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Abstract.  Accurate, nontrivial quantum operations on many qubits are 
experimentally challenging. As opposed to the standard approach of compiling 
larger unitaries into sequences of 2-qubit gates, we propose a protocol on 
Hamiltonian control fields which implements highly selective multi-qubit gates 
in a strongly-coupled many-body quantum system. We exploit the selectiveness 
of resonant driving to exchange only 2 out of 2N eigenstates of some background 
Hamiltonian, and discuss a basis transformation, the eigengate, that makes 
this operation relevant to the computational basis. The latter has a second 
use as a Hahn echo which undoes the dynamical phases due to the background 
Hamiltonian. We find that the error of such protocols scales favourably with the 
gate time as t−2, but the protocol becomes inecient with a growing number of 
qubits N. The framework is numerically tested in the context of a spin chain 
model first described by Polychronakos, for which we show that an earlier 
solution method naturally gives rise to an eigengate. Our techniques could be 
of independent interest for the theory of driven many-body systems.
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1. Introduction

Resonant driving techniques are well-known in atomic physics, where they are used to 
populate specific orbitals [1, 2], and in experimental quantum information processing, 
where they are exploited to form quantum gates on one or two qubits [3–6]. When a 
pair of eigenstates with a unique energy gap is resonantly driven for an appropriate 
amount of time, the unitary time-evolution operator, in the asymptotic limit of increas-
ingly weak driving, approaches the form

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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iSWAPt1,t2 =




. . .

0 . . . 1eiα

...
. . .

...

1eiβ . . . 0

. . .




. (1)

Here, all diagonal entries are 1, except in the subspace spanned by the resonant states, 
which we denote by t1 and t2.

We observe that this is very similar to frequently encountered many-qubit gates 
in quantum information processing, such as the universal Tooli gate (a bitflip σx on 
a target qubit if and only if two control qubits are in the state |1〉) and Fredkin gate 
(swapping the states of two target qubits, if and only if a control qubit is |1〉). Both 
gates also have the property that all diagonal entries are 1, except in a two-dimensional 
subspace:

iSWAP110,111 = Toffoli =

000 001 010 011 100 101 110 111





000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0

iSWAP110,101 = Fredkin =

000 001 010 011 100 101 110 111





000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 0 0 1 0 0
111 0 0 0 0 0 0 0 1

.

An obvious generalization of both Fredkin and Tooli would include more control 
qubits, which allow the transition if and only if these are |1〉. A quantum circuit equiva-
lent to such generalizations using N control qubits has a depth of O(N).

Note that it is generally highly nontrivial to form gates of the type iSWAPt1,t2 using 
a local Hamiltonian. They could in principle be generated by a time-independent 
Hamiltonian of the form H = |t1〉〈t2|+ h.c., but such interactions, which act only on 
many-particle states t1 and t2 but not any others, are typically highly nonlocal, and hence 
are never encountered in nature [7]. When restricting to realistic 2-local Hamiltonians, 
in which each term is allowed to act non-trivially on at most 2 qubits, time-dependent 
control fields are required. Our goal is to cleverly engineer 2-local Hamiltonians whose 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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time evolution swaps just 2 out of 2N states and leave all other states put, without 
resorting to discrete gate decompositions. To do so, we employ systems of the form

H(t) = Hbg + Ω′ cos(ωt+ φ)Hdrive,

where Hbg is a background Hamiltonian whose eigenstates are known, and Hdrive is 
some local driving field which incites a transition between two eigenstates of Hbg, which 

we will call |t1〉Hbg
 and |t2〉Hbg

. If these eigenstates have a unique energy gap, the result-
ing operation Udrive can be made to look as in equation (1).

Note that the resulting Udrive has this special form in the eigenbasis of Hbg. For 
further quantum information processing, we propose an operation which maps each 
eigenstate to a unique computational basis vector, which we call the eigengate Ueg. The 
complete protocol is then described by

iSWAPt1,t2 ≈ UegUdriveU
†
eg.

An implementation of this protocol would require the following ingredients:

 �  A constantly applied background Hamiltonian Hbg which has a unique energy 

gap ω between two eigenstates |t1〉Hbg
 and |t2〉Hbg

.

 �  A driving field Hdrive which couples the states |t1〉Hbg
 and |t2〉Hbg

, whose amplitude 
can be made oscillatory at the right frequency ω.

 �  An operation which maps (any) two computational basis states, call them |t1〉 and 

|t2〉, to energy eigenstates |t1〉Hbg
 and |t2〉Hbg

 respectively. We also need the inverse 
of this operation.

 �  An ecient method to keep track of the dynamical phases due to Hbg.

Throughout this paper, we will elaborate on the above four checkboxes, and use the 
example of a spin chain model first described by Polychronakos [8] for which we show 
that all requirements can be fulfilled.

The resulting operation could find applications in noisy intermediate-scale quant um 
computers [9], where decoherence prohibits long gate sequences, but evolution by engi-
neered Hamiltonians might be natively available. We find that there is a trade-o 

between gate time and fidelity, where the error E ∝ t−2
d  scales as the inverse-square of 

the driving duration td. Moreover, as the number of involved qubits increases, the per-
formance of our gate quickly degrades, meaning that conventional gate decompositions 
are preferred in the many-qubit limit. However, we find that for a modest number of 
qubits, our gate can be competitive with conventional methods.

1.1. Related work

We previously described a very similar resonantly driven gate in [10], which was based 
on the so-called Krawtchouk spin chain. In the present work, we generalize many 
aspects of this first result, and show how the same line of reasoning applies to a very 
dierent system featuring long-range rather than just nearest-neighbour interactions.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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In 2010, two independent groups [11, 12] described a result that similarly exploits 
resonant driving in a many-body system to construct quantum gates. They considered 
an interacting spin chain of which only the first one or two sites can be controlled, and 
prove that universal operations over all states are possible. The scope of these papers, 
achieving single- and two-qubit gates with limited control, is very dierent from our 
goal, which is the creation of an unconventional multi-qubit operation on a system 
with much more generous controllability. Moreover, both earlier papers focus mostly 
on proof of existence, and do not mention concrete examples of systems which would 
allow their protocol. In this work, we present an experimentally feasible example which 
we simulate numerically.

The most obvious competitor of our protocol is conventional compiling of any 
quant um operation into a universal set of single- and two-qubit gates. Extensive 
research eorts have greatly optmized compiling methods, and in the asymptotics of 
many qubits, compiling approach becomes increasingly favorable compared to our pro-
posal. For a recent overview, see [13]. We present our work not as an alternative to 
compiling, but rather as a creative twist to the fields of condensed matter and quantum 
control, which might find applications on highly specialized systems. We also present 
our methods, such as the eigengate presented in section 2, as tools that may find appli-
cations elsewhere.

1.2. Document structure

In section 2, we discuss the creation of eigenstates of Hbg in a general setting, after 
which we address resonant driving and the errors introduced due to spectator states 
section 3. In section 4 we show how our protocol can be implemented in Polychronakos’ 
model, and in section 5 we study the resulting gate numerically. Finally, in section 6, 
we return to the requirement checklist and discuss to what extend the requirements 
were satisfied, followed by a conclusion in section 7.

2. Mapping the computational basis to eigenstates

2.1. Eigengates from quenches

Let A and B be Hermitian operators (or Hamiltonians). We call Ueg an eigengate 
between A and B if it maps every eigenstate of A to an eigenstate of B. Such eigengates 
can be implemented by quenching (suddenly applying) a third Hamiltonian H which 
satisfies

e−iH π
2AeiH

π
2 = B. (2)

It is not clear which tuples (A,B,H) satisfy equation (2) in general, but we claim the 
following sucient condition:

[H,A] = iB and [H,B] = −iA. (3)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Note that one can freely rescale A, B and H (together with the rotation angle π/2), as 
this does not change the eigenstates, hence pertaining the same eigengate. To prove our 
claim, we first recall the Hadamard Lemma,

e−iHtAeiHt =
∞∑
n=0

(−it)n

n!
(adH)

nA

adHA := [H,A]

 

(4)

and plug equation (3) into equation (4):

e−iHtAeiHt = A+ (−it)(iB) +
(−it)2

2!
A+

(−it)3

3!
(iB) +

(−it)4

4!
A+ ...

=
∞∑
k=0

(−it)2k

2k!
A+

∞∑
k=0

(−it)2k+1

(2k + 1)!
iB

= cos(t)A+ sin(t)B.

Hence, the operator A evolves to B in the Heisenberg-picture if we apply H for a time 
t = π

2
. We graphically depict such rotations in figure 1. Let the subscripts of kets denote 

the basis in which the vector is described. Then, for every eigenvector |j〉A of A, we 
may define

|j〉B = Ueg|j〉A
where Ueg = exp(−iH π

2
) is an eigengate from A to B. Unitaries are isospectral mappings, 

preserving the spectrum of Hermitian operators, hence for all j , if A|j〉A = λj|j〉A, then 
B|j〉B = λj|j〉B. Examples of valid (A,B,H) tuples include (σx, σy, σz) where σα denote 
the Pauli matrices, and (Lα

0 , L
α
1 , HP) as we will discuss in section 4 on Polychronakos’ 

model.
There is some leftover symmetry H → H +G for any G such that [G,A] = [G,B] = 0. 

In other words, within each subspace spanned by eigenvectors of A with the same 
eigenvalue, the operator Ueg may cause an arbitrary unitary rotation which we cannot 
track using the method presented here.

2.2. Eigengates from adiabatic evolution

Another method to turn eigenstates of A into eigenstates of B is by adiabatic evolution. 
For t ∈ [0, π/2], we consider the adiabatic Hamiltonian

Figure 1. An eigengate generated by H rotates operator A between B, −A, −B 
and back into A. Note that consecutive application of two eigengates inverts the 
spectrum of A or B.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Hadiabatic = cos(t)A+ sin(t)B. (5)
Because the LHS of equation (4) shows an isospectral transformation of A, the eigenval-
ues of equation (5) remain the same at all times. Assuming the relevant units of energy 
are large compared to the units of time, the total time-evolution converges to the form

Ueg,adiabatic = T exp

(
−i

∫ π
2

0

Hadiabatic(t)dt

)

= exp
(
−iG

π

2

)
︸ ︷︷ ︸

Acts only within degenerate subspaces

exp
(
−iH

π

2

)
︸ ︷︷ ︸

Eigengate

exp
(
−iA

π

2

)
︸ ︷︷ ︸
Dynamical phase

where the form of G in the last equation is unknown, but limited to act nontrivially 
only within each subspace of fixed eigenvalue. On individual eigenstates of A, the adia-
batic evolution operator acts as

Ueg,adiabatic|j〉A = exp
(
−iG

π

2

)
exp

(
−iλj

π

2

)
|j〉B.

2.3. Eigengates for resonantly driven transitions

Our goal is to arrive at a quantum gate that exchanges exactly two states in the 
computational basis by driving a unique transition in some background Hamiltonian’s 
eigenbasis. This is where eigengates come in.

We require A to be any Hamiltonian which is diagonal in the computational basis, 
while B is the background Hamiltonian in which the driving takes place. In that case, 
the eigengate Ueg between A and B maps computational states to eigenstates. Using 
states in the eigenbasis of B, we may selectively exchange eigenstates using resonant 

driving. Finally, an inverse eigengate (or equivalently, a 3π
2
 rotation by H) then maps 

back to the computational basis, giving the desired result.
Although sucient and highly convenient, the eigengate is not necessary for this 

protocol: any unitary map that sends two computational basis states to the transition-
ing states would be sucient.

As an interesting aside, the eigengate’s feature to invert the energy spectrum when 
employed twice, has applications in perfect state transfer [14, 15]. In particular, when-
ever A is a sum of single-qubit terms such that an excitation at qubit i has energy 
opposite to an excitation at qubit j , then (Ueg)

2 exchanges the state of qubits i and 
j . This assumes conservation of the number of excitations, and the uniqueness of the 
relevant energies.

3. Resonant driving

This section studies the eect of resonant driving on many-body systems. We now con-
sider a Hamiltonian of the form

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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H(t) = Hbg + Ω′ cos(ωt+ φ)Hdrive (6)
where Ω′ � 1 and ‖Hbg‖ ∼ ‖Hdrive‖, justifying a perturbative treatment of the second 
term. To leading order in Ω′, we consider all pairs of eigenstates of Hbg, where each 
pair approximately forms an independently interacting two-level system. We will argue 
that, for suciently small Ω′, no transitions between eigenstates of Hbg occur unless 
ω is close to any energy gap between any pair of eigenstates. All states that are not 
involved in such transitions will be named spectator states, which merely pick up a 
dynamical phase.

3.1. A toy example: driving a two-level system

Consider a toy model in which any pair of eigenstates is described by the qubit system

H(t) =
∆E

2
σz + Ω(cos(ωt+ φ)σx + sin(ωt+ φ)σy)

=

(
∆E
2

Ωe−iωt−iφ

Ωe+iωt+iφ −∆E
2

)
,

 

(7)

where �σ = (σx, σy, σz)T denotes the vector of Pauli matrices. We can make this 
Hamiltonian time-independent by moving to the rotating (or interaction) frame, using 
the basis-transformation

Urf = exp(iωσzt/2) =

(
ei

ωt
2 0

0 e−iωt
2

)
,

such that the eective Hamiltonian in this frame becomes

Hrf = UrfH(t)U †
rf + iU̇rfU

†
rf

= (∆E − ω)
σz

2
+ Ω(eiφσ+ + e−iφσ−)

=

(
δ/2 Ωe−iφ

Ωe+iφ −δ/2

)
.

In the last step, we defined the detuning δ = ∆E − ω. Evolution by Hrf dictates Rabi 
flopping:

U
(rf)
drive(φ, t) = e−iHrf t = cos(nt)1− i sin(nt)

(
�n

n

)
· �σ

with �n =



cos(φ)Ω

sin(φ)Ω

δ/2


 , n =

√
Ω2 +

δ2

4
.

 

(8)

From this we conclude that a perfect rotation around the axis x̃ = cos(φ)σx + sin(φ)σy 
can be performed if δ = 0 and t = td =

π
2Ω

, meaning that each computational basis 
state is inverted into the other. Specifically, at φ = 0, we retrieve the σx gate, and at 
φ = π/2 the gate σy. We will use the term ‘resonant driving’ to indicate the choice 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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δ = 0 with the aim to implement such transitions between computational basis states 
(up to phases), and refer to td as the driving time.

We also consider what happens whenever the driving is o-resonant, in the limit 
where |δ| � |Ω|. Here, �n points mainly in the σz direction, causing hardly any mixing 
of the computational basis states, but rather giving the states a hard-to-predict relative 
phase. This eect is otherwise known as the Autler–Townes or AC Stark eect.

3.2. Driving in a many-body system

For our purposes, we want to drive a many-body system with a single driving field of 
fixed frequency ω. However, each pair of eigenstates s1, s2 of Hbg will have a dierent 
value of energy gap δ and a dierent Ω = Ω′〈s1|Hdrive|s2〉, leading to dierent behaviour 
among each pair. However, we argue that it is possible to

 1.  Incite a transition between two states that have a unique energy gap ∆E , by 
tuning δ = 0 for that pair of states.

 2.  Leave all other states approximately unchanged.

Leaving all other states unchanged is particularly challenging, in part because Hbg is 
responsible for a continuously growing dynamical phase on each eigenstate. There are 
various ways to regain control over these phases:

 •	  One keeps track of all dynamical phases that occur throughout the whole proto col, 
and undoes these at the end of the resonant driving. With 2N eigenstates, this is 
generically infeasible unless there is an exploitable symmetry between the eigen-
states. An example of such a symmetry occurs in free particle Hamiltonians, where 
many-particle states have energies which are sums of single-particle energies. In 
such cases, an appropriate eigengate can map all accumulated phases back onto 
a local qubit, such that phases can be undone with a local phase shift on each of 
the qubits.

 •	  One chooses the driving time td (and hence the corresponding amplitude Ω) 
precisely such that all two-level systems make an integer number of rotations 
during the protocol. This amounts to making sure that δtd = k2π (k ∈ Z) for each 
transition. The choice of td becomes increasingly constrained as the systems grows 
and increasingly many values of δ have to be taken into account.

 •	  One decomposes the driving procedure in two steps, which cancel each other’s 
accumulated phase to leading order.

Throughout the rest of the paper, we proceed by using the latter approach, which we 
dub the halfway-inversion. We address it in the next subsection.

As an aside, note the dierence between driving of the form cos(ωt)Hdrive in equa-
tion (6) compared to exp(iωt)σ+ + h.c. in equation (7). A subtlety is that the latter gives 
rise to exact transitions upon driving on resonance, whereas the first gives an accurate 
inversion only after assuming the rotating wave approximation [16, 17]. Throughout 
this paper, we assume this approximation (Ω � ω) to hold.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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3.3. The halfway-inversion

Let us first remind the reader of the Hahn (or spin) echo. We consider a set of two-
level systems which each evolve under a Hamiltonian of the form H = εjZ , where the 
energy εj is unknown for each system j . For any time t, one can enforce each of these 
system to return to their initial state by implementing a Hahn echo, where the system 
is suddenly flipped by the σx operation at times t/2 and t. This is easily seen to work 
for any choice of εj, by using σxσzσx = −σz:

Utot = (σxe−iεjσ
z t
2σx)e−iεjσ

z t
2 = e+iεjσ

z t
2 e−iεjσ

z t
2 = 1. (9)

Note that during the driving step of our protocol, the term Hbg of equation (6) causes 
its eigenstates to rotate according to their energies λj. If Hbg can be obtained from some 
other Hermitian operator using an eigengate, then sequential application of two eigen-

gates U2
eg precisely inverts the spectrum of Hbg, eectively applying σx to each two-level 

system formed by a pair of eigenstates. Importantly, note the dierence between the 
driving operator of the form of equation (7), which swaps only the states that are on 

resonance but is error-prone and slow (|Ω| << |δ|), contrasted with U2
eg which inverts all 

states, and is exact and relatively fast.
Inspired by the Hahn echo, we propose to follow the same approach on a many-body 

system:

Utot = σx U
(lab)
drive(φ2, td/2) σ

x U
(lab)
drive(φ1, td/2). (10)

Here, the form of U
(lab)
drive was derived in equation (8), but we stress that the earlier deri-

vation was done in the rotating frame. The operations Utot and σx, however, are stated 
in the lab frame. We can translate the whole equation back to the lab frame by using

U
(lab)
drive(φ, t) = exp (−iωσzt/2) U

(rf)
drive(φ, t),

such that we obtain

Utot = σx exp

(
−iωσz td

4

)
U

(rf)
drive(φ2, td/2) σ

x exp

(
−iωσz td

4

)

︸ ︷︷ ︸
I

U
(rf)
drive(φ1, td/2).

The first part can be rewritten as

I =σx exp (−iωtdσ
z/4) exp


−it �σ ·



nx

ny

nz




 σx exp (−iωtdσ

z/4)

= σx exp (−iωtdσ
z/4) exp


−it �σ ·



nx

ny

nz




 exp (+iωtdσ

z/4) σx

= σx exp


−it �σ ·



nx cos(ωtd/2) + ny sin(ωtd/2)

ny cos(ωtd/2)− nx sin(ωtd/2)

nz




 σx

= exp


−it �σ ·




Ωcos(φ2 + ωtd/2)

−Ω sin(φ2 + ωtd/2)

−δ/2




 .

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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In the last step, we used that �n = (Ω cos(φ2),Ω sin(φ2), δ/2)
T  and applied several trigono-

metric product-to-sum identities. All in all, we find that

Utot = exp


−i

td
2

�σ ·




Ωcos(φ2 + ωtd/2)

−Ω sin(φ2 + ωtd/2)

−δ/2




 exp


−i

td
2

�σ ·



Ωcos(φ1)

Ω sin(φ1)

δ/2




 .

Let us first show that, despite the halfway inversion, it is still possible to perform a 
transition without any error if δ = 0. Note that, in this picture, we perform two con-
secutive π/2 pulses, which form an optimal π-pulse if and only if both rotation axes 
align. To this end, we fix

φ2 = −φ1 − ωtd/2, (11)
such that the overall rotation becomes

Utot = exp


−i

td
2

�σ ·



Ωcos(φ1)

Ω sin(φ1)

−δ/2




 exp


−i

td
2

�σ ·



Ωcos(φ1)

Ω sin(φ1)

δ/2




 . (12)

It is now clear that, for δ = 0, any rotation axis in the x  −  y  plane can be obtained by 
an appropriate choice of φ1. We sketch a more intuitive picture of what happens to an 
inverting state in this case in appendix. On the other hand, a rotation around only σz 
is impossible as the two driving steps would cancel. We will shortly treat o-resonant 
rotations which are only approximately around σz. For now, note that we could have 
chosen a dierent flip σx together with rotation vector �n precisely such that all rotations 
would cancel, resulting again in the operation Utot = 1 as in equation (9). However, this 
prohibits us from performing the required inversion on the resonant pair of states. The 
impossibility to cancel the rotations induced by the σx and σy components is our main 
source of errors.

Let us now consider the accuracy of Utot in the case of o-resonance, Ω � δ, where 
we aim to not cause any transitions at all. We define the error E  of a unitary U with 
respect to a target unitary Ugoal as

E(U,Ugoal) = 1− 1

dim(U)
|Tr(UU †

goal)|. (13)

Comparing Utot to the identity operator for the case of equation (12), we find

E(Utot,1) = 1− | cos2(ntd/2)−
(Ω2 − δ2

4
)

n2
sin2(ntd/2)|

= 1− |1− sin2(ntd/2)

(
Ω2

Ω2 + δ2

4

)
|

= sin(ntd/2)
2

(
8Ω2

δ2
+O

(
Ω4

δ4

))
.

 

(14)

This shows that the error can be made arbitrarily small, by choosing a smaller Ω/δ, or 
equivalently, a longer gate time t while keeping Hbg constant.

The factor sin(ntd/2) could in principle cause the error to vanish if ntd = kπ (k ∈ Z). 
Note that with many two-level systems, this is highly unlikely to happen and hard to 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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track. Interestingly, by just considering the energy gaps δ, one can shave o another 

two orders of Ω
δ
 from E  in the specific case where δtd = k4π (k ∈ Z):

ntd/2 =

√
Ω2 +

δ2

4
td/2

=
δtd
4

[
1 + 2 · 4A

2

δ2
+O

(
A4

δ4

)]

= kπ +
2πΩ

δ
+O

(
Ω2

δ2

)

sin(ntd/2)
2 =

4π2Ω2

δ2
+O

(
Ω4

δ4

)
if k ∈ Z.

Hence, in the special case that all dynamic phases due to Hbg reset, E(Utot,1) = O
(

Ω4

δ4

)
.

Unfortunately, we do not find the same O
(

Ω4

δ4

)
 scaling when driving a many-body 

system, even when engineering the energy gaps δ. Numerically, we find the culprit to be 
the two-level systems consisting of one spectator state and one transitioning state: the 
o-resonant transition between these pairs is not accounted for by the halfway inver-

sion, and hence still contributes an error of the order O
(

Ω2

δ2

)
. Nonetheless, the cases 

where δtd ≈ k4π lead to a significant improvement of our protocol’s fidelity, as we will 
see in the numerical results in section 5.

3.4. Putting it all together: resonantly driven multi-qubit gates

We turn back to the many-body Hamiltonian proposed at the start of this chapter,

H = Hbg + Ω′ cos(ωt+ φ)Hdrive

and its resulting unitary evolution Udrive(φ, t). We found that for suciently small 
Ω′ and an appropriately chosen frequency ω and driving time td, we asymptotically 
approximate the operation iSWAP which selectively exchanges two basis states:

iSWAPt1,t2 := −ieiφ|t1〉〈t2| − ie−iφ|t2〉〈t1|+
∑

j �∈{t1,t2}

|j〉〈j|.

Note the dierence between the phases e±iφ: we used the convention that |t2〉 is the 
state with the lower energy (e.g. Z|t2〉 = −|t2〉 in the two-level system formed by |t1〉, 
|t2〉). This gate is implemented by the sequence

iSWAPt1,t2 ≈ U †
eg Udrive

(
−φ− ωtd

2
,
td
2

)
U2
eg Udrive

(
φ,

td
2

)
Ueg (with halfway inversion)

Alternatively, one can leave out the halfway-inversion but undo the dynamical 
phases by inverting the spectrum of Hbg, optionally even in the computational basis 
after an eigengate is performed:

iSWAPt1,t2 ≈ Uege
+iHbgtdUdrive(φ, td)U

†
eg (without halfway inversion)

≈ e+iHcbtdUegUdrive(φ, td)U
†
eg

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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where Hcb = UegHbgU
†
eg is the eigengate-partner of Hbg in the computational basis. The 

phases of the iSWAP operation are again −i exp(±iφ), the same as with the halfway 
inversion.

4. Polychronakos’ model

We now turn to a concrete model which provides us a Hbg in which resonant driving 
can be performed, and for which a map between the eigenbasis and computational 
basis can be found. The model we consider was first described by Polychronakos [8], 
but we will follow the definitions of Frahm [18], who found an associated algebraic 
structure which we employ in our protocol. This algebraic structure is similar in spirit 
to the celebrated Yangian symmetry of Haldane–Shastry model [19–21], to which the 
Polychronakos chain is a close relative. Both models are members of a wider class of 
integrable 1D systems with inverse-square two-body interactions, going back to the 
Calogero–Moser–Sutherland model of interacting particles on a line [22–28].

We consider a one-dimensional chain of N spin-12 particles, with particle j  fixed at 
position xj , evolving under the Hamiltonian

HP =
∑
j<k

hjkPjk, where hjk =
1

(xj − xk)2
,

Pjk =
1

2

(
1j1k +

∑
α=x,y,z

σα
j σ

α
k

)
=

1

2




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .

The locations xj  are given by the equilibrium positions of the classical Colagero system 
with potential

V (x1, ..., xN) =
1

2

∑
j

x2
j +

∑
j<k

1

(xj − xk)2

or, equivalently, by the roots of the Hermite polynomial HN(x). Frahm was able to 
describe the eigenbasis by finding ladder operators, and in particular, defined the fol-
lowing operators:

Lα
0 =

1

2

N∑
j=1

xj�σ
α
j α, β, γ ∈ {x, y, z}

Lα
1 =

1

4

∑
j �=k

wjkε
αβγ�σβ

j �σ
γ
k wjk =

1

xj − xk

where εαβγ is the Levi-Civita symbol or fully anti-symmetric tensor. These operators 
were found to have the following relation with HP:

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Quantum gates by resonantly driving many-body eigenstates, with a focus on Polychronakos’ model

14https://doi.org/10.1088/1742-5468/ab25e2

J. S
tat. M

ech. (2019) 073103

[HP, L
α
0 ] = iLα

1

[HP, L
α
1 ] = −iLα

0 .

4.1. Mapping between eigenbases

By noting that the eigenstates of Lz
0 are the computational basis states, and the com-

mutation relations between (Lα
0 , L

α
1 , HP ) are of the form of equation (3), we readily 

obtain two methods to obtain an eigengate for Lz
1: either by continuous evolution

UP
eg = exp(−iHPπ/2),

or by adiabatically evolving Hadiabatic = cos(t)Lz
0 + sin(t)Lz

1 for t ∈ [0, π/2]. Interestingly, 

owing to the form of Lz
0, applying the operation UP

eg twice performs a spatial mirror 
inversion and perfect state transfer on the spin chain [15].

Another eigengate which interchanges the operator superscripts x, y  and z can be 
formed by quenching with the total spin operator

Qβ
0 =

1

2

∑
j

σβ
j β ∈ {x, y, z}

as it satisfies

[Qα
0 , L

β
r ] = iεαβγLγ

r . r ∈ {0, 1}.

The dierent eigengates in this model are summarized in figure 2.

4.2. Resonant driving in Polychronakos’ model

The energy spectra of all {Lα
r } are identical to that of Lz

0 as these operators are linked 
by an isospectral transformation. Since HP commutes with each total spin operator 
{Qα

0}, we conclude that the eigensystem of each Lα
i  separates into non-interacting 

blocks of constant Qα
0 (e.g. total spin projection in the α direction). From here onwards, 

we will focus on α = z, but we stress that identical results hold for the x and y  super-
scripts, up to a local basis transformation.

The spectrum of Lz
0 for N  =  6 is depicted in figure 3 with energies represented ver-

tically and the value of Qz
0 horizontally. Let |{k1, k2, . . . , kp}〉 with k1 < k2 < . . . < kp 

represent the state with qubits kj  in state |1〉 and all other qubits in the state |0〉. The 
energies of states expressed in this notation are conveniently calculated as

Lz
0|{k1, k2, . . . , kp}〉 =

p∑
j=1

xkj |{k1, k2, . . . , kp}〉.

In words: for each qubit in state |1〉, add energy equal to the position xj  of that qubit.
Because the positions xj  are symmetric around 0, the highest- and lowest energy 

states are nondegenerate for even N, and are given by:

|high〉 = |t1〉 = |0〉⊗
N
2 |1〉⊗

N
2 = |{N

2
+ 1, . . . , N}〉 (N even)

|low〉 = |t2〉 = |1〉⊗
N
2 |0〉⊗

N
2 = |{1, . . . , N

2
}〉

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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As the energy gap between |t1〉 and |t2〉 is unique, we may select these two states for a 
resonantly driven multi-qubit gate. However, these states are of product form in the 
eigenbasis, hence a local operator cannot have nonzero matrix element between |t1〉 
and |t2〉. Therefore, we employ an eigengate UP

eg to turn |t1〉, |t2〉 into spatially extended 
states |t1〉Lz

1
 and |t2〉Lz

1
, while preserving the spectrum and in particular the unique 

energy gap. We can then resort to the driving protocol proposed in section3.4 to cre-
ate an iSWAPt1,t2 gate by choosing Hbg = Lz

1 and choosing for Hdrive any operator that 

couples |t1〉Lz
1
 and |t2〉Lz

1
.

It is not clear in general what choices of Hdrive lead to lower gate errors at simi-
lar driving times. One constraint is that the coupling must preserve the expectation 
value of Qα

0 (i.e. the number of spins in state |1〉), indicating that couplings such as σx 
or σz ⊗ σy cannot drive the required transition. For some common nontrivial 1- and 
2-local driving operators and small system sizes N, we tabulate the matrix elements 

Lz
1
〈t1|Hdrive|t2〉Lz

1
 below.

N  =  4

Hdrive Lz
1
〈t1|Hdrive|t2〉Lz

1

σz
2 −0.413 049i

σz
2σ

z
3 0.829 345

σz
1σ

z
4 0.829 345

σx
2σ

x
3 −0.552 743

σy
2σ

y
3 −0.552 743

σx
1σ

x
4 0.390 066

σx
2σ

y
3 0

Figure 2. A map of various eigengates between the operators {Lα
r }r,α in 

Polychronakos’ model. A quench by the operator next to an arrow implements the 
corresponding eigengate.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Quantum gates by resonantly driving many-body eigenstates, with a focus on Polychronakos’ model

16https://doi.org/10.1088/1742-5468/ab25e2

J. S
tat. M

ech. (2019) 073103

N  =  6

Hdrive Lz
1
〈t1|Hdrive|t2〉Lz

1

σz
3 0.116 012i

σz
3σ

z
4 −0.327 919

σz
1σ

z
5 −0.353 636

σz
1σ

z
5 0.265 128

σx
3σ

x
4 0.200 378

σx
2σ

x
3 −0.147 838

σx
1σ

x
5 −0.143 41

N  =  8

Hdrive Lz
1
〈t1|Hdrive|t2〉Lz

1

σz
4 −0.027 894i

σz
4σ

z
5 −0.083 9009

σz
1σ

z
6 0.120 287

σz
2σ

z
7 0.131 574

σx
4σ

x
5 0.047 1167

σx
1σ

x
6 0.050 2561

σx
2σ

x
7 0.045 2589

4.3. Tracking dynamical phases

As the energies of Lz
1 are sums of single-excitation energies, it is possible to keep track 

of dynamical phases of individual states eciently. One could in principle perform an 

eigengate UP
eg, drive a transition in time td, and map back to the computational basis 

using (UP
eg)

†. The accumulated dynamical phases on qubit j  is then equal to xjtd, which 

may be undone by a single-qubit phase gate, or by following the halfway inversion 
protocol.

Figure 3. The spectrum of each of the operators {Lα
i }, depicted for N  =  6. The 

horizontal ordering denotes the number of α-excitations (or Hamming weight) 
N
2
− < Qα

0 >. Subspaces with multiplicity larger than 1 have their multiplicity 
displayed to their right.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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5. Numerical results

We test our claims by simulating the driving step of our protocol, through numerically 
solving Schrödinger’s equation given by the Hamiltonian

HP (t) = Lz
1 + ΩP cos(ωt)Hdrive.

We consider the cases N  =  4 and N  =  6, and two dierent driving operators Hdrive which 
fit in the connectivity of the linear chain. The driving frequency ω is always chosen to 

be exactly the energy gap between states |t1〉Lz
1
 and |t2〉Lz

1
. Moreover, after fixing the 

driving time td, we choose ΩP  such that a π-rotation occurs between the transitioning 

states, e.g. |Lz
1
〈t2|Hdrive|t1〉Lz

1
| ΩP td = π. Apart from the halfway-inversion, we apply no 

further optimizations to the protocol.
The results are presented in figure 4. For extremely short driving times, where td ≈ 1 

such that ΩP  is of the order of energy dierences of the background Hamiltonian, the 
gate is highly inaccurate. However, for longer driving times, td  >  10, the gate becomes 

increasingly accurate, with the error decaying roughly as t−2
d  as expected. We also note 

that the fidelity seems to not strongly depend on the choice of driving operator.
In figure 5, we depict the eect of the halfway-inversion compared to leaving it 

out. In the latter case, we undo the accumulated dynamical phases with the operation 
exp(+iLz

0td) after the system is mapped back to the computational basis. The graph 
shows that the halfway-inversion does not necessarily reduce the error at all times, but 
dramatically improves the error at very specific times.

We suspect that these specific times are precisely the times where, at the time of 
the halfway inversion, the relative phases of each two-level system are roughly 0, caus-
ing the error’s leading order term 8 sin(nt)(Ω2/δ2) (equation (14)) to be minimized. We 
informally check this statement in figure 6, where the phases corresponding to highly 
optimal time td  =  11.55 and local maximum td  =  16.55, as well as the point precisely 
in between, are compared. The circles show the accumulated phase due to Hbg for the 
indicated two-level system, with the rightmost point of the circle corresponding to 
zero phase. Clearly, the optimal timing is associated with near-optimal phase resets, 
whereas the more erroneous timing shows phases that could contribute a significant 
error of order Ω2/δ2.

5.1. Comparison of gate times

So how do our driving times td compare to other quantum gate times in the same 
system? A conventional two-qubit gate could be constructed if each of the individual 
Hamiltonian terms hjkPjk could be turned on independently. A π/4 pulse would suce 
to create maximal entanglement, so we require times t such that hjkt = π/4. For N  =  4, 
the corresponding times t lie between 0.86 and 1.0 for neighbouring qubits, and up to 
8.56 for the most distant qubits. These should be compared to the 11.55 units of time 
required to perform an iSWAP1100,0011 at low error E < 0.001. Hence, within the time of 
our four-qubit iSWAP operation, up to 13 two-qubit gates could be done.

Similarly, for N  =  6, neighbouring qubits could be entangled in times between 0.60 
and 0.81, or up to 17.36 to entangle the outermost qubits. This should be compared 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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to the driving time td  =  13.75 to obtain a driven gate with error E < 0.003. Hence, our 
six-qubit resonant gate takes time equivalent to up to 23 two-qubit gates.

In general, it is unclear how to compare gate times between dierent gate sets, or 
how to optimally decompose iSWAP operations into smaller constituents. Turning to 

Figure 4. Gate error due to the resonant driving stage of our protocol, given 
various gate times and two dierent choices of Hdrive, for a number of qubits 
equal to N  =  4 (top) and N  =  6 (bottom). In these results, we applied the halfway 

inversion, but no further optimizations. The dashed line follows E = t−2
d . Although 

the fidelity is strongly oscillatory in td, a global tendency towards inverse quadratic 
decay is clearly visible.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Figure 5. A comparison of the gate error either with or without a halfway 
inversion applied, for the case N  =  4 and Hdrive = σz

2σ
z
3. The Halfway inversion 

shows stronger oscillatory behaviour, leading to minima that improve the total 
protocol fidelity by more than an order of magnitude at equal driving times. The 
times td ∈ {11.55, 14.05, 16.55} are highlighted with a gray, dotted line.

Figure 6. For near-resonant two-level systems, the accumulated phases at the 
time of the halfway-pulse (td/2) aect the fidelity of protocol. In the spectrum of 
Lz
1 with N  =  4 qubits, we select three dierent energy gaps (indicated by a pair 

of connected circles, squares or triangles), for which we depict the corresponding 
relative phases at td as vectors on the unit sphere. A relative phase of 0 corresponds 
to a vector pointing to the right (dashed lines). At td  =  11.55, corresponding to 
a local minimum of our gate error E , all phases are close to zero. On the other 
hand, at local maximum td  =  16.55, the phases are all far from zero. The (non-)
alignment of these phases explains the oscillatory behaviour of our protocol’s error 
as a function of time.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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the well-studied Tooli gate, the best bounds we could find are listed in [29], stating 
that a Tooli gate on four qubits requires between 8 and 14 CNOT operations. Note 
that these results assume full connectivity between all qubits, and do not account for 
the cost of single-qubit gates. For larger numbers of qubits, the CNOT cost is found 
to scale linearly in N as long as auxiliary qubits may be used—without auxiliaries, 
it would be quadratic. Dierent physical interactions may also lead to dierent gate 
counts. For example, [30] finds that constructing a CNOT out of our interaction Pjk 
requires two π/4 pulses, and constructing a mere three-qubit Tooli using the closely 
related XY interaction requires as much as ten fundamental entangling operations. We 
conclude that it is not possible to make a rigorous comparison between dierent gate 
sets, but that the duration of our resonantly driven gate is competitive with conven-
tional decompositions, with both approaches having unique advantages and disadvan-
tages depending on the specific implementation.

6. Discussion and summary of results

Let us turn back to the checklist presented in the introduction:

 ��  A constantly applied background Hamiltonian Hbg which has a unique energy gap 

between two eigenstates |t1〉Hbg
 and |t2〉Hbg

.

In this work, we used that both the ground state and the highest energy state of 
Lz
1 are unique, hence constituting a unique transition. This condition is automatically 

fulfilled if the system is non-interacting and single-particle energies are non-degenerate. 
Other Hamiltonians that do not satisfy this sucient requirement may need manual 
inspection of their spectrum.

 ��  A driving field Hdrive which couples the states |t1〉Hbg
 and |t2〉Hbg

, whose amplitude 
may take the form of a cosine with appropriate frequency.

We found that various 1- and 2-local operators were able to couple eigenstates of 
Lz
1. We did not address how these oscillatory driving fields could be physically imple-

mented, which requires specialization to a specific experimental platform.

 ��  An operation which maps (any) two computational basis states, call them |t1〉 and 

|t2〉, to energy eigenstates |t1〉Hbg
 and |t2〉Hbg

 respectively. We also need the inverse 
of this operation.

We introduced the concept of an eigengate which implements a basis transforma-
tion between two Hermitian operators. Although not every Hbg may have a reasonable 
eigengate, we did find satisfying examples in Polychronakos’ model, as well as in a 
dierent spin chain model in a previous work [10].

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The eigengates considered here have the property that the whole eigenbasis under-
goes the correct map, but we stress that more general results may be obtained in which 
only |t1〉 and |t2〉 map to the correct eigenstates.

 ��  An ecient method to keep track of the dynamical phases due to Hbg.

In an earlier work [10], we proposed to tune the Hamiltonian such that all energies 
were integer multiples of each other, such that all dynamical phases reset after a known 
time. In this work, we note that for non-interacting many-body systems, the dynami-
cal phases can be eciently tracked, and may be undone by parallel single-qubit gates 
if all Hbg eigenstates can be mapped back to the computational basis. Moreover, the 
halfway inversion, which maps each state with energy Ej  to a state with energy  −Ej  
halfway through the protocol, makes sure the dynamical phases cancel. This operation 
can always be implemented by applying an eigengate for Hbg twice.

Taking all this together, the result is a highly nonlocal and nontrivial quantum 
operation formed by a continuous evolution of a Hamiltonian consisting of local opera-
tors. A major weakness of this construction is the scaling with larger system sizes: for 

increasing N, the matrix elements Hbg
〈t2|Hdrive|t1〉Hbg

 become increasingly small, causing 
the gate time to increase substantially. Therefore, the protocol seems to be competi-
tive with conventional gate decompositions only for intermediate system sizes. It is an 
interesting open problem to find quantum systems for which these matrix elements 
remain constant or decay linearly at worst, while still satisfying the other requirements.

7. Conclusion

We presented a method to construct interesting gates on multiple qubits through reso-
nant driving, where the resonance selects a unique two-dimensional subspace in which 
an inversion occurs. The error of the driving stage scales favourably with driving time 

as E ∝ t−2
d , but may increase quickly as a function of the number of qubits N, due to 

the matrix elements Hbg
〈t2|Hdrive|t1〉Hbg

 becoming increasingly small. Nonetheless, in 

small systems, accurate gates can be obtained at driving times competitive with the 
time taken by conventional sequences of two-qubit gates.

Moreover, we introduced the eigengate which maps the computational basis to the 
eigenbasis of some operator. This proves useful by making the resonant transitions 
between eigenstates relevant to quantum information processing, and as a Hahn echo 
which undoes dynamical phases accumulated due to a background Hamiltonian. We 
believe both the eigengate and our perspective on resonant driving may be of indepen-
dent interest for other applications. We identified Polychronakos’ model to feature an 
analytical eigengate as well as all the other requirements of our protocol, and showed 
numerically that the protocol does indeed work for small systems of size N  =  4 and 
N  =  6.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Quantum gates by resonantly driving many-body eigenstates, with a focus on Polychronakos’ model

22https://doi.org/10.1088/1742-5468/ab25e2

J. S
tat. M

ech. (2019) 073103

Acknowledgments

We would like to thank Holger Frahm for pointing us to Polychronakos’ model and [18]. 
This research was sponsored by the QM&QI grant of the University of Amsterdam, 
supporting QuSoft.

Appendix. An intuitive picture of the halfway-inversion

In the main text, we claim that upon performing driving with halfway inversion (equa-
tion (10)), a perfect transition occurs in the case that δ = 0. In this section, we indicate 
what happens to such a resonant pair of states, as indicated in figure A1.

For two resonant states |t1〉 and |t2〉, we are interested in the relative phase on the 
Bloch sphere, φ, defined as the relative phase in |t1〉+ eiφ|t2〉. We follow what happens 
to an initial state |t1〉, situated at the top of the Bloch sphere, at each of the protocol’s 
steps. Note that a downside of this approach is that the relative phase i exp(±iφ) given 
to the transitioning states (relative to the spectators) cannot be deduced.

 1.  The first driving step, with phase φ1, drives the state towards the equator, at 
phase φ = φ1 +

π
2
. For example, if φ = 0, a rotation around the σx axis is per-

formed, causing the state to end up at the +σy axis.

 2.  This, however, holds in the lab frame. Moving back to the rotating frame incurs 
a phase ωt. Now, φ = φ1 +

π
2
+ ωt.

Figure A1. The relative phase φ between the two resonant states under our 
halfway-inversion protocol, depicted on the unit circle. Intuitively, the circle 
corresponds to the equatorial plane of the Bloch sphere, where any state on the 
sphere is first projected to the σx, σy plane, and then projected to the nearest 
point on the sphere. An initial state which starts at the +σz axis is first rotated 
towards the +σy axis by resonant driving, whilst rotating around the Bloch sphere 
at frequency ω. Thanks to the halfway inversion, the rotation by ωt is completely 
negated.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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 3.  The halfway inversion’s σx eectively puts a minus sign in front of an equatorial 
state’s phase. At this point, φ = −φ1 − π

2
− ωt.

 4.  In the driving step that follows, the driving field’s phase has been adjusted to 
φ2 = −φ1 − ωt in order to remain orthogonal to the state that should be inverted. 
In the rotating frame, no additional phase is accumulated, but the lab frame sees 
an increase of ωt. At this point, φ = −φ1 − π

2
.

 5.  The final σx negates the phase again, such that the initial state |t1〉 arrives at the 
bottom of the Bloch sphere (|t2〉) at phase φ = φ1 +

π
2
.
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