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Abstract

The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various
types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each
exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ∼175,600 extracted sources. For a modern
time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is
challenging to search for short timescale transients in both real-time and archived data, and to build long-term light
curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to
process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive
amount of archived data which will be used to generate a source catalog with more than 100 billion records during
10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking
advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time
functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and
space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as
in its strategy of building complex light curves. The optimized source association function is accelerated by three
orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the
MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database
architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In
summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of
massive data.
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1. Introduction

1.1. GWAC Scientific Goals and Data Challenges

The ground-based wide-angle camera array (GWAC) is a set
of ground-based instruments under the framework of the
SVOM mission. SVOM is a Chinese–French space mission
dedicated to detecting gamma-ray bursts (GRBs) which has
been funded by the China National Space Administration and
the Centre National d’Etudes Spatiales and is planned to launch
in 2021 (Cordier et al. 2015). GWAC is designed to comprise
36 cameras, each with an 18 cm diameter and 12.8 × 12.8
degrees2 field of view (FOV). The 36 cameras will point to the
sky in different directions and totally cover an area of more

than 5000 deg2. Each camera will take an image once every 15
s (10 s exposure plus 5 s readout). GWAC will simultaneously
monitor an area of sky within the FOV of ECLAIRs (Cordier
et al. 2015), so that GWAC has the potential to catch the
prompt optical emission of GRBs. Besides monitoring GRBs,
GWAC is also able to search for other optical transients such as
supernovae and the optical counterparts of gravitational-wave
bursts.
Thanks to GWAC’s 15 s exposure and large FOV, it can also

provide light curves with a high time resolution of millions of
objects over a long timescale. A light curve is a time series of
light intensity representing the magnitude of a celestial object
or region as a function of time. In light curve analysis, we are
interested in variable objects during periods that show drastic
changes. The huge amount of of light curve data will be used
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not only for studying variable stars, but also for searching for
transient phenomena such as short timescale gravitational
microlensing events and transits by extrasolar planets. It is
worth noting that gravitational microlensing events with
timescales of less than several hours are unique candidates
for searching for interstellar dark objects, for example, free-
floating planets. The large amount of data representing the
source catalog and light curves produced by GWAC are an
important motivation for our data analysis system.

To generate the light curves, the GWAC light curve
processing system will face stringent demands on data cadence
and the rate of data acquisition of GWAC. One GWAC camera
will capture an image every 15 s. The source extraction and
subsequent light curve processing of each image should be
finished in a time frame of 15 s. This is due to the fact that short
timescale observing objects, such as microlensing events, need
to be discovered by analyzing light curve data in real-time. The
data rate of each camera is ∼12,000 source measurements
(2.4 MB) per second, which means that the total data rate is
85MB/s for the whole GWAC array system. GWAC will
produce ∼2.7 TB catalogs data per day and ∼9 PB over the
designed 10 years of operation.

1.2. Comparison with Other Surveys

The massive catalog and light curve data produced by
GWAC motivate us to use relational databases to realize data
manipulation and query, which is a popular solution for similar
modern time-domain survey projects.

Distributed relational database systems (RDBMS) are widely
used to manage the large-scale observational data produced by
large-aperture, wide-field surveys such as Pan-STARRS and
LSST. Pan-STARRS (Kaiser et al. 2002; Burgett 2012) is
designed to collect data at a rate of 3 ∼ 10 terabytes (TB) per
night. The observed data of Pan-STARRS are managed in a
distributed relational Microsoft SQL server database, which is
spatially partitioned into slice databases using a hash function
over the spatial location (RA and DEC) of each detection
(Simmhan et al. 2011). The raw imaging data of LSST is
expected to be about 15 TB per night (Ivezic et al. 2008). Over
the 10 years of LSST survey operations, LSST will result in
over 50 PB for catalog databases (Jurić et al. 2015). To manage
the massive amount of data in the astronomical catalog, LSST
developed a special distributed, shared-nothing SQL database
query system, called Qserv, which is independent of a
particular RDBMS (Wang et al. 2011; Becla et al. 2013; Becla
& Wang 2014).

In addition to managing the large amount of observational
data, the RDBMSs also play an important role in the
data processing pipeline of radio transient search projects
(Norris 2010), such as VAST (variables and slow transients) of
the Australian Square Kilometer Array Pathfinder (Murphy
et al. 2013) and LOFAR (the LOw-Frequency ARray; Van

Haarlem et al. 2013). The transient processing of VAST is
implemented as a real-time pipeline which employs the
PostgreSQL database with the Q3C (Koposov & Bartunov
2006) plugin to optimize coordinate searches and cross-
matches (Banyer et al. 2012). Its source data rate is ∼12,000
source measurements per second. The transient pipeline TraP
(Scheers 2009; Swinbank et al. 2015) of LOFAR is
implemented in real-time processing and developed on the
column-store database MonetDB (Scheers et al. 2012).8 Its
source data rate is ∼10–10,000/sec. Pioneering column-store
technology (Abadi et al. 2013) since 1993, MonetDB has
achieved significant speed up compared to traditional databases
through innovations at all layers of its DBMS (Idreos
et al. 2012, 2007; Manegold et al. 2009). In column store,
queries only touch the relevant columns, and when in
contiguous memory it allows compression and good cache-hit
ratios. Furthermore, MonetDB’s kernel is a programmable
relational algebra machine operating on “array”-like structures,
which is exactly what CPUs are good at. Thanks to the high-
performance computing capability provided by the MonetDB
database, the TraP pipeline has successfully realized transient
search and light curve generation in real-time through the
technology of the table-driven logic of MonetDB.
The success of LOFAR motivates us to employ MonetDB as

the database platform for the GWAC high-cadence, high-
density light curve pipeline (HCHDLP) because the scientific
goal and data processing strategy of GWAC are similar to those
of LOFAR. This satisfies one of Jim Gray’s laws: a large-scale
scientific database should bring computations to data, rather
than data to computations (Gray et al. 2005). In addition, the
latest distributed technology of MonetDB (see our discussion in
Section 3) can support a distributed data architecture, which
suits our long-term data storage and queries. HCHDLP of
GWAC is not based on the heritage of either Qserv of LSST or
Pan-STARRS because they are not using database-centric
computing approaches for their dynamic pipelines during data
production.
The organization of the paper is as follows. Section 2

provides an overview of HCHDLP and th optimization
techniques to achieve real-time performance for each camera.
In Section 3, we design a shared-nothing distributed database
on top of the GWAC camera array. In Section 4, we present the
evaluation of the light curve pipeline in terms of functionality
and performance. We discuss future research directions in
Section 5.

2. MonetDB-based HCHDLP

The following are two of the main goals of the HCHDLP: (1)
to manage a catalog that contains all of the individual
measurements of the sources observed by GWAC; (2) to

8 Centrum Wiskunde and Informatica (CWI), the Netherlands (www.
monetdb.org).
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create cumulative light curves with which to study variable
sources and transients (microlensing events, etc.) in real-time.

We designed the HCHDLP based on the following
requirements and constraints of GWAC. First, the total
processing time of an image should not exceed the time
between two subsequent images, i.e., 15 s. Second, the data rate
needed to be processed by HCHDLP is ∼12,000 sources/sec.
Finally, the design of HCHDLP should satisfy the boundary
conditions given by the scientific requirements and hardware
architecture.

The GWAC hardware architecture is illustrated in Figure 1.
There are nine mounts in total, and each mount consists of four
CCD cameras where each camera uses a dedicated database
server. The HCHDLP database is temporary; the long-term
database is a distributed shared-nothing database, which is
illustrated in Figure 6 in Section 3.

The data flowchart of GWAC is shown in Figure 2. The
input to HCHDLP is a stream of catalog data following image
preprocessing, quality control, source extraction, and flux
calibration of pipeline 0. First, the CCD reductions and
astrometry calibration are processed in the image preproces-
sing. Then, the quality control filters out the bad quality image
according to star profiles, star numbers, and astrometry
accuracy. After quality control, the images of good quality
are taken through the source extraction procedure. Then, the
zone ID and Cartesian coordinates are calculated from
equatorial coordinates. Finally, the flux calibration is carried
out through a comparison to standard stars in the same frame.
The standard stars are referenced from the UCAC4 catalog

(Zacharias et al. 2013). The resulting source attributes of the
final calibrated catalog are listed in Table 1. All of the sources
are in the form of point-like sources and will be loaded into the
target table in Figure 3.
The HCHDLP consists of two procedures, i.e., data loading,

and source association and light curve creation. In order to load
large amounts of data quickly, binary bulk loading is adopted
for MonetDB to ingest the point-like source catalogs using a
parallel data insertion command. The source association
identifies every source detected by GWAC and concatenates
all of the current and archived measurements of each identified
source in the time series, resulting in the light curves.
Due to the high cadence, a lot of the data processing is

shipped to the database engine. Database algorithms take care
of source associations. Figure 3 shows the entity relationship
diagram of five key tables and their one-to-many relationships.
It is worth noting that the measured coordinates of the

sources simultaneously take two forms: two components in the
form of spherical coordinates representing R.A. and DEC, and
three components of Cartesian coordinates in the form of unit
vectors representing x, y, z, in order to save time during
complicated source association calculations.
In practice, when a new source is loaded into the target table,

it is assigned a new permanent ID, ID_target, by a primary key
as its unique identifier. Then, the new source is associated with
previous records of sources in the uniquecatalog table, in
which each source has been assigned an ID_uniq. If the new
source is a good match with a record in the uniquecatalog, then
the associated IDs of ID_target and ID_uniq are appended into
the association table associatedsource, which is a de facto light
curve table. If the match failed, then a new record is created in
the uniquecatalog. The related auxiliary information is
recorded in the table image and skyarea.
An association pair is acceptable if the angular distance

between the two sources is smaller than a given tolerance
radius. Generally speaking, the choice of the tolerance radius is
mainly based on the uncertainty of the astrometry calibration.
However, for the GWAC system, due to its large pixel scale of
∼12 arcsecond per pixel, the crosstalk between sources will be
a problem when getting the positions of these sources in the
CCD image, especially for those objects with a low signal-to-
noise ratio (Dudik et al. 2012). In these sub-sampled images,
the point-spread function (PSF) of the sources would be
relatively stable since it is less sensitive to variations of the
environment, like observation or temperature. Thus, in our
practical experiments, 2.5 pixels, which is ∼1.4 times the
typical PSF value (∼1.8 pixels), is a proper choice for GWAC
images when performing the cross-match.
From our analysis, the mismatch rate is ∼0.05% (considering

the flux constraint) with our above tolerance radius, while the
mismatch rate is <0.1% if not considering the flux constraint.
This mismatch rate is acceptable for GWAC taking into
account the balance with data processing speed. Additionally,

Figure 1. GWAC telescope array and its computing cluster, in which each
CCD (telescope) has a dedicated database server, e.g., CCD1 has an
accompanying database server displayed in white, and so on. The HCHDLP
database is temporary where the bulk of in-database processing takes place to
achieve real-time data processing, with only limited disk capacity. The catalog
and light curve production of the temporary database will be periodically
exported to a long-term archival catalog database. The long-term database is a
distributed shared-nothing database illustrated in Figure 6.
(A color version of this figure is available in the online journal.)
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the color constraint in the cross-match can be ignored since all
of the data used for the association are acquired from the same
camera and the same band.

The HCHDLP database uses the popular zone algorithm
(Gray et al. 2007) to speed up processing. Its basic idea is to
map a sphere into equally spaced declination zones. Using the
ZoneID filter, the strength of the zone algorithm comes from its
simplicity and the locality it produces: a zone only has two
neighbors when matching two data sets. We only need to look
for matches within the same ZoneID and its neighbors. The
optimal zone height is set to the value of the tolerance radius.
Both “tall” and “short” zone heights will cause more neighbors

that need to be joined with the center zone. These extra areas
add extra costs that outweigh the savings in pair-wise
comparisons (Gray et al. 2004). The search radius can be
easily set at any time as an input parameter of the association
function.

2.1. Optimization of Source Association

A straightforward, zone-based source association query that
joins two tables using the Euclidean distance would run for a
very long time on high-cardinality data sets. Among all of the
relational algebra operators in the association, the Join operator
is the most expensive. In the Join operation, each zone in the
left reference table “uniquecatalog” needs to be compared with
all of the zone values in the right “target” table one by one. The
zone search results must be further reduced by an ra filter of the
Alpha(theta, decl) computation. The inflated radius Alpha
function can compute the limiting ra ranges of points in all
regions both near the equator and near the poles (see details in
Gray et al. 2007). Then, a quick filter on dec is tested and,
finally, a careful Euclidean distance is computed. The time
complexity of this operation is  n2( ). For example, this
straightforward query takes several hours to associate two
tables each with ∼175,600 tuples. The SQL extract below is the
straightforward source association query.

Algorithm 1.

SELECT u0.id AS uniqueid, ...
, t0.id AS targetid, ...
3600∗DEGREES(2∗ASIN(SQRT((u0.x-t0.x) ∗ (u0.x-t0.x)
+(u0.y-t0.y)∗(u0.y-t0.y)+

(u0.z-t0.z) ∗ (u0.z-t0.z))/2)) AS distance_arcsec
FROM uniquecatalog as u0, targets as t0
WHERE u0.zone BETWEEN cast(floor((t0.‘‘dec’’ - radius
)/zoneheig) as integer)

AND cast(floor((t0.‘‘dec’’ + radius )/zoneheig) as
integer)

AND u0.ra_avg between t0.ra—alpha(t0.‘‘dec’’, radius)
and t0.ra + alpha(t0.‘‘dec’’, radius)

AND u0.decl_avg between t0.‘‘dec’’ - radius and
t0.‘‘dec’’ + radius

AND u0.x∗t0.x+u0.y∗t0.y+u0.z∗t0.z > cos(radians
(radius));

To significantly reduce the large amount of time required for
source association, we optimized the association for both time
and space complexity by two means: from outside the database
(SQL clauses) and inside the databases (query optimizer).
From outside the database engine, from a SQL perspective,

since the sources stored in the table target are unordered, this is
also true for the zoneid column, which leads to the zoneid
lookup being a random access pattern. If the randomly accessed
data are too large for the CPU caches, the random access will
cause cache misses and performance degradation (Boncz
et al. 1999). For this reason, we create a sorted version of the

Figure 2. Data flowchart of GWAC. After the preceding “source extraction”
module is applied, detections and measurements related to celestial objects in
the images are extracted into catalog files. In the last procedure of pipeline 0,
flux calibration is carried out through comparison to standard stars in the same
fields. The standard stars are selected from the UCAC4 catalog. Then, in the
HCHDLP phase, the catalog files are inserted into the HCHDLP database
where they are associated with an existing sky-model uniqcatalog table one by
one to form light curves.
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Table 1
Measured Attributes of Each Source

Name Type Description

ID long int Every inserted source/measurement gets a unique id, generated by the source extraction procedure.
imageid int The reference ID to the image from which this source was extracted.
zone smallint The zone ID in which a source declination resides, calculated by the source extraction procedure.
ra double Right ascension of the source (J2000 degrees), calculated by the source extraction procedure.
dec double Declination of a source (J2000 degrees). As above.
mag double The magnitude of a source.
mag_err double The error of magnitude.
pixel_x double The instrumental position of a source on CCD along x.
pixe_y double The instrumental position of a source on CCD along y.
ra_err double The 1-sigma error on ra (degrees).
dec_err double The 1-sigma error on declination (degrees).
x double Cartesian coordinates representation of RA and declination, calculated by the source extractor procedure.
y double Cartesian coordinates representation of RA and declination, as above.
z double Cartesian coordinates representation of RA and declination, as above.
flux double The flux measurements of a source, calculated from the mag value.
flux_err double The flux error of a source.
calmag double Calibrated mag.
flag int The source extraction uses a flag for a source to tell, for instance, if an object has been truncated at the edge of the image.
background double The source extraction estimates the background of the image.
threshold double The threshold indicates the level from which the source extraction should start treating pixels as if they were part of objects.
ellipticity double Ellipticity is how stretched the object is.
class_star double The source extractions classification of the objects.

Figure 3. Simplified database schema.
(A color version of this figure is available in the online journal.)
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inner relation uniquecatalog ordered by the predicate column
“zone” to mimic a clustered index before the join phase:

Algorithm 2.

CREATE TABLE u0_zone AS SELECT ∗ FROM uniquecatalog ORDER
BY zone with data.

This has the advantage of scanning the outer relation
sequentially. The time complexity of sorting the outer relation
is  nlogn( ), where n is the size of the outer relation.

To reduce the amount of calculation and the space
complexity, we use the standard SQL “WITH” clause to
simplify complex SQL by materializing subqueries which save
the MonetDB from recomputing multiple times. Although both
the “WITH” clause and a temporary table can improve the
query speed for complex subqueries, the former has some
advantages over the latter: (1) “WITH” queries are treated as
inline views without extra effort to remove the temporary tables
after usage; and (2) WITH supports multiple subqueries and
mutual references between subqueries. WITH allows us to
assign a name to a subquery block. This name can be
referenced in multiple places in the main query or even in the
following WITH subquery. By using WITH clauses, we
materialize the intermediate results target. “dec” − radius as
decmin and target. “dec” + radius as decmax. The derived
decmin/decmax are used in the next “WITH” subquery to
compute the zone range: decmin/zoneHeight as zonemin and
decmax/zoneHeight as zonemax. Zonemin and zonemax
together define a zone range. The search radius can be flexibly
changed according to the various different sky regions. The
core SQL extract of the associates operator is listed below. Our
test (Section 4.3.1) shows that the “WITH” optimization can
bring the source association procedure for two tables with
175,597 rows × 175,540 rows from resource exhaustion
(running out of disk space) to 4 m 2 s.

Algorithm 3.

CREATE FUNCTION Alpha(theta double, decl double) returns
double

BEGIN
IF abs(decl)+theta > 89.9 then return cast(180.0 as
double);
ELSE
RETURN (degrees(abs(atan(sin(radians(theta)) /

sqrt(abs(cos(radians(decltheta))
∗ cos(radians(decl+theta))

) ) ) ) ));
END IF;

END;

CREATE FUNCTION associates(imageno int, radius double)
RETURNS TABLE (uniqueid bigint, targetid bigint, dis-

tance_arcsec double...)
BEGIN
DECLARE TABLE u0_zone (LIKE uniquecatalog);

(Continued)

DECLARE zoneheig double;
SET zoneheig = 1e1/3600;
INSERT INTO u0_zone SELECT id,targetid,K FROM unique-
catalog ORDER BY zone; RETURN TABLE(SELECT uniqueid,
targetid,distance_arcsec...FROM ( WITH x as (SELECT
target.id,
target.‘‘dec’’ - radius as decmin,
target.‘‘dec’’ + radius as decmax, ...
FROM target4 as target
WHERE target.imageid = imageno),
smallt as (select x.id, x.decmin, x.decmax,
cast(floor(x.decmin/ zoneheig) as integer) as zonemin,
cast(floor(x.decmax / zoneheig) as integer) as zone-
max, ...

FROM x)

SELECT u0.id as uniqueid,t0.id as targetid ....
FROM u0_zone as u0, smallt as t0
–The ‘‘implicit join notation’’ using commas to sepa-
rate tables
–and the CROSS-JOIN are semantically identical.

WHERE u0.zone BETWEEN zonemin AND zonemax
AND u0.ra_avg BETWEEN t0.ra-alpha(t0.‘‘dec’’, radius)
AND t0.ra+alpha(t0.‘‘dec’’, radius)
AND u0.decl_avg BETWEEN t0.decmin AND t0.decmax
AND u0.x∗t0.x+u0.y∗t0.y+u0.z∗t0.z > cos(radians
(radius))

) AS ut);
end;

From inside the database engine, the optimization of the
database implementation can speed up a RANGE-JOIN
significantly. There are three expensive “range-join” predicates
in the above associates function, i.e., the three BETWEEN...
AND in WHERE clause. RANGE-JOINs are queries with
inequality predicates (greater than, less than, or between) for
which a column from the left table is restricted to be in a range
specified by two columns of the right table. Because the
condition with the highest discard rate is a RANGE-JOIN on
the zone column, it should be given high priority in terms of
optimization.
We have optimized the RANGE-JOIN implementation of the

MonetDB by employing a quick binary search and compressed
imprints index. The optimization has been introduced specifi-
cally for this work; however, it is generally applicable for
all similar types of queries. The imprints index is already
available in MonetDB but was not applied to RANGE-JOIN
operations. This work has extended the imprints index to also
work with RANGE-JOINs. Sidirourgos & Kersten (2013)
developed a novel cache-conscious secondary index structure
called imprints to speed up scans over large tables stored in
MonetDB. It is designed such that any clustering or partial
ordering is naturally exploited without the need for extra
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parametrization. If the left column is sorted, then we use a
binary search which allows for the majority of the table to be
skipped to reduce join time by orders of magnitude instead of
“brute-force” for large tables. Figure 4 illustrates an example of
the binary search optimization. The table u0_zone with a
column zone joins with the table smallt using a BETWEEN
predicate (zone BETWEEN zone_min AND zone_max). When
the zone range of the BETWEEN predicate is (790, 1001), only
the tuples of zone values 800, 900, and 1000 (within the zone
range) are quickly selected while all other tuples are skipped. If
the left column is unsorted, then we use imprints under three
conditions. (1) The data type is right for imprints. All numeric
types (integers of all widths and floating points) and types that
are internally represented as integers, such as dates and
timestamps, are suitable for imprints. (2) The left column is
either persistent or already has imprints. (3) The right column is
long enough so that it is worth the effort of creating imprints.
Without sorting the order on the ra_avg and decl_avg columns,
the other two range-join predicates, i.e., u0.ra_avg between t0.
ra-alpha(t0.“dec”, radius) and t0.ra+alpha(t0.“dec”, radius)
and u0.decl_avg between t0.decmin and t0.decmax, will use
imprints to minimize data access.

The time complexity includes two parts: the complexity of
sorting the left column is l llog(∣ ∣ · ∣ ∣), and the complexity of
the range join is

⎧
⎨⎪
⎩⎪

=T l r

r l l
C r l l

r l

,

log , if
, if

. if nested loop,

sorted

imprints(∣ ∣ ∣ ∣)
∣ ∣ · ∣ ∣

· ∣ ∣ · ∣ ∣
∣ ∣ · ∣ ∣

where C is the size of the imprints of the left column. C is =1
in a typical case and 1

16
in the worst case. Without optimization,

a direct scan is employed using a nested loop, so C = 1. As
shown by our test, the optimization of the RANGE-JOIN
implementation can reduce the source association procedure
from 4 m 2 s further down to a few seconds, resulting in a
speed-up by a factor of 220 (see Section 4.3.1 for the detailed
performance testing).

2.2. Optimization of One-to-many Match Type

Figure 5 illustrates a simplified version of HCHDLP, which
includes source associations and the subsequent processing
of associated relationships in four types. Among these types, the
one-to-many relationship is the slowest one. This relationship is
caused by either a new image with higher spatial resolution or a
newly detected source. When a one-to-many relationship occurs,
the associatedsource table is traversed twice originally in TraP
(Scheers 2011). The size of the associatedsource table is a
function of the number of sources of the sky-model uniqueca-
talog table: Dassoc = 175600 × 26 × 2400 × 36 × n = 367 × n
(GB), where n is the number of observation days. For instance,
at the epoch of image 5000, the associatedsource table has
1+ billion rows. The EQUI-JOIN with the associatedsource table
on a predicate of equal uniqueid takes 20.1 s to return
41,894 rows.
Since the EQUI-JOIN with associatedsource is so expen-

sive, we have changed the strategy of forming the light curves
of the one-to-many type to build the pipeline that can operate in
real-time.
(1) We drop the uniqueness constraint by removing the

primary key and foreign key on the large tables during the run
time of HCHDLP.9 During idle time, the check is instead
carried out by an SQL query, and the primary and foreign keys
are added back to maintain the consistency of the database.
(2) In the one-to-many case, the old relationship between the

uniquecatalog and the target table is replaced by a new one
through “forking” (see Figure 6 for details). However, during
the replacement, DELETE DML (deleting the old relationships
from the big table associatedsource) is expensive. We avoid
DELETE10 by using INSERT to insert the old relationships
into a small auxiliary table, uid_legacy. The Uid_legacy table
stores deleted old uniqueids and their children (replacement)

Figure 4. Optimized RANGE-JOIN in MonetDB.

9 Applicable to all of the match types of relationships.
10 Frequent UPDATE and DELETE DML operations have been shown to be
very expensive on a petabyte system (Becla et al. 2010), and so we tried to
constantly apply the “write-once and never-update” and “append-only”
principle to the big light curve table, which greatly optimizes HCHDLP
throughput and latency.
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uniqueids in the one-to-many scenario and it will exist for all
time as a historical record of the changes.

3. Shared-nothing Distributed HCHDLP
Database Architecture

The catalog and light curve production of the temporary
HCHDLP database will be periodically exported to the long-
term distributed database. The shared-nothing distributed
database is the best solution for storing the final products of
HCHDLP over the long term thanks to independent hardware
and software architecture. The architecture is adopted by taking
into account the GWAC’s top-level pointing strategy; there is
no source association between the available sky regions of
different CCDs, which is guaranteed by the GWAC’s pointing
strategy.
Figure 6 illustrates the shared-nothing distributed database

architecture comprised of one master node and multiple worker
nodes. The initial number of worker nodes should be the same
as the number of CCDs. Each remote table on a worker node is

Figure 5. HCHDLP displays how to process four types of source association
results. Many-to-many links are replaced with the link with minimal distance to
reduce overhead. One-to-many links are replaced with many new links, which
are inserted into the the light curve table. Old uniqueids and their successor
relationships are inserted into the uid_legacy table. One-to-one links are
previously found relationships. Zero-to-one links are newly detected targets
which have no previously assigned uniqueid.

Figure 6. Distributed GWAC database architecture is comprised of one master
node and multiple worker nodes. Remote tables associatedsource1..n,
uniquecatalog1..n on individual worker nodes are mapped to the merge table
associatedsourceand uniquecatalog on the central server. Within a worker
node, the associatedsource1..n table can be further partitioned by time, i.e., by
months, weeks, or a couple of days. This time partitioning of the light curve
table provides coarse temporal indexing and finer data locality, so that light
curve queries involve only the relevant temporal partitions.
(A color version of this figure is available in the online journal.)
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mapped to the merge table with the same name as the master. In
terms of the MERGE TABLE+REMOTE TABLE of Mon-
etDB, the MERGE TABLE technique is a horizontal data
partitioning method. The technique allows a table to be defined
as the union of its partitions and enables finer control of data
locality during query evaluation. As complements of the merge
tables, the REMOTE TABLE technique allows the partitions of
a merge table to reside on different nodes. Queries involving
remote tables are automatically split into subqueries by the
merge table and executed on the remote tables. The REMOTE
TABLE adopts a straightforward master-worker architecture:
one can place the partition tables in different databases and then
concatenate everything together in a MERGE TABLE in the
master database. In addition to REMOTE TABLEs on another
node, local normal tables can also be added to be part of a
MERGE TABLE. The MERGE TABLE supports nested merge
tables, i.e., a MERGE TABLE can also contain other MERGE
TABLEs. The MERGE TABLE and its partitions can be
queried both individually and jointly.

In order to improve the performance of data querying, a remote
table within a worker node can be further partitioned according to
the ratio of the real RAM size and the data product size. The time
span of each partition ranges from a couple of days to months.

There are a few sources that fall outside the boundaries of the
observation areas, but the marginal sources are few. First,
according to the share-nothing design, the sources of one CCD
camera will not be associated with those of other cameras.
Second, the GWAC survey strategy and its pointing and tracking
system can ensure that each CCD observes a few fixed sky areas
in the long term and that the drift of the pointing center is
controlled within 10 pixels. Therefore, if a marginal source is
detected in the area of a CCD, then it will be added to its catalog,
and if the source moves out, then it might appear in another area
and will be added to another catalog and traced. It will be
flagged in the flag attribute of the sources catalog (see Table 1).

4. Experiments and Evaluations

This section describes our tests on the performance of both
HCHDLP and the shared-nothing distributed database, including
source association optimization on MonetDB and its comparison
with PostgreSQL, HCHDLP running, and light curve queries.

4.1. Hardware and Software Configuration for HCHDLP

Our experiments run on a cluster of six server nodes of the
CWI Scilens cluster platform interconnected via InfiniBand 40
Gb/s links. Each node has two sockets, 32 hyper-threaded
cores that use Intel Xeon CPU E5-2650 v2 @ 2.60 GHz, with
256 GB main memory and 5.4 TB of storage on software
RAID0 containing three disk drives per server. Tests are
conducted on the MonetDB default (development) branch
v11.22.0, hg id 3603a1af9790. Optimized compilation of
MonetDB is activated in our tests.

4.2. Data and Loading

A hindrance for the large-scale adoption of DBMSs in
handling astronomical catalogs is the time it takes to bulk-load
the data into the databases. Our experiments are based on the
target table. It is ingested by simulated catalog files, whose
sizes are proportional to the observation time. Simulated
catalog files represent pseudo-sources extracted after pipeline
0. The catalog files are synthesized by adding positions and
flux noises to a template catalog file extracted from the UCAC4
catalog (Zacharias et al. 2013). Typically, each image is set to
have ∼175,600 sources, and each source has 22 column
attributes, which means that an increment of thetarget table is
∼79 GB per night (with a cadence of 15 s and 10 h of
observation per night) per CCD. We produce simulated catalog
files in batches and load them into the target table before the
HCHDLP system starts testing.
Binary bulk loading (MonetDB 2016) is used to load

simulated catalogs into MonetDB. The SQL COPY command
can take a complete ASCII file and insert the data in one go
using all of the system cores in parallel. Furthermore, MonetDB
created a binary bulk loading method, that is, the binary version
of the COPY command: COPY BINARY. When large tables
need to be loaded into a database, the binary bulk loading is
slightly faster. This saves the rendering of data into ASCII and
subsequent parsing of the data being exchanged and “attach” it
to the SQL table. To illustrate this point, the SQL query below is
used to load the binary column files into the target table.

Algorithm 4.

COPY BINARY INTO target FROM (‘‘path_to_column_file_i’’,
..., ‘‘path_to_file_f’’).

Each attachment file is produced using our simulator program
that writes the binary version of the column files directly into
the disk. All of the binary column files are aligned, i.e., the ith
value in each file corresponds to the ith record in the table. The
files with numerical data are moved into place to avoid copying
(MonetDB 2016).

4.3. Performance of HCHDLP

4.3.1. Source Association

At the beginning, with the outside database optimization
(i.e., sorted zone and “WITH” clause), the execution time of the
source association for two tables of ∼175,600 rows is as short
as 4 m 2 s.11 Then, the inside database optimization further
reduces the time of the source association from 4 m 2 s to 1.1 s
with a 220x speed up. The association radius is set to be 6

11 Without the optimization, the source association failed in the same
environment due to a huge crossproduct running out of disk space, and
succeeded in a more powerful environment with 20 TB disk space in 59 m.
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arcsec, that is, the same as the zone height which is a parameter
in the zone algorithm.12 Since the highest discarding rate comes
from RANGE-JOIN on the zone column, the 220x speed up is
mostly due to the binary search on the sorted zone column. The
following is the source association query by calling the Q26:
associates function.

Algorithm 5.

sql> INSERT INTO tempuniquecatalog SELECT ∗ FROM
associates(2, 0.00166666666666666666);

179,769 affected rows (1.1s)

The accuracy validation of our optimization is performed by
both a self-join and cross-join of the source association and by
checking if the correct number of new sources could be found.
For a self-join with a radius of 0.36 arcsec, the sources in a
simulated catalog with 175,597 rows all match themselves. The
related code is listed as follows.

Algorithm 6.

–self-join
sql> INSERT INTO tempuniquecatalog SELECT ∗ FROM

associates(1, 0.0001);
175597 affected rows (663.816ms)

For a cross-join, the sources in two simulated catalogs with
175,597 rows ×175,540 rows are cross-matched with a radius
of 5 arcsec. The cross-join returns 27 unmatched sources
because their distance from other sources are above 40 arcsecs.
Again, the related code is listed as follows.

Algorithm 7.

-cross-join
sql> INSERT INTO tempuniquecatalog

SELECT ∗ FROM associates(2,
0.00138888888888888888888888888889);

176539 affected rows (1.1s)
–sanity check
sql > INSERT INTO newsrc SELECT t.id AS targetid

FROM target t LEFT OUTER JOIN tempuniquecatalog tuc
ON t.id = tuc.targetid
WHERE t.imageid = 2 AND tuc.targetid IS NULL ORDER BY
t.id;

27 affected rows (96.168ms)

4.3.2. Comparison with PostgreSQL

The performance of the source association based on the
column-store database (MonetDB) is compared with a tradi-
tional row-store database (PostgreSQL) involving PostGIS.
PostGIS13 is an extension to PostgreSQL which allows it to
handle and process geographic data through GiST-based
R-Tree spatial indices. The GiST (Generalized Search Tree)
index is the most suitable for querying spatial data. GiST is
used to speed up searches on all kinds of irregular data
structures (integer arrays, spectral data, etc.) which are not
amenable to normal B-Tree indexing (Hellerstein et al. 1995).
Although PostgreSQL supports three kinds of indices by
default, i.e., B-Tree, R-Tree, and GiST, we adopt the GiST
index in the current study. At first, B-trees are hard to deal with
when applied to a two-dimensional sky image since they were
originally designed for one-dimensional, linearly ordered key
spaces. Second, R-Tree implementation is not as robust as
GiST. For example, GIS objects larger than 8K will cause the
building of the R-Tree index to fail. Finally, the GiST index
can support the nearest-neighbor search over large data sets,
which is close to the purpose of source association
(Kornacker 1999). The queries run on PostgreSQL are
identical, with modulo syntax differences. The code below
shows the experimental procedures using PostgreSQL.

Algorithm 8.

associates function experiment on PostgreSQL 9.4.4.

0. prepare data (the source lists are produced )
gwacdb =# COPY targets(imageid,zone,ra,dec,mag,pixel_x,
pixel_y,ra_err,dec_err,x,y,z,flux,

flux_err,normmag,flag,background,threshold,mag_err,
ellipticity,class_star,orig_catid)

from ’/scratch/meng/gwac/RA240_DEC10_sqd180-ccd4-
86401.cat’ delimiters ’ ’ CSV;

COPY 175540
gwacdb =# COPY uniquecatalog(id,targetid,ra_avg,dec_-
avg,flux_ref,datapoints,zone,x,y,z,

INACTIVE) from ’/scratch/meng/gwac/RA240_DEC10_sqd180-
ccd4-86402.cat’ delimiters ’ ’ CSV;

COPY 175591

1. without tuning
gwacdb =# INSERT INTO tempuniquecatalog SELECT ∗ FROM
associates(2, 0.00166666666666666666);

INSERT 0 175123
Time: 4456163.234 ms

2. with tuning
By default, postgresql uses only a single core and only
128 MB disk cache is

available to a single query.
## tuning for our machine 256 GB of RAM
#shared_buffers = 170GB
#effective_cache_size = 254GB

12 This association radius here is set to be half a pixel (11.7 arcsecond/pixel).
The uncertainty of the object position is 0.1 pixel for our simulated catalogs.
We employ 0.5 pixel (5σ) as the tolerance radius here, which is, in practice,
consistent with our above PSF method of the tolerance radius selection (see
Section 2). 13 http://postgis.net/
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(Continued)

#maintenance_work_mem = 42GB
#work_mem = 160 GB
## The linux system shared memory parameters are config-

ured to
#kernel.shmmax = 188978561024 (176GB)
#kernel.shmall = 188978561024
#kernel.shmmni = 22528.

gwacdb =# INSERT INTO tempuniquecatalog SELECT ∗ FROM
associates(2, 0.00166666666666666666);

INSERT 0 175123
Time: 2958910.701 ms

3. with GIST index and the tuning above
3.1 create geometry columns
alter table target add column geo geometry; 0.0179
alter table uniquecatalog add column geo

geometry; 0.01395
update target set geo = st_makepoint(x,y,z); 3.52
update uniquecatalog set geo = st_makepoint(x,y,

z); 1.46
3.2 create gist indicescreate index target_gist on target

using gist(geo); 3.37
create index uniquecatalog_gist on uniquecatalog using

gist(geo); 1.73
3.3 source association with radius = 6 arcsec
gwacdb =# select count(∗) from uniquecatalog c, target

t 3.89
where ST_3DDFullyWithin(c.geo, t.geo, radians

(0.00166666666666666666)) and t.imageid = 2;
Total 14.00

Table 2 compares the runtimes of source association in
MonetDB and in PostgreSQL. All of the tests are based on the
cross-match of two tables with 175,597 and 175,540 rows. The
tuning parameters for the PostgreSQL database server are
shared_buffers = 170 GB, effective_cache_size = 254 GB, and

work_mem = 160 GB. The linux system shared memory
parameters for PostgreSQL are kernel.shmmax = kernel.
shmall= 188978561024 (176 GB) and kernel.shmmni= 22528
(B). Note that only one process per database session can be
utilized by PostgreSQL, and so a single complex and CPU-
intensive query is unable to use more than one CPU. In order to
perform a fairer comparison to PostgreSQL, a single-core
performance test of MonetDB is conducted by setting
“sequential_pipe” as the SQL optimizer pipeline. The sequen-
tial_pipe allows the mserver5 to avoid using parallelism. The
average run time is 1.7 s. The single-core performance shows
that MonetDB is faster than PostgreSQL, not only due to
MonetDB’s ability to harness multiple cores, but mainly due to
the Range-Join optimization we applied to it.
By comparison, MonetDB (1.1s) is 3.54x faster than

PostgreSQL (3.89s) even though the time to create an index
in PostgreSQL is not included. It is worth noting that the GiST
index needs to be updated when new data are inserted every 15
s (the cadence of GWAC). Such a frequent update causes the
index building and data loading to become slow, which finally
significantly degrades the pipeline performance.

4.3.3. Performance of HCHDLP

In principle, the sky-model uniquecatalog table grows over
time due to new detections of events, e.g., optical transients,
asteroids, and artificial objects, which will increase the
execution time of HCHDLP. In order to test how the HCHDLP
will perform in an extreme case, we carry out stress tests on
HCHDLP by increasing the uniquecatalog table size through
an enhanced artificial mismatch rate. The artificial mismatch is
created by displacing the position of each source in the
uniquecatalog through a random offset with a Gaussian
distribution to produce simulated catalogs. Therefore, an
extremely high number (∼13,000) of new simulated sources
is added to the uniquecatalog per day. Taking into account
optical transients or other moving objects, all noise, and false
positives, the upper limit of the new objects of GWAC is less
than 1000 per day. Since the HCHDLP’s main scientific goal is
to manage the light curves of known objects, in practice, we
will clean all of the above types of sources out of the
uniquecatalog table every week. Hence, there will be very few
new sources per day. During the 10 years of operation of
GWAC, the HCHDLP performance should be stable.
Figure 7 shows the running time of HCHDLP and the

increase of the light curve data size per day as a function of
time over a period of 19 d. Each point in the figure represents
the time taken by the pipeline to produce the light curve data
for the sources (2400 × 175600 = 0.42billion, ≈79GB)
observed in each night. Nineteen days of observations resulted
in a target table of 8 billion rows (1.5 TB) and a light curve
associatedsource table of 12.7 billion rows (318 GB). The

Table 2
Source Association Query Speed Comparison between MonetDB and

PostgreSQL

Source Association Queries Mean time (second)

MonetDB with “WITH” clause 242
MonetDB with Range-Join optimized 1.1
PostgreSQL 4456
PostgreSQL tuned 3074
PostgreSQL tuned and with GiST index create index 10.08

query 3.89
sum 13.97

Note. Both under optimization or indexing, MonetDB is 3.54x faster than
PostgreSQL, even though extra time for creating a GiST Index is not taken into
account in PostgreSQL. It is important to note that the GiST Index will be
updated every time new data is inserted, so that data loading performance will
become slower, and hence this will significantly delay the whole HCHDLP.
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scripts we used to arrive at the results of this section are
available on Github.14

We argue that the HCHDLP performance is acceptable in
the context of GWAC based on our stress tests. On one
hand, the execution time is roughly linear with the increase
of light curve data per day, which is implied by the fact that
both execution time and data volume increase with date in
parallel (see Figure 7). On the other hand, the maximum
execution time to process one image is derived to be less
than 7 s from Figure 7, which is less than the GWAC
cadence of 15 s.

4.4. Performance of Shared-nothing
Distributed Database

4.4.1. Light Curve Retrieval on Partitioned Tables

If the data volume of the light curve table associatedsource
increases continuously night by night, then queries on the huge
table would be very slow. However, astronomers are usually
interested in data within certain time slices, and so in many
cases, the results of a query can be achieved by accessing a
temporal subset of partitions rather than the entire table—a
technique that is called partition pruning. Partition pruning
splits a large table into smaller, individual tables, and so

queries that access only a fraction of the data can run faster
because there is less data to scan. Partition pruning
dramatically reduces the amount of data retrieved from a disk
and shortens the processing time, thus improving query
performance and optimizing resource utilization (Herodotou
et al. 2011).
In terms of the number of partitions, a larger number of

smaller partitions provides finer granularity and causes less
I/O but also increases the management overheads. The more
partitions we generate, the more partitions we have to deal
with. Considering these trade-offs, we need to test which
chunk size can provide the best response time for our testing
system. In the test to determine the optimal chunk size for the
associatedsource table, it is horizontally partitioned on ranges
of ROW_NUMBER. Four partitioning ranges, i.e., chunk
sizes, are tested to find which provides the best response time.
Each chunk is created by accumulating the ROW_NUMBER
of the associatedsource table to reach the size of 6 × 109,
12 × 109, 24 × 109, and 48 × 109 rows, respectively. The
SQL extract below is used to generate the timing information
of Figure 8.
For each chunk size, the above queries of light curve

retrieval are launched to search for all of the time series of flux
measurements for a source of uniqueid =1 from all partitioning
chunks, so that the WHERE clause does not specify which
partitions are relevant for the query.

Figure 7. Light curve pipeline performance and the light curve data generated every day over a period of 19 d; the execution time of the stress test goes up linearly
with every day’s increasing data size. For the first day’s data volume, which is equivalent to GWAC daily data volume, the average time to process one image is 3.95
s, which is much faster than the speed of GWAC’s high-cadence image generation of 15 s.
(A color version of this figure is available in the online journal.)

14 https://github.com/wan-meng/gwac_pipeline, https://github.com/wan-
meng/lightcurve-chunksize, https://github.com/wan-meng/concurrency
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Algorithm 9.

SELECT i.jd, t1.flux
FROM (SELECT flux,imageid FROM

(SELECT targetid
FROM associatedsourceX
WHERE uniqueid = 1)
t0, targetX t

WHERE t0.targetid = t.id
) t1,
image i

WHERE t1.imageid = i.imageid;

The response times are measured for both hot and cold runs.
The hot runs refer to all of the necessary data which is already
loaded into the main memory, while the cold ones are where
data needs to be loaded into the memory before the queries start
running. MonetDB is a main-memory database, the entire main
memory of which can be viewed as a cache for disk I/O access
(Manegold et al. 2002). MonetDB aggressively uses as much
memory as is available, as many cores as possible in parallel
without many tuning knobs, and tries to avoid going to a slow
disk, so that caching effects have a significant impact on
performance.

For chunk sizes of 6B to 48B, the tested data size ranges
from 710 GB for a period of 8 d to 3 TB for a period of 26 d.
The data set includes the light curve table associatedsource and
the target table loaded into MonetDB beforehand. Then, we ran
the above light curve retrieval query using uniqueid =1 and
measured the (wall clock) time it took to produce the result. In

cold runs, the database is stopped and all file system caches are
emptied. In hot runs, we start up the database and run the query
twice to warm up the caches. For both cold and hot runs, every
query was run five times to control for random fluctuations in
the system I/O and background activity.
Figure 8 shows the normalized response times of returning a

row as a function of partitioning chunk size. It is obvious that
the response time of the hot runs is much shorter than that of
the cold runs, as expected. As we can see, for all of the cold
runs, response times are almost unvaried. For the hot runs and
chunk size between 6B and 24B, the MonetDB maps all needed
data into the memory via the disk cache to greatly increase the
performance by avoiding disk I/O. When the chunk size grows
to 48B, related columns of the associatedsource table and
target table touched by this query add up to 1035 GB, that is,
approximately four times the RAM capacity of 256 GB.
Therefore, the kernel swaps data out to free up some memory,
which causes severe performance degradation. Therefore, our
tests suggest that the chunk size of 24B is an optimal trade-off
for our testing system. It is a good balance between the
partitioning size of tables and performance.

4.4.2. Scalable Concurrency

Good concurrency is highly desirable. A database with good
concurrency allows for a large number of users to access a
database without any noticeable impact on performance
(Bernstein & Goodman 1981). Appropriate concurrent query
execution facilitates improved resource utilization and aggre-
gate throughput, while too much concurrency makes it a
challenge to overall query performance (Duggan et al. 2011).
To provide both the fastest speed and highest concurrency of

our database, the goal of this experiment is to find at which
degree of concurrency the light curve retrieval query is fastest.
In the experiment, we increase the number of concurrent users
and measure the response time of random light curve retrievals
on the distributed database, which is accessed either via the
REMOTE table on the master node or via the local table on the
worker nodes. We fire up (1/10/15/20) parallel queries at a
time to represent multiple users accessing the database with
data volumes of 1 TB and 2 TB. The test results are shown in
Figure 9. In this figure, it is obvious that the response time of
concurrent queries for 1 TB is much shorter than that for 2 TB.
In the 1 TB case, the average response time of a single query is
0.8/0.117/0.121/0.199 for a concurrency of 1/10/15/20. So,
if we fire up 10/15/20 queries at a time every 10 s, then 60
queries will take a total of 7.02/7.28/11.94 s instead of 48 s for
1 user. In 1 min, we will get throughputs of 60/90/120
queries/min. This test shows that scheduling appropriate
concurrency can boost performance and throughput by efficient
use of hardware resources. If we emphasize response time
performance over throughput as a scientific program, then there
should be no more than 15 concurrent users. However, when

Figure 8. Performance of light curve retrieval over different partitioning chunk
sizes.

(A color version of this figure is available in the online journal.)
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more throughput is the evaluation criterion, 20 users is a better
choice.

5. Conclusion

We develop a real-time light curve processing pipeline
HCHDLP for the GWAC project. It is based on the column-
store database engine MonetDB and has been optimized for the
large amounts of data of GWAC. From outside and inside the
database engine, MonetDB has been improved to reduce the
time consumed in the source association procedure. Outside the
database engine, a sorted version of the inner relation ordered
by the zone column is created before the join phase, and a SQL
WITH clause is adopted to avoid multiple recomputations by
MonetDB. Inside the database engine, the RANGE-JOIN query
is implemented through a quick binary search and compressed
column imprints. Furthermore, in building light curves of one-
to-many match types, HCHDLP drops the uniqueness check
during running and replaces DELETE with INSERT (i.e., insert
the old relationships into a small auxiliary table).

As a result of optimization, our HCHDLP can process one
catalog in 3.95 s on average, which is significantly shorter than
the image cadence of 15 s of GWAC. Our tests show that the
source association is sped up by a factor of 220x relative to that
before optimization. According to theoretical analysis, the time
complexity is reduced from O( r l∣ ∣ · ∣ ∣) to r llog∣ ∣ · ∣ ∣ (binary
search) or C r l· ∣ ∣ · ∣ ∣ (imprints, C = 1). We have also
performed comparisons between MonetDB and PostgreSQL in
performance of source association queries and find that the
former takes 1.1 s on two tables with 175,597 rows × 175,540
rows, which is 3.54× faster than the row-store disk-based
database PostgreSQL.

We also built a shared-nothing distributed database to
manage long-term light curves using a two-level time
partitioning strategy via the MERGE TABLE and REMOTE
TABLE technology of MonetDB. The optimal partitioning
chunk size should provide both a short response time and fewer
partitions, and is determined through tests. We find that the
response time of MonetDB scales linearly with the number of
users. In this scalable solution, both short- and long-running
queries on large data sets are available which provide guidance
for a solution to GWAC in the management of massive data.
In our future work, the HCHDLP may be further optimized

in processing speed and match criteria. The GWAC real-time
image processing must be completed in 15 s for one image, but
the current implementation of pipeline 0 (see Figure 2) takes
almost 10 s and HCHDLP takes 5.8 s (including both data
loading and the cross-match). We note that pipeline 0 can be
sped up through GPU implementation, and advanced algo-
rithms based on our current optimization are available for the
source association of HCHDLP. Moreover, the match criteria
of source association will take into account the addition of a
flux factor and the use of a variable tolerance radius with the
brightness of objects to increase the accuracy of cross-
matching. Our designed shared-nothing distributed database
can provide one preliminary solution to managing light curves
in the long term. It is certain that with advancing technology,
there are other, possibly better, solutions that may overcome
the data challenge. Additionally, there are some optimization
options to reduce the light curve data volume, such as
aggregate source characterization or reducing the time resolu-
tion of the data. Finally, estimating the scalability of HCHDLP
performance over the full survey duration with realistic new
source counts is key for a long-term astronomical project like
GWAC. The upper limit of real source counts for GWAC is

Figure 9. Single user vs. 10 vs. 20 users response time on 1 TB/2 TB data sets.
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less than 1000 per day, taking into account optical transients or
other moving objects, all noises, and false positives. In practice,
we will clean all of the above kinds of sources out of the
uniquecatalog table every week. Hence, new sources per day
are very few and the HCHDLP performance over the survey
duration should be stable in the long term.
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