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ABSTRACT
To extend the coverage of Knowledge Bases (KBs), it is useful to

integrate factual information from public tabular data. Ideally, the

extracted information should not only be correct, but also novel.

So far, the evaluation of state-of-the-art techniques for this task

has focused primarily on the correctness of the extractions, but

the novelty is less well analysed. To �ll this gap, we replicated

the evaluation of two state-of-the-art techniques and analyse the

amount of novel extractions using two new metrics. We observe

that current techniques are biased towards con�dence, but this

comes at the expense of novelty. We sketch a possible solution for

this problem as part of our ongoing research.
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1 INTRODUCTION
Motivation. Knowledge bases (KBs) are large repositories of fac-

tual knowledge which are (typically) available on the Web. Modern

KBs (e.g., DBPedia [1]) contain millions of facts and are valuable

assets in many tasks like semantic search, reasoning, etc. Unfortu-

nately, despite their large sizes, they remain highly incomplete.

Much of the world’s information exists as tabular data. On

the Web, tables are available in web pages, as spreadsheets, or as

publicly available datasets in many di�erent formats. Because of

their relational nature, tabular data is suitable for supporting entity

search [20] or for answering speci�c factual queries [15]. Moreover,

tables are used for structuring factual knowledge because the tables’

cells o�en contain entities related to each other through some

semantic relationships. �us, tables represent an important source

of knowledge for augmenting current KBs with useful knowledge.

Problem. So far, a signi�cant amount of research has focused on the

integration of tables with popular KBs like DBPedia or Freebase [3,

5, 7–10, 13, 14, 17, 21]. Broadly speaking, the integration process

consists of two phases: First, the table at hand must be interpreted

by associating its content with entities, types, and relations from
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the knowledge base. �en, the integration takes place by adding

the information in the table to the KB, possibly �ltering out low-

quality extractions. �is operation is also known as slot-�lling, as

the empty “slots” in the KB are �lled with new facts [13].

�e accuracy of the second phase relies on whether the �rst

phase returns a su�ciently large number of links between the table

and KB. On one extreme, if every cell and column can be linked 1:1

to concepts in the KB, then new facts can be extracted with high

con�dence but are likely to be redundant for slot-�lling. On the

other extreme, if the system is unable to make any link, then it

cannot produce any new fact without introducing new KB concepts.

�is introduces a dilemma: On the one hand, links increase the

con�dence of extracted facts, but on the other one they hinder the

novelty of the extraction.

Contribution. In this paper, we argue that current approaches

for table interpretation rely strongly on the initial links to the KB

and this introduces a sort of “bias” that encourages predictions of

correct but redundant information which is useless for slot �lling.

More concretely, we formulate the following hypotheses about

existing systems:

(H1) Correctly extracted facts are more redundant than the unex-
tracted ones.

(H2) Novel facts are extracted less o�en than redundant facts.
In order to verify these hypotheses, �rst we introduce a new set

of metrics, called ReNew metrics (ReduntantNew), to evaluate the

performance of table interpretation systems w.r.t. the amount of

redundant information they produce. �en, we present a replication

study of two state-of-the-art methods for the integration of tabular

data with KBs, T2KMatch [12] and TableMiner+ [21], and analyse

the amount of redundant extractions using our newly-introduced

metrics. Finally, we sketch a potential solution for overcoming such

“bias” as part of ongoing research.

2 FROM TABLES TO KNOWLEDGE BASES
Tables represent an important source of new knowledge for the

KB, but the extraction is not trivial. First, it is necessary to run

an interpretation step that maps the meaning of table cells, rows,

headers, and columns to the concepts used in the KB. �is task

consists of identifying (1) which entities are present in the table,

(2) which types those entities have, and (3) which relations are

expressed between columns (if any) [8, 9, 12, 18, 21].

To describe this process, let us assume for instance that we have

a KB with �ve entities {Netherlands, Country, Amsterdam, City,

capitalOf} and a table X which contains a row r with cell values

r [1] = “Holland” and r [2] = “A’dam”. �e �rst cell value should

be linked to the entity Netherlands, while the second should be

linked to the entity Amsterdam. �e mapping is not trivial because
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a string can link to zero or multiple entities, e.g. “Holland” can map

either to the county or to 19 di�erent cities in the US, and the system

has to disambiguate the correct meaning. Furthermore, if the other

rows in the table also contain countries and their capital cities,

then the system should infer that all these entities are instances

of classes such as Country and City, and the relation between the

columns should be capitalOf. Finally, a�er the interpretation is

�nished, we can use the links to construct facts to be added to the

KB, e.g., 〈Amsterdam, capitalOf, Netherlands〉.
Several research directions have been explored to solve this task,

with multiple systems focusing on cross-domain KB extension. �e

�rst system that integrated web tables with a KB was introduced in

[8]. �e system uses a probabilistic graphical model that combined a

large number of features for making supervised predictions. Subse-

quent work approached the problem with a task-speci�c knowledge

base [16, 18, 19], by limiting the feature set to speed up predictions

[9], using distributed processing [6], or focusing on limited domains

[10, 11, 17, 22]. Recently, state-of-the-art results have been obtained

with the T2K Match [12] and TableMiner+ [21] systems.

To the best of our knowledge, T2K Match and TableMiner+

represent the most promising and mature systems for populating

knowledge bases with the content of tables. �ey are open-source

and available online
1
. �e T2K Match system [12] implements a

series of matching steps that match table rows to entities, using

similarities between entity property values and the table columns.

Beginning with entity candidate selection from cell values, the

value-based similarities between cells and entity properties are

then used to �lter the candidate set and property predictions, a�er

which they are recomputed on the new selection. �is is iteratively

repeated until the similarities stop changing and, if it exceeds a

con�dence threshold, a �nal prediction is chosen. �e TableM-

iner+ system [21] consists of two phases that are alternated until

a certain con�dence level has been reached. �e forward-learning

phase builds up predictions on a row-by-row basis, a�er which the

backward-update phase uses these to guide the interpretation of

the rest of the data. �is process is repeated until convergence.

�ese two systems were designed to work with di�erent KBs,

thus no comparison between them was even made. Moreover, the

systems were evaluated against a set of manual annotations, and

scored on the individual subtasks in terms of precision and recall.

Such evaluation did not consider the facts that the system has

extracted, but only the classi�cation accuracy on the entity linking,

type prediction, and relation prediction tasks.

In other words, no di�erence was made between predictions of

already known facts or actual new knowledge. In order to �ll this

gap, we �rst need to de�ne some new metrics that take into account

the amount of redundant knowledge.

3 MEASURING REDUNDANCY
We are interested in using tables to expand a knowledge base, which

we represent as a set of facts KB over a set of entities EKB. �e table

extraction technique is expected to yield a new set of facts FP over

EKB. For a set of tables in an held-out set, it is standard practice to

manually annotate a gold standard set of facts FG and use them for

1
h�p://dws.informatik.uni-mannheim.de/en/research/T2K,

h�ps://github.com/ziqizhang/sti/

evaluating how many facts in FP are correct. Notice that FG might

contain facts that are either in KB or not.

So far, current techniques have been evaluated w.r.t. the set of

true positives FG ∩FP (correctly extracted facts) and false negatives

as FG \ FP (valid facts that were missed). �ese measures do not

capture the redundant information that was extracted. We propose

two additional metrics to capture it. �e �rst, which we refer to as

positive redundancy (R+), is the fraction of correctly extracted facts

that are already in the knowledge base, and the second, negative
redundancy (R−), is the fraction of annotated but unextracted facts

that are in the knowledge base:

R+ =
|(FG ∩ FP ) ∩ KB|
|FG ∩ FP |

R− =
|(FG \ FP ) ∩ KB|
|FG \ FP |

(1)

In other words, R+ is the redundancy of the true positives, and

R− is the redundancy of the false negatives. Notice that these

measures work only if FG \ FP , ∅ and FG ∩ FP , ∅ but these

are conditions largely satis�ed in practice. For example, imagine a

table of 3 columns and 10 rows yielding |FG | = 20 relational facts,

of which 13 are already in the KB. If the technique at hand predicts

only 10 correct facts but 8 of these are already in the KB, then

|FG ∩ FP | = |FG \ FP | = 10, R+ = 0.8, and R− = 0.5. Intuitively,

R+ reports the ratio of redundant information that was predicted,

while R− reports the ratio of redundant information that was not

predicted. �e two measures do not complement each other because

they depend on both the predictive power of the technique and on

the amount of novel information we can extract from the table. For

instance, if the table yields only novel facts, than both R+ and R−

will be zero regardless how good the extraction technique is.

�erefore, in order to have a more �ne-grained view on the

actual performance of the technique, we introduce also two recall
scores that are sensible to the redundancy. �e �rst, novel recall
(Q?

), is the fraction of new facts that is correctly extracted, and

the second, redundant recall (Q†), is the fraction of redundant facts

that is correctly extracted:

Q∗ =
|FP ∩ (FG \ KB)|
|FG \ KB|

Q† =
|FP ∩ (FG ∩ KB)|
|FG ∩ KB|

(2)

In other words, Q∗ is the recall of novel annotations, and Q† is the

recall of known annotations. For the example above, |FG \ KB| =
7, |FG ∩ KB| = 13, Q∗ ≈ 0.29, and Q† ≈ 0.62. We argue that

the measures R+,R−,Q?,Q†, which we call the ReNew measures,

o�er a be�er view of the performance than the used precision and

recall because they take into account the actual number of novel

knowledge that we can extract. Moreover, we can use them to

formally state our hypotheses as follows:

R+ > R− (H1)

Q∗ < Q† (H2)

Note that we are speci�cally interested in quantifying the extent

to which table interpretation systems will extract redundant facts,

and not in the general performance of the systems with regard

to novel extractions. If we were only interested in the systems

performance on the quality of their extracted facts, we could dis-

card all redundant facts, and measure precision and recall of the

remaining set of novel extractions. While these measures are useful

http://dws.informatik.uni-mannheim.de/en/research/T2K
https://github.com/ziqizhang/sti/
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T2D-instance

Task System Precision Recall F1

Entities Pr. T2K Match 0.96 0.75 0.84

TableMiner+ 0.97 0.70 0.81

Type Pr. T2K Match 0.93 0.92 0.92

TableMiner+ 0.94 0.91 0.93

Relations Pr. T2K Match 0.83 0.60 0.70

TableMiner+ 0.75 0.40 0.51

T2D-complete

Task System Precision Recall F1

Relations Pr. T2K Match 0.74 0.33 0.46

TableMiner+ 0.65 0.21 0.32

Table 1: Precision, recall and their harmonic mean F1 for
all datasets, tasks and systems.

T2D-instance

Task System R+ R− Q? Q†

Entities Pr. T2K Match Match 1.00 0.71 0.00 0.77

TableMiner+ 1.00 0.74 0.00 0.73

Types Pr. T2K Match 1.00 0.71 0.00 0.77

TableMiner+ 1.00 0.74 0.00 0.73

Relations Pr. T2K Match 0.81 0.22 0.10 0.63

TableMiner+ 0.83 0.32 0.04 0.36

T2D-complete

Task System R+ R− Q? Q†

Relations Pr. T2K Match 0.82 0.15 0.12 0.78

TableMiner+ 0.83 0.29 0.07 0.47

Table 2: ReNew metrics: positive redundancy, negative
redundancy, novel recall and redundant recall for all
datasets, tasks and systems.

for tuning systems for performance, in this work we are interested

in analysing the behaviour of existing systems with regard to both

novel and redundant extractions.

4 PRELIMINARY EMPIRICAL EVIDENCE
As mentioned earlier, we evaluate the systems T2K Match and

TableMiner+ since they represent the current state-of-the-art for

our task. For our experiments, we used two datasets from [12],

which contain HTML tables from a large, cross-domain web scrape

that are known to express relational data (i.e., not used for HTML

layout purposes). �ese datasets contain a realistic selection of

tables from the web, with manual annotations from DBPedia [1], a

popular up-to-date KB. �us, they are ideal for our purpose.

We evaluate the performance of the three key operations per-

formed during the table interpretation process: 1) Entity predic-
tion, which calculates the entity associated to each cell value.

�is process yields facts of the type 〈entity, label , cell value〉;
2) Type Prediction, which is the process to associate classes

to the table’s columns. �is process yields facts of the type

〈entity, type, class name〉; 3) Relations Prediction, which is the pro-

cess that determines the relationships between two di�erent cells.

�is process yields facts of the type 〈entity, relation, entity〉. In

order to evaluate the performance of the system, we need manual

annotations for each of these three tasks.

�e �rst dataset, called T2D-instance gold standard, consists of

233 tables with manual annotations of 25703 entities, 233 types

and 420 relations from DBpedia. Using these annotations we could

extract 75216 facts. �e second (much larger) dataset, called T2D-
complete gold standard, consists of 1748 tables. In this case, the

manual annotations were limited to types (i.e., columns) and rela-

tions (between columns) from DBpedia. Entities (e.g. cell values)

are not annotated. �e lack of entity annotations precluded the

usage of this dataset of our purposes. To �x this problem, we cre-

ated a silver-standard set of entity annotations for each system by

leveraging class predictions. If a class was correctly predicted for

a column, then we assumed that the matching with the entities

was correct. Using this method, we were able to extract 56509 and

48173 facts for T2K Match and TableMiner+, respectively. �is

still allows us to extract facts and calculate the redundancy scores.

However, by de�nition in this case the entity and type matchings

will be ideal. �erefore, we report the results only for the relations.

4.1 Accuracy
Initially, our goal was to reproduce the experiments presented in lit-

erature and compare the two systems using the standard precision,

recall, and F1. Running the T2KMatch system was not particularly

challenging since the implementation was already con�gured to use

DBPedia. However, the TableMiner+ system [21] was originally

designed for the Freebase knowledge base, and used services that

have been discontinued. To provide a meaningful comparison, we

minimally altered the system to use the same KB as the one used

by the T2K Match framework. Moreover, we replaced the Free-

base module by a label index and KB query index in Lucene, using

the same interface. In this way, we could provide a meaningful

comparison of the two systems.

�e precision and recall were calculated following the de�nitions

in [12] and [21]. Predictions of equivalent classes and relations were

considered correct, and so were single-level superclasses [12].

�e results we obtained are presented in Tab. 1. We can see that

both systems perform very similarly on the T2D-instance dataset,

particularly regarding entity and type prediction. �e scores forT2K

Match are comparable to the scores published in [12] which means

we were able to reproduce the experimental analysis presented in

literature. With the T2D-complete dataset, T2KMatch signi�cantly

outperforms TableMiner+ on the relation prediction task. �is

may be due to the coherence that T2K Match calculates between

all columns of a table and relations of a class, but a further error

analysis is outside the scope of this paper.

4.2 Redundancy
We report in Tab. 2 the four ReNew metrics on the set of facts

from entity, types, and relation predictions for both systems. First,

we observe that R+ and Q∗ is 1 and 0 for the entity and types

predictions respectively. �ese values are expected since by design

both systems only accept mappings that are already in the KB. �us
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Figure 1: Avg. fraction of facts that is new, for facts extracted
from annotations ( |FG \KB |

|FG |
) and predictions ( |FP \KB |

|FP |
).

the positive redundancy is maximal while novel recall is minimal.

Notice however that R− and Q† do not have ideal values, which

means that the systems do miss valid entity and type predictions

because of this policy.

Furthermore, we can see that both hypotheses hold in every

case and with both systems. �is means that a large part of correct

extracted facts is redundant (R+ close to 1) and that a large part of

unextracted facts is novel (low R−). Moreover, the ratio of novel

facts that is extracted (Q∗) is lower than the ratio of redundant

extractions (Q†). If we compare the two systems, then we observe

that negative redundancy (R−) is higher with TableMiner+, which

indicates that a larger fraction of missed facts are known. Also,

novel recall (Q∗) is lower, which means that the system retrieved a

smaller fraction of all novel facts that could have been extracted.

One could argue that since the tables do contain some redundant

information, then it should be expected that the system also returns

redundant predictions. To consider this case, Fig. 1 reports the

average fraction of facts that is not in the KB for facts extracted

from the gold standard (
|FG \KB |
|FG |

) and for predictions returned by

the two systems (
|FP \KB |
|FP |

). �is �gure clearly illustrates that the

ratio for the two systems is smaller than the amount of redundant

information from the tables, which con�rms (from an empirical per-

spective) our conclusion that the state-of-the-art is biased towards

the prediction of already-known knowledge rather than novel one.

5 OVERCOMING REDUNDANCY
In this paper, we are concerned with the amount of redundant facts

produced as a result of the integration of Web tables with existing

KBs. To address this issue, we introduced a set of new metrics

to evaluate whether and to what extent these systems are biased

towards extracting data that is already in the knowledge base. �ese

metrics concern the redundancy of extracted versus unextracted

facts, and the recall of novel versus redundant facts. We used these

metrics to formally capture the bias with two hypotheses, and

veri�ed them with an empirical comparison of two state-of-the-art

systems. Our analysis indicates that correctly extracted facts are

redundant more o�en than unextracted facts, and novel facts are

indeed extracted less o�en than redundant facts.

How can we overcome this bias? We take inspiration from

existing works and hint to a number of techniques which can be

potentially used to reduce the redundancy of extractions. We divide

them into three groups: extended feature sets, probabilistic KBs,

and knowledge fusion.

Extended feature sets can be used in supervised systems to guide

the interpretations away from redundant extractions by represent-

ing implicit ways that entities interact. In the original graphical

model of [8], some features made use of the knowledge base on-

tology, using the type hierarchy and the range and domain of rela-

tions. Alternatively, the work of [11] models the incompleteness

in a domain-speci�c subset of the knowledge base by estimating

class probabilities based on relations between entities, which the

limited domain makes tractable. However, to most e�ectively ex-

ploit these features for novel fact extraction, the objective function

of the supervised model should account for redundancy.

Going a step further, some approaches quantify uncertainties

using probabilistic KBs. �e systems of [19] and [18] use a proba-

bilistic KB created from a web corpus for supporting table search.

�is type of KB o�ers many strategies for improving the recall of

new knowledge because it allows for an explicit model of unknown

facts. �is existing work however does not evaluate whether this

approach actually leads to more novel extractions.

In data fusion approaches, systems explicitly aim for high recall,

and use a post-processing �lter to improve precision. In [10], the

extracted facts are �ltered using several machine learning models,

and in [2] they are �ltered using a statistical model of the KB.

However, the �rst system does not disambiguate entities in cells but

relies on hyperlinks in the table that point to Wikipedia pages, while

the second relies heavily on an estimation of the trustworthiness

of multiple data sources, which is not always available. In [13],

the system of [12] is used to interpret a large collection of web

tables, a�er which the extracted facts are �ltered using several

strategies. However, only 2.85% of web tables can be matched,

which is a�ributed to a topical mismatch between the tables and

the knowledge base. While such a post-processing step can be

explicitly tuned to favor novel facts, it is still necessary for the

extraction step to cover a very wide spectrum of topics.

Inspired by these techniques, we plan to explore strategies for

overcoming the extraction bias that we found towards known facts.

Our goal is to explicitly incorporate metrics of redundancy into a

fusion system that �rst performs interpretations with high recall,

and then �lters extracted facts with high precision.

To overcome the topical mismatch of tables and knowledge bases,

we plan to enrich the KB with contextual data from other sources,

such as textual data, linked data from other sources, and anchor

links on the web. While these data sources might be noisy, the

enrichment will increases the coverage of domains and surface

forms that can be used for table interpretation. For knowledge

fusion, we will employ existing link prediction models to model the

probability of novel fact extractions. �is approach can be naturally

combined with a model of the incompleteness of the KB [4].

To conclude, our work has shown that there is a tradeo� between

the extraction of novel knowledge and the requirement of high

con�dence. While current systems appear to give more weight to

con�dence rather than novelty, our hope is that a combined usage

of metrics that explicitly capture the redundancy, like our ReNew

ones, and (some of the) techniques highlighted before will lead to

more novel extractions.
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