
OGRE: Overlap Graph-based metagenomic Read clustEring

Marleen Balvert, Ernestina Hauptfeld, Alexander Schönhuth* and Bas E. Dutilh*
*Shared last authors.

Abstract
The microbes that live in an environment can be identified from the genomic material that is

present, also referred to as the metagenome. Using Next Generation Sequencing techniques this
genomic material can be obtained from the environment, resulting in a large set of sequencing
reads. A proper assembly of these reads into contigs or even full genomes allows one to identify
the microbial species and strains that live in the environment. Assembling a metagenome is
a challenging task and can benefit from clustering the reads into species-specific bins prior
to assembly. In this paper we propose OGRE, an Overlap-Graph based Read clustEring
procedure for metagenomic read data. OGRE is the only method that can successfully cluster
reads in species-specific bins for large metagenomic datasets without running into computation
time- or memory issues.

1 Introduction
Metagenomics aims at identifying and characterizing the micro organisms that live in an environ-
ment by analyzing their combined genomic material. Next generation sequencing (NGS) technolo-
gies allow for the sequencing of genomic material at a relatively low cost, resulting in large amounts
of short-read data. Sequencing a metagenome gives a large set of reads that originate from the
genomes of a variety of species that live in the studied environment.

One of the most important general goals is to assemble the reads of the metagenome, that
is to reconstruct the individual genomes that contribute to the metagenome. In doing so, one
currently usually operates at the species level of taxonomy; that is, existing methods usually aim
at reconstructing one genome for each of the species that contribute to the metagenome.

However, bacteria can already differ substantially at the strain level: consider a pathogen
of which some strains are resistant to antibiotic treatment while others are not. To distinguish
between resistant and non-resistant strains, and associate differences with (often clinically relevant)
effects, knowing the differences at the genomic level is necessary. It is therefore desirable in
metagenomics to assemble genomes not only at the species level, but to distinguish them at finer
resolution and reconstruct genomes even at the strain level. Only this way, one is able to fathom
the genetic diversity of a metagenome at sufficiently fine detail.

Recent work has pointed out, however, that assembling individual genomes from metagenomes
at the strain level poses non-negligible methodical challenges. While some progress has been made
already [Nurk et al., 2017, Baaijens et al., 2017], certain obstacles have been remaining. One
most relevant such obstacle is that there are no methods that allow to cluster the reads from a
metagenome into clusters that—at least with sufficiently high probability—only contain reads from
identical or similar species. These clusters can then be picked up by assembly methods that are able
to distinguish between individual genomes at the strain level. Thereby, it is important to note that
such strain-level assembly methods usually encounter difficulties if the size of the input reads is too
large. Clustering reads into species-specific groups scales down the problem in a meaningful way:
a species cluster is often much smaller than the entire metagenome, while still collecting all reads
that stem from identical species. Hence strain-specific genomes can be conveniently reconstructed
by considering species-specific clusters in isolation.

Current methods, however, still rely on reducing the size of the input datasets by assembling all
reads into contigs first, and only then, in a second step, cluster reads into species-specific bins. This
procedure has a major flaw: since during the first step strain-specific cannot, but only consensus
genome assembly methods can be used, differences at the strain level get lost. This, of course,
hampers the entire procedure itself.

For reconstructing individual genomes from metagenomes at the strain level, novel methods are
required. Following from the arguments from above, clustering reads into species-specific clusters

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301631815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

before employing assembly tools would be highly desirable: after this step, strain-specific assembly
tools, which exist but expect smaller-scale input, could conveniently pick up the resulting clusters
and reconstruct the strains contributing to the species clusters.

Several reference-free binners for metagenomic short read datasets are available, all based on k-
mer profiles. Short k-mers, where k depends on sequence length and abundance level [Wang et al.,
2012], e.g. occur in the metagenomics read data at a frequency that is linearly proportional to their
occurence in the genome they originate from, and the frequency increases with the abundance level
of the species [Wu and Ye, 2011]. Abundancebin [Wu and Ye, 2011], TOSS [Tanaseichuk et al.,
2012] and MBBC [Wang et al., 2015] use this property to derive the species’ abundances and bin
the reads accordingly. The methods heavily rely on the assumption that no two species in the
metagenome occur at similar abundance levels. MetaCluster 5.0 [Wang et al., 2012] bins the reads
in three steps. First the reads from extremely low abundant (≤5x) species are filtered based on
their k-mer frequencies. Second, MetaCluster 5.0 uses the observation that long k-mers are unique
to a genome to bin reads originating from high-abundance species (>10x). The remainder of the
reads (originating from low-abundance species) are then binned based on their k-mer profiles where
k is intermediate (22 nt). Here, we apply these methods for read binning to the CAMI dataset
([Sczyrba et al., 2017], see Results). As none of the existing read binning methods performed well
on the largest datasets (see Results), we developed a novel method that exploits Minimap2 [Li,
2017].

In this work we present OGRE, an Overlap Graph-based Read clustEring method. The intuition
behind overlap-graph based clustering and assembly, and hence also our approach, is as follows:
if one were to construct an overlap graph from reads that are sequenced from a single genome,
then the graph consists of a single component when coverage over the entire genome is sufficiently
high. On the other hand, when an overlap graph contains reads from different genomes (i.e. a
metagenome) then no path exists in the overlap graph between two reads that originate from two
different non-overlapping genomes. This is illustrated in Figure 1. An overlap graph is thus an
intuitive tool for metagenomic read binning, where each connected component corresponds to a
genome.

Figure 1: The two bars at the top represent genomes, the small bars map reads that are mapped
back to these genomes. The color indicates the species. Reads that originate from the same genome
form a single connected component in the overlap graph (provided that coverage is sufficiently
high), while reads from different genomes are not connected in the overlap graph.

The idea of overlap graph-based clustering is similar to the idea behind MetaVelvet [Namiki
et al., 2012]. This is an assembler designed for metagenomic datasets. A de Bruijn graph is
constructed from the reads, which is decomposed into species-specific subgraphs by identifying
chimeric nodes. Assembly is then performed on each of the de Bruijn sub graphs to obtain the
genomes of the individual species. While this approach is similar to ours, there are some essential
differences. First, while MetaVelvet employs a de Bruijn Graph, we make use of an overlap graph,
which prevents the need for splitting reads into k-mers. Second, while MetaVelvet splits up the
graph by searching for chimeric nodes, our graph is not connected to begin with and no splitting
is needed: we only need to identify the connected components.

While the use of overlap graphs or de Bruijn graphs is common for assembly [Namiki et al.,
2012, Nurk et al., 2017, Baaijens et al., 2017], no efficient implementation of an overlap graph-based
clustering approach exists in the current literature. In this paper, we present OGRE, the first com-
putationally feasible overlap graph-based read clustering approach for metagenomics data. OGRE
employs Minimap2 [Li, 2017] which uses a clever heuristic approach for the efficient construction
of an overlap graph. We show that OGRE is capable of clustering large metagenomic datasets

2

without running into memory- or time issues, something which was not possible with existing
clustering methods.

2 Methods

2.1 Clustering method
Despite the conceptual simplicity of overlap graph-based read clustering, its implementation is not
straightforward: the algorithm needs to be able to efficiently construct an overlap graph from a
large metagenomic dataset typically containing tens of millions of reads, and efficiently identify
the clusters in the overlap graph. Here we first give a global overview of OGRE, further details
are discussed in the following sections.

OGRE consists of three steps: (1) construct an overlap graph by identifying overlaps between
reads, (2) from the list of overlaps select those that are expected to be an overlap between two
reads from the same species, and (3) cluster the reads that are in the same connected component
in the overlap graph (Figure 2). In the third step one may choose to impose a maximum cluster
size to avoid unrealistically large clusters. For the overlap graph construction we use Minimap2
[Li, 2017], a recently developed tool that employs a heuristic approach to rapidly identify read
overlaps. Minimap2 is the only tool that can identify the overlaps in a sufficiently short amount
of time, and provides a list of overlaps between pairs of reads. For each overlap between two reads
we compute a quality score to obtain an overlap graph with weighted edges, where higher weights
correspond to a stronger overlap. Weights are in the interval [0,1], and edges (overlaps) with a
weight below 0.5 are removed from the graph. We then cluster reads such that those pairs of reads
with a high overlap score are in the same cluster. For this final step we use an efficient and parallel
implementation of single linkage clustering. The overlap graph construction, overlap selection and
clustering steps are further described in Sections 2.1.1, 2.1.2 and 2.1.3, respectively.

Overlap graph
construction

Sections
2.2.1 and 3.1

List of edges
with weights

Weight
calculation and
edge removal

Sections
2.2.2 and 3.2

Reduced
list of edges
with weights

Single linkage
clustering

Sections
2.2.3 and 3.3

Clusters

Figure 2: Workflow of the clustering method. Rectangles indicate steps in the workflow, ellipsoids
indicate input/output to each of the steps. The sections in which the methods and results of each
step are discussed are indicated below the steps.

2.1.1 Overlap graph construction

Minimap2 outputs a list of pairs of overlapping reads with information corresponding to this
overlap. It offers two possible output formats: a PAF file [Li, 2016] and a SAM file [Li et al., 2009].
We experienced some issues with the PAF output format, as it often reported only part of the
overlap between two reads, which could then be mistaken for an overlap in the middle of a read
and removed by our post-processing procedure. The SAM format does not suffer from this issue,
as it outputs the CIGAR string from which the complete overlap range can be deduced. After
running Minimap2 we discarded overlaps in the middle of reads as these make no sense in terms
of clustering or assembly. This leaves us with a list of overlapping pairs of reads, hence a list of
edges in the overlap graph. We chose settings for Minimap2 that allowed for identification of a
large number of overlaps with a length of at least 60 bases (k=21, w=11, s=60, m=60, n=2, r=0,
A=4, B=2, –end-bonus=100, see https://lh3.github.io/minimap2/minimap2.html for details).

The list of overlaps produced by Minimap2 contains overlaps where both reads originate from
the same species as well as pairs where the reads come from different species. We would like to
discard the latter. We aim to do so by predicting for each overlap whether the reads originate from
the same species based on a measure of overlap strength. For this, we compute two metrics that
could be relevant: the overlap length and a matching probability based on Phred scores (Appendix
A, also used in Baaijens et al. [2017]). The predictive power of these metrics will be assessed in
the results section.

3

Minimap2 produces a SAM file containing a large header and for each overlap the read IDs,
CIGAR strings, mapping positions, segment sequence and Phred scores of the overlap. In our
initial tests with a dataset (CAMI_low, see Section 3.1) containing 50,000,000 reads and hence
50,000,0002 pairs of reads, the output file exceeded 1TB – once the file reached a size of 1TB
we stopped the process, so we don’t know how large it could get. However, for our purposes we
only need a list of overlaps characterized by the read IDs, the overlap length and the Phred-based
overlap quality score, which requires less space. To prevent the production of a large output file
we split the set of reads into n equal subsets s1, ..., sn and ran Minimap2 for every pair of subsets
(si, sj) ∈ {s1, ..., sn}×{s1, ..., sn}. As Minimap2 produces a slightly different output when running
it on (si, sj) compared to (sj , si), i 6= j, that is, it matters which subset is used as a reference and
which one as a query, we ran both, resulting in n2 small output files. For each file we only kept
the read pair IDs, CIGAR strings, read sequences and Phred scores and as such removed a lot
of redundant information. We then computed the overlap length and the Phred-based matching
probability from the CIGAR strings, the read sequences and Phred scores, after which the latter
three were discarded.

Next, for each pair of subsets, we combined the two overlap files (one obtained with the first
subset as a reference and the second as a query, and one obtained with the reverse) and removed
all overlaps occurring twice. We now have n + (n − 1) + ... + 2 + 1 = n ∗ (n + 1)/2 overlap files.
These were merged into a single overlap file that contained a list of overlaps characterized by the
corresponding read IDs, overlap length and Phred-based overlap score. This file is the list of edges
in our overlap graph.

2.1.2 Filtering overlaps between reads from different species

As already mentioned we wish to give each edge a weight that indicates the strength of the overlap,
and filter those overlaps for which the reads originate from different species from the full list of
overlaps obtained. For this purpose we use a logistic regression, a machine learning method that
predicts for each sample a binary class based on a sigmoid function applied to a linear transfor-
mation of sample characteristics:

f(t(x)) =
1

1 + exp−t(x)

t(x) = β0 +

m∑
i=1

βixi,

where x ∈ Rm is the vector of sample characteristics. Note that f(t(x)) ∈ [0and1]. Samples with a
value >0.5 are predicted to be in one class, the other samples in another. In our case, the classes
are “same species” and “different species”, where f(t(x)) > 0.5 corresponds to “same species”, and
the characteristics are the overlap length and the Phred based overlap score. The output value of
the logistic regeression is used to obtain edge weights in the interval [0, 1], and edges that have a
weight below 0.5 were removed. Values for the parameters β0, ..., βm are obtained by training the
model on past data where the true class of each sample is known. We further discuss our approach
to this in Section 3.6.

2.1.3 Implementation of the single linkage clustering algorithm

The list of overlaps - constructed as described above - describes the overlap graph and thus forms
the starting point of the clustering algorithm. Initially each read forms a bin by itself, and in every
iteration two bins are merged. The single linkage algorithm chooses the two bins with the largest
overlap score between them and merges them. The overlap score between two bins A and B is
defined as the maximum overlap score over all pairs of read ends r = (r1, r2), r1 ∈ A, r2 ∈ B
(Figure 3). Sorting the overlaps according to decreasing overlap score provides the order in which
bins should be merged. After sorting, the remainder of the merging algorithm is linear in the
number of edges: for each line in the file, the two bins that contain the reads of that line are
merged.

When we are looking for the connected components in a graph, all edges will be used, so the
order in which bins are merged may seem irrelevant. However, a connected component in an
overlap graph may contain multiple, possibly many, species when they share part of their genome
sequence. This may lead to huge clusters containing reads from many genomes. In order to prevent

4

Cluster A

Cluster B
0.6

0.6
0.3

0.8

Figure 3: Example of the single linkage clustering. The solid lines denote edges between nodes in
the same cluster, the dashed lines denote edges between nodes from different clusters with their
overlap scores. The overlap score between clusters A and B is the maximum overlap score over the
four connections between the clusters, which equals 0.8.

this, we limit the cluster size: reads are clustered in order of decreasing overlap strength, and a
cluster is considered “full” and removed from the clustering procedure when its size reaches the
threshold. In this case the edge weights are relevant.

Although the above algorithm has a complexity of O(n log n+n) where h is the number of edges
in the graph (the complexity of the merge sort algorithm that is used by the bash command “sort”
plus the complexity of the single linkage algorithm), the size of the overlap graph makes executing
it nontrivial: any serial clustering algorithm, even a very fast one, will have to go through all the
edges that are in the list of overlaps and will thus take a very long time to process. In order to be
able to use the methodology described above, we use several techniques to speed up the method.

Hash table We store our clustering in a hash table where each key is a node (read) and its value
is the ID of the cluster the read belongs to (see left part of Figure 4a). As noted before, initially
each read forms a cluster on its own. When merging two (single-node) clusters we update the value
of only one node to be equal to the ID of the other node instead of the cluster ID. This results in
a cluster with two nodes that is stored as a chain of keys and values (Figure 4a). When merging
two clusters that contain multiple nodes we update only the value of the node that points to the
cluster ID, also referred to as the head of the cluster, in one of the clusters to be equal to the
head node of the other cluster (Figure 4b). As a result, only a single value needs to be updated
whenever two (potentially large) clusters are merged.

(a) (b)

Figure 4: Merging two clusters of (a) a single node each and (b) multiple nodes by changing the
value of one node to be equal to the ID of the other node. Circles indicate reads, squares indicate
cluster IDs. An arrow points from a key to its value in the hash table. An arrow from a circle to
a square indicates that this read is in the cluster corresponding to the square. An arrow from one
circle to the next indicates that the read from which the arrow departs is in the same cluster as
the read that the arrow points to. Fill patterns allow for identification of nodes between the two
steps.

Updating the cluster with the shortest maximum chain Suppose that we have arrived at
an iteration where the algorithm considers the overlap between reads r1 and r2. Then the clusters
containing reads r1 and r2, denoted by C1 and C2, respectively, need to be merged. We need to
identify the heads of C1 and C2 by traversing the path through the hash table starting at reads r1

5

and r2 towards the respective cluster heads. The number of operations for this procedure equals
the length of the path from r1 to the head of cluster C1 plus the length of the path from r2 to the
head of cluster C2. For example, consider the cluster in the lower part of Figure 4b, and suppose
that the right-most node in this cluster is r1. In order to find the cluster ID (the square) one needs
to traverse three nodes, hence four operations are required to arrive at the cluster ID. It is thus
desirable to keep the length of the longest chain in each cluster as short as possible. When merging
two clusters we therefore redirect the head of the cluster with the shortest maximum chain within
the cluster to the head of the other cluster. As a result, the maximum chain within a cluster of
size n will never exceed 1 + bn/2c (see Appendix B).

Parallellization of the single linkage clustering algorithm Although the single linkage
clustering algorithm is very fast and simple, the list of overlaps contains from tens of millions up to
billions of lines and going through these one by one could take up to weeks or months for a dataset
of the size that is often encountered in metagenomics. We thus need to parallelize the approach.
As the merging procedure is sequential by nature, it is difficult to parallelize the merging itself.
However, note that after several iterations many lines in the list of overlaps will become redundant:
they are overlaps between pairs of reads that either are already in the same cluster, or merging
their clusters yields a too large new cluster. This observation forms the basis for our parallelization
method. In each iteration, each of the parallel processes receives a block of lines (e.g. 1,000,000
lines) retrieved from the position in the list of overlaps to where the algorithm got so far. For each
of these lines the process checks (1) whether the two reads are in a different cluster and (2) whether
merging their clusters leads to a cluster size that does not exceed the threshold. If both conditions
are met, the line is written to a new list. After all processes have finished, the clustering algorithm
only needs to consider those pairs of reads that were written to the lists by the separate processes.
The number of lines processed in each iteration is thus 1,000,000 × the number of processes. After
a few iterations, the number of overlaps that makes it to the filtered list is only a fraction of the
total number of pairs of reads processed by the individual processes. An overview of this approach
is given in Figure 5.

Minimap2
output file

P
ro
ce
ss
ed

be
fo
re

it
er
at
io
n
i

Thread 1

Thread n

...

Subfile 1

Subfile n

...
Combined
subfile

Clustering
by combined
subfile

P
ro
ce
ss
ed

du
ri
ng

it
er
at
io
n
i

P
ro
ce
ss
ed

af
te
r

it
er
at
io
n
i

Figure 5: Parallelization of the single linkage clustering: processes as executed in a single iteration
i.

3 Results

3.1 Data
We test OGRE on the datasets provided by the CAMI challenge [Sczyrba et al., 2017]. Six datasets
are provided, containing simulated short Illumina reads from a mixture of strains. In all but one
dataset these strains can be grouped into species (for one dataset there is only a single strain

6

per species present). The datasets differ in complexity. Summary statistics are given in Table 1,
further details can be found in Sczyrba et al. [2017].

Table 1: Characteristics of six CAMI datasets. *Four out of the six CAMI datasets contain multiple
samples. For these we only used samples S001. **This is a relative complexity as indicated by
Sczyrba et al. [2017], see their paper for further details.
Dataset Sample* No. reads Read length (nt) No. species No. strains Complexity**

CAMI_low - 49,898,179 2×150 27 60 Low
CAMI_medium S001 66,489,042 2×150 91 232 Medium
CAMI_high S001 49,901,367 2×150 376 1074 High
toy_low - 72,855,674 2×100 30 30 Low
toy_medium S001 77,155,802 2×100 199 225 Medium
toy_high S001 74,016,648 2×100 375 450 High

3.2 Clustering CAMI_low with available read clustering methods gives
memory and time issues

We have attempted to perform read clustering of the CAMI_low dataset (Table 1) using Abun-
dancebin [Wu and Ye, 2011], TOSS, [Tanaseichuk et al., 2012], MetaCluster 5.0 [Wang et al., 2012]
and MBBC [Wang et al., 2015]. These methods were unable to finish within reasonable time. The
methods were applied to subsets of the data. MBBC spent over a month on a subset containing
5% of the species before we stopped the process. Running Abundancebin on a subset containing
5% of the species was possible, but after running it on 20% of the species for three weeks we
stopped the process. As TOSS depends on Abundancebin, we have not tried running it separately.
MetaCluster could finish running on 20% of the data, but was not able to handle the full dataset.

3.3 Runtimes for the clustering approach are acceptable for all but one
dataset

Runtimes for the overlap graph construction and the clustering step are presented in Table 2.
Note that the toy_low dataset (Table 1) is missing: our method could not be run on this dataset
within reasonable time. This is due to the large number of overlaps that Minimap identifies,
which makes it impossible to obtain the full overlap graph without running into memory and time
issues. Therefore, no further results were obtained for this dataset. For the remaining five datasets
however our parallelization approach makes overlap graph-based clustering feasible on a multi-core
system. Our results were obtained on a system with 24 CPUs, and the overall procedure took
between 60 and 160 hours (so less than a week).

Table 2: Run time in CPU hours of the algorithm.
Run time (CPU hours)

Dataset Overlap graph construction Clustering Total

CAMI_low 2118 145 2263
CAMI_medium 1853 367 2220
CAMI_high 291 250 541
toy_medium 1762 291 2053
toy_high 648 24 672

3.4 Overlap graph construction can be done without memory issues
The main issue with constructing an overlap graph by directly running Minimap2 on the CAMI
datasets is the size of the resulting file, as this yields an excessively large output file. The algorithm
described in Section 2.1.1 was developed to overcome this issue, hence the main performance
indicator for this step is the size of the resulting overlap files. As Table 3 shows, the final overlap
file has an acceptable size.

7

Table 3: Number of edges in the overlap graph and size of the output file.
Dataset Number of edges Output file size

(×109) (GiB)
CAMI_low 8.10 310
CAMI_medium 7.04 360
CAMI_high 0.36 19
toy_medium 2.85 137
toy_high 2.33 108

3.5 The prediction step removes many different species overlaps and
keeps most same species overlaps

For a given overlap we aim to predict whether the corresponding reads originate from the same
genome based on the overlap length and a Phred-based matching probability.

First we compare the distributions of the overlap length and the Phred-based matching proba-
bility for same-species pairs of reads versus different-species pairs of reads. We randomly selected
2,000,000 overlaps from each of the datasets: 1,000,000 for which the reads are from the same
species and 1,000,000 for which the reads originate from different species. The distributions for
overlap length and Phred-based matching probability were plotted for same-species overlaps (blue)
and different-species overlaps (red) separately (Figure 6 for CAMI_low and Figures 9 up to 12 in
Appendix C for the remaining datasets). The histograms show that the Phred-based probability
score can be a valuable predictor for whether the overlap corresponds to reads originating from the
same species, while the relation between overlap length and read origin seems to be less indicative.

(a) (b)

Figure 6: Distribution of (a) the overlap length and (b) the Phred-based matching probability for
1,000,000 overlaps between reads from the same species and 1,000,000 overlaps between reads from
different species randomly selected from CAMI_low

Recall that we aim to discard overlaps between reads from different species, while retaining as
many same species overlaps as possible using a logistic regression. The model needs to be trained
on synthetic data where for each read it is known from which species it originates. The CAMI
datasebase is highly suitable for this purpose. We trained our models based on all overlaps from
four out of the five datasets. The performance of the trained models was tested using the fifth
dataset, which has a different complexity than the other datasets and was withheld completely up
to this point.

Table 4 shows train and test accuracies for each of the five datasets. The dataset in the first
column is the dataset for which the reads are to be clustered (the test dataset). The training
dataset is constructed by randomly selecting 10,000 overlaps between reads from the same species
and 10,000 overlaps between reads from different species from each of the four datasets other than
the test dataset, and combining those into a single training dataset. Note that there is a big gap
between the training and the test accuracy, which is due to a combination of two factors. The
test dataset (containing the complete overlap graph) is highly unbalanced: over 99% of the edges
correspond to an overlap between reads from the same species. This, combined with the model

8

being far better at recognizing same species overlaps than different species overlaps, yields a higher
accuracy for the test data than for the training data.

Table 4: Training and test accuracies. The training data for the dataset in column 1 is created by
selecting 10,000 same species overlaps and 10,000 different species overlaps from each of the overlap
graphs of the five datasets other than the test dataset. Test accuracy is obtained by applying the
trained model to the overlap graph of the test dataset.

Test dataset Train accuracy Test accuracy
CAMI_low 0.715 0.801
CAMI_medium 0.775 0.923
CAMI_high 0.765 0.891
toy_medium 0.758 0.925
toy_high 0.772 0.934

The goal of this step in the clustering procedure is to discard as many overlaps between reads
from different species as possible - a single such overlap leads to merging two clusters with reads
from different species - while keeping most of the overlaps between reads from the same species. We
therefore look at the fraction of same species- and different species overlaps that were discarded by
the logistic regression classifier (Table 5). The results show that while for most datasets over 90%
of the same species overlaps were kept, around half of the overlaps between reads from different
species were discarded, and for CAMI_low this was even over 90%.

Table 5: Fraction of overlaps discarded by the logistic regression classifier.
Test dataset Same species overlaps Different species overlaps
CAMI_low 0.199 0.935
CAMI_medium 0.077 0.446
CAMI_high 0.109 0.561
toy_medium 0.075 0.598
toy_high 0.066 0.483

3.6 Clustering gives sensible results for all datasets but one
For each dataset the clustering was performed with a maximum cluster size of 3300, 17000 and
33000 reads (corresponding to at most 1 million, 5 million and 10 million base pairs, respectively),
as well as with unlimited cluster size. All clusters of fewer than 20 reads were discarded, and these
reads were considered as not clustered.

Detailed results of CAMI_low are shown here. The results of the CAMI_medium, CAMI_high
and toy_medium datasets are comparable to those of CAMI_low, and are thus not separately
discussed. Their results can be found in Appendices D up to F. The results of toy_high will be
discussed here, as they are not comparable to those of the other datasets.

In a perfect clustering each read is clustered, all reads from the same species are in the same
cluster and each cluster contains reads from only one species. We will therefore assess the number
of clustered reads, the number of clusters per species and the number of species per cluster.

First we plotted the fraction of the reads that was clustered versus coverage for each species in
a dataset, see Figures 7 (CAMI_low and toy_high) and 13 in Appendix D (remaining datasets),
where each dot represents a species. Results for the four maximum cluster sizes are shown in red
(3300 reads), blue (17000 reads), green (33000 reads) and black (unlimited). The figures show
that the fraction of reads that was clustered is generally high for species with a high coverage.
Furthermore, as the maximum cluster size increases, the number of clustered reads increases as
well. The exception is toy_high, where hardly any reads were clustered at all.

Tables 6 (CAMI_low) and 7 (toy high_compexity) show the distributions of the number of
species in a cluster for the four maximum cluster sizes. The same tables for the remaining datasets
can be found in Appendix E. The tables show that as the maximum allowed cluster size increases,
the maximum number of species in a cluster increases as well. On the other hand, the total number
of clusters decreases.

9

(a) CAMI_low (b) toy_high

Figure 7: Fraction of the reads that was clustered versus coverage for (a) CAMI_low and (b)
toy_high. Each dot represents a species in the dataset. Results are presented for the four maximum
allowed cluster sizes: 3300 reads (red), 17000 reads (blue), 33000 reads (green) and no limit (black).

Table 6: Number of clusters containing the number of species indicated in the first column for
CAMI_low for the four maximum cluster sizes.

Max cluster size (reads)
3300 17000 33000 Unlimited

N
o.

sp
ec
ie
s
in

cl
us
te
r 1 25466 12314 10224 4235

2 25 26 22 4
3 5 2 3 0
4 1 0 0 0
5 1 0 0 0
7 0 1 0 0
11 0 0 1 0
15 0 0 0 1

Total 24498 12343 10250 42340

Table 7: Number of clusters containing the number of species indicated in the first column for
toy_high for the four maximum cluster sizes.

Max cluster size (reads)
3300 17000 33000 Unlimited

N
o.

sp
ec
ie
s
in

cl
us
te
r 1 37 33 33 33

2 7 7 7 7
3 3 3 3 3
4 2 0 0 0
5 2 1 1 1
7 1 0 0 0
8 0 1 1 1
11 0 1 1 1

Total 3874 3842 3842 3842

10

(a) CAMI_low (b) toy_high

Figure 8: The number of clusters that contain at least one read from a species versus coverage
for (a) CAMI_low and (b) toy_high. Each dot represents a species in the dataset. Results are
presented for the four maximum allowed cluster sizes: 3300 reads (red), 17000 reads (blue), 33000
reads (green) and no limit (black).

The number of clusters per species versus coverage is shown in Figure 8 for CAMI_low and
toy_high, and in Figure 14 in Appendix F for the four remaining datasets. As before, each dot
represents a species, and the red, blue, and green dots correspond to a maximum allowed cluster
size of 3300, 17000 and 33000 reads, while black dots correspond to an unlimited cluster size. As
can be seen in the figure, the reads from species with a low coverage are spread over a larger
number of clusters and hence are less well clustered.

3.7 Weak clustering for toy_high is caused by complexity of the dataset
The toy_high dataset is the only dataset for which a weak clustering was obtained. In order to see
what caused this, we assembled all datasets using MetaSpades [Nurk et al., 2017] and investigated
the quality of the assembly. The results in Table 3 show that the assembly of toy_high is of
much lower quality in terms of mean and maximum contig length, N50 and N80 than for the four
other datasets. The complexity of the dataset causes both MetaSpades and our approach to have
difficulties.

Table 8: Maximum and mean contig length, N50 and N80 for the assembly performed with Metas-
pades.

Dataset Mean contig length Max contig length N50 N80

CAMI_low 734 1,362,798 5,413 152,084
CAMI_medium 691 1,625,542 1,676 44,305
CAMI_high 866 490,762 1,514 8,223
toy_medium 975 1,610,789 2,375 27,990
toy_high 657 803,789 925 8,178

4 Discussion
This paper presents OGRE, an overlap graph-based read clustering approach for clustering the
reads in a large metagenomic dataset. For this several challenges were resolved. First, the strongest
(and probably only suitable) overlap graph construction tool that is available, Minimap2, results in
an unacceptably large overlap file for our test cases. This issue was overcome by applying Minimap2
on parts of the data, sytematically removing redundant information from the separate overlap files,
and systematically merging the resulting files. Second, while the single linkage algorithm is a highly
efficient approach for clustering the reads from the overlap graph, it is sequential in nature and
applying it to the long edge list we obtained with Minimap2 results in unacceptable computation
times. The parallelization approach presented here allowed us to overcome this issue. Third, the

11

overlaps obtained with Minimap2 contain a large number of overlaps between reads from a different
species. About half of these overlaps could be filtered out using a logistic regression on the overlap
length and a Phred-based matching probability.

The presented approach could not provide a clustering for toy_low due to the large number
of overlaps that Minimap2 identifies for this dataset. One can tune the parameters of Minimap2
such that it stores fewer overlaps, e.g. by increasing the minimum overlap length or the threshold
on mismatch acceptance. As a result, the fraction of same species overlaps may increase which is
expected to strengthen the clustering. On the other hand, no proper clustering was obtained for
toy_high. This may be overcome by loosening the restrictions on Minimap2, resulting in a larger
overlap file. Setting the parameters for Minimap2 is thus a dataset-dependent task.

In practice, there are two difficulties with the concept of overlap graph-based read clustering.
First, a connected component in the overlap graph may contain reads from multiple genomes that
share part of their sequence, which may have occured through e.g. horizontal gene transfer or
domain conservation. In our experiments this has resulted in some clusters containing reads from
multiple species. Second, reads from a single genome may cluster into multiple separate connected
components in the overlap graph when coverage is low. This is consistent with our observations:
while the clustering approach works well for species with a relatively high coverage, many reads
from species with low coverage (below approximately 15x) remain unclustered. The issue may be
overcome by applying a k-mer based read clustering method to the remaining reads. For example,
MetaCluster 5 [Wang et al., 2012] provides an approach to identify some the species with extremely
low abundance. This is left for future research.

A species-specific read clustering approach for metagenomics such as OGRE paves the way for
faster assembly [Namiki et al., 2012] as this allows for genome assembly for species-specific bags of
reads. We foresee great value in combining our read clustering approach with an assembly tool such
as SPAdes [Bankevich et al., 2012] or Savage [Baaijens et al., 2017], and will further investigate a
combination of OGRE with an assembler in the future.

5 Conclusion
This paper presents OGRE, an overlap-graph based read clustering approach. While this is a
computationally intensive task, we developed a parallelized approach such that an overlap graph-
based method becomes feasible even for realistic large metagenomic datasets. This makes it the
only de novo read clustering method that can handle datasets of such size. While OGRE was
capable of providing a good read clustering for four out of the six test datasets, no proper clustering
was obtained for two datasets. This indicates the delicacy of setting the Minimap2 parameters,
for which no generally applicable values can be chosen. Overall, we conclude that the presented
method is a strong first step towards further development of overlap graph-based read clustering.

Acknowledgements

Funding
MB is supported by the Netherlands Organization for Scientific Research (NWO Vidi grants
639.072.309 and 864.14.004. AS is supported by the Netherlands Organization for Scientific Re-
search (NWO Vidi grant 639.072.309. BED is supported by the Netherlands Organization for
Scientific Research (NWO) Vidi grant 864.14.004.

A Calculation of the Phred-based matching probability
Suppose we have an overlap for which we observe the two read sequences s1, s2 ∈ {A,C,G, T}n
with corresponding Phred scores p1, p2. While s1 and s2 denote the observed read sequences, we
denote the true (unknown) read sequences by σ1 and σ2. The probability that s1 and s2 have the
same base pair in the ith position can be calculated as follows:

12

P (σ1,i = σ2,i) =
∑

b=A,C,G,T

P (σ1,i = σ2,i = b)

=
∑

b=A,C,G,T

P (σ1,i = b)P (σ2,i = b),

where

P (σ1,i = b) =

{
1− 10

−p1,i
10 if s1,i = b

1
310

−p1,i
10 otherwise.

From this we compute the Phred-based matching probability, which is defined as the probability
that two bases are identical averaged over the full overlap:

n

√
P (σ1,i = σ2,i).

B Maximum chain length in a cluster
Proposition. The maximum chain within a cluster of size n will never exceed 1 + bn/2c

Proof. The validity of the proposition can be shown by induction. First, note that this holds for
n = 1: if a cluster contains one node, than that one node will directly point to the cluster ID and
the chain has length 1. Now assume that the statement holds for clusters of size at most n − 1,
that is, the longest chain in a cluster of size n− 1 is of length 1 + b(n− 1)/2c. Consider a cluster
of size n, which we denote as cluster A. This cluster was formed by merging two clusters, say
clusters B and C with nB and nC nodes, nB ≤ n/2, nC ≥ n/2. From these two clusters, we
redirected the pointer of the head of the cluster with the shortest maximum chain, let’s say that
this chain has length l. The maximum chain in the new cluster has length l + 1 by construction.
By assumption, the length of the maximum chain in cluster B does not exceed 1 + bnB/2c. For
n = 2 we have nB = nC = 1, while for n = 3 we have nB = 1 and nC = 2. In both cases this gives
1 + bnB/2c = 1 = n/2. When n ≥ 4 we can write:

1 + bnB/2c ≤ 1 + bn/4c ≤ bn/2c .

Hence for any n > 1 we have l ≤ bn/2c and the maximum chain in the new cluster has a length of
at most 1 + bn/2c.

C Distributions of overlap metrics

13

(a) (b)

Figure 9: Distribution of (a) the overlap length and (b) the Phred-based matching probability
for 10,000 overlaps between reads from the same species and 10,000 overlaps between reads from
different species selected from CAMI_medium.

(a) (b)

Figure 10: Distribution of (a) the overlap length and (b) the Phred-based matching probability
for 10,000 overlaps between reads from the same species and 10,000 overlaps between reads from
different species randomly selected from CAMI_high.

(a) (b)

Figure 11: Distribution of (a) the overlap length and (b) the Phred-based matching probability
for 10,000 overlaps between reads from the same species and 10,000 overlaps between reads from
different species randomly selected from toy_medium.

14

(a) (b)

Figure 12: Distribution of (a) the overlap length and (b) the Phred-based matching probability
for 10,000 overlaps between reads from the same species and 10,000 overlaps between reads from
different species randomly selected from toy_high.

15

D Clustering results: fraction of reads clustered

(a) CAMI_medium (b) CAMI_high

(c) toy_medium

Figure 13: Fraction of the reads that was clustered versus coverage for (a) CAMI_medium, (b)
CAMI_high, (c) toy_low and (d) toy_medium. Each dot represents a species in the dataset.
Results are presented for the four maximum allowed cluster sizes: 3300 reads (red), 17000 reads
(blue), 33000 reads (green) and no limit (black).

16

E Clustering results: number of species per cluster

Table 9: Number of clusters containing the number of species indicated in the first column for
CAMI_medium for the four maximum cluster sizes.

Max cluster size (reads)
3300 17000 33000 Unlimited

N
o.

sp
ec
ie
s
in

cl
us
te
r

1 33168 14911 12167 3765
2 572 368 319 18
3 35 35 33 1
4 15 10 10 4
5 9 8 6 2
6 4 2 3 0
7 0 1 3 1
8 1 3 2 0
9 0 1 2 0
10 2 0 0 0
11 4 1 1 0
12 0 1 0 0
14 0 0 1 0
55 0 0 0 1

Total 33810 15341 12547 3792

17

Table 10: Number of clusters containing the number of species indicated in the first column for
CAMI_high for the four maximum cluster sizes.

Max cluster size (reads)
3300 17000 33000 Unlimited

N
o.

sp
ec
ie
s
in

cl
us
te
r

1 203826 197551 196942 194155
2 9143 8223 8082 7612
3 1276 980 919 714
4 509 382 351 240
5 194 151 136 61
6 97 107 83 28
7 77 40 47 7
8 41 51 34 2
9 44 28 24 3
10 30 30 16 2
11 14 13 16 2
12 11 13 8 1
13 6 6 13 1
14 1 3 4 0
15 2 2 2 0
16 2 1 3 0
17 1 0 0 0
18 1 4 2 0
19 2 2 0 0
20 1 1 3 0
21 2 3 3 0
22 1 3 2 1
23 1 1 2 0
24 1 0 1 0
26 0 0 1 0
27 0 0 1 0
30 0 1 1 0
32 1 0 0 0
35 1 0 0 0
39 2 0 0 0
40 0 0 0 1
41 1 0 0 0
43 0 0 1 0
44 0 1 0 0
50 1 0 0 0
56 1 0 0 0
59 2 0 0 0
60 2 1 1 1
63 0 2 2 0
70 0 0 1 0
72 1 0 0 0
73 0 0 1 0
74 0 1 0 0
273 0 0 0 1

Total 215295 207601 206702 202832

18

Table 11: Number of clusters containing the number of species indicated in the first column for
toy_medium for the four maximum cluster sizes.

Max cluster size (reads)
3300 17000 33000 Unlimited

N
o.

sp
ec
ie
s
in

cl
us
te
r

1 87101 63553 59313 41241
2 3403 2322 2060 244
3 1696 828 724 20
4 1111 382 270 2
5 99 85 70 4
6 49 44 46 1
7 16 10 15 0
8 7 9 11 0
9 5 9 2 0
10 5 1 3 0
11 1 2 1 0
12 0 4 2 0
13 0 2 2 0
14 0 0 1 0
16 0 1 2 0
19 0 0 1 0

136 0 0 0 1

Total 93493 67252 62523 41513

19

F Clustering results: number of clusters per species

(a) CAMI_medium (b) CAMI_high

(c) toy_medium

Figure 14: The number of clusters that contain at least one read from a species versus coverage
for (a) CAMI_medium, (b) CAMI_high, (c) toy_low and (d) toy_medium. Each dot represents
a species in the dataset. Results are presented for the four maximum allowed cluster sizes: 3300
reads (red), 17000 reads (blue), 33000 reads (green) and no limit (black).

References
J.A. Baaijens, A.Z. El Aabidine, E. Rivals, and A. Schönhuth. De novo assembly of viral quasispecies using overlap graphs.

Genome research, 27(5):835–848, 2017.

A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D.
Prjibelski, et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of
computational biology, 19(5):455–477, 2012.

H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics, 32(14):
2103–2110, 2016.

H. Li. Minimap2: fast pairwise alignment for long dna sequences. arXiv preprint arXiv:1708.01492, 2017.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. The sequence
alignment/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009.

T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara. Metavelvet: an extension of velvet assembler to de novo metagenome
assembly from short sequence reads. Nucleic acids research, 40(20):e155–e155, 2012.

S. Nurk, D. Meleshko, A. Korobeynikov, and P.A. Pevzner. metaspades: a new versatile metagenomic assembler. Genome
research, 27(5):824–834, 2017.

A. Sczyrba, P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Dröge, I. Gregor, S. Majda, J. Fiedler, E. Dahms, and
others. Critical Assessment of Metagenome Interpretation – a benchmark of computational metagenomics software.
BioRxiv, page 099127, 2017.

O. Tanaseichuk, J. Borneman, and T. Jiang. A probabilistic approach to accurate abundance-based binning of metagenomic
reads. In International Workshop on Algorithms in Bioinformatics, pages 404–416. Springer, 2012.

20

Y. Wang, H.C.M. Leung, S. Yiu, and F.Y.L. Chin. Metacluster 5.0: a two-round binning approach for metagenomic data
for low-abundance species in a noisy sample. Bioinformatics, 28(18):i356–i362, 2012.

Y. Wang, H. Hu, and X. Li. Mbbc: an efficient approach for metagenomic binning based on clustering. BMC bioinformatics,
16(1):36, 2015.

Y. Wu and Y. Ye. A novel abundance-based algorithm for binning metagenomic sequences using l-tuples. In Annual
International Conference on Research in Computational Molecular Biology, pages 535–549. Springer, 2011.

21

