
183

CMIFed:
A Presentation Environment for Portable Hypermedia Documents

Guido van Rossum, Jack Jansen, K. Sjoerd Mullender, Dick C.A. Bulterman

CWI: Centrum voor Wiskunde en Informatica
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Phone: +31-20-592-4127, FAX: -4199
Email: {guido,jack,sjoerd,dcab}@cwi.nl

video shot), the times of all the following events have to be
changed. In both scripting and time-lining, it is difficult to specify
the timing requirements between events whose precise duration is
variable or unknown till runtime (perhaps due to varying network
delays) or because some data is generated at run time.

A run-time characteristic of multimedia is that few presenta-
tions have a purely linear structure. Presentations contain interac-
tion points where the user can control what happens next, and
when. A useful paradigm to follow is that of hypertext, which,
when extended to other media than text, is often called hypermedia
[9]. Unfortunately, rather that offering solutions to the specification
problem for multimedia, hypermedia only makes matters more
complex.

The Multimedia Kernel Systems project at CWI aims to
develop solutions for hypermedia systems that combine the
notions of structured documents, flexible run-time scheduling and
hyperlink support. We want to make multimedia presentations
more portable between platforms and at the same time easier to
change. The focus of the project is to attack the problems caused
by the use of multimedia in a distributed environment, especially
synchronization between data streams coming from different
remote sources. We believe that if the author has specified the tim-
ing requirements (constraints) in a platform-independent way, a
distributed system will have a better chance of satisfying those
constraints. A summary of our view of distributed, heterogeneous
multimedia appears in [6]. The Amsterdam Multimedia Frame-
work described there is the long-term target system for our
research.

The “CMIF editor”, CMIFed in short, is our first concrete
result. It uses the CMIF (CWI Multimedia Interchange Format —
pronounced see-miff) file format [5]. In the current paper we share
our experiences in building and using CMIFed.

The paper contains three major descriptive sections and a con-
clusion. In section 2 we review the data model which underlies our
system. In section 3 we describe CMIFed’s user interface. Section
4 gives highlights from its implementation. In the conclusion we
discuss related work and future research.

2. DATA MODEL
The data model underlying CMIFed, the CMIF hypermedia model,
is a concretisation of the Amsterdam hypermedia model [9]. The
latter is an extension of (and a critique on) the Dexter hypertext
reference model [7] as well as the original CMIF multimedia
model [5]. The (extended) CMIF file format closely follows the
CMIF hypermedia model. In this section we briefly review the
components of the CMIF model that are necessary for understand-
ing the CMIFed editor/viewer.

The CMIF hypermedia model describes a multimedia document
as a tree which specifies the presentation in an abstract, machine-
independent way. This specification is created and edited using an
authoring system; it is mapped to a particular platform by a view-
ing system. In our current implementation, CMIFed performs both

ABSTRACT
In this paper we discuss the architecture and implementation of
CMIFed, an editing and presentation environment for hypermedia
documents. Typically such documents contain a mixture of text,
images, audio, and video (and possibly other media), augmented
with user interaction. CMIFed allows the author flexibility in
specifying what is presented when, using multiple simultaneous
output channels.

Unlike systems that use a timeline or scripting metaphor to
control the presentation, in CMIFed the user manipulates a
collection of events and timing constraints among those events.
Common timing requirements can be specified by grouping events
together in a tree whose nodes indicate sequential and parallel
composition. More specific timing constraints between events can
be added in the form of synchronization arcs. User interaction is
supported in the form of hyperlinks.

We place CMIFed in the context of the Amsterdam model for
hypermedia documents, which formalizes the properties of
hypermedia presentations in a platform-independent manner.

Keywords: Hypermedia, Multimedia, Editing environment,
Synchronization, Scheduling, Portability, Heterogeneity, CMIF.

1. INTRODUCTION
Many hardware platforms currently offer exciting multimedia pos-
sibilities: full-motion video, hi-fi audio and full-color computer
graphics and text can be put together in dazzling displays and
demos. Unfortunately, it is often difficult to exploit these possibili-
ties. Part of this difficulty is due to the nature of defining multime-
dia presentations — making “good” presentations is an art, not a
simple mechanical activity. Another, more solvable, part of the
problem is that the tools used to create multimedia presentations
are usually hard to use and extremely hardware-dependent.

Several paradigms exist for manipulating multimedia docu-
ments. One is scripting, a method where a program-like descrip-
tion of a presentation is constructed. Like programming, scripting
is very useful for small-scale presentations, but editing and manip-
ulating large documents can be cumbersome without well-defined
structuring facilities. In addition, the detailed specification of par-
allel activities is as difficult in most scripting systems as it is in
most programming languages. Another common paradigm for
structuring events in time is a timeline, where the start and end
times (relative to some origin) of events are specified by the
author. While this makes precise synchronization possible, the
obvious disadvantage is that when one wants to replace a piece of a
presentation with an equivalent but longer piece (say an alternative

Permission to copy without fee al l or part of th is mater ia l is
granted provided that the copies are not made or distr ibuted for
direct commercial advantage, the ACM copyr ight not ice and the
t i t le of the publ icat ion and i ts date appear, and not ice is given
that copying is by permission of the Associat ion for Comput ing
Machinery. To copy otherwise, or to republ ish, requires a fee
and/or specific permission.
ACM Mult imedia 93 /6/93/CA, USA
© 1993 ACM 0-89791-596-8/93/0008/0283.. .$1.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301632096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

184

functions, but they could also be done separately (a viewing-only
system is currently under construction).

Note that it is possible to ‘over-specify’ a document by defining
something that can not be universally implemented, e.g. color
images (which may lose nuances when mapped to a B/W monitor).
While some would feel this an error, we consider it a feature: by
providing mapping from documents to particular hardware plat-
forms in the viewing system, it is possible to define documents that
can be viewed on heterogeneous platforms, thus providing a means
to support portable documents.

2.1. Nested presentations
CMIF allows a document, or presentation, to be recursively built
from a number of subpresentations. In general, a presentation is
either a composite presentation (one that contains other, nested
presentations) or an atomic presentation (one that does not). A
CMIF document thus contains a tree whose leaves are atomic pre-
sentations. (This is analogous to the subdivision of a book into
chapters, sections, etc.)

2.2. Events
An atomic presentation is a collection of events. An event is the
smallest fragment of media data that is manipulated within the sys-
tem. It is usually a small fragment of video, audio, image or text
data. The model is not concerned with the contents of this data,
only with certain media-specific properties of it, such as width,
height and/or duration, and the occurrence of markers in the data.
Markers can be used to attach hyperlinks, and also timing con-
straints in the case of dynamic media.

Events refer to the actual data via pointers. These pointers can
be filenames or some other kind of reference, depending on the
storage type (e.g. keys in a database). The use of pointers makes it
possible to use the same data multiple times without increasing the
storage requirements. The media-specific properties and markers
are stored together with the data. Presentation-specific properties
are stored with the event. In general, we distinguish a three-level
hierarchy here: an event descriptor describes the event as it occurs
in the presentation (e.g. its channel assignment), a data descriptor
describes the static properties of the data (e.g. format and dimen-
sions), and the data file holds the raw data.

2.3. Channels
A channel is an abstraction for a group of properties shared by
some events of the same media type. Each event is assigned to
exactly one channel. Each channel has a media type, which must
match the media type of the events assigned to it. Other properties
of a channel depend on its media type; e.g. an audio channel might
specify the playback volume, an image channel may specify a
screen position, and a text channel might specify a font name. Sev-
eral channels may have the same media type; the author can use
this to further structure the presentation (e.g. there may be two
audio channels, one used for background music and one for spoken
commentary). Multiple channels for screen-oriented media may be
seen as multiple windows, possibly overlapping.

At run-time, channels form a convenient mechanism to choose
between several parallel variants of a presentation, e.g. for presen-
tations with spoken or written text in multiple languages, or to pro-
vide a sequence of still images as a lower bandwidth alternative for
video, to be used on slower workstations. In order to support this,
all channels have a flag which can be set to disable all events
assigned to it.

2.4. Timing constraints among events
The events that compose an atomic presentation are not just a ran-
dom collection, they are ordered by timing constraints. Two mech-
anisms are used to express timing constraints:

• Parallel and sequential composition. A first-order synchroniza-
tion pattern is created by placing the events in a tree whose

nodes specify sequential and parallel composition. This takes
care of many common timing constraints, such as adding cap-
tions to illustrations, presenting several pictures simultaneously
in different (sub)windows, or composing a video sequence from
a number of shots. Composition can be nested arbitrarily, e.g. to
add background music to a sequence of pictures with captions.
(This is similar to the subdivision of a section in paragraphs,
sentences, etc.)

• Synchronization arcs. More precise synchronization between
events can be obtained by adding synchronization arcs (or sync
arcs). A sync arc is a relation between markers on two events in
the same atomic presentation, specifying a desired delay and
allowed deviations from the desired delay. For example, when a
video fragment and background music are combined in a paral-
lel node of the tree, we may want to delay the start of the music
by approximately two seconds. This can be accomplished by
adding a sync arc from the start marker of the video event to the
start marker of the music event, specifying a delay of two sec-
onds plus or minus 20 percent, say. (This range can be used by
the viewer to compensate for platform-specific delays.)

Sync arcs are not powerful enough to model the requirements of
lip-sync audio and video, unless one were willing to add markers
to all video frames and to the corresponding points in the audio
stream, and a corresponding number of sync arcs between them.
This form of synchronization is important enough to warrant a spe-
cial feature: a continuous sync arc between markers (usually the
beginnings) of two events specifies that the delay range specified
in the sync arc is to be maintained for the remaining concurrent
duration of the events.

2.5. Hyperlinks
Some multimedia presentations must be interactive, i.e. some form
of user input can be used to control the path through the presenta-
tion or its pace. For this purpose we support hyperlinks. Conform-
ing to the Dexter model [7] we have separate anchors and links. An
anchor is part of a media data item. Its representation depends on
the media type; e.g. it can be a region in an image or a number of
characters in a text event. A link is a directed connection between
two anchors: the source and destination anchors (we currently
don’t support higher-order links).

The destination of a link may also be a composite node within
an atomic presentation, or an entire atomic or composite presenta-
tion. Source and destination of a link need not be in the same docu-
ment (file).

2.6. Attributes
The model supports a general notion of attributes. These are used
to specify properties like file names, durations, user options and so
on.

Presentations, events, channels, composite nodes, sync arcs,
anchors, and links all have an attribute list, which is a table map-
ping names to values. The type of the value depends on the
attribute name only. The meaning of an attribute depends on what
kind of object it belongs to (e.g. events have different attributes
than channels), and may also depend on its media type (e.g. image
cropping does not apply to audio events).

Attributes with unrecognized names are ignored. This is for the
benefit of other applications than CMIFed which might also
manipulate CMIF files (e.g. a platform-specific viewer).

3. USER INTERFACE
In the previous section, we considered the abstract aspects of
CMIF. This section discusses the interface provided by CMIFed
for authoring CMIF documents. A more complete description of
the user interface and examples of how it is used can be found in
the companion paper [10].

In general, any authoring/viewing system for multimedia

185

should include a interactive, WYSIWYG interface to the docu-
ment. Since CMIF documents allow an author to specify presenta-
tions that may not be supported on all platforms, the editor/viewer
also needs to provide a mapping facility to a particular platform.
Unfortunately, these are not easy concepts to combine.

The nature of multimedia data, as well as the CMIF model for
multimedia presentations, make it difficult to adhere to the multi-
media equivalent of WYSIWYG editing. (Taken literally, this
would mean that the time dimension represents itself. “Scrolling”
the time dimension would then be equivalent to fast-forward or
reverse playing, and selecting a position in time would require
playing (part of) the presentation and hitting button at the right
moment.) In addition, in order to support portability and ease of
authoring, the CMIF model does not require the author to specify
the exact timings for events; instead, timing constraints are defined
using the presentation’s tree structure and sync arcs.

In order to provide flexible document specification and a pre-
viewing facility, CMIFed provides three “views” on a presentation,
each highlighting a different aspect of it. These are: the hierarchy
view, the channel view, and a preview (or player) view. The author
can open and close each view independently of the others, and it is
possible to have all views on the screen simultaneously (screen
real estate permitting). The three views are described in the follow-
ing subsections.

3.1. The hierarchy view
CMIFed’s major editing view is the hierarchy view (see figure 1).
It is used both for viewing the tree of nested presentations, and for
viewing the tree of events within an atomic presentation. The tree
is not drawn as the usual mathematical tree diagram, but rather as a
nested set of boxes representing tree nodes. The root of the tree is
the outermost box, and containment is used to indicate ancestry
relations. The advantage of this representation is that we can repre-
sent parallel and sequential composition by different placement of
the boxes: boxes arranged from top to bottom are part of a sequen-
tial composition, while boxes placed in a left-to-right arrangement
are composed in parallel. Nested boxes are suppressed when they
would become too small to contain text. Double clicking on a box
zooms in on that box, revealing previously suppressed detail; the
path from the root to the zoomed-in box is shown as a stack of but-
tons and can be used to zoom out again (not shown in the exam-
ple).

The standard principles of object-oriented user interfaces apply:
the user can click on any box to select it, and editing operations

Figure 1. Hierarchy view example

applicable to the selected type of box can be selected from a num-
ber of menus. There are three groups of commands: commands to
insert new nodes, cut and paste commands (which can move or
copy entire subtrees), and commands that display additional infor-
mation about the selected object (such as the full list of attributes).
There is also a generic “edit” command which asynchronously
invokes an external editor to edit an event’s data. The editing pro-
gram invoked in this way depends on the media type and the
choice of editor can be configured by the author. CMIFed does not
have built-in editing modules for each media type, since good edit-
ing programs for most media types already exist or are bound to
appear soon, and authors will want to continue using their favorite
editor when preparing data for CMIFed. CMIFed can read most
common data formats and is easily extended to support more.

3.2. The channel view
Another view on a presentation that CMIFed can give the author is
the channel view (see figure 2). This is a diagram resembling a tra-
ditional timeline editor: time flows from top to bottom through the
diagram and a number of columns represent the different (logical)
channels used by the presentation. Boxes in each column represent
events assigned to that channel. The placement and size of a box
are indications of the start time and duration of the event. An
important difference with a timeline editor, however, is that the
times shown by the diagram are not directly specified by the
author: they are derived from the timing constraints (and conse-
quently only an approximation of the real times experienced when
running the presentation).

The channel view also displays CMIF’s sync arcs and allows
the author to create and edit them. Sync arcs are shown as arrows
connecting two boxes.

When the user has made an editing change, for example by
changing the structure in the hierarchy view or editing a sync arc,
the effect of the change is immediately shown in the channel view
by adjusting the placement of the affected boxes. (The channel
view can’t be used for structural changes itself, since it does not
display the composite nodes of the tree.)

The channel view provides a convenient overview of the chan-
nels used in a particular presentation (hence its name). A channel
is represented as the diamond-shaped “title box” of its column.
This box can be selected and commands can be applied to request
additional information about a channel, to delete a channel, or to
create a new channel. Channels can also be temporarily disabled,
e.g. to support alternative versions or to suppress time-consuming
operations during previewing.

Finally, the channel view is used to “animate” the execution of a
presentation. When a presentation is active in the player, the boxes

Figure 2. Channel view example

186

representing current events are highlighted in the channel view.
Different highlighting colors are used to indicate different phases
in the execution of an event: ready to be armed, arming, armed,
and playing (explained further in section 5.2). This is a useful tool
for “debugging” a presentation.

3.3. The player
The third view on the presentation, the player, shows the effect of
mapping the abstract document to a particular platform. The player
also allows the author to edit the layout-oriented aspects of a pre-
sentation, such as the geometry of the windows used by screen-ori-
ented channels, and for drawing anchors (attachments for
hyperlinks) on images.

An example of the player view is shown in figure 3. The player
displays a control panel and additional windows for screen-ori-
ented channels. The control panel controls the presentation through
buttons similar to those used on CD players: stop, play and pause.
It also displays the current and total nominal playing time and has
an interface to change user options and to switch channels on or
off.

The player normally shows one window per screen-oriented
channel (video, image or text). The window geometries are stored
as channel attributes. When the viewer resizes such a window the
corresponding attributes are automatically updated.

Window managers tend to add fancy borders and title bars to
windows. Often a presentation looks better when it does not pop
up a multitude of seemingly randomly placed windows but a single
large window containing a number of panels. This can be accom-
modated by defining a “background” window, in which channel
windows are placed as subwindows. The background window can
then be dragged around by the user without affecting the relative
geometries of its subwindows. (This is not shown in the example.)

While the player’s control panel is the main preview interface,
it is also possible to start playing a presentation or part thereof
directly from the hierarchy and channel views. This is a very use-
ful previewing facility, since the author can (from the hierarchy
view) preview any subtree of a presentation.

4. IMPLEMENTATION
In this section we discuss highlights from CMIFed’s implementa-
tion, with an emphasis on the novel aspects of the player imple-
mentation.

The programming model used to implement CMIFed is object-
oriented and event driven. Interactive objects define callback meth-
ods that are called from a main event loop when input events (not
to be confused with CMIF media events!) relevant to them are
detected.

For editing views like the hierarchy and channel views, this
model is well-known and we need not explain their implementa-

Figure 3. Player example

tion in detail. Most of this section is therefore concerned with the
implementation of the player, which poses some new problems due
to its (soft) real-time nature.

The player is responsible for presenting individual media events
in a timely fashion. It has to satisfy the timing constraints specified
by the author within the limits of the hardware platform and oper-
ating system supporting it. An additional user-oriented require-
ment is that the application must keep its interactive character at
(almost) all times.

4.1. Callback scheduling
In order to maintain the application’s interactive character, the
player must use the event dispatching mechanism. For this purpose
we have added a timer mechanism to the main event loop and built
a standard scheduler queue on top of this. The timer allows us to
schedule a single call to a particular callback at a set time in the
future. The scheduler queue allows different objects to use this
facility independently.

The timer is manipulated to implement the player’s “pause” fea-
ture: to pause a presentation, the clock is temporarily stopped, so
callbacks that are already queued will be held up. (Unfortunately
this is not all that it takes to implement pauses, since some output
devices, e.g. sound drivers, have an internal clock that must also be
stopped and resumed.) It is also possible to implement slow-
motion and fast-forward by changing the clock speed. (Reverse
motion would require more work...)

The clock thus runs in a mixture of real and virtual time which
we call “nominal time”: it runs in real time multiplied by a factor
specified by the user (through the pause and possible slow/fast but-
tons). It follows that there is no exact relationship between the cur-
rent position in the presentation and the clock time: wherever the
timing constraints allow a variable delay, the real time used up by
the delay will differ between successive viewings of the same pre-
sentation, and the relative start/end times of events will also differ.

4.2. From timing constraints to a graph of time
dependencies
The player uses a simple but effective algorithm to satisfy timing
constraints. (This will have to be improved in order to implement
maximum delays, which require “foresight” or hard guarantees
from the operating system about the time needed to access the data
for the next event.) The initial phase of the algorithm is executed
when the user requests that a presentation is played and precedes
the actual playing. The time it takes is hardly noticeable (but if it
were a problem, results of this phase could be precomputed).

The algorithm begins by building a directed graph of timing
dependencies. The nodes in this graph correspond to begin and end
points of the interior and leaf nodes in the atomic presentation (or
subtree thereof) being played, and the edges represent timing rela-
tions between two nodes, e.g. A must precede B by at least T sec-
onds. The graph is initialized with edges that represent the timing
constraints implied by the tree structure: e.g. in a sequential com-
position, the end of each child must precede the beginning of the
next. Edges are also added to represent the durations of events,
gathered by inspection of the data descriptors (or file headers).

The graph is then extended with edges representing the sync
arcs present in the presentation. When interior markers in media
events are used to attach sync arcs, new nodes are created for these
markers, and new edges are added to link them to the begin/end
and other markers of the same event. (Sync arcs with an end point
outside the subtree being played are ignored.)

Two special nodes are added to the graph: the start and end
nodes. The start node is connected with a zero-delay edge to the
graph node representing the beginning of the root of the subtree
being played, and the corresponding end is similarly connected to
the graph’s end node.

187

4.3. Traversing the time dependency graph
Once this graph has been built the player enters real-time mode to
“execute” the presentation. In this mode the graph’s edges and
nodes are being marked. Initially, the start node is marked. When a
node is marked, all its outgoing edges are labeled with the current
value of the clock. When the delay that such a labeled edge repre-
sents has passed, the edge itself is marked. The marking of edges
that correspond to media events is triggered by the driver handling
the media; edges corresponding to timing constraints are marked
using the scheduler queue. When all of a node’s incoming edges
have been marked, the node itself is marked. When the graph’s end
node is marked, the presentation is finished and the player leaves
real-time mode. (Deadlocks are possible if there are illegal timing
constraints; these can be detected by checking that there is always
at least one active driver or one entry in the scheduler queue.)

It is understood that the allowed deviations from the desired
delays can be used for graceful degradation of performance, e.g. by
stretching the specified range for some delays. (I.e., our “real-
time” mode is soft real-time.)

The interactive nature of the player is maintained by imple-
menting the marking algorithm as a collection of callbacks that can
be entered in the scheduler queue.

Continuous sync arcs (used for e.g. lip-synchronous video and
audio) must be implemented differently. The simplest solution,
given their likely application, is to special-case them and let the
audio and video drivers work it out bilaterally.

4.4. Other uses of the time dependency graph
Using sync arcs one can specify constraints that are impossible to
satisfy, e.g. circularities. The graph of time dependencies can be
used to detect these. A traversal in simulated time is used by the
channel view to calculate the layout of boxes representing events;
detection of circularities is a by-product of this traversal. Such a
traversal can also detect other problems with the specification, e.g.
multiple simultaneous events on the same channel.

4.5. Pre-arming
Because the CPU can work only at a finite speed, sometimes call-
backs are called at a later time than scheduled. In the current ver-
sion of CMIFed all delays are only minimal delays, where this is
tolerable. However, unnecessary delays in a presentation are still a
nuisance, so the player incorporates a mechanism to minimize
delays. The key to this mechanism is the use of idle time to work
ahead, e.g. to start filling a buffer with data that should be dis-
played in a moment. We call this “pre-arming” of an event. It
should be obvious that the time needed for pre-arming depends
both on the media type and on the size and location of the data
(which may possibly be stored on a server across the network).

While the presentation is playing, there are two kinds of idle
time: when the presentation is waiting for user interaction, or when
the next callback in the scheduler queue is some time ahead in the
future. In the former case the duration of the idle time is unknown;
in the latter case an upper bound is known. We use this upper
bound as follows: if an estimate of the time needed by a particular
pre-arm action is known, this pre-arm action is only executed if
sufficient time remains until the next scheduled event. Initial esti-
mates are calculated based on heuristics involving the data size;
when a pre-arm action is executed, the actual time it takes is saved
and used as an estimate when the presentation is run again later.
When several pre-arm actions are possible, the one is chosen
whose results are needed first.

4.5.1 Multi-threaded pre-arming
An alternative method for pre-arming would be to use multiple
threads. A lower priority thread can then start working on pre-arm
actions while the higher-priority main thread handles active events
and the user interface. This will require some subtlety when the
main thread needs the results of a pre-arm action that has been

begun but not yet finished by the pre-arming thread — possibly the
priority of the pre-arming thread can be raised temporarily.

4.5.2 Pre-arming for hyperjumps
When a composite presentation uses hyperjumps extensively, pre-
arming is less effective. We are considering an extension to the
pre-arm mechanism which can work ahead on likely hyperjumps,
e.g. by constructing the timing graph ahead of time and pre-arming
the initial events. When a presentation is played several times, sta-
tistics can be stored about which hyperjumps are taken most often,
to guide the selection of presentations to start working on first.

4.6. Implementation language
The entire CMIF editor is implemented in Python, a very high-
level interpreted, extensible object-oriented prototyping language
[16]. This language has a number of practical advantages for this
application, in particular it has a good interface to the graphics
facilities and user interface toolkit on the initial target machine (the
SGI Indigo workstation). Python’s extensibility (with modules
implemented in C) means that it is easy to add new interfaces to
system libraries, and this has been used to efficiently handle the
data formats and I/O devices needed for audio, image and video
processing without losing the advantages of using a very high-
level language (e.g. automatic garbage collection and powerful
string handling operations, shorter and clearer code, and a much
faster edit-run cycle).

The entire application is constructed as a set of classes repre-
senting the entities defined by the CMIF model (nodes, sync arcs,
channels, etc.) as well as the user interface objects (views, win-
dows, objects, active event managers etc.). Most classes are reus-
able in the form of a library for other applications that use CMIF
presentations, e.g. a stand-alone CMIF player without editing facil-
ities or a tool for creating multimedia management games. The
extension modules written in C specifically for CMIFed can also
be reused, since they provide only the low-level mechanisms for
manipulating multimedia data — all policy decisions are made by
code written in Python.

5. CONCLUSION
This section places CMIFed in the context of some related work,
discusses future research, and places some concluding remarks.

5.1. Related work
There are many hypertext systems with some form of multimedia
support. The Andrew Toolkit [15] and Intermedia [17] are well-
known examples. However, these do not support synchronization
between different media events: the support for continuous media
like audio and video is often restricted to playing an audio or video
clip when the user clicks on a button.

Multimedia systems addressing the issue of synchronization are
less common, but some exist, e.g. Firefly [4] and Videobook [14].
Firefly shares some design goals with CMIFed, but uses the equiv-
alent of sync arcs exclusively to specify synchronization, making
simple composition tasks tedious. The Videobook system, while
using a highly visual metaphor, is really a script-based timeline
editing system. It is also weak in its higher-level composition facil-
ities. Other systems using composition and/or sync arcs to create
synchronized multimedia presentations (without hyperlinks) are
described in [2] and [8].

Commercial systems addressing synchronization are generally
of the timeline or scripting variety, e.g. [12]. Even though some of
these systems have been ported between common platforms (e.g.
Apple’s QuickTime [1] is now also available under Microsoft Win-
dows), they were never designed to support distributed systems.

A relevant international standard is HyTime [11], see also [13].
HyTime by itself does not specify a model, but supplies the syntax
to describe different models, since it is intended to be used for a
much wider range of applications. This generic language is power-

188

ful enough that a specific instance of it (a “HyTime DTD”) could
conceivably replace the current concrete CMIF language. The cre-
ation of such a DTD would involve translating the model described
in section 2 into concrete HyTime tags. Whether this is worth the
additional parsing complexity depends on the uptake of the stan-
dard.

5.2. Future research
The above sections have already suggested many possible topics
for future research. Apart from the obvious improvements to the
user interface and porting the system to other platforms, we intend
to attack a variety of problems that we have experienced during the
construction and use of CMIFed:

• Some constraints can only be satisfied by stretching or shrink-
ing some media data, e.g. by playing a video sequence some-
what slower or faster, or by truncation or repetition of material.
Whether this is possible is media-specific and platform-specific
(e.g. some audio hardware only supports a few playback rates),
but in any case the author must be able to specify what is
acceptable. In the current version of CMIFed this is not sup-
ported; such constraints will cause parts of the presentation to
be “late”. We are considering the incorporation of ideas from
[4], which suggests stretching and shrinking, and [3], which
suggests several other ways of adapting the duration of media
items to constraints. (This issue is closely related to a more gen-
eral specification of sync arcs, using minimum, ideal and maxi-
mum delays.)

• There are several possible interpretations of what should hap-
pen when a link is followed: should the current presentation be
canceled, suspended or continued? Currently we always cancel
the active atomic presentation and start the new one in its place.
In an extended version of the model, the author may specify
what should happen when the link is created (including leaving
the choice to the user). See [8] for ideas.

• Using a worst-case model of the run-time delays on a specific
hardware platform (e.g. disk seek delays, network characteris-
tics and CPU speed) one may verify whether a particular speci-
fication is compatible with that platform.

• CMIF documents are currently static: the author defines what
options are open to the user at each point. There is however an
important range of applications where user input is used to gen-
erate a database query whose results will be presented in hyper-
media form. We intend to work on the automatic conversion of
query results into new ad-hoc CMIF presentations.

• Using the Amsterdam Multimedia Framework [6] as a guide-
line, we intend to construct a distributed version of the CMIFed
player which distributes knowledge about timing constraints to
remote components in order to help satisfying them. This
includes providing alternative representations of media data
with different resource usage and corresponding different pre-
sentational aspects.

5.3. Concluding remarks
CMIFed has been developed during the past two years and has
been used to create several example presentations. While only a
first step in the right direction, building and using CMIFed has
taught us many lessons on all aspects of hypermedia systems,
ranging from thoughts about the inadequacy of current operating
systems to the development of new data models and editing para-
digms, and we are excited about the direction in which the next
steps will take us.

ACKNOWLEDGMENTS
The authors would like to thank Robert van Liere and Dik Winter
for their work on the initial implementation and for many fruitful
design discussions. We are grateful to Lynda Hardman, who suc-

cessfully posed as a “naive” user, for her feedback, constructive
criticism, and for her patience even when the system was con-
stantly changing.

REFERENCES
[1] Apple Computer, “QuickTime”, Cupertino, CA.
[2] Gerold Blakowski, Jens Hübel and Ulrike Langrehr, “Tools

for Specifying and Executing Synchronized Multimedia
Presentations”, 2nd International Workshop on Network and
OS Support for Digital Audio/Video, Heidelberg, Germany,
Nov. 18-19, 1991.

[3] Monica Bordegoni, “Multimedia in Views”, CWI Report
number CS-R9263.

[4] M. Cecelia Buchanan and Polle T. Zellweger, “Specifying
Temporal Behavior in Hypermedia Documents”, ECHT ’92
(Proceedings of the ACM Conference on Hypertext),
Milano, Italy Nov 30-Dec 4 1992, 262-271.

[5] Dick C. A. Bulterman, Guido van Rossum and Robert van
Liere, “A Structure for Transportable, Dynamic Multimedia
Documents”, USENIX conference June 1991 Nashville TN,
137-155.

[6] Dick C. A. Bulterman, “Synchronization of Multi-Sourced
Multimedia Data for Heterogeneous Target Systems”, 3rd
International Workshop on Network and OS Support for
Digital Audio/Video, San Diego, 1992.

[7] Frank Halasz and Mayer Schwartz, “The Dexter Hypertext
Reference Model”, NIST Hypertext Standardization
Workshop, Gaithersburg, MD, January 16-18 1990.

[8] Rei Hamakawa, Hidekazu Sakagami and Jun Rekimoto,
“Audio and Video Extensions to Graphical User Interface
Toolkits”, 3rd International Workshop on Network and OS
Support for Digital Audio/Video, San Diego, 1992.

[9] Lynda Hardman, Guido van Rossum, Dick C. A. Bulterman,
“The Amsterdam Hypermedia Model: extending hypertext
to support real multimedia”, Hypermedia, May 1993, 5(1).

[10] Lynda Hardman, Dick C. A. Bulterman, Guido van Rossum,
“Structured Multimedia Authoring”, Proceedings of ACM
Multimedia ’93, Anaheim, Auust 1-6 1993.

[11] International Standard Organization, “Hypermedia/Time-
based structuring language”, ISO 10744, 1992.

[12] MacroMind, ”Director version 2.0”, 1990 (dynamic media
authoring tool for the Apple Macintosh).

[13] Steven R. Newcomb, Neill A. Kipp and Victoria T. Newcomb,
“‘HyTime’ the Hypermedia/Time-based Document
Structuring Language”, Communications of the ACM,
November 1991, 34 (11) 67-83.

[14] Ryuichi Ogawa, Hiroaki Harada and Asao Kaneko,
“Scenario-based Hypermedia: A Model and a System”,
ECHT ’90 (European Conference on Hypertext), November
1990, INRIA France, 38-51.

[15] Palay, et al., “The Andrew Toolkit: an Overview”,
Proceedings of the USENIX Technical Conference, February
1988.

[16] Guido van Rossum and Jelke de Boer, “Interactively Testing
Remote Servers Using the Python Programming Language”,
CWI Quarterly, December 1991, 4 (4) 283-303.

[17] N. Yankelovich, B. Hahn, N. Meyrowitz and S. Drucker,
“Intermedia: The concept and construction of a seamless
information environment”, IEEE Computer, January 1988,
21(1) 81-96.

