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In recent years, stream processing has become a prominent approach for incrementally handling large

amounts of data, with special support and libraries in many programming languages. Unfortunately,

support in Prolog has so far been lacking and most existing approaches are ad-hoc. To remedy this

situation, we present lazy stream generators as a unified Prolog interface for stateful computations

on both finite and infinite sequences of data that are produced incrementally through I/O and/or

algorithmically.

We expose stream generators to the application programmer in two ways: 1) through an abstract

sequence manipulation API, convenient for defining custom generators, and 2) as idiomatic lazy lists,

compatible with many existing list predicates. We define an algebra of stream generator operations

that extends Prolog via an embedded language interpreter, provides a compact notation for composing

generators and supports moving between the two isomorphic representations.

As a special instance, we introduce answer stream generators that encapsulate the work of corou-

tining first-class logic engines and support interoperation between forward recursive AND-streams

and backtracking-generated OR-streams.

Keywords: lazy stream generators, lazy lists, first-class logic engines, stream combinators,

AND-stream / OR-stream interoperation, Prolog extensions

1 Introduction

Initial design as well as evolution of successful programming languages often walks a fine line between

semantic purity and pragmatic expressiveness. With its declarative roots and creative pragmatic additions

Prolog is a long-time survivor in the complex ecosystem of programming languages. We believe that

its longevity is due not only to its elegant semantics but also to its creative adaptations to emerging

programming language features that respond to evolving software development requirements.

Stream processing—now prevalent in widely used programming languages languages like Java,

Python, C#, go or JavaScript—offers a uniform and (mostly) declarative view on processing finite and

infinite1 sequences. Besides the expressiveness boost it provides, its advent has been driven by the need

for processing big data. This big data problem manifests itself in static incarnations like very large train-

ing sets for machine learning, or as dynamic event streams coming from Web search queries and clicks,

or from sensor networks supporting today’s fast spreading IoT infrastructure.

The main goal of this paper is to extend Prolog with state-of-the-art lazy stream processing capa-

bilities like those available in other languages. While some languages facilitate such an extension with

features like generalized iterators (Python) or a lazy evaluation semantics (Haskell), Prolog presents two

major obstacles that make this task particularly challenging.

The first obstacle is presented by Prolog’s fixed depth-first search resolution and strict evaluation

semantics. While Prolog’s depth-first search mechanism can be complemented with alternative search

strategies, as shown in [13] by overriding its disjunction operator, the evaluation mechanism remains

1We use “infinite” here as a short hand for data or computation streams of unpredictable, large or very large size.
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ultimately eager. When programming with lists or DCGs, one chains recursive steps in the body of

clauses connected by conjunctions.

The second obstacle, a consequence of Prolog’s incremental evolution as a programming language,

is the presence of procedural state-management and I/O constructs that are interleaved with its native

declarative programming constructs. These range from random generator streams to file and socket I/O

and dynamic database operations. While monadic constructs in functional languages [10, 18] offer a uni-

fied view of declarative and procedural state-management operations, most logic programming languages

still lack a unified approach providing a uniform interface to this mix of declarative and procedural lan-

guage constructs.

We manage to overcome these obstacles and provide lazy stream processing for Prolog in a way that

uniformly encapsulates different streaming mechanisms—state transformers, lazy lists and first-class

logic engines [14, 17, 15], recently added to SWI-Prolog2, into a set of operations organized compo-

sitionally in the form of stream generators. Our generators work in a way similar to Python’s yield

mechanism [11, 3] and they share features with coroutining constructs now present in a several program-

ming languages including C#, go, Javascript and Lua. At the same time, they lift Prolog’s expressiveness

with lazy evaluation mechanisms similar to non-strict functional programming languages like Haskell

[8] or functional-logic languages like Curry [1].

We organize our generators as an algebra, wrapped as a library module with a declarative interface,

to avoid exposing operations requiring an implementation with a clear procedural flavor to the Prolog

application programmer.

By defining a functor that transports operations between isomorphic generators and lazy lists, we

offer a choice between abstract sequence operations and the concrete list view familiar to Prolog users.

The main contributions of this paper are:

• We present a simple and clean approach for setting up lazy streams, which uniformly encapsulates

algorithms, lists, first-class logic engines and other data sources.

• We show how to expose lazy streams in the form of lazy Prolog lists that, just like conventional

lists, can be inspected and decomposed with unification. Under the hood, lazy lists use attributed

variables and destructive updates to extend the list when needed.

• We have implemented our approach in several libraries:

1. Our lazy streams library features a dozen generator predicates (stream sources), an API

to query them, a set of generator operations, a generator expression interpreter offering a

declarative view of these operations and an interface to the next library.

2. Our lazy lists library provides a dozen generator predicates for directly setting up lazy

lists.

3. Our pure input library provides a range of predicates for reading files and sockets backed

by lazy lists.

The first is available as an SWI-Prolog library package3, while the other two are bundled as a

SWI-Prolog standard libraries4 5.

The rest of the paper is organized as follows. Section 2 demonstrates our approach with some ex-

amples. Section 3 describes implementation of lazy stream generator constructors and their interface.

2 http://www.swi-prolog.org/pldoc/man?section=engines
3https://github.com/ptarau/AnswerStreamGenerators/raw/master/lazy_streams-0.5.0.zip
4 http://www.swi-prolog.org/pldoc/doc/_SWI_/library/lazy_lists.pl
5 http://www.swi-prolog.org/pldoc/doc/_SWI_/library/pure_input.pl

http://www.swi-prolog.org/pldoc/man?section=engines
https://github.com/ptarau/AnswerStreamGenerators/raw/master/lazy_streams-0.5.0.zip
http://www.swi-prolog.org/pldoc/doc/_SWI_/library/lazy_lists.pl
http://www.swi-prolog.org/pldoc/doc/_SWI_/library/pure_input.pl
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Section 4 introduces several operations on generators and overviews the embedded language interpreter

organizing them as an algebra of generator combinators. Section 5 describes lazy functional language

style generator operations and an example of I/O stream generator. Section 6 overviews implementa-

tion of lazy lists using attributed variables and introduces the iso-functor connecting them to lazy stream

generators. Section 7 compares and discusses alternative implementation options of lazy list and stream

generators. Section 8 overviews related work and section 9 concludes the paper.

2 Overview

This section briefly introduces our lazy streams with a few examples.
The generators pos/1 and neg/1 produce the infinite streams of positive and negative integers. With

map/4 we combine these two streams element-wise; here they annihilate each other with plus/3. With
show/2 we display the first 10 elements of the resulting constant stream of zeroes.

?- pos(P),neg(N),map(plus,P,N,Zero),show(10,Zero).

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

With list/2 we turn the regular list [a,b,c] into a stream. Then convolution/3 computes its Carte-
sian product with the positive integers, following a convolution approach, and show/2 displays the first
16 elements.

?- pos(P),list([a,b,c],L),convolution(P,L,C),show(16,C).

[1-a, 1-b, 2-a, 1-c, 2-b, 3-a, 2-c, 3-b, 4-a, 3-c, 4-b, 5-a, 4-c, 5-b, 6-a, 5-c].

We also provide an embedded language interpreter to concisely express algebraic operations on streams.
Here we use it to create the Cartesian product of the stream [a,b] with the stream [1,2,3], the latter
abbreviated by the shorthand (1:4). The in /2 predicate enumerates the elements of the resulting
stream through backtracking, like member/2 does for regular lists.

?- X in_ [a,b]*(1:4).

X = a-1 ; X = b-1 ; X = b-2 ; X = a-2 ; X = b-3 ; X = a-3 .

3 Implementing Lazy Stream Generators

Generators are created by a family of constructors, encapsulating sequences produced algorithmically or

as a result of state transformers interfacing Prolog with the “outside world”, a design philosophy similar

to that of monads in functional languages.

3.1 The Stream Generator Interface

A generator is represented by a closure (assumed deterministic), which is a term that can be called

with an additional argument to yield the next element in the stream. For instance, the generator for the

constant stream of 1s is =(1), where call(=(1),X) instantiates X to the next element, which is always

1. Typically the other arguments of the term represent the state and parameters of the generator, like 1 in

=(1). We require that the closure has at least one argument, which never takes the reserved value done

in the course of its operation. When the closure has no more elements to yield, it fails.

Our ask/2 predicate provides a basic interface to interact with generators:

ask(E,_):-is_done(E),!,fail.

ask(E,R):-call(E,X),!,R=X.

ask(E,_):-stop(E),fail.

where
is_done(E):-arg(1,E,done).

stop(E):-nb_setarg(1,E,done).
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This code calls the generator to produce an element. The first time the generator fails, stop/1

writes done into its first argument in a non-backtrackable fashion (and then propagates the failure).

Subsequent asks simply read the argument with is done/1 and never invoke the generator again. This

means that its resources can be garbage collected.

The in/2 predicate uses ask/2 to produce the elements on backtracking.

:-op(800,xfx,(in)).

X in Gen:-ask(Gen,A),select_from(Gen,A,X).

select_from(_,X,X).

select_from(Gen,_,X):-X in Gen.

Basic Stream Generators We package basic stream generators into a predicate that sets them up from

given parameters. For instance, the constant stream is created by the const/2 predicate which takes the

constant value C as an input.

const(C,=(C)).

The rand/1 predicate produces the random/1 stream generator, which relies on externally main-

tained state to yield floating point numbers between 0 and 1.

rand(random).

We can also generate a stream by by incrementally evolving a state:

gen_next(F,State,X):-arg(1,State,X),call(F,X,Y),nb_setarg(1,State,Y).

Here State acts as a container for destructively updated values using the nb setarg/3 built-in.6

For instance, we can define the stream of natural numbers as an evolving state:

nat(gen_next(succ,state(0))).

The more general gen nextval/3 predicate supports generators for which the evolving state does

not coincide with the elements of the stream.

gen_nextval(Advancer,State,Yield):-

arg(1,State,X1),

call(Advancer,X1,X2,Yield),

nb_setarg(1,State,X2).

For instance, this approach is useful to turn a list into a stream.

list(Xs, gen_nextval(list_step,state(Xs))).

list_step([X|Xs],Xs,X).

We have built similar stream generators in the library package lazy streams, for a range of num-

bers, turning a finite list into a an infinite cycle of its elements, as well as stream transformers excising a

finite slice of a larger, possibly infinite stream, with taking or dropping an initial segment of a stream as

special cases.

6http://www.swi-prolog.org/pldoc/doc_for?object=nb_setarg/3

http://www.swi-prolog.org/pldoc/doc_for?object=nb_setarg/3
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3.2 Answer Stream Generators

We can encapsulate first class logic engines as generators when more complex computations are needed

for generating the streams, that cannot be expressed as simple step-by-step state transformations.

3.2.1 SWI Prolog’s First-Class Logic Engine Implementation

A first-class logic engine [14, 15] can be seen as a Prolog virtual machine that has its own stacks and

machine state. In their SWI-Prolog implementation, unlike normal Prolog threads [20, 19], they are

not associated with an operating system thread. Instead, one asks an engine for a next answer with

the predicate engine next/2. Asking an engine for the next answer attaches the engine to the calling

operating system thread and causes it to run until the engine calls engine yield/1 or its associated

goal completes with an answer, failure or an exception. After the engine yields or completes, it is

detached from the operating system thread and the answer term is made available to the calling thread.

Communicating with an engine is similar to communicating with a Prolog system through the terminal:

the client decides how many answers it wants returned and what to do with them.

Engines are created with the built-in engine create/3, that uses a goal and answer template as

input and returns an engine handle as output. SWI-Prolog’s engines are created with minimal dynamic

stack space and are garbage collected when unreachable.

Note that implementing the engine API does not need a Prolog system that supports multi-threading.

It only assumes that the virtual machine is fully re-entrant, that it can be queried and that it can stop,

yield data and resume execution as a coroutine.

3.2.2 Answer Stream Generators

The predicate eng/3 creates a generator as a wrapper for the engine next(Engine,Answer) built-in,

encapsulating the answers of that engine as a stream.

eng(X,Goal,engine_next(Engine)):-engine_create(X,Goal,Engine).

An alternative constructor, ceng/3, is also available if one wants to preserve the goal and answer tem-

plate, usable, for instance, to clone the engine’s answer stream, an operation that makes sense only when

the Prolog code it is based on, is free of side effects.

3.2.3 The AND-stream / OR-stream Duality

A key feature of first-class engines is that they support two ways of producing a stream of answers: 1)

via backtracking (OR-streams), and 2) as part of a forward moving recursive loop (AND-streams).

The stream generator abstraction makes the user oblivious to this choice of generation method, and

allows us to seamlessly replace one implementation for another. Consider for instance the two imple-

mentations of the stream of natural numbers below. The first implementation generates an AND-stream

yielding the elements in a recursive loop.

and_nat_stream(Gen):-eng(_,nat_goal(0),Gen).

nat_goal(N):-succ(N,SN),engine_yield(N),nat_goal(SN).

The OR-stream implementation generates the successive elements via backtracking.
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or_nat_stream(Gen):-eng(N, nat_from(0,N), Gen).

nat_from(From,To):- From=To ; succ(From,Next),nat_from(Next,To).

When using engines, both AND-streams and OR-streams can be infinite, as in the case of the gen-

erators or nat stream and and nat stream. While one can see backtracking over an infinite set of

answers as a “naturally born” OR-stream, the ability of the engine-based generators to yield answers

from inside an infinite recursive loop is critical for generating infinite AND-streams. Because the choice

of generation method is immaterial to the user of the generator, the implementor can choose the most

convenient or efficient approach.

4 The Generator Algebra

This section describes a set of stream combinators exposed as an algebra via an embedded language

interpreter.

4.1 Operations on Finite or Infinite Stream Generators

Sums of Streams We define the interleaving of two streams to be their sum. This operation is captured

in the predicate sum(+Gen1,+Gen2, -NewGen), which advances by asking each generator, in turn, for

an answer. When one generator terminates, it keeps progressing in the other.

sum(E1,E2,sum_next(state(E1,E2))).

sum_next(State,X):-State=state(E1,E2),ask(E1,X),!,

nb_setarg(1,State,E2),

nb_setarg(2,State,E1).

sum_next(state(_,E2),X):-ask(E2,X).

For instance,

?- pos(N),neg(M),sum(N,M,E),show(10,E).

[1,-1,2,-2,3,-3,4,-4,5,-5]

We name this operation the “sum” because it is clearly associative and, if the order of the elements is

unimportant (with inputs seen as multisets), it is also commutative. Also, it has the empty stream, defined

such that ask/2 always fails on it, as its neutral element.

Products of Streams The Cartesian product is the product operation on two streams. We can easily

implement it by means of convolution in a first-class logic engine. Our implementation uses a recursive

loop that supports possibly infinite stream generators by storing their finite initial segments into two lists

that start out empty.

prod(E1,E2,E):-eng(_,prod_goal(E1,E2),E).

prod_goal(E1,E2):-ask(E1,A),prod_loop(1,A,E1-[],E2-[]).

The algorithm, expressed by the predicate prod loop, alternates between both generators while

neither is done. After that, it keeps progressing in the remaining generator until that too is exhausted.

Each time a generator produces a new element, it is paired with the previously produced elements of the

other generator, which are stored in a list.
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prod_loop(Ord1,A,E1-Xs,E2-Ys):-

flip(Ord1,Ord2,A,Y,Pair),

forall(member(Y,Ys),engine_yield(Pair)),

ask(E2,B),

!,

prod_loop(Ord2,B,E2-Ys,E1-[A|Xs]).

prod_loop(Ord1,_A,E1-_Xs,_E2-Ys):-

flip(Ord1,_Ord2,X,Y,Pair),

X in E1,member(Y,Ys),

engine_yield(Pair),

fail.

The predicate flip/5 builds a pair in the appropriate order when the generators take turns being

active in the recursive loop.

flip(1,2,X,Y,X-Y).

flip(2,1,X,Y,Y-X).

Here is the product of the natural numbers with themselves as an example:

?- nat(N),nat(M),prod(N,M,R),show(12,R).

[0-0,1-0,1-1,0-1,2-1,2-0,2-2,1-2,0-2,3-2,3-1,3-0]

The singleton stream with a known constant (e.g., o) is the neutral element for the product, if we con-

sider any element X to be isomorphic to o-X and X-o. Moreover, the product is associative if we ignore

the association in the pair representation (e.g, 1-(2-3) seen as equivalent to (1-2)-3) and commutative

if the order of the elements does not matter, when interpreting our streams as multisets. Finally, under

the same assumptions, the product distributes over the sum.

Note: Our lazy streams package also provides the prod /3 stream product operation that avoids the

engine creation and collection overhead, coming from the use of the constructor eng/3 by using a Cantor

unpairing function to split natural numbers generated by nat/1 that are used to index dynamic arrays

growing with each new element consumed from the two input streams. By using the N → Nk generalized

Cantor untupling function, implemented for instance in [16], one can obtain efficient generator product

operations for k generators.

4.2 An Embedded Language Interpreter

With our sum and product operations ready, we can proceed with the design of the embedded language,

facilitating more complex forms of generator compositions. The grammar of this embedded language of

generator expressions F is:

F ::= F1 +F2 (sum) | {F} (setification)

| F1 ×F2 (product) | XG (engine)

| N : M (range) | A (constant)

| [X |Xs] | [] (list) | E (stream)

The language comprises lists, engines, ranges, constants and existing streams, as well as their sums, prod-

ucts and setification (i.e., removing duplicates). We have implemented it with a simple interpreter, the

predicate eval stream(+GeneratorExpression, -Generator), which turns a generator expression

into a ready-to-use generator that combines the effects of its components.
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eval_stream(E+F,S):- !,eval_stream(E,EE),eval_stream(F,EF),sum(EE,EF,S).

eval_stream(E*F,P):- !,eval_stream(E,EE),eval_stream(F,EF),prod(EE,EF,P).

eval_stream(E:F,R):- !,range(E,F,R).

eval_stream([],L):-!,list([],L).

eval_stream([X|Xs],L):-!,list([X|Xs],L).

eval_stream({E},SetGen):-!,eval_stream(E,F),setify(F,SetGen).

eval_stream(X^G,E):-!,eng(X,G,E).

eval_stream(A,C):-atomic(A),!,const(A,C).

eval_stream(E,E).

We already explained the auxiliary predicates used in the evaluator, except for setify/2. That predicate

wraps a generator to ensure it produces a set of answers, with duplicates removed, using the built-in

distinct/27.

setify(E,SE):-eng(X,distinct(X,X in E),SE).

This works for infinite generators (within the limits of available memory), in contrast with sorting, which

also removes duplicates, but assumes the list is finite.

Lastly, we define in /2 as a variant of in/2 that takes a generator expression rather than a generator.

:-op(800,xfx,(in_)).

X in_ GenExpr:-eval_stream(GenExpr,NewGen),X in NewGen.

Here is a small example that combines many of the features described above:

?- X in_ ({[a,b,a]}+(1:3)*c).

X = a ; X = 1-c ; X = b ; X = 1-c ; X = 2-c; X = 1-c ; X = 2-c ....

5 Other Stream Generator Operations

This section describes the additional stream operations in our lazy streams package.

5.1 Lazy Functional Programming Constructs

Map The map/3 predicate creates a generator that applies a binary predicate to the subsequent elements

in a given stream to produce a new stream.

map(F,Gen,map_next(F,Gen)).

map_next(F,Gen,Y):-ask(Gen,X),call(F,X,Y).

Our package contains similarly defined map/N+1 generators that apply a predicate with N arguments

to N-1 stream generators.

Reduce The predicate reduce(+Closure,+Generator,+InitialVal, -ResultGenerator) cre-

ates a generator that reduces a finite generator’s elements with the given closure, starting with an initial

value. Its only element is the resulting single final value. Similarly to Haskell’s foldl and foldr, it can

be used to generically define arithmetic sums and products over a stream.

reduce(F,InitVal,Gen, reduce_next(state(InitVal),F,Gen)).

7 https://www.swi-prolog.org/pldoc/doc_for?object=distinct/2

https://www.swi-prolog.org/pldoc/doc_for?object=distinct/2
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It uses the predicate reduce next/4 that applies closure F to the state S, while generator E provides

“next” elements.

reduce_next(S,F,E,R):- \+ is_done(E),

do((

Y in E, arg(1,S,X),

call(F,X,Y,Z),

nb_setarg(1,S,Z)

)),

arg(1,S,R).

do(G):-call(G),fail;true.

Note that by working in O(1) space, with destructive updates, we can handle finite streams with an

arbitrary number of elements.

Scan The predicate scan(+Closure, +Generator, +InitialVal, -ResultGenerator) is sim-

ilar to reduce/4 but also yields all intermediate results. Unlike the latter, this is also meaningful for

infinite streams.

scan(F,InitVal,Gen,scan_next(state(InitVal),F,Gen)).

scan_next(S,F,Gen,R) :- arg(1,S,X),

ask(Gen,Y),

call(F,X,Y,R),

nb_setarg(1,S,R).

For example, we can compute the stream of cumulative sums of the natural numbers.

?- nat(E), scan(plus,0,E,F), show(11,F).

[0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55].

5.2 Stream Wrappers for I/O and Stateful Prolog Features

We can easily wrap file or socket readers as generators. This has the advantage that details like opening

a file, reading and closing a stream stay hidden, as shown by the term reader/2 generator below.

term_reader(File,next_term(Stream)):-open(File,read,Stream).

next_term(Stream,Term):-read(Stream,X),

( X\==end_of_file->Term=X

; close(Stream),fail

).

6 Lazy Streams as Lazy Lists

In addition to the abstract datatype representation for lazy streams where the user interacts with them

through a dedicated API, we also provide a more concrete representation for lazy streams in the form of

lazy lists. Lazy lists look much like regular Prolog lists and, just like regular lists, they can be inspected

and deconstructed with unification. The difference with regular lists is that lazy lists are not fully mate-

rialized from the start, but that, like lazy streams, their elements are computed on demand and thus can

conceptually hold infinitely many elements.
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A key advantage over the abstract stream representation is that much of the existing functionality for

regular lists can be reused for lazy lists; a good example are DCGs, which can also be used to parse lazy

lists.

6.1 Lazy List Representation

Our lazy list representation is based on the lazy function technique of Casas et al. [5, 6]. The main

idea is to delay the evaluation of a computation until its result is actually needed. Initially, the result

is represented by a logic variable. When this variable is inspected through unification (the need), a

coroutine mechanism (e.g., freeze/2 or attributed variables [7]) is triggered to perform the computation

and deliver the actual value just in time for the inspection.

We apply this technique to compute a list incrementally as more and more of it is needed. Thus a

lazy list is represented as a normal Prolog list where the tail is formed by an attributed variable. The

following code illustrates this approach on the lazy list of natural numbers.

simple:lazy_nats(List):-simple:lazy_nats_from(0,List).

simple:lazy_nats_from(N,List):-put_attr(List,simple,N).

simple:attr_unify_hook(N,Value):-succ(N,M),

simple:lazy_nats_from(M,Tail),Value = [N|Tail].

A call to simple:lazy nats/1 creates an attributed variable for the lazy list that can be passed to

a typical list traversal predicate. Such a predicate unifies this variable with either the empty list ([])

or a list cell ([Head|Tail]), which triggers the attributed variable hook and instantiates the variable to

[N|Tail]where Tail is again an attributed variable. When the list traversal predicate recurses on Tail,

this process is repeated.

Improvement There is a significant disadvantage to the above basic approach. As already observed by

Casas et al., on backtracking, the lazily computed extension of the list is lost and possibly recomputed

again on the next forward computation. A pathological case is that where the list traversal first tries

to unify with the empty list and then with the non-empty list. For such a predicate, every element is

computed twice, a first time when the unification with the empty list fails, and a second time when the

unification with the non-empty list succeeds.

In addition to the recomputation overhead, this makes the implementation unsuitable for fetching

data from an external source—like a network socket—that cannot backtrack. It is possible to keep a

buffer to support re-fetching content from the socket but the amount of data we need to buffer depends

on the unknown non-determinism in the Prolog code that processes the list and we cannot recover if the

selected buffer size proves to be too short.

We provide a solution for this problem by using non-backtrackable assignment in the form of SWI-

Prolog’ nb setarg/3, which assigns an argument in a compound term and is not undone on backtrack-

ing. We illustrate this idea on the lazy list of natural numbers:

lazy_nats_from(N,L) :- put_attr(L,lazy_streams,state(N,_)).

attr_unify_hook(State,Value) :-State=state(N,Read),

( var(Read) -> succ(N,M),nats(M,Tail),

nb_setarg(2,State,[N|Tail]),arg(2,State,Value)

; Value = Read

).
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Compared to the basic version, we use a compound state here, where a the Read field is initially free

and instantiated with the resulting list structure once the value has been computed. Because of the use of

nb setarg/3, the information recorded in Read survives backtracking.

With the above technique we have implemented the pure input library, which supports a lazy list

view of files and sockets, as well as the generic lazy lists library. The general goal to create a lazy list

is lazy list(:Next, +State0, -List). This executes call(Next, State0, State1, Head) to

produce the next element.

Lazy lists allow Prolog to handle infinite data streams in limited memory, provided that garbage

collection can reclaim the already processed part of the list. This is possible if the user code does not

keep a reference to the head of the list. A particular pitfall here is nondeterminism: even when the current

branch no longer needs the head of the list, the runtime environment may have to hold onto it for the

sake of unexplored alternative branches. Hence, non-determinism can only be mixed with lazy lists if

every choicepoint is resolved (i.e., no unexplored alternatives remain) after examining only a bounded

number of additional elements. If this condition is met, the attributed variable trigger, which advances

the stream, and garbage collection, which reclaims the unused prefix of the list, together ensure that the

in-memory window of the stream is finite.

6.2 From Lazy Streams to Lazy Lists

Now we show how to convert from lazy streams to lazy lists and back by providing an isomorphism
between both representations. The former conversion is interesting because lazy lists may present a
convenient, tangible representation. In contrast, the latter may be more convenient for defining new
generators, and avoids confusion with regular lists. Indeed, although infinite lazy lists look like regular
lists, they don’t work well with all regular list predicates. For instance,

?- lazy_nats(Ns),maplist(succ,Ns,Ps).

... loops forever ...

The problem is that while the list is infinite and lazy, maplist/3 is eager and only works on finite lists.

By exploiting the isomorphism between the two representations we can easily import the lazy map/3

from streams to get a lazy maplist/3.

Isomorphism Two predicates witness the isomorphism between the representations. The predicate

gen2lazy(+Generator,-LazyList) turns a possibly infinite stream generator into a lazy list by using

the generator as the state on which the lazy list is based, and using ask/2 to advance that state (which is

in fact already handled by the generator), and produce a new element.

gen2lazy(Gen,Ls):-lazy_list(gen2lazy_forward,Gen,Ls).

gen2lazy_forward(E,E,X):-ask(E,X).

The opposite direction is even easier, as the list/2 generator also works on lazy lists.

lazy2gen(Xs, Gen):-list(Xs, Gen).

Iso-Functor We can easily transport not just the data representations but also the operations acting on

them. In category theory, this concept is formally known as an iso-functor, a mapping that transports

morphisms between objects from one category to another and back.

The predicate iso fun(+Operation, +SourceType, +TargetType, +Arg1, -Result) gener-

ically transports a predicate of the form F(+Arg1, -Arg2) to a domain where an operation can be

performed and brings back the result.
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iso_fun(F,From,To,A,B):-call(From,A,X),call(F,X,Y),call(To,Y,B).

We have also defined similar code for predicates with other arities and modes.

This allows us to define lazy version of maplist:

lazy_maplist(F,LazyXs,LazyYs):-iso_fun(map(F),lazy2gen,gen2lazy,LazyXs,LazyYs).

where map/3 is the stream generator from Section 5.1. Here is an example of the result.

?- lazy_nats(Ns),lazy_maplist(succ,Ns,Ps),prefix([A,B,C],Ps).

Ns = [0,1,2|_20314], Ps = [1,2,3|_20332], A=1,B=2,C=3,...

Inversely, an alternative sum /3 operation can be implemented quite easily with lazy lists. Our

lazy streams package uses this technique to borrow it with help from the iso fun/6 predicate.

sum_(E1,E2, E):-iso_fun(lazy_sum,gen2lazy,lazy2gen,E1,E2, E).

lazy_sum(Xs,Ys,Zs):-lazy_list(lazy_sum_next,Xs-Ys,Zs).

lazy_sum_next([X|Xs]-Ys,Ys-Xs,X).

lazy_sum_next(Xs-[Y|Ys],Ys-Xs,Y).

7 Discussion

The abstract sequence interface of the lazy streams package and the concrete list-based view provided

by the lazy lists library offer similar services, but as they interoperate with help of iso fun pred-

icates, one can choose the implementation most suitable for a given algorithm. For instance, one can

access the nth element of a generator in O(1) space. Lazy lists might or might not need O(n) for that, de-

pending on possible garbage collection of their unused prefix. With most stream generators no garbage

collection is needed when working destructively in constant space, while their results can be exposed

declaratively via the stream algebra. On the other hand, lazy lists are reusable, while new generators

must be created to revisit a sequence. The Appendix in the extended version of this paper8 also shows

with benchmarks that stream generators are faster than lazy lists.

Some algorithms can be most easily expressed using first-class logic engines, but avoiding engines

when possible reduces memory footprint and can avoid term copying. Thus, one might ask if a predi-

cate like lazy findall could be implemented without using first class logic engines, e.g., it terms of

attributed-variables, TOR [13], delimited AND-continuations [12]. This seems unlikely as these tech-

niques are all subject to backtracking and cannot store state that survives it. First-class engines can

be simulated [17], but that is impractically slow. A more promising alternative is reflecting Prolog’s

backtracking mechanism by implementing OR-continuations at abstract machine level.

8 Related work

A relational view of stream processing and querying has been present in the database community [9, 2],

and within logic programming [4], the latter with focus on reasoning about streams. Our lazy stream

generators share with Python [11] the encapsulation of a stream into a mechanism providing its elements

on-demand. But, by contrast to Python’s generator operations (see library itertools), we ensure that

everything scales up to work on infinite streams. Adoption of a very similar mechanism by other widely

8 https://github.com/ptarau/AnswerStreamGenerators/blob/master/doc/techcom.pdf
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used languages validates the claims of enhanced expressiveness that generators can bring. The basic idea

of using coroutining in the form of first-class logic engines has been present in the BinProlog system

[15] as early as 1995 and the attributed variables mechanism [7] that we used to implement lazy lists, has

been present even earlier, originally introduced to support constraint programming. However, putting

it all together in the form of a mature API is a novel contribution of this paper, as well as the uniform

view, encapsulating into an open-source library our mix of declarative and procedural implementation

techniques.

9 Conclusions

We have described a unified approach to program with finite and infinite stream generators that en-

hances Prolog with operations now prevalent in widely used programming languages like Python, C#,

go, JavaScript, Ruby and Lua, while also supporting lazy evaluation mechanisms comparable to those in

non-strict functional languages like Haskell. As a special instance, we have defined generators based on

first-class logic engines that can encapsulate both AND-streams and OR-streams of answers. Moreover,

we have provided an embedded interpreter for our generator algebra to enable declarative expression of

stream algorithms in the form of compact and elegant code.

In addition, we have provided a lazy list representation for our streams, which interacts nicely with

unification and typical Prolog list code. Our iso-functor supports transport of operations between lazy

lists and generators, which allows us to choose the simplest or most efficient implementation of stream

operations. In terms of impact, there are 83 github sites using the lazy lists library, and Ogborne’s

analysis tools for the Enron e-mail corpus9 already make good use of our pure input library based on

them. We plan to explore further applications and expose our libraries to the wider community.
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