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Abstract—Every day, when firefighters respond to emergencies,
they and the public face an unnecessary risk due to inadequate
staffing. Having too many people stand-by costs a lot of money,
on the other hand, having too few people stand-by leads to
unnecessary safety risks. Therefore, for adequate staffing pur-
poses, forecasting the number of incidents that each fire station
has to handle is a very relevant question. In this paper, we
develop models to create a good forecast for the number of
incidents that each fire station in Amsterdam-Amstelland has
to handle. Previous studies mainly focused on multiplicative
models containing correction factors for the weekday and the
time of the year. Our main contribution is to incorporate the
influence of different weather conditions in the categories of wind,
temperature, rain, and visibility. We show that an ensemble model
has the best predictive performance. Rain and wind typically have
a strong linear influence, while temperature mainly has a non-
linear influence.

Keywords–incident forecasting; fire department planning; gen-
eralized linear models; ensemble models.

I. INTRODUCTION

As for most organizations, the ability to accurately fore-
cast demand is of “paramount importance” for emergency
services, fire departments included [1]. In the 1970s, the Fire
Department of the City of New York and The New York
City-RAND Institute jointly conducted various groundbreak-
ing studies [2]. More recent academic interest seems to be
focused more on ambulance services. While there are obvious
similarities between emergency service providers, they differ
in (the number of) incident types, demand characteristics, and
operational logistics.

Nevertheless, the problems that fire departments have to
deal with, like loss of coverage and the degradation of response
times, are similar. The same is true for possible gains. On a
strategic and tactical level, improved forecasting of workload
leads to a better placement of base stations, and improved
staffing and scheduling. On an operational level, one may pro-
actively relocate units to maximize coverage and minimize re-
sponse times during major incidents [3]. All things considered,
efficient planning of emergency service resources is considered
crucial.

Demand is an important factor when models are being
developed to improve the performance of emergency service
providers. It is, however, not uncommon that, for instance,

call arrival rates are estimated using ad-hoc or rudimentary
methods such as averages based on historical data [4]. This
may ultimately lead to a degradation of performance, or over-
or under-staffing [5]. In most cases, reducing response times
is an important performance measure since this increases the
survival rate of victims [6][7].

Numerous papers have been written on the subject of
forecasting forest or wildfire occurrences, many of those
using weather variables and vegetation types as part of their
model [8]. Forest fire forecasting is no longer a study in
academia alone. In fact, in the United States, e.g., the National
Interagency Coordination Center operates a predictive service
which provides decision support to the U.S. Forest Service,
which facilitates pro-active management and planning of fire
assets on both operational and tactical levels [9].

Although the scale of wildfire occurrences in the Nether-
lands is smaller than in other parts of the world, it is mainly
the greater interrelationship of different types of infrastructure,
i.e., the wildland-urban interface, that causes concern and even
lead to surface fuel models for the Netherlands [10]. For a more
urban environment, like the conurbation of Western Holland,
which also includes Amsterdam, forest fire occurrences are not
very common.

The occurrence of certain types of incidents which fire de-
partments in urban settings typically respond to also correlate
with weather conditions. As such, incorporating this informa-
tion into the planning process of emergency services yields
important advantages over current practice. Typical weather
and storm-related incidents that fire departments in the Nether-
lands respond to are fallen trees, potentially falling debris
that needs securing (roofs, construction work, scaffolding), and
water damage. Another important factor is that the weather also
impacts fire department operations by overwhelming available
resources.

At least in the Netherlands, to the best of our knowledge,
there are no known applications of forecasting algorithms
that are used in practice at fire departments, being urban or
specialized forest services. Given this, we aim to provide an
easily applicable model that can be put to use for an urban fire
department. Therefore, we quantify and model the gut feeling,
which tells firefighters that on stormy days they will have busy
days.
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The organization of this paper is as follows. In Section II,
we describe the data used to obtain the forecasts. Section III
describes the models used for forecasting. In Section IV, we
analyze the performance of the models and state the insights.
Finally, in Section V, we conclude and address a number of
topics for further research.

II. DATA

The available data contains one row for each incident that
happened in the region Amsterdam-Amstelland from January
2008 up until April 2016. The most interesting information
includes the incident’s start- and end time, location, incident
type, the concerned fire station, and the number of fire trucks
used. Since the size of incidents matters for the number of
people you need, the focus is on forecasting the number of
trucks needed.

Figure 1. Histogram of the number of fire trucks per incident.

Figure 1 shows a histogram of the number of trucks per
incident. The vast majority of the incidents require only one
or otherwise just a few trucks. Therefore, it makes sense to
distinguish between ‘big’ and ‘small’ incidents. Big incidents
are mostly due to coincidences that are hard to predict.
Specifically, they do not rely on bad weather conditions or
a particular time of the year in the Netherlands, for example,
as with forest fires in countries with a tropical climate. This
arouses the expectation that the inter-incident times of big
incidents can be modeled as a Poisson process.

To test the Poisson assumption, we apply the Kolmogorov-
Smirnov (KS) test on the inter-incident times in cases when
more than k trucks are needed for several values of k. The
KS-test shows that if we define an incident as ‘big’ when
at least k = 6 trucks are used, then the KS-test does not
reject exponentiality of the inter-incident times (approximate
p-value = 0.429). However, for values of k < 6, the KS-test
doubts (or rejects) this exponentiality (approximate p-value =
0.073 and 0.002 when at least k = 5 and k = 4 trucks are
used, respectively. Hence, according to this result, we define
an incident to be big when at least 6 trucks are needed.

Now that big incidents can be modeled by a Poisson
process, it is time to focus on the small incidents. The small
incidents are probably easier to predict, since bad weather
conditions often cause many small incidents to happen (like

fallen trees, water damage, or police/ambulance assistance at
traffic accidents). To study this, we first omit all incidents
on December 31 and January 1. There are extremely many
incidents around New Year’s Eve, mainly caused by accidents
involving fireworks. These conditions do not occur in the rest
of the year, so it seems logical to analyze these days separately.

(a) Year pattern: higher during summer and winter.

(b) Week pattern: peak on Friday.

(c) Day pattern: low at night, high at midday.

Figure 2. Seasonal patterns: the given percentages represent relative
differences with respect to the average (in blue).

There are clear seasonal patterns in the data for the number
of trucks needed throughout each year, week, and day. The
plots in Figure 2 illustrate this. The pattern in Figure 2c depicts
the activity cycle that an average person goes through every
day of the week. The week pattern (Figure 2b) differs per type
of incident and looks a little different throughout the year. The
pattern in Figure 2a can be included in the model in a more
subtle way than taking factors per month. The problem here is
that, for instance, the differences between the beginning and
end of January are considerable. We correct for this by using
a Loess-smoothed function over the factors per week. We will
include all these patterns in our model, which will be discussed



in the next section.

Besides the time-dependent components, we want to know
which weather variables we must include in our model. There-
fore, we use the Pearson correlation test to determine which
weather conditions have a significant influence on the number
of trucks we need. The results of these tests are summarized
in Table I.

TABLE I. PEARSON’S PRODUCT-MOMENT CORRELATION TESTS
BETWEEN SOME WEATHER VARIABLES AND THE NUMBER OF

TRUCKS USED FOR SMALL INCIDENTS PER DAY.

Category Variable p-value Correlation

Wind
Average wind speed (FG) < 10−12 0.132
Maximum hourly mean wind speed (FHX) < 10−15 0.177
Maximum wind gust (FXX) < 10−15 0.189

Temperature Average temperature (TG) 0.6897 0.007
Boolean: 1 if average > 0 (TG>0) < 10−8 0.105

Rainfall *
Rainfall duration (DR) 0.0004 0.061
Total rainfall (RH) < 10−15 0.151
Maximum hourly rainfall (RHX) < 10−12 0.132

Visibility **
Minimum visibility (VVN) 0.2217 -0.014
Boolean: 1 if minimum < 200m (VVN<2) 0.2893 0.010

* In 0.1 mm and -1 for <0.05 mm; ** On 0-89 scale, where 0: <100 m, 89: >70 km.

We can see from this that the minimum visibility and the
average temperature both have no significant (direct) influence.
However, if we consider a variable indicating whether it was
on average freezing on that day, then this does have predictive
value. Obviously, we also have to include some variables
indicating the amount of rainfall and wind. However, the
variables within these categories are highly correlated (sample
correlation around 0.9) and, therefore, we may exclude some
of them to simplify our model.

III. MODELS

In this section, we will create a model that predicts directly
the number of trucks that each fire station needs. In the
previous section, we have shown that the big incidents (with
at least six trucks needed) are very hard to predict and that we
can best model them by an (inhomogeneous) Poisson process.
We also showed that the daily pattern of the number of trucks
used for small incidents is quite standard. So, if we know for
some day how many trucks are needed in total, we can quite
accurately extract from this how many trucks are needed per
hour. Therefore, we will try to forecast the number of trucks
needed per day per fire station.

In total, we have 9 different incident clusters or types
in our dataset, some of which occur much more/less often
than others. In Table II, we show the correlation with respect
to one variable of each four weather categories. Looking at
these correlations in detail, we can see that these are often
in line with our expectations. For instance, high wind speed
and rainfall obviously increase the number of incidents due to
‘storm and water damage’ (type 9) and decrease the likelihood
of ‘outside fires’ occurring (type 1).

We will estimate, for each incident type t, a model that
predicts the number of trucks used for small incidents yt,d on
date d, i.e.,

yt,d = ft,d · gt,d · xt,d.

Here, ft,d is a correction factor for the week number based on a
Loess-smoothed function as in Figure 3, and gt,d is a weekday

TABLE II. INCIDENT CLUSTERS AND CORRELATION WITH
RESPECT TO WIND SPEED, TEMPERATURE, RAINFALL, AND

VISIBILITY.

Cluster Type Wind Temp. Rain Visib. # p/day

1 Outside fire -0.135 0.09 -0.193 0.075 3.46

2

Animal in water -0.088 0.134 -0.058 0.013

1.65
Animal assistance -0.072 0.129 -0.088 0.069
Person in water -0.041 0.056 -0.023 0.009
Locked out -0.006 0.159 -0.043 0.062

3 Contamination / nuisance - -0.228 0.038 -0.111 2.52

4
Locked in elevator - -0.088 0.021 -0.015

8.16Automated alarm - -0.069 0.051 -0.037

5
Fire rumor - -0.103 - -

3.57Inside fire - -0.038 - -
General assistance water - -0.019 - -

6 Police assistance 0.048 -0.062 0.026 - 1.34

7
Ambulance assistance - -0.065 - -0.039

8.55Vehicle in water - -0.042 - -0.025
Reanimation - -0.086 - -0.008

8 General assistance 0.063 0.079 0.057 0.052 2.28

9 Storm- and water damages 0.319 0.028 0.279 - 2.10

Figure 3. The year pattern per week (in black) together with its
Loess-smoothed variant (α = 0.3).

factor as in Figure 2b. Both are computed separately for each
incident type. Finally, the term xt,d contains all remaining
information. This includes the average level, dependencies on
the weather, a possible trend and dependencies on all other
variables that we are currently not considering, but which do
exist in reality.

A. Linear regression model

The first attempt to model xt,d is by means of the linear
regression model (LM)

xt,d = β0 + β1 · d+ β2 · windspeedd + β3 · temperatured
+ β4 · rainfalld + β5 · visibilityd + εt,d,

where εt,d is assumed to have expectation zero and some finite
variance. Note that this model includes an intercept (β0), a
linear trend (β1 · d) and (at most) four weather variables.

B. Generalized Linear Model

Our second model, a Generalized Linear Model (GLM)
arises from an observation that the largest outlier neither has
the highest wind speed nor the most rainfall. However, the
combination of wind and rainfall might be the cause. It may,
therefore, be a good idea to include also cross-effects in our



model, i.e.,

xt,d = β0 + β1 · d+ β2 · windspeedd + β3 · temperatured
+ β4 · rainfalld + β5 · visibilityd
+ β6 · windspeedd · temperatured
+ β7 · windspeedd · rainfalld
+ β8 · windspeedd · visibilityd
+ β9 · temperatured · rainfalld
+ β10 · temperatured · visibilityd
+ β11 · rainfalld · visibilityd
+ εt,d.

Here, εt,d is again a residual term with zero expectation and
some finite variance. Note that this is not a GLM as one may
know from the literature. The only feature that causes it to be
generalized is that it now also handles the cross-term relations
between the weather variables. We could have called it an
expanded linear model as well.

C. Random Forests

The Random Forest (RF) algorithm is a machine learn-
ing algorithm that can be used for both classification and
regression tasks. Compared to LM and GLM it has a large
computation time, but RF is often used in practice since it
generally has great performance. It will, therefore, be worth a
try to implement this algorithm for our regression problem.

As input, the algorithm needs a T × (K + 1)-matrix with
K explanatory variables and one observation variable (in this
case xt,d), all of sample size T . In the first iteration of the
algorithm, a sample of size T is drawn with replacement
from the input matrix. On this sample, a decision tree (DT)
algorithm is executed. This procedure is repeated N times,
yielding N decision trees. When a new sample comes in, we
can take all N predictions for this sample and average these
to get the final prediction.

D. Performance measures

To evaluate the different models, we create a train and a
test set. The train set contains all data up until 2015/06. The
test set contains all data from 2015/07 onwards. This holds
for all incident types, so all test sets contain exactly nine
months of data and the quality of the forecasts can, therefore,
be compared easily. We will measure the quality of a forecast
on n samples using the Mean Absolute Percentage Error,

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (yt≥0)=
1

n

n∑
t=1

|yt − ŷt|
yt

,

as well as its weighted version, i.e.,

wMAPE =

∑n
t=1

|yt−ŷt|
yt

yt∑n
t=1 yt

=

∑n
t=1 |yt − ŷt|∑n

t=1 yt
.

Here, yt is the true value in time period t and ŷt is the
prediction.

IV. RESULTS

In this section, we will compare the performance of the
different models and evaluate the insights derived from them.
The results on the MAPE and wMAPE values are given in
Table III. These performance measures are based on the total
daily number of trucks used for small incidents (over all fire
stations and types). This enables us to compare all models
through one value. It is also interesting to see how significant
a parameter is on a 1 to 5 scale, as in Table IV for LM, Table V
for GLM, and Table VI for RF. Here, we assign 1 when the
p-value < 0.001 (very significant) until 5 when the p-value
≥ 0.1 (not significant).

TABLE III. PERFORMANCE MEASURES OF THE MODELS.

Model MAPE wMAPE
LM 0.1886 0.1924
GLM 0.1865 0.1880
RF 0.2006 0.2019

A. Linear regression model

For the linear model, comparing Table IV to Table II, we
observe that when a weather variable has significant predictive
power for some type, then their mutual correlation is relatively
high as well. This is a nice result, but unfortunately, the reverse
is not true. For instance, type 3 is highly correlated with one
of the temperature variables, but this variable does not have
predictive power for this type, which is surprising.

TABLE IV. SIGNIFICANCE OF ESTIMATED PARAMETERS FOR LM.

Incident type
Variable 1 2 3 4 5 6 7 8 9 Avg

Intercept 1 1 1 1 1 4 1 1 1 1.33
Trend 1 5 1 4 3 5 5 5 5 3.78

Wind speed 1 5 5 3 5 5 5 5 1 3.89
Temperature 3 4 5 1 2 5 5 5 5 3.89
Rainfall 1 3 5 5 5 5 5 4 1 3.78
Visibility 5 4 5 4 5 5 5 5 5 4.78

Scaling: 1: p < 0.001, 2: p < 0.01, 3: p < 0.05, 4: p < 0.1, 5: p < 1

If we look at Table IV in more detail, it stands out
that several types have no weather variables with significant
predictive power. Opposed to type 3, this is not surprising for
type 6 and 7, since their correlations to the weather variables
are relatively low as well. On the other hand, types 1 and 9
are well predicted by the amount of wind and rainfall, which
is intuitively explainable as well.

Since the wMAPE is higher, we can conclude that the LM
is not very good at predicting relatively busy days (compared
to predicting average days). However, the fire brigade is, of
course, more interested in when they have busy days. They
are prepared for average days anyway.

B. Generalized Linear Model

Recall that the GLM model is an expanded version of the
linear model, so it could be at least as good. The question
is how much value it adds to the linear model. Comparing
the significance of the variables in Table V to that of LM
in Table IV, we observe that, in general, the single weather



TABLE V. SIGNIFICANCE OF ESTIMATED PARAMETERS FOR GLM.

Incident type
Variable 1 2 3 4 5 6 7 8 9 Avg

Intercept 1 2 1 1 1 5 1 2 3 1.89
Trend 1 5 1 4 3 5 5 5 5 3.78

Wind speed 3 5 5 5 5 5 5 5 1 4.33
Temperature 5 5 5 3 2 5 5 5 4 4.33
Rainfall 5 3 5 5 5 5 5 5 1 4.33
Visibility 5 5 4 5 5 5 5 5 5 4.89

Wind*Temp. 5 5 5 5 5 5 5 5 5 5.00
Wind*Rain 3 3 5 5 5 5 5 5 1 4.11
Wind*Visib. 5 3 5 4 5 5 5 5 5 4.67
Temp.*Rain 2 3 5 5 5 5 5 5 1 4.00
Temp.*Visib. 5 5 5 5 5 5 5 5 5 5.00
Rain*Visib. 5 5 5 5 5 5 5 3 5 4.78

Scaling: 1: p < 0.001, 2: p < 0.01, 3: p < 0.05, 4: p < 0.1, 5: p < 1

variables have lost some importance in favor of cross-term
variables they partition in. Type 1 is an excellent example of
this. Here, the temperature had some predictive power in the
LM, but now it turns out that it is mainly the combination with
the amount of rainfall that matters. In addition, also wind speed
and rainfall turn out to be less predictive on their own than
the LM indicated. It is their cross-term effect that is important.
Looking at the average column on the right, we also see that
the intercept has lost some importance. Apparently, a bigger
part can be modeled by the weather after adding some cross-
term variables. Of all weather variables, it is even the case that
two cross-term variables have the most predictive power.

Noting the influence of the cross-term variables, we expect
that the performance of the GLM is better than that of the LM.
If we compute the results for the totals per day, we still see that
the wMAPE is somewhat higher than the MAPE, but compared
to their equivalents of the LM, they are slightly better (about
2%).

C. Random Forests

Different from the previous models, the RF algorithm does
not estimate a parameter for each variable. We, therefore, have
to find another measure for the importance of each variable.
We will consider the ‘RSS-ranking’ for this purpose.

In the RF algorithm, in each decision node, the algorithm
splits the remaining sample based on a decision rule on the
variable that reduces the standard deviation most. In other
words, it tries to improve the fit of the model to the training
data as much as possible, i.e., the biggest decrease in residual
sum of squares (RSS) between the fitted model and the
observation data in the training set. Hence, we can measure the
importance of a variable based on the total decrease in RSS
from splitting on this variable. Table VI shows the results of
the RSS ranking. As in the previous models, visibility is often
the least important variable. However, the biggest difference
is that in this case, the temperature is remarkably important.

When we compare the results of RF to the previous models,
we see that, in general, RF gives the worst results. However,
the effort for running this model is perhaps not in vain. When
diving deeper into the results, we discover that the RF has the
best wMAPE for type 9, which may be an indication that this
algorithm is better in predicting busy days. This is confirmed
by the plot of the predictions for type 9 of both GLM and

TABLE VI. IMPORTANCE W.R.T. TOTAL DECREASE IN RSS.

Type-cluster
Variable 1 2 3 4 5 6 7 8 9 Avg

Wind speed 4 2 4 1 3 2 2 4 1 2.56
Temperature 1 1 1 3 2 1 1 1 3 1.56
Rainfall 3 4 3 2 1 4 4 3 2 2.89
Visibility 2 3 2 4 4 3 3 2 4 3.00

RF in Figure 4. Obviously, the RF algorithm recognizes much
better than GLM when the weather conditions are risky and
likely to cause many incidents to happen.

(a) Generalized Linear Model

(b) Random Forest

Figure 4. Forecasts (in blue) of the number of trucks used for small incidents
of type 9, including the upper bound of its 95%-prediction interval (in red).

D. Ensemble model

From the previous discussion, we can conclude that GLM
gives the best results when we look at the totals per day, but it
is worse in predicting busy days than RF. If we can combine
both models in such a way that we capture the good features
from both models, then this may improve our forecasts. We
will try to do this by applying a form of so-called ensemble
averaging (EA). In our case, we will take a weighted average
of the forecasts of RF and GLM, i.e.,

EA = γ · RF + (1− γ) · GLM,

for some constant γ ∈ [0, 1].

We have to determine the optimal value of γ to use in
order to get the best results. Since GLM initially gives the
best results, and we only need RF to be able to predict the
busy days a bit better, we may expect that we have to put
more weight on GLM, i.e., that γ < 0.5. When we vary γ
from 0 to 1, both the MAPE = 0.1853 and the wMAPE =
0.1860 take their minimum in γ∗ = 0.2 (which is better than
GLM individually; when compared with γ = 0).



E. Practical implication

After the forecasts are complete, we extract from them the
capacity we expect each fire station to need each day. For this,
we want to have some certainty that the capacity is satisfying
for that day. Different from a confidence interval, which only
measures the uncertainty of the forecast, a prediction interval
includes, in addition, the variability of the number of incidents
in real life. We can, therefore, use the upper bound of the
prediction interval to ensure that the predicted capacity will
be satisfactory with, for instance, 95% certainty.

The 100(1 − α)%-prediction interval for the GLM model
y = Xᵀβ + ε for a future observation y0 can be computed as

ŷ0 ± t(1−α/2)n−k σ̂
√
xᵀ0(X

ᵀX)−1x0 + 1,

(see [11]), where ŷ0 is the predicted value for y0, t(1−α/2)n−k is
the (1−α/2)-quantile of the t-distribution with n−k degrees
of freedom, n is the number of samples in the training set, and
k is the number of variables in the model.

For the RF algorithm, we have N decision trees, which all
yield one prediction for each future observation. The variability
of these N individual predictions captures the uncertainty of
the final prediction (the average of the individuals). In order
to capture the variability of the observations, we need again
our assumption on the residuals. In this case, we will use this
by adding to each of the N individual predictions a random
value, drawn from the empirical distribution of the residuals
in the training set. Then, the resulting N values include all
the variation we need. Their (α/2)- and (1 − α/2)-quantiles
together directly form the desired prediction interval.

TABLE VII. CAPACITY NEEDED PER DAY AND FIRE STATION WITH
CERTAINTY THIS CAPACITY SUFFICES THAT DAY.

Avg cap. needed % of days 2 needed Available
Fire station 90% 95% 99% 90% 95% 99% cap. 1?

Aalsmeer 0.14 0.17 0.27 0.0% 0.0% 0.0% No
Amstelveen 0.44 0.53 0.80 0.0% 0.3% 3.3% No
Anton 0.40 0.48 0.73 0.0% 0.0% 0.3% No
Diemen 0.12 0.15 0.25 0.0% 0.0% 0.0% No
Dirk 0.34 0.41 0.64 0.0% 0.0% 0.7% No
Driemond 0.04 0.05 0.10 0.0% 0.0% 0.0% Yes
Duivendrecht 0.17 0.20 0.30 0.0% 0.0% 0.0% No
Hendrik 0.59 0.71 1.07 0.7% 1.7% 67.7% No
IJsbrand 0.19 0.24 0.38 0.0% 0.0% 0.0% Yes
Landelijk Noord 0.04 0.06 0.11 0.0% 0.0% 0.0% Yes
Nico 0.35 0.42 0.64 0.0% 0.0% 0.3% No
Osdorp 0.42 0.51 0.77 0.0% 0.0% 1.0% No
Ouderkerk a/d Amstel 0.06 0.08 0.13 0.0% 0.0% 0.0% Yes
Pieter 0.41 0.50 0.75 0.0% 0.0% 1.7% Yes
Teunis 0.28 0.34 0.53 0.0% 0.0% 0.0% No
Uithoorn 0.12 0.15 0.25 0.0% 0.0% 0.0% No
Victor 0.28 0.34 0.51 0.0% 0.0% 0.0% No
Willem 0.30 0.36 0.55 0.0% 0.0% 0.0% No
Zebra 0.23 0.28 0.44 0.0% 0.0% 0.0% Yes

If we combine all these results, we get Table VII that gives
the needed capacity for each fire station. From this, we can
conclude that, on an average day, (almost) all fire stations only
need a capacity of one truck. Only if we want to be 99% sure
that the capacity suffices, we need a capacity of two trucks at
station ‘Hendrik’ on an average day. Then ‘Amstelveen’ also
needs a capacity of two on some days. Moreover, ‘Pieter’ does
not have the required capacity in 1.7% of the days (see in red).

V. CONCLUSIONS AND DISCUSSION

In this paper, we developed a model to create a good
forecast on the number of incidents that each fire station in

Amsterdam-Amstelland has to handle. Here, special interest
went to the influence of several weather conditions and to the
issue of dealing with the low number of incidents.

The answer is split into two parts. The forecasts created for
the small incidents can be done reasonably well by ensemble
averaging (EA). Big incidents can be modeled by an inhomo-
geneous Poisson process. Concerning the weather, (the combi-
nation of) rain and wind on average had the most influence in
the linear models and temperature appeared to contain mostly
non-linear relations with the number of incidents. As expected
beforehand, the visibility had the least predictive power among
those four weather variables.
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