
Observation and Evolution of
Finite-dimensional Markov Systems

Ulrich Faigle1 and Alexander Schönhuth2

1University of Cologne
2CWI Amsterdam

1 Markov systems

A system S is an entity that can be in one of several states. Let S be the set of states of S. An
n-dimensional Markov representation is an injective map ρ : S → Q onto an affine hyperplane
Q of an n-dimensional Hilbert space H over R. We denote the inner product in H by 〈x|y〉
and assume

Q = {x ∈ H | τ(x) = 1},
where τ : H → R is a linear functional. Given the representation ρ, we identify S with Q and
speak of Q as the collection of (Markov) states of S.

An n-dimensional Markov system S admits a standard representation σ : S → Q into the
euclidean coordinate space Rn with inner product

〈x|y〉 = xT y =
n∑
i=1

xiyi for all xT = (x1, . . . , yn), yT = (y1, . . . , yn) ∈ Rn.

and, with 1T := (1, 1, . . . , 1), the affine hyperplane

Q = {x ∈ Rn | τ(x) = 1Tx = x1 + . . .+ xn = 1}.

However, also other representations are of interest to the mathematical modeler:

1.1 Quantum Markov systems

Motivated by the classical model of m-dimensional quantum systems, consider the (complex)
Hilbert space Cm×m of complex (m×m)-matrices with inner product

〈C|D〉 = tr(D∗C),

where D∗ is the conjugate transpose of D and tr(A) denotes the trace of a matrix A. Recall
that a matrix C is self-adjoint (or hermitian) if C = C∗ and let H denote the collection of all
self-adjoint (m×m)-matrices C. It is not difficult to see that H forms a real(!) Hilbert space
of dimension n = m2. Letting I denote the identity matrix of Cm×m, we call the members of
the hyperplane

D = {D ∈ H | tr(D) = 〈D|I〉 = 1}
Markov density matrices and refer to a system with states corresponding to Markov density
matrices a Markov quantum system.
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1.2 Quantum activity systems and quantum bits

While classical computation is based on boolean bits, quantum computation (see, e.g., [8])
models activities by quantum bits (”qbits”), where one qbit has the form

q = α|0〉+ β|1〉 with α, β ∈ C s.t. |α|2 + |β|2 = 1.

The qbit q has has the interpretation that |0〉 is observed with probability |α|2 ≥ 0 and |1〉
with probability |β|2 = 1− |α|2 ≥ 0.

An n-dimensional quantum activity system is the n-fold tensor product A = A1 ⊗ · · · ⊗ An
of 1-dimensional quantum activity systems Ai. An n-dimensional quantum activity state (”n-
qbit”) is therefore of the form

q =
∑

k∈{0,1}n
αk|k〉 with αk ∈ C and

∑
k |α|2 = 1 (1)

and corresponds to the parameter vector v = (αk|k ∈ {0, 1}n) ∈ C2n with (squared) norm

‖v‖2 = v∗v = |α1|2 + . . .+ |αn|2 = 1.

Note that an n-qbit q in the form (1) cannot directly be interpreted a Markov state in
standard form. The associated matrix Q = vv∗ is self-adjoint with trace

tr(vv∗) = v∗v = |α1|2 + . . .+ |αn|2 = 1

and hence a Markov density (in fact, a classical quantum density).

1.3 Pseudo-boolean functions and cooperative games

A real-valued set function v : 2N → R is a pseudo-boolean function (see [6]). Identifying the
subsets K ⊆ N with their associated boolean states |k〉, a pseudo-boolean function v can be
viewed as a formal linear combination

v =
∑

k∈{0,1}n
αk|k〉

with the coefficients αk = v(K).

From a game theoretic point of view, the pair Γ = (N, v) is a cooperative game with charac-
teristic function v. The parameter v(K) is thought to reflect the ”value” of the coalitionK ⊆ N
in a given economic context. It is reasonable to assume that the game Γ is scaling-invariant.
So we might equally well study the normalized game (N, ṽ), where

ṽ =

{
0 if v ≡ 0

v/‖v‖2 if ‖v‖2 =
∑

K⊆N v(K)2 6= 0

and think of a non-trivial cooperative game as a qbit with real coefficients.

Remark 1.1. The Hadamard transformation H of a a 1-qbit is the linear transformation

|k1 . . . kn〉 7→ H|k1〉 ⊗ · · · ⊗H|kn〉 (k1 . . . kn ∈ {0, 1}2). (2)

The Hadamard coefficients α̂k of v correspond to the Banzhaf indices (see [2]), well-known in
social choice theory. (See, e.g., [7] for more applications of the Hadamard transformation to
social choice problems and [5] for more on interaction indices).



2 Observables and measurements

Returning to the general Markov state model with the n-dimensional Hilbert space H and
Q = {v ∈ H | τ(v) = 1} relative to the system S, let us fix a particular basis B ⊆ Q.

Remark 2.1. We think of B as the set of representatives of the ”ground states” of S.

We call a function X : B → {0, 1} an information function. So X models a ”property”
ground states b ∈ B may or may not have. Extending X linearly to all of H, X corresponds
to an element x ∈ H such that

〈x|b〉 = X(b) for all b ∈ B.

Assume that S happens to be in the Markov state q =
∑

b∈B qbb and define

πq(r) =
∑

b∈B:X(b)=r

qb (r = 0, 1).

We call X (statistically) observable in the state q if πq(r) ≥ 0 holds for r = 0, 1.

3 Evolution of Markov systems

A Markov (evolution) operator relative to the Markov system S, represented as the hyperplane
Q of the Hilbert space H is a linear transformation µ : H → H such that µ(q) ∈ Q holds for
all q ∈ Q.

A (generalized) Markov chain is a pair (µ, q(0)) where µ is a Markov operator and q a Markov
state. The pair (µ, q(0)) stands short for the Markov evolution of states in discrete time when
the Markov system S is in state q(0) at time t = 0:

q(t) = µ(q(t−1)) = µt(q(0)) for t = 1, 2, . . ..

Examples of Markov chains relative to the standard representation are, of course, classical
Markov chains, where µ is represented by a probability transition matrix.

Other examples arise from the Schrödinger wave evolution in quantum activity systems.

3.1 Evolution and measurement

The concept of a measurement can be naturally be put into context with evolution. We call a
family X = {µr | r ∈ R} of linear operators µr : H → H a Markov measurement with (finite)
scale R iff

µX :=
∑
r∈R

µa is a Markov operator. (3)

In light of (3), we write (X, q) as a unifying notation for both a Markov measurement X and
an associated Markov chain (µX , q) and refer to it as a Markov measurement chain. A Markov
measurement chain is invariant if µX(q) = q.

Now consider concatenating measurements (w := r1...rn)

µw(q) := µrn(...(µr1(q))...)



and observe that, by multinomial expansion, µtX =
∑

w∈Rt µw. We call a Markov measurement
chain (X, q) (statistically) observable iff

τ(µw(q)) ≥ 0 for all w ∈ R∗.

3.2 Equivalence and minimality of Markov measurements

We call two Markov measurement chains

X1 = ({µr : H1 → H1 | r ∈ R}, q1) and X2 = ({ρr : H2 → H2 | r ∈ R}, q2)

where, possibly, dimH1 6= dimH2, equivalent iff

τ1(µr̄(q1)) = τ2(µr̄(q2)) for all r̄ ∈ R∗ =
∑
t≥0

Rt.

We write
(X1, q1) ∼ (X2, q2)

in that case.

We call a Markov measurement chain (X, q) on H minimal iff dimH is minimal among all
Markov measurement chains that are equivalent to (X, q). (See also [4] for details on how to
perform equivalence tests efficiently.)

3.3 Decomposition of Markov measurements

We present the following new theorem:

Theorem 3.1 (Decomposition of invariant Markov measurement chains). Let X = ({µr :
H → H | r ∈ R}, q) be a minimal, observable, invariant Markov measurement chain. Let
d := dim(EigµX (1). Then there are minimal, observable, invariant Markov measurement chains

Xi := ({µ(i)
r : Hi → Hi | r ∈ R}, qi) i = 1, ..., d

such that

(i) q = q1 + ...+ qd

(ii) (X, qi) ∼ (Xi, qi)

(iii) dim(EigµXi
(1)) = 1.

(iv) H ∼= H1 ⊗ ...⊗Hd.

Remark 3.2. dim EigµX (1) ≥ 1, see [3].

One may perceive this theorem as a building block for a unifying theory of classification for,
for example, hidden Markov processes, quantum random walks and action-based cooperation
systems emerging from game theory [10].
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