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Abstract

We consider polling models consisting of a single server that visits the queues in a cyclic order. In
the vast majority of papers that have appeared on polling models, it is assumed that at each of the
individual queues the customers are served on a First-Come-First-Served (FCFS) basis. In this paper we
study polling models where the local scheduling policy is not FCFS, but instead, is varied as Last-Come-
First-Served (LCFS), Random Order of Service (ROS), Processor Sharing (PS) and Shortest-Job-First
(SJF). The service policies are assumed to be either gated or globally gated. The main result of the paper
is the derivation of asymptotic closed-form expressions for the Laplace-Stieltjes transform (LST) of the
scaled waiting-time and sojourn-time distributions under heavy-traffic assumptions. For FCFS service
the asymptotic sojourn-time distribution is known to be of the form UΓ, where U and Γ are uniformly
and gamma distributed with known parameters. In this paper we show that the asymptotic sojourn-
time distribution (1) for LCFS is also of the form UΓ, (2) for ROS is of the form ŨΓ where Ũ has a
trapezoidal distribution, and (3) for PS and SJF is of the form Ũ∗Γ where Ũ∗ has a generalized trapezoidal
distribution. These results are rather intriguing and lead to new fundamental insight in the impact of the
local scheduling policy on the performance of polling models. As a by-product the heavy-traffic results
suggest simple closed-form approximations for the complete waiting-time and sojourn-time distributions
for stable systems with arbitrary load values. The accuracy of the approximations is evaluated by
simulations.

1 Introduction

A polling system is a multi-queue single-server system in which the server visits the queues in some order to
process requests pending at the queues. Polling systems were first introduced in the late 1950s by Mack et al.
[14, 13] to model a patrolling repairman. Polling models find a wealth of applications in areas like computer-
communication systems and production-inventory systems. For extensive surveys on polling systems and
their applications, we refer to [5, 12, 19, 20, 21, 22, 29]. Within a polling system there are a number of design
decisions that have to be made, i.e.,

1. The order in which to serve the queues.

2. How many customers to serve during each visit to a queue.

3. The order in which customers within each queue are served.

For the first two decisions a wide variety of policies has been proposed and analyzed. The focus of the current
paper is on the third decision. Namely, we investigate the influence of the effective local service order on the
waiting times of the customers. As a result, we will limit discussion to the most common configurations for
the first two decisions: cyclic service order and (globally-)gated service.

It might be natural to assume that the impact of such local scheduling is small, because it only impacts the
system performance locally, leaving the amount of time spent outside the targeted queue unaffected. However,
[30] illustrates that the impact on the system performance from scheduling within a queue of a polling system
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can be significant. In many application areas of polling models, such as Bluetooth and 802.11 protocols,
scheduling policies at routers and I/O subsystems in web servers, the workloads are known to have high
variability and priority-based scheduling could therefore be beneficial. Outside of computer-communication
systems, local scheduling proved its worth in the domain of production-inventory control. Our goal is to
explore the impact of the local scheduling in polling systems under heavy traffic (HT) conditions.

The motivation for studying the HT regime is twofold. First of all, it is the most important and challenging
regime from a practical scheduling point of view, i.e. the proper operation of the system is particularly critical
when the system is heavily loaded. Optimizing the local scheduling is, therefore, an effective mechanism for
improving system performance without purchasing additional resources. Second, an attractive feature of HT
asymptotics is that in many cases they lead to strikingly simple expressions for the performance measures of
interest. This remarkable simplicity of the HT asymptotics leads to structural insights into the dependence
of the performance measures on the system parameters and gives fundamental understanding of the behavior
of the system in general. As a result, HT asymptotics form an excellent basis for developing simple accurate
approximations for the performance measures (distributions, moments, tail probabilities) for stable systems.
These closed-form approximations allow for back-of-the-envelope calculations.

Although an enormous number of papers on both polling systems and scheduling policies have appeared,
the combination of the two has received very little attention. That is, almost all theoretical studies of
scheduling policies are performed in single-queue settings such as the M/G/1 and G/G/1 queue with only
a few exceptions studying the effect of local scheduling in multi-queue polling systems. By using the Mean
Value Analysis (MVA) framework for polling systems [32], Wierman et al. [30] have derived the mean delay
in cyclic exhaustive and gated polling systems for various scheduling disciplines such as First-Come-First-
Served (FCFS), Last-Come-First-Served (LCFS), Foreground-Background (FB), Processor Sharing (PS),
Shortest-Job-First (SJF) and fixed priorities. Building upon these results, Boxma et al. [7] have obtained
the waiting-time distribution in cyclic (globally-)gated polling systems for various service orders. As indicated
by [7], the derivation of the waiting-time distribution in exhaustive polling systems is much more intricate.
Recently, interesting progress in this direction has, however, been made. Boon et al. [4] have studied the
waiting-time distribution in a two-queue polling model with either the exhaustive, gated or globally-gated
service discipline. The first of these two queues contains customers of two priority classes. In [3] these results
are generalized to a polling model with N queues and Ki priority levels in queue i. Moreover, Ayesta et
al. [2] derive the sojourn-time distribution in polling systems with exhaustive service and where the local
scheduling policy is PS. For a general service requirement distribution the analysis is restricted to the mean
sojourn time.

Concluding we can say that there is a limited amount of research on local scheduling in polling systems,
which is in our opinion due to the following factors:

1. One might believe that the added value of local scheduling in a polling system is small, because it does
not impact the time spent on the other queues in the system.

2. The analysis of polling systems is difficult even in the simple case of FCFS scheduling.

The HT analysis for scheduling policies in polling systems remained elusive at all; the present study aims to
fill that gap.

In this paper we study Poisson-driven cyclic polling models with general service-time and switch-over time
distributions, and with two types of service policies: (1) models with gated service at each queue, and
(2) models with globally-gated service. For both types of service policies, we consider the following five
scheduling policies that determine the local order in which the customers at a given queue are served: FCFS,
LCFS, ROS, PS and SJF, where ROS denotes Random Order of Service.

For each of these models we derive exact closed-form expressions for the Laplace-Stieltjes Transform (LST) of
the (scaled) waiting-time and sojourn-time distributions under HT assumptions. Note that it was shown in
[25] that the asymptotic cycle-time distributions converge to a gamma distribution with known parameters.
Using this result, for FCFS service it is shown in [15] that the asymptotic sojourn-time distribution is a
product of the random variables U and Γ, where U and Γ are uniformly and gamma distributed. In this
paper, we unify and extend this result by presenting rigorous proofs showing that the asymptotic sojourn-
time distribution is (1) for LCFS also of the form UΓ, (2) for ROS of the form ŨΓ where Ũ has a trapezoidal
distribution, and (3) for PS and SJF of the form Ũ∗Γ where Ũ∗ has a generalized trapezoidal distribution.

We can conclude that the main result of the paper is that we rigorously prove closed-form expressions
for the (scaled) waiting-time distribution under HT assumptions, explicitly quantifying the impact of the
local scheduling policies on the waiting-time performance. The main surprising observation made is that
the asymptotic distribution of the waiting time for all of these priority-based scheduling disciplines can be
described by the product of a generalized trapezoidal distribution and a gamma distribution, both with
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known parameters. We would like to stress the unearthed dichotomy between the known HT results on
FCFS polling models and our novel asymptotic results for other scheduling disciplines. That is, for standard
FCFS and LCFS scheduling the uniform distribution is prevalent in the HT distribution, whereas the various
alternative scheduling disciplines lead to the appearance of the (generalized) trapezoidal distribution in the
asymptotic distributions.

These results are rather intriguing and provide new fundamental insight in the impact of the local scheduling
policy on the performance of polling models. Our results lead not only to unification but also to extension
of the literature studying scheduling policies, polling systems and HT asymptotics. As a by-product the HT
results suggest simple closed-form approximations for the complete waiting-time and sojourn-time distribu-
tions for stable systems with arbitrary load values and general renewal arrival processes. Numerical results
show that these approximations perform well for a wide range of parameter combinations.

The remainder of the paper is organized as follows. In Section 2, the model is described and the notation
required is introduced. In Section 3, we derive the HT asymptotics for the model with gated service at
each queue under various local scheduling policies. Section 4 presents similar results for the case of globally
gated service. Furthermore, Section 5 proposes a simple approximation for the sojourn-time distributions for
arbitrary load values and present numerical results to evaluate the accuracy of the approximations. Section
6 contains a number of concluding remarks.

2 Model and notation

We consider a system of N ≥ 2 infinite-buffer queues, Q1, . . . , QN , and a single server that visits and
serves the queues in cyclic order. Customers arrive at Qi according to a Poisson process with rate λi.
These customers are referred to as type-i customers. The total arrival rate is denoted by Λ =

∑N
i=1 λi.

The service time of a type-i customer is a random variable Bi, with LST B∗i (·) and finite k-th moment

b
(k)
i = E[Bki ], k = 1, 2. The k-th moment of the service time of an arbitrary customer is denoted by

b(k) = E[Bk] =
∑N
i=1 λi E[Bki ]/Λ, k = 1, 2. The load offered to Qi is ρi = λi E[Bi] and the total load offered

to the system is equal to ρ =
∑N
i=i ρi. The switch-over time required by the server to proceed from Qi to

Qi+1 is an independent random variable Si with mean ri := E [Si]. Let S =
∑N
i=1 Si denote the total switch-

over time in a cycle and let r := E [S] denote its mean. A necessary and sufficient condition for stability
of the system is ρ < 1. Ci denotes the cycle time at queue i, defined as the time between two successive
arrivals of the server at queue i; it is well known that E [Ci] = r/(1−ρ) for each i (c.f. [19, Equation (5.39b)]).

The service policy determines which customers are served during a visit of the server to a queue. In this paper
we assume two variants: (1) the model with gated service at each of the queues, and (2) the globally-gated
model. For gated service, all customers are served that were present at polling instant, i.e., at the moment
when the server arrives at the queue. For globally gated, during a cycle, all customers are served that were
present at polling instant of the first queue. The local scheduling policy determines the order in which the
customers are served during a visit period at a queue. We consider the following five local scheduling policies:
FCFS, LCFS, ROS, PS or SJF. For policy P ∈ {FCFS,LCFS,ROS,PS,SJF}, we denote i ∈ IP if Qi receives
scheduling policy P . For example, IFCFS is the (index) set of queues i that are served on a FCFS basis,
ILCFS is the (index) set of queues i that are served on a LCFS basis, and so on.

In this paper we study heavy-traffic limits, i.e., the limiting behavior as ρ approaches 1. The heavy-traffic
limits, denoted ρ ↑ 1, taken in this paper are such that the arrival rates are increased, while keeping both
the service-time distributions and the ratios between the arrival rates fixed. Light-traffic limits, denoted
ρ ↓ 0, are defined similarly. The notation →d means convergence in distribution. For each variable x that is
a function of ρ, we denote its value evaluated at ρ = 1 by x̂. In particular we have ρ̂i = ρi

ρ and λ̂i = ρ̂i
E[Bi]

.

Let Wi denote the waiting time of an arbitrary customer at Qi, defined as the time between the arrival
of a customer and the moment at which he enters service. The sojourn time of an arbitrary customer at
Qi, represented by Ti, is defined as the time between the arrival of a customer and the moment at which
he departs from the system. The LSTs of Wi and Ti are denoted by W ∗i (s) and T ∗i (s), respectively. When
ρ ↑ 1, all queues become unstable, therefore the focus lies on the random variables (1− ρ)Wi and (1− ρ)Ti
as ρ ↑ 1, referred to as the scaled waiting times and sojourn times at Qi, respectively.

Throughout, a key role is played by the gamma distribution and the uniform distribution. A non-negative
continuous random variable Γ(α, µ) is said to have a gamma distribution with shape parameter α > 0 and
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scale parameter µ > 0 if it has the probability density function

fΓ(x) =
µα

Γ(α)
xα−1e−µx (x > 0), with Γ(α) :=

∫ ∞
0

tα−1e−tdt (1)

and LST

Γ∗(s) =

(
µ

µ+ s

)α
(Re(s) > 0). (2)

Note that in the definition of the gamma distribution µ is a scaling parameter, and that Γ(α, µ) has the
same distribution as µ−1Γ(α, 1). Moreover, we denote by U [a, b] (a < b) a random variable that is uniformly
distributed over the interval [a, b]. For later reference note, that the LST of the random variable Γ(α +
1, µ)U [a, b], where Γ(α+ 1, µ) and U [a, b] are independent, is given by

E
[
e−sU [a,b]Γ(α+1,µ)

]
=

µ

αs(b− a)

{(
µ

µ+ sa

)α
−
(

µ

µ+ sb

)α}
(Re(s) > 0). (3)

3 Analysis of models with gated service

In this section we consider the case of gated service at all queues. In Subsection 3.1 we review some known
preliminary results for FCFS disciplines to be used for later reference. In Subsections 3.2 – 3.5 we use the
results in Subsection 3.1 to derive heavy-traffic limits for LCFS, ROS, PS and SJF, respectively. In Section 5
we use these results to propose and validate approximations for the distributions of the waiting times and
sojourn times for arbitrary load values and renewal arrivals.

It is easy to see that for FCFS, LCFS and ROS service the sojourn time is simply the convolution of
the waiting time and the service time, i.e., for Re(s) ≥ 0,

T ∗i (s) = W ∗i (s)B∗i (s), (i ∈ IFCFS , ILCFS , IROS). (4)

For this reason, in Subsections 3.1–3.3 we focus on the waiting-time distributions. The results for the
sojourn-time distributions then follow directly from (4). Note that for i ∈ IPS and i ∈ ISJF relation (4)
is generally not true, because in those cases the waiting times and the service times are not independent.
Relation (4) is used for the approximation in Section 5, since sojourn times and waiting times are equal in HT.

To start, let us consider the distribution of the cycle time Ci, defined as the time between two succes-
sive arrivals of the server at queue i. A simple but important observation is that the distribution of Ci is
independent of the local scheduling policy (i.e., FCFS, LCFS, ROS, PS and SJF). To this end, recall that
the service policy (e.g., gated or globally gated) determines which customers are served during a visit V of
the server to a queue, and that the local scheduling policies determine the order in which these customers are
served during V . For this reason the cycle-time distributions are the same for all local scheduling policies
under consideration, provided that they are work-conserving.

The following result gives a characterization for the limiting behavior of the cycle-time distributions, stating
that the (scaled) cycle times (1− ρ)Ci converge to a gamma distribution with known parameters (proven in
[25, 26]).

Property 1. (Convergence of the cycle times). For the model with gated service at each queue we
have, for i = 1, . . . , N ,

(1− ρ)Ci →d Γ̃,

where Γ̃ has a gamma distribution with parameters

α :=
rδ

σ2
, µ :=

δ

σ2
, (5)

with

σ2 :=
b(2)

b(1)
, and δ :=

N∑
i=1

ρ̂i(1 + ρ̂i). (6)
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3.1 First-Come-First-Served

In this section we review several known results for the case of FCFS service at queue i. In Subsections 3.2–3.5
these results are used to derive new results for LCFS, ROS, PS and SJF, respectively. For FCFS service,
the following result gives an expression for the LST of the waiting time Wi in terms of the distribution of
the cycle time Ci (proven in [7]):

Property 2. (Cycle-time expression for the waiting times) For the gated service model, we have for
Re(s) > 0 and ρ < 1,

W ∗i (s) =
C∗i (λi(1−B∗i (s)))− C∗i (s)

E [Ci] (s− λi(1−B∗i (s)))
(i ∈ IFCFS). (7)

The following result, which was shown in [25], characterizes the limiting behavior of the waiting-time distri-
bution in heavy traffic.

Property 3. (Convergence of the waiting times) For the gated service model, we have for ρ ↑ 1,

(1− ρ)Wi →d UiC̃i (i ∈ IFCFS), (8)

where Ui is uniformly distributed on the interval [ρ̂i, 1], and where C̃i has a gamma distribution with pa-
rameters α + 1 and µ, where α and µ are given in Equation (5). The random variables Ui and C̃i are
independent.

Note that here C̃i is the length-biased version of C̃i, a gamma-distributed random variable with parameters
α and µ as in Equation (5). It is well known that if a gamma random variable has parameters α and µ then
its length-biased version has parameters α+ 1 and µ. The following result gives an expression for the higher
moments of the waiting times in heavy traffic (proven in [27, 28]):

Property 4. (Convergence of moments of the waiting time) For k = 1, 2, . . .,

ω
(k)
i := lim

ρ↑1
(1− ρ)k E

[
W k
i

]
=

1− ρ̂k+1
i

1− ρ̂i

∏k
j=1(α+ j)

(k + 1)µk
(i ∈ IFCFS), (9)

assuming that the (k+1)-st moments of the service-time distributions and the k-th moments of the switch-over
time distributions are finite.

3.2 Last-Come-First-Served

The LST for the waiting-time distribution for the LCFS service is expressed in terms of the cycle-time
distributions as follows (cf. [7]): For Re(s) > 0 and ρ < 1,

W ∗i (s) =
1− C∗i (s+ λi(1−B∗i (s)))

E [Ci] (s+ λi(1−B∗i (s)))
(i ∈ ILCFS). (10)

The following result gives an expression for the asymptotic waiting-time distribution for LCFS service in
heavy traffic.

Theorem 1. For ρ ↑ 1,

(1− ρ)Wi →d UiC̃i (i ∈ ILCFS), (11)

where Ui is uniformly distributed on the interval [0, 1+ ρ̂i] and C̃i has a gamma distribution with parameters
α+ 1 and µ, where α and µ are given in Equation (5). The random variables Ui and C̃i are independent.

Proof. Take i ∈ ILCFS . Then combining (10) with Property 1 gives the following expressions for the LST
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of the (scaled) waiting-time distribution. For i ∈ ILCFS , Re(s) > 0, we have

W̃ ∗i (s) := lim
ρ↑1

W ∗i (s(1− ρ)) = lim
ρ↑1

1− C∗i (s(1− ρ) + λi(1−B∗i (s(1− ρ))))

E [C] (s(1− ρ) + λi(1−B∗i (s(1− ρ))))
(12)

= lim
ρ↑1

1−
(

µ(1−ρ)
µ(1−ρ)+s(1−ρ)+λi(1−B∗i (s(1−ρ)))

)α
r

(1−ρ) (s(1− ρ) + λi(1−B∗i (s(1− ρ))))
(13)

= lim
ρ↑1

1−
(

µ
µ+s+λi(1−B∗i (s(1−ρ)))/(1−ρ)

)α
r
(
s+

λi(1−B∗i (s(1−ρ))
1−ρ

) . (14)

Using l’Hôpital’s rule and the fact that −B∗′i (0) = E[Bi] we see that:

lim
ρ↑1

λi(1−B∗i (s(1− ρ)))

1− ρ
= lim

ρ↑1
0− λiB∗

′

i (s(1− ρ))s

1
= ρ̂is,

which immediately implies that, for Re(s) > 0,

W̃ ∗i (s) =
1−

(
µ

µ+s+ρ̂is

)α
r(s+ ρ̂is)

=
1

rs(1 + ρ̂i)

{
1−

(
µ

µ+ s(1 + ρ̂i)

)α}
(i ∈ ILCFS), (15)

where α and µ are given in (5). Using (3) and µ/α = 1/r, it now follows that (15) corresponds to the LST
of a uniform random variable on [0, 1 + ρ̂i] times a gamma distribution. Application of Levy’s Continuity
Theorem (c.f. [31]) completes the proof.

Using Theorem 1, it is easily verified that the moments of the asymptotic delay distribution are given by
the following expression.

Corollary 1. (Moments of the asymptotic delay) For k = 1, 2, . . .,

ω
(k)
i := lim

ρ↑1
(1− ρ)k E[W k

i ] =
(1 + ρ̂i)

k
∏k
j=1(α+ j)

(k + 1)µk
(i ∈ ILCFS), (16)

where α and µ are defined in Equation (5), assuming that the (k+ 1)-st moments of the service-time distri-
butions and the k-th moments of the switch-over time distributions are finite.

We end this section with a number of remarks.

Remark 1. (Comparison between FCFS and LCFS case using the heavy-traffic averaging prin-
ciple) Property 3 and Theorem 1 reveal an interesting difference in the waiting-time distributions between
the FCFS case and the LCFS case. More precisely, for the FCFS case the limiting behavior of Wi is of the
form UFCFSΓ, where UFCFS is uniformly distributed on the interval [ρ̂i, 1], whereas for the LCFS case the
limiting distribution of Wi is of the form ULCFSΓ, where ULCFS is uniformly distributed on the interval
[0, 1 + ρ̂i], with the same gamma distribution. To provide an intuitive explanation for this, we use the
insights that can be obtained by the so-called Heavy-Traffic Averaging Principle (HTAP), see e.g. [8, 9]
and [15, 16]. Loosely speaking, HTAP for polling models means that the total scaled workload may be
considered as a constant during a cycle, whereas the workloads of the individual queues change much faster
according to deterministic trajectories, or a fluid model. Due to the HTAP, we let the constant c denote
the cycle length. Let us first consider the fluid model for FCFS. Note that the waiting time consists of
two parts. First, a customer has to wait for the residual cycle time, which is (1 − U)c for U uniformly
distributed on [0, 1]. Second, a customer has to wait for all customers that have arrived before him during
the course of the ongoing cycle. Hence, this equals ρ̂iUc. The total waiting time in the fluid model then
equals (1−U+ ρ̂iU)c, which has a uniform distribution on [ρ̂ic, c]. Using that the cycle time follows a gamma
distribution explains the shape of the waiting-time distribution in heavy traffic. For LCFS, as for FCFS, an
arriving customer still has to wait for the residual cycle length (1−U)c, with U a uniform random variable on
[0, 1]. In addition, the arriving customer has to wait for all customers that arrived after him during the same
cycle, which is of length ρ̂i(1−U)c. Hence, the waiting time in the fluid model is (1 + ρ̂i)(1−U)c, which is
a uniform distribution on [0, (1+ρ̂i)c]. This interpretation gives much insight in the heavy-traffic asymptotics.

6



Remark 2. (Alignment with asymptotics with large switch-over times) Further support can be
given for the distribution in Theorem 1 by considering a different asymptotic regime as in [24]. Let the
switch-over times be deterministic with length ri. We consider the behavior of Wi when the switch-over
times tend to infinity. Because the waiting times are known to grow without bound when the switch-over
times increase to infinity, the analysis is oriented towards the limiting distribution of Wi

r as r → ∞. Using
similar techniques as in [24], it may be shown that

Wi

r
→d Ŵi (r →∞), (17)

where Ŵi is uniformly distributed over the interval [ãi, b̃i], with

ãi =
ρi

1− ρ
, b̃i =

1

1− ρ
for i ∈ IFCFS , and ãi = 0, b̃i =

ρi + 1

1− ρ
for i ∈ ILCFS . (18)

Note that the uniform distribution is the same as in the HT regime. However, in HT the cycle times follow a
gamma distribution whereas here the cycle times become deterministic as the switch-over times grow large.

3.3 Random Order of Service

In this section we derive heavy-traffic limits for the Random Order of Service (ROS) local scheduling policy.
ROS is represented by ordering marks. Each customer that arrives gets an ordering mark x, a realization
from a uniform distribution on [0, 1]. When the server arrives at the queue, the gate closes and the customers
before the gate are served in order of their marks. It is convenient to condition with respect to x and then
uncondition. Let Wi(x) be the waiting time of a customer in queue i with ordering mark x, with i ∈ IROS ,
and let W ∗i (s|x) be the corresponding LST. The following result was shown in [7]: for Re(s) > 0, 0 < x < 1
and ρ < 1,

W ∗i (s|x) =
C∗i (λix(1−B∗i (s)))− C∗i (s+ λix(1−B∗i (s)))

sE[Ci]
(i ∈ IROS). (19)

The next result gives the heavy-traffic limit of the distribution of Wi(x).

Theorem 2. (Conditional waiting time) For ρ ↑ 1, 0 < x < 1,

(1− ρ)Wi(x)→d Ui(x)C̃i (i ∈ IROS), (20)

where Ui(x) is uniformly distributed over the interval [ρ̂ix, 1 + ρ̂ix] and C̃i has a gamma distribution with
parameters α+ 1 and µ, where α and µ are given in Equation (5). The random variables Ui(x) and C̃i are
independent.

Proof. Combining (19) and Property 1 and using l’Hôpital’s rule, we find the following LST of the waiting
time conditional on the ordering mark x: for Re(s) > 0, 0 < x < 1,

W̃ ∗i (s|x) = lim
ρ↑1

W ∗i (s(1− ρ)|x)

= lim
ρ↑1

C∗i (λix(1−B∗i (s(1− ρ))))− C∗i (s(1− ρ) + λix(1−B∗i (s(1− ρ))))

s(1− ρ)E[Ci]

=
1

rs

{(
µ

µ+ ρ̂ixs

)α
−
(

µ

µ+ (1 + ρ̂ix)s

)α}
(i ∈ IROS). (21)

Applying Levy’s Continuity Theorem completes the proof.

To obtain the unconditional distribution of the waiting time, we first consider a more general setting that also
covers ‘unconditioning’ for PS and SJF. For this, let a(·) be a continuous and strictly increasing function on
some interval X = [xmin, xmax], where we allow xmax to be infinite. Suppose we have a conditional random
variable, denoted T |x, that is uniformly distributed on the interval [a(x), a(x) + 1]. We want to find the
unconditional distribution T̃ . Here, x is a realization of the random variable X with support X ⊆ R+ having
distribution function FX(·) and density fX(·). We have the following lemma.
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ρ̂i

x

y 1 1 + ρ̂i

a−1(y)

0

a(x) a(x) + 1

Figure 1: Boundaries of the uniform distribution

Lemma 1. Assume that the conditional random variable T |x is uniformly distributed on [a(x), a(x) + 1],
where x ∈ X = [xmin, xmax]. Suppose that a(xmin) = m, a(xmax) = ρ̂i and a(x) is continuous and strictly
increasing in x, such that a(·) has an inverse denoted by a−1(·). Then, the unconditional distribution of T |x,
denoted by T̃ , has probability density function

fT̃ (y) =

 FX(a−1(y)) y ∈ [m, ρ̂i)
1 y ∈ [ρ̂i, 1 +m]
1− FX(a−1(y − 1)) y ∈ (1 +m, 1 + ρ̂i].

(22)

Proof. Note that T |x has the following probability density function

fT |x(y) =

{
1 y ∈ (a(x), a(x) + 1)
0 Otherwise

∀x ∈ X .

Figure 1 shows an example of the boundaries of the uniform distribution, by plotting a(x) and a(x) + 1 with
x on the vertical axis. The possible values of T |x then lie between the two lines. To find fT̃ (y), we need to
integrate out x with respect to its density function. First, take y ∈ (m, ρ̂i), in which case the probability
density fT̃ (y) is obtained from the parts where x is smaller than a−1(y). This gives, for y ∈ (m, ρ̂i),

fT̃ (y) =

∫ a−1(y)

xmin

fX(x)fT |x(y) dx = FX(a−1(y)).

If y ∈ (ρ̂i, 1 + m) then y is between the boundaries of the uniform distribution for every x ∈ X . Hence, we
get

fT̃ (y) =

∫ xmax

xmin

fX(x)fT |x(y) dx = 1.

Finally, for y ∈ (1 +m, 1 + ρ̂i), we can use that the boundaries are described by similar curves, i.e., x needs
to be larger than a−1(y − 1), so

fT̃ (y) =

∫ xmax

a−1(y−1)

fX(x)fT |x(y) dx = 1− FX(a−1(y − 1)).

Finally, it follows from the properties of a(·) that fT̃ (·) is a density function. This completes the proof.

Remark 3. For convenience it is assumed in Lemma 1 that the underlying random variable X has a
density. For, e.g., PS it can be of interest to consider the case that X is a discrete random variable. This
is directly related to the properties of a(·), i.e., that a(·) is continuous and strictly increasing. It is not
difficult to modify Lemma 1 to the case of discrete random variables by either redefining the inverse of a(·)
as a−1(y) = sup{x ∈ X : a(x) ≤ y}, or by extending the function a(·) from the range of X to an interval
[xmin, xmax], such that a(·) is continuous and strictly increasing.

Note that the density function in (22) is continuous, increasing on [m, ρ̂i), constant on [ρ̂i, 1 + m] and
decreasing on (1 + m, 1 + ρ̂i], which closely resembles the traditional trapezoidal distribution. In line with
[10], we refer to (22) as a generalized trapezoidal distribution consisting of stages of growth, stability, and
decay, i.e..

For further references, it is of interest to determine the mean of this generalized trapezoidal distribution.
There are different ways to represent this mean, for instance,

E[T̃ ] =

∫ 1+ρ̂i

m

xfT̃ (x) dx =
1

2
+ ρ̂i −

∫ ρ̂i

m

FX(a−1(y)) dy =
1

2
+

∫
u∈X

a(u)fX(u) du,

8



where the second step follows after some rewriting. Substituting y = a(u), the third step follows after partial
integration. In Subsections 3.4 and 3.5, the mean of the generalized distribution E[T̃ ] is specified for PS and
SJF.

We now apply the lemma above to the case i ∈ IROS , in which case a(x) = ρ̂ix, with x ∈ [0, 1]. The
asymptotic scaled unconditional delay is presented in the following theorem.

Theorem 3. (Unconditional waiting time) For ρ ↑ 1,

(1− ρ)Wi →d Ũ
∗
i C̃i (i ∈ IROS),

where Ũ∗i has a trapezoidal distribution with density function

fŨ∗i
(y) :=

 y/ρ̂i y ∈ [0, ρ̂i)
1 y ∈ [ρ̂i, 1]
(1 + ρ̂i − y)/ρ̂i y ∈ (1, 1 + ρ̂i].

(23)

and C̃i has a gamma distribution with parameters α + 1 and µ, where α and µ are given in Equation (5).
The random variables U∗i and C̃i are independent.

Proof. Take i ∈ IROS . Then Theorem 2 implies that a(x) = ρ̂ix and X = [0, 1]. Note that this function
has the desired properties: a(0) = 0, a(1) = ρ̂i and a(x) continuous and strictly increasing in x ∈ X . The
cumulative distribution function of X is given by FX(x) = x and the inverse function of a(·) is a−1(y) = y/ρ̂i.
The use of Lemma 1 now yields the result.

Remark 4. (HTAP) Interestingly, Theorem 3 shows that the uniform distribution that appears in the
heavy-traffic limit for FCFS and LCFS is replaced by a trapezoidal distribution for ROS. The shape of this
distribution can be explained by the fact that the waiting time of a customer does not only depend on the
time that the customer enters the system, but also on an independent random mechanism that determines
the moment that the customer is served. More specifically, exploiting the HTAP we let the constant c denote
the cycle length again and consider the fluid model for the conditional waiting time of a customer with mark
x. An arriving customer has to wait for the residual cycle length (1 − U)c, with U uniformly distributed
on [0, 1], and the time required to serve the customers that arrived during the same cycle and have a mark
smaller than x, i.e., ρ̂ixc. Clearly, the conditional waiting time in the fluid model is uniformly distributed
on [ρ̂ixc, (1 + ρ̂i)xc]. Since x is an arbitrary order mark, the unconditional waiting time in the fluid model is
(U1 + U2)c, with U1 and U2 independent uniform distribution on the intervals [0, 1] and [0, ρ̂i], respectively.
Note that such a convolution gives rise to a trapezoidal distribution as obtained in Theorem 3.

Remark 5. (First moments of waiting times) Observe that it follows from Property 4, Corollary 1
and Theorem 3 that the first moments of the asymptotic waiting-time distributions for the FCFS, LCFS
and the ROS scheduling disciplines are the same. This is in line with the observation in [7] that the mean
waiting times for these disciplines coincide for a general value of ρ < 1. To this end, it is easy to see that

E[Wi] = (1 + ρi)
E[C2

i ]
2E[Ci]

and that the cycle-time distributions are independent of the local scheduling policy.

3.4 Processor sharing

When the scheduling discipline is PS, the LST of the conditional sojourn time (denoted T ∗i (s|x)) can also
be expressed in terms of the LST of the cycle time. When x is the amount of work that a tagged customer
brings into the system, it holds that (c.f. [7]), for ρ < 1, Re(s) > 0, x > 0,

T ∗i (s|x) = e−sx
C∗i (λi(1− ϕ(s, x)))− C∗i (s+ λi(1− ϕ(s, x)))

sE[Ci]
(i ∈ IPS), (24)

where ϕ(s, x) = E
[
e−smin(Bi,x)

]
, the LST of the minimum of Bi and x. The next theorem gives an expres-

sion for the asymptotic distribution of the conditional sojourn time Ti(x).

Theorem 4. (Conditional sojourn time) For ρ ↑ 1, x > 0,

(1− ρ)Ti(x)→d Ui(x)C̃i (i ∈ IPS), (25)

where Ui(x) is uniformly distributed over the interval [λ̂i E[min(Bi, x)], 1 + λ̂i E[min(Bi, x)]] and C̃i has a
gamma distribution with parameters α + 1 and µ, where α and µ are given in Equation (5). The random
variables Ui(x) and C̃i are independent.
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Proof. Combining (24) with Property 1, we obtain, for Re(s) > 0 and x > 0,

T̃i(s|x) := lim
ρ↑1

T ∗i (s(1− ρ)|x)

=
1

rs

{(
µ

µ+ λ̂i E[min(Bi, x)]s

)α
−

(
µ

µ+ (1 + λ̂i E[min(Bi, x)])s

)α}
, (26)

with α+ 1 and µ as given in (5). An application of Levy’s Continuity Theorem yields the result.

We now proceed with the unconditional sojourn time. For notational convenience, we assume here that the
service-time distributions are absolutely continuous (see however Remark 3).

Theorem 5. (Unconditional sojourn time) For ρ ↑ 1,

(1− ρ)Ti →d U
∗
i C̃i (i ∈ IPS),

where U∗i is a type of generalized trapezoidal distribution as characterized in Equation (27) with a(x) =

λ̂i E[min(Bi, x)] and xmin the lowest possible value of Bi. The random variables U∗i and C̃i are independent.

Proof. Take a(x) = λ̂i E[min(Bi, x)] such that Ui(x) is uniformly distributed on [a(x), a(x) + 1], see Theo-

rem 4. Clearly, a(xmin) = λ̂ixmin, a(xmax) = λ̂i E[Bi] = ρ̂i and a(x) is continuous and strictly increasing.
Using Lemma 1, we obtain the unconditioned distribution

fU∗i (y) =


FBi

(a−1(y)) y ∈ [λ̂ixmin, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂ixmin]

1− FBi
(a−1(y − 1)) y ∈ (1 + λ̂ixmin, 1 + ρ̂i],

(27)

where xmin is the minimum value that Bi can take. This completes the proof.

Remark 6. (HTAP) Theorem 5 shows that the conditional sojourn time in heavy traffic still is a uniform
times a gamma distribution. This can again be intuitively explained from the HTAP. Now, in a cycle of
length c, arriving customers have to wait for the residual cycle length (1−U)c and their departure is delayed
by all traffic in queue i that arrives during the same cycle and has been served before the tagged customer
leaves. The latter equals λ̂i E[min(Bi, x)]c in the fluid model. The distribution of the unconditional sojourn
time not only depends on the first two moments of the service time, but depends on the complete service-
time distribution. In particular, the curve FBi

(a−1(y)), with y ∈ [λ̂ixmin, ρ̂i), can be interpreted as the fluid
model of the cumulative number of departures from queue i from the moment that the gate opens at queue i.
To interpret this, note that in the fluid model a(x) represents the amount of work served since the gate is
open to a customer with service requirement x, and a−1(·) can thus be seen as the time to accumulate such an
amount of service. Hence, FBi(a

−1(y)) counts the number of customers for which a−1(y) is sufficient to leave.

Remark 7. (Deterministic service times) In most queueing models, high variability leads generally to
longer waiting times. However, for the polling model under consideration, note that Theorem 4 implies that
for deterministic service times, the waiting time in heavy traffic is also a uniform times a gamma distribution.
Here, the boundaries of the uniform distribution are ρ̂i and 1 + ρ̂i. We note that this is the worst possible
case for U∗i among all service-time distributions, in the sense that it has the largest tail P(U∗i > x) for all
x. This is caused by the fact that all customers are served simultaneously and, in the end, they all jointly
leave.

Below we give some examples of the type of generalized trapezoidal distribution U∗i for some specific service-
time distributions. Together with the gamma distribution, representing the cycle time, this fully specifies
the scaled sojourn time in heavy traffic.

Exponential service times
Suppose Bi is exponentially distributed with parameter bi. Then

E[min(Bi, x)] =

∫ x

0

ybie
−biy dy + xe−bix =

1

bi
(1− e−bix),

so a(x) = ρ̂i(1 − e−bix). Solve a(x) = y for x to find a−1(y) = ln(1− y/ρ̂i)/(−bi). Now substituting
this in Equation (27) it follows after some simplification that the generalized trapezoidal distribution U∗i
coincides with the density function of U∗i for ROS given in (23). This means that for the case of exponential
service-time distributions, the sojourn-time distributions for ROS and PS coincide.
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Figure 2: Probability density function of U∗i with uniform (left) and Pareto (right) service times in a PS
polling system

Uniform service times
Suppose Bi is a uniformly distributed random variable on the interval [ai, bi]. Then

a(x) = λ̂i E[min(Bi, x)] = λ̂i

(∫ x

ai

y/(bi − ai) dy + x

∫ bi

x

1/(bi − ai) dy

)

=
−λ̂i

2(bi − ai)
(
a2
i − 2bix+ x2

)
=
−ρ̂i

b2i − a2
i

(
a2
i − 2bix+ x2

)
.

Now a−1(y) can be found using the quadratic formula:

a−1(y) =

(
2bi ±

√
4b2i − 4(a2

i + y/ρ̂i(b2i − a2
i ))

)
/2 = bi −

√
(1− y/ρ̂i)(b2i − a2

i ),

where the final equality follows from x ∈ [ai, bi].

In this case X = [ai, bi], which means that the minimum value for y is a(ai) = λ̂iai. On the other side of the

boundaries of the conditional uniform distribution, y needs to be greater than 1 + λ̂iai, using this we get

fU∗i (y) =


1−
√

(1−y/ρ̂i)(b2i−a2i )

bi−ai y ∈ [λ̂iai, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂iai]√
(1−(y−1)/ρ̂i)(b2i−a2i )

bi−ai y ∈ (1 + λ̂iai, ρ̂i + 1].

Figure 2 illustrates the shape of the pdf of U∗i , when the c2Bi
of the uniform service-time distribution is equal

to 0.25 and for two different values of ρ̂i.

Pareto service times
Assume that the service time has a Pareto distribution with parameters ai and bi, i.e. we assume that the
density of the service time, for x ≥ bi, is

fBi
(x) = aib

ai
i x
−(ai+1).

We assume that ai > 2 such that the second moment is finite. In line with [9, 17] this is sufficient for the
HT limit to hold.

Now, we have

a(x) = λ̂i E[min(Bi, x)] = λ̂i

(
aibi
ai − 1

(
1− bai−1

i x1−ai)+ baii x
1−ai

)
= ρ̂i

(
1− bai−1

i x1−aia−1
i

)
.
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Some basic calculations lead to

a−1(y) = bi(ai(1− y/ρ̂i))
1

1−ai .

Here y needs to be larger than a(bi) = ρ̂i(1− a−1
i ) = λ̂ibi. We have

fU∗i (y) =


1− (ai(1− y/ρ̂i))

−ai
1−ai y ∈ [λ̂ibi, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂ibi]

(ai(1− (y − 1)/ρ̂i))
−ai
1−ai y ∈ (1 + λ̂ibi, 1 + ρ̂i].

Figure 2 shows the pdf of U∗i if the Pareto service-time distribution has a squared coefficient of variation
equal to 4, for two different values of ρ̂i.

For the special case in which ai → ∞ the squared coefficient of variation (SCV) of the Pareto distribution
goes to zero. In that case, it can be seen that U∗i has a uniform distribution on the interval [ρ̂i, 1+ ρ̂i], which
is in line with the case of deterministic service times.

Discrete service times
Using Remark 3, Theorem 5 still applies by extending the range of a(·) (or modifying the inverse a−1(·)).
An interesting example is when the service time has probability mass at two points. Assume that Bi equals
a small value ai with probability pi, or a large value bi with probability 1− pi. Now, letting x ∈ [ai, bi], we

have E[min(Bi, x)] = (1− pi)x+ piai, giving a(x) = λ̂i((1− pi)x+ piai). With x ∈ [ai, bi], we note that a(x)
is thus continuous and strictly increasing. Hence, we obtain

fU∗i (y) =


pi y ∈ [aiλ̂i, ρ̂i)

1 y ∈ [ρ̂i, 1 + aiλ̂i]

1− pi y ∈ (1 + aiλ̂i, 1 + ρ̂i].

3.5 Shortest-job-first

For the SJF policy, it is convenient to condition on x, the amount of work that a tagged customer brings into
the system. For SJF, the service-time distribution is assumed to be absolutely continuous. The following
results gives an expression for the LST of the conditional sojourn time T ∗i (x) in terms of the cycle-time
distributions (cf. [7]): for ρ < 1, Re(s) > 0, x > 0,

T ∗i (s|x) = e−sx
C∗i (λi(1− ϕ(s, x)))− C∗i (s+ λi(1− ϕ(s, x)))

sE[Ci]
(i ∈ ISJF ), (28)

where ϕ(s, x) := E
[
e−sBi1{Bi≤x}

]
. This leads to the following theorem for the limiting distribution of the

conditional sojourn time Ti(x).

Theorem 6. (Conditional sojourn time) For ρ ↑ 1, x > 0,

(1− ρ)Ti(x)→d Ui(x)C̃i (i ∈ ISJF ),

where Ui(x) is a uniform[λ̂i E[Bi1{Bi≤x}], 1 + λ̂i E[Bi1{Bi≤x}]] random variable and C̃i has a gamma distri-
bution with parameters α+ 1 and µ, where α and µ are given in Equation (5). The random variables Ui(x)
and C̃i are independent.

Proof. The result follows directly by combining Equation (28) and Property 1 along lines similar to those in
the proof of Theorem 4.

The unconditional sojourn time is presented in the following theorem.

Theorem 7. (Unconditional sojourn time) For ρ ↑ 1,

(1− ρ)Ti →d U
∗
i C̃i (i ∈ ISJF ),

where U∗i is a generalized trapezoidal distribution as characterized in Equation (29) with a(x) = λ̂i E[Bi1{Bi≤x}]

and C̃i as given in Theorem 6. The random variables U∗i and C̃i are independent.
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Figure 3: Probability density function of Ũ with exponential service times in a SJF polling system

Proof. Take a(x) = λ̂i E[Bi1{Bi≤x}] such that Ui(x) is uniformly distributed on [a(x), a(x) + 1], see Theo-
rem 6. Clearly, a(xmin) = 0, a(xmax) = ρ̂i and a(x) is continuous and strictly increasing. Using Lemma 1,
we obtain the unconditioned distribution

fU∗i (y) =

 FBi
(a−1(y)) y ∈ [0, ρ̂i)

1 y ∈ [ρ̂i, 1]
1− FBi(a

−1(y − 1)) y ∈ (1, 1 + ρ̂i].
(29)

This completes the proof.

Note that, similar to the PS case, the trapezoidal distribution U∗i depends on the complete service-time
distribution. Below, we present some special cases.

Exponential service times
Suppose Bi is exponentially distributed with parameter bi. First calculate

E[Bi1{Bi≤x}] =

∫ x

0

ybie
−biy dy =

1

bi
(1− e−bix(1 + bix)).

Hence, a(x) = ρ̂i(1−e−bix(1+bix)). To determine a−1(y), we solve a(x) = y for x and, after some rewriting,
obtain the following equation

−e−1(1− y/ρ̂i) = tet, (30)

where t = −(1+ bix). We thus need the solution of (30), which is known to be given in terms of the Lambert
W function. Observe that the equation tet may have multiple solutions, but we need the solutions for real
t ≤ −1, denoted by W−1(·). This function decreases from W−1(−1/e) = −1 to W−1(0−) = −∞. From the
above we derive a−1(y) = −(W−1(−e−1(1− y/ρ̂i)) + 1)/bi.

Since FBi(x) = 1− e−bix, the probability density function fU∗i (y) of the generalized trapezoidal distribution
U∗i becomes

fU∗i (y) =

 1− eW−1(−e−1(1−y/ρ̂i))+1 y ∈ [0, ρ̂i)
1 y ∈ [ρ̂i, 1]

eW−1(−e−1(1−(y−1)/ρ̂i))+1 y ∈ (1, 1 + ρ̂i].

(31)

The form of this distribution only depends on ρ̂i, this means that it only depends on the ratio between the
mean interarrival time and the mean service time. In Figure 3, the probability density function is plotted
for two different values of ρ̂i. The figure shows that for small ρ̂i, the distribution is close to a uniform
distribution. When ρ̂i increases, the distribution gets more skewed to the right.
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Uniform service times
Suppose Bi has a uniform distribution with parameters ai and bi. We have

E[Bi1{Bi≤x}] =

∫ x

ai

u

bi − ai
du =

x2 − a2
i

2(bi − ai)
= E[Bi]

x2 − a2
i

b2i − a2
i

, for ai ≤ x ≤ bi.

This gives a(x) = ρ̂i
x2−a2i
b2i−a2i

. Some basic calculus yields the inverse of a(·): a−1(y) =
√
y (b2i − a2

i ) /ρ̂i + a2
i .

Because FBi
(x) = (x− ai)/(bi − ai),

fU∗i (y) =


√
y/(b2i−a2i )/ρ̂i+a2i−ai

bi−ai y ∈ [λ̂iai, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂iai]

1−
√

(y−1)(b2i−a2i )/ρ̂i+a2i−ai
bi−ai y ∈ (1 + λ̂iai, 1 + ρ̂i].

Pareto service times
Suppose Bi is Pareto distributed with parameters ai > 2 and bi. Note that ai > 2 ensures that the
second moment is finite, such that the HT limit exists (see e.g. [9, 17]). It is easy to show that a(x) =

ρ̂i(1− bai−1
i x1−ai) and a−1(y) = bi(1− y/ρ̂i)

1
1−ai . Using that FBi(x) = 1− (bi/x)ai , x ≥ bi gives

fU∗i (y) =


1− (1− y/ρ̂i)

−1
1−ai y ∈ [0, ρ̂i)

1 y ∈ [ρ̂i, 1]

(1− (y − 1)/ρ̂i)
−1

1−ai y ∈ (1, 1 + ρ̂i].

4 Results for models with globally gated service

In this section we consider the case of a globally gated service. Recall that (without loss of generality) we
assume that the global gate closes at successive polling instants at Q1 (see for example [7] for a description
of the globally gated model). As in Section 3, we analyze LCFS, ROS, PS and SJF in addition to FCFS.
Since the derivations for globally gated are largely similar to the case gated service at all queues, we only
present the final results and omit the proofs.

The following result (proven in [26]) gives an asymptotic expression for the distribution of the cycle times
Ci, defined in Section 2. Note again that the cycle times do not depend on the local scheduling policy.

Property 5. (Convergence of cycle times for globally gated service discipline). For the globally-
gated system we have: for i = 1, . . . , N ,

(1− ρ)Ci →d Γ̃,

where Γ̃ has a gamma distribution with parameters

α :=
2r

σ2
, µ :=

2

σ2
. (32)

with σ2 given by (6).

Following the same line of reasoning as in Section 3, we obtain the waiting-time distributions for all considered
scheduling disciplines for globally gated service in heavy traffic. For convenience, we define Pi :=

∑i
j=1 ρ̂j

for i = 1, . . . N and by convention P0 := 0.

Theorem 8. For globally gated service and ρ ↑ 1, the following properties hold:

(i) For i ∈ IFCFS , ILCFS,

(1− ρ)Wi →d UiC̃i,

where Ui is a uniform[Pi, 1 + Pi−1] random variable if i ∈ IFCFS and Ui is a uniform[Pi−1, 1 + Pi]
random variable if i ∈ ILCFS.
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(ii) For i ∈ IROS,

(1− ρ)Wi →d Ũ
∗
i C̃i,

where Ũ∗i has a trapezoidal distribution with probability density function

fŨ∗i
(y) =

 (y − Pi−1)/ρ̂i y ∈ [Pi−1,Pi)
1 y ∈ [Pi,Pi−1 + 1]
(Pi + 1− y)/ρ̂i y ∈ (Pi−1 + 1,Pi + 1].

(iii) For i ∈ IPS , ISJF ,

(1− ρ)Ti(x)→d Ui(x)C̃i,

where Ui(x) is a uniform[Pi + λ̂iκi,x, 1 + Pi + λ̂iκi,x] random variable, with κi,x := E[min{Bi, x}] for
i ∈ IPS and κi,x := E[Bi1{Bi≤x}] for i ∈ ISJF .

In all cases, C̃i has a gamma distribution with parameters α + 1 and µ, where α and µ are given in Equa-
tion (32) and it is independent of the uniform distributions.

In the above theorem we only presented the conditional waiting times for PS and SJF. Using Lemma 1, this
results in a generalized trapezoidal times a gamma distribution for the unconditional waiting time, as in
Subsections 3.4 and 3.5. Finally, also the intuitive interpretation of the heavy-traffic limit using HTAP is
directly in line with that of Section 3.

Remark 8. (Renewal arrival processes) For the model under consideration with Poisson arrivals, The-
orems 1–8 give the asymptotic waiting-time and sojourn-time distributions for the LCFS, ROS, SJF and PS
scheduling disciplines. Following the well-established line of argumentation found in [8, 9, 16], we conjecture
that similar results hold for renewal arrival processes. In particular, in [16] a strong conjecture is given that
in heavy traffic the same results for the scaled cycle-time and waiting-time distributions for FCFS hold as
those in Properties 1 and 3, respectively, but where the parameter σ2 is now replaced by

σ2
renewal =

N∑
i=1

λ̂i(Var[Bi] + c2Ai
E[Bi]

2). (33)

Here Ai represents the interarrival times between arriving customers at queue i and c2Ai
is its squared coef-

ficient of variation. Note for the special case of Poisson arrivals, the expression for σ2
renewal coincides with

σ2. Based on the HTAP, we derive the following conjecture for renewal arrivals.

Conjecture 1. For independent renewal arrival processes, Theorems 1–8 are also valid when σ2 defined in
(6) is replaced by σ2

renewal defined in (33).

In the next section, we use this conjecture to derive and validate approximations for the waiting-time and
sojourn-time distributions for renewal arrivals.

5 Closed-form approximations for system with arbitrary load

In Sections 3 and 4, we have derived heavy-traffic limits for the (scaled) waiting-time and sojourn-time
distributions under several scheduling disciplines. These results not only give valuable insights into polling
models operating under a critical load, but are also useful in the study of polling models that are arbitrary
loaded (i.e. ρ < 1). Below, we describe how the results derived in this paper can be used to obtain closed-
form approximations for the waiting-time and sojourn-time distributions in polling models with renewal
arrivals and arbitrary load.

For systems with FCFS service at all queues, Boon et al. [6] derive a closed-form approximation, denoted

by E[W
(app)
i ], for the mean waiting time by interpolating between known light-traffic and heavy-traffic

limits. Based on this approximation, Dorsman et al. [11] propose to approximate the complete waiting-time
distribution by, for x > 0,

P(Wi < x) ≈ P(UiCi < (1− ρ)x) (i ∈ IFCFS), (34)
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Figure 4: Simulated and approximated sojourn-time distributions at queue 1 for the gated model with
ρ = 0.95 for FCFS, LCFS and PS.

where Ui is uniformly [ρ̂i, 1] distributed (as defined in Property 1) and where Ci is gamma-distributed with
shape parameter α+ 1 and scale parameter

µ
(app)
i :=

1 + ρ̂i
1− ρ

rδ + σ2
renewal

2σ2
renewal E[W

(app)
i ]2

, (35)

where α, δ and σ2
renewal are defined in Property 1 and (33).

To develop an approximation for the other scheduling disciplines under consideration, recall that the cycle-
time distribution is insensitive to the scheduling discipline. Based on this observation, for i ∈ ILCFS , we
approximate the waiting-time distribution by (34), where the distribution of Ci is kept the same, but with
Ui uniformly distributed on [0, 1 + ρ̂i] (cf. Theorem 1). Likewise, for i ∈ IROS , the waiting-time distribution
can be approximated by (34) with Ui replaced by a trapezoidal distribution defined in Theorem 3. Approx-
imations for the sojourn-time distributions can be obtained by using (4). For PS and SJF, approximations
can be obtained directly for the sojourn-time distributions, using Theorems 5 and 7, respectively. For the
case of globally gated service, waiting-time distributions are approximated in a similar way using the results
in Section 4; details are omitted here.

Throughout this section we will show numerical results based on simulations to illustrate the usefulness and
accuracy of the closed-form approximations. We consider a three-queue polling model with gated service
at each queue and with the following parameters. The service times at queues 1, 2 and 3 are uniformly
distributed with means 1, 2, 3, respectively, and with squared coefficient of variation 1/4. The switch-over
time distributions are exponentially distributed with means r1 = r2 = 1 and r3 = 3. The arrival processes
at each of the queues are renewal and mutually independent. The ratios between the arrival rates are 1:3:2,
and interarrival-time distributions are uniformly distributed with squared coefficient of variation 1/4. Note
that the system is rather asymmetric and the ratios between the per-queue load values are 1:6:6.

To illustrate the fact that the approximation of the distribution is accurate in heavy traffic, Figure 4 plots
the simulated and approximated density functions of the sojourn-time distributions at Q1 for FCFS, LCFS
and PS service (at all queues) for a heavily loaded system with ρ = 0.95. As expected, the approximations
closely follow the simulations. Figure 4 also illustrates that the differences between the different scheduling
disciplines are significant and are well-captured by the asymptotic results.

To proceed, Figure 5 shows the simulated and approximated probability density functions for the per-queue
sojourn-time distributions for the model with LCFS service at each queue, for a heavily loaded system with
ρ = 0.95. Figure 6 shows the results for the same model but with globally-gated service. The results in
Figure 5 and 6 illustrate the fact that the per-queue sojourn-time distributions are well-captured by the
approximations for heavy-traffic scenarios (as they should).

Next, we assess the accuracy of the approximations for the complete range of load values. To this end, Table
1 shows the simulated and approximated values of the mean sojourn times at Q1 and their relative absolute
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Figure 5: Simulated and approximated per-queue sojourn-time distributions for the gated model with ρ =
0.95 and LCFS service.
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Figure 6: Simulated and approximated per-queue sojourn-time distributions for the globally-gated model
with ρ = 0.95 and LCFS service.

difference defined as

∆% = 100%× |App− Sim|
Sim

for different values of ρ and for all the scheduling disciplines considered in this paper. Recall that the mean
sojourn-times are the same for FCFS, LCFS and ROS service, but may differ for PS and SJF service. Table
2 shows the results for the standard deviations of the sojourn times at Q1. In Table 1 we see that the
approximation of the mean sojourn time is most accurate for lightly and heavily loaded systems. This is
due to the fact that, by construction, the approximations are asymptotically exact in the limiting cases of
ρ ↓ 0 and ρ ↑ 1. For moderately loaded systems, the error is highest, but it still is no more than a few
percent. Table 2 shows that the results for the standard deviations are accurate for heavily loaded systems,
but may become less accurate for low-to-medium loaded systems. This is probably caused by the fact that
the approximation for the second (and higher) moments of the sojourn times in (34)-(35) is asymptotically
exact for ρ ↑ 1, but not for ρ ↓ 0 (as opposed to the first moments, which are asymptotically exact for ρ ↓ 0
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FCFS/LCFS/ROS PS SJF
ρ Sim App ∆% Sim App ∆% Sim App ∆%

0.1 4.92E00 4.97E00 1.1 4.92E00 4.99E00 1.3 4.92E00 4.97E00 0.9
0.3 5.75E00 6.02E00 4.7 5.75E00 6.07E00 5.6 5.75E00 5.99E00 4.2
0.5 7.29E00 7.87E00 7.9 7.30E00 7.98E00 9.2 7.28E00 7.80E00 7.1
0.7 1.13E01 1.21E01 6.9 1.14E01 1.23E01 8.0 1.13E01 1.19E01 6.1
0.8 1.65E01 1.74E01 5.0 1.68E01 1.78E01 5.8 1.64E01 1.71E01 4.4
0.9 3.22E01 3.31E01 2.6 3.24E01 3.40E01 5.0 3.18E01 3.25E01 2.2

0.95 6.37E01 6.45E01 1.3 6.53E01 6.63E01 1.5 6.26E01 6.33E01 1.1
0.98 1.58E02 1.59E02 0.4 1.62E02 1.63E02 0.6 1.55E02 1.56E02 0.5

Table 1: Mean sojourn times for different scheduling disciplines.

by construction).

In summary, the numerical results (1) illustrate the validity of the asymptotic results, and (2) demonstrate
that the sojourn-time approximations nicely capture the impact of the local scheduling policies on the
sojourn-time distributions and are accurate over the whole range of load values.

6 Concluding remarks

In this paper, we have studied the impact of scheduling within queues on the waiting-time and sojourn-time
distributions in polling systems. We have presented the first HT analysis of polling models where the local
scheduling policy is not FCFS, but instead, is varied as LCFS, ROS, PS and SJF. The main contribution
of the paper is the derivation of asymptotic closed-form expressions for the LST of the scaled waiting-time
and sojourn-time distributions under HT conditions. The results raise a number of remarks and challenging
open questions for further research, on which we would like to elaborate in the current section.

In this paper we have assumed that all the queues in the polling system follow the (globally) gated service
discipline. However, this assumption can easily be relaxed; that is, we only have to assume that the specific
queue for which we derive the waiting-time distribution is served according to the gated service discipline
(see, also, [7]). For all the other queues, we only have to postulate that the service discipline belongs to the
broad class of local branching-type disciplines [18], which includes gated and exhaustive service as special
cases.

Furthermore, as [7] argues, the analysis of exhaustive polling systems is more complicated because the waiting
times of the customers who are served during a visit are affected by later arrivals which take place during
that visit period (which is obviously not the case for gated systems). Extension of the results to a broader
class of service disciplines is a challenging topic for further research.

Finally, an interesting question is a generic optimization of the system’s performance with respect to the
choice of the local scheduling disciplines. With respect to mean sojourn times, it follows from [30] that SJF
is optimal. For non-anticipating scheduling disciplines, the results in [1] suggest that the optimal discipline
for minimizing mean sojourn times belongs to the family of multilevel PS disciplines. Optimization results
beyond the mean, e.g. in terms of tails of sojourn times, is still open. In this context, it is worthwhile to note
that the sojourn-time distribution at a given queue does not depend on the choice of the local scheduling
discipline at any other queue. This implies that the sojourn-time distribution at a queue only depends on the
choice of the local service order at that same queue. Therefore, the results presented in this paper provide
a good starting point for tackling this type of optimization problem.

FCFS ROS SJF
ρ Sim App ∆% Sim App ∆% Sim App ∆%

0.1 3.44E00 2.63E00 23.4 3.44E00 2.78E00 19.1 3.44E00 2.81E00 18.1
0.3 3.93E00 3.30E00 15.9 3.93E00 3.49E00 11.2 3.93E00 3.52E00 10.5
0.5 4.89E00 4.49E00 8.1 4.94E00 4.75E00 3.8 4.93E00 4.77E00 3.1
0.7 7.49E00 7.24E00 3.4 7.71E00 7.66E00 0.6 7.68E00 7.65E00 0.3
0.8 1.08E01 1.07E01 1.8 1.13E01 1.13E01 0.1 1.12E01 1.13E01 0.3
0.9 2.11E01 2.09E01 0.9 2.21E01 2.21E01 0.1 2.19E01 2.19E01 0.0

0.95 4.14E01 4.13E01 0.3 4.37E01 4.37E01 0.1 4.34E01 4.35E01 0.1
0.98 1.03E02 1.03E02 0.3 1.09E02 1.09E02 0.0 1.08E02 1.08E02 0.3

Table 2: Standard deviations of the sojourn times for FCFS, ROS and SJF.
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