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Abstract

We study cyclic polling models with exhaustive service at each queue under a va-
riety of non-FCFS local service orders, namely Last-Come-First-Served (LCFS) with
and without preemption, Random-Order-of-Service (ROS), Processor Sharing (PS),
the multi-class priority scheduling with and without preemption, Shortest-Job-First
(SJF) and the Shortest Remaining Processing Time (SRPT) policy. For each of these
policies, we first express the waiting-time distributions in terms of intervisit-time dis-
tributions. Next, we use these expressions to derive the asymptotic waiting-time
distributions under heavy-traffic assumptions, i.e., when the system tends to saturate.
The results show that in all cases the asymptotic waiting-time distribution at queue i
is fully characterized and of the form ΓΘi, with Γ and Θi independent, and where Γ is
gamma distributed with known parameters (and the same for all scheduling policies).
We derive the distribution of the random variable Θi which explicitly expresses the
impact of the local service order on the asymptotic waiting-time distribution. The
results provide new fundamental insight in the impact of the local scheduling policy
on the performance of a general class of polling models. The asymptotic results sug-
gest simple closed-form approximations for the complete waiting-time distributions
for stable systems with arbitrary load values. The accuracy of the approximations is
evaluated by simulations.
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1 Introduction

Polling systems are multi-queue systems in which a single server visits the queues in some
order to serve customers. Polling models find many applications in areas like computer-
communication systems, production systems, manufacturing systems, inventory systems
and robotics (see [8] for an extensive overview). Motivated by their wide applicability,
polling models have been extensively studied over the past few decades; we refer to [32]
for an overview of the state-of-the-art. For operating a polling system, design choices have
to be made about (1) the order in which the server visits the queues, (2) which customers
are served during a visit of the server to a queue, and (3) the order in which customers
at the same queue are served. The vast majority of papers in the literature is focused on
the first two decisions. In the current paper, we address the third decision, by investi-
gating the influence of the local service order policy on the waiting-time distributions of
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the customers at each of the queues. To this end, we study Poisson-driven cyclic polling
systems with general service- and switch-over time distributions with exhaustive service
at all queues. We consider the following local service disciplines: LCFS (with and without
preemption), ROS, local PS, the multi-class priority scheduling (with and without pre-
emption), SJF and SRPT; see Table 2 for a brief description. In doing so, we derive new,
exact expressions for the waiting-time distributions. We use these expressions to derive
exact expressions for the asymptotic waiting-time distributions under heavy-traffic (HT)
assumptions, i.e., when the load approaches 1.

The motivation for studying the impact of the local service order on the waiting-time
performance is two-fold. First, in many real-life applications the local service order is not
FCFS: examples are Bluetooth and 802.11 protocols, scheduling policies at routers, and
I/O subsystems in web servers [17; 31]. In these cases the workloads are known to have
high variability and priority-based scheduling could therefore be beneficial; other exam-
ples are in the domain of production-inventory control, where local scheduling proved its
worth [2]. Second, gaining fundamental understanding of the implications of the choice of
the local service order on the waiting-time performance of polling systems is of queueing-
theoretical interest.

There are several good reasons for studying HT asymptotics. First, it is the most impor-
tant and challenging regime from a practical point of view, because the proper operation
of the system is particularly critical when the system is heavily loaded. Optimizing the
local service order policy is, therefore, an effective mechanism for improving system per-
formance without purchasing additional resources. Second, an attractive feature of HT
asymptotics is that in many cases they lead to strikingly simple expressions for the per-
formance measures of interest. This remarkable simplicity of the HT asymptotics leads to
structural insights into the dependence of the performance measures on the system param-
eters and gives fundamental understanding of the behavior of the system in general. Third,
HT asymptotics form an excellent basis for developing simple, accurate approximations
of the performance measures (distributions, moments, tail probabilities) for stable systems.

In the literature, many papers focus either on the analysis of polling systems or on schedul-
ing policies for single-queue systems, but the combination of the two has received very
little attention. More precisely, almost all theoretical studies of scheduling policies are
performed in single-queue settings such as the M/G/1 and GI/G/1 queue with only a
few exceptions studying the effect of local scheduling in multi-queue polling systems. For
cyclic polling systems with gated and exhaustive service Wierman et al. [33] use the Mean
Value Analysis (MVA, [34]) framework to derive the mean delay at each of the queues
for various scheduling disciplines such as FCFS, LCFS, Foreground-Background (FB), PS,
SJF and fixed priorities. Boxma et al. [10] obtain the waiting-time distribution in cyclic
(globally-)gated polling systems for various local service orders. Bekker et al. [4] de-
rive HT limits of the waiting-time distributions in cyclic polling models with gated and
globally-gated service for the LCFS, ROS, PS and SJF local service orders. In the cur-
rent paper, we extend the results to the case of exhaustive service at each of the queues,
which is fundamentally more complicated than the gated and globally-gated case (as also
stated in [10]). The additional complexity of the exhaustive-service model compared to
the (globally-)gated model is that customers that arrive during a visit of the server at a
queue may intervene with the customers that were present at the beginning of that visit
period (see also Section 11 for more detailed discussion). Nonetheless, recent progress
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for exhaustive models has been made. Boon et al. [7] study the waiting-time distribution
in a two-queue polling model with either the exhaustive, gated or globally-gated service
discipline, where the first of these two queues contains customers of two priority classes.
In [6] these results are generalized to a polling model with N queues and Ki priority levels
in queue i. Moreover, for the case of exponential service times at each queue, Ayesta et
al. [1] derive the sojourn-time distribution in polling systems with exhaustive service and
where the local scheduling policy is PS. For a general service requirement distribution the
analysis is restricted to the mean sojourn time.

In this paper, we study Poisson-driven cyclic polling models with general service-time
and switch-over time distributions, and with exhaustive service at all queues (see Section
11 for a relaxation of that assumption). For this model, we consider the following seven
scheduling policies that determine the local order in which the customers at a given queue
are served: FCFS (which is used as a benchmark), LCFS (with and without preemption),
ROS, PS, the multi-class priority scheduling (with and without preemption), SJF and
SRPT. For these models, we derive new, exact expressions for the waiting-time distribu-
tions in terms of the intervisit time distributions for stable systems. Subsequently, we use
these expressions to derive the asymptotic waiting-time distributions for each of the local
order policies under HT assumptions (i.e., when the load approaches 1). We show that
in all cases the asymptotic waiting-time distribution at queue i can be expressed as the
product of two independent random variables Γ and Θi, where Γ is gamma-distributed
with known parameters that are independent of the scheduling policy. Moreover, we de-
rive the distribution of the random variable Θi, which expresses the impact of the local
service order on the asymptotic waiting-time distribution. The results are exact and give
a full characterization of the limiting behavior of the system, and as such provide new
fundamental insight in the influence of the local scheduling policy on the waiting-time
performance of polling models. As a by-product, the HT limits suggest simple closed-form
approximations for the complete waiting-time distributions for stable systems with arbi-
trary load values strictly less than 1. The accuracy of the approximations is evaluated by
several numerical examples.

The remainder of the paper is organized as follows. In Section 2, the model is described
and the notation required is introduced. In Section 3, we present preliminary results,
including the HT asymptotics for FCFS that serve as a benchmark. The waiting-time
distributions and HT asymptotics for LCFS, ROS, PS, multi-class priority queues, and
SJF and SRPT are derived in Sections 4–8, respectively. The results are summarized in
Section 9. Furthermore, Section 10 proposes a simple approximation for the waiting-time
distributions and present numerical results to evaluate the accuracy of the approximations.
Finally, Section 11 contains a number of concluding remarks and addresses several topics
for further research.

2 Notation and model description

In this section we introduce the notation and give a description of the model. To start,
Table 1 gives useful notation with respect to a one-dimensional absolutely-continuous ran-
dom variable X.

The model is as follows. We consider a system of N ≥ 2 infinite-buffer queues, Q1, . . . , QN ,
and a single server that visits and serves the queues in cyclic order. At each queue, the
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fX(·) Probability density function (pdf) of X
FX(·) Cumulative distribution function (cdf) of X
X∗(·) Laplace-Stieltjes transform (LST) of X, i.e., X∗(s) = E[e−sX ]
E[X] Expected value of X
E[Xk] kth moment of X
c2
X Squared coefficient of variation (SCV) of X
Xres Residual length of X

with E[Xres] = E[X2]
2E[X] and LST E[e−sX

res
] = 1−E[e−sX ]

sE[X]

X Length-biased version of X

with fX(x) = xfX(x)
E[X]

Table 1: Notation with respect to a random variable X.

service discipline is exhaustive; that is, the server proceeds to the next queue when the
queue is empty. Customers arrive at Qi according to a Poisson process {Ni(t), t ∈ R}
with rate λi. These customers are referred to as type-i customers. The total arrival rate
is denoted by Λ =

∑N
i=1 λi. The service time of a type-i customer is a random vari-

able Bi. The kth moment of the service time of an arbitrary customer is denoted by
E[Bk] =

∑N
i=1 λi E[Bk

i ]/Λ, k = 1, 2, . . . . The load offered to Qi is ρi = λi E[Bi] and the to-

tal load offered to the system is equal to ρ =
∑N

i=1 ρi. A necessary and sufficient condition
for stability of the system is ρ < 1. The switch-over time required by the server to proceed
from Qi to Qi+1 is a random variable Si. We let S =

∑N
i=1 Si denote the total switch-over

time in a cycle. The random variable Ci describes the cycle time of the server, defined as
the time between two successive departures of the server from Qi. The mean cycle time is
known to be the same for all queues, and is given by E[Ci] = E[C] = E[S]/(1−ρ). Denote
by Vi the visit time at Qi, defined as the time elapsed between a polling instant at Qi (i.e.,
the moment the server arrives at the queue) and the server’s successive departure from Qi.
Denote by Ii the intervisit time of Qi, defined as the time elapsed between a departure of
the server from Qi and the successive polling instant at Qi. Note that Ci = Ii + Vi, for
i = 1, . . . , N .

The local service order policy of a queue determines the order in which the customers
are served during a visit period of the server at that queue. Throughout this paper, we
consider the local service order policies given in Table 2. We only consider work-conserving
policies. For policy P ∈ {FCFS, LCFS, LCFS-PR, ROS, PS, NPRIOR, NPRIOR-PR, SJF,
SRPT}, we denote i ∈ P if Qi receives scheduling policy P ; for example, FCFS is the
(index) set of queues that are served on a FCFS basis.

In this paper we mainly focus on heavy-traffic (HT) limits, i.e., the limiting behavior
as ρ approaches 1. The HT limits, denoted ρ ↑ 1, taken in this paper are defined such
that the arrival rates are increased, while keeping both the service-time and switch-over
time distributions and the ratios between the arrival rates fixed. The notation →d means
convergence in distribution. For each variable x that is a function of ρ, we denote its value
evaluated at ρ = 1 by x̂.

Let Ti denote the sojourn time of an arbitrary customer at Qi, defined as the time between
the moment of arrival of a customer and the moment at which the customer departs from
the system. The waiting time Wi of an arbitrary customer at Qi is defined as the sojourn
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FCFS First-Come-First-Served serves jobs in the order of arrival.
LCFS Last-Come-First-Served serves the job that arrived most recently, with-

out preemption.
LCFS-PR Last-Come-First-Served with preemptive resume serves the job that ar-

rived most recently preempting the job currently in service.
ROS Random Order of Service randomly selects a job from the jobs that are

waiting.
PS Processor Sharing serves all jobs simultaneously at the same rate.
NPRIOR n-class priority regime serves jobs within the highest priority class first,

continuing with other priority classes as long as no jobs with higher
priority are present. Jobs within the same priority class are served in
the order of arrival.

NPRIOR-PR n-class priority regime with preemptive resume serves jobs with higher
priority first, preempting jobs with lower priority which are already in
service, jobs within the same priority class are served FCFS.

SJF Shortest-Job-First non-preemptively serves the job in the system with
the smallest original service time.

SRPT Shortest-Remaining-Processing-Time preemptively serves the job with
the shortest remaining processing time.

Table 2: A brief description of the scheduling policies discussed in this paper.

time minus the service requirement. When ρ ↑ 1, all queues become unstable, therefore
the focus lies on the limiting distribution for ρ ↑ 1 of the random variables W̃i := (1−ρ)Wi

and T̃i := (1 − ρ)Ti, referred to as the scaled waiting times and sojourn times at Qi, re-
spectively. We denote by Γ(α, µ) a gamma-distributed random variable with shape and
rate parameters α and µ, respectively. Moreover, we denote by U [a, b], with a < b, a
random variable that is uniformly distributed over the interval [a, b]. For later reference,
note that the LST of the random variable U [a, b]Γ(α+ 1, µ), where U [a, b] and Γ(α+ 1, µ)
are independent, is given by

E
[
e−sU [a,b]Γ(α+1,µ)

]
=

µ

αs(b− a)

{(
µ

µ+ sa

)α
−
(

µ

µ+ sb

)α}
(Re(s) > 0). (1)

In Sections 3 to 8 we derive expressions for the LSTs of the waiting-time distributions for
the scheduling disciplines shown in Table 2.

3 Preliminaries and method outline

In this section we formulate a number of known preliminary results that serve as a ref-
erence for the remaining sections. In Section 3.1 we give expressions for the asymptotic
distributions of the cycle and intervisit times under HT assumptions. In Section 3.2 we
use these results to give an expression for the LST of the waiting-time distribution for the
case of FCFS service. We refer to [29] for rigorous proofs of these results.

3.1 Cycle and intervisit times

To start, let us consider the distribution of the cycle time Ci. Recall that Ci is defined as
the time between two successive departures of the server from Qi. A simple but important
observation is that the distribution of Ci does not depend on the local scheduling policy,
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provided that the policy is work-conserving. This means that we can use the results for
the cycle times and also for the intervisit times throughout the rest of this paper. The
following result gives a characterization of the limiting behavior of the scaled cycle-time
distributions, stating that the (scaled) cycle times C̃i := (1 − ρ)Ci converge to a gamma
distribution with known parameters.

Property 1 (Convergence of cycle times). For i = 1, . . . , N ,

C̃i →d Γ̃, (2)

where Γ̃ has a gamma distribution with parameters

α :=
E[S]δ

σ2
, µ :=

δ

σ2
, (3)

with

σ2 :=
E[B2]

E[B]
, and δ :=

N∑
i=1

ρ̂i(1− ρ̂i). (4)

Note that the distribution of the cycle time Ci is related to the intervisit time Ii in the
following way (see e.g. [5]):

E[Ii] = (1− ρi)E[Ci], and E[e−(s+λi(1−E[e−sξi ]))Ii ] = E[e−sCi ]. (5)

Here ξi is the busy period of a regular M/G/1 queue with arrival rate λi and service time
Bi. The (scaled) intervisit times Ĩi := (1 − ρ)Ii converge (in distribution) to a gamma
distribution with known parameters as stated in the property below.

Property 2 (Convergence of intervisit times). For i = 1, . . . , N , as ρ ↑ 1,

Ĩi →d Γ̃i, (6)

where Γ̃i has a gamma distribution with parameters

α :=
E[S]δ

σ2
, µi :=

δ

(1− ρ̂i)σ2
, (7)

where δ and σ2 are given in Equation (4).

In the sequel, we repeatedly use Properties 1 and 2 to derive expressions for the asymptotic
scaled waiting-time distributions associated with each of the service disciplines considered
herein. For each policy we use a two-step approach:

(a) we derive an expression for the LST of the limiting distribution of the waiting times
in terms of the cycle- and/or intervisit-time distribution;

(b) we combine this expression with Property 1 or 2 to obtain an expression for the LST
of the waiting-time distribution in HT and interpret the resulting LST.

To conclude, we add intuition for the distribution using the Heavy Traffic Averaging
Principle (HTAP).
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3.2 First-Come-First-Served

Here we illustrate the two-step approach described above for FCFS service. Regarding
the first step, the following result gives an expression for the LST of the waiting time Wi

in terms of the distribution of the intervisit time Ii (cf. [26]):

Property 3 (Waiting times in terms of intervisit times). For Re(s) > 0 and ρ < 1,

W ∗i (s) =
(1− ρi)s

s− λi(1−B∗i (s))

1− I∗i (s)

sE[Ii]
(i ∈ FCFS). (8)

Next, as step (b), combining Properties 2 and 3, the expression for E[Ci], and taking limits
we obtain: For Re(s) > 0,

W̃ ∗i (s) := lim
ρ↑1

W ∗i (s(1− ρ)) =
1

(1− ρ̂i)E[S]s

{
1−

(
µi

µi + s

)α}
(i ∈ FCFS). (9)

Using (1), this leads to the following characterization of the limiting behavior of the scaled
waiting-time distribution derived in [30]

Property 4 (Convergence of the waiting times). For ρ ↑ 1,

W̃i →d UiĨi (i ∈ FCFS), (10)

where Ui is a uniformly distributed random variable on [0, 1], and Ĩi has a gamma distri-
bution with parameters α+ 1 and µi, where α and µi are given in Equation (7).

Note that Ĩi is the length-biased counterpart of Ĩi, a gamma distributed random variable
with parameters α and µi as in Equation (7). It is well known that if a gamma random
variable has parameters α and µi, then its length-biased version has parameters α+ 1 and
µi.

Remark 1 (Intuition by the Heavy Traffic Averaging Principle). Property 4
states that the limiting behavior of Wi is of the form UFCFSΓ, where UFCFS is uniformly
distributed on the interval [0, 1]. An intuitive explanation for this follows from the Heavy
Traffic Averaging Principle (HTAP) combined with a fluid model ([12; 13; 21]). Loosely
speaking, the HTAP principle states that the work in each queue is emptied and refilled
at a rate that is much faster than the rate at which the total workload is changing. This
implies that the total workload can be considered as a constant during the course of a
cycle, while the loads of the individual queues fluctuate like a fluid model.

Figure 1 gives a graphical representation of the fluid model. On the horizontal axis,
the course of a cycle with fixed length c is plotted. The cycle is divided in two parts,
the intervisit time Ii with length (1 − ρ̂i)c and the visit time Vi with length ρ̂ic. On the
vertical axis the workload in Qi is plotted. The cycle starts at the completion of a visit
to Qi. Throughout the cycle, work arrives with intensity 1 and a fraction ρ̂i is directed
to Qi. During the visit time Vi work flows out of Qi with rate 1 until the queue is empty.
We refer to [5, p. 34-39] for an intuitive explanation based on this picture.

Here, we opt for a more direct analysis of the fluid model. Let the uniform random variable
U on [0,1] denote the fraction of the cycle c that has elapsed at the arrival epoch of this
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ρ̂i(1− ρ̂i)c

c

(1− ρ̂i)c ρ̂ic

ρ̂i ρ̂i − 1

Figure 1: Fluid limits in heavy traffic; the amount of fluid in Qi is plotted over the course
of a cycle.

particle. The particle has to wait for the remaining length of the cycle (1−U)c except for
the amount of work that arrives at Qi during the cycle after the arrival of the particle. As
work to Qi arrives at rate ρ̂i, the latter equals ρ̂i(1−U)c. Hence, the waiting time equals
(1 − U)c − ρ̂i(1 − U)c = (1 − U)(1 − ρ̂i)c. Using the fact that U [0, 1] is in distribution
equal to 1 − U [0, 1] and Ii = (1 − ρ̂i)c, we conclude that W̃i is uniformly distributed on
[0, 1]Ii. This interpretation gives much insight in the heavy-traffic asymptotics.

4 Last-Come-First-Served

In this section we consider the LCFS service discipline. In Subsection 4.1 we derive the
results for LCFS without preemption and in Subsection 4.2 we look at queues with LCFS
preemptive resume (LCFS-PR) service. In both subsections, we first provide a derivation
of the LST of Wi for all ρ < 1, giving insight in the terms contributing to the delay.
Then we study the behavior of Wi in the HT regime. Since we are interested in deriving
the waiting-time distributions of customers that arrive in steady state, it is convenient
to define stationary versions of the arrival processes on the entire real line. Hence, each
arrival process Ni consists of points {Ti,n}n∈Z, where Ti,0 ≤ 0 ≤ Ti,1. Associated with each
point is the busy period ξi,n generated by the arriving customer. The points (Ti,n, ξi,n)
define a marked Poisson process on R2.

4.1 Non-Preemptive LCFS

Now we derive the LST of the waiting time of a tagged customer T that arrives at queue
i in steady state. Without loss of generality, we assume that T arrives at time zero. We
have to distinguish between the case where T arrives during an intervisit time, and the
case where T arrives during a visit time.

Case I: the tagged customer arrives during an intervisit time
In this case, T has to wait for the server to start serving queue i; this is a residual inter-
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visit time. In addition, T has to wait for all customers that arrived after him during the
residual intervisit time and for the busy periods they generate. We have, for i ∈ LCFS,

Wi (given T arrives during intervisit time) = Iresi +
∑

Ti,k∈(0,Iresi )

ξi,k. (11)

Conditioning on Iresi and the number of arrivals during Iresi (as in [10]), we have for
Re(s) > 0,

E[e−sWi |arrival during intervisit time]

=

∞∫
t=0

e−st
∞∑
n=0

e−λit
(λit)

n

n!
E[e−sξi ]n dP(Iresi ≤ t) (12)

=

∞∫
t=0

e−t(s+λi(1−E[e−sξi ])) dP(Iresi ≤ t)

=
1− E[e−(s+λi(1−E[e−sξi ])Ii)]

(s+ λi(1− E[e−sξi ]))E[Ii]

=
1− E[e−sCi ]

(s+ λi(1− E[e−sξi ]))E[C](1− ρi)
(i ∈ LCFS), (13)

where for the final step we use Equation (5).

Case II: the tagged customer arrives during a visit time
Note that T now arrives during the service of another customer. Hence, he has to wait
for a residual service duration. In addition, he has to wait for the duration of the busy
periods generated by the customers that arrived during the residual service time, as they
are served before the tagged customer. Hence, we have for i ∈ LCFS,

Wi (given arrival during visit time) = Bres
i +

∑
Ti,k∈(0,Bresi )

ξi,k. (14)

Using the similarity between (11) and (14), we immediately see that, for i ∈ LCFS,

E[e−sWi |arrival during visit time] =
1− E[e−(s+λi(1−E[e−sξi ])Bi)]

(s+ λi(1− E[e−sξi ]))E[Bi]

=
1− E[e−sξi ]

(s+ λi(1− E[e−sξi ]))E[Bi]
,

where the second equality follows from the well known functional equation satisfied by
the LST of the busy period of an M/G/1 queue (see e.g., [28, p. 354]). Note that the
probability that an arrival occurs during a visit time is equal to ρi. This leads to the
following proposition.

Proposition 1. For ρ < 1, Re(s) > 0,

W ∗i (s) = ρi
1− E[e−sξi ]

(s+ λi(1− E[e−sξi ]))E[Bi]

+ (1− ρi)
1− E[e−sCi ]

(s+ λi(1− E[e−sξi ]))E[C](1− ρi)
(i ∈ LCFS). (15)
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Note that the first term appears in the LST of the waiting time in an M/G/1 queue with
LCFS service order (see e.g., [28, p. 357]). Also note that Equation (15) was found in [24],
where intervisit periods are replaced with rest periods.

The following result gives an expression for the asymptotic waiting-time distribution for
LCFS service in heavy traffic.

Theorem 1. For ρ ↑ 1,

W̃i →d

{
0 w.p. ρ̂i
UiC̃i w.p. 1− ρ̂i

(i ∈ LCFS),

where Ui is a uniformly distributed random variable on the interval [0, 1] and C̃i has a
gamma distribution with parameters α + 1 and µ, where α and µ are given in Equation
(3).

Proof. Combining Proposition 1 with Property 1 gives the following expressions for the
LST of the (scaled) waiting-time distribution. For i ∈ LCFS, Re(s) > 0,

W̃ ∗i (s) = lim
ρ↑1

W ∗i (s(1− ρ))

= lim
ρ↑1

(
ρi

1− E[e−s(1−ρ)ξi ]

(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))E[Bi]

+ (1− ρi)
1− E[e−s(1−ρ)Ci ]

(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))E[C](1− ρi)

)
. (16)

Let us first consider the first term on the right-hand side of the final equation:

lim
ρ↑1

ρi
1− E[e−s(1−ρ)ξi ]

(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))E[Bi]

= lim
ρ↑1

ρi
(1− E[e−s(1−ρ)ξi ])/(1− ρ)

sE[Bi] + ρi((1− E[e−s(1−ρ)ξi ])/(1− ρ))

= ρ̂i
E[ξi]s

E[Bi]s+ ρ̂i E[ξi]s

= ρ̂i.

In the second equality, we use l’Hôpital’s rule on both the numerator and the denominator,
and the fact that the derivative of E[e−s(1−ρ)ξi ] at s(1− ρ) = 0 is equal to −E[ξi]. For the
third equality we apply the well-known result E[ξi] = E[Bi]/(1− ρi).

Now consider the second term on the right-hand side of (16):

lim
ρ↑1

(1− ρi)
1− E[e−s(1−ρ)Ci ]

E[C](1− ρi)(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))

= lim
ρ↑1

(1− ρi)
1−

(
µ
µ+s

)α
E[S](1− ρi)(s+ λi(1− E[e−s(1−ρ)ξi ])/(1− ρ))

= (1− ρ̂i)
1−

(
µ
µ+s

)α
E[S](1− ρ̂i)s(1 + λi E[ξi])

= (1− ρ̂i)
1

E[S]s

{
1−

(
µ

µ+ s

)α}
. (17)
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Combining the above gives

W̃ ∗i (s) = ρ̂i + (1− ρ̂i)
1

E[S]s

{
1−

(
µ

µ+ s

)α}
(i ∈ LCFS), (18)

where α and µ are given in (3). Note that (18) corresponds to the LST of a random
variable that is equal to 0 with probability ρ̂i and to a uniform random variable on [0, 1]
times a gamma distribution with probability 1− ρ̂i. This completes the proof.

Remark 2 (Intuition via Heavy Traffic Averaging Principle). The mixed distri-
bution can be intuitively explained with the Heavy Traffic Averaging Principle (HTAP)
and a fluid model, see Figure 1. With probability ρ̂i a particle arrives during Vi. In
this case the scaled waiting time is negligible in HT, since the residual service time and
the busy periods generated by customers arriving during this time, do not scale with ρ.
With probability (1 − ρ̂i) a particle arrives during Ii. Let the uniform random variable
UI denote the fraction of Ii that has elapsed at the arrival epoch of this particle. This
arriving particle has to wait for the remaining intervisit time (1 − UI)Ii, in addition it
has to wait for the busy periods generated by particles that arrived during that time for
duration ρ̂i(1−UI)Ii/(1− ρ̂i), the amount of work built up during the remaining intervisit
time divided by the rate at which the queue is emptied. Adding the two terms and noting
that (1−UI) is in distribution equal to UI we get for the scaled waiting time of a particle

arriving during an intervisit time: W
(I)
i = UIIi/(1 − ρ̂i) = UIc. Now we can use the

HTAP and the results from [29] to find the distribution of c and arrive at the result given
in Theorem 1.

4.2 LCFS with Preemptive Resume

The analysis of LCFS-PR service is largely similar to the non-preemptive LCFS case.
When an arrival occurs during an intervisit time, the waiting time of the customer consists
of the busy periods generated by the customers arriving during the service of the tagged
customer, the residual intervisit time and the busy periods generated by the customers
arriving during the residual intervisit time. This gives for Case I (see Section 4.1): For
i ∈ LCFS-PR,

Wi (given T arrives during intervisit time) =
∑

Ti,k∈(0,Bi)

ξi,k+Iresi +
∑

Ti,k∈(0,Iresi )

ξi,k. (19)

When the arrival occurs during a visit period, the waiting time of T consists of the busy
period generated by customers arriving during the service of the tagged customer. We
have in Case II: For i ∈ LCFS-PR,

Wi (given T arrives during visit time) =
∑

Ti,k∈(0,Bi)

ξi,k. (20)

Due to the preemptive nature of the discipline, the first term of (19) is equal to (20),
the waiting time in Case II, so we calculate the LST of the waiting time of Case II
first. Conditioning on the service time and the number of arrivals therein yields: For

11



i ∈ ILCFS-PR,

E[e−sWi |T arrives during visit time] = E[e
−s(

∑
Ti,k∈(0,Bi)

ξi)
]

=

∞∫
t=0

∞∑
n=0

e−λit
(λit)

n

n!
E[e−sξi ]n dP(Bi ≤ t)

=

∞∫
t=0

e−t(λi(1−E[e−sξi ])) dP(Bi ≤ t)

= B∗i (λi(1− E[e−sξi ])).

The last two terms of (19) are equal to the waiting time of non-preemptive LCFS given in
(11). We use the corresponding LST given in (13) to arrive at (21): For i ∈ LCFS-PR,
Re(s) > 0,

E[e−sWi |T arrives during intervisit time] =

B∗i (λi(1− E[e−sξi ]))
1− E[e−sCi ]

(s+ λi(1− E[e−sξi ]))E[C](1− ρi)
. (21)

Combining the two cases leads to the following expression for the LST of the waiting time
at Qi in terms of the cycle time.

Proposition 2. For ρ < 1, i ∈ LCFS-PR, Re(s) > 0,

W ∗i (s) = B∗i (λi(1− E[e−sξi ])) (22)

×
(
ρi + (1− ρi)

1− E[e−sCi ]

(s+ λi(1− E[e−sξi ]))E[C](1− ρi)

)
.

The next result gives the HT limit of the distribution of W̃i.

Theorem 2. For ρ ↑ 1,

W̃i →d

{
0 w.p. ρ̂i
UiC̃i w.p. 1− ρ̂i

(i ∈ LCFS-PR),

where Ui is a uniformly distributed random variable on the interval [0, 1] and C̃i has a
gamma distribution with parameters α + 1 and µ, where α and µ are given in Equation
(3).

Proof. Using Equation (17) and the fact that for Re(s) > 0 it holds that limρ↑1B
∗
i (λi(1−

E[e−sξi ])) = 1, we immediately see that the LST of W̃i in HT is given by

W̃ ∗i (s) := lim
ρ↑1

W ∗i (s(1− ρ))

= ρ̂i + (1− ρ̂i)
1

E[S]s

{
1−

(
µ

µ+ s

)α}
(i ∈ LCFS-PR), (23)

with α and µ given in (3).

Note that the HT scaled waiting-time distribution (23) for i ∈ LCFS-PR is equal to
the HT scaled waiting-time distribution (18) for i ∈ LCFS. This holds because the busy
periods generated by customers arriving during service of the tagged customer do not scale
with ρ.
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5 Random order of service

In this section we first derive the LST of the scaled waiting-time distribution for ROS in
terms of the intervisit times. Then we use this result to obtain the waiting-time distribu-
tion in heavy traffic.

Proposition 3. For ρ < 1, i ∈ ROS, Re(s) > 0,

W ∗i (s) =
1− ρi
sE[Ii]

( 1∫
x=ξ∗i (s)

1− I∗i (λi − λix)

B∗i (λi − λix)− x (B∗i (λi(1− x))−B∗i (s+ λi(1− x))) dK(x, s)

+

1∫
x=ξ∗i (s)

(I∗i (λi(1− x))− I∗i (s+ λi(1− x))) dK(x, s)

)
,

with ξ∗i (s) = B∗i (s + λi(1 − ξ∗i (s))), the LST of a busy period at queue i with a dedicated
server, and

K(x, s) := exp

− 1∫
y=x

1

y −B∗i (s+ λi − λiy)
dy

 . (24)

Proof. The derivation proceeds along the lines of Kingman [20]. Define the waiting time
of a tagged customer T as w = u+ v. Here u is the time between the arrival instant of T
and the time the server begins working on a new type i customer, and v is the time from
that moment until T is taken into service. A customer may arrive during an intervisit
period of Qi, in which case u = Iresi , or during a visit period, yielding u = Bres

i .

For v we first consider the transform of the number of customers at moments when the
server is able to take a customer from queue i into service, denoted as Q(z,X), with
X ∈ {Bi, Ii}. From Kawasaki et al. [18] we have for an arrival during a visit period:

Q(z,Bi) =
(1− ρi)(1− I∗i (λi − λiz))e−λi(1−z)Bi

λi E[Ii](B∗i (λi − λiz)− z)
.

If the customer arrives during an intervisit period we have, for |z| < 1, i ∈ ROS,

Q(z, Ii) = e−λi(1−z)Ii .

Kingman [20] (Theorem 2) provides the LST of v given the number of customers present.
Combining this theorem with the equations above, we obtain the LST of v for an arrival
during a visit period while a customer of size Bi is in service: For Re(s) > 0, i ∈ ROS,

E[e−sv|Bi and arrival during visit period] =

1∫
ξ∗i (s)

(1− ρi)(1− I∗i (λi − λix))e−λi(1−x)Bi

λi E[Ii](B∗i (λi − λix)− x)
dK(x, s).

Similarly, we have for a customer arriving during an intervisit period of length Ii: For
Re(s) > 0, i ∈ ROS,

E[e−sv|Ii and arrival during intervisit period] =

1∫
ξ∗i (s)

e−λi(1−x)Ii dK(x, s).

13



Note that given Bi or Ii, u and v are independent. For an arrival during a visit while a
customer of size Bi is in service, we obtain: For Re(s) > 0, i ∈ ROS,

E[e−sw|Bi] = E[e−sB
res
i |Bi]E[e−sv|Bi]

=
1− e−sBi
sBi

1∫
ξ∗i (s)

(1− ρi)(1− I∗i (λi − λix))e−λi(1−x)Bi

λi E[Ii](B∗i (λi − λix)− x)
dK(x, s)

=
1− ρi
sλi E[Ii]

1∫
ξ∗i (s)

1− I∗i (λi − λix)

B∗i (λi − λix)− x
e−λi(1−x)Bi − e−(s+λi(1−x))Bi

Bi
dK(x, s).

Now, using the fact that E
[
e−φBi/Bi

]
=

B∗i [φ]
E[Bi]

(see [20]), we have for Re(s) > 0, i ∈ ROS,

E[E[e−sw|Bi]] =

1− ρi
sλi E[Ii]

1∫
ξ∗i (s)

1− I∗i (λi − λix)

B∗i (λi − λix)− x
B∗i (λi(1− x))−B∗i (s+ λi(1− x))

E[Bi]
dK(x, s).

Again it holds that a customer arrives with probability ρi during a visit period. Hence,
W ∗i (s) = ρi E[E[e−sw|Bi]] + (1 − ρi)E[E[e−sw|Ii]]. Using similar arguments for the final
term in addition to some rewriting, we obtain the result.

Next, we turn to the heavy-traffic limit. Before we state our result, we define Y as a
random variable with pdf and cdf

fY (y) =
(1− y)

ρ̂i
1−ρ̂i

(1− ρ̂i)
, FY (y) = 1− (1− y)

1
1−ρ̂i , y ∈ [0, 1].

The r.v. Y is to be interpreted as the fraction of customers, including both present cus-
tomers and those arriving until the server’s departure from the queue, that is served before
the arriving customer, see Remarks 4 and 5.

The next theorem gives the HT limit of the distribution of W̃i in terms of Y .

Theorem 3. For ρ ↑ 1,

W̃i →d

{
Ufi C̃ w.p. ρ̂i
Ugi C̃ w.p. 1− ρ̂i

(i ∈ ROS),

where Ufi has a uniform distribution on the interval [0, Y ρ̂i] and Ugi has a uniform distri-
bution on [Y ρ̂i, 1− ρ̂i + Y ρ̂i].

Proof. First we rewrite the LST of the waiting time given in Proposition 3. Noting that
dK(x,s)

dx = K(x,s)
x−B∗i (s+λi(1−x)) , we get

W ∗i (s) =
1− ρi
sE[Ii]

( 1∫
x=ξ∗i (s)

K(x, s)(1− I∗i (λi − λix))

×
(

1

B∗i (λi(1− x))− x +
1

x−B∗i (s+ λi(1− x))

)
dx

+

1∫
x=ξ∗i (s)

K(x, s) (I∗i (λi(1− x))− I∗i (s+ λi(1− x)))
1

x−B∗i (s+ λi(1− x))
dx

)
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In line with Takagi and Kudoh [27] we take y = 1−x
1−ξ∗i (s) ; this gives x = 1 − y(1 − ξ∗i (s))

and dx = −(1− ξ∗i (s)) dy, yielding

W ∗i (s) =
1− ρi
sE[Ii]

( 1∫
y=0

K
(
1− y(1− ξ∗i (s)), s

)(
1− I∗i (yλi(1− ξ∗i (s)))

)
×
(

1− ξ∗i (s)

B∗i (yλi(1− ξ∗i (s)))− 1 + y(1− ξ∗i (s))
+

1− ξ∗i (s)

1− y(1− ξ∗i (s))−B∗i (s+ yλi(1− ξ∗i (s)))

)
dy

+

1∫
y=0

K
(
1− y(1− ξ∗i (s)), s

)(
I∗i (yλi(1− ξ∗i (s)))− I∗i (s+ yλi(1− ξ∗i (s)))

)

×
(

1− ξ∗i (s)

1− y(1− ξ∗i (s))−B∗i (s+ yλi(1− ξ∗i (s)))

)
dy

)
.

We now take heavy-traffic limits for the terms separately. We start with the most involved
term, K(x, s). Using the substitution t = 1−y

1−x in (24), we may write

K(x, s) = exp

− 1∫
t=0

1− x
1− t(1− x)−B∗i (s+ λit(1− x))

dt

 .

Taking the HT limit of K(1 − y(1 − ξ∗i (s)), s) we obtain, using l’Hôpital’s rule and some
rewriting,

lim
ρ↑1

K(1− y(1− ξ∗i (s(1− ρ))), s(1− ρ)) = exp

− 1∫
t=0

y E[ξi]

−E[ξi]ty + E[Bi](1 + λity E[ξi])
dt


= exp

− y

1− ρ̂i

1∫
t=0

1

1− ty dt


= exp

(
1

1− ρ̂i
ln(1− y)

)
= (1− y)

1
1−ρ̂i .

In the second step we use the fact that E[ξi] = E[Bi]
1−ρ̂i . The HT limits for the other terms

can be determined using l’Hôpital’s rule in addition to some rewriting and the expression
for E[ξi] above. In particular, we get

lim
ρ↑1

I∗i (yλi(1− ξ∗i (s(1− ρ)))) = Ĩ∗i

(
yρ̂is

1− ρ̂i

)
,

lim
ρ↑1

I∗i (s(1− ρ) + yλi(1− ξ∗i (s(1− ρ)))) = Ĩ∗i

(
s(1− ρ̂i + yρ̂i)

1− ρ̂i

)
,

lim
ρ↑1

1− ξ∗i (s(1− ρ))

B∗i (yλi(1− ξ∗i (s(1− ρ))))− 1 + y(1− ξ∗i (s(1− ρ)))
=

1

y(1− ρ̂i)
,

lim
ρ↑1

1− ξ∗i (s(1− ρ))

1− y(1− ξ∗i (s(1− ρ)))−B∗i (s(1− ρ) + yλi(1− ξ∗i (s(1− ρ))))
=

1

(1− y)(1− ρ̂i)
.
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Moreover, we have Ĩ∗i

(
cs

1−ρ̂i

)
= C̃∗i (cs) =

(
µ

µ+cs

)α
for fixed c > 0. Combining the above

gives, after some rewriting,

W̃ ∗i (s) =
1− ρ̂i

sE[S](1− ρ̂i)

( 1∫
y=0

(
1− Ĩ∗i

(
yρ̂is

1− ρ̂i

))
(1− y)

1
1−ρ̂i

y(1− y)(1− ρ̂i)
dy

+

1∫
y=0

(
Ĩ∗i

(
yρ̂is

1− ρ̂i

)
− Ĩ∗i

(
s(1− ρ̂i + yρ̂i)

1− ρ̂i

))
(1− y)

1
1−ρ̂i

(1− y)(1− ρ̂i)
dy

)

= ρ̂i

1∫
y=0

1

sE[S]yρ̂i

{
1−

(
µ

µ+ yρ̂is

)α} (1− y)
ρ̂i

1−ρ̂i

(1− ρ̂i)
dy

+ (1− ρ̂i)
1∫

y=0

1

sE[S](1− ρ̂i)

{(
µ

µ+ yρ̂is

)α
−
(

µ

µ+ s(1− ρ̂i + yρ̂i)

)α} (1− y)
ρ̂i

1−ρ̂i

(1− ρ̂i)
dy.

This LST corresponds to a mixture of two distributions. With probability ρ̂i and con-
ditioning on Y = y, it is the LST of a uniform [0, yρ̂i] times a gamma distribution with
parameters α+ 1 and µ; with probability 1− ρ̂i and conditioning on Y = y, it is the LST
of a uniform [yρ̂i, 1− ρ̂i+yρ̂i] times a gamma distribution with the same parameters. This
completes the proof.

Remark 3. The expressions for Ufi and Ugi in Theorem 3 can be rewritten more explicitly,
similar to those in Theorem 5, see also Remark 8.

Remark 4 (HTAP). The HT limit states that conditional on Y = y, the scaled waiting-
time distribution is a uniform times a gamma distribution with probability ρ̂i and another
uniform times a gamma distribution with probability 1− ρ̂i. Here, y is a tag representing
the fraction of work from the work present and arriving until the server’s departure from
the queue that is served before the tagged customer in a fluid model. See Remark 5 below
for a more intuitive derivation of the tag-distribution FY (·).
With probability 1 − ρ̂i a particle arrives during an intervisit time of length c(1 − ρ̂i). If
UI is the fraction of the intervisit time that has elapsed at the arrival epoch of a tagged
particle, it first has to wait (1 − UI)c(1 − ρ̂i) until Qi is visited. The total work present
upon arrival plus the amount of work arriving until the server’s departure from Qi equals
the total workload arriving during a cycle and is ρ̂ic. Given the tag Y = y, the total scaled
waiting time equals ((1− UI)(1− ρ̂i) + yρ̂i)c, corresponding to a uniform distribution on
[yρ̂i, 1− ρ̂i + yρ̂i]. With probability ρ̂i a particle arrives during a visit time of length ρ̂ic.
If UV is the fraction of the intervisit time that remains, the amount work present upon
arrival in addition to the remaining amount of work arriving equals UV ρ̂ic. Given a tag
Y = y, the scaled waiting time is yUV ρ̂ic, which is a uniform distribution on [0, yρ̂i] times
c. Theorem 3 thus follows intuitively from HTAP.

Remark 5 (Intuition for tag-distribution Y ). We provide an intuitive explanation
for the distribution of Y using a fluid model for the number of customers or particles.
Assume the tagged customer arrives during a visit time, say at time 0, finding x particles
present. The queue length is decreasing at rate 1 − ρ̂i, i.e. at time t the queue length
Li(t) = x − (1 − ρ̂i)t, until the queue is empty at time x/(1 − ρ̂i). Observe that with
Li(t) particles present, the probability for service selection is 1/Li(t). Let F̄ (t) be the
probability that the tagged customer has not been taken into service at time t. Since
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there are continuously options for service selection in the fluid model, F̄ (t) satisfies the
following first-order differential equation (DE), for 0 < t < x/(1− ρ̂i),

− d

dt
F̄ (t) = F̄ (t)× 1

Li(t)
.

Solving the above DE with boundary condition F̄ (0) = 1 and using the fluid version of
Li(t), we have, for 0 < t < x/(1− ρ̂i),

F̄ (t) = exp

(∫
1

x− (1− ρ̂i)t
dt

)
=

(
1− t1− ρ̂i

x

) 1
1−ρ̂i

.

Finally, the queue being empty at time x/(1 − ρ̂i) implies that also x/(1 − ρ̂i) particles
have been served since time 0. When at least a fraction y of those has been served before
the tagged customer is taken into service, then we look for

F̄

(
y × x

1− ρ̂i

)
= (1− y)

1
1−ρ̂i .

This coincides with one minus the cdf of Y .

6 Processor sharing

In a processor sharing (PS) queue, all customers present at the queue that is receiving
service are served simultaneously and at the same rate. We note that the waiting time
Wi (to be interpreted as the delay) is thus defined as the sojourn time minus the service
requirement. In this section we will only consider the case of exponentially distributed
service time, see also Section 11. We extend the work done in [1], where they derive
the heavy-traffic limit of the LST of the scaled waiting time conditional on the service
requirement. In Subsection 6.1, we give the conditional scaled waiting-time distribution.
In Subsection 6.2 we derive the unconditional scaled waiting-time distribution.

6.1 Conditional waiting-time distribution in heavy traffic

Let customers in Qi have exponentially distributed service requirements with rate bi. Let
x be the required service duration of a tagged customer. Then we have the following
theorem for the heavy-traffic limit of the conditional waiting time Wi|x:

Theorem 4. For ρ ↑ 1, x ≥ 0,

W̃i|x→d

{
Ufi,xĨi w.p. ρ̂i
Ugi,xĨi w.p. 1− ρ̂i

(i ∈ PS),

where Ufi,x = U [0, ω(x)], Ugi,x = U [ω(x), ω(x) + 1] and Ĩi ∼ Γ(α+ 1, µi). The parameters α

and µi can be found in Equation (7), and ω(x) = ρ̂i
1−ρ̂i (1− e

−bix(1−ρ̂i)).

Proof. The authors of [1] derive the LST of the scaled conditional waiting time in heavy
traffic: For ρ ↑ 1, x ≥ 0, i ∈ PS,

W̃ ∗i (s|x) =
ρ̂i

sω(x)E[S](1− ρ̂i)

{
1−

(
µi

µi + sω(x)

)α}
+

1− ρ̂i
sE[S](1− ρ̂i)

{(
µi

µi + sω(x)

)α
−
(

µi
µi + s(ω(x) + 1)

)α}
. (25)
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From this LST we see that the distribution of the conditional waiting time is a uniform
[0, ω(x)] times a gamma distribution with parameters α + 1 and µi with probability ρ̂i.
With probability 1− ρ̂i, the conditional waiting time has a uniform [ω(x), ω(x) + 1] times
a gamma distribution with parameters α+ 1 and µi. This completes the proof.

Remark 6 (HTAP). Theorem 4 states that the conditional waiting-time distribution
is a uniform times a gamma distribution with probability ρ̂i and another uniform times
a gamma distribution with probability 1 − ρ̂i. This can be intuitively explained with a
fluid model. In the fluid model ω(x)c(1− ρ̂i) is the scaled waiting time of a particle, with
service requirement x, arriving at the start of a visit period. With probability 1 − ρ̂i a
particle arrives during an intervisit period of length c(1 − ρ̂i). If UI is the fraction of
the intervisit time that has elapsed at the arrival epoch of a tagged particle, then the
scaled waiting time of this particle is the remaining intervisit time (1− UI)c(1− ρ̂i) plus
ω(x)c(1 − ρ̂i). Using the HTAP gives a uniform distribution on [ω(x), ω(x) + 1] times
a gamma distribution with parameters α + 1 and µi. A particle arriving during a visit
period has to wait an amount of time that is uniformly distributed between 0 (arrive at
the end of the visit time) and ω(x)c(1 − ρ̂i) (arrive at the start of the visit time). Using
the HTAP now gives a uniform distribution on [0, ω(x)] times a gamma distribution with
parameters α+ 1 and µi.

Remark 7 (Intuition for ω(x)). The sojourn time of a tagged customer with service
time x from the start of the visit time (ω(x)Ii) can be intuitively explained with a fluid
model. As long as the tagged customer is present, the amount of service received during
(0, t) is B(t) =

∫ t
0 1/L(u) du with L(u) the number of customers at time u. During the

visit time, we have in a fluid model L(t) = L(0)− (1− ρ̂i)bit. Hence,

B(t) =

t∫
u=0

1

L(0)− (1− ρ̂i)biu
du = − 1

(1− ρ̂i)bi
(ln(L(0)− (1− ρ̂i)bit)− lnL(0)) .

To obtain the time until service completion, we solve B(t) = x for t. Moreover, using that
L(0) = λ̂ic(1− ρ̂i) in the fluid model, yields

ω(x)× Ii =
λ̂i

(1− ρ̂i)bi

(
1− e−x(1−ρ̂i)bi

)
× c(1− ρ̂i).

The result follows from ρ̂i = λ̂i/bi.

6.2 Unconditional waiting-time distribution in heavy traffic

In the previous section we derived the heavy-traffic limit of the waiting-time distribution
conditional on the service requirement. To obtain the unconditional waiting-time distri-
bution, we first consider a more general setting that also covers ‘unconditioning’ for SJF.
Suppose we have a conditional random variable, denoted T |x, with pdf fT |x(y), cdf FT |x(y),
and y ∈ [a(x), b(x)], with a(x) < b(x) ∀x. We want to find the unconditional distribution
T̃ . Here, x is a realization of a random variable X with support x ∈ [xmin, xmax]. We
have the following lemma.

Lemma 1. Assume that the conditional random variable T |x has density fT |x(y) and
distribution function FT |x(y), with support y ∈ [a(x), b(x)]. Suppose a(x) and b(x) are
both increasing in x and a(x) < b(x) ∀x. Let a−1(·) be the inverse of a(·) and b−1(·)
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Figure 2: Boundaries of the conditional distribution.

be the inverse of b(·). Then, the unconditional distribution of T |x, denoted by T̃ , has
probability density function, for a(xmax) ≤ b(xmin),

fT̃ (y) =


∫ a−1(y)
x=xmin

fT |x(y)fX(x) dx y ∈ [a(xmin), a(xmax)]∫ xmax
x=xmin

fT |x(y)fX(x) dx y ∈ [a(xmax), b(xmin)]∫ xmax
x=b−1(y) fT |x(y)fX(x) dx y ∈ [b(xmin), b(xmax)],

(26)

and, for a(xmax) > b(xmin),

fT̃ (y) =


∫ a−1(y)
x=xmin

fT |x(y)fX(x) dx y ∈ [a(xmin), b(xmin)]∫ a−1(y)
x=b−1(y)

fT |x(y)fX(x) dx y ∈ [b(xmin), a(xmax)]∫ xmax
x=b−1(y) fT |x(y)fX(x) dx y ∈ [a(xmax), b(xmax)].

(27)

Proof. First consider the case that a(xmax) ≤ b(xmin). Figure 2 shows an example of the
boundaries of the conditional distribution, by plotting a(x) and b(x) with x on the vertical
axis. The possible values of T |x then lie between the two lines. To find fT̃ (y), we need
to integrate out x with respect to its density function. First, take y ∈ [a(xmin), a(xmax)],
in which case the probability density function fT̃ (y) is obtained from the parts where x is
smaller than a−1(y). This gives

fT̃ (y) =

a−1(y)∫
x=xmin

fT |x(y)fX(x) dx. (28)

If y ∈ [a(xmax), b(xmin)] then y is between the boundaries of the conditional distribution
for every x ∈ [xmin, xmax]. Hence, we get

fT̃ (y) =

xmax∫
x=xmin

fT |x(y)fX(x) dx. (29)
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Finally, for y ∈ [b(xmin), b(xmax)], fT̃ (y) can now be obtained from the parts where x is
larger than b−1(y). This gives

fT̃ (y) =

xmax∫
x=b−1(y)

fT |x(y)fX(x) dx. (30)

The case a(xmax) > b(xmin) is similar. It may be checked fT̃ (·) is a density function. This
completes the proof.

Note that the distribution in Equation (26) is continuous, increasing on [a(xmin), a(xmax)],
constant on [a(xmax), b(xmin)] and decreasing on [b(xmin), b(xmax)], which closely resem-
bles the traditional trapezoidal distribution. In line with [14], we refer to (26) as a gener-
alized trapezoidal distribution.

We now apply Lemma 1 to the case i ∈ PS, in which case we have two conditional
distributions, Ufi,x and Ugi,x. We need to find the unconditional versions of both uniform
distributions.

Theorem 5. For ρ ↑ 1,

W̃i →d

{
Ũfi Ĩi w.p. ρ̂i
Ũgi Ĩi w.p. 1− ρ̂i

(i ∈ PS),

where Ũfi has a generalized trapezoidal distribution with pdf

fŨi(y) =
1

ρ̂i
Beta1−y(1−ρ̂i)/ρ̂i

(
1 +

ρ̂i
1− ρ̂i

, 0

)
y ∈ [0, ρ̂i/(1− ρ̂i)], (31)

where Betax(a, b) =
∫ x

0 t
a−1(1−t)b−1 dt. Ũgi has a generalized trapezoidal distribution with

pdf, for ρ̂i ≤ 1
2 ,

gŨi(y) =


1−

(
1− y(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i y ∈ [0, ρ̂i/(1− ρ̂i))

1 y ∈ [ρ̂i/(1− ρ̂i), 1](
1− (y−1)(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i y ∈ (1, ρ̂i/(1− ρ̂i) + 1],

(32)

and, for ρ̂i >
1
2 ,

gŨi(y) =


1−

(
1− y(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i y ∈ [0, 1)(

1− (y−1)(1−ρ̂i)
ρ̂i

) 1
1−ρ̂i −

(
1− y(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i y ∈ [1, ρ̂i/(1− ρ̂i)](

1− (y−1)(1−ρ̂i)
ρ̂i

) 1
1−ρ̂i y ∈ (ρ̂i/(1− ρ̂i), ρ̂i/(1− ρ̂i) + 1],

and Ĩi has a gamma distribution with parameters α+ 1 and µi. The parameters α and µi
can be found in Equation (7).

Proof. Let fUi,x(·) and gUi,x(·) be the densities of Ufi,x and Ugi,x, respectively. First consider

fUi,x(y) = 1
ω(x) for y ∈ [0, ω(x)]; thus a(x) = 0 and b(x) = ω(x). Here, x is the service

requirement, a realization of an exponential distribution, so x ∈ [0,∞). Since ω(0) = 0
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and ω(∞) = ρ̂i/(1 − ρ̂i) we only have to find the final term of (26) and consider the
interval [0, ρ̂i/(1 − ρ̂i)]. For a fixed y, the inverse function of ω is ω−1(y) = ln(1 − y(1 −
ρ̂i)/ρ̂i)/(−bi(1− ρ̂i)). By Lemma 1, this gives

fŨi(y) =

∞∫
x=ω−1(y)

fBi(x)fUi,x(y) dx

=

∞∫
x=

ln(1−y(1−ρ̂i)/ρ̂i)
−bi(1−ρ̂i)

bie
−bix 1− ρ̂i

ρ̂i

(
1− e−bix(1−ρ̂i)

)−1
dx

=

0∫
t=1−y(1−ρ̂i)/ρ̂i

bi
1− ρ̂i
ρ̂i

(1− t)−1 1

−bi(1− ρ̂i)
t

ρ̂i
1−ρ̂i dt

=

1−y(1−ρ̂i)/ρ̂i∫
t=0

1

ρ̂i
(1− t)−1t

ρ̂i
1−ρ̂i dt

=
1

ρ̂i
Beta1−y(1−ρ̂i)/ρ̂i

(
1 +

ρ̂i
1− ρ̂i

, 0

)
.

The third equality is obtained by taking t = e−bix(1−ρ̂i). This leads to an incomplete Beta
function.

Now we turn to the second term involving Ugi,x. Note that gUi,x(y) = 1 for y ∈
[ω(x), ω(x) + 1]. To apply Lemma 1, observe that for ρ̂i/(1 − ρ̂i) ≤ 1 it holds that
a(xmax) ≤ b(xmin). First assume that ρ̂i/(1 − ρ̂i) ≤ 1, implying ρ̂i < 1/2. For a fixed
y ∈ [0, ρ̂i/(1− ρ̂i)) , x needs to be smaller than ω−1(y), if y ∈ [ρ̂i/(1− ρ̂i), 1], it lies between
the boundaries of the uniform distribution for all x and if y ∈ (1, ρ̂i/(1− ρ̂i) + 1], then x
needs to be larger than ω−1(y). This gives for the pdf of Ũgi

gŨi(y) =


FBi(ω

−1(y)) y ∈ [0, ρ̂i/(1− ρ̂i))
1 y ∈ [ρ̂i/(1− ρ̂i), 1]
1− FBi(ω−1(y − 1)) y ∈ (1, ρ̂i/(1− ρ̂i) + 1].

Substituting FBi(x) = 1 − e−bix and the inverse of ω(·) gives Equation (32). The case
ρ̂i > 1/2 implies a(xmax) > b(xmin) and is similar, completing the proof.

Remark 8 (PS and ROS). For regular GI/M/1 queues, the relation between PS and
ROS has been characterized by Borst et al. [9]. It is easily seen that the sample path
relations (Equation (3) of [9]) also hold for the polling models under consideration. More
specifically, consider a tagged customer Ti arriving at Qi when the server visits Qi. Then,
the sojourn-time distribution of Ti for PS, given ni customers at Qi upon arrival, is
identical to the waiting-time distribution of Ti for ROS, given ni waiting customers at Qi
upon arrival in addition to the one in service. Under HT scalings, the differences between
waiting and sojourn times and the one customer vanish, explaining the equivalence between
Theorems 5 and 3 (see Remark 3).

7 n-class priority queues

In this section we look at n-class priority queues. Each customer is assigned to a priority
index k, 1 ≤ k ≤ n, where customers with a low priority index are served before customers
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with higher priority indices. Within each class the service order is FCFS. In Subsection
7.1, the focus lies on the non-preemptive n-class priority regime. We will later use this
discipline to find the waiting-time distribution in shortest job first (SJF) queues, by letting
the number of priority classes go to infinity. In [19], Kella and Yechiali study the M/G/1
queue with single and multiple server vacations under both the preemptive and non-
preemptive priority regimes. The M/G/1 queue with multiple vacations is similar to
a polling model, since we express the waiting times in cycle times and we can replace
vacations by intervisit times. This relation has also been used in [6] to analyze multi-class
polling models. We also study the preemptive n-class priority regime in Subsection 7.2.

7.1 Non-preemptive n-class priority queues

Here, we are interested in the non-preemptive n-class priority regime. We now introduce
our notation and terminology based on [19], as this turns out to be useful and provide
intuition for this and the next section. We replace vacation times with intervisit times and
add the subscript i to every queue-dependent variable: λi,k is the arrival rate of class-k
customers and Bi,k is the service duration of class-k customers. Class-a customers are the
customers with priority index lower than k, i.e., they are served before class-k customers.
They have arrival rate λi,a =

∑k−1
j=1 λi,j and service duration Bi,a. Class-b customers are

customers with priority index higher than k, their arrival rate is λi,b =
∑n

j=k+1 λi,j and
their service duration is Bi,b. We have ρi,a = λi,a E[Bi,a] and ρi,b = λi,b E[Bi,b]. ξi,a denotes
the length of time from a moment a class-a customer enters service and no other class-a
customers are present, until the first moment when there are no class-a customers in the
queue. Clearly ξi,a is the duration of a busy period in a standard M/G/1 queue with
arrival rate λi,a and service times Bi,a. Consequently, the LST of ξi,a and its mean are
given by: For Re(s) > 0,

ξ∗i,a(s) = B∗i,a(s+ λi,a − λi,aξ∗i,a(s)), E[ξi,a] = E[Bi,a]/(1− ρi,a). (33)

For this model, Kella and Yechiali [19] derive the following LST for the waiting-time
distribution Wi,k of a class-k customer in Qi: For Re(s) > 0, k = 1, . . . , n,

W ∗i,k(s) =
(1− ρi)(1− I∗i (s+ λi,a − λi,aξ∗i,a(s)))

E[Ii](λi,kB
∗
i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)

(34)

+
ρi,b(1−B∗i,b(s+ λi,a − λi,aξ∗i,a(s)))

E[Bi,b](λi,kB
∗
i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)

(i ∈ NPRIOR).

The first term of (34) corresponds to the waiting time of class-k customers in Qi that
arrive during the time from the start of the intervisit time until the moment a class-b
customer at Qi is taken into service. The second term corresponds to the waiting time of
class-k customers that arrive during the time from the moment the first class-b customer
is taken into service until the end of the cycle.
Note that this expression was also derived in [6]. The following theorem gives the heavy-
traffic limit of the distribution of Wi,k.

Theorem 6. For ρ ↑ 1, k = 1, . . . , n,

W̃i,k →d

{
0 w.p.

ρ̂i,b
1−ρ̂i+ρ̂i,b

UiĨi w.p. 1−ρ̂i
1−ρ̂i+ρ̂i,b

(i ∈ NPRIOR),

where Ui is a uniformly distributed random variable that lies between 0 and 1
1−ρ̂i,a and Ĩi

has a gamma distribution with parameters α + 1 and µi. The parameters α and µi are
given in (7).
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Proof. Combining Equation (34) and Property 2, we get for the LST of the (scaled) waiting
time of a class-k customer: for Re(s) > 0, k = 1, . . . , n, i ∈ NPRIOR:

W̃ ∗i,k(s) = lim
ρ↑1

W ∗i,k(s(1− ρ))

= lim
ρ↑1

[ (1− ρi)
(

1−
(

µi
µi+s+λi,a(1−ξ∗i,a(s(1−ρ)))/(1−ρ)

)α)
E[Ii](λi,kB

∗
i,k(s(1− ρ) + λi,a − λi,aξ∗i,a(s(1− ρ)))− λi,k + s(1− ρ))

+
ρi,b(1−B∗i,b(s(1− ρ) + λi,a − λi,aξ∗i,a(s(1− ρ))))

E[Bi,b](λi,kB
∗
i,k(s(1− ρ) + λi,a − λi,aξ∗i,a(s(1− ρ)))− λi,k + s(1− ρ))

]

=
(1− ρ̂i)

(
1−

(
µi

µi+s(1+λ̂i,a E[ξi,a])

)α)
E[S](1− ρ̂i)s(1− ρ̂i,k(1 + λ̂i,a E[ξi,a]))

+
ρ̂i,b(1 + λ̂i,a E[ξi,a])

1− ρ̂i,k(1 + λ̂i,a E[ξi,a])

=
1− ρ̂i

1− ρ̂i + ρ̂i,b

1

E[S]s(1 + λ̂i,a E[ξi,a])(1− ρ̂i)

{
1−

(
µi

µi + s(1 + λ̂i,a E[ξi,a])

)α}

+
ρ̂i,b

1− ρ̂i + ρ̂i,b

=
1− ρ̂i

1− ρ̂i + ρ̂i,b

1

E[S]s(1− ρ̂i)/(1− ρ̂i,a)

{
1−

(
µi

µi + s/(1− ρ̂i,a)

)α}
+

ρ̂i,b
1− ρ̂i + ρ̂i,b

. (35)

The third equality was found using l’Hôpital’s rule and some basic calculations. After
some rewriting we arrive at the fourth equation, and writing out E[ξi,a] using (33) leads
to the final equation. Recognizing this as the LST of a random variable that is equal to

zero with probability
ρ̂i,b

1−ρ̂i+ρ̂i,b and a uniform times a gamma distribution with probability
1−ρ̂i

1−ρ̂i+ρ̂i,b completes the proof.

Remark 9 (HTAP). We can use the fluid model to give some intuition for the asymptotic
waiting-time distribution, which corresponds to a uniform times a gamma distribution in
addition to a probability mass at zero. In the fluid model, we only consider class a and
class k particles, as the impact of class b is negligible in HT. Figure 3 gives a graphical
representation of the fluid model; the workload of class a and k particles in Qi is plotted
over the course of a cycle of length c. The considered particles arrive at the queue with
rate ρ̂i,a+ ρ̂i,k and during a visit time they are served with rate 1 until the queue is empty.
The cycle is divided in three parts: the first part is the intervisit time Ii with length
(1 − ρ̂i)c. The second part is the duration between a polling instant and the first time
since the start of the cycle for which no class a and k particles are present. This part has

length
(ρ̂i,a+ρ̂i,k)(1−ρ̂i)c

1−(ρ̂i,a+ρ̂i,k) . In this part only class a and k particles are served. The last part

is the part where class b particles are served, interrupted by classes a and k, having length

c− (1− ρ̂i)c−
(ρ̂i,a + ρ̂i,k)(1− ρ̂i)c

1− (ρ̂i,a + ρ̂i,k)
=

ρ̂i,bc

1− ρ̂i + ρ̂i,b
.

Now, first consider the atom in zero. With probability
ρ̂i,b

1−ρ̂i+ρ̂i,b a class-k particle arrives

during the last part of the cycle where hardly any class a or k particles are present. In this
case the scaled waiting time of the particle is negligible in HT, since the residual service
time of the particle in service and the busy periods generated by class-a customers arriving
during this remaining service time do not scale with ρ.
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(ρ̂i,a + ρ̂i,k)(1− ρ̂i)c

(ρ̂i,a+ρ̂i,k)(1−ρ̂i)c
1−(ρ̂i,a+ρ̂i,k)

c

(1− ρ̂i)c
ρ̂i,bc

1−ρ̂i+ρ̂i,b

(ρ̂i,a + ρ̂i,k)
(ρ̂i,a + ρ̂i,k)− 1

Figure 3: Fluid limits in heavy traffic. The workload of class a and k particles in Qi is
plotted over the course of a cycle.

Second, with probability 1−ρ̂i
1−ρ̂i+ρ̂i,b a particle arrives during the first or second part of the

cycle. Let the uniform random variable Ui denote the fraction of the length of the first
two parts of the cycle together that has elapsed at the arrival epoch of the tagged arriving
particle. Similar to FCFS, the scaled waiting time of this particle is the remaining duration
(1 − Ui) (1−ρ̂i)c

1−ρ̂i+ρ̂i,b minus the time required to serve the class-k work (or extended service

time) that arrives during the first two parts of the cycle, but after the tagged particle.
Due to class-a interruptions, the extended service time of class k is E[Bi,k]/(1 − ρ̂i,a).

Hence, the scaled waiting time is (1 − Ui) (1−ρ̂i)c
1−ρ̂i+ρ̂i,b (1 −

ρ̂i,k
1−ρ̂i,a ) = (1 − Ui) (1−ρ̂i)c

1−ρ̂i,a . Since

Ii = (1− ρ̂i)c, this term corresponds to a uniform distribution on [0, 1
1−ρ̂i,a ]Ii, explaining

the result for non-negligible waiting times.

7.2 Preemptive n-class priority queues

Similar to the previous section, the results of [19] also allow the derivation of the LST of
the time until service in a polling system where different priority classes are served with

preemptive priority. Let W
(q)
i denote the time until a customer first receives service, or

the waiting time in queue. We observe that this is not equal to the waiting time as defined
in the current paper (i.e. sojourn time minus service time) due to service preemptions.
For class k, the LST of the time from the start until the end of service Ri,k, often referred
to as the residence time, is

R∗i,k = B∗i,k(s+ λi,a − λi,aξ∗i,a(s)). (36)

For a class-k customer in Qi the LST of waiting time in queue is: For Re(s) > 0, k =
1, . . . , n,

W
(q),∗
i,k (s) =

(1− ρi)(1− I∗i (s+ λi,a − λi,aξ∗i,a(s)))
E[Ii](λi,kB

∗
i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)

+
ρi,b(λi,a(1− ξ∗i,a(s)) + s)

λi,kB
∗
i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s

(i ∈ NPRIOR-PR).

(37)
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For n-class priority queues, the waiting-time distribution in heavy traffic is equal to the

case of non-preemptive priority queues. For the scaled waiting time in queue W
(q)
i,k of a

class-k customer in Qi with preemptive priority service we get using (37): For Re(s) > 0,
i ∈ NPRIOR− PR, k = 1 . . . , n,

W̃
(q),∗
i,k (s) =

(1− ρ̂i)
(

1−
(

µi
µi+s(1+λ̂i,a E[ξi,a])

)α)
E[S](1− ρ̂i)s(1− ρ̂i,k(1 + λ̂i,a E[ξi,a]))

+
ρ̂i,b(1 + λ̂i,a E[ξi,a])

1− ρ̂i,k(1 + λ̂i,a E[ξi,a])
,

which is equal to (35) from the non-preemptive case. As before, α and µi are given in (7).
From (36) it follows directly that the residence time can be neglected in heavy traffic.

8 Shortest-Job-First and SRPT

The Shortest-Job-First (SJF) service discipline can be thought of as a non-preemptive pri-
ority queue with different priority classes. It may be interpreted as the continuous equiva-
lent to having an infinite number of priority classes, where the priority classes correspond
to job sizes. Alternatively, in Schrage and Miller [25], for the waiting time conditional on
the service requirement x, a 3-class priority queue is used where the second class consists
of customers of size x. From the heavy-traffic limit derived in the previous section we
can immediately derive the heavy-traffic limit of the waiting-time distribution for SJF.
In Subsection 8.1 we give the scaled waiting-time distribution conditional on the service
requirement. In Subsection 8.2 we give the unconditional scaled waiting-time distribution.
SRPT and preemptive SJF are discussed in Subsection 8.3.

8.1 Conditional waiting-time distribution in heavy traffic

To go from Equation (35) to SJF we let the service time of the customer determine its
priority. Note that we can apply Section 7.1 if the distribution is discrete. In this section
we assume that the service-time distribution has a density. First we derive the LST of
the waiting time conditional on x, the service duration required by a tagged customer.
Define ρi(x) = λi E[Bi1{Bi<x}] which is the continuous equivalent of ρi,a. Because the
service-time distribution is continuous, we have ρi − ρi,b = ρi,a. We can now write down
the conditional LST using (35): For Re(s) > 0, x > 0,

W̃ ∗i (s|x) =
1− ρ̂i

1− ρ̂i(x)

1

E[S]s(1− ρ̂i)/(1− ρ̂i(x))

{
1−

(
µi

µi + s/(1− ρ̂i(x))

)α}
+
ρ̂i − ρ̂i(x)

1− ρ̂i(x)
(i ∈ SJF ). (38)

This result gives rise to the following theorem.

Theorem 7. For ρ ↑ 1,

W̃i,x →d

{
0 w.p. ρ̂i−ρ̂i(x)

1−ρ̂i(x)

Ui,xĨi w.p. 1−ρ̂i
1−ρ̂i(x)

(i ∈ SJF ). (39)

Ui,x is a random variable with a uniform distribution on [0, 1
1−ρ̂i(x) ] and Ĩi has a gamma

distribution with parameters α+ 1 and µi as given in (7).

Proof. The results follows directly from (38).
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ρ̂i(x)(1− ρ̂i)c

ρ̂i(x)(1−ρ̂i)c
1−ρ̂i(x)

c

(1− ρ̂i)c
(ρ̂i−ρ̂i(x))c
1−ρ̂i(x)

ρ̂i(x)
ρ̂i(x)− 1

Figure 4: Fluid limits in heavy traffic. The amount of type a workload in Qi is plotted
over the course of a cycle.

Remark 10 (HTAP). The intuition for the asymptotic waiting-time distribution is simi-
lar to the n-class priority queue, but slightly simpler. For the fluid model, we only consider
particles that are served before a particle with service requirement x, i.e., type-a particles.
Figure 4 gives a graphical representation of the fluid model; on the horizontal axis the
course of a cycle with length c is plotted. On the vertical axis the workload of type-a
particles in Qi is plotted. The cycle is divided in three parts; the first part is the intervisit
time Ii with length (1 − ρ̂i)c. The second part is the first part of the visit time where
type-a particles are being served; it starts at polling instant of Qi and ends the first mo-
ment since the start of the cycle that no type-a particles are present. This part has length
ρ̂i(x)(1−ρ̂i)c

1−ρ̂i(x) . The last part is the part where the other particles are served and has length

c− (1− ρ̂i)c−
ρ̂i(x)(1− ρ̂i)c

1− ρ̂i(x)
=
c(ρ̂i − ρ̂i(x))

1− ρ̂i(x)
.

With probability ρ̂i−ρ̂i(x)
1−ρ̂i(x) a particle with service requirement x arrives during the last

part of the cycle where hardly any type-a particles are present. Again, the scaled waiting
time in HT is negligible in this case, since the remaining service duration of the particle
in service and the type-a busy periods generated by type-a particles arriving during this
remaining duration do not scale with ρ. With probability 1−ρ̂i

1−ρ̂i(x) a particle arrives during
the duration of the first two parts together. Let the uniform random variable Ui denote the
fraction of combined length of the first two parts that has elapsed at the arrival epoch of
the arriving particle. This particle is served at the start of the third part of the cycle, so the
waiting time of this particle is the remaining duration of the first two parts (1−Ui) (1−ρ̂i)c

1−ρ̂i(x) .

Using Ii = (1 − ρ̂i)c, it follows that the scaled waiting time is now uniformly distributed
on [0, 1

1−ρ̂i(x) ]Ii.

8.2 Unconditional waiting-time distribution in heavy traffic

For the unconditional waiting-time distribution in heavy traffic we have the following
theorem. Let ρ̂−1

i (y) denote the inverse function of ρ̂i(x).

Theorem 8. For ρ ↑ 1,

W̃i →d ŨiĨi (i ∈ SJF ), (40)
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where Ũi has probability density function

fŨi(y) =

{
1− ρ̂i y ∈ [0, 1]

(1− ρ̂i)
(

1− FBI
(
ρ̂−1
i

(
y−1
y

)))
y ∈

(
1, 1

1−ρ̂i

]
,

(41)

with a point mass at zero of

∞∫
0

ρ̂i − ρ̂i(x)

1− ρ̂i(x)
fBi(x) dx. (42)

Ĩi has a gamma distribution with parameters α+ 1 and µi as given in (7).

Proof. Note that the conditional waiting-time distribution in (39) can be written as a
gamma distribution times a uniform distribution with a point mass at zero; we refer to
the latter as “uniform” distribution. To find the unconditional distribution of the waiting
time, we need to find the unconditional “uniform” distribution Ũi using Lemma 1. The
cumulative distribution function of the conditional “uniform” distribution is given by

FUi,x(y) =


0, y < 0,
ρ̂i−ρ̂i(x)
1−ρ̂i(x) + 1−ρ̂i

1−ρ̂i(x)y(1− ρ̂i(x)), 0 ≤ y ≤ 1
1−ρ̂i(x) ,

1, y > 1
1−ρ̂i(x) .

The probability density function of Ui,x is given by fUi,x(y) = 1 − ρ̂i, for y ∈ [0, 1
1−ρ̂i(x) ],

thus we have a(x) = 0 and b(x) = 1
1−ρ̂i(x) . Recall that ρ̂i(x) = λ̂i E[Bi1{Bi<x}] and note

that ρ̂i(xmin) = 0 and ρ̂i(xmax) = ρ̂i; b(x) thus increases from 1 to 1/(1 − ρ̂i). If y ≤ 1,
we find

fŨi(y) =

∞∫
x=0

fBi(x) ∗ fUi,x(y) dx = 1− ρ̂i, y ∈ [0, 1].

When y > 1, Ui,x only has probability mass for x > ρ̂−1
i ((y − 1)/y). We get

fŨi(y) =

∞∫
x=ρ̂−1

i

(
y−1
y

) fBi(x) ∗ fUi,x(y) dx

= (1− ρ̂i)
(

1− FBi
(
ρ̂−1
i

(
y − 1

y

)))
, y ∈

(
1,

1

1− ρ̂i

]
.

Combining the results above we see that Ũi has probability mass (42) in zero, and density
(41). This completes the proof.

8.3 SRPT and preemptive SJF

In this subsection we consider preemptive size-based scheduling policies. The most com-
mon is SRPT, where the customer with the smallest remaining service time is preemptively
taken into service. A less well-known policy is preemptive SJF, where the customer is pre-
emptively taken into service with the smallest original service time. The latter policy also
has some desirable properties, see e.g. [3; 16]. Similar to SJF, the waiting-time distri-
bution for preemptive SJF follows directly from the preemptive n-class priority queue of
Subsection 7.2.
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The analysis of SRPT does not follow directly from the results of Kella and Yechiali
[19]. Below, we use their framework to derive the LST of the waiting time in queue

W
(q)
i,x for a customer with service time x. We utilize the notation introduced in Section 7

and adopt the terminology of [19]. In particular, letting class-a represent customers with
service times smaller than x, ξ∗i,a(s) is defined by

ξ∗i,a(s) =
1

FBi(x)

x∫
0

exp
(
−t(s+ λi,a − λi,aξ∗i,a(s))

)
fBi(t) dt, (43)

with λi,a = λiFBi(x), i.e., ξ∗i,a(s) is a type-a busy period. Similarly, let class-b represent
customers with service times larger than x and λi,b = λi(1− FBi(x)).

Proposition 4. For ρ < 1, i ∈ SRPT , Re(s) > 0,

W
(q),∗
i (s) =

1− ρi
sE[Ii]

(
1− I∗i (s+ λi,a − λi,aξ∗i,a(s))

)
+
ρi − ρi(x)− λi,bx

s
(s+ λi,a − λi,aξ∗i,a(s))

+
λi,b
s

(
1− exp

(
−x(s+ λi,a − λi,aξ∗i,a(s))

))
.

Proof. We start with the multi-class case, where class-k is the class under consideration
having service times in (x− ε, x], for ε > 0 small, and classes a and b have priority index
lower and higher than k, respectively. That is, the service times of class-a is smaller than
x−ε and of class-b is larger than x. Applying the idea of Schrage and Miller [25], customers
of size larger than x only affect class-k as soon as their remaining service times become
x. Specifically, class-b initiates a delay cycle, as defined in [19], when their remaining
service time is x. In the terminology of Kella and Yechiali, we thus have Ti,a,k cycles for
Ti = Ii, Bi,a, Bi,k, but now also for T = x. Since the LST of the waiting time given the
cycle during which the customer arrives is known, it remains to specify the probabilities
that the system is in a specific delay cycle. In line with [19, p.28], we have the cycle
probabilities

Πi,0 := P(no delay) = ρi,b − λi,bx = ρi − ρi,a − ρi,k − λi,bx,

P(Bi,a cycle) =
Πi,0ρi,a

1− ρi,a − ρi,k
, P(Bi,k cycle) =

Πi,0ρi,k
1− ρi,a − ρi,k

,

P(Ii cycle) =
1− ρi

1− ρi,a − ρi,k
, P(x cycle) =

λi,bx

1− ρi,a − ρi,k
.

Using the probabilities above in Equations (7a) and (8) of [19], we obtain, for Re(s) > 0,

W
(q),∗
i,k (s) =

(1− ρi)(1− I∗i (s+ λi,a − λi,aξ∗i,a(s)))
E[Ii](λi,kB

∗
i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)

+
Πi,0(s+ λi,a − λi,aξ∗i,a(s)) + λi,b

(
1− exp

(
−x(s+ λi,a − λi,aξ∗i,a(s))

))
λi,kB

∗
i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s

.

(44)

Letting ε ↓ 0, and substituting Πi,0, we obtain the result.
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As in Subsection 7.2, W
(q)
i,x is the waiting time in queue before the customer is first taken

into service; this is not the same as the waiting time defined in this paper. We note that
the residence time is identical to the residence time in a regular SRPT queue, see [25].

For LCFS and multi-class priority queues, the heavy-traffic limits for the non-preemptive
and preemptive policies are identical. The same holds for SJF, preemptive SJF, and SRPT
as represented by the following theorem.

Theorem 9. For ρ ↑ 1, the scaled waiting times W̃i follow the same probability distribution
for SJF, preemptive SJF, and SRPT.

Proof. Consider the conditional scaled waiting time W̃i,x(s). For preemptive SJF it can
be directly observed from Subsection 7.2 that the heavy-traffic limit is identical to the one

for SJF. Using Proposition 4, it follows that limρ↑1W
(q),∗
i,x (s(1− ρ)) equals the right-hand

side of (38). Using (36) as an upper bound for the residence time, it is evident that the
additional delay during the service does not contribute to the HT limit.

9 Summary of the results

In this section we give a summary of the most important results obtained in this paper.
The main result of the paper is the fact that the scaled waiting-time distribution can always
be characterized as a product of two distributions. The first distribution is a service-order
specific distribution, the second distribution is a gamma distribution. The gamma distri-
bution is a scaled length-biased intervisit-time distribution or cycle-time distribution; the
most intuitive representation for the second depends on the scheduling policy. Due to the
fact that for exhaustive service at queue i it holds that C∗i (s) = I∗i (s + λi(1 − xi∗i (s))),
see also (5), we can rewrite the second (gamma) distribution as the scaled length-biased
intervisit-time distribution for all scheduling policies.

Let Θi denote the service-order specific distribution; the probability density functions
for the different service policies are then given in Table 3. In Figure 5 we plot the pdf
fΘi(x) of Θi (Figure 5a) and also the cumulative distribution functions FΘi(x) (Figure 5b).
We choose ρ̂i = 0.4. For FCFS, LCFS, ROS, and NPRIOR, the HT limit only depends on
the service time distribution through its first moment. This is not the case for PS, SJF,
and SRPT. In the figures we took exponential service times for PS and SJF. Figure 5a
nicely shows how Θi behaves; for LCFS and FCFS it is like a uniform distribution, for SJF
it is a type of generalized trapezoidal distribution, whereas it slightly deviates from this
for ROS and PS. The atoms in zero can be observed from Figure 5b. In addition, these
cdfs allow us to see the impact of scheduling policy. For instance, SJF is here superior to
ROS and PS.

10 Numerical results

In this section we illustrate the results by calculating moments and tail probabilities of the
waiting-time distribution for different service disciplines by simulations. Moreover, we use
the heavy-traffic limits as the basis for approximations for the waiting-time distributions
for stable systems, i.e. with ρ < 1. To this end, the asymptotic results suggest the
following approximation for the waiting-time distribution for ρ < 1: For i = 1, . . . , N ,

P(Wi ≤ x) ≈ P(ΘiΓi ≤ (1− ρ)x). (45)
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Service order pdf of Θi

FCFS fΘi(x) =

{
1 x ∈ [0, 1]
0 otherwise

LCFS/LCFS-PR fΘi(x) = (1− ρ̂i)
{

1− ρ̂i x ∈ [0, 1
1−ρ̂i ]

0 otherwise
with a point mass of ρ̂i in zero

ROS/PS fΘi(x) = ρ̂i

{
1
ρ̂i

Beta1−x(1−ρ̂i)/ρ̂i(1 + ρ̂i
1−ρ̂i , 0) x ∈ [0, ρ̂i

1−ρ̂i ]

0 otherwise

+1{ρ̂i≤1/2}(1− ρ̂i)


1− g(x) x ∈ [0, ρ̂i

1−ρ̂i )

1 x ∈ [ ρ̂i
1−ρ̂i , 1]

g(x− 1) x ∈ (1, ρ̂i
1−ρ̂i + 1]

0 otherwise

+1{ρ̂i>1/2}(1− ρ̂i)


1− g(x) x ∈ [0, 1)

g(x− 1)− g(x) x ∈ [1, ρ̂i
1−ρ̂i ]

g(x− 1) x ∈ ( ρ̂i
1−ρ̂i ,

ρ̂i
1−ρ̂i + 1],

0 otherwise

where g(x) =
(

1− x(1−ρ̂i)
ρ̂i

) 1
1−ρ̂i

NPRIOR/ fΘi,k(x) =
1− ρ̂i

1− ρ̂i + ρ̂i,b

{
1− ρ̂i,a x ∈

[
0, 1

1−ρ̂i,a

]
0 otherwise

NPRIOR-PR with a point mass of
ρ̂i,b

1− ρ̂i + ρ̂i,b
in zero

SJF/SRPT fΘi(x) =


1− ρ̂i x ∈ [0, 1]

(1− ρ̂i)
(
1− FBi

(
ρ̂−1
i

(
x−1
x

)))
x ∈

(
1, 1

1−ρ̂i

]
0 otherwise

with a point mass of

∞∫
0

ρ̂i − ρ̂i(x)

1− ρ̂i(x)
fBi(x) dx in zero

Table 3: The probability density functions of the service-order specific distributions.
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Figure 5: Shapes of the service order specific distributions.

The moments of the waiting-time distribution can be approximated using

E[W k
i ] ≈ E[Θk

i ]E[Γki ]

(1− ρ)k
.

See Section 11 and references therein for a discussion on convergence of moments.

We consider a polling model with N = 3 queues and all queues receive exhaustive service.
Service times and switch-over times are exponentially distributed. The mean service du-
rations at queue 1, 2, and 3 equal 2, 3, and 1 respectively. The mean switch-over times
are given by E[S1] = E[S3] = 1 and E[S2] = 3. Arrivals are Poisson and the arrival rates
at the different queues are chosen such that the ratios between the arrival rates are 3:2:1,
while the total load of the system is varied. Note that the system is rather asymmetric
and that the ratios between the loads of the queues are 6:6:1. We apply the approximation
to a system with a load of 0.95 and let the service order be ROS, PS and SJF. We plot
the approximated and simulated cumulative distributions of the waiting time at the first
queue. Figure 6 shows that the approximation follows the simulation closely. ROS and
PS are plotted together, since the distributions are equal. Note that for the SJF service
discipline the approximation shows a point mass at zero, this effect does not show up as
clearly in the simulation. This is caused by the fact that the point mass at zero only
occurs if the load is very close to 1.

To illustrate the differences between the various scheduling policies we plot the approx-
imated cumulative distribution functions of the scaled waiting times at the first queue
of the system described above. In Figure 7 we clearly see a point mass at zero if the
service discipline is LCFS or SJF. The line of SJF always lies above the line of PS; as the
service-time distribution is exponential, this indicates that for exponential service times
SJF is a better policy than PS. Table 4 shows the simulated and approximated values of
the mean waiting times at Q1 and their relative absolute differences defined as

∆% := 100%× |app− sim|
sim

for different values of ρ and for different scheduling policies considered in this paper. The
mean waiting times are equal for FCFS, LCFS and ROS and also for PS if the service-
time distribution is exponential. In Table 5, the results for the standard deviations of
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time distribution in a system with a load of 0.95.
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the waiting times at Q1 are given. Both tables show that the relative differences decrease
to 0 if ρ increases to 1. It is interesting to note that for lower values of ρ, the error in
the standard deviation is quite high, especially if the service order is LCFS. This can
be explained by the fact that in HT the waiting time is equal to zero if an arrival occurs
during a visit period. For lower loads this effect does not occur, busy periods will influence
the waiting time. The numerical approximations can be improved using an interpolation
with light-traffic limits, as carried out in [4; 15].

FCFS/LCFS/ROS/PS SJF
ρ sim app ∆% sim app ∆%

0.7 12.25 12.02 1.89 10.11 8.88 12.19
0.8 18.43 18.03 2.15 14.69 13.31 9.34
0.9 36.68 36.07 1.66 28.16 26.63 5.45

0.95 72.79 72.13 0.90 54.86 53.26 2.92
0.98 180.91 180.33 0.32 134.82 133.14 1.25
0.99 361.32 360.66 0.18 267.83 266.29 0.57

Table 4: Simulated value, approximated value and delta of the mean waiting time for
different service disciplines and loads.

LCFS ROS/PS SJF
ρ sim app ∆% sim app ∆% sim app ∆%

0.7 17.86 20.92 17.10 15.10 16.22 7.37 13.35 14.30 7.12
0.8 28.53 31.38 9.99 23.46 24.33 3.69 20.64 21.44 3.91
0.9 60.02 62.76 4.56 48.02 48.65 1.31 42.16 42.89 1.72

0.95 122.64 125.52 2.35 96.72 97.30 0.60 85.01 85.78 0.90
0.98 310.73 313.80 0.99 242.49 243.26 0.31 213.70 214.44 0.35
0.99 624.20 627.59 0.54 485.78 486.51 0.15 427.88 428.88 0.24

Table 5: Simulated value, approximated value and delta of the standard deviation of the
waiting time for different service disciplines and loads.

11 Discussion and Concluding Remarks

In this paper we assume that all queues receive exhaustive service, which is an important
extension of the results obtained for similar models but with gated service at all queues
[4]. We emphasize that the exhaustive service case is more complicated than the gated
case, despite the fact that both the exhaustive and the gated service disciplines satisfy
the well-known branching structure identified in [23]. The complexity lies in the fact that
for exhaustive service the local service order of the customers during a visit period Vi of
the server to a given queue i cannot be determined at the polling instant marking the
beginning of Vi; for gated the service order is determined at the beginning of Vi. As a
consequence, newly arriving customers at queue i during Vi may change the local service
order and the sharing of server capacity among the customers served during Vi, and hence
affect the waiting-time and sojourn-time distributions in a complex manner. For example,
this complexity manifests itself in the case of PS service and multiple vacations, where
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analytic results on (conditional) sojourn times, conditioned on the number of customers
at the beginning of a service period, are only known under the assumption of exponential
service times (see [11]). Even for multiple vacation models, extension of such results to the
case of general service times is complicated, because of the complex relation between the
number of customers in the system and the remaining amounts of per-customer service
times.

The assumption that all queues are served exhaustively can easily be relaxed to the general
setting where a subset of the queues receive gated service (or some other branching-type
service policy). More specifically, for general mixtures of exhaustive and gated service, let
G be the set of indices i for which Qi receives gated service, and E := {1, . . . , N}\G the
subset of queues that receive exhaustive service. Then the results presented above still
hold; the only difference is that the parameter δ in (4) should be replaced by

δmixture := 1−
∑
i∈E

ρ̂2
i +

∑
i∈G

ρ̂2
i . (46)

In the present paper it is assumed that the arrival processes at the queues are Poisson.
This assumption can easily be relaxed to renewal arrivals. Following a well-established line
of argumentation (see [12; 13; 22]), one may conjecture that results presented in Section
3 to 8 are still valid when σ2 defined in (4) is replaced by

σ2
renewal :=

N∑
i=1

λ̂i

(
V ar[Bi] + ρ̂2

iV ar[Âi]
)
, (47)

where the random variable Ai denotes the interarrival times at Qi with Âi being the lim-
iting case ρ ↑ 1.

Finally, we address a number of topics for further research. First, the heavy-traffic results
proven in this paper demonstrate convergence in distribution by demonstrating point-wise
convergence of the LST’s to their limiting regimes, and application of Levy’s Continuity
Theorem. An interesting question is whether the results can be extended to other types
of convergence, and under what assumptions. For example, convergence in distribution
does not necessarily imply moment-wise convergence; the latter requires the finiteness of
higher moments of the service times and switch-over times. We refer to [30] (Section 3.3)
for more detailed discussion about moment-wise convergence. In the case of PS service
at queue i we made the additional assumption that the service times are exponentially
distributed. Under this assumption, we proved the correctness of Theorem 4 by using the
results in [1] (Section 5) which, in turn, rely on the classical results by Coffmann et al.
[11] for the M/M/1 PS queue (without vacations). It is an open question how the results
for PS can be extended to the case of generally distributed service times.
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paper.
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