) and by assumption X L % .

We shall now look for situations in which % L ¥ for certain (respectively
all) nontrivial quasifactors of X .

1.2. REMARK. If ¢:X—>%Y is a highly proximal extension of minimal ttgs
then Z ) % for all nontrivial quasifactors & of X .

PROOF. By IV4.18., £ 1% iff L X ; butby 1.1, ZLX. O

1.3. THEOREM. Let ¢:X—%Y be an open homomorphism of minimal tigs.
Let Z be a nontrivial quasifactor of X such that $[X \A]# Y for
some A€Z .Then Z ) %Y.

PROOF. Define W:={((y,B)EYXZ |¢“(y)CB}. As ¢[X\A]#Y
thereisa yo€Y with ¢“(yg)C A4 ; hence W £ @ . Also W #£YX Z ;
for, equality would imply that ¢ (y)C B forall yEY 6 so XCB and
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Z would be trivial. Clearly, W is invariant, and by openness of ¢ (i.e.,
continuity of ¢,q: Y —2% ), it follows that W is closed. So, ¥ X € is not
minimal. O

1.4, THEOREM. Let ¢:X—Y be a proximal homomorphism of minimal tigs.
Let Z be a nontrivial quasifactor of X .
a) If 1 %Y then uouXCA for every u€J and A€ uZ (ie,
forevery A =uoAE€Z).
b) Ifeither X or Z is incontractible then Z ) % .

PROOF.

a) Suppose Z L %Y. Then ¢Xidy: X XZ->YXZ is a proximal
extension of a minimal ttg; so by 1.1.23.c, X X & has a unique minimal sub-
set L . Define W ={(x,B)EXXZ |x€B)}.Then W is a nonempty
closed and invariant subset of XX Z ,so LCW . Let A =uoAe€Z
and let x € X . Then (x,4)€ X X Z , hence

ux,A)=(ux,uocA)ELCW so ux EuoAd .

As x€X was  arbitrary we  have uX CuoA and  so
UouX CuouoA —uoA .

b) If %X or £ is incontractible, it follows from III.1.5.c that X X Z
has a dense subset of almost periodic points. If £ 1 %, then X X Z has a
unique minimal subset and %X X € is minimal; which contradicts 1.1.. So, if
% or € is incontractible, 2%@, O

1.5. LEMMA. Let ¢:X—%Y be a homomorphism of minimal tigs. Let Z be
a nontrivial quasifactor of X such that L1 % . If (A,B) is a proxi-
mal pair in £ with A % B then there is a proximal pair
(x1,X2)ERy;NAXB with x| % x,.

PROOF. Let / be a minimal left ideal in Sy such that po4d =poB for
all pel (127.c). Without loss of generality suppose there is an
x1EAN\B . Then (¢(x;),B)E Y X Z and, as Y X £ is minimal, there is
an idempotent w € I such that w(¢(x;),B)=(¢(x;),B). Then we have
d(wx) =w. ¢(x)) =(xy); 80 (x,wx;)E Ry and

wx EwACwoAd =woB =8 .

Hence (x;,wx))€E R4NAXB . Clearly (x;,wx;) is a proximal pair, and
x1& B while wx,€EB ,s0 x; % wx, .
O
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1.6. THEOREM. Let ¢:X—%Y be a distal homomorphism of minimal ttgs.
Let Z be a nontrivial quasifactor of X .
a) If LY then Z is distal.
b) If X is disjoint from every minimal distal ttg ( XE Dt ) then
Z LY,

PROOF.

a) By 1.5., there can be no proximal pairs in €, so £ is distal.

b) Suppose ¥ L % . Then € is distal (a). As XED* we have
% L Z, which contradicts 1.1.. O

In section 3. w shall see other results with the flavor of 1.4. and 1.6. (cf. 3.7.).

The following characterization of disjointness in terms of quasifactors will be
needed in the sequel (see also [AG 77] lemma I1.4.).

1.7. THEOREM. Let X and %Y be minimal tigs. Then X L %Y iff there is a
nontrivial quasifactor € of % which is a factor of X (the MHP exten-
sion of X ).

PROOF. Suppose there is a nontrivial quasifactor € of % and a surjective
homomorphism ¢: X" —Z. Then ¢ Xidy: X X Y->ZX Y is a surjective
homomorphism. As, by 1.1, £X% is not minimal, X X% cannot be
minimal. Hence %" k%Y and, by IV4.18,, X L %.

Conversely, suppose that %X L % ; then, by 1V.4.18., % £ %" . Let C and
D be MHP generators with C =uoC and D =uoD such that
X =C and % =9 . Then, by V.3.9., we have that CoD s M . Hence,
by V.2.6.b, 25(CoD,9)is a quasifactor of " which (clearly) is non-
trivial. Let xq:% —% be the canonical MHP extension. Then, by irredu-
cibility of xq , we have that Z:= g% [25(C o D,9%)] is a nontrivial quasi-
factor of % . Obviously, y:%X —Z defined by Y(poC)=2"(poCoD)
is a homomorphism of ttgs. O
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V1.2. DISJOINTNESS CLASSES

In this section we study “disjointness classes” of minimal ttgs and we
characterize them via quasifactors (2.3. through 2.7.). We also give some
relations between those disjointness classes (e.g.. P NPIC D+ and
DL NPICP+ (213

Let K be a set of minimal ttgs. Then K+ denotes the set of minimal ttgs
X such that X L %Y for every YK .

2.1. REMARK. Let K, K, and K, be sets of minimal ttgs.
a) Kt s closed under factors, highly proximal extensions and inverse

limits.
b) If K\CK, then K CK/*-.
c) KCK*t and K+ =K+++.

PROOF. For a cf. [.3.1.a, b and IV.4.18., b and ¢ are obvious. O

Let K be a set of minimal ttgs. Define
[K] = {%| % is a minimal ttg and for some Y€ K, X is a factor of ¥" } .

Evidently, KC[K]=[[K]] and [K] is closed under factors and hp exten-
sions. Moreover, [K] is the smallest collection of minimal ttgs under these
conditions.

2.2. EXAMPLES.

a) Let K be a set of minimal ttgs with a maximal element. i.e.. there is a
Ke K such that X—Z for every Z€ K . Then

[K] = {%X | X is a factor of %K'} .

To name a few:

(i) Let E be the collection of minimal uniformly almost periodic ttgs.
Then [E] = {%X|X is a factor of &7} .

(i) Let D be the collection of minimal distal ttgs. Then
[D] = {X | X is a factor of Dy} .

(iti) Let P, PI, HPI be the collections of minimal proximal ttgs,
minimal PI ttgs and minimal HPI ttgs respectively. Then
[Pl=P ., [PI]=PI and [HPI]=HPI.
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(iv) Let F be an §(9M,u)-closed subgroup of G and let M(F) be
the collection of minimal ttgs such that there is an x € X with
FC®&X,ux). Then [M(F)]=M(F) (cf. L.2.11. and 1.2.13.b).

b) Let WM be the collection of minimal weakly mixing ttgs. Then
[WM]=WM , for % is weakly mixing iff %X is weakly mixing
(IV.4.17.) and every factor of a weakly mixing minimal ttg is weakly
mixing.

c) Let K be a set of minimal ttgs. Then [K+]=K*+ (ef. 2.1.).

2.3. THEOREM. Let K be a set of minimal ttgs. For a minimal t1tg X the
following statements are equivalent:
a) XeK-* ;
b) XeE[K]* ;
c)  Z&I[K] for every nontrivial quasifactor Z of %X .

PROOF.

b = a Clear, as KC[K].

a=cLet X€ K+ and suppose that Z& [K] for some quasifactor
Z of % . Then there is a Y€ K such that € is a factor of ¥ . As
XEKL, XLY; hence X LY andso XL Z.Butthen € has to be
trivial by 1.1..

¢ = b Suppose X & [K]* . then there is a Y€ [K] with X %Y. By
1.7., there is a nontrivial quasifactor € of % which is a factor of %" . As
% €[K],also Z€[K]. O

2.4. REMARK. Let K be a set of minimal tigs containing a maximal element
K. Let C be an MHP generator such that C =uoC and ¥ =C.
For a minimal t1g X the following statements are equivalent:
a) XeK*t .,
b) XLX.
¢) No nontrivial quasifactor & of %X is a factor of K ;
d) Cx =X forevery x€X ;
e) Cx =X forsome x€E€X .

PROOF. The equivalence of b and ¢ follows from 1.7.. and clearly, a and b
are equivalent.

b=dLet x€ X and define y:=p, :M—-X. Let F =uoy(x),
then %€ =%. as ALK, also X" LK (IV.4.18.); hence, by V.3.9.c,
CoF =M . Butthen Cx =CoFx =Mx =X .
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d = e Trivial.

e = b Suppose Cx = X for some specific x € X . Then we have
poCx =poX =X forall peM . We shall prove X LK , from which
follows that XL ¥ (IV4.18). Let (qoC.x)EK X%. As
X =qgoCx =¢goCux , we have x'E€ g o Cux ; so there is a net {7}, in
and there are ¢, €C such that  —¢ and rcux —x’'. As
C =¢oC forevery i we have

(/OC :llmfIC :“ml,'(','OC :liml‘,(‘,-(uoC);

(goC,x")y=Ilimt;¢;(C,ux). Hence K XXCT(C.ux), and as
(C.ux) is an almost periodic point, it follows that ¥ X % is minimal. [

EXAMPLES Let X be a minimal 1tg.

a)

b)

)

d)

XEPL iff X does not have nontrivial proximal quasifactors iff
uoGx =X forsome(all) x€ X .

Xe (H)PIL iff X does not have nontrivial (H)P1 quasifactors iff
UoGx =X (CoGyux =X ) for some (all) x € X .

Xe WM iff X does not have nontrivial weakly mixing quasifac-
tors.

Let K=[K] (eg K is P or (H)Pl) then XE K-+~ iff every
nontrivial quasifactor of X has a nontrivial quasifactor in K .

In particular, we have (because of 2.1.c) that X.€ K+ iff every non-
trivial quasifactor of X has a nontrivial quasifactor in K+ .

THEOREM. Let K be D or E and let K be the universal element in
K. For a minimal ttg X the following statements are equivalent:

a)
b)
c)
d)

XKt ;

xXLK:

X has no nontrivial quasifactors in [K] ;
X has no nontrivial factors in K.

PROOF. The equivalence of a , b and c is just 2.4. (see also 2.2.a (i),(ii) ).
c=dLet ¥ be a nontrivial factor of %X in K. Then by IV.3.1.,
there is a quasifactor of % in [K] which obviously is nontrivial.

d = b Suppose that X ) K. Then, by 1.7. and I1.3.7,, X" has a fac-
tor in K. Hence, by 1.4.1., X has a factor in K. O
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2.7. COROLLARY. Let X be a minimal 1ig.
a) XeEL+ (D) iff every nontrivial quasifactor of X has a non-
trivial uniformly almost periodic (distal) factor.
by DL =EL<+, hence D+ =E+.

PROOF.
a) Follows immediately from 2.3. and 2.6..
b) Follows from a and 1.1.25.. |

2.8. THEOREM. Ler ¢:X—%Y be a distal homomorphism of minimal ttgs. If
YD+t then XeDLL . In other words: D+ s closed under

distal extensions, hence it is closed under HPI extensions.

PROOF. Suppose that X& D+~ then there is a nontrivial quasifactor € of
%X with ZEDL . As 9D+ it follows that €L % . Hence by l.6.a,
€ is distal, but this contradicts the assumption ZED* . So Xe D+ .
As D+ s closed under hp extensions and factors (2.1.), it follows that
D+ is even closed under HPI extensions. O

2.9. COROLLARY. HPI*+ =D*+ =E++ gnd HPI+ =D+ =E* .

PROOF. As {*}€ D" it follows from 2.8. that HPIC D+~ and so that
HPI-+-C D"+ . On the other hand, by FST, we know that DC HPI , so
DX+ CHPI** ; hence HPI*+ =D+ + =E*++ . Consequently,

HPI+ =HPI+ '+ =D +t=D+ =E+. a

Let us first describe some (easy to derive) relations between (disjointness)
classes of minimal ttgs.

2.10. THEOREM.
a) PCWMcCWMticD*;
b) ECDCHPICD *tcPt;
¢) PItCcPiNDt=P'NnWM=P‘NnWM=*+;
dy PCcP+icD-nPl+L+cD* ;
e) DttcwWMtcPtnPI++.

PROOF.

a) By 1.3.10., every proximal minimal ttg is a weakly mixing ttg; i.e.,
PC WM . As a distal ergodic ttg is minimal (I.1.17.), a weakly mixing ttg
does not admit nontrivial distal factors. (Otherwise, if % were such a factor,
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Y X %Y would be distal and ergodic, hence minimal.) Hence, WM C D+t
and so WMCWM*t+cpDt+t =D+ .

b) We know that ECD and DC HPI (FsT). By 2.8, HPICD** .
In a we have seen that PC D+ ;soby 2.1.b, D+ C P+ .

¢) As PUDCPI (FsT), it follows from 2.1.b that PI* CP*ND™* .
By VIL3.11. and VI.2.6., we have P+ NE* C WM . Hence, by 2.7.b,

PLNDtcWMcWMLttcD!

so PArND+ =PtNnWM=PLnWM+1,

d) Trivial from the fact that PC DLNPI.

e) As, by a, PCWMCD* it follows from 2.1.b that
DLiiCcWMLCPt . By c, PI-CWM:so WM+ CPI++ . O

2.11. EXAMPLE. In general, D' % WM.

Consider the fourfold covering of the proximal circle, as presented in
VIIL.1.5. (also see 1.4.7.). Then % does not admit nontrivial uniformly
almost periodic factors; so Y€ D+ . But Qg 7 Eq , whereas, if % were
weakly mixing, we should have

Qo= N{Ta|a€EUY}=YXY , 50 Qa=Eq=YXY.

In section V.3. we have seen that we can decide about disjointness by consid-
ering MHP generators. And from IIL.1.6. it follows that in case one of the
ttgs involved is incontractible, we only need to consider the Ellis groups. So
(ITI.1.6. in the absolute case):

NOTE. Let X and % be minimal tigs with Ellis groups H and F in
G with respect to some x €uX and y€uY . If XEP then
XLY iff HF =G .

For the following remember the notation in section V.4.:

d, is the MHP generator generated by uoJ and A,=ud, .
dg is the MHP generator generated by uoK and Agx = udg , for
every K€ X (ie., the dy’s are the incontractible MHP generators).

For K€ X, dx is a minimal incontractible MHP generator and Ag
is the (9N, u)-closed subgroup of G generated by u(uoK).
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Remember that Xe€ P+ iff %X is a factor of @ for some K€K
(V.44.).

2.12. THEOREM. Let X be a minimal ttg with Ellis group H .
a) The following statements are equivalent:
(i) XED+;
(i) HAH(G)=G ;
(i) HAxH(G) =G for every K € ™
(iv) HAxGy =G for every K€ X%
(v) HAxG, =G for some K € %,
b) XEPLL iff HAx =G for every KEX.

PROOF.

a) The equivalence of (iii) and (iv) follows from II1.2.13.c and, obvi-
ously, (v) follows from (iv). As Ax C Ay and G, C H(G), (v) implies (ii).
By V.4.10., (iii) follows from (ii).

From 2.7b we know that Xe D' iff %_L&. Hence, by IIL1.6. and
V.4.10., we have Xe D+ iff HAH(G)=G .

b) As every incontractible minimal ttg is a factor of some @ , it fol-
lows that XEPLL iff X L@ for every KEX. But @EP* . so
X 1@ iff HAx =G . So XePLL iff HAx =G forevery KeX .0

2.13. THEOREM.
a) PXNPICD*, hence D+ =P+ NP+ .
b) DYNPICPLL, hence P =D+ NPHL .

PROOF.

a)Let XePLNPI and let Y€ D+ . We shall prove that X L %.
Let H and F be the Ellis groups of X and % respectively. As
Xe P+ it follows from V.4.4. that there isa K € K such that X is a fac-
tor of @ , and so that Ak CH . As X 1is a PI ttg it follows from I11.4.4.
that G, C H ; hence AxG,C H . By 2.12.a, we know that FAxG, =G .
So G =FAxG,C FH , which shows that G = FH . Hence, by IIL1.6.,
%X L %, and consequently P-NPICD** .

Therefore, by 2.1, DX C(P-NPI)* . On the other hand, DC P+ NPI;
so (P NPl CD* |, which proves statement a.

b) Let XD NPI and let H be the Ellis group of % . Then by
1144, G,CH .Let KEK. As XD | it follows from 2.12.a that
HAxG, =G . Since G, is a normal subgroup, G = HG Ak , and as
G,CH ,we have G =HAg . But then, by the incontractibility of @ , it
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follows from IIL.1.6. that %X L @ . As K was arbitrary, X€ P+ and
consequently, DX NPICP* L.

Therefore, by 2.1., PL C(D* NP1 . On the other hand, PCD* NPI ;
so DtnPhtcpt . O

In case the Ellis group is a normal subgroup, or (stronger) if one of the ttgs is
regular, we can generalize 2.13. slightly. For that purpose let A be the col-

lection of factors of & = 2(d,,9M) and note that DCAC P+ .

2.14. REMARK. Let X be a minimal ttg with Ellis group H .
a) If HAy is a group then X€ D+ NPI++ implies XE AL .
b) If H is a normal subgroup in G then X ANPI+* implies
e D=,
c) If X is a factor of a regular incontractible minimal ttg X' then
XePI+L(NPL) implies XED+ .
d) If XeDNPI*++ and YEPL with Y regular, then X L %Y.
PROOF.
a) First note that the fact that HA, is a group implies that dyo H 1is
an MHP generator and dgo H =uoJoHA, (apply V.1.10.).
As Xe D+ we know, by 2.12.a, that H4,G,, =G . So

AooHouoGy =uoJoHAWG, =uoJ oG =uoM =M .
Hence, by V.3.9,,
25 (Ago H, M) L 2F(1oGy,M) ;

ie, (oo H,M)EPI- . As XEPI++ | X L (Ao H,9M) . So, by
III.1.6. and the incontractibility of 2¥(dyo H,9M) , we have HHAy,=G ;
hence HA,= G . The incontractibility of @& and IIL.1.6. imply that
XL@;ie, XEAL .

b) Let 9D and let F be the Ellis group of ¥ . Let [FA(] be
the ¥ (IM,u)-closed subgroup of G generated by FA,. Note that
djo[FA] is an MHP generator (V.1.10.).

As YD | we know, by 2.12.a, that FA(G, =G ; so [FA)G, =G .
Hence

aOO[FAolou oGoo i aOO[FA()]GOO = aOOG =M.

This shows that 2F(Ago[FAo],M)E PI+ . As X€ PI+- it follows that
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X L2 (Ayo[FAp),9M) and so, by III.L1.6. and the incontractibility of
F(Ago[FAo),9M) , we have H.[FAo)= G . But H is a normal subgroup,
SO

G = H.[FAy| = [HFAo| = [FHA,) .

As XEA, AoCH ; hence G =[FH]=FH (H isa normal subgroup).
By II1.1.6. and the fact that X€ AC P+ it follows that X L ¥ .

c) Let X' be a regular incontractible minimal ttg such that % is a
factor of %’. By V.3.6.a and 1V.4.18., we may assume %' to be an MHP
ttg; say generated by an MHP generator C such that C =wuoC and
uCCH . As % is incontractible, we can find a K&K such that

KCCNJ . Then axyCC and Ax CH . Let YD+ and let F be
the Ellis group of % . Then by 2.12.a, FAxG,, = G . As

FAx G =G A F = Ax G F = AxFG, =G |,
we have
M=uoKoG =uoKoAxFG, =uoKoAgoFoG,C CoFoG,,

SO M =CoFoGy,. As X' is regular, CoF is an MHP generator
(V.2.4.d, and compare it with the proof of V.3.6.). Hence, by V.3.9., it follows
that F(CoF,OM)EPI+ . By  assumption, XePI++, so
KX LW(CoF,9M). After noting that 2J(CoF,IM)E Pt and that
25(Co F,9M) has Ellis group uCF . it follows from IIL1.6. that
HuCF =G . But uCCH ,so HF =G . As XEP! it follows that
xXLY.

d) Without loss of generality % is an MHP ttg, say generated by an
MHP generator D with D =uoD and aoD = Da for every a€G .
As XED* |, we have AxHG, =G = HAxG,, for every K€ ¥ . Hence
DoHoGy,=M: and as DoH is an MHP generator, we have
(D o H,9M)€ PI+ . By assumption, X L 9F(D o H,M). As Y P |
QD oH,M)EPL ; s0 by III.1.6. and by the fact that uDH is the Ellis
group of 2F(DoH,9M), it follows that uDHH =G , so uDH =G .
Hence DoH =M and by V.3.9., % is disjoint from the maximal proximal
extension of ¥ ;so Y L X. O

Another consequence of 2.12.a is the following:
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2.15. REMARK. PIt =P-ND* .

PROOF. We already know that PI-CP-ND* (2.10.¢).

Conversely, let X P ND™* ; then also X € P ND* . Let C be an
MHP generator with C =uoC and X' =€,say C =KH with KCJ
and H=uC . As X P, CoG=uoKoG =M ;andas X €D,
HAxG,=G . But AxCH . so HG,=G and consequently,
M=CoG=CoHoGy=CoG, ,ie. X €PIt+ . O

V1.3. CLASSES AND EXTENSIONS

We continue the study of the relations between disjointness classes. But
now we take a slightly different point of view. Let ¢:X—%Y be a
homomorphism of minimal ttgs, when is every minimal ttg which is dis-
joint from % disjoint from X too?

The following is a variation on 1.4.1. (for a stronger version see VI1.4.9.).

3.1. LEMMA. Consider the next commutative diagram of homomorphisms of
minimal 11gs.

V¥
% - g
/1
— = %
¥ g

Let m be distal and ¢ weakly mixing. If Z is metric or if W= {*}
then there is a homomorphism 6:% — Z such that the diagram commutes.

PROOF. As R, is ergodic, ¢ Xy[Ry] is ergodic and, clearly,
¥ XY[RJCR, .

If W={x}, R,=ZXZ and ¢ X{[Ry] is distal. Hence, by LI.17.,
Y X Y[Ry] is minimal.

If & is metric, ¢ X Y[R,] is metric, hence point transitive (1.1.2.b). As R,
is pointwise almost periodic, ¢ X ¢[Rg4] is pointwise almost periodic, hence
minimal.
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Clearly, Az = ¢ X ¢[Ax]C ¢ X Y[Ry], so (in both cases) Ay =y X Y[Ry]
and R,C (¢ X¢)7[Az] = R, . But then there is a homomorphism

0:% = X/R,>ZT=%A/R,. .

3.2. COROLLARY. Let ¢:X—%Y be a weakly mixing homomorphism of
minimal ttgs. Then Y€ D+ iff XeD* .

PROOF. If X€ D™ then clearly, €D .

Conversely, suppose that Y€ D+ and let € be a distal factor of %. Then
by 3.1, € is a factor of % . Hence, by 2.6. and the fact that YD | it
follows that € is trivial. So by 2.6., XE D+ . O

For a minimal ttg % we shall denote {%X}* by X* .

3.3. THEOREM. Let ¢:X— Y be a distal extension of minimal t1gs.
a) If XeD* then X+ =9+ .
b) D*NX*+ =D Nyt

PROOF. In both cases the inclusion ” C ” is obvious.
Let € be a minimal ttg with €€ Y+ and suppose that €& X+ . Without
loss of generality we may assume that € is an MHP ttg (IV.4.18.). By 1.7.,
there is a nontrivial quasifactor W of X which is a factor of Z. As
Ze Yyt also We YL . Hence, by 1.6.a, U is distal.

a) If XeD® then % _L Q. which contradicts 1.1..

b) If Ze D then AWe D | contradicting the distallity of . [

3.4. COROLLARY. Let ¢:X—%Y be an HPI extension of minimal tigs.

a) If XEDt then X+ =t

B DANnEt=DLngl,
PROOF. Without loss of generality we may assume that X and % are MHP
ttgs (IV.4.18. and IV.5.1.). By IV.5.2., it follows that ¢ is strictly-HPIL
Applying 3.3. to the almost periodic steps in the strictly-HPI tower for ¢,
IV.4.18. to the hp steps and 1.3.1.b to the inverse limits, the corollary fol-
lows. N
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3.5. THEOREM. Let ¢:X— Y be a proximal extension of minimal 11gs.

a) If XEPL then X+ =9+ .

b) PPNXt =P Ny-.
PROOF. Clearly, X C ¥+ . Let € be a minimal ttg with € L ¥ such that
Z X and without los of generality we may assume that Z = ¢ . Then,
by 1.7., there exists a nontrivial quasifactor U of % which is a factor of
Z.As 1Y also W LY.

a) If Xe P+ then by 1.4.b, W k%Y which is a contradiction.

b) If ZE P+ then We P ; hence, again by 1.4b, W 4 Y. O

The proof of the next theorem is not similar to the proof of 3.4.. although
such seems to be logical at first sight. The reason is that we do not know
whether for an incontractible ttg X and a PI extension ¢:X—% thereis a
strictly-PI tower in P+ that factorizes over ¢, which is necessary for appli-
cation of 1.4..

3.6. THEOREM. Let ¢:X— % be a Pl extension of minimal ttgs.
a) If XEPI then X+ =9+ .
by PI*NX+ =PI*Na-.

PROOF. Let H and F be the Ellis groups of %X and % with respect to
some xoE€EuX and ¢(yo)EuY respectively. Remember that ¢ is a Pl
extension iff F,C H (II1.4.4.); and note that always Xtcayt.

a)Let ZE %L | and let L be the Ellis group of 2. As Xe€PI+ |
clearly, ¥€PI+ CP~* . Hence, by IIL.16., LF =G : so, by II1.2.13.b,
LF,=1G,.As F,CH wehave LG, =LF,CLH andso

LH =LuH C LG,HCLHH =LH ; ie., LH =LG, H .

Since X PI+ ,also XEPL and X L 2F(uo G, .9M) ; hence, by IIL.1.6.,
HG,=G,H =G . But then LH =LG,H =LG =G . By 1Il.1.6. and
the incontractibility of X, it follows that X L Z.

b) Let € be a minimal ttg with Ellis group L such that € PI+
and €L % . Then LF =G andso LF,=1LG,. As ZEPI+ | we have
LG,=G so G=LG,=LF,CLH . Since Z€P' it follows that
Z1%. O

The next corollary is in the same spirit as 1.4. and 1.6..
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3.7. COROLLARY. Let ¢:X—%Y be a homomorphism of minimal ttgs and let
Z be a nontrivial quasifactor of X .
a) If XeDL andif ¢ is an HPI extension then ZrYy.
b) If XEPI andif ¢ is a Pl extension then =19,

PROOF. Follows immediately from 3.4.a, 3.6.a and 1.1.. O

We shall now give a variation on 3.4. through 3.6.. dealing with classes rather
then with ttgs.

3.8. THEOREM. Ler K be a set of minimal tigs.
a) If KCD* then K* is closed under HPI extensions.
b) If KC Pt then K+ is closed under proximal extensions.
¢c) If KCPI L then K+ s closed under Pl extensions.

PROOF.
a)Let ¥ K* and let ¢:X—%Y be a distal homomorphism of
minimal ttgs. Then KC %+ ND* and by 3.4.b,

KCcx*nDt=9tnDpt

hence Xe K+ . So K* is closed under distal extensions. Clearly, K+ is
closed under hp extensions and inverse limits (IV.4.18. and 1.3.1.b); so K+
is closed under HPI extensions.

b and c are proven similarly using 3.5.b and 3.6.b instead of 3.4.b.  [J

3.9. EXAMPLES.
a) Pt ., WM™ and Dt are closed under HPI extensions.
b) D+, WM+t and P++ are closed under proximal extensions.
c) PI+L s closed under Pl extensions.

3.10. THEOREM. Let K be a set of minimal tigs.
a) K= s closed under HPI extensions within D~ . (i.e., suppose that
Ye K+, let ¢:X—Y be an HPI extension of minimal ttgs and
let XEDL then XEK* ).
b) K= s closed under proximal extensions within P+ .
¢) K= s closed under Pl extensions within P1+ .

PROOF.

a)Let Y€K and let ¢:%X—% be an HPI extension of minimal
ttgs. If XD+ then by 34a, Xt =%t . As YK=' , we have
KC%' =%* andso XeK* .

b and c are proven similarly. O
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3.11. EXAMPLES.
a) PLYt and WMLt are closed under HPI extensions within D+ ;
hence, by 3.9.b, they are closed under PI extensions within D~ .
b) D' and WM™ are closed under proximal extensions within
Pt ; hence, by 3.9.a, they are closed under Pl extensions within
P,

3.12. COROLLARY.
a) DXNPI=P*L{NPI=WML1NPI.
b) PrNPI=D*+{NPI=WMLNPI.

PROOF. Follows from 2.10. and 3.11. (and also from 2.10. and 2.13.). OJ

3.13. REMARK. In case T does not admit nontrivial proximal minimal tigs

( T strongly amenable) the following relations hold:
a) D' =PIt =WM=WM=*!;
by PICD '+ =PI*'=WM".

PROOF. As T is strongly amenable, every 7-minimal ttg is in P+ . So, by
2.10.,

WM =WMNP+=P'NDLt =D+ =PI+,
hence DX =WMCWM*+CD* . But then WM+ =Dttt =ppitl.
The inclusion PICPI++ =D++ s trivial. O
Note that D+ 5= PI (see [G 80]).

In the following pictures we recapitulate the results of section 2. and 3. in the
absolute case. First the case that T is strongly amenable:

T/
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T arbitrary:

PI++

WM+

\ " |
|

PI

HPI
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V1.4. DISJOINTNESS AND RELATIVE PRIMENESS

It is well known and easy to see that two disjoint ttgs are relatively prime
(i.e., do not admit nontrivial common factors). In [F 67] the question is
raised whether or not relative primeness is sufficient to imply disjointness.
It turns out that even in the case that 7T is abelian the answer has to be
in the negative [GW ?].

In this section we shall deal with the problem to what extent disjointness
is implied by not having a common distal factor.

As we did in section 3., we shall use the notions introduced in V.4. without
further notice.

If in the sequel we attach an Ellis group H to a minimal ttg %, then we
mean that there exists an x € uX such that H =uM, = &(X,x) .

Recall that E is the Ellis group of & . the universal minimal uniformly
almost periodic ttg for 7T .

First we shall pay attention to the property of having a common distal factor.

4.1. THEOREM. Let X and % be minimal ttgs with Ellis groups H and
F . Suppose that HFE is a group. Then the following statements are

equivalent:
a) X and Y have a nontrivial common distal factor;
b) HFE # G ;

¢) HFAH(G)5# G ;

d) [HF]JAyG, # G ;

e) [HFJAxG., # G forevery KE XK.

Where [HF)] denotes the (9, u)-closed subgroup of G generated by
HF .

PROOF. First note that, by V.4.10., E =AH(G)=AgH(G) for every
K € ¥ . This shows the equivalence of b and c.
As HFE isagroup, HFE =[HF]E ; so

HFE =[HFJA\H(G) =[HF)AxH(G) for every K€ X.
Hence, by I11.2.13.c,
HFE = G iff [HF)A¢G, % G iff [HF|AxG, # G for every K€ XK.

This reduces the proof of the theorem to showing the equivalence of a and b.
b=alet L:=HFE . As L is a group, L is the Ellis group of
A(L). By IL1.15., A(L) is a factor of A(E). As Eygy= Py it
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follows from 1.4.3. that Ey )= Pypy: so A(L) has a uniformly almost
periodic factor € with Ellis group L . By the assumption of L #+ G , £
is nontrivial. As A (L) is a factor of both A(H) and A(F) (II1.1.15.), it
follows from 1.4.1. that € is a common factor of X and % .

a=blf X and ¥ have a nontrivial common distal factor, it follows
from I1.1.25. that % and % have a nontrivial common uniformly almost
periodic factor €. Let N be the Ellis group of € such that FCN . As
Z is a factor of &, also ECN . Since & is a factor of %, there is a
g€ G such that gHg 'C N . Hence gHg 'FECN .
Suppose HFE =G . As FE isa group (1.2.17. and 1.2.15.), it follows from
1.3.3.b that Hg 'FE =G . But then gHg 'FE =G and N =G , which
contradicts the nontriviality of Z. 0]

4.2. THEOREM. Let X and % be minimal ttgs with Ellis groups H and
Fand suppose that HFE is a group. If X or % s incontractible
then the following statements are equivalent:

a) X and %Y have a nontrivial common distal factor;
b) HFH(G)# G ;
c) HFG, # G .

PROOF. The equivalence of b and c is just II11.2.13.c.

By the equivalence of 4.1.a and 4.1.b it is sufficient to prove that
HFE = HFH(G) . As follows:

Without loss of generality let X€ P+ . Then, for some K€ ¥, AxCH ;
and so H = HAg . By V.4.10,, we have

HH(G)= HAxH(G) = HE .
Hence, by normality of £ and H(G),

HFH(G)=HH(G)F = HEF = HFE . 0

4.3. REMARK. Let X and % be minimal ttgs with Ellis groups H and F .
In each of the following cases HFE is a group:
a) HF s a group;
b) X or %Y has a regular maximal uniformly almost periodic factor;
c) X/Eqx L%Y/Eq.

PROOF.
a) If HF is a group it follows from the normality of E that HFE

is a group.
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b) By I11.3.13. and 1.2.15., we have that HE or FE is a normal sub-
group, hence HFE (= HEF) is a group.

¢)As X/Eq€ Pt it follows from IIL.1.6. and II1.3.13. that
HEFE =G ,so HFE =G and HFE is a group. (]

4.4. COROLLARY. Let T be an abelian group. Let X and % be minimal
ttgs for T with Ellis groups H and F . Then the following statements
are equivalent:

a) X and %Y have a nontrivial common distal factor;
b) HFH(G)# G ;
¢) HFG,# G .

PROOF. Follows from 4.2., 4.3.b and 1.2.16.. O

Now we turn to the problem to what extent disjointness is implied by relative
primeness.

4.5. THEOREM. Let %X and % be minimal ttgs with Ellis groups H and
F such that HF is a group and suppose that XE€ D> . Then
X LY iff X and % are relatively prime.

PROOF. Clearly, the “only if”-part is true.

Suppose that X and % are relatively prime. Then % and % do not have
a nontrivial common distal factor too. So, by 4.3.a and 4.1., it follows that
HFE =G . As 6P and as HF is the Ellis group of A(HF) it fol-
lows from IIL.1.6. that A (HF)_L & ; in other words, A(HF)ED* =E* .
As XeD*+ . %L A(HF). Hence, by 111.1.6. and the incontractibility of
X (D*+CcP*) we have HHF =G . So HF =G ; and again by
II1.1.6. and the incontractibility of %X . it follows that X L % . O

The next theorem slightly generalizes [EGS 76] 4.3..

4.6. THEOREM. Let X and % be minimal ttgs with Ellis groups H and
F . Let X€P and assume that HFE is a group (e.g. T abelian).
If G,CHF ,then XL % iff X and % are relatively prime.

PROOF. Clearly the ”only if”-part is true.

Suppose that X and % are relatively prime. Then %X and % do not have
a nontrivial common distal factor. As X€ P+ it follows from 4.2. that
HFG,=G . Since G, is normal in G, G =HFG,=HG_,F . But
G,C HF ; so
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G =HG ,FCHHFF =HF .
Hence, by III.1.6., X L % . O

4. REMARK. Let H and F be §(9,u)-closed subgroups of G such
that G, C HF . Assume that H is the Ellis group of some incontracti-
ble minimal ttg and assume that A (H) or A(F) has a regular maximal
uniformly almost periodic factor (those assumptions are satisfied if T s
abelian). Then [HF]=G implies HF = G , where [HF] s the
& (M, u)-closed subgroup of G generated by HF (compare [E 81]
1:11.):

PROOF. If [HF]=G then [HF]E =G . As by the assumption (and by
4.3.) it follows that HFE is a group, we have HFE =G . As H is the
Ellis group of an incontractible minimal ttg, HFE = HFH(G). So, by
I1.2.13.c, HFG,, = G . By normality of G, ., HFG,, = HG,F = G . Since
G,CHF, G=HFG, = HG,FC HHFF = HF . O

4.8. THEOREM. Let X and % be minimal ttgs with Ellis groups H and
F . Assume X to be incontractible and regular. If X or %Y is in
PI-~+, then X LY iff X and ¥ are relatively prime.

PROOF. Clearly the “only if”-part is true.

Suppose that %X and % are relatively prime, then they do not have a non-
trivial common distal factor. So by 4.2., HFG, =G .

Let C be an MHP generator with C =uoC and uC C H , such that
X=C. By V.3.6.a, X is regular; so CoF is an MHP generator. By
IV.4.17., %  is incontractible; so 2F(Co F,9) as a factor of X s
incontractible. Note that HF =u(CoF) is the Ellis group of the ttg
W (CoF,9M) .

By IIL.1.6., it follows from HFG, = G that

W(CoF, M) L2 (uoGy,IM) .

As 2F(uoGy, M) is the universal PI ttg, we have 2F(Co F,9M)e PI+ .
By assumption, %X or ¥ isin PI**, so 2F(CoF,9M) is disjoint from
X or % . By II.1.6. and the incontractibility of 2%(C o F,9) it follows
that HHF =G or FFHF =G . In both cases, HF = G ; hence %X 1 %[]
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VL5. REMARKS

5.1. The role of quasifactors in disjointness problems is slightly touched at
in [G 75] and more in [AG 77] (e.g. Theorem I1.2. which was in fact the start-
ing point for the study presented in this chapter). But there does not seem to
be a detailed study in the literature except for [Wo 79.1]. In that paper a
proof of 1.6.a is given, which is striking because of its length rather than its
cleverness; so we replaced it by the proof J. AUSLANDER gave by proving 1.5..

QUESTIONS

a) (See 1.4. and 1.6.) Let ¢:X—%Y be a proximal extension of minimal
ttgs and let & be a nontrivial quasifactor of %, such that €L %Y . Is
€ proximal? is ZEP++?

b)  Suppose ¢:X— %Y is weakly mixing. Can we formulate a theorem in
the spirit of 1.6. (without lying, of course)?

¢) Let Z be a nontrivial quasifactor of % . Whenis €€ X+ ?

Note that the following statements are equivalent:

(i) X+ CZ* forevery quasifactor € of X ;

(i) ZEX*L for every quasifactor € of X ;

(ii)) X L Y for every quasifactor ¥ of any quasifactor Z of X .

5.2. Disjointness classes (as studied in VI.2.) like D+, WM+ | EX and
PI+ are treated in former papers [K 71], [Pe 73] and [S 71]. In those
papers there are many restrictions on the ttgs. For instance [K 71] deals with
strictly-quasi separable minimal ttgs for an abelian group 7 . In [Pe 70] it is
proved that D+ = WM for an abelian group 7 (cf. 3.13.); and [S 71]
deals mainly with metric minimal ttgs.

However, since the deep results in [E 78] and [V 77] many of those restric-
tions became superfluous. Hence many results in VI.2. (and VI.3.) are gen-
eralizations of known results for special cases. Note that VI.2.8. was already
in [AG 77].

In 5.5. and 5.6. below we shall look at some questions that could arise with
respect to section II1.2., namely the characterization of elements of [E] and
the characterization of ttgs without proximal factors.
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QUESTIONS

Are the following equations true?
a) WM++=D"*;

b) PlL_LnDL:P_LJ_,.

g PI-AD- =D+,

5.3. Questions about extensions and disjointness were formerly studied in
[S 71], [W 74] and [AG 77], but none of the results mentioned in VI.3. seems
to be in the literature (at least in the generality we give).

QUESTION

Let ¢:X—% be weakly mixing. Do the following statements hold true?
(compare 5.1.b, 3.4., 3.5. and 3.6.)

a) If XEWM" then X+ =a*

b) WMinNnxt =wMinagt.

5.4. In the literature several times the question is considered whether or not
relative primeness implies disjointness, and partial results are obtained
([K 71], [E 69], [P 72], [K 72], [EGS 76]). An example by A.W. KNAPP [Kn 68]
shows that for uniformly almost periodic minimal ttgs one can construct
counter examples (see [E 69] 18.11.). For a compilation of the known results
see [B 75/79] section 3.19.. Many of the partial results obtained in the papers
mentioned above are special cases of the results in our section 4.. The one
that comes close to our result 4.6. is [EGS 76] 4.2., where minimal tigs are
considered such that the w-invariant part is 7 -invariant ( TuX = uX for
some idempotent u €J ).

Note that the problem whether or not disjointness is implied by relative
primeness can be restated for MHP ttgs as follows:

Let C and D be MHP generators with C =uoC and D =uoD .
Under what condition does [CUD]=M imply CoD =M , where
[CUD] is the smallest MHP generator that contains both C and D .

A question we ran into implicitly in sections 2. and 4. is the following:
Let L be an Ellis group and let dx be an MHP generator as in V.4. and

let [@xUuoL] be the smallest MHP generator that contains dg and
uol .

Clearly AxL Cul[@gUuolL]; butwhenis [AxL]=u[AxUuolL]?
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5.5. In VI.2.6. we characterized the minimal ttgs in D as the minimal
ttgs with out distal factors. Does a similar result hold for P+ ?

REMARK. Ler X be a regular minimal ttg. Then X€ P+ iff X does
not have nontrivial proximal factors.

PROOF. The “only if”-part is trivial (1.1.)

Suppose X does not admit nontrivial proximal factors. Let C =uoC be
an MHP generator such that X° =C. Then, as % is regular (V.3.6.),
CoG is an MHP generator. As 25(C o G ,9) is a factor of X" and as
2 (CoG,9M) is proximal, it follows from the assumption that
Q(CoG,9M) is trivial; hence CoG =M . But then, by V.39,
WuoG,M)LX ,s0 X" €P' ; hence XEPL . O

The following theorem gives a necessary and sufficient condition for a
minimal ttg to have a nontrivial proximal factor (T.S. WU, private communi-
cation).

THEOREM. A minimal ttg X. has a nontrivial proximal factor iff there is
a nontrivial u.s.c. equivariant map ¢: X — 2% with

(i) ¢(x)N¢(x")# @ implies $(x)=¢(x');

(i) ¢[X]1C2¥ has a nontrivial proximal subttg.

PROOF.

"="Let Y:X—%Y be a homomorphism and let % be proximal.
Define ¢: X — 2% by ¢(x)=v¢ Y(x). Then, by IL13.b. ¢ is us.c.
Clearly ¢ is nontrivial and it satisfies (i). Also ¢ satisfies (ii), for the
representation ¥ of % in % is proximal and clearly Y'C ¢[X] (see
IV.3.3.).

"e" Since ¢ is us.c., for every A Em we can find an x € X
with A4 C¢(x). Define a relation R on ¢[X] by (4.4)€R iff
AUA'C¢(x) for some x € X . Then R is a T-invariant equivalence
relation ((i)) which is closed (u.s.c.). Define Y = M/R then ¥ is a ttg.
Define ¢:X—% by ¢(x):=R[¢(x)]. Then ¢ is a homomorphism, for
equivariance is obvious. Let {x;};, be a net converging to x € X . Then

limy(x;) =lim R [¢(x;)] = R[lim(x;)] .

By upper semi continuity, lim¢(x;)C¢(x); so R[p(x)] = R[lime(x;)].
But then

limy(x;) = R{lim (x;)] = R[$(x)] = ¢(x) ,
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and ¢ is continuous. Clearly ¢ is a surjection and, as ¢ is nontrivial, ¥
is nontrivial. As % is minimal, % is the image of the nontrivial proximal
subttg in ¢[X],so ¥ itself is proximal. O

5.6. The elements of [E] can be characterized as the locally almost periodic
minimal ttgs, as follows:

In [MW 72] it is shown that a minimal ttg % is locally almost periodic iff
X is proximal equicontinuous such that for every open U in X there is
an x € X with Py[x]={x'€EX |(x,x)EPx}C U . So a minimal ttg
% is locally almost periodic iff % is an hp extension of an uniformly
almost periodic minimal ttg.

(For let X be locally almost periodic. Then there is an uniformly almost
periodic ttg ¥ and a proximal map ¢:X—>%Y. Let UC X be open and
let x € X be such that Py[x]C U , then ¢“¢(x)C Py[x|]C U ; so ¢ is
irreducible, hence highly proximal. Conversely, suppose that % is an hp
extension of a uniformly almost periodic minimal ttg; say ¢:X—% , where
¢ is hp, and with Y€ E . Clearly, %X is proximally equicontinuous. Let
UCX beopenandlet y €Y with ¢~(y)CU . Let x E¢~(y); then
Py[x]=¢"(y)C U . Hence % is locally almost periodic.)

So clearly, [E] contains all locally almost periodic minimal ttgs. Note that,
by the above, & is locally almost periodic, and that local almost periodicity
is preserved under factors (use the characterization above and apply 1.4.3.a,b
and e). It follows that every element of [E] is locally almost periodic.
Hence & is the universal minimal locally almost periodic ttg, and every ele-
ment of [E] is an hp extension of a uniformly almost periodic ttg.

For a discussion of the relativized concept see [MW 80.1].

QUESTION

Does there exist a similar characterization for the elements of [D] ?

5.7. The material in chapter VI. could have been treated in a (more) relativ-
ized version, in the following way:

Let % be a minimal ttg and consider all extensions of % . Then prove simi-
lar results as in this chapter, where % plays the role of the trivial ttg. For
convenience it will be desirable to take for %X an MHP ttg, as openness of
maps will turn out to be needed many times. For example see [B 75/79] sec-
tion 3.19..



- 215 -

VII

WEAK DISJOINTNESS

1. relatively invariant measures
2. ergodic points
3. weak disjointness and maximally almost periodic factors

4.  remarks

This chapter is almost entirely devoted to weak disjointness in relation to
almost periodic factors, or rather to the equicontinuous structure relation. In
doing so we profit from a decent additional measure structure on the fibers of
a certain kind of homomorphism, which is, in fact, a relativization of the
concept of invariant measure.

Therefore, the first section deals with the notion of Relatively Invariant
Measure (RIM). Homomorphisms that admit such a RIM (RIM extensions)
turn out to behave nicely with respect to the equicontinuous structure rela-
tion and weak mixing. As we are more interested in the properties of RIM
extensions and their uses than in the technical background, we shall refrain
from selfcontainedness and we shall refer to the literature for a few (techni-
cal) proofs. Most of the results in section 1. are well known and can be
found for instance in [G 75.2], [M 78] or [VW 83], but we end the section
with some new (although artificial) thoughts on a condition which is weaker
than having a RIM.

In the second section we study the ergodic behavior inside the neighbourhood
of a point (in its fiber with respect to a homomorphism). The main result is a
generalization of [G 75.1] 1.1.; we prove that an open proximal homomor-
phism of minimal ttgs is weakly disjoint from every homomorphism of
minimal ttgs with the same codomain.

As it turns out to be unsatisfactory to be stuck to choices of points and their
fibers, we take a more global view in the third section. There the approach
gives more results and we are able to generalize known results on weak
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disjointness to situations without countability assumptions. For instance, we
show that two homomorphisms ¢ and ¢ of minimal ttgs are weakly dis-
Joint if and only if their almost periodic factors are disjoint, provided that ¢
is an open RIM extension (compare [M 78] 1.9. and [P 72] 11.). Also. in 3.14.
we generalize the far reaching result of W.A. VEECH in [V 77] 2.6.3., where he
shows that under some conditions the product of an ergodic and a minimal
ttg is again ergodic.

Most of the results in section 3. are already in [AMWW ?], they are obtained
in cooperation with J. AUSLANDER, D.C. MCMAHON and T.S. WU.

In the forth section we generalize 1.U. BRONSTEIN’s characterization of PI
extensions [B 77].

VIL.1. RELATIVELY INVARIANT MEASURES

In this section we briefly discuss the notion of relatively invariant meas-
ure. We only treat this material for the sake of definition and notation.
So no new results are to be expected. just a glimpse at this part of the
subject.

For a more explicit treatment see [FG 78], [G 75.1}, [G 75.2], [M 78],
[MW ?] and [VW 83].

Let X be a CT, space and let Wi(X) be the collection of regular Borel
probability measures on X provided with the weak star topology: i.e., a net
{m }; in M (X) converges to p&€ W (X) iff ff dp; converges to f_f' dp
for all real valued continuous functions f on X . Then Wi(X) is a CT,
space in which X is embedded by the mapping x 38, . where &8, is the
dirac measure at x . Moreover, W (X) is a convex space in which X is
just the collection of extremal points, so by the Krein-Milman theorem
WM (X)=coX . Here coX denotes the convex hull of X as a subset of
M(X).

Let ¢:X—% be a continuous map between CT, spaces. Then ¢ induces a
continuous map  Wi(¢p): W (X)—-W(Y) which extends ¢ . Note, that
Wi (¢) is surjective (injective) (homeomorphic) iff ¢ is.

I.I. If X is a metrizable CT, space, so is W (X) . For the space of real
valued continuous functions on X endowed with the topology of uniform
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convergence is separable. Hence, Wi (X)) is first countable. As X is separ-
able W (X)=coX 1is separable. So Wi (X) is CT, first countable and separ-
able. hence metrizable.

Let X beatigfor T .For r&€T and p€ W (X) define rpe V(X)) by
tu(A)=p( 'A): or. what is the same, // d(tp) = fft dp . where
fr: X —>R is defined by fr(x)=f(rx). Also one could say
=M (7" Yp) , where 7 :=xmx: X - X .

One can show (e.g. [VW 83]) that (7. ) rp: T X O(X) - W(X) is continu-
ous. So WH(X) isattg for T .

If ¢:X—% is a homomorphism of ttgs. then Wi (¢): W (X) - W (Y) is a
homomorphism of ttgs.

By definition, X has an invariant measure whenever Wi (%) has a fixed
point; ie.. there is a peW(X) with wu@d)=p(Ad) for all r€T and
every Borel set 4 in X .

1.2, A surjective homomorphism ¢: X — %Y of ttgs is said to have a rela-
tively invariant measure ( ¢ has a RIM, ¢ is a RIM extension) if there exists
a continuous  homomorphism — A: Y= (X) of tgs such that
WE(P)oA: Y — WV (Y) is just the (dirac) embedding. In other words: ¢ is a
RIM extension iff for every y €Y there is a A €W (X) with
suppA, C ¢~ (v) and the map v A :Y—-V(X) is a hbmomorphism of
lgs: this map A is called a section for ¢ .

In particular, ¢: X — {*x} has a RIM ifft X has an invariant measure.

RIM extensions of minimal ttgs turn out to behave nicely with respect to the
interpolation of maximal almost periodic factors, as we shall see in 3.22..

We shall collect some information on RIM extensions. For the proof of 1.3.
see [G 75.2].

1.3, REMARK. Let ¢:X-—Y and :Y—EZ be homomorphisms of minimal
1gs.
a) If Yo is a RIM extension then ¢ is a RIM extension.
b) If ¢ and ¢ are RIM extensions then o¢ is a RIM extension.
¢) If ¢ is an almost periodic extension then ¢ has a unigue section,
say A, and suppA. = ¢ (v) forall y €Y .
d) If ¢ is distal then ¢ has a RIM, which is not necessarily unique. ()
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1.4, LEMMA. Let X be a CT, space. The map supp : W (X)—2"% defined
by wesuppu (support of ) is lower semi continuous; i.e., if p; —u in
W(X) then suppuC S for an arbitrary limit point S of the net
{(suppy, }; in 2% .

PROOF. Let x € suppp and suppose x &S . Let U and V be open sets
in X with xeU, SCV and UNV =0 . Let f:X —[0,1] be a
continuous map with f[U]= {1} and f[V]={0}. As x € suppp it fol-
lows that u[l7]>0 and so /f dp=p[U]>0 .

As, for a suitable subnet, S = lim, suppp, . suppp; C V' eventually: hence

[f dp; =0 eventually. But [fdw — [fdu.so [fdp=0, whichisin
contradiction with the above. O

1.5. REMARK. Let ¢:X—Y be a surjective RIM extension of tigs with sec-
tion N. Then ¢ is open in all points x € X with x € suppAy(,. In
particular, if X is minimal then suppA, C (M {uod=(v)|u€J,} for
all y ey .

PROOF. Suppose x € suppA,(,, and let U €V, . By lower semi continuity
of the map supp: W (X)—2" . the set {p€W(X)| UNsuppp %~ @} is
an open neighbourhood of Ay, in W(X). As A is continuous, there is a
Ve Y such that AWVYC{peM(X)|UNsuppp#= @}, so
UnNsuppA, %= & for every y €V . As suppA, C ¢ (y). this implies
that ¢(x)EV Co[U].So ¢[U] is a neighbourhood of ¢(x): hence ¢ is
open in x .

The second statement follows immediately from I11.3.12.. O

1.6. THEOREM. Let ¢:X— %Y be a RIM extension of minimal t1gs with sec-
tion N . Then, for yoE€ Y | the following statements are equivalent:
a) suppA, = ¢ (ro)
b) the map ywsuppA, : Y —2% s continuous in y .
In particular it follows that if X is metric then there is a residual subset
Y'CY with suppA, =¢"(y) forall y €Y',

PROOF. (See also [G 75.2] 3.3..)

a=bLet {y;}, beanetin Y with y, —y,. Let p, EM be such
that y; = p;y¢ and, after passing to a suitable subnet, let ¢ =limp, € M .
Then gypy=yo and so, by continuity and equivariance of A,
g\, = A, = A, . By L4, and after passing to a suitable subnet,

<0 (lr()



-219 -

supp)\_‘.” =suppgA, C lim,, suppp,)\_, LClimy pied™(yg) =qod (1) .

As

(Vo) = supp )\_\-, Cqgo (P‘_("())g (Vo) .
it follows that suppA, =lim,suppA, . Hence ) ~suppA, is continuous
in Yo -

b=alet x€¢ (o) andlet xo&€ suppA, . As X is minimal there
isanet {r,}; in T with r,x;—>x . As 1,x0E€ supp)\,r\.“ and 1;yg—vg. it
follows by the continuity assumption that x € lim, suppA, . = suppA, .

If X is metric, then the lower semi continuous map 1+ suppA, has a resi-
dual set of continuity points in Y ([Fo 51]. compare I1.1.3.e). O

1.7. THEOREM. Let ¢:X—%Y be a RIM extension of minimal tigs. Then
¢ X =Y (in AG(¢)) is an open RIM extension, and ¢ :X — Y’
(in *(¢)) can be written as Yol with 6 highly proximal and +y a RIM

extension.
PROOF. Let A be a section for ¢ . Then by 1.5.,
suppA,. C ({ved (1) |vEJ,} forevery y €Y.

First consider AG(¢), which is the right hand part of

* OI 0 (.
x X o’
* X /
¢ qu‘r’ ¢’ ltﬁ
A
ny ; TS C,y/ — 5y
T T

By IV34., Y ={pod~(y)|pEM.y€E Y} andso by Il3.1l.e.
Y'={(vog () |y EY ., vEJ].
whereas X' = {(x,y")|x Ey'€ Y’} .s0
X'={{z3yedg (Y| pEY , VEL . xEVad ()} .

The map ¢’ is defined as the projection, so
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P(vod™(y)=vod (¥)X {vod™(y)C XX Y.
For every y’€ Y’ define A} -:= A,/ X8, . or rather, for every y €Y and
veld, let N P A X8 Clearly, A’ €W (X’") and

supp )\’vcsﬁ"(r) =suppA, X {(vo¢™(¥)} C ¢ (voodp (1)) .

vod (1) " 0 (1)

As (AoTX 8:)v oqs‘_()')w)\’rw, ) is continuous and T -invariant, it follows
that A’ is a section for ¢',so ¢’ is an open RIM extension.

Consider the left hand part of the diagram above. As ¢ is open, 7' L ¢’
(IV.3.16.). So R, is minimal and there is a homomorphism 6: 5 >Ry
which is hp, for 6 =¢06 ishp. Let y" €Y  and 7(0")=)y'€ Y’ then
V() =¢'(»)X {y }C Ry, . Define )\:. 1=N,,-, X8 and note that

A" is a section for ¢ . So iy isa RIM extension and ¢ =108 . O

1.8. In [G 752] S.GLASNER has shown that every homomorphism
¢:X—%Y is a RIM extension up to proximality; i.e., he constructed a
diagram similar to the EGS and AG diagrams, which we shall call a G’
diagram, as follows

Y
=

@:*—l SR
©-

T > 9

% s a certain minimal subttg of We(X). 7: Y% jsa proximal extension
(even a strongly proximal extension, which we shall define below), and X is
the unique minimal subttg of R, . The projections are called o and ¢ .

It turns out that o is (strongly) proximal and that ¢ is a RIM extension.
As the precise construction is not relevant for our purposes we shall not go
into details on that. The interested reader may find it in [G 75.2] and
[VW 83].

Let ¢:X—% be a homomorphism of ttgs. Then ¢ is called strongly proxi-
mal if for every p€ W (X), with W (o)) = d, for some y € Y , there is a
net {#;}, in T such that ;,p—34, forsome x € X .

In particular, a strongly proximal homomorphism is proximal. For let
X1, X2E¢7(y), then p:= (8, +8,)/2€ M(X) and W ()(p) =9, . So

there isa net {7}, in T and thereisan x € X such that ,u—8, .
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Let p =lims, € Sy ; then ip— (8 +6,;)/2= 8, . So (8, +8,. )2 =4,

and px; = px, = x . which implies that x, and x, are proximal.

1.9. REMARK.
a) Let ¢:X—>%Y and ¢:Y—Z be homomorphisms of minimal tgs.
Then Yo¢ is strongly proximal if ¢ and { are strongly proximal.
b) A highly proximal extension ¢:X—Y of minimal tigs is strongly
proximal.
¢) A RIM extension of minimal tigs is strongly proximal iff it is an iso-

morphism.

PROOF.

a) Straightforward.

b)yLet y €Y and pEW(X) be such that Wi(¢)p) =38, . Then
supppuC ¢~ (). Let wueJ, and x =ux € ¢~ (y). Then, by high proxi-
mality of ¢, {x} =u o¢."'i(v) . while, by 1.4., suppupCuodp™(y) = {x] .
Hence wup =46, . and ¢ is strongly proximal.

c) Let ¢:X— % be a RIM extension of minimal ttgs with section A .
Then for every y € Y . A, is a minimal measure ( A, € W (X) is an almost
periodic point), and Wi (o)A, ) =8, . If ¢ is strongly proximal, there is a
&, in the orbit closure of A, .So X = fr hence A, =48, for some
X E¢7(r). So the homomorphism Ao¢ is the identity Amapping of X :
hence ¢ is an isomorphism. O

Now we can extend the G’ diagram for ¢ to a diagram in which the associ-
ated RIM extension is even open. We shall refer to that diagram as a G

diagram.

1.10. THEOREM. Let ¢:X— Y be a homomorphism of minimal 11gs.

o
%# » X,
d K
#® >
Yy . > 9

Then there is an open RIM extension ¢% :X*® — Y% of minimal t1gs,
and there are strongly proximal extensions o:X* —X and 7: %% - %
such that ¢poo = To¢p™ .

If X is metric then X¥ and %% can be chosen to be metric.
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PROOF. Consider the next diagram:

2 >

©-
#
Il
-911
O ——
©-t
S ——
‘_
©

\ 4

’

T 3

By 1.8., we can construct the right hand part of the diagram such that ¢ is a
RIM extension, and such that o and 7 are strongly proximal.

The left hand part is AG(¢), so o and 7' are hp. Hence by 1.9., 000’
and 7o7” are strongly proximal homomorphisms of minimal ttgs. By 1.7.,
¢’ is an open RIM extension and clearly, ¢oooo’ =707 0d’ .

If X is metric, W (X) is metric (by 1.1.). Hence, Y is metricand X asa
subset of X X Y is metric. But then Y’ and X' are metric by IV.3.11.. [J

Let ¥ be a minimal ttg. Completely analogues to the construction of the
universal minimal (highly) proximal extension of % (e.g. II1.1.13.b) one can
construct the universal minimal strongly proximal extension of % (which
will be denoted by g (%) ), as follows:

Let y:9M—%Y be a homomorphism and construct the G(y) diagram. Then
T: %% - s strongly proximal and y¥ : 9M* = M—Y* is a RIM exten-
sion. As every extension ¢ of ¥ s a factor of y¥ _ it follows by 1.3.a
that ¢ is a RIM extension. In particular, every strongly proximal extension
of ¥¥ s trivial (1.9.c).

If ¢:X—%Y is a strongly proximal extension of minimal ttgs then it is easily
checked that

0:(x,z2)»p(x)=7(2): Ry, —> Y

is strongly proximal. As # factorizes over 7. the unique minimal subttg of
R,. is a strongly proximal extension of ¥ | so it is isomorphic to ¥* .
This shows that ¥¥ is the universal minimal strongly proximal extension of
Y .

The ttg Ag({*}) is the universal minimal strongly proximal ttg for T .

For the following theorem we refer to [G 76] or [VW 83].
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L.11. THEOREM. Ler T be a topological group. Then the following statements
are equivalent:
a) T is an amenable group;
b)  Every minimal ttg for T has an invariant measure;
¢)  The minimal g ANg({*}) for T s trivial; i.e., T does not admit

nontrivial strongly proximal minimal ttgs.

PROOF. Clearly. a strongly amenable group 7 is amenable, but there are
examples of amenable groups that are not strongly amenable [G 76] I11.7..
Note that this shows that there do exist nontrivial proximal minimal ttgs that
admit an invariant measure. So, in particular, a RIM extension is in general
not a RIC extension.

Also a RIC extension does not have to be a RIM extension, for [M 76.1] 2.2.
provides an example of a minimal ttg that does not admit an invariant meas-
ure but which is incontractible. From this it follows that the notion of a
RIM extension is not related to strong proximality in the same way as a RIC
extension is to proximality and an open extension to high proximality: i.e.:
One cannot characterize the RIM extensions as those homomorphisms that
are disjoint from all strongly proximal extensions of its codomain.

We shall go into that in the following.

1.12. THEOREM. Let ¢:X—%Y and ¢:Z—Y be homomorphisms of minimal
t1gs such that one of them is open. Let  be strongly proximal and let
¢ be such that there is a minimal measure p€N(X) and a y €Y
with
either suppp = ¢~ ()
or suppuC ¢ (y) and () (supppu|pEM,} # O .

Then ¢ L.

PROOF. Let W be a minimal subset of R, and define the homomor-
phisms 7:W—X and 7: W—Z as (restrictions of) the projections. Let
pEW(X) and y € Y be as in the assumption. As p is an almost periodic
point in Wi (X) . we can find an almost periodic measure »& W (W) with
W (m)(v) = p . Clearly.

WM () oM (my)(r) = V(&) oM () (¥) = W (S)(p) = 8, .

By strong proximality of i . there is a dirac measure 6. in the orbit closure
of Wi(my)(v). As vEW (W) is almost periodic, Wi(m;)(r) is almost
periodic, hence Wi (7;)(») is a dirac measure, say W(m)(v) = 6_.”. Obvi-

ously,
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Zo€E suppd. = suppM(m)»)C Y (1) .
and for every p € M we have W (m)(pr) = 8,,:” . But then

suppp v = supp Wi (m)(pv) X supp W (m)(pv) = supppp X {pz¢}

for all peM . As pre (W) it follows that suppprC W . hence
supppp X {pzo} C W .

First suppose that suppp =¢~(y) and let ¢ € M be such that gp=p .
Then by the above

$7() X {gz0) = suppp X {gz0} = suppgpu X {gzo} C W .

As W is minimal, T(¢—(y)X {¢gz0}) = W . By L.3.9. and the assumption
that at least one of the maps ¢ and ¢ is open, it follows that
Ry =T(9(y)X {gz9}))C W . Hence R,y is minimal and ¢ L ¢ .

On the other hand, suppose that the second option is valid, say
x € () {supppp|p € M, } . Then for all p e M, we may conclude that
(x.pzg)EsupppuX {pzo} C W . Hence {x}X{y (y)C W and similar to
the above it follows that Ry, = T({x } X ¢7(y))C W . which implies that
R4y is minimal and ¢ L ¢ . O

1.13. COROLLARY. If ¢:X—%Y is an open RIM extension of minimal rgs,
then ¢ L for every strongly proximal homomorphism :Z—%Y of
minimal ttgs.

PROOF. Let A be a section for ¢ andlet y € Y . Then for all p e M, we
have pA. =X, =A. ., so suppA. = (") {supppA, |p € M,} . Hence by
1.12. with the second option, the corollary follows. O

1.14. THEOREM. Let ¢:X—Y be a homomorphism of minimal ttgs and let
X be metrizable. Then ¢ s disjoint from every strongly proximal
homomorphism : Z— %Y of minimal ngs if and only if ¢ is open and a
minimal measure pE W (X) exists with suppu=¢~(y) for some
pe Y.

PROOF. If ¢ is open and if some minimal measure p& W (X) exists with
suppp = ¢~ (y) for some y € Y . Then by 1.12., ¢ L for every strongly
proximal extension ¢:Z—% of minimal ttgs.

Conversely, suppose that ¢ is disjoint from every strongly proximal
homomorphism ¢:Z— % of minimal ttgs. Then by 1.9.b, ¢ is disjoint from
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every hp extension of % ; hence by IV.3.16.. ¢ is open. Construct G(¢):

—
»

ox* - x
X /
o* G, J ¢
%

A

y* >

As ¢ is a homomorphism of metric minimal tigs, ¢~ : X¥ - %% isa RIM
extension of metric minimal ttgs. As ¢ is disjoint from every strongly proxi-
mal extension of % . ¢ L7 and R, is minimal. Hence there is a map
0: X% —R,, such that 700 =0 and mof = ¢~ . where = and =, are
the projections, and so the diagram commutes. As ¢~ is a RIM extension
of metric minimal ttgs. it follows by 1.3.a that 7,:R,, —»%* is a RIM
extension of metric minimal ttgs, say with section A . By 1.6.. we can find a
»¥ EYF® such that suppA - =735 (»¥). Note that

7 F)=¢om ()X ().
where y:=7(yF). Define p:= W (A -)EWM(X). Then p is a

minimal measure (homomorphic image of the almost periodic point ¥ )
and obviously. suppp = (suppA ). hence suppp =¢~(r). O

1.15. Let ¢:X—% be a homomorphism of minimal ttgs. Consider the
diagram AG (¢).

o
X >
¢l o
o > @
-

We shall call ¢ an RMM extension if o X o[Ry]= R, and ¢ is disjoint
from every strongly proximal extension ¢:Z— %" of minimal ttgs.

Note that by IV.4.16. it follows that ¢ is an RMM extension iff ¢ (in
*(¢)) is disjoint from every strongly proximal extension 6:U—%"  of
minimal ttgs and o X o[R¢.] = R4 (in *(¢)).
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Moreover, an RMM extension ¢ is open ifl ¢ is disjoint from every
strongly proximal extension. In particular, RIC extensions and open RIM
extensions are RMM. Also a Bc extension which is RIM or which has a
minimal measure supported in a full fiber is an RMM extension.

1.16. Actually, in the proof of 1.14. we showed that for an RMM extension
¢: X — Y we can construct a h diagram of homomorphisms of minimal ttgs,

2
Q\/
=R
c\

L

Q ——— R

such that ¢" is an open RIM extension and o” X ob[RW] = R, . As follows:
Construct AG(¢). As ¢ is RMM, ¢ is disjoint from every strongly proxi-
mal extension of % and o X o[Ry]= R, . Then, as in the proof of 1.14.,
we take ¥:=%* (in G(¢')) and X’:=®R,, . which is minimal as
T L¢ . As ¢ isa factor of ¢¥ (in G(¢')), ¢° is open and RIM. More-
over, o' X o’[R¢n] = Ry , hence

ob X ab[RW] =0 Xo[Ry]=Ry,.

In particular, we can apply 1V.4.3. to this p diagram, so to some extent we
can transfer properties of open RIM extensions to RMM extensions. (e.g. see
1.20.,3.16.,3.17. and 3.20. below).

In [M 78] D.C. MCMAHON developed a technique to investigate the equicon-
tinuous structure relation in the case of RIM extensions. The most important
results are 1.17. below ([M 78] corollary 1.4.) and its consequences (here)
1.18. and 1.19.. We shall merely state 1.17. as the techniques that lead to
that result are not important for our purposes.

1.17. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs, and let
V:Z->%Y be a RIM extension with section N (& not necessarily
minimal). Let x € X and let U be an open set in Z . Then

Eo[x] X (UNsuppryx)C T({x } X UNR,y) . 0
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1.18. THEOREM. Let ¢:X—Y bhe a RIM extension of minimal ttgs with sec-
tion X. Then for every x € X with x € suppAy, we have the equal-
ity Eg[x]= Qqlx]. In particular, if a minimal ttg X has an invariant
measure then Eo = Qo .

PROOF. Let x € X be such that x € suppA,,. Let a€ AUy be an index

and let U be an open neighbourhood of x with U Ca(x). Now we
apply 1.17.to ¢ and ¢, so

Eg[x] X (UNsuppry)C T({x }JX UNR)C TaNR,.

As x € UNsuppAyyy it follows that Eg[x] X {x}CTaNR,. Since
a€ Uy was arbitrary, E,[x] X {x}C Q, and so E4[x]C Q4[x]. hence
Eolx]= Qqlx].

Now suppose that X is a minimal ttg which has an invariant measure p .
Then suppp= X . (Forlet UC X be open: then by minimality, X C FU
for some finite set FCT . As u[fU]=p[U] forall f e F it follows that
plU]#40.) So for every x€&€ X, xEsuppp and by the above,
Ex[x]= Qx[x].Butthen Eoq = Q« . O

1.19. COROLLARY. Ler ¢:X—%Y be a RIM extension of minimal ttgs. Then
Ey=0Q40Py=PyoQ4={(x1.x52)E Ry | (ux,,ux,)€ Qg for someu €J } .

PROOF. Denote {(x;.x,)€ Ry | (ux,,ux;)€ Qg forsomeuecJ} by § .
First note that by 1.4.2., SC Q40Py=Py0Qy .

Conversely, let x € X be such that x € suppA,(,, . Then by 1.18., we have
Eg[x]=Q4lx]. Let (x;.xp)EE4s, and let peEM be such that
px;=x . Then (x,pxy)=(px,.px)E Ey; hence (x.,px3)€Q,. Let
vEJ, s then

1.5 = Y pr € T8, = 0.
So (x;.x7)&€ S ., which shows that

E¢QSQQ¢OP¢:P¢OQ¢Q E‘(:,.
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1.20. Let ¢:X—% be an RMM extension of minimal ttgs and consider the
b diagram of ¢ .

o
xb =%
\ g / l
¢’ XY/E ,——> %/E, 9
/ \
ap - -

Then by 1.16., 1.19. and IV.4.3.c, it follows that E,= Q,0P,. Hence by
IV.43.e we have oXo[E, ]=E, and so, by IV.410., we know that the

map .5:G)U’/EW—>‘.‘)(,/E,j> is proximal. In 3.22. we shall even show more,
namely, E4= Q4 for RMM extensions.

VIL.2. ERGODIC POINTS

In this section we consider the ergodic behavior inside the neighbourhood
of a point. We use it to prove some results concerning the question
whether or not the regionally proximal relation is an equivalence relation.
In this context, we also discuss weak disjointness. In particular, we gen-
eralize a result of S. GLASNER [G 75.1] by proving that an open proximal
homomorphism of minimal ttgs is weakly mixing (cf. 2.14. below). We
also show that a RIM extension of metric minimal ttgs without nontrivial
almost periodic factors is weakly disjoint from every homomorphism of
minimal ttgs with the same codomain (2.13.).

2.1. Let ¢:%X—% be a homomorphism of minimal ttgs and let n €N

with n=2. A point x € X is called a ¢-n- locally ergodic point if for

every open W C X there exists a set U , open in ¢~ ¢(x), such that

(1) E¢[X]Q U,

(i) TV X - XV,)NW" 5 & for every choice of sets V; C U open
in ¢“(x).
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if for every W we can take U to be ¢“¢(x). then we call x a ¢-n-
ergodic point.

If x is a ¢-n-(locally) ergodic point for all n EN with n=2, then x is
called a ¢-(locally ) ergodic point.

If ¢:%X— {x} then we skip the prefix ¢ in the definitions above.

2.2. REMARK. Let ¢:X—Y be a homomorphism of minimal ttgs.

a) If x € X isa¢-n-(locally) ergodic point, then tx is a ¢-n-(locally)
ergodic point for every t €T .

b) If x€ X is a ¢-n-ergodic point, then every x'€ ¢"d(x) is a ¢-
n -ergodic point.

c) If x€X is a ¢-n-ergodic point, then it is a ¢-n-locally ergodic
point.

d) If Eg= R, then x € X s ¢-n-ergodic iff it is ¢-n -locally ergodic.

PROOF. Straightforward. O

2.3. EXAMPLE.
a) If ¢:X—Y is a proximal extension of minimal 11gs then every
x € X s a ¢-ergodic point.
by If ¢$:X—% is such that «k:X—X/E, is highly proximal (one
could say thar ¢ is a locally almost periodic map) then every
X € X s a ¢-locally ergodic point.

PROOF.

a)Let WCX beopen. Let x€ X andlet Vy,..., V, be open in
¢"¢(x). Forevery i€ {l, ..., n} choose x; €V, ; then ¢(x;)=¢(x).
As ¢ is proximal (x,...,. x,) 1is proximal to (x,...,. x) in X" . As
X and so the diagonal in X" is minimal, (x,...,x)ET(x),...,. Xii
Let t€T be such that xe W ; as r(x,...,. X )E TNy a0 Xi: )i s
wrnT(xy, ..., X,) 5= @ . But then T(V X - XV,)NW" £ & .

Hence x € X is ¢-ergodic.

b) Let W C X beopenandlet x € X . As k:X—>X/E, is hp, there
isa €T with tEy[x]=1tk"k(x)C W . Define U:= W NeTe(x) .
Clearly, U satisfies the conditions (i) and (ii) of 2.1. for every n € N with
n=2. So x isa ¢-locally ergodic point. |
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2.4, THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs.
a) If x € X isa¢-2-locally ergodic point then Q4[x]= Ey[x] and
Ey=Q40Py={(x1.X2)ERy|u(x,.x2)E Q4 forsomeueJ}.

b) If x €X isa ¢-2-ergodic point then Q4= ¢ ¢(x) and
Ry=0Q40Py={(x1,x)ERy|u(x,.x2)€ Qg forsomeuecJ}.

PROOF.

b) (a) For x"€ ¢7¢(x) (x'€ E4[x]) we prove that x"€ Q4[x].
For an arbitrary a€Qy let BEy be such that B '=p and
BoBCa, then B(x)XB(x)Ca. Let W:=B(x) and choose U for
W as in the definition (2.1.) (in case b U := ¢ ¢(x)). Then for every
(basic) open neighbourhood VXV’ of (x,x’) in UXU we have
T(VXV)YNWXW %= @ |, hence

B EVXVNTBE)XBE)C VXV NTa=VXV'NTanUX U .

But then

(x.x)ETaNUXUCTaNR,.
As a € Qy was arbitrary, it follows that
(x.xNE MN{TaNRy|a€EUy} = Q.

As for some x € X we have Ey[x]= Qg4[x]. it follows, as in the proof of
1.19., that

Ey=0Q40Py={(x;,.x2)ERy|u(x,.x,)€E Qg4 forsomeu€cJ}.
For case b note that if (x,,x,)€ R, then
u(x,.xz):up"(px,.pxz):up"(x.pxz)

for pEM with px, =x . As we just proved that Q4[x]=¢"¢(x) it fol-
lows that

u(xy,x7) = up '(x,pxy)€ 7@: Qs .

and (x;,x2)€E,. O

2.5. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs, such that
k:X—>X/E, is open. If there exists a ¢p-2-locally ergodic point x € X
then E,=Q,.

PROOF. Let x € X be a ¢-2-locally ergodic point, then E4[x]= Qq4[x] by
24.a. Let (x,,x,)EE, and define zo:=#x(x;)=rK(xy) and z:=k(x).
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Foranet {7}, in T with r;,x -x; wehave 1,z —>zy. As K is open we
can find

X5 € Eglx]=x"@)=«"ni{x) with £;x; - x3.

But Ey[x]= Q4lx].s0 (x,x2)E Q4 and (x;.x3) =lims(x,x3)E Q, . 0

2.6. COROLLARY. Let ¢:X—%Y be an open homomorphism of minimal t1gs.
If there exists an x € X which is ¢-2-ergodic, then Ry, = Q.

PROOF. By 24. we have R,=E, . hence ¢ =k:X->KX/E, =Y is open.
So, by 2.5., it follows that E,= Q. hence E,= Q4= R, . O

2.7. COROLLARY. Let X be minimal. Then Q= X X X iff there is a 2-
ergodic point in X (i.e., iff every point in X is 2-ergodic).

PROOF. If there is a 2-ergodic point in X' then by 2.6.. Qg = X X X .

Conversely, let W C X be open and let U and V in X be open. We
have to show that T(UX V)N W X W £ @ . As follows: Since X is
minimal, Ay is minimal. So by L1.1., T(W X W) is a neighbourhood of
Ay , and there is a BEeUy with TBCT(WX W). As Qu =X XX |

we have XXX =TB,s0o UXVCTB and UXVNTR = @ . Hence
UXVNTWXW)s% @ and TWWXVNWXW # @ . O

In several situations (e.g. metrizability of the phase spaces) we can show that
a ¢-n-ergodic point is a point with some ”dense proximality” in its fiber.

Let ¢:X—% be a homomorphism of ttgs and let n €N with n=2. A
point x € X is called a Pg-point if

{1 o x,)E@TO(x)) | Txy, ... x,)NAY # D)

is dense in (¢~ ¢(x))" (A¥ is the diagonal in X" ).
Clearly, if ¢ is proximal then every x € X is a Pg-point for all n €N
with n=2.

2.8. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs and let
neN with n=2.
a) Every Pj-point is a ¢-n-ergodic point.
b) Ifthere is a point xo& X which has a countable neighbourhood base
W, . then every ¢-n-ergodic point is a Pg-point.
In particular, if X is a metric minimal 11g, then the ¢-n -ergodic points

are just the P -points.
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PROOF.

a)Let x€X be a Pg-point. Choose W C X open and let
Uy,....U, be open subsets of ¢“¢(x). We shall show that
T(U X -+ XU)NW" 5= @ . Since X is minimal, AYyC T(W"). As
Uy X -+ XU, isopenin (¢"¢(x))" and as X is a Pg-point, there is a
point

(Kiig v o v Xg JE Uy w3 XU,
such that AYNT(x,,...,x,) % @ . So, by minimality of X .
AYCT(xy, ..., x))CTWU X -+ X U,).

Hence AYC T(U X -+ X U,)NTW" and so
T(U X - XUNW" £ & .

b) Let x €X be a ¢-n-ergodic point. Choose U C (¢~ ¢(x))" open
in (¢"¢(x))", and let V,,...,V, be open in ¢“¢(x) such that
ViX «v« X¥VaCU. Let W = (W, | €N} be the countable neigh-

bourhood base for x, in X . For a€N define, inductively, r,€ T and
F e g V' openin ¢~ ¢(x) as follows:
As x is a ¢-n-ergodic point, thereisa ¢, € T with

LV X XV)NWI £ & .

Define V;':=V; .
Let V{,...,V,”, openin ¢~ ¢(x), be defined. Then there isa 1,€T
with

tVEX - XVHNWE £ @ .
Let V"4 @ be openin ¢~ ¢(x) such that
Vel e VErTe vene ' W,.
Forall i€ {I,..., n} let
x, € N{VAlaeN)CV,N N {ta 'Wo|aEN]}.
Then (x;,...,x,)EU and t(x,,...,> Xp)—(xg, ..., xg) . Hence x is

a Py -point. O

The following shows that there are situations in which lots of ¢-locally
ergodic points exist.
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29. LEMMA. Let ¢:X—Y be a RIM extension of minimal t1gs with section
A Let x:X—X/E, be the quotient map and let x € X . If x has
a neighbourhood V- in ¢~ ¢(x) such that
(i) Eg[x]CV and E [V]CsuppAy.,:
() & = K|¢,¢“ ':qi)‘_(p(.\‘ )= K[ H(X)] is open in all points of a dense
subset of V' ;

then x is a ¢-locally ergodic point.

PROOF. Let W C X be open and let n €N with n=2. By Ll4.a,
k[W]° 5 & 1 so there is an open neighbourhood V' oof k(x) and a
reT with (V" Ck[W]°. Define U:=«"[V |V . then U isan open
neighbourhood of x in ¢~ ¢(x) with E, [x]C U and U has a dense set
of points in which «" is open. Let V... .. V, beopenin ¢$~¢(x) with
V., C U . We shall show that T(} X --- XV, )N W" = @ and so that
X is a ¢-n-locally ergodic point for all n €N with n=2. As the points
of openness of k" are dense in U . we can find V', C V, openin ¢~ ¢(x)
such that E,[V]=«k"k[V7] isopenin ¢ ¢(x). Obviously.

EGVIICEGUIC EG[V]CsuppAyy) .
Remember that for m €N with =2 . R is defined by
Rg)’ = {(Xl ~~~~~~ \./n)E X" 1 olxj) =d(xg) = ~+- = ¢(-\Am)} .

Let ¢":R)—% denote the obvious homomorphism. Define A” by
Adie) =As)X o0 XAy (m-times). Since the support of Agf,, is
inciuded in RY . A" may be considered as a mapping from % into
WHRE) . Clearly. A" is a section for ¢” . s0 ¢": Ry —Y is a RIM

extension (with section A" ). As Vhx< - X L’j,gsupp)\g‘\)' and
HK s XV is open in (¢ ¢ (x )" it follows from 1.17. applied to ¢
and ¢" ' that
E VX ViX - x Vi, CT(VIX VAX - X V).
As the set E [V X V45X -+ X V' is an open subset of (¢~ ¢(x))" and
since  E VX V53X - X V’,,gsupp)\gm'. it follows from 1.17. and

from what we have shown above, that

EG[VAX Eg[V5IX VX - X V', C T(EG[VIX VX~ X V) C

QT(VIIX cre X V(n)g T(VIX e X Vn)'

Proceeding this way, it follows that
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EG[VAIX -+ XEGIVRICTVIX - XV)CTV X -+ XV,).

Since 1E,[V7]= E [tV;]=«"x[tV;] and «[tV;]Cx[tU)CtV Ck[W]°,
it follows that W NIE V] @ for i€ {1, ..., n} . Hence

B £ W NHEG VX - X EG[VADC W' NT(V, X -~ X V,).

andso T(V X - XV, )N W" = @ _ which completes the proof. d

The following lemma is taken from [V 70] (prop. 3.1.), to which we refer for
the proof.

2.10. LEMMA. Let ¢:X—%Y be a homomorphism of minimal tgs (it is
sufficient to require %Y to be minimal and X to have a dense subset of
almost periodic points). Let XoC X be a residual subset of X . Then
there is a residual subset Y,C'Y such that XoN¢=(y) is residual in
¢ (y) forall y €Y. a

2.11. THEOREM. Let ¢:X—Y be a RIM extension of minimal tigs.
a) If X is metrizable, then there is a residual set of ¢-locally ergodic
points.
b) If Ry=E, then every x € X with suppAy)= ¢ ¢(x) is a ¢-
ergodic point.

PROOF.

a) Let k: X — X/E, be the quotient map. As X is metric it follows
from I1.1.3.e that there is a residual set X, C X in each point of which « is
open. Hence, in each point x of X, the map & :¢"¢(x)—k[dp"¢(x)] 1s
open in x . By 1.6, there exists a residual set X,C X such that
SuppAgx) = 9" ¢(x) for every x € X, . (Note that the full original of a
residual set in Y is a residual set in X | by IV.5.12)). Let Xo= X M X,;
then X, is residual. By 2.10., there is a residual set Y,C Y such that
XoNo¢~(y) is residual in ¢—(y) forevery y € Yy. Let x € ¢ [Y]: then
k is open in all points of X¢N¢“¢(x), which is is a dense subset of
¢ (x). Also suppAy) = ¢ ¢(x). But then ¢~¢(x) is an open neigh-
bourhood of x in ¢~¢(x) that satisfies the conditions in 2.9.. So by 2.9.,
x is a ¢-locally ergodic point. As ¢ [Y(] is residual in X this proves a .

b) In this case k and ¢ are identical. If for some x € X we have
SuppAgx) = ¢“¢(x) then, by 1.5., & is open in every point of ¢ ¢(x).
So ¢“¢(x) is an open neighbourhood of x in ¢“¢(x) that satisfies the
conditions in 2.9.. So by 2.9., x is a ¢-locally ergodic point. But, since
Eglx]=¢"¢(x), x iseven a ¢-ergodic point. O
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Ergodic points can play a role in weak disjointness of homomorphisms of
minimal ttgs as the following generalization of [G 75.1] Thm. 1.1. shows.

2.12. THEOREM. Let ¢:X—Y and ¢:Z—Y be homomorphisms of minimal
11gs and let one of them be open or suppose that (¢.)) satisfies the general-
ized Bronstein condition. If for every n € N with n=2 there exists a
¢-n -ergodic point in X , then ¢ and  are weakly disjoint ( ¢ -3 ).

PROOF. Let W =TW C R, with ianMW = & . We shall show that
W = R4y . as follows: For (x’,z')€ R4y and an arbitrary open neighbour-
hood O of (x’,z") in R4y we shall prove that O N W %= & and so that
x"ZVEW=W.

By the assumption and 1.3.7., we can find open sets U; and V; in X and
Z such that @ 5= U X VINRgC O and ¢[U]=¢[V,]. Also we can
find open sets U and V in X and Z with @ 2 UXVNR,,CW
and ¢[U]=vy[V].

As 2 is minimal there are finitely many y,...,7, in T such that
Z=U{{V|ie{l.---.m}}. By assumption, X contains a ¢-m-
ergodic point, and so by 2.2.a, X has a dense set of ¢-m-ergodic points.
Let x be a ¢-m-ergodic point in U,; and let z &V, be such that
d(x)=¢(z),say yp =¢(x)=¢(z). As

yrp)czc{yvlie{l, ..., ml},
we may renumerate (if necessary) the s in such a way that for some
n<m we have Ve Jvijie(l, ..., m}}, while
YNV £ @ forevery i€ {1, ..., nj.

Suppose n =2 . Define
L:=tyUX --- X, UN(e7(y))"

then L is open in (¢~(y))" and nonempty. For let z; € Vﬂtf'\lx'_(v)
and let x; € U be such that ¢(x;) =v¢(z;), then (r1xy,..., t,x,)E L .
As x is ¢-n-ergodic, TL N(U,)" #* & . So for some 1t €T we have

H(HUX - X, UNE@~()' )NW) # 2

ie., we can find x; €U with ux; €U N¢~(tv) for i€{l, ... ,n}.
Let z’€ V', be such that Y (z')=¢(t;x) =1ty forevery i€{1,..., ny,
then ¢ 'z’€y~(y). But then for some i€ (I ..., n)} we have

tf'z’Et,“Vﬂxp‘“(y) and z'€; V . Hence

(tt,-”x’,-”,z’)Ett,-“UX 1; VARy CT(UX ViARg)CTW = W,
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and
([I,'“X,,“.:,)E U]X V|OR¢¢Q O .

So WNO s @, which settles the case for n =2 .

Suppose that n =1 ie, ¢~ (y)C,V . Then 1,UN¢"(y)#* & and by
minimality of %X, we can find a +€T with 1(1,UN¢"(y)NU,# D .
Let x,€U be such that 1 ,x1€¢~(y) and 1, x,€ U, and choose
Z)EV, with ¢t x))=y¢(()=1ty. Then ¢ 'z’ey=(y)Ct,V, so
z'emV and

(trlx'],:’)E T(UX Vﬂwa)Q W,
while
(UIXI].Z,)E U]X V]ﬂR¢¢,g0 .

Hence WNO = @ . O

2.13. COROLLARY. Let ¢:X—%Y be an open RIM extension of minimal tigs
with section X . Suppose there is an x € X with ¢~ ¢(x) = suppAs )
(e.g. X is metrizable). Then the following statemenis are equivalent:
a) E;=R,;
b) Qs=Ry;
c) ¢ is weakly mixing;
d) ¢ for every homomorphism :Z—%Y of minimal tgs.
In particular, if X is minimal and has an invariant measure, then X is
weakly mixing iff X is weakly disjoint from every minimal ttg iff

PROOF. The implications d = ¢ = b = a are obvious (for ¢ = b see 1.3.11.).
a=d By 2.11.b, x is a ¢-ergodic point and so x is ¢-n-ergodic for
every n €N with n=2. As ¢ is open it follows from 2.12. that ¢ - ¢ .
If % is minimal and has an invariant measure p, then X = suppp, so we
can apply the above equivalences to ¢: X — {*x} . O

2.14. COROLLARY. Let ¢:X—%Y and ¢:Z—Y be homomorphisms of
minimal tigs and let one of them be open. If ¢ is proximal, then ¢ - .
In particular, an open proximal homomorphism of minimal tigs is weakly
mixing.
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PROOF. If ¢ is proximal, then every x € X is a ¢-ergodic point by 2.3.a,
and so every x € X is ¢-n-ergodic for every n €N with n=2. The
corollary follows from 2.12.. O

Looking at the ergodic behavior inside the neighbourhood of some specific
point x € X turns out to be a little inconvenient. Too many times counta-
bility assumptions or openness are required to come to reasonable results. In
the next section we shall “globalize” our efforts to prove stronger results for
weak disjointness problems.

VIL3. WEAK DISJOINTNESS AND MAXIMALLY ALMOST PERIODIC
FACTORS

A central theme in this section is the question, how “unrelated are
homomorphisms whose maximal almost periodic factors are disjoint (see
[P 72], [K 72] and [EGS 76] 4.2.). So consider the next diagram of
homomorphisms of minimal tigs:

> Tk

%/E¢———> z <——GB/E¢
5)(

We shall prove that in several cases we have fo L 0y iff ¢ ¢ .
As a by-product we shall see that for an open RIM extension the region-
ally proximal relation is an equivalence relation.

We shall need the following remark on lifting of ergodicity.

3.1. THEOREM. Let ¢:X—%Y be a surjective proximal homomorphism of tigs
and let X have a dense subset of almost periodic points. Then X is
ergodic if % is ergodic.

PROOF. Clearly, if %X is ergodic then ¥ is ergodic (1.1.3.¢).
Conversely, suppose that % is ergodic. Let 4 C X with 4 =TA and
A°# & andlet B:=X\A . Then B=TB and X =AUB .
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As ¢[A]UG[B]=¢[X]=Y , ¢[4] or ¢[B] must have a nonempty inte-
rior in Y , and so, by ergodicity of %, that ¢[4]=Y or ¢[B]=Y .
Suppose that ¢[4] =Y . Let x € X be an almost periodic point. Then for
some a€A, ¢(a)=¢(x). As ¢ is proximal, a and x are proximal
and by almost periodicity of x we have that x € Ta CTA = A . Conse-
quently, every almost periodic pointin X isin A ,s0 X =4 .

Suppose that ¢[B| =Y then, similarly, it follows that X = B ; which con-
tradicts the assumption of A4° % @ .

Hence X =A4 and % is ergodic. O

As we intent to relate weak disjointness of ¢ and i with the weak disjoint-
ness of their maximally almost periodic factors, we need to relate open sets in
R4y with open sets in Ry 4 . We shall do this in the following lemmas in

a slightly generalized form.

3.2. LEMMA. Consider the following commutative diagram of homomorphisms
of 1rgs:

Let X be minimal and suppose that one of the following conditions is
satisfied
(1) () satisfies the generalized Bronstein condition,
(i1) ¢ is open;
(i) ¢ is open and Y has a dense set of points in which  is open;
(iv) ¢ is open and Y has a dense subset of almost periodic points.
If W is a nonempty set which is open in Ry, , then:
a) There exist open sets U and V in X and Y such that
G FUXVNRGWCW and ¢[UI=Y[V];
b) «k Xidy[W] has a nonempty interior in Ry, .

PROOF.

a) This is just 1.3.7.; for case (iii) note that ¢ is semi-open.

b) Let W C R4y be open and nonempty and let U and V' be as in
a. As ¢ is semi-open, W’:=intz¢[U] is nonempty, and, clearly,
W’'Cintz(¢ X ¢[W]). Define U':=UN¢~[W’']; then U’ is open and
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nonempty. As % is minimal, x[U’] has a nonempty interior in X’ . Since
@ #0[x[UT)ColU]=y[V]

it follows that x[U’]°X V' N Ry, is a nonempty open subset of Ry, , which
is contained in & X idy[W] . O

3.3. We shall consider a diagram as in lemma 3.2., and we shall deal with
the following question:
Under what conditions do we have ¢ -+ if and only if §_- i .

K
& —————>%/E, !
0
¢ 12
g

Clearly, ¢ - implies 6 -, as «k Xidy[R4y] = Rgy . So the real prob-
lem is what we can say about the converse implication.

3.4. LEMMA. Consider the diagram in 3.3. and let ¢ and { satisfy one of
the conditions in lemma 3.2.. Suppose that for every nonempty (basic) open
set. UXVNRyy in Ryy there is an open set U in X such that

U=E,U] and 8 £ UXVNRuGWCT(UXVNR,).

Then ¢ -y iff 0.

PROOF. Suppose 6 -y ; ie., suppose that Ry, is ergodic. For an arbitrary
nonempty (basic) open set U X VNR,, in Ry, ., we shall prove that
Ryy=T(UXVNRyy . Then it follows that R4y is ergodic.

Let U be a nonempty open set in X as in the assumption, and note that
k[U] is an open set in X/E,, because U :E(i,[(]]:n“x[(]]. Hence
k[U]X VN Ry, is open in Ry, and nonempty, for U X VNR,, was
supposed to be nonempty. As Ry, is an ergodic set it follows that
T(k[U]X VN Rgy) isdensein Ry, .

Let U;X ¥V NRy, be an arbitrary nonempty (basic) open set in Ry, .
Then by 3.2.b, x[U,]X VN Ry, has a nonempty interior in Ry, . Hence,
by ergodicity of Ry, . for some 1 € T we have

k[U\JX ViNReyNik[U]X 1V # @ .
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Let (X],_Vl)e UIX V]ﬂR‘W be such that
(k(x 1),y DEK[UX VINReyNtx[U]X 1V .

Then ¢ 'x, €k k[U] =E4[U]=U ,s0 (x1,y)E1(UXVNR,, and by
assumption

(1, yNELUXVNRLCTWUXVNR,).

Hence U, X VINT(UXVNRyy) # @ . As U XV, isopen, we have
UIXVINRyyNTWUXVNRGy #+ 9.

But U, XV ;N R4y was arbitrary, so it follows that T(U X VN R,y is
dense in Ry, which proves the theorem. O

We shall look for situations in which 3.4. is applicable. For that purpose we
need the following lemma.

3.5. LEMMA. Consider the diagram in 3.3. and let ¢ and  satisfy one of
the conditions in lemma 3.2.. Assume that for every nonempty (basic) open
set. UyXViNRyy in Ryy there is a point (x.y)e U XV NR,,
such that

Then for every nonempty (basic) open set U X VN Ryy in Ry, we
have

@ #£UXVNR,CTWUXVNR,,).
where U:=k"[k[U]°] = E4[U].
Consequently, under this assumption 0 - implies ¢ - { .

PROOF. Let W:=UXVNR,, be an arbitrary nonempty (basic) open set
in Ry, . Define U:=«"[k[U]°] and note that U = E¢[0] IS nonempty
and openin X . Let U’ and V' be open sets for W asin 3.2.a. Then by
32b, k[U'1°XV'NRgy# 2. Let u€U’ with k(u)Ex[U']° and
ve V' with (u,v)E R, , then

@.v)E (U’ Nk [k[UP)) X V'O R 4, Ck[k[UP] X VN Ry =

so UX VNR,, is nonempty and open in R, .
In order to prove that U x VARGWCTWUXVNR,y) we have to show
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that every (basic) open subset U;X V{NR,, of UX VAR, has a
nonempty intersection with 7(U X VN R,,) .

Solet U;X ¥V ;NR,, bea nonempty (basic) open set inside U X V' N Ryy s
ie, U;cU and V,CV . By the assumption, we can find a point
(x,»)EU XV INRyy such that E [x] X {y }C T(U; XV NRgyy). Then
xeU,cUcC k“k[U] and y €V . Let u’€ U with k(u’) = k(x) ; then
u’€ Eg[x] . Since

(. Y)EUXVNRGWNEGxIX (y}CUXVNRGNTU XV NRyy)
and as U X VN R, isopen, it follows that
UXVNRy NTWU X VINRyy) #* @ .
But then
UXVINRGNT(UXVNR,) # @,

which proves the lemma. O

We shall now consider two situations in which the assumptions of lemma 3.5.
are satisfied.

3.6. THEOREM. Consider the diagram in 3.3. with ¢ a RIC extension and let
(o) satisfy gBc. Then ¢ iff 0 - 4.

PROOF. We shall prove that if (x,y)€ Ry, is an almost periodic point and
if UXVNRyy isa (basic) open neighbourhood of (x,y) in R, . then

E x]X {y}CT(UXVNR,y).

Note that the assumption of (¢.) satisfying gBc together with the above,
gives that the assumptions of lemma 3.5. are satisfied. Hence it follows that
oy iff -y .

Let (x,y) be an almost periodic point in Ry, . say (x,y)=u(x,y) for
some u€J . Let UXVNR,, be a (basic) open neighbourhood of
(x,y) in Rgy. As V is an open neighbourhood of y =uy in Y , the
set ¥V’:=VNTy isaneighbourhood of y in Ty . So by Il1.2.1.c, we can
find an open set W in T which has the form W = W(u), such that
WycCcV'CV . Define U:=[U,W]Nud~(z), where z =¢(x)=¢(y).
Then # is an ¥ (%X,u)-neighbourhood of x in wu¢~(z) (II1.2.2.). Let
x"EU ,then x' =1t 'xg€Eu¢p(z) forsome r€ W and x,€ U . So

(x'y) =1t Yxo,tp)Et T (UX Wy)N R4 C T(UX VN Ry .
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Hence U X {y}C T(UXVNR,,) and so

uouXU}:uo(UX{y})gT(UX VﬂR‘W,).

By I11.3.10.b, we know that Ey[x]Cuol , so

E lx]X{y)Cuo X {y}CT(UX VNR,y,

which proves the theorem. O

3.7. Let ¢:¥—Z be a RIM extension and denote the collection of sections

for ¢y by Z(y). A point y €Y is called a supprim point if y € suppAy,,

for some section A€ Z(Y) .

Note that in the following cases the supprim points are dense in Y :

a) 9% is minimal;

b) € is minimal, suppA, =y (z) for some A€ 2Z(y) and some z € Z |
and either ¢ is open or Y has a dense set of almost periodic points.

3.8. THEOREM. Consider the diagram in 3.3. and let ¢ and  satisfy one of
the conditions in lemma 3.2.. If ¢ is a RIM extension and if 'Y has a
dense set of supprim points, then ¢ - iff 0 - .

PROOF. We shall prove that for every nonempty (basic) open set
UXVNRy, in Ry, there is a point (x,y)E U X VNR,, such that
Ey x] X {y}CT(UXVNR,,) . Then the theorem follows from 3.5..

Let UX VN Ry, be an arbitrary nonempty (basic) open set in R4y . Then
by 3.2., there are open sets U’ and V' in X and Y such that
o[U1=9¢[V'] and @ # U'XV'NRyWCUXVNR,, . As the supprim
points are dense in Y , there is a AEZXZ(Y) and a y €V’ with
Y €suppAy(, . Let x € U” with ¢(x)=4¢(y). Then by 1.17., we have

Eo[x]1 X {p }C Eo[x] X (V' Nsupphe)C T({X JX V' N Ryy)

0 Eglx] X {(p}CT(U'X V' NRe)CT(UXVNR,y) . O

Let ¢:X—% be a homomorphism of minimal ttgs. We call ¢ a rorally
weakly mixing extension iff

R; :{(Xl,...,X")EX" |¢(X|): :¢(X,,)}

is ergodic for every n €N with n=2.
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3.9. LEMMA. Consider the diagram in 3.3. and let ¢ and  satisfy one of
the conditions in lemma 3.2.. Let ¢ be a RIM extension with section \
and let 'Y be a dense subset in Y . Then

U {suppA. X YoNRyy |z EZ)
is dense in R, .

PROOF. Let UX VNR,, be a (basic) open set in R, . By 3.2.a, we may
assume, without loss of generality, that ¢[U]=¢[V]. Let x € U with
X €suppAy(y) and let y € Y be such that ¢(y)=¢(x). As Y, is dense
in Y, thereis a net {y;}; in Y, converging to y . Then {y(y;)}; con-
verges to ¢(x), hence {Ay(,}; converges to Ay, in W (X). By L4, it
follows that x € suppAg()C lim,,suppAy(, ). As U is an open neighbour-
hood of x in X, thereis a io such that UNsuppAy, @ for every
i=1iy. Sowe can find an /;=iy with y,;:=y; €V and a supprim point
xi:=x; € UNsuppAy ). Hence

(xl._yl)E U X VﬂRwﬂ Supp}\‘ml)x Y(). ~

3.10. COROLLARY. Let ¢:X—% be an open RIM extension of minimal ttgs
with section N . Then for every n €N with n=2 the canonical
homomorphism ¢, : Ry — Y is an open RIM extension with section \"
and the supprim points are dense in R .

PROOF. Remember that A" is defined by A=A, X --- XA, (n-times)
and note that suppA/’ =suppA, X - -« X supp.)\‘. (n -times). Cléarly, A" s
a section for ¢, (cf: the proof‘ of 2.9.) and the fact that ¢, 1s open is obvi-
ous from the observation that

(i)n(U]X XUnng): m¢[U1]
i=1

As % is minimal, X has a dense set of supprim points. So by 3.9., applied
to ¢ and ¢, it follows that [ J {suppA, X suppA, |y € Y} is dense in
R, =R} . Suppose, the corollary is true for ng€ N (n¢=2): then apply
39.t0 ¢ and ¢, . It follows that

U {suppA, X supp)\:” lyeY)=U {supp}\:"+I |y €Y}

; ; 1 ; i
is dense in R;”+ . By induction the corollary follows.
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3.11. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs. If ¢ is
a RIC extension or an open RIM extension then the following statements
are equivalent:

a) Ey=Ry;
b) ¢ is totally weakly mixing,
c) ¢ is weakly mixing.

PROOF.

b = ¢ Trivial.

c=alf ¢ is weakly mixing then, by ergodicity of R, . it follows that
Ry= f&ﬂ—Rd, for every a€ Ay . Hence

Ry= N{TaNR,|a€EUx} =Q,C E,CR,.

a=blf E,=R, then 6:X/E;—% is an isomorphism. Hence
0 ¢, iff RG isergodic, for Ry = Ry, .
Suppose ¢ is a RIC extension. By III.1.9., it follows that R} has a dense
subset of almost periodic points for every n €N with n=2. Hence by
II.1.5.b, it follows that (¢,¢,) satisfies gBc for every n €N with n =2,
where ¢;:=¢ . As 6 is an isomorphism, 6 _L ¢ ; so it follows from 3.6.,
applied to ¢ and ¢, that ¢_- ¢ . In other words, it follows that R} is

ergodic. Assume that R:,” is ergodic for some ny=2 ; then we may apply
36. to ¢ and ¢, . As R:" is ergodic, 6 - ¢, and so ¢ ¢, ; ie,

R:,“ is ergodic. This settles the case for RIC extensions.

Suppose ¢ is an open RIM extension. Then by 3.10., ¢, :Rg—Y is an
open RIM extension and Ry has a dense set of supprim points for every
n €N with n=2. Induction and application of 3.8. proves the case that
¢ is an open RIM extension. 0

We shall now generalize 3.6., 3.8. and 3.11. to the “weaker” situations of ¢
being a Bc extension or an RMM extension. To that end we shall construct a
kind of double diagram.

3.12. Consider the diagram in 3.3. with ¢ a Bc extension and let (¢.)
satisfy gBc. Then we can lift the left hand part of the diagram to the level of
the universal minimal proximal extensions, as follows:
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¢’ v

0 [ \\)[ (%)/E¢,/0" n 1 T

e

.2 z = %Y
v v
\ ?x//Ed) /0'

For the exact construction, let ued ; Zg=UzoEZ and
Xo=uxg€E ¢ (zg). Let K=&%Z,zp) and H = ®&X,x,) be the Ellis
groups of £ and X in G with respect to the points z; and x,. Then,
by 111.1.13.b,

A(X): =W (uoH. M) and A(D):= W (uoK,9M) :

o:A(X)—>X is defined by o(poH)=px, and n:A@R)—-Z by
NP oK)=pzy . The induced RIC extension ¢":A(X)— A(Z) is defined
by ¢(poH)=poK (IILL.15). As ¢ satisfies Bc we have
o Xo[Ry]=R, (IV.45.) and as o is proximal and E,= Qg4 it follows
from IV.4.3. that o Xo[Eg]=E,. Hence by IvV.4.10.,
EAK)/Ey>X/E, is  proximal. Define Y'CYXAZ) by
(y.poK)EY" iff  yEpouyT(z¢g). and let T:Y' Y and
YY" A(Z) be the projections.

3.13. LEMMA. Consider the diagram in 3.12. (with the same notation).
a) Y’ is closed (in Y X UA(Z) ), T-invariant and has a dense subset of
almost periodic points. In particular %' is a 11g.
b) 7:Y —9%Y is a proximal surjection.

PROOF. First note that Y’ is well defined: Let (y.poK)E Y’ and let for
certain g €EM , po K =¢goK . We have to show that y € g ouy™(zy) .

As kzo=1zy for every k€K, kouy ™ (z¢g)=uouy(zg) for every
ke K (IL3.11.d);  consequently, Kouy=(zg) =uouy(zy). Since
pEpPpoK =¢goK , it follows that

pouy(z0)C qoKouy(z0) = gououy(z0) = g ouy(zo) .

Similarly, ¢ouy(z9)Cpoud™(z¢); hence pouy™(z9) =qouy~(zg). and
Yy Eqgouy(zg) .

a) Clearly, Y’ is T-invariant. Let {(y;.p,oK)}; be a net in Y’
which converges in Y X?A(Z), say (v;.pioK)—(y,poK). Then
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y =limy; Clim,p; cuy™(zp) . For a suitable subnet let ¢ =limp; . Then
poK =¢goK and

y Elimy,p; o uy™(z9) = (limp, )o ud(z9) = g 0wy (2) .

So (y,poK)=(y,qoK)E Y’ ; hence Y’ isclosed and U is a ttg.

Let (y,poK)€E Y’ . We shall show that (y,poK) is the limit of a net in
Y’ , consisting of almost periodic points in Y’ . As (y,poK)EY', y is
an element of pouy~(zg). Let {#;,}, beanetin T with p =limy , then
(after passing to a suitable subnet) there are y, € uy~(zy) such that
y =lim¢ty; . So

y,poK)=Ilmt;(y; . uoK),

while (y, ,uoK)=u(y;, ,uoK) is an almost periodic point in Y X A(Z) ;
However, y; =uy; Euy™(z9) Cuouy(z¢g),s0 (y; uoK)eyY’.

b) First we shall show that 7 1is a surjection. Note that it is sufficient
to show that Y = | J{pouy~(zp)|[pEM} . Let y €Y and remark that
Y as a factor of R, has a dense subset of almost periodic points. Then
y =limy; for almost periodic points y, € Y , say y; =v;y; with v, E€J .
Let p,€M be such that ¢(y,)=p;zo. Then y, =v;p; upf'y,- and
Y(up, i) =up; 'pizo=2z9. s0 y EvipuyT(z0)Cvipiouy(zo) . After
passing to a suitable subnet let ¢ = limv;p; € M | then

y =limy, € lim,,v,p, 0 ud(20) = g 0w (20)C | (pouy™(z0) [p EM) .

Hence 7 is a surjection. Suppose 7(y;,p10oK)=7(y2,p20K). Since
Moy’ =or , this implies that n(p,0K) =n(p,0 K) and, consequently, that
pioK and p,oK are proximal. But then (y;.p;oK) and (y;.pi0K)
are proximal in Y’. O

3.14. THEOREM. Consider the diagram in 3.3.. Let ¢ be a Bc extension and
let () satisfy the generalized Bronstein condition. Then ¢ iff

0 y.

PROOF. Consider the diagram in 3.12. and suppose 6 - ., ie. Rgy is
ergodic. As (¢4) satisfies gBc, Y has a dense subset of almost periodic
points. Since 6 is almost periodic and so RIC, it follows from II1.1.5.b, that
Ry, has a dense subset of almost periodic points. With the same reasoning
Ry has a dense subset of almost periodic points. By IV.4.5., the proximal
map £ X7:Rgy— Ry, is a surjection. So, by 3.1., Ry is ergodic, Le.
-y .
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But ¢ is a RIC extension and Y’ has a dense subset of almost periodic
points, so by IIL1.5.. (¢'.¢/) satisfies gBc. Application of 3.6. to ¢" and
implies that ¢’ - ¢ : ie, Ry, is ergodic. As 7 is proximal and as R,y
has a dense subset of almost periodic points, it follows from IV.4.5. that
0 X7:Ryy— Ryy is asurjection, hence R,y is ergodic and ¢ - . 0

3.15. Consider the diagram in 3.3. with % minimal and ¢: %X —% an open
RMM extension of minimal ttgs. We shall lift the diagram to the following
double diagram:

& Y
Ag (D) < As (%)

| e T I I
gL 4 N
/ ’

— . &

The right hand part is the lifting of ¢ to the level of the universal minimal
strongly proximal extensions; so {/: Ugs(Z) — As(¥Y) is an open RIM exten-
sion and n and 7 are strongly proximal (cf. 1.10. and the remark after it).
As ¢ is an open RMM extension, ¢ L n by 1.15. Define X':=®R,, and
let ¢’ and o be the projections, then o is a proximal extension and ¢’ is
an open RIM extension (also see 1.16.). Clearly, o X o[Ry]= R, and as
Ey=0Q40P, (1.20.), it follows from IV.4.3. and IV.4.10. that the map
§:X/Ey—>X/E is proximal.

3.16. THEOREM. Consider the diagram in 3.3. with % minimal and let
¢:X—>Z be an RMM extension of minimal ttgs. Suppose that either
() satisfies the generalized Bronstein condition or ¢ or i is open.

Then ¢ - ¢ iff - 4.

PROOF. First we shall prove the theorem in case ¢ is an open RMM exten-
sion.

If ¢ is an open RMM extension, we can construct the diagram in 3.15..
Suppose 6 - ¢ and note that in the same way as in 3.14., Ry, and Ry,
have a dense subset of almost periodic points. As in 3.14., it follows from 3.1.
that 6 ¢/ . As ¢/ 1is an open RIM extension of minimal ttgs, we may
apply 3.8. to conclude that ¢ /. We prove that o X 7[Ryy]= Ry,
then R, as a factor of an ergodic ttg is ergodic it self, and so ¢ - .
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As ¢ is open it follows from 1.3.9. that Ry, = T(¢"¢(y) X {y}) for every
y €Y . We shall show that

YO Xy} CoXT[Ryy]
and so that R,y C o X 7[Ryy].
Let yeY , y’€Ag(Y) with 7(y’)=y andlet z"€ Ag(Z) be such that
/=Y (). As n(z’)=4(y), it follows from the fact that X’ =R, that
oY ()X {z'}C X’. Hence (¢ ¢ ()X {z'})X{y'}C Ryy and so
PYOIX )} = X[V )X (2" DX {y S o X 7[Ry y]C Ryy .
Consequently, ¢ -, which settles the case for an open RMM extension ¢ .

Now let ¢ be an RMM extension and let ¢ or ¢ be open or let (¢)
satisfy gBc. We construct the double * diagram (cf. IV.3.10.):

¢ ¥

Qi\

® ]
A

@ —— &

By the discussion in 1.15., ¢  is an open RMM extension. As, by the
definition of RMM extension, o X o[R¢.] =R, . and since, by 1.20.,
Ey=Qg4oPy, it follows from IV.4.3. and 1V.4.10. that ¢: %‘/E(b. —->%X/E,
is a proximal extension. With the same reasoning as before, the map
EXm Ry, — Rgy 1s a proximal surjection between ttgs with dense subsets
of almost periodic points. Suppose 6 -y ; then by 3.1, ¢ y" . Hence by
the first part of the proof. o -y . As (o) satisfies gBcor ¢ or ¢ is
open, it follows from IV.4.16.c that ¢ - . O

3.17. THEOREM. Let ¢:X— %Y be a homomorphism of minimal tigs. If ¢ is
a Bc extension or if ¢ is an RMM extension then ¢ is weakly mixing

if E4q=Ry.
PROOF. Clearly, if ¢ is weakly mixing then E, = Q4= Ry (see also 3.11.).
Suppose that ¢ is a Bc extension with E4, = R, . Then 6:X/E,—% is an

isomorphism; so § L ¢ . By 3.14. it follows that ¢_- ¢ and so that ¢ is
weakly mixing.
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Suppose that ¢ is an RMM extension with E,= R, . Then ¢  is an open
RMM extension and so (in *(¢)) o X o[R¢‘] =Ryg: As E3=0Q40Pg
(1.20.), it follows from IV.4.1.c that

R, = (0 X 0)7[Ry] = (0 X 0)7[Q4oPy] = Q0P . =E ..

Similar to the Bc case above it follows from 3.16. that ¢ is weakly mixing.
Hence it follows from IV.4.17. that ¢ is weakly mixing. O

3.18. Now we shall turn to what we announced in the abstract as the central
theme of this section.
So consider the following diagram of homomorphisms of minimal ttgs.

> Tk

?)C/E¢———> % e YE,

We shall apply the results in 3.6., 3.8., 3.14. and 3.16. to show that in several

cases Oy - Oy implies ¢y .

Clearly, the equality (kg X xa)[R4y] = Ry, g, implies that the inverse implica-

tion is true.

First we shall show that 6y - 6y iff @y L 6y (for a more general result see

45.).

3.19. THEOREM. Let ¢:X—Z and y:Y¥—Z be almost periodic extensions
of minimal ttgs. Then ¢ iff ¢ L.

PROOF. Let ag: @%)— Z be the universal minimal almost periodic extension
of € and let ax: @&X)—>X and aq:@%Y)—>Y be the almost periodic
extensions such that ag = poasy = Yoay .

S
s PP

X
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Since ag is almost periodic,

Agz)= 0o, = NMA{TENR, | € Ugz)} -

As  axXaq:R, >Ry, is a closed continuous surjection and as
{TENR, | §€Ugz)} 1s a collection of closed subsets of R, directed by

inclusion, it follows that

ag X ag[Agz)) = ax X aq[ NV {TENR, | € Ugz)}] =
= M {axXaa[TENR,] | €€ Ugz)} -

Applying 3.2.b to both sides of the diagram implies that for every £€ Qg
we have

il’ltRN (a«xx acy[Tgﬂ Ra‘f]) 7‘5 g .

Suppose that ¢ Ly, then Ryy=axX ag[TENR,] for every £€ Ugyz, .

Hence ay X ag[Agz)) = R4y . and as Agz, is minimal it follows that R,
is minimal; so ¢ L ¢ .
The converse is trivial. O

3.20. THEOREM. Consider the diagram in 3.18.. In each of the following cases

we have ¢ - iff Oy - Oq (iff Ox L 0o ).

a) (o.y) satisfies the generalized Bronstein condition and, in addition,
either ¢ satisfies the Bronstein condition
or ¢ is a RIM extension
or ¢ is an RMM extension;

b)  is open and ¢ is a RIM extension or an RMM extension;

¢) ¢ is an open RMM extension.

PROOF. By 3.19., fOx_- 0y iff Oy L 0y . Clearly, ¢+ implies Oy O .

As 0y and 0y are almost periodic extensions, they are open RIM exten-

sions by 1.3.c. So, by 3.8., Ox - 0 iff ¢_- 6q and also Oy - 0o iff Oy
a) Suppose (¢,)) satisfies gBc. Let ¢ be a Bc map and let Oy - s .

Since we know already that 6y - it follows from 3.14. that ¢ - ¢ .

Let ¢ be a RIM extension. As % is minimal, X has a dense set of

supprim points. If 6y _- 6y then by the above, ¢ - f0y. As ¢ and

satisfy one of the conditions in 3.2., it follows from 3.8. that ¢ - .

Let ¢ be a RMM extension and let @y - 6q . Then by the above 6o - 1 .

So, by 3.16., it follows that ¢ - ¢ .
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b) Let ¢ be open and suppose that Oy - s, .
If ¢ is a RIM extension (of minimal ttgs) then ¢ and i satisfy one of the
conditions in lemma 3.2.. As by the above ¢_- fq . it follows from 3.8. that
If ¢ is an RMM extension then by 3.16., ¢ - iff 6y - ; but from the
above we know that 0x - 6 implies o - 1 .

¢) If ¢ is an open RMM extension then by 3.16., ¢ - iff Oy - ¢ .0

The following result is in fact a corollary of 3.5.. It forms a bridge between
chapter VII. and chapter VIII..

3.21. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs. If ¢
and  satisfy the conditions in 3.5. then

Ey=0,= (M {intg (TaNR,) | a€ Uy} .

PROOF. Let a€ Uy be an arbitrary index and let U C X be an open set
such that UXUCa. Let k:X—>%/E, be the quotient map. Define

J:=x"[k[U]°] and Ug:=UNU . Then U, is open and nonempty. By
3.5,

UXUNR,LCTWUXUNRY)CTaNR,,
hence as U = E¢[l7]
E (Ul X UyNR,C UX UNRL,C TaNR,.

As U is open, even

E,[Ug) X UyN R, Cintg (TaNRy).
If x€ X ,thenthereisa r&€ T with tx € Uy, and so

(E4[x]= E4[tx]1C E,[Uq] .
Hence
1(Eg[x]X {x}) = E4ltx] X {tx ) C E4[Ug) X UgN R 4C intR¢(TaTR¢).
So
Eylx] X {x}Ct lintg (TaNRy) = intg (TaNRy) .

As x € X was arbitrary it follows that

Ey= UJ{Eslx] X {x}]|x EX}gintR¢(Taﬂ Ry).
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As a€ Ay was arbitrary

Ed,g ﬂ{intkﬁﬁ(TaﬂR‘#laE"?LX}Q ﬂ{TaﬂR¢|aEQLX}:Q¢. 0

3.22. COROLLARY. Let ¢:X—%Y be a homomorphism of minimal tigs.
a) If ¢ is a RIC extension or an open RIM extension then

Ey=0Q4s= M{intg (TaNRy) | aEUy } .
b) If ¢ is an RMM extension then E,= Q.

PROOF.

a) In 3.6. and 3.8. we proved that if ¢ is a RIC extension or an open
RIM extension then ¢ and ¢ satisfy the conditions in 3.5. (in both cases let
Y and ¢ be identical). The corollary follows from 3.21..

b) Let ¢ be an RMM extension; then by 1.16. we can construct a p

diagram
o?
x° > X
¢bl l ¢
P >
Tb éy

such that ¢" is an open RIM extension and o°Xo"[R ]=R,. So by a
and IV.4.3., it follows that E, = Q, . d

We end this section with two observations on Pl towers.

3.23. Let ¢:X—%Y be a homomorphism of minimal ttgs and construct the
canonical PI tower for ¢ as in I11.4.6. and I11.4.7.. Then we have the next
diagram of homomorphisms of minimal ttgs:

’

O
o -
¢gl l¢
(’y’x P —>
TOO

where ¢’ is a RIC extension without nontrivial almost periodic factors,
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o’ 1s proximal and 7', is a strictly-PI extension.

By 3.11., it follows that ¢’ is a weakly mixing homomorphism of minimal
ttgs. So every homomorphism of minimal ttgs is a PI extension up to some
weakly mixing junk in the top of the tower (cf. [V 77] 2.1.3.).

3.24. Similar to the construction of the canonical PI tower for ¢, we can
construct a canonical SPI tower for ¢ . using the G diagrams (1.10.). Then
we get the following diagram of homomorphisms of minimal ttgs:

g
3 i > o
¢£l i¢
Yz > Y
Toe

where ¢ is an open RIM extension without nontrivial almost periodic fac-
tors. o is strongly proximal and 7} is a strictly-PI extension in which
every proximal map is even strongly proximal.

Again by 3.11., we have that ¢ is weakly mixing. So every homomorphism
of minimal ttgs is an SPI extension up to some weakly mixing junk in the
top of the SPI tower (cf. [M 80]).

VIl.4. REMARKS

4.1. In section VIL1. we introduced RMM extensions in a somewhat
artificial way. As strong proximality is a property between proximality and
high proximality one should expect a natural notion between RIC and open-
ness which is characterized similar to RIC and openness as in the definition
and in IV.3.16. respectively, but then with respect to strong proximality. In
the metric case 1.14. is such a decent characterization. In the nonmetric case
such a characterization seems to be unknown.

A related problem is how to characterize universal strongly proximal exten-
sions as quasifactors of 9. Clearly, Ag(X) is an MHP ttg for every
minimal ttg % (1.9.b). So the question could be “restated” as: what kind of
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MHP generator generates "MSP” ttgs? Note that it must depend on the
choice of the idempotents only. Because, for a ttg X with Ellis group H
and MHP generator C =uoC = KH , where K =CNJ , itis clear that
uoHCSCC if S isthe MHP generator that generates g (%X) .

QUESTIONS

a) Characterize RMM extensions in the nonmetric case.

b) Characterize the universal strongly proximal extensions as quasifactors
of M.

c) Let ¢:X—% be a homomorphism of minimal ttgs with & = As(Y) .
Then ¢ is a RIM extension, say with section A . What can be said
about this A or about suppA. for y€Y ? Note that if
suppA, = ¢ (v) for some y €Y | then this answers question a too.

d) Let ¢:X—% be a homomorphism of minimal ttgs. If ¢ is a RIM
extension, is ¢ a RIM extension? If ¢  is a RIM extension and if ¢
is open, is ¢ a RIM extension?

4.2. The problem stated in the abstract of section VIL3. is attacked by many
people; e.g., see [P 72], [K 72], [M 78] and [V 77]. The results in section
VIL3. extend all of the known ones on that matter.

Also the problem whether or not E,= R, implies weak mixing of the
homomorphism is considered frequently in the literature. The strongest
results until now are [V 77] 2.6.3., which answers the question in the
affirmative for Bc extensions, and [M 78], where the question is answered in
the affirmative for minimal ttgs with invariant measure as well as for some
special other cases. Here we answered the question in the affirmative for
RMM extensions.

Moreover we proved that an open RIM extension ¢ with Eyg=R, is
weakly mixing of countable order. The step to uncountable order is still open
(see also [M 80]). Another “new” accomplishment in this chapter is the fact
that for an RMM extension ¢ of minimal ttgs we have that E, = Q, .
Until now the strongest result was that the equality holds true for an open
RIM extension with E, =R, (MW ?]). In the absolute case it was already
known that the equation holds for a minimal ttg X supporting an invariant
measure ([M 78]).
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4.3. Note that by 3.17. and 1.11., it follows that for an amenable group T
the collections D+ and WM coincide. What is more, it even follows that
SP-ND*CWM, where SP* is the collection of minimal ttgs that are
disjoint from every strongly proximal minimal ttg.

The following generalization of 3.19. as presented in 4.5. is suggested by
J. AUSLANDER.

44. LEMMA. Let ¢:X—%Y be a surjective homomorphism of minimal ttgs.
Let X'C X be a closed invariant subset of X such that
() o[X7]=7Y,
(i) ¢|y: X' =Y s open.
If X is ergodic then X = Q4[X'].

PROOF. Let x € X and let x’€ X’ be such that ¢(x’) =¢(x). As X is
ergodic it follows that x’'€& Ta(x) for every a€E€Qy : so for every
aE Uy we have a(x')NTa(x)* . For a€ Uy let x,€Ea(x) and
1,€ T be such that r,x,€ a(x’). Then, after passing to suitable subnets,
X=X and r,x,—x" 150 1,0(x,)—>¢(x’). As ¢|x  is open, there are
xh€ X’ with ¢(x’) = ¢(x,) such that z,x’y,—x". Let for a suitable sub-
net z =limx),.Then z € X’ and (x.,z)E Q,. Hence x € Q4[z] and so
X CQ,lX". O

4.5. THEOREM. Let ¢:X—%Y be an almost periodic extension with X
ergodic and % minimal. Then X is minimal.

PROOF. Let X’ be a minimal subset of X . As ¢|y- is almost periodic,
¢|x- 1s open. From 4.4. it follows that X = Q,[X']. As ¢ is almost
periodic, Q, =4y .s0 X =X’ O

As we promised in II1.5.7., we shall now present a slight generalization of the
characterization of PI extensions in [B 77].

A homomorphism ¢:%X— % of minimal ttgs is called a C’ extension if every
ergodic subset of R, with a dense subset of almost periodic points is
minimal. Note that a C’ extension is a C extension (cf. II1.5.7.) and that a C
extension of metric ttgs is a C” extension (I.1.2.b).
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4.6. REMARK.
a) A weakly mixing C’ extension of minimal ttgs that satisfies the Bron-
stein condition is an isomorphism.
b) Let ¢ and  be homomorphisms of minimal tigs such that Yyo¢ is
a C" extension. Then ¢ is a C' extension.
c) Let {¢g]| ¢u:Ke—Y. a<r} be an inverse system of C' extensions
of minimal tgs, and let ¢ = invlim¢, . Then ¢ is a C’ extension.

PROOF.

a) Immediate.

b) Clear from the fact that R,C R, , .

¢)Let X=invlim%, and let ¢:X—Y be the inverse limit of the
¢.s. We denote by vy, the canonical map 7v,:X—%, such that
¢ = Pa0Y, . Let N be a closed invariant subset of R, with a dense subset
of almost periodic points which is ergodic. Then vy, X y,[N] is a C’ exten-
sion, Yo X ¥[N] is minimal. Clearly, N =invlimy,X y,[N]. so by L.1.6.,
N is minimal. O

47. LEMMA. Let ¢:X—Y and ¢:Y—Z be homomorphisms of minimal
1gs.
a) If { is a C" extension and if ¢ is almost periodic then Yo¢p is a
C’ extension.
b) If ¢ is a proximal extension then  is a C" extension iff Yo is a
C’ extension.

PROOF.

a) Let N be a closed invariant and ergodic subset of R, , with a
dense subset of almost periodic points. Then ¢ X ¢[N] is an ergodic subset
of R, with a dense subset of almost periodic points. As ¢ is a C" exten-
sion, ¢ X @[N] is minimal. By L1.21., ¢ X¢: XX K->Y XY is almost
periodic, s0 ¢ X ¢|y: N—¢ X $[N] is an almost periodic extension of a
minimal ttg. Since N is ergodic it follows from 4.4. that N is minimal.
Hence Yo¢ is a C’ extension.

b) Let ¢ be a C’ extension and let N be an ergodic subset of R, ,
with a dense subset of almost periodic points. As ¢ is a C’ extension,
¢ X ¢[N] is a minimal subset of R,. The map ¢ X ¢ is proximal so
X P|y:N—d X H[N] is a proximal extension of a minimal ttg. But then,
by I.1.23.c, N has a unique minimal subset; hence N is a minimal subset
of Ry 4. So Yog¢ isa C’ extension.

Conversely, let Yo¢ be a (" extension. Let N be an ergodic subset of R,
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with a dense subset of almost periodic points. For every n €JN we can
finda n’€JR, 4 such that ¢ X ¢(n’)=n . Define

N:={n"|teT . n€JN}.

Then N’ is a closed invariant subset with a dense subset of almost periodic
points which is proximally mapped onto the ergodic subset N of R, (by
¢ X ¢ ). Hence, by VIL3.1., N’ is ergodic. As Jo¢ is a C’ extension, N’
is minimal. So N is minimal; which shows that ¢ is a C’ extension. O

4.8. THEOREM. Let ¢:KX—%Y be a homomorphism of minimal tigs. Then
¢ is a C" extension iff ¢ is a Pl extension.

PROOF. Suppose ¢ is a C’ extension and construct the canonical PI tower
for ¢ as in I11.4.6. and 111.4.7.. Then by VII.3.23.. ¢’. is a weakly mixing
RIC extension. As o, is proximal. it follows from 4.6.b that ¢oo’, isa C’
extension and so by 4.6.b, that ¢, is a C’" extension. But then, by 4.6.a,
¢’ 1s an isomorphism; which shows that ¢ is a PI extension.

Conversely, let ¢ be a PI extension. Then there is a strictly-PI extension ¢
and a proximal homomorphism 6 such that ¢ =¢of . By 4.7.b, it follows
that we only have to show that ¢ is a C” extension. But it is obvious from
4.7.a, 47.b and 4.6.c that a strictly-PI extension is a C” extension. O

We end this chapter with the next generalization of I11.3.1. (made possible by
4.5.).

4.9. REMARK. Consider the following commutative diagram of homomorphisms

of minimal 1gs:

¥
% —& 5
/—V
¢ 6_-" M
//
///
Y > qf
¢

Let ¢ be weakly mixing and m be distal. Then there is a homomor-
phism of minimal tgs 0:%Y—Z such that the diagram commutes (so
metrizability of Z is not necessary).

PROOF. We shall prove the remark for an almost periodic extension 7. By
FST the remark follows for a distal map 7 .
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First note that, by 1.1.21.b, the map n X n: R, — Ay is almost periodic. As
¢ is weakly mixing, R, is ergodic. Hence ¢ X ¢[Ry] is an ergodic subset
of R, . But nXmn:¢ X{y[R4]—Ay is an almost periodic extension of a
minimal ttg (Ay ). So, by 45, ¢ XyY[Ry] is minimal. Clearly,
Az CYXY[Ry]; hence Az =¢ X Y[Ry] and R ,C R, . This shows that
thereisamap 6: %Y = X/R,-Z=X/R, . O
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VIII

A VARIATION ON REGIONAL PROXIMALITY

1. sharp regional proximality

2. factors and lifting

3. transitivity and QF

4. regional proximality of second order

5.  remarks

In this final chapter we are interested in a sharp form of regional proximality,
which in some cases implies the regionally proximal relation to be an
equivalence relation.

In the first section we introduce sharp regional proximality, which is in fact
regional proximality ”in every direction”. Also we give examples of exten-
sions ¢:X—%Y for which E,=Q,=0QF . where QF is the collection of
sharp regionally proximal pairs for ¢ : for instance: RIC extensions and
open RIM extensions have that property.

The second section is devoted to the question whether or not Q,= Q7 is
preserved under factors and it is proved that this is the case if E,= Q.
Transitivity problems are dealt with in the third section. In particular, we
show that Q,= QF implies that Q, is an equivalence relation in case ¢
is open or in case X is a metric space.

In the forth section the ”vital part” of the equality Q, = QJ is used to give
a necessary and sufficient condition for transitivity of the regionally proximal
relation.

All results in this chapter are contained in [AMWW ?] and they result from
joint research of J. AUSLANDER, D. C. MCMAHON, T.S. WU and the author.
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VIII.1. SHARP REGIONAL PROXIMALITY

We shall discuss a special form of regional proximality, which could be
paraphrased as regional proximality in every direction. The main objec-
tive in this section is to introduce sharp regional proximality and to give
examples for which Q = Q¥ | i.e., examples for which every regionally
proximal pair is sharply regionally proximal. In section VIIL3. we shall
see the use of this in transitivity questions for Q .

1.I. Let ¢:X—% be a homomorphism of ttgs.
If (x,,x2)€ Q, then there are nets {(x}.x5%)}, in Ry and {,}, in T
such that

(x4 ,x5)—>(x,.x,) and f(x}.x5)—>(x,x) for some x € X .

In general, however, an arbitrary net {(x|.x5)}; that converges to
(xy.x,) is far from a net that “makes (x;,x,) regionally proximal” (see
1.5.).

If for every net {(x}.x5)}; in R, that converges to (x;,x,;) there is a
net {(z{.z4)}, in R, "arbitrarily close to {(x}.x3)}; ” (which will be
explained in a moment) and a net {7;}, in T such that

(z4 .24) > (x).x3) and 1;(z{ ,z5)—>(z.z) for some z € X

(paraphrased: if (x,,x;) can be approximated from all directions in a
regionally proximal way), then the pair (x,,x,) is called a sharply relatively
regionally proximal pair.

We say we can find a net arbitrarily close to {(x' .x%)}; if for every net
{U'}, of neighbourhoods U’ of (x{,x5) thereisa subnet {U’}; anda
net {(z4.z4)}; such that (z{.z4)€ U, .

Denote the collection of sharply relatively regionally proximal pairs for ¢
by Qg .

1.2. REMARK. Let ¢:X— %Y be a homomorphism of ttgs. Then

27 =N {intg (TaNRy) | & Uy } .

PROOF. Let (x,x;)€ QF . Assume (x1.x7)E intg (TaNRy) for some
BE Ay ; then we can find a net {(x),x5)}, in W:=R4\ (TBNRy),
which converges to (x,,x,). Define U':= W for every i . Then there is
a net {(z{.z4)}; in W such that (z4.z4)—(x,.x;) and there is a net



- 261 -

{;}; m T with ¢(z{.z4)>(z,z) for some :z€X . Hence
1;(z4 ,z5)E BN R, eventually, and so  (zf.z5)e TBNR, eventually,
which contradicts the fact that (z4 .z4)e W .

Conversely, let

(X] ,Xz)e m {inIRw(Taﬂ R¢) I (s = QL/\} ¥’

Let {(x}.x3%)};e; be a netin R, which converges to (x,.x,) and let
{U'};c; be a net of open neighbourhoods U' of (x}.x5). As for an
open index a€ Uy the set

a(x)X a(xy)Nintg (TaNRy)
is a neighbourhood of (x;.x;) in R, thereisan i(a)E/ such that
U' Na(x;)X a(xz)ﬂinlku(Ta—ﬂ‘R:,)yé @ forevery i=i(a).
and so for every i=i(a) there are (z}.z5)€E Ry and 1, €T with
(zh . 2h)eU Na(x )X a(x))NTaNR, and 7,(z}.25)Ea.

But then for a suitable subnet J C /X @y there are nets {(z4.24)},e,
and {7;,},c, In Ry and T such that

(24 .24) > (x1.x2) . (=4 .24)>(z.2) and (zf .z4)E U,

for some z € X and for U/:= U' whenever j € {i}XQy . O

1.3. EXAMPLES. Let ¢:X—%Y be a homomorphism of 1gs.
a) P,CQF CQy,s0if ¢ isproximal, Ry=Py,=Q0F =Q,=E,.
b) If ¢ is weakly mixing then Ry = QF =Qs=E,.
¢) If ¢ is almost periodic then Ay = E,=Q,=QF =P,.

PROOF.
a) Obviously, TaNR,Cintg (TaNR,) for every open a€ Uy . and

SO
Py= N{TaNRy|a€EUx} = ({TaNRy|aE Uy, a open}C
C N{intg (TaNR,) | aE WUy, a Open} =
= ﬂ{intR‘b(TaﬂR,;,HaEGILX}ZQ;‘ ;

b) If ¢ is weakly mixing, R, is ergodic and so TaNR,= R, for
every a€ Uy . Hence TaNRy,= inth‘,(Taﬁ R,) for every a€ Uy , and
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0 0,=0F =R,.
¢) If ¢ is almost periodic then Ay = Q4. As Ay CP,C QF C Q. it
follows that Ay =P, =QF =Q4,=E,. O

1.4, EXAMPLES. Let ¢:X—%Y be a homomorphism of minimal ttgs. In each
of the following two cases we have E,= Q,=QF .
a) ¢ is a RIC extension;
b) ¢ is an open RIM extension.

PROOF. Cf. VII.3.22.. O

The following example shows that there are minimal ttgs for which
Q #0% .

Moreover, it shows that if ¢ and ¢ are homomorphisms of minimal tigs
with Q‘:,:Q(;t and Q,=QF then Q. , and QJ , may be different
from each other.

1.5. EXAMPLE. Let %Y be the fourfold covering of the minimal proximal rota-
tion X (cf. 1.4.7.). Then Q§ +# Qa #* Eq.

PROOF. Let T be the free group on two generators and let X , @ and b
be as in 1.4.7.(i). Let Y be the circle and define the map ¢:Y —>Y by
c(y):=y+tha and d:Y —>Y by d(y):= lk +4(y — Yk )>  whenever
k<dy<k+1 (k€{0.1,2,3}). Define the ttg Y:= <T(c.d).Y> and
let ¢:Y—X be defined as ¢(y) =4y (mod 1). Then % (or better ¢ ) is
the fourfold covering of % .

Note that Py = Q5 = Qq = Eq = X X X : and that ¢ is almost periodic,
sothat P,=QF =Q,=E,=Ay .

Obviously. % does not admit nontrivial almost periodic factors, in other
words Eq =Y XY . As ¢ preserves distances, it is not difficult to see that
(v.y")E Qgq iff the distance (mod 1) between y and p’ is smaller then or
equal to Y. So Qq 5~ Eqg .

If the distance between y and y’ equals %, then we can approach (y.y’)
with pairs with a distance greater then ' (from the outside), which shows

that (y,y" )€ QF . So Qo # QF . O

An indication of the power of sharp regional proximality is given in the fol-
lowing theorem, which hints at regional proximality of second order as will
be discussed in VIIL.4. (1.6.b).
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1.6. THEOREM. Let ¢:X—%Y be a homomorphism of minimal trgs.
a) Let (x,,x))ER,. If T(x, ,)cz)ﬂ_Q;ft = @ then we have
(x1,x)€EQF .andso T(x;.x2)C Q5 CQ,.
In particular, if Q4= Qf then Qg contains the orbit closures that
have a nonempty intersection with Q.
b) Let (x;,x,)€ Q;‘ and let {(x,x5)); be a net in Ry converg-
ing to (x,,x,). Choose {t;}; in T and (for a suitable subnet) let
(z1.22) = limz;(xy .x5). Then (z,.z2,)€ Q.
PROOF.

Il T(x;,x)NQF # @ then T(x;.xy)Nintg (TaNRy) # ©
for every a€ Uy , and so T(x],xz)r‘lintku(faﬂ R,) # @ . But then it
follows that (x,x2)€ intg (TaNR,) for every a€ AUy and, consequently,
(x1.x2)E Qg .

b) Let a€E Uy . As (x;.x7)E intRO(T(xﬂ Rg) . there is an i(a) such
that  (x} .x5)Eintg (TaNR,) for every i=i(a). But then. also,

t(x} ,x5)€E intg (TanRy) forevery i=i(a) and so
(z1.2) =limgy(x) . x5)ETaNR,.
As a was arbitrary it follows that

(21.22) € N{TaNRy|a€EUx} = Q. .

1.7. COROLLARY. Let ¢:X—%Y be a homomorphism of minimal tgs. If
JOF COQF (eg QF s closed, in particular if Q,= QF ) then
QF oPy=PyoQF =05 .

PROOF. Let (x;,x;)€P, and (x,.x3)€QJ . Let / be a minimal left

ideal in Sy such that px,=px, for every pel and let veJ, (/).

Then

V(.X'I,X3): (VX],.X:;)Z (VX:)_,X_}) = V(Xz..\’:;)e.].qu Q Q: Z

By 1.6.a, it follows that (x;,x3)€ Qi . Hence QJ oP,C QF .
Clearly, 05 CQF oPy.50 QF oP,=0F .
In a similar way it follows that P,oQJ = QF . a
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1.8. REMARK. Ler ¢:X—%Y be a RIM extension of minimal ttgs. If
0s=05 then E,=Q,=0F .

PROOF. By VIL1.19., we know that E,= Q40P . and so, by assumption,

E,=QF oP,. From 17. it follows that QF oP,=0QF =Q4: s0

Ey=Qs=0Q4 - 8

The following theorem reflects the way we proved VII.3.22. using VIL.3.5..
But first we need a lemma.

1.9. LEMMA. Let ¢:X—%Y be a homomorphism of minimal ttgs and let
k:X—>X/E, be the quotient map and 0:X/Ey,—% the maximal
almost periodic factor of ¢ . Denote the collection of nonempty open sets
in X/Eg, by ©. Then

Ey= N{TKIUIXKkTTUINR, | UEB) =

= M{TE&[U]I Xk [UINRY | UEO}.
PROOF. Let U€0O and (x,,x,)€ E,. Then for some t+& T we have
tk(x)) =tk(x,)€ U and so
(x1,x) €[t U Xkt T'WUWINRGC T(x[U] Xk [UINRy).
Hence

E,C N{T&UIXx[UINR,)|UEBC

C N{TETTUIX«TUINR,) |uEB]}.

On the other hand,

kX k[ {TT[U] X «[UINR,) | U€EOB}C

C N{TwXkT[UIXkT[UINRY) |UEO)C

CN{TWXUNRY|UEO)=Q0g=Ayy, .

So N{T&TNUIXkT[UINRY|UEO)C (kX x)‘_[AX/Eu] =E,. O
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1.10. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs and let
k:X—>X/E, be the quotient map and 0:%/E,—% the maximal
almost  periodic  factor of ¢ . Then the following statements are
equivalent:

a) E¢:Q¢2Q;‘3t ;

b) for every a€ Uy there is a nonempty open set V in X such that
V=E4[V] and VXVNRyCTaNRy;

c) for every open set U in X there is a nonempty open set V in
X suchthat V =E V] and VX VNR,CT(UXUNRy).

PROOF.

b= cAs % is minimal, T(UX UNR,) is an open set containing
the diagonal for every open U in X . Hence a:=T(UX UNR,E Uy .

c= b For every a€y there is a BEUy with =" and
B>Ca.Then B(x)XB(x)N RyCanR, for every x € X and so there is
a nonempty open U in X with T(UXUNRGH)CTaNR,.

b = a Let a€ Uy . By assumption, there is a nonempty open set V
in X with V=E,V]=«x"«k[V] and VX VNR,CTaNRy. As k[V]
is open in X/E, it follows from 1.9. that

E,C T k[VIX K K[VINRY=T(V X VNR,).

So EqCT(VXVNRYCT.TaNR,=TaNR, andas T(VXVNR,) is
an open set in Ry, E Cintg (TaNR,). As «a€ AUy was arbitrary, it fol-

lows that E,C QF C Q,CE,.
a = b Let V be the collection of nonempty open sets V' in X with
V = E4[V]. Suppose there is an a € AUy with

VXVNR,N(XXX\TaNR,) # @
for every V € V. Define
(V)= TV X VN Ry \intg (TaNRy)

then JC(V) is closed and nonempty for every V&€ V. As V is closed
under finite intersections and invariant under 7 , it follows that
{IC(V)| V €V} has the finite intersection property. Hence

H:= N{XV)|VEV)#~ & .

By 19., HCE, and by construction HNQJ = @ . which contradicts
assumption a. g
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1.11. THEOREM. Let ¢:X—%Y be a Bc extension of minimal tigs. Then
By=0=07 .

PROOF. First we shall show that ¢ and ¢ satisfy the conditions of lemma

VIL.3.5..

Let U;XU,NR,; be a nonempty (basic) open set in R, and let

(x1,x2)EU X U;NR, be an  almost  periodic  point; = say

(xy,x3) = u(x,,x,) forsome u&J . We shall show that

E¢[X|]>< {Xz}g T(UIX UzﬂR(p)

Let V' be an open set in 7 with V =V (u) and Vx,C U, (1ll.2.1.¢).
Define U :=[U,,V]Nu¢d“¢(x,), then U isan F(%X.u)-neighbourhood of
Xy in u¢~¢(x;). Consider an arbitrary x'€U ; say x'=1t 'z for
some t€V and z€U,. Then (x’.x5)=1t Yz,1x,)€ T(U;X U,) . so0
(x",x2)€E T(U; X U;NRy) . Hence

UX {x3)CT(U;X U;NRy).

By I11.3.10.a, E¢[XI]QJX3° U, so

E [x] X {xz}Qszou X {x,} :J,.:o(u XAx,}))CT(U X UyNRy).

Therefore ¢ and ¢ satisfy the conditions of lemma VIL.3.5..
Let U be a nonempty open set in X . By VIL3.5., there is a nonempty
open set U with U = E¢[(7] such that

@ #UXUNR,LCT(WUXUNRy).
Again by VIL.3.5., it follows that
@#UXUNR,CTWUXUNR,).

Hence U X UN R,C T(U X UNRyg) and the theorem follows from 1.10..CJ
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VIIL.2. FACTORS AND LIFTING

Let ¢:X—%Y be a homomorphism of minimal ttgs and let 6:Z— %
be a factor of ¢ . By 143, E,= Q, implies Eg= Qg . We shall
see that E,= Q4= Q;t implies Eg= Q4= QF too. Also we
shall study the lifting of sharp regional proximality in shadow diagrams.

2.1. THEOREM. Consider the following diagram of homomorphisms of minimal

i1gs.
x = >
I
a . —> Y

Let o be proximal and suppose that 6 X 6[Ry] = R, . Then
a) oX o[Qf' NJRy]C Q;f 5
b) Qy=0QF implies Q,=QF ; in particular, Ey=Qy= Q4
implies E,=Q,= Q0¥ .
PROOF.
a) Let (z,,25)€ QF NJR . then

(x1,x2):=0X06(21,22)C 0o X0a[Qy]C O,

Suppose that (x;,x,)& Qf . Then there is an index «€ AUy such that
(x1,x2)& ian¢(Taﬂ Rg) . And so there is a net {(x} . x5)), converging to
(x1.x3) with (x{.x3)& TanNR, for every i. Let (z{.,z5)ER, be
such that o X o(z},z5) = (x| ,x5) and, after passing to a suitable subnet,
let (z,,z,) =lim(z} ,z5) . Then

o0X0(z1,27) =(x1.,x)=0Xo0o(z1,27),

and as oXo: XXX ->K XX is proximal (I.1.21.b), it follows that
(z1.z,) and (z,,z,) are proximal in Ry . However, (z;,z;) is an almost
periodic point, so (z,,z2)€ET(z,,23). As (z7,23)E Qf it follows from
l.6.a that (z;,Z)€ QF .

Let B€ Ay  be such that ¢ X o[B]Ca, then 0 Xo[TBNRy]C TaNR,.
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Since
(Z1,7)€ QF Cintg (TBNRy),

we know that (z,z5)€ TBN R, for i large enough. But then

(x4 ,x5)=0Xa(z},z5)E0 X a[TBN Ry]ICTaNR,

for i large enough, which contradicts the choice of the net {(x}.x5)}, .
Hence (x;,x)€ Q5 .

b) Note that by IV.4.2.b, we have o X a[Qy] = Q, : so it follows that
o Xo[JQul=JQ,. If Qy=0F then JQ,C QF NJRy and so, by a, it
follows that

JQ,CoXa[Qf NJR,CQF .

If (x;.x2)€ Q4 then T(x,,x;) contains an almost periodic point; hence
T(x1,x)NJQ4s 5 @ and so T(x,,x;)N Q4 # & . Hence by l.6.a, it
follows that (x;,x)€ QF .

Suppose Ey = Q4 = QF : then by IV43d, E,= Q, and by the above

Ge=107% . O
Theorem 2.1. enables us to give an alternative proof of 1.11. as follows.

2.2. COROLLARY. Let ¢:X—%Y be a homomorphism of minimal tigs. If ¢
is an RMM extension or if ¢ satisfies the Bronstein condition, then
E,=0,=03 .

PROOF. If ¢ is an RMM extension then, by VIL.1.16., we can construct a

diagram as in 2.1. such that ¢’ is an open RIM extension. Hence by 1.4.b,

Ey=0Q4y=0Qj andby 2.1., we may conclude that E,=Q,= Q] .

If ¢ is a Bc extension then EGS(¢) is a diagram which satisfies the assump-

tions in 2.1., such that ¢’ is a RIC extension. Again by 1.4. and 2.1., it fol-

lows that E,=Q,=0QF . O

In IV.4.8., IV.4.16. and IV.4.17. we have shown that highly proximal lifting of
homomorphisms of minimal ttgs preserves many decent properties of those
homomorphisms. In addition to this, we show:
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2.3. THEOREM. Consider the following diagram of homomorphisms of minimal

ttgs.‘
o
X’ > X
Y‘
¢’ X'/E g ——g—» X/Eg }
ﬂ
’ — ¥
Y T

Assume that ¢ is open, o is highly proximal and o X o[Ry]= R, .
Then Ey=Qy =03 iff E4=Q,=0] .

PROOF. By 2.1.b, it follows that E,=Q,=QF if E4=Q4s=0F .
Conversely suppose that E,=Q,= QF . Remember that the openness of
¢’ implies that o': =0 X a|R°}. Ry — Ry is an irreducible map (IV.4.13.).
Let W be a nonempty open set in X', which by IV.2.1., without loss of
generality may be chosen such that it is of the form W =o¢"¢[W]; hence
o[W] is an open set in X . We intend to find a nonempty open set U in
X’ such that

U=Ey[U] and UXUNRyzCT(WXWNRy),

which proves the theorem by 1.10.c.
As Eg=04= Q¢ and o[W] 1is open in X , by 1.10.c, we can find a
nonempty open set V' in X such that

V=E4V] and VX VNR,CT(a[W]Xo[W]NRy)
Define an open set U in X’ by U:=o"[V]. Then
U=0o"V]=o"[x"[x[V]] = &£ [c[V]]] = & [&'[e"[V]]] = &, [U] .

The proof is finished if we show that UX UNRyCT(W X WNRy). We

shall show that every nonempty open subset U’ of U X UNR, intersects
T(WX WNRy), which implies that every element of U X UNRy is in
the closure of T(W X WNRy) .

So let U’ be open and nonempty in UXUNRy. As o:Ry—R, is
irreducible, by IV.2.1., we can find a nonempty open set V'C U’ such that
V'=0¢"0'[V'] . Note that ¢'[V’] is open and that

o [V]CoXa[UXUNRLCVXVNR,CT@[WIXo[W]NRy,) .
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so o' [V)NT[W]Xo[WINR)# @ . As V' =o"a[V] it follows
that V' NT(WX W NRg) % @, hence that U'NT(WX WNRy) # 0 .
This concludes the proof. U

2.4. COROLLARY. Let ¢:X—%Y be an open homomorphism of minimal ttgs
and let ¢ : X —%Y  be the MHP lifting of ¢. Then E,= Qs= Q4§
ff E.=Q, :Q;’. .

PROOF. If ¢ is open then *(¢) is a diagram as in 2.3. (IV.4.7.). O

2.5. Consider the following diagram consisting of homomorphisms of
minimal ttgs.

In the remainder of this section we shall deal with the question: does

Q,=0QF imply Qp=QfF ?

2.6. THEOREM. Consider the diagram in 2.5.. If { is open then Q,= QF
implies Qo= Qf . In particular, if  is open then E,= Q.= QF
implies Eqg= Q¢=Qf .

PROOF. If ¢ is open then ¢ X ¢|R¢: R4 — Ry is an open homomorphism of

ttgs. For ¢y Xy: XXX >ZXZ is open and Ry = (¢ X{)7[Rg]. Let

aE Uy ; then there isa BE Ay such that ¢ X ¢[B]C a, hence

Ty XY[BNRNC TaNRy.
By 1.43.b, Qy=y¢ X ¢[Q,] and so
Qs =¥ X Y[QF 1C Y X ylintg (TBNR,)].
As ¢ X y|g, is open
Qo C intg (¥ X Y[TBNR)) = intg (TY X Y[BNR,]) .

Hence it follows that
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0y C inte (TY X Y[BNR,)C intg (TaN Ry) .

As a€ U, was arbitrary, it follows that Q4C QF :s0 Qy=Qf .
If Eq= Qg then. by 143, Ey=Qy. O

2.7. THEOREM. Consider the diagram in 2.5..
a) If ¢ is open and if { is highly proximal then E,= Q,=QF iff
Eqg=Q¢=0f .
b) If ¢ is proximal then Q,= QF implies Qq= Qf .
c) If X=%"then 0s= Qf implies Qg = Qf .

PROOF.

a) As the diagram of 2.5. is a special case of the diagram in 2.3. and as
the assumption guarantees that the assumptions in 2.3. are satisfied, a follows
immediately from 2.3..

b) In the same way b is a special case of 2.1..

c) Let x¢: ¥ —Z be the MHP extension of € and let ¢ : X -
be the MHP lifting of ¢ . Then ¢ =8oxsoy’ . As ¢  is open it follows
from 2.6. that Q,=QJ implies Qg = Qj,, . Hence by b, we know

that Qy= OF . O

2.8. THEOREM. Consider the diagram in 2.5. If Q,= ) X{)7[Qg] then
0,= Qf implies Qg = oF .
PROOF. Let BE AU, andlet a€ AUy be such that ¢ X Y[a]C B . Then

Y X Y[TaNRGC Ty X $la]NRyC TBN R,

Suppose Q, = QF then
Q,C intg (TaNRy) = Ry\ clg (Ry\ (TaNRy) .

As Q=X Y)"Qp = X V)" X Y[Q,] it follows that
Q0 =¥ X Y[QgCY X Y[QgI\ ¥ X Y[clp (R \ (TaN Ry C
C Ry\ clg (Re\ ¥ X Y[TaN R, =
=intg (Rg\ (Rg\ ¥ X $[TaNRy)) = intg (¥ X $[TaN R C
Cintg (TY X Y[a] N Ry C intg (TBNRy) .

As B was arbitrary this shows that Q,C QfF .



< F73 -

2.9. REMARK. Consider the diagram in 2.5. If E,= Q4 and if R,CQ,
then Q4= (Y X )" [Q4] .

PROOF. Note that ¢ Xy[Q4]= Qg (1.43.b). hence Q,C (Y X ¢)7[Qy] .
Let (x;.x2)€ (¢ X¢)7[Qg] . Then, by 1.4.3.b, there is a (z,,z2)€ Q, such
that Y X {(zy,27) =¢ XY(x;,x3). But then (x,.z))ER, and also
(x2,z3)€ Ry . Hence

(X] ,Xz)e R¢OQ¢OR\PQ Qt; §

and so (x;,x)EE,=Q,. O

By now we are able to prove the main result of this section.

2.10. THEOREM. Consider the diagram in 2.5. If E,= Q,=QF then
Ey=Q9=0Qf .

PROOF. Note that E, = Q, implies that Ey= Q4 (1.4.3.).
Now consider the following diagram of homomorphisms of minimal ttgs.

2

?x >

\ P
i

R/ 04 F e, 20,

Nz

b

h -
>

Let k:X—>%/Q, and A:Z—->Z/Qy be the quotient maps. Since
¥ X Y[Q4] = Qg there exists a unique homomorphism p:X/Q4—%H/Qy
such that Aoy = pok . As a= fBop, p is almost periodic. Let x € uX ,
z:=y(x) and note that (k(x),z)E R,\. Define W:=T(x(x),z), then
W is a minimal subset of R, (for J,CJ,)NJ.) and W projects
onto X/Q4 and Z by 7, and 7, respectively. It is an elementary exer-
cise to show that =, is an almost periodic map ( g is almost periodic!), so
m, is open. Define x:W—-Y by x =aom and let £:X— W be defined
by é(x)=(x(x),z). Then ¢ =xof. As, clearly, R;CR,=Q, it fol-
lows from 2.9. that Q,=({X§7[Q,]. Hence by 2.8., we know that
0,=0F . As x=0om, and m, is open it follows from 2.6. that
Qs = QfF , which proves the theorem. O
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VIIL3. TRANSITIVITY AND Q *

In general the regionally proximal relation is not an equivalence relation.
However, there are conditions that imply transitivity of the regionally
proximal relation, for instance the Bronstein condition and “open RIM”.
In all these cases the equicontinuous structure relation turns out to be
the sharply regionally proximal relation. From that one could conjecture
that Q, = Qf implies transitivity of Q,, . In this section we shall see
it does in case ¢ is open or if the ttgs in question are metric. One also
could conjecture the converse: transitivity of Q, implies Q4 = Q;f :
However, we don’t have evidence for that.

First we introduce some notation:
Let ¢:X—% be a homomorphism of minimal ttgs. Let (x,.x;)€ Ry and
p € St . Then define

pr(xy1,x3):= ({poV |V is aneighbourhood of (x;,x,) in Ry} .

Clearly, p»(x;,x3) = ({po(UiX UsNRy) | U; €V, } (remember that we
denote the neighbourhood system of x in X by ¥, ).

Note that there is some ambiguity in the notation as we do not specify the
map. As we use it only in the situation of one specific homomorphism ¢
and never with respect to X X X , no serious problem will arise.

3.1. THEOREM. Let ¢:X—% be a homomorphism of tigs (not necessarily
minimal) and let (x,,x;)€ Ry. Then (x,.x2)€ Qg Iff there is a
minimal left ideal 1 in St with ps(x,.,x2)NAx = @ for every
peEI.

PROOF. Let (x;,x;)€ Q,. Then there are nets {(x}|.x5)}; and {7}, in
R, and T such that (x},x3)—(x;.x3) and f(x}.x5)—>(x,x) for
some x € X . Without loss of generality we may assume that the net {7},
converges to some p € Sy . Let V' be a neighbourhood of (x,,x;) in
R, . Then there is an ij such that (xi,x5)€ V forevery i=i,. Hence

(x,x)=lim {f;(x} ,xb) | i=io)Elims;V =poV .
As V was arbitrary, (x,x)Ep«(x;,x;) and so p=(x;,x3)NAy # & .
Conversely, suppose that for some p € S; we have px(x;,x)NAy # @,
say (x,x)Epx(x;,x;). For a€ Uy , po(a(xl)Xa(xz)ﬁR¢)EZR¢ and

<(aNR,°.R,> is a neighbourhood of po(a(x;)X a(xs) NR,) in 2%
Let {#;}; beanetin T with #; >p in Sr . Then



-274 -

t(@(x )X a(xy) NRy) —po(a(x))X a(xz) NR,) in 2%

So there is an i, such that

4 (a(x)X a(xy) NRHYN(@NR°® #+~ T .

Hence f (a(x))X a(x) NRy)NaNRy7# and we can find 7,:=¢ In
T and (x{,x3)Ea(x))Xa(x)NR, such that 7,(x{",x7)EanNR,.
Doing this for every a&€Qy , we obtain nets {f,}ac a, im 7 and
{(x{".x3)}aca, in Ry such that (x sub 1 sup alphd [x sub 2 sup alpha )
naar (x sub 1" x sub 2 J~ roman and "~ t sub alpha (x sub I sup alpha | x
sub 2 sup alpha ) naar (x]xJ .

Consequently, (x,,x,)€ Q,. What we have proved by now is
(x1,x2)€E Qy Mf pa(x;,x2)NAxy + @ for some p € St ,

hence the ”if”-part of the theorem is proved.
Let (x;,x;)€ Q, and define

S::{pEST |pt(x].x2)ﬁAX # @}

By the above, S # & and, clearly, S is T-invariant. We shall show that
S is closed; hence it follows that S contains a minimal left ideal, which
proves the theorem.

For each neighbourhood V' of (x;.x;) in R, the mapping prpol is
continuous, hence the mapping

Y:pr ({poV |V neighbourhood of (x|.x3) in Rgy}: Sy —2"°

is upper semi continuous. Since Ay is closed and as S is the full original
under ¥ of the closed subset {4 € 2R |ANAy = @} of 2" it follows
that S is closed. O

32. REMARK. Let ¢:X—% be a homomorphism of tigs and let
(Xl.XZ)e R¢.
a) If (x),xp€ Qf , then px(x,,x2)C Qy for every p € Sy .
b) If px(x1,x)NQF 5~ @ for some p € St ., then (x1,X2)E Q.
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PROOF.
a) Let a€ Uy , then (xl,xz)eintRO(Taﬁ R,) . So there are open

neighbourhoods U IE‘VX’ and U, € V. such that
(Xl,XZ)e U]X UzﬂR(pgintRO(TaﬂRq,).

For every p € S it follows that

p*(X],Xz)gpo(U]X Usz‘#)g T. intRo(Taﬂ R¢)g Tan R¢.

As a was arbitrary, ps(x;,x,)C Q, forevery p €Sy .
b) Suppose p#(x;,x)NQF #* @ . Let {1}, be anetin T with
ti »p andlet a,B €Ay be such that BC a. Then

po(B(x)X B(xy) NRy N intRo(Taﬂ Ry) # @
and as <intg (TaNRy),Ry> is an open neighbourhood of the element
po(B(x) X B(x)NR,) of 2% while

L(B(x1) X B(x2) NRy)—>po(B(x1) X B(x2) NRy),

it follows that

(B(x) X B(x2) NRy) N intR°(TaﬁR¢) %= @ .

But then B(x)) XB(x)NTaNRy* &, and as is easily seen
(x1,x2)€ TaN R, . Consequently, (x;,x2)€ Q.
(Note that this is just 1.6.b!) O

33. LEMMA. Let ¢:X—%Y be a homomorphism of tigs and suppose that
0s,=05 . Let (x,y)EQ, and (y,z2)EQ,. If ¢ is open in
XEX, then (x,z)E Q.

PROOF. By 3.1, we can find a minimal left ideal / in Sy, pE€/ and a

z’€ X such that (z',z")Ep»(y,z). Let aEUy and let U, Ca(x),

U,Ca(y) and U. Ca(z) be open neighbourhoods of x , y and z in

X , such that

U, X U, NR,Cintg (TaN Ry)

(for U, no further conditions). As ¢ is open in x , we may assume that
U, issuch that ¢[U,]C ¢[U,] . Since

(z',2")Ep+(y,z)Cpo(U, X U;NRy),
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we can find nets {7}, in 7T and {(y;,z)}, in U, X U.NR, such that
p =limy, and (z,z')=limy(y;,z;). Let x, €U, be such that
¢(x;) =¢(y;). Then, for every i,

(x,-,y,-)E Ux X lj). ﬂR¢ and (.x,',Z,')E U.X X U: ﬂR¢

Let x/:=limysx; (after passing to a suitable subnet). Then

(xa,z2)=limt(x;,p))Epo(Uy XU, NRYCpo(TaNRHYC TaNR,
and
(xy,z")=1limt;(x;,2,)Epo (U X U.NRYCpo(a(x)Xa(z)NRy).

So for every a€ AUy we can define in this way an element x,E X . Let
x’=limx/, (after passing to a suitable subnet). Then

(x",zy=lim(x%,z)E TaN R, for every a€ Uy ;
hence (x',z )€ Q,=QF . And
(x’,z")=lim(x%,z")Epo(a(x)Xa(z)NR,) forevery a€ Uy .

As  px(x,z2)= {pela(x)Xa(z)NRy) |aEWUy} . it follows that
(x",z")Epx(x,z) and so that p«(x,z)NQF 7 @ . By 3.2.b, it follows
that (x,z)EQ,. O

3.4. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs, such that
¢ is open in some point x € X . Then Q.= QF implies E,= Q,.

PROOF. Let (x;,x3)€ Q4 and (x;,x3)€ Q, and let p €M be such that

x =pxy. Then (x,px;)=p(x;,x2)€ Q4 and (px;.,px3)€ Q4 so, by

3.3., it follows that (x,px;)€ Q4. Let v E€J, . then
(x],vx3):vp"'(x,px3)€ O,.

As (vx3,x3)E P, we have (x;,x3)€PyoQ,. So, by 1.7, (x,,x3)E Q.
Hence Q4004,C Q4 and Q, is an equivalence relation. O



3.5. COROLLARY.
a) If ¢:X—>%Y is a RIM extension or if ¢ is a homomorphism of

metric minimal ttgs, then Q4= Qq, implies Ey,= Q4= Q¢ .

b) If X is a minimal ttg then Q= Q& implies Eq = Qg = Q% .
c) Let ¢:X—%Y be a homomorphism of minimal ttgs and let

¢=~00y (as in 2.5.). If ¢ is open in some point x € X , then
Qy=0QF implies Qy= Qf
PROOF.
a) By VIIL.1.5. and II.1.3.e, this follows immediately from 3.4..
b) As ¢: X — {*} is open, the statement is obvious from 3.4..
¢)By 34, Q0,=0QF implies E,=Q,=0QF . But then by 2.10., we
know that Eg= Q4= QF : in particular, Qy= QF . O

It is not known whether or not Q,= Q¢ implies E,= Q, without
further restrictions on ¢ . We shall now give some other conditions on ¢
that are sufficient to deduce E,= Q, from Q,=QJF

3.6. THEOREM. Consider the next diagram consisting of homomorphisms of
minimal trgs:

Suppose that  is proximal. In each of the following two cases we have

0,= Q¢ implies E4,= Q4= Q¢ .
a) 6 is open;
b) Ey=QgoPy, eg. 0 isaRIM extension.

PROOF. As y is proximal, Q,=QF implies Qp=QfF (2.7.b). Hence,
in both cases a and b, it follows that E4= Qg4 (cf. 3.4. and 1.7. respec-
tively). As i is proximal and as, by 1.4.3.,

YXYEG] = Eg= Qg =y X ¥[Qy],
it follows that E,C P40Q40P, . But, by 1.7., this gives

E¢gP¢oQ¢oP¢ P¢0Q¢ 0P¢ Q¢ : O
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3.7. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs and let
¢ =00y . Suppose Y is open, Ry,C Qg4 andlet Eqg= Q4oPgy. Then
0,= Qf implies E,= Q4= Q;‘ :

PROOF. As ¢ is open, Q4= Qf implies Q= Qg by 2.6.. Hence, by

1.7., it follows that

Eg=QgoPs=0Qf oPg=0QF = Q.

Also, by the openness of  we have that ¢ X {y:Ry,— Ry is an open map.
We shall show that Q, = (¢ X ¢)7[Qy] , hence that Q, is an equivalence
relation.

Let (x;.x2)€ W X Y)T[Qy]; then (z,,23):=¢ X Y(x,,x)E Qg . So there
are nets {(z},z5)}; in Ry and {1}, in T such that (z},z5)—(z,,z2)
and 1z} ,25)>(z1.21). As (x1,x2)€E W X{Y)(z,,2z,) and as the map
Y XY:Ry—>Ry is open, we can find (x},x5) in R, such that
Y X Y(x),xh) =(z4,24) and (x},x5)—(x;,x,) . After passing to a suit-
able subnet let (X,,x;) =limz;(x} ,x5). Then

Y(x)) =limgy(xy) =limgzh =z =limgzh = limgg(xh) = ¢(X,) .
hence (x,,X;)€ Ry and therefore (X;,X;)€ Q,=QF . By 1.6.b, it fol-

lows that (x,,x;)€ Q4. Consequently, (¢ X {)7[Q4]C Q4 and as, clearly,
Qs C (¥ X Y)7[Qg] . it follows that Q4 = (¥ X Y)7[Qy] . O

3.8. For the last results in this section remember that for a homomorphism
¢:X—% of minimal ttgs the relation Qg is defined by

Qs:= N({TaNJR,|a€ Uy},

ie, Qg is the collection of regionally proximal pairs that can (regionally
proximal) be reached by nets consisting of almost periodic pairs. Also
remember that for x € X and u€J |

Qslx]= U [N{veu | UEN)]
velJ
where 9%, denotes the I (X,u)-neighbourhood system of wux in
uop—¢(x) (I1.3.7.).
In particular, uQj [x]= H(F)x , where F = &%, ¢(ux))CuM is the Ellis
group of % with respect to ¢ (ux) .
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39. LEMMA. Let ¢:X—%Y be a homomorphism of minimal tigs and let
u€J . Suppose (x).x;)=u(x,,x)€QF , then

uQ g [x1] X uQg [x5] = H(F)x, X H(F)x,C Q.
where F = &Y, u¢(x,))C uM is the Ellis group of % .

PROOF. Let L“[x;]:= ({uolU |u€‘3)l.,f}l} for i =1,2; and note that,
by I11.3.4. and IIL.3.1.,

uQg [x;1= H(F)x; = uL"[x;] .
We shall prove that (u o L"[x,]) X L“[x,]C Q, and so it follows that
uQy [x1]1 X uQ [x2] = H(F)x X H(F)xy = uL"[x] X uL“[x,] C
Cu((uoL[x1]) X L¥[x2])C Q-

Let a€Qy ; then (x,x,)E intRO(Taﬂ R,) . So there are open neighbour-
hoods U and V of x; and x, in X such that

(x1.x)EUXVNR,CTaNR,.

As (x),x3)=u(x,,x;) we can find an open set W in T with
W = W(u) such that Wx,C U (see IIl.2.1.c). Define ue%‘?’: by

U:=[V,WINud~¢(x,). Then
{(x }XUCTWUXVNRy)CTaNR,.

Let x3€ U and note that (x,,x%) =u(x;,x%). In the same way as above
we can find a V € N such that V X {x3}C T(UX VNR,) . Hence

Uo VX {x2} =uo(VX x4} )CTUXVNRGH)CTaNR,

and as LY[x]CuoV , it follows that L"[x;]X {x%}C TaNR,. Since
x5€ U was arbitrary, L“[x|]X U C TaNR,. Hence, as LY[x;]Cuoll ,
it follows that

uo L'[x X L*[x3]Cuo L"[x )X uold =uo(L[x]XU)CTaNR,.

As a € QAy was arbitrary: wo LY[x]X L"[x3]C Q. O
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3.10. THEOREM. Let ¢:X—%Y be a homomorphism of minimal ttgs.

a) If Qy=0QF then Q¢0Q; =0400s,=0,.
b) If Q,=QF andif for some x €X and some u€J we have

uQulx]= uQ; [x] then E4=Q,.
PROOF.

a) Let (x;,x)€Q, and (x;,x3)€ Q,. Then u(x,,x,)€ Q, and
u(x,,x3)€ Q¢=Q;f . As uxIEuQ; [ux,] it follows from 3.9. that

(uxy,ux3) € uQgq [uxy] X ux3C Q= QF .

Hence, by 1.6, (x;,x3)€ Q4 and Q400,C Q,, and s0 Q4004 = Q, .
Similarly, Q300,=Q, .

b) Let (x,,x,)€ Q4 and (x,,x3)€E Q4 and let up € M be such that
upx, =x . Then  (upx,,x)= (upx,,upx;)€ Q,, and so we have
upx € uQ4[x]1= Qg [x]. As (x.upx3)€ Q,=QF it follows by 3.9. that

(upx 1 upx3) E uQy [x] X upx3C 0y = QF

and so, by L.6., it follows that (x,.x3)€ Q4. Consequently, Q, is an
equivalence relation. O

VIIL.4. REGIONAL PROXIMALITY OF SECOND ORDER

Let % be a ttg. It is not difficult to see that a pair (x;,x;)E X X X
is regionally proximal if we can find suitable pairs in the neighbourhood
of (x;,x;) such that after suitable T -translations they tend to a proxi-
mal pair. If we could find pairs in the neighbourhood of (x;,x;) that
after suitable 7 -translations tend to a regionally proximal pair, we could
say that the pair (x,,x,) is regionally regionally proximal. We call it
regionally proximal of second order.

Let % be a ttg and let A C X . Then define
DA, %):= | J{p+4 |pE St} .
where p«A is defined as

pxA:= M {poV]|ACV and V openin X}.
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Remark that the « defined in section 3. is in full accordance with this
definition, after noting that pxa:=p«{a} .

4.1. REMARK. Let X be attgandlet A C X . Then
a) D(A,%) is T-invariant,
b) DA, X)=DA,X) forevery t€T ;
c) if A isclosedthen D(A,%X)= \|J{D({a}.X)|a€EA},
d) if A isclosedthen D(A,X) is closed.

PROOF.

a)Let x€D(A,%) and let p € Sy be such that x €Ep+A4 . Then
xEpolV foreveryopen V in X with ACV . Hence txEpol for
such V' and tx€p«ACD(A.X).

b) Note that poV =pt 'otV for every VCX, pES; and
teT . As

(W |WCXopen,tACW}={V|VCXopen, ACV}

for every ¢t € T , it follows that p«A4 =pr 's14 .

c) Obviously, D({a},X)C D(A,%X) forevery a €A .
Conversely, let x € D(4,%) and let p € Sy be such that x EpxA4 . Let
a € Uy be an open index. Then there are a,,...,a, in 4 such that

Ver= Ula@)|ie{l,..., n}}
is an open neighbourhood of 4 (in X ). So x €EpoV, and as

pOVa: U{poa(a,)lie{l,...,n}},

we can find a,€ {q; |i €1,...,n}} such that x €Epoa(a,) . In this way
we obtain a point a, in A for every open index a€E Uy . Let
a:=lim{a,|a€l} for a suitable subnet / C Uy . We shall prove that
xEpx{a}.

Let VC X be open and let {a}C V . Then there are  and y in [
such that B(a)CV and yoyCpfB. Let &€l with 8Cy such that
asEy(a). Then

X Epod(as) and 8(as)Cy(as)Cy(v(a))C B(a).

SO X Epobd(as)CpoP(a)CpoV ; hence x Epxfa}. As acd =4 it
follows that D(4,X)C | J{D({a}.X)|a€EA4} .

d) Let {x;}; be a convergent net in D(A4,%X) and let x =Ilimux; .
By ¢, we may find nets {a;}; and {p;}; in 4 and Sy such that
x; €Epix{a;} . Let p =limp, and a =lima; after passing to suitable
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subnets. We shall prove that x Ep«{a} .
Let VCX be open with {a}CV . Then o CV for all i=i(V).
Hence

X, Epix{a; }CpioV forall i=Zi(V).
But then it follows that
x =limx; Elimy,(poV)=po V.

As V' was arbitrary, it follows that x Ep«{a},hence x€D(A,X). U
The proof of the following remark is straightforward and will be omitted

42. REMARK. For attg X, xE€ X and a € X the following statements

are equivalent:

a) xEpxa for some p € St , in other words, x € D({a},%X)

b) for every V, €N, , and every V,E YN, thereisa t €T such that
tv,NV, #+ & ;

c) there is a net {a;}; in X with a;—>a and there are t; in T
with x = lim¢ta; ;

d) a€gq+x for some q € St , inother words, a € D({x},%). [

4.3. EXAMPLES. Let X be a ttg and let ¢:X—Y be a homomorphism of

ttgs. Then

a) DAy , XXX)=0«;

b) D(Ax ) =04

¢) D(Ey,Ry)=Ey andso D(Qy,Ry)CE, .

d) D(QF .Ry)= Q. hence Q,=QF implies D(Q4.Ry) = Q.
PROOF.

a) Follows immediately from b.

b) Using 4.1.c and 4.2. this follows easily from 3.1..

c) Let 0:%X/E,— ¢[X] be the maximal almost periodic factor of ¢
and let k:X—%/E, be the quotient map. Then it is easily seen that

Kk X K[D(E¢,ﬂ,¢)](_: D(AX/EO»K X x[@ld)(_: Q.

As 6@ is an almost periodic extension, &k X k[D(E,, Ry C AX/E¢ ; hence
D(E,,R;)CE;.

d) Clearly, Q,=D(Ax,R4,)CD(QF ,Ry) -
conversely, as Qf C inth,(Taﬂ R,) for every a€ AUy , we have
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p* Q;‘ Cp ointRQ(Taﬂ Ry)CpoTaNRL,CTaNR, (aEUy).
So pxQF CQ, and D(QF .Ry)C Q. 0
The next theorem as well as its proof resemble 3.3. and 3.4..

4.4. THEOREM. Let ¢:KX—%Y be a homomorphism of tgs. If for every
X1E€E X there is an x € X with Tx N TTlr,é @, such that ¢(x) is
an almost periodic point and ¢ is open in x , then E,=Q, iff
D(Q4,Ry) = Q-

PROOF. If E,= Q4 then, by 4.3., it follows that D(Q,.%R4) = Q, .

Conversely, suppose that D(Q4.%y) = Q4. Let (x,,x)€EQ, and

(x2,x3)€Q,, and assume ¢ is open in x;. We shall prove that

(X1, X3)E Qs .
Let {(x3,x%)}; and {1}, benetsin R, and T such that

(x5 ,x5)—>(x5,x3) and t(x5,x5)—>(w,w) forsome we X .

As o(x5)—>d(x))=¢(x;) and as ¢ is open in x,;, there are
z; E¢“¢(x5) such that z; »x,;. Define z =limzz, (after passing to a
suitable subnet). Then

zinX3) = (x1,x3) and £(z,x3) = (z.w).
As (x),x7)€ Qg it follows that
(z,w)Ep*(x1,x)C D({(x1,x2)},Rg)C D(Q4,%Ry) = Qo
where p =lim¢, € S (after passing to a suitable subnet). As
(zisx5)—>(xy,x3) and 1,(z;,x5)—>(z,w),
it follows that
(x1,x3)Eg+(z,w)CD({(z,w)},Re)C D(Q4y,Ry) = Qs

where ¢ =lim¢,~ 'e S, (after passing to a suitable subnet).

Now assume that ¢ is not open in x,. By assumption, we may find
xEX suchthat TxNTx; 5% @ and ¢ is open in x , while ¢(x)EY
is an almost periodic point. For an almost periodic point z € Tx N Tx, let
I and K be minimal left ideals in S7 such that z =px and z = gx,
for some p €l and some g€ K . Let v €J,(I).Then vx =wp 'gx;,
and

(vx,vp lgxy) = vp T lg(x1,x)€ Q, and (p 'gxy,wp lgx3)E Q.
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As (x,vx)EP,, we have (x,p 'gxy)€ Q,0P, and it is easily seen that
QuoPyC D(Qy,%Re) = Q4 . By the above, (x,vpfqu3)€ Q, and so

(Vp_qu],vp_'qx3) = (vx,vp_qu3) = v(x,vpiqu3)6 Oy
But then
(x1.x3) € D{(p " 'gx1,9p " 'qx3)} . R C D(Q4. Re) = Qs

which shows the transitivity of Q, . d

4.5. COROLLARY. Let ¢:X—Y be a homomorphism of tigs.
a) If ¢ isopenthen Ey=Q, iff D(Q4.Ry) = Q4. In particular,
for every ttg X we have Eq = Q« iff D(Qx,XXX)=Q«.
b) If X is a metric ergodic ttg and if Y is minimal, then Ey= Q,
iff D(Qy,R9) = Q4.

PROOF.

a) This follows immediately from the first part of the proof of 4.4..

b) If X is metric, there is a residual set of points in which ¢ is open,
also there is a residual set of transitive points. As % is minimal, the assump-
tions of 4.4. are satisfied. a

VIIL.5. REMARKS

In this final section we shall mention an other variation on regional prox-
imality. This variation is closely related to what is called ”Ellis’ trick” in
[G 76], namely, that open sets in the regular topology on the phase space
X of a minimal ttg % do have some thickness in the F¥(X,u)-
topology. For a more detailed treatment of this other variation on
regional proximality we refer to [V 77] and [VW 83].

We also consider the regional proximal relation for special kinds of
incontractible minimal ttgs.

Let ¢:X—% be a homomorphism of minimal ttgs. Define

Uslx]:= N{(Ta)x)N¢"d(x) | aE Uy},

where (Ta)(x)={x'€EX |(x,x)ETa} .
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In other words: x’'€ Ug[x] iff there are nets {x’}; in ¢ ¢(x) and
{t;}; in T such that

[ ’

x7—>x’ and fi(x,x5)—>(x,x);

ie., the “regionally proximal-making net” may be chosen to be constant in
x . Define

Ugi={(x,x)E Ry | x" € Uyl])

If ¢:%X— {*},then we write Ug[x] and Uy .
Note that this a-symmetric defined notion has a counterpart in the notion of
SRP(¢“¢p(x),x), see I11.5.8..

Clearly, P,C UyC Q4 ; butin [V 77] W.A. VEECH has shown that in several
cases one can say more:

5.1. THEOREM. ([V 77] 2.7.5.) Let ¢:X—Y be a homomorphism of minimal
tigs. If for every y €Y and u€lJ, the set u¢p=(y) is dense in
o (y) (eg.if ¢ isdistal), then Uy=Q4=E,. O

In the absolute case even more is true ([V 77] 2.7.6., also see [VW 83]):

5.2. THEOREM. If X is a minimal tig that satisfies the Bronstein condition
(e, XXX has a dense subset of almost periodic points) then

In the proofs of 5.1. and 5.2. the following set turns out to be of vital impor-
tance. For a homomorphism ¢:%X— % of minimal ttgs and for y € Y and
u€J, define

Ziy):={x € ()| int(mw).m%u»(u(u olU))#~ @ forevery U€E WP},

where VP:=V, N¢(y) .

One can show that Z(y) is a closed subset of ¢~ (y) (easily) and that
Siy)#= 2 (V77 272). '

The following theorem is the basis for 5.2, it can be found in [VW 83] (and
without proof in [V 77] 2.7.6.).

5.3. THEOREM. Let X be a minimal ttg. Then =,(*) = X , where * s the
only element of {*} , the trivial ttg. O
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5.4. QUESTIONS.
a) Does 5.2. hold in the relativized case? lL.e.:

If ¢:X—>% 1is an open Bc extension of minimal ttgs, is

b) Is there any relation between U, and Qf ? For instance: Does

Uy=Q, imply 0:,=05 ?

We end this section with some remarks on E«[x] for an incontractible
minimal ttg % .

5.5. REMARK. Let X be a ttg and let A C X be nonempty, then for every
ucJ wehave Eq[A]=Ex[ucA].

PROOF. Let k:X— X/Ey be the quotient map. Then

EquoA]=EquoA]=«k"k[uoAd]=x"(uox[A]).

X/ Ex

As k[4]E€2 and as, by I1.2.7,, 2 s uniformly almost periodic, it

follows that K[A-] =uo K[/T] for every u €J . Hence

EquoA]=k"(uok[A]) =k"k[A]= Eg[A].

5.6. THEOREM. Let X be a minimal tig.
a) Let X satisfy the Bronstein condition and let x' € X be arbitrary.
Then for every nonempty open U in X there is an x € U with
Ex[x]CJy 0o U.
b) Let X be incontractible and let u €J . Then for every nonempty
open U in X thereisan x € U with Eq[x]CuoU .

PROOF. Let u&€J . For UCX nonempty and open let V' be a
nonempty open set in X with VC VCU. By 53, we know that
u(uoV) has a nonempty F(X,u)-interior W in uX . Let X € W and
note that X =ux € W Cuol . So, by 5.5, there is an x € I7g U such
that Eg[x]= E«[X].

a) By II1.3.10.a, we have

E%[)?]QJX/O WCJou(oV)CJyo VEJpol .

So by the above, Ex[x]=Eg[X]CJ, o U for some x € U .
b) Similarly, b follows from II1.3.10.b. O
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5.7. THEOREM. Let X be a minimal ttg and assume that the quotient map
k:X—X/Ex is open.

a) If X satisfies the Bronstein condition then for every x'€ X we
have  for U nonempty  and  open  in X that
Eq[U]=Qx[U]=Jyo U .

b) If X is incontractible then for u € J and for every nonempty open
U in X we have that Eex[ﬁ]: Q(x[a]: uol .

PROOF.

a) Let x &€ U and let VEY, . By 5.6.a, there is an x, € UNV
such that Eg[xp]CJyo(UNV), so Eg[xy]CJyoU . As k is open,
Eg[x]=lim Eq[xy] and so Eax[x]gm. Hence E%[E]g.l,\./oU ;
As, by 5.5, E%[U] = Ex[uo U] for every u€J , we have:

wol C Eq[wolU]= Eg[U] forevery w € J, .

Hence Eq[U]CJ,oUCEx[U]=E«[U].
b) Similar to the above one proves, using 5.6.b, that Eq[U]=uoU .
But uoU isclosed, so Eq[U]=uoU . O

5.8. COROLLARY. [If X is distal then for every nonempty open U in X we
have Ex[U]l=uoU . UJ

5.9. COROLLARY. Let X be incontractible and assume that k:X— X/E«
is open. Then for every u €J we have Eq[x]= Qg[x]=u»x .

PROOF. It is not difficult to see that u+x C Qg [x] = Ex[x].
Conversely, by 5.7.b,

Qulx]C N{QlU]| UEV}= N{uoU | UEN ) Zusx.

5.10. QUESTIONS.

a) If % satisfies the Bronstein condition and if x’€ X , do we have
for every x € X that Qg[x]= |J{w»x |wEJ,}?

b) Can we relativize 5.9.? lLe., if ¢:X—>%Y is a RIC extension of
minimal ttgs such that xk:X—->%X/E, is open, do we have
Eylx]=Qg4lx]=uxx forevery x € X and every u €Jy)?
If so, then one can prove that E, = Q4= U, .
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In 5.9. we have the restriction of « being open. The following remark deals
with a situation in which & is not necessarily open.

5.11. THEOREM. Let X be an incontractible minimal t1g. If x € X is such
that uTx is dense in X for some u €J , then there isa q € M with
Qulx]=g»x .

PROOF. Let x € X andlet u €J be such that u7x is dense in X . and

let U€, . Then, by 53., u(uoU) has a nonempty F(X,u)-interior in

uX . By 1I1.2.4., there is an x’€ uX , a continuous pseudometric ¢ and an

€>0 such that

Ux',o,e)NuX Cu(uolU).

As U(x',0,e) is open in X , thereisa t€T with wx € U(x',0.¢€).
But then, by IIL3.10.b, Qglutx]CuoU . Since ¢ 'utx,x)E Py and
Eqx = Qg = QqoPs« , it follows that

Qulx]=Qxlt 'ux]Ct 'uo U .

So we proved that for every a€QUy, there is a p,EM with
Ox[x]Cpaoa(x). Asforevery BC a we have:

Ox[x]CppoB(x)Cppoal(x).

it follows that Qg[x]C goa(x), where g =limpg for a suitable subnet of
the pg’s with BC a . Hence Qg[x]Cg»x .

Conversely, if x'€ g+x then it is easily seen that (gx,x’)E€ Qg . So, if
Ox[x]Cgxx , then Q«[x]= Q«[gx]. However, it is not difficult to see
that g»x C Qg[gx], so

Qux[x]= Qulgx] =g»x . -

5.12. QUESTION. Do we really need the assumption of u7x being dense in
X in the above?
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SAMENVATTING

Deze studie over topologische dynamica is opgebouwd rond een aantal
thema’s uit de structuurtheorie van minimale topologische transformatiegroe-
pen (minimale ttg’s). Hoewel het begrip “minimale topologische transforma-
tiegroep” ruim zestig jaar oud is, is de structuurtheorie betrekkelijk jong.
Voornamelijk onder invloed van H. FURSTENBERG, R. ELLIS en J. AUSLANDER
is die theorie in de zestiger jaren van de grond gekomen en aangevuld met
het werk van S.GLASNER. D.C. MCMAHON en T.S.WU uitgebouwd in de
zeventiger jaren.

In het kader van een proefschrift is het niet doenlijk de ontwikkelingen in
detail te schetsen. Argumenten aangaande de leesbaarheid en notatie echter,
alsook het gebrek aan een eenduidige referentiemogelijkheid, noodzaakten tot
een vrij uitgebreide introductie in de vorm van hoofdstuk I. Dit hoofdstuk
bevat ook enige simpele overwegingen met betrekking tot half-openheid van
homomorfismen, die van veel nut zijn in de hoofdstukken IV en VII.

In hoofdstuk II wordt de actie op hyperruimten behandeld; quasifactoren en
de cirkel-operatie worden ingevoerd.

Evenals het tweede heeft ook het derde hoofdstuk voornamelijk een inleidend
karakter. Het centrale thema hier is het bepalen van de equicontinue
structuur-relatie in een situatie waarin voldoende bijna-periodiciteit is om de
door H. FURSTENBERG in [F 63] geintroduceerde I-topologie te gebruiken.
Het doel van dit hoofdstuk is niet alleen het geven van een introductie van de
bijbehorende begrippen en hun eigenschappen, maar ook het leveren van een
aanzet tot meer eenheid van de bestaande benaderingen.

Het vierde en het vijfde hoofdstuk zijn gewijd aan een speciale vorm van
proximaliteit: “high proximality”. In hoofdstuk IV worden de highly proxi-
male uitbreidingen zelf bestudeerd. In het bijzonder wordt het optillen van
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homomorfismen tot open homomorfismen via highly proximale uitbreidingen
bestudeerd, en de eigenschappen van homomorfismen die invariant zijn onder
dit proces. Ook wordt enige aandacht gegeven aan de Maximale Highly
Proximale uitbreidingen van minimale ttg’s. In hoofdstuk V wordt dit in veel
sterker mate gedaan door de structuur van MHP generatoren te bestuderen.
Deze MHP generatoren zijn zekere gesloten deelverzamelingen van de univer-
sele minimale ttg, die maximale highly proximale uitbreidingen genereren als
quasifactoren. Ook construeren we de MHP generator die de universele HPI
ttg voortbrengt.

Disjunctheid en disjunctheidsrelaties vormen de hoofdschotel van hoofdstuk
VI. Twee minimale ttg’s worden disjunct genoemd als het cartesisch product
weer minimaal is. Een voor dit hoofdstuk typisch resultaat is
PINP* C D+ | in woorden: een minimale PI ttg die disjunct is van iedere
minimale proximale ttg is ook disjunct van iedere minimale ttg die disjunct is
van iedere minimale distale ttg. De resultaten zijn geschematiseerd weer-
gegeven in een tweetal plaatjes. Ook worden de resultaten toegepast in ver-
band met de vraag of twee minimale ttg’s disjunct zijn als ze geen gemeen-
schappelijke niet-triviale beelden hebben.

In hoofdstuk VII komt zwak-disjunctheid aan de orde (twee minimale ttg’s
heten zwak disjunct wanneer hun cartesisch product ergodisch is). Een
belangrijke plaats in dit hoofdstuk is weggelegd voor homomorfismen met een
extra maat-structuur: RIM uitbreidingen. Onder andere wordt bewezen dat
voor open RIM uitbreidingen van minimale ttg’s de regionale proximale rela-
tie een equivalentierelatie is. Een ander probleem dat wordt behandeld, is: in
hoeverre wordt voor een tweetal homomorfismen met het zelfde codomein
zwak-disjunctheid geimpliceerd door disjunctheid van hun maximale bijna-
periodieke factoren.

Het laatste hoofdstuk handelt voornamelijk over een verscherpte vorm van
regionale proximaiiteit. in het bijzonder gaat het over de vraag of de
gelijkheid van dc verscherpte regionale proximale relatie en de regionale
proximale relatie impliceert dat de regionale proximale relatie een equivalen-
tierelatie is. Het antwoord op die vraag is bevestigend als de afbeelding in
kwestie open is en ook als de ruimten metrisch zijn.

De hoofdstukken IV en V bevatten de resultaten van het onderzoek dat in
samenwerking met J. AUSLANDER werd verricht [AW 81], en de resultaten in
hoofdstuk VIII en in VIL3. zijn verkregen in samenwerking met
J. AUSLANDER, D. C. MCMAHON en T. S. WU [AMWW 7].
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STELLINGEN
behorende bij het proefschrift
TOPOLOGICAL DYNAMIX

STELLING 1 : Voor minimale ambits (%X,xg) en (%¥,yo) definiéren we de representatie
ﬁ(x?x“xo)((’y.yg) van (¥,yo) in (%X,x() als

%(ex_x“,(% D0):= (W (uo M, xg X),uo M,,Uxo) .

de quasifactor van % gegenereerd door de actie van de stabilisator van y, op x,. Dan geldt:

(1) (&(%‘KO,(GB o) = GL(@._‘.O,(‘.')C.XO) als en slechts dan als (X" Loy )g* +  waar
Z:= R x (¥ 00) -

(i) Zij X een MHP ttg en zij Y een quasifactor van X . Dan is de representatie van de
representatie van (%,yo) in (%,x) in (%X.xq) juist de representatiec van (%¥,y,) in
(?X.,xo) .

Voor de bovengenoemde begrippen zie dit proefschrift en vgl. IV.3.1..

STELLING 2 : Laat (X,¢) en (Y,y) minimale flows zijn en laat p en » invariante ergodische

Borel waarschijnlijkheidsmaten zijn op X en Y . In elk van de volgende gevallen impliceert

ergodentheoretische disjunctheid van (X.,¢.u) en (Y,¢,») de topologisch dynamische dis-

junctheid van (X.¢) en (Y,y).

(i) Het product van de Ellisgroepen H en F van (X.¢) en (Y.,y) iseen groep en (X,¢)
is topologisch dynamisch disjunct van iedere minimale zwak mengende flow.

(i1) Het product van de Ellisgroepen H en F van (X.¢) en (Y.{y) omvat de Ellisgroep van
de universele PI flow (bijv. (X,¢) is een PI flow).

AUSLANDER, J., On disjointness in topological dynamics and ergodic theory. in: Ergodic
theory (proc), Lecture Notes in Math. 729, Springer Verlag, New York 1979

STELLING 3 : Zij G een groep voorzien van een compacte T, topologie zo, dat linksver-
menigvuldiging, rechtsvermenigvuldiging en het nemen van de inverse continu zijn. Definieer
voor gesloten deelverzamelingen F van G

N(F):= (M {0 N F | Oomgeving van de eenheid} .
Voor gesloten ondergroepen H; en H, van G geldt H\N(H,)=H N(H H,).

Vgl. proposition 3.2. in:
ELLIS, R., S. GLASNER en L. SHAPIRO, Proximal isometric (‘74-) flows, Advances in
Math. 17, 213-260 (1975)



STELLING 4 : Laat <T,X,7> een topologische transformatiegroep zijn met X een com-
pacte T, ruimte. Dan induceert de actie 7 van T op X een actie A(7) van T op A(X),
de superextensie van X .

Als <T,X,7> uniform bijna periodiek is, dan is <7 ,A(X).A(7)>> dat ook.

Voor het begrip superextensie zie bijv.:

VERBEEK, A., Superextensions of topological spaces, Mathematical Centre Tracts Nr. 41,
Mathematisch Centrum, Amsterdam 1972

MILL, J. VAN, Supercompactness and Wallman spaces, Mathematical Centre Tracts Nr. 85,
Mathematisch Centrum, Amsterdam 1977

STELLING 5 : De De Groot-Aarts compactificatie kan worden geinterpreteerd als de epi-reflectie
van (T;,,ZNT)), de categorie van Tychonoff ruimten met een bijbehorende Zwak Normale T,
subbasis voor de gesloten verzamelingen, in de categorie (CT,.ZNT;) van compacte T, ruimten
met een bijbehorende Zwak Normale T, subbasis voor de gesloten verzamelingen. Hierbij moe-
ten de morfismen in (T;,,ZNT,) met enige zorgvuldigheid worden gekozen.

STELLING 6 : Het functoriéle (wan)gedrag van superextensies, vooral daar waar het de ”natuur-
lijke” morfismenkeuze betreft, geeft weinig hoop op een nuttige categorietheoretische behandeling
van dit fenomeen.

STELLING 7 : Voor n €N definiéren we rijen A, = {a,;}/"=, als volgt: a,;:=ay;:=1.
ay;:=2. Zij A, gedefinieerd en zij r(m) zo, dat
rim)—1 rim)
i<ms< i
S =i
dan defini€ren we @, +11:= @y rm) €N Ay 41 k= Au k 1A rmy YOOI kK E {1, ... . m+1}.

(i) Als A, geen gelijke partiéle sommen heeft dan heeft A, ., geen gelijke partiéle sommen
als en slechts dan als a, ,,, niet voorkomt als verschil van gelijkmachtige partiéle sommen
van A, .

(i) Voor n=2 geldt:

k+1 k+2
2”n.l>k-an.n —dp-11 €n Za,,.,>k.a,,_,,+a,,,l,,72.
i=1 i=2

STELLING 8 : De invoering van het onderwijs in de geautomatiseerde gegevensverwerking aan
scholen voor HAVO en VWO verdient zeker op het gebied van de materiéle ondersteuning een
strakkere coordinatie.

STELLING 9 : De zwangerschapsgymnastiek dient in sterker mate aandacht te besteden aan de
man in verwachting.
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