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AN ADAPTIVE MINIMUM SPANNING TREE MULTIELEMENT
METHOD FOR UNCERTAINTY QUANTIFICATION OF SMOOTH

AND DISCONTINUOUS RESPONSES∗
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Abstract. A novel approach for nonintrusive uncertainty propagation is proposed. Our ap-
proach overcomes the limitation of many traditional methods, such as generalized polynomial chaos
methods, which may lack sufficient accuracy when the quantity of interest depends discontinuously
on the input parameters. As a remedy we propose an adaptive sampling algorithm based on minimum
spanning trees combined with a domain decomposition method based on support vector machines.
The minimum spanning tree determines new sample locations based on both the probability density
of the input parameters and the gradient in the quantity of interest. The support vector machine
efficiently decomposes the random space in multiple elements, avoiding the appearance of Gibbs
phenomena near discontinuities. On each element, local approximations are constructed by means of
least orthogonal interpolation, in order to produce stable interpolation on the unstructured sample
set. The resulting minimum spanning tree multielement method does not require initial knowledge of
the behavior of the quantity of interest and automatically detects whether discontinuities are present.
We present several numerical examples that demonstrate accuracy, efficiency, and generality of the
method.
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1. Introduction. Uncertainty quantification (UQ) has become increasingly im-
portant for complex engineering applications. Determining and quantifying the in-
fluence of parametric and model-form uncertainties is essential for a wide range of
applications: from turbulent flow phenomena [1, 2], aerodynamics [3], biology [4, 5],
to design optimization [6, 7, 8]. We are interested among others in liquid-impact
problems [9, 10, 11].

For problems which have a complex underlying model, one often uses so-called
nonintrusive methods, also known as sampling methods. The model is solved deter-
ministically a number of times, and a stochastic solution is constructed using these
deterministic samples. A well-known sampling method for propagating uncertainties
through a model is the Monte Carlo method [12]. Despite its easy implementation
and wide applicability, the Monte Carlo method suffers from slow convergence with
increasing number of model evaluations, when approximating the quantity of interest
(QoI). As a consequence of this slow convergence rate, many samples are required for
obtaining high quality stochastic solutions. Even though Monte Carlo methods are
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UQ FOR SMOOTH AND DISCONTINUOUS RESPONSES A3625

often superior for high-dimensional problems, proper alternatives have been proposed
to speed up convergence in many cases. As an alternative to Monte Carlo methods,
stochastic collocation (SC) methods [13, 14, 15] were introduced, replacing the slow
convergence of Monte Carlo by an exponential convergence rate. The introduction
of SC methods resulted in a decrease of required samples to achieve a certain accu-
racy in comparison to Monte Carlo methods. For a smooth QoI as a function of the
uncertainties, fast convergence is achieved. However, if the QoI is highly nonlinear
or discontinuous, Gibbs phenomena [16] may occur, which deteriorate the accuracy
globally. To avoid the occurrence of Gibbs phenomena, several alternatives to the
SC methods were introduced [17, 18], but they focus solely on discontinuous QoIs,
leading to a significant increase in the number of samples needed for approximat-
ing smooth QoIs. One interesting method is the multielement SC method (ME-SC)
[19, 20]. The idea of ME-SC is to decompose the domain, spanned by the uncer-
tainties, into smaller nonoverlapping elements, in each of which the QoI is amenable
for using an SC method. Gibbs phenomena still appear in the elements where there
is a discontinuity in the QoI, but they are confined to these specific elements. Im-
proving the multi-element approach is an active field of research and focuses on more
efficient and robust domain decomposition. Jakeman, Narayan, and Xiu [21] pro-
posed the minimal multielement method, which uses discontinuity detection based on
polynomial annihilation to detect discontinuities, and divides the domain along the
discontinuities. As a result, the Gibbs phenomena are removed completely. Although
this discontinuity detection algorithm is accurate, the total number of samples needed
to determine the discontinuity location may easily be still too high if sampling the
model is expensive. Therefore, a discontinuity detection algorithm which performs
well for a lower number of samples was proposed by Gorodetsky and Marzouk [22].
This discontinuity detection uses polynomial annihilation in combination with sup-
port vector machines (SVMs) to divide the domain into elements along the so-called
SVM classification boundary. Even though both discontinuity detection algorithms
[21, 22] perform well, using them for approximating smooth QoIs can become pro-
hibitively expensive, as both methods focus solely on finding the discontinuities. It
is often unknown in advance if a QoI is smooth or discontinuous. Hence, choosing
a method which is suited for either smooth or discontinuous responses is often not
recommended. Our goal is to create a surrogate model that works for both smooth
and discontinuous QoIs and which requires no initial knowledge about the QoI.

A novel domain decomposition method in combination with adaptive sampling of
the QoI is therefore proposed for constructing this surrogate. The adaptive sampling
procedure in our method is based on minimum spanning trees (MSTs) [23, 24], which
add new sample points at places which are associated with a high probability density
and/or where the QoI changes rapidly. The adaptively placed samples are classified
and an SVM [22, 25, 26, 27, 28] is used to obtain a classification boundary, which
serves as an approximation for the discontinuity location. The decomposition of the
random space in this way leads to elements on which each local QoI is amenable for
interpolation without Gibbs phenomena. For constructing a surrogate model in each
element a least orthogonal interpolant [29] is employed, which is suited for interpo-
lation on the scattered data points that we obtain with our adaptive sampling. Our
proposed method is abbreviated as the MST-ME (MST multielement) method and is
designed mainly for the purpose of uncertainty propagation. However, when assum-
ing uniformly distributed probability density functions for the input parameters, the
MST-ME method is also well suited to obtain a parametric solution of the partial
differential equation (PDE) under consideration. This will also be illustrated in this
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A3626 YOUS V. HALDER, BENJAMIN SANDERSE, AND BARRY KOREN

paper. Although the MST-ME method is designed to work in any number of dimen-
sions, very high-dimensional problems are not the main focus of our work, but rather
the accurate treatment of discontinuities.

This paper is outlined as follows: section 2 briefly introduces the problem. Sec-
tion 3 introduces the MST-ME method in detail. Finally, section 4 demonstrates
efficiency and accuracy of our method when applied to analytical test cases. Complex
test cases related to sloshing impact problems, i.e., shallow water dam break and a
three-dimensional (3D) dam break, are also studied.

2. Problem description. Quantifying the effects of uncertainties in computa-
tional engineering typically consists of three steps: (i) each of the input uncertainties
is characterized in terms of a probability density function (PDF), which follows from
observations or physical evidence; (ii) the uncertainties are propagated through the
model; (iii) the outputs are postprocessed, where the QoI is expressed in terms of
its statistical properties. In the present work we focus on the propagation step, and
the input distributions are assumed to be given. The goal is to solve the following
stochastic problem:

(2.1) L(v; z) = 0 ,

where Iz is the support set of the uncertain inputs z, referred to as a random space,
z = (z1, . . . , zd) ∈ Iz is the d-dimensional vector containing uncertain inputs, v = v(z)
is the solution and L an operator, representing the model. The operator L can be a
nonlinear partial differential operator, or any mathematical model that relates input
z to the solution v(z). The QoI u is calculated by applying an operator Q to the
solution v, i.e., u(z) = Q(v(z)). Both continuous QoIs u ∈ C0(Iz), and discontinuous
QoIs u 6∈ C0(Iz), are considered in this paper. The uncertain inputs are assumed to
be characterized by a joint PDF ρ(z). The stochastic problem is solved nonintrusively
by sampling the model (2.1) at different locations zi in the random space, i.e.,

(2.2) L(vi; zi) = 0 ⇒ ui = u(zi) = Q(vi) ,

where vi = v(zi) and ui = u(zi) are the sampled solution and QoI at the collocation
node zi, respectively. Since the sampling is nonintrusive, black-box solvers for the
operator L can be used. In this paper we are interested in finding the entire functional
relation u as a function of the uncertainties z, in terms of a surrogate model. A
surrogate model ũ of u is constructed by interpolation, such that

(2.3) ũ(z) ≈ u(z) for all z ∈ Iz .

When u is smooth, it is possible to construct an approximation ũ which converges
exponentially fast to the exact solution u. However, if the QoI exhibits highly non-
linear or discontinuous behavior, then the accuracy of the approximation deteriorates
globally, due to Gibbs phenomena. Multielement methods divide the random space
Iz into a set of NE smaller elements Ei, such that the negative impact of the Gibbs
phenomena is confined to a limited number of elements surrounding the discontinuity.
The elements Ei are nonoverlapping and span the entire random space, i.e.,

(2.4) ∪NE
i=1 Ei = Iz and Ei ∩ Ej = ∅ if i 6= j .

A local surrogate ũ(i) is constructed in each Ei:

(2.5) ũ(i)(z) ≈ u(z) for all z ∈ Ei .
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E3

E1 E2

E4

random space Iz

z1
z 2

u(
z)

z1

exact function

z2

u(
z)

z1

ME-approximation

z2

Fig. 1. Example of the standard multielement approach for approximating a two-dimensional
(2D) function exhibiting a discontinuity.

The global surrogate is given by patching the local surrogate models:

(2.6) ũ(z) =

NE∑
i=1

ũ(i)(z)IEi
(z) ,

where IEi
(z) is the indicator function satisfying IEi

(z) = 1 if z ∈ Ei and 0 other-
wise. Standard multielement methods utilize a tensor construction of hypercubes for
defining the elements Ei [19, 20]. While such a tensor construction removes the global
effect of Gibbs phenomena, they can still appear locally in several elements.

An example of the standard tensorized multielement approach for the approxima-
tion of a 2D function is shown in Figure 1. Gibbs phenomena appear in the elements
E3,4, where a discontinuity is present in the exact function.

3. MST-ME. The art of constructing an efficient ME-SC method lies in the
choice of sampling points zi, the choice of the elements Ei, and the reconstruction
of the local approximations ũ(i). These are the focuses of this paper. Accordingly,
the MST-ME method introduced here is divided into three stages: (I) sampling, (II)
domain decomposition, and (III) local approximation construction:

I choice of zi: adaptive sampling of the QoI while taking into account both
smooth and discontinuous regions, and the underlying PDF;

II choice of Ei: division of the random space into a minimal number of elements,
such that the QoI is smooth within each element;

III construction of ũ(i): interpolation of the samples, while producing a stable
interpolant.

The QoI is adaptively sampled (I) by taking into account both the PDF and the
QoI gradient information. The samples are distributed among different classes, such
that within each class the local QoI is smooth. The classified samples are given as
input to the domain classification algorithm (II). Instead of using a tensor based do-
main decomposition, the random space is divided into a minimal number of elements,
in which the QoI is amenable to interpolation without Gibbs phenomena. This do-
main decomposition methodology was already introduced in [21], but in that work
the number of samples required for determining proper elements was too high. In
contrast, our domain decomposition method (II) uses the samples from the sampling
algorithm (I) for determining proper elements, without the need to perform additional
sampling. Local approximations (III) are constructed in each element, by using the

D
ow

nl
oa

de
d 

01
/0

5/
20

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3628 YOUS V. HALDER, BENJAMIN SANDERSE, AND BARRY KOREN

-1 1

1

z1

z2

-1 1

1

z1

z2

-1 1

1

z1

z2

a)

samples

c)b)

Fig. 2. Initial sample location configurations. (a) One sample in the middle and one sample
at each face center. (b) One sample in the middle and one sample at each corner of the domain.
(c) The combination of (a) and (b).

least orthogonal interpolation method [29]. The global approximation, the surrogate
model, is given by the patched local approximations (2.6).

Our method distinguishes itself from other methods, such as [18, 21], by auto-
matically detecting if a QoI is smooth or discontinuous. By utilizing weight function
(3.4), which is proposed later, the placed samples can be used for proper discontinuity
detection, while focusing on regions with a high PDF. As a result, the placed samples
are not only suited for finding the discontinuity, but also for constructing an accurate
surrogate in the regions with high PDF. The combination of these sample locations
and an SVM leads to accurate discontinuity detection, without placing samples in the
random space, having relatively small contributions to the statistical moments of the
QoI.

I. Sampling algorithm. The main idea behind our adaptive sampling algo-
rithm is that we want to refine our surrogate model based on the QoI behavior and
the associated joint PDF of the random input variables. We achieve this by creat-
ing a graph that links the samples, and by assigning weights to edges of this graph,
constructing an MST, and then adding samples on the most important edges of this
MST.

The methodology is explained for a 2D QoI u(z1, z2), but can be generalized easily
to a higher-dimensional QoI.

Initial sample placement. The sampling procedure is started by placing initial
sample points. Straightforward choices of the initial sample locations are shown in
Figure 2. These initial sample configurations are extensible to high-dimensional ran-
dom spaces. Initial sample placement in both Figures 2(a) and 2(b) introduces an
anisotropy in the placement of subsequent samples. The initial sample placement in
Figure 2(c) is a good trade-off between the number of initial samples and the isotropy
of subsequent samples. In this paper, the initial sample grid shown in Figure 2(c) is
employed, unless stated otherwise.

Graph construction with neighboring samples. The existing samples are connected
based on Voronoi diagram construction [30]. A Voronoi diagram is a partitioning of
a d-dimensional space into regions based on the distance to a specific set of samples
[31]. Each Voronoi cell contains one sample, and the cell corresponds to all the points
that are closer to this sample than to any other sample. The Voronoi diagram for the
initial sample configuration is shown in Figure 3 (left).

The boundary of each Voronoi cell contains several vertices. At each of these
vertices the neighboring Voronoi cells are determined. The midpoints of these neigh-
boring cells are then connected to obtain a local graph; see Figure 3 (middle). This
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UQ FOR SMOOTH AND DISCONTINUOUS RESPONSES A3629

Voronoi diagram add all local graphs

pick Voronoi vertex find attached cells construct local graph total graphinitial samples

Voronoi vertex Voronoi edge graph connectionsample

loop over all Voronoi vertices

Fig. 3. Algorithm for constructing the total graph of a set of sample points. (left) The Voronoi
diagram with the corresponding Voronoi vertices. (middle) The local graphs connect the sample
points of which the Voronoi cells have a common Voronoi vertex. (right) The total graph combines
all the local graphs.

local graph is similar to a Delaunay triangulation, but gives more isotropic behavior
on regular grids. The local graphs are subsequently connected together to obtain a
global graph; see Figure 3 (right).

Assignment of weights to edges. Not all the edges in the total graph are equally
attractive for placing new samples. Edges that are long, and have large variation
between QoI values and/or are in a region associated with a high PDF value, are
good candidates for refinement. A weight function w(z1, z2) assigns a weight to the
edge between the two graph vertices z1 and z2. A low weight means that the edge
is a good candidate for refinement and vice versa. Weighting based solely on either
gradient [21] or PDF [32, 33] is the most straightforward:

wPDF(z1, z2) =

(
ρ

(
z1 + z2

2

)
‖z1 − z2‖2

)−1
,(3.1)

wgrad(z1, z2) =

(
|u(z1)− u(z2)|
‖z1 − z2‖2

‖z1 − z2‖2
)−1

,(3.2)

where ρ is the PDF and ‖ · ‖2 the Euclidean distance. These weight functions are not
always efficient, as they place most samples in either the smooth or the discontinuous
regions. A PDF-weighed gradient across an edge is more meaningful, as it incorpo-
rates both the rate of change of response values and the probability of occurrence.
Therefore, when compared to (3.1)–(3.2), a more meaningful measure would be:

(3.3)

(∫
e

|e · ∇u(z)|ρ(z)dz

)−1
,

where e is a vector representing an edge. Equation (3.3) can be seen as the reciprocal
of the expectation of the gradient across an edge. The expectation of the gradient is
an important quantity in stochastic optimization routines such as stochastic gradient
descent [34], where it justifies the use of a subset of samples for determining the
gradient, which is used for minimizing the objective function. In our case the gradient
is not used for finding a descent direction, but it indicates the amount of local variation
in the QoI u. By weighting the gradient with the PDF and integrating it over an edge,
we get the expected variation across an edge for the given PDF, which indicates if
refinement is necessary. The integral in (3.3) cannot be computed directly, but can
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A3630 YOUS V. HALDER, BENJAMIN SANDERSE, AND BARRY KOREN

be approximated as

(3.4) wPDF+grad(z1, z2) =

((
ρ

(
z1 + z2

2

)
|u(z1)− u(z2)|
‖z1 − z2‖2

)
‖z1 − z2‖2

)−1
.

To clarify, we multiply each weight function with the distance of the edge
‖z1 − z2‖2 to account for regions in the random space that have a low number of
samples. After weighting all the edges, we normalize by dividing by the maximum
weight. The different weight functions are compared in section 4.

MST for refinement of sample grid. New samples are placed at the middles of
the edges that have a sufficiently low weight. However, if all edges with sufficiently
low weight are refined, undesirable clustering of samples may occur at early stages of
the sampling procedure.

To prevent this, an MST is used to obtain a subset of edges, such that this subset
reaches all the samples with a minimal total edge weight. The most important edges
are contained in this MST, while still exploring a significant portion of the random
space. The MST prevents the undesirable sample clustering at early stages. An edge
in the MST is refined, if its weight is sufficiently low compared to the minimum weight
among all edges, wmin:

(3.5) wi ≤ c wmin ,

where c > 1. The value of c determines how many samples are added each iteration,
i.e., low values of c result in a low number of samples added and vice versa. Low
values of c produce the most accurate results, but many iterations are needed to reach
a specified total number of samples. Iterations can become prohibitively expensive
in high-dimensional random spaces. Therefore, in this paper we set c = 2, which is
a trade-off between the number of samples added and the number of iterations to
be performed. The edge with minimum weight wmin is not necessarily included in
the MST, and will be added if it was not already included, to prevent the sampling
algorithm from not adding any samples.

Complete sampling algorithm. The complete sampling strategy (I) is an iterative
procedure, which is illustrated in Figure 4. The procedure starts with choosing the
initial sample points. Next we loop over the three steps: graph construction, edge
weighting, and MST edge refinement. The loop is terminated when the specified
number of iterations imax has been performed or when the total number of sample
points exceeds a specified threshold N > Nmax.

II. Domain decomposition. The idea of the domain decomposition step in our
method is to divide the random space into nonintersecting elements Ei, such that the
sampled QoI values from section I exhibit smooth behavior locally in each element.
The elements are constructed by first classifying the QoI values according to the
QoI gradients. Second, the sample classes are separated by means of a classification
boundary, based on SVMs. This classification boundary cuts the random space into
several elements.

Sample classification based on QoI gradients. An SVM determines a classifica-
tion boundary based on a set of classified samples. Since a classification boundary
is an approximation to a discontinuity in the QoI, the classification is based on the
difference in values between two neighboring samples. To clarify, samples are put into
different groups if the jump in values across an edge exceeds a threshold. The choice
for the threshold in the procedure is crucial. We have observed that the polynomial
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N ≤ Nmax or i ≤ imax

set iteration counter

i=0
start

initial samples

stop

i=i+1

yes

no

keep w ≤ c∙wmin

0.21

0.19
0.3

0.2

0.17

find MST

0.73

1

refine edges

construct graphweigh edges

0.2

0.51 0.21

0.19 0.3
0.2

0.17

Fig. 4. Schematic representation of the adaptive sampling strategy.

annihilation procedure from [22] works very well and a similar methodology is there-
fore employed in this paper. Polynomial annihilation, using all samples close to a
straight line crossing an edge, is used to estimate a jump value across an edge and
labels two points as the same class if the difference in function values is less than the
jump value. An in-depth discussion of polynomial annihilation is discussed in [35]. A
schematic representation of the classification procedure is shown in Figure 5.

The classification procedure shown in Figure 5 is able to detect multiple dis-
continuities and able to divide the samples into multiple classes by using only the
sample locations and corresponding function values. There is no need for specifying
the number of classes beforehand, as the procedure detects the total number of classes
automatically. Even though the classification procedure works in many cases, it is not
able to consistently detect discontinuities which do not divide the random space into
multiple subdomains. For this reason, we do not consider such discontinuities in the
remainder of this manuscript.

Classification boundary from SVMs. The classes assigned to the different samples
in the random space will be used as training data for a supervised machine learning
algorithm. SVM is a supervised machine learning technique, used for building a
classification boundary between samples that belong to different classes [22, 28]. SVM
is used in this paper because it is defined by a convex optimization problem, for
which efficient methods are available [36], which makes it viable for high-dimensional
problems.

Assume N adaptive samples Z = {zi}Ni=1 are classified into Nc different classes
ci, where ci ∈ {1, . . . , Nc} is the class belonging to sample zi. The idea behind an
SVM is to construct a classifier Sλ of the form

(3.6) Sλ(z) =
∑
i∈SV

αiK(z, zi) ,

where αi is the coefficient associated with the sample point zi, λ a regularization
parameter, SV ⊂ Z the set of support vectors, and K a kernel [27]. If αi > 0, then
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current classification

current classification

class 2

discontinuity

random starting sample

class 1

over threshold under threshold
jump value across edge

class 1,2,3
unclassified

sample classes

final classificationclass 3

Fig. 5. Schematic representation of the classification procedure. The sample connectivity is
given by the Voronoi construction performed on the final sampling grid from the adaptive sampling
algorithm.

zi is a support vector. Depending on the application, different kernels are available
[28]:

K(x,y) = 〈x,y〉 (linear) ,(3.7)

K(x,y) = (γ〈x,y〉+ ct)
r (polynomial) ,(3.8)

K(x,y) = exp(−γ‖x− y‖22) (radial basis function) ,(3.9)

K(x,y) = tanh(γ〈x,y〉+ ct) (sigmoid) ,(3.10)

where 〈·, ·〉 is the standard inner product in Rd, γ a regularization constant, ct a trans-
lation constant, and r the polynomial degree. Choosing the proper kernel depends
on the regularity of the classification boundary which is often not known beforehand.
Radial basis function kernels (3.9) are a common choice and are also employed in this
paper. The constant γ is normally advised to be chosen as 1/Nc [36], but we will also
investigate other choices in the result section of this paper. High values for γ result
in a classification boundary with a fine resolution, but this may result in overfitting.
Low values for γ result in a coarser estimation of the location of the classification
boundary. The optimal value for γ differs for different functions. In section 4 an
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discontinuity

class 1 class 2

sample classes

support vectors classification boundary

SVM

Sλ=0

classified input samples SVM domain decomposition

Fig. 6. An example of an SVM domain decomposition for two different classes.

optimal value for γ is found for a specific family of functions, which is important in
our test cases. Once K has been chosen, the classifier Sλ is obtained by solving the
following least-squares problem:

(3.11) Sλ(z) = arg min
S∈L2(Iz)

{
1

N

N∑
i=1

max(0, 1− ciS(zi)) + λ‖S‖L2(Iz)

}
.

The classification boundary is given by the 0-contour of Sλ. It separates the different
classes from each other with a hypersurface and is obtained with the LIBSVM library
[36]. The classification boundary decomposes the domain into several elements. Fig-
ure 6 shows an example of a classification boundary for two different classes. SVM
can deal with multiple classes and, hence, multiple discontinuities, quite easily, which
makes it a suitable discontinuity finder for a wide range of QoIs. However, SVM in
combination with the classification procedure is not yet able to properly detect dis-
continuities that have at least one endpoint which is not intersecting with itself or
with the boundaries of the random space.

Gorodetsky and Marzouk [22] show how SVMs can be used to efficiently localize
discontinuities in a high-dimensional space. Their approach differs from our approach
in the strategy for placing samples which are used by the SVM. They propose sample
placement which is solely suited for detecting discontinuities and samples are placed
without taking the PDF into account. As opposed to this, our approach incorporates
the PDF and makes our sample placement more suitable for surrogate construction
and statistical moment calculations, while being slightly less efficient in localizing
discontinuities.

III. Local approximations. The elements Ei from the domain decomposition
(II) are arbitrarily shaped and the samples zi are distributed in such a way that in-
terpolation is not a trivial task. Least orthogonal interpolation is able to perform
interpolation on sample distributions on such arbitrarily shaped domains. The sam-
pling strategy (I) does not necessarily choose points that are optimal for interpolation.
Therefore, attempting to construct an interpolant on this set of interpolation nodes is
not always a good idea and may produce unstable interpolants. We therefore use an
extended version of the original least orthogonal interpolation, which selects a subset
of samples that is better suited for stable interpolation [21]. This enables the MST-
ME method to place sample points in the random space, where we want to further
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resolve the QoI, without focusing on the stability of the interpolation. In practice,
the least orthogonal interpolation can become unstable when an element has a highly
irregular shape and in such cases we propose that a different interpolation procedure
should be used [37, 38]. In this work we use the least orthogonal interpolation in
the remainder of this manuscript because of its fast convergence and flexibility for
scattered data sets, and we do not consider such highly irregular shapes.

Least orthogonal interpolation. We briefly introduce the least orthogonal interpo-
lation procedure, which is discussed in more detail in [29]. Assume we have sampled
our model response at the unstructured locations {zi}Ni=1 in one element E ∈ Rd of
the SVM domain decomposition. Assume a pdf ρ(z) on E, with corresponding or-
thonormal polynomials {φi(z)}∞i=1. The orthonormal polynomials are ordered with
natural numbers according to the graded reverse lexicographic ordering. We order
the orthonormal polynomials by using a multi-index i ∈ Nd. Now let Π be the space
of all d-variate polynomials and let Πk be the space of all d-variate polynomials of
degree less than or equal to k. For any u ∈ Π, define the projection Pk onto Πk as

(3.12) u =
∑
i

ûiφi ⇔ Pku =
∑
‖i‖≤k

ûiφi ,

where the expansion coefficients ûi are given by

(3.13) ûi = 〈u, φi〉ρ =

∫
E

u(z)φi(z)ρ(z)dz .

The goal of least orthogonal interpolation is now, given the nodes Z = {zi}Ni=1, define
a polynomial interpolation space ΠZ,ρ in which we can uniquely perform interpolation
on the sample responses {u(zi)}Ni=1.

To accomplish this, we use the sample locations to define a new set of functions

(3.14) hn(·) =
∑
i

φi(zj)φi(·) , j = 1, . . . , N .

An operator is introduced that maps the functions hn to polynomials:

(3.15) h↓,ρ = Pmh , m = min {∈ N0 : Pkh 6= 0} ,

where we introduce a subscript ρ to emphasize the fact that the operator P depends
on the choice of ρ. We extend the operator (·)↓,ρ to vector spaces H by H↓,ρ =
span{h↓,ρ : h ∈ H}. If H = span{hi}Ni=1 one can show that the space of polynomials

(3.16) ΠZ,ρ = H↓,ρ

is an N -dimensional space of d-variate polynomials that is isomorphic to interpola-
tion data at the sample locations Z. Therefore, a polynomial g ∈ ΠZ,ρ, satisfying
g(zi) = u(zi), exists and is unique. The polynomial g is called the least orthogonal
interpolant. The construction of both the interpolation space and the interpolation
coefficients is accomplished by standard linear algebra operations on the Vandermonde
matrix. Notice that when using Gauss quadrature sample locations associated with
the specified PDF as input for least orthogonal interpolation, the classic orthogonal
basis polynomials result, and the procedure boils down to common nonintrusive SC.
For an in-depth discussion of least orthogonal interpolation, see [29].

Surrogate construction. We denote the least orthogonal interpolation operator
by I[·], which operates on a subset of (zi, u(zi))

n
i=1, and we assume that the random
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inputs

weight function

max samples

initial samples final samples

construct graph

weigh edges

find MST

refine MST

classify samples decompose domainSVM

error≤threshold

domain decompositionII

sampling modelI

local approximationIII

cross-validation error>threshold

output

low high
QoI

Fig. 7. A schematic overview of the complete MST-ME method in a 2D random space.

space is decomposed into Nc elements Ei. Each element Ei comprises a single class
ci, which consists of the samples (Zi,Ui). The global approximation is given by (see
(2.6))

(3.17) ũ(z) =

Nc∑
i=1

I[(Zi,Ui)]IEi
(z) ,

where IEi
(z) is the indicator function satisfying IEi

(z) = 1 if z ∈ Ei and 0 otherwise.

IV. Complete algorithm. The complete MST-ME method is shown in Fig-
ure 7. Apart from the weight function and sampling threshold, no additional input
from the user is required, which makes the method suitable for generic problems.

A suitable stopping criterion is given by checking if cross validation errors in the
surrogate drop below a specified threshold. Computing the cross-validation errors
is straightforward and is based on the leave-one-out principle. The errors in the
surrogate given by cross validation are unbiased [39, 40, 41] and give a good indication
on how well the algorithm performs. In fact, as we use the adaptive least orthogonal
interpolation, some samples are not used in the interpolation procedure and are left
out. These samples can be used to compute the validation error without the need to
leave out relevant samples.
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Global approximation error. The adaptive nature and incorporation of SVMs in
our approach makes it difficult to derive error bounds. However, in this subsection
we discuss how the error is composed and how it can be monitored. The global
approximation error can be decomposed into two parts.

The first part comprises the error made by the SVM, i.e., the error in the approxi-
mation for the discontinuity location. Strict error bounds are hard to derive for SVMs
in general. However, Vapnik and Chapelle showed that the cross-validation error of
the SVM gives an unbiased estimate of the error in the domain decomposition step
[39], and is therefore a proper way to monitor the error of the SVM approximation.

The second part comprises the error made by interpolating the samples. Least
orthogonal interpolation is used, which is able to interpolate scattered data sets adap-
tively. A quality measure of our sample set can be given by the Lebesgue constant,
which is a measure of how well an interpolant does in comparison with the best poly-
nomial approximation. In the least orthogonal interpolation method, the Lebesgue
constant in one dimension is defined as [29]

(3.18) ΛN = sup
z∈Iz

λ(z) ,

where

(3.19) λ(z) =

N∑
i=1

|li(z)| ,

where N is the number of samples and li(z) is the Lagrange interpolating polyno-
mial corresponding to node i. The Lebesgue constant is related to the error in the
interpolant as follows:

(3.20) ‖u− ũ‖ ≤ (1 + ΛN )‖u− u∗‖ ,

where u, ũ, and u∗ are the exact function, the surrogate, and the best approximat-
ing polynomial amongst the set of polynomials of degree N − 1, respectively. The
adaptively chosen sample sets that are used for interpolation on the elements can be
used to compute the Lebesgue constant, which gives an indication of the quality of
the nodal locations. However, for the one-dimensional (1D) test cases in section 4,
the Lebesgue constant gave no additional insight and is therefore not discussed in the
remainder of this manuscript.

Computational cost for N samples in d-dimensional random space. The com-
putational cost of the sampling strategy (I) is determined by the cost of computing
the Voronoi diagrams and finding the MST. Computing a Voronoi diagram on N
samples in Rd can be done in O(N log(N) +Ndd/2e) time [42]. In the worst-case sce-
nario, only a single sample is added in each iteration and, hence, we have to compute
N Voronoi diagrams on N samples. The maximum computational cost is therefore
O(N2 log(N) +Ndd/2e+1). Notice that the Voronoi diagrams are not suited for high-
dimensional spaces because of the factor d/2 in the exponent. Instead, when Voronoi
diagrams are too expensive to compute, a simple radius search algorithm can be used.
Computing the MST can be done with Prim’s algorithm [43], which has an algorith-
mic complexity of O(|E| log(|V |)), where |E| is the total number of edges and |V | the
total number of samples. An upper bound for |E| and |V | is given by N(N+1)/2 and
N , respectively. Again, in the worst-case scenario we have to perform N iterations,
which can be done in O(N3 log(N)) time.

The computational cost of the domain decomposition (II) is based on the com-
plexity of the classification procedure and the SVM. Classification of N samples can
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be performed in O(N2) time. The SVM has a complexity ranging between O(N2)
and O(N3), depending on the number of classes and the kernel [36]. Hence, domain
decomposition can be performed in O(N3) time and is independent of d.

The local approximation (III) uses LU- and QR-decomposition for determining
the interpolant. Computing the QR-decomposition is the dominant factor in (III), it
can be done in O(N3) time, using the standard implementation in MATLAB. If least
orthogonal interpolation is employed in an adaptive fashion, the complexity increases
to O(N4), as N QR-decompositions are computed in the worst case.

The complexity of the complete algorithm is determined by the complexities of
(I), (II), and (III). This results in an overall complexity of O(N4) if d ≤ 5 and
O(N3 log(N) +Ndd/2e+1) otherwise.

4. Results. In this section we present multiple examples that illustrate the ro-
bustness and flexibility of the MST-ME method. For computing the error between
the exact surrogate and approximation we use the following weighted L2,ρ-norm:

‖ũ− u‖22,ρ =
1

NMC

NMC∑
i=1

ρ(zMC
i ) · |ũ(zMC

i )− u(zMC
i )|2 ,(4.1)

where the surrogate model ũ is constructed using MST-ME and evaluated at Monte
Carlo sample locations zMC

i drawn from the PDF ρ. The exact solution u is the
evaluation of the model sampled at the same Monte Carlo samples. To clarify, the
error compares the constructed surrogate with the exact solution at the Monte Carlo
sample locations, and this error should converge to 0 if the constructed surrogate
converges to the exact response. We multiply the difference between the surrogate
and exact solution with the PDF ρ to emphasize on regions in the random space that
are likely to occur. Samples that are within a distance from the discontinuity, which
is lower than the minimum distance of the adaptive MST-ME samples, are discarded.
Discarding samples is motivated by the fact that these lie below the resolution of the
SVM discontinuity detection, where the fidelity of the classification is questionable
[21].

The first example shows the approximation of three 2D, piecewise constant func-
tions. This example focuses solely on the domain classification and shows convergence
of the SVM domain decomposition (II). The second example shows the approximation
of 1D and multidimensional Genz functions [44]. The third test case shows the MST-
ME method applied to a more complicated model, which is defined by an underlying
PDE, namely, the shallow water equations. Last, we apply the MST-ME method
to a 3D dam break problem simulated through an incompressible smoothed particle
hydrodynamics (SPH) model, to indicate that our methodology can be applied to
complex engineering problems.

4.1. Domain classification. The accuracy of the SVM domain decomposition
(II) is investigated as a function of the parameter γ.

SVM domain decomposition works best for discontinuities without corners. The
SVM domain decomposition (II) is tested by approximating three piecewise constant
2D functions. The functions have a discontinuity in the shape of a circle, a rectangle,
and a triangle, respectively. Notice that all discontinuities divide the domain into two
subdomains and, therefore, are detectable by the classification procedure in II. The
sampling algorithm (I), with a weight function that focuses solely on the gradient
(3.2), is used to determine the sample locations. The SVM domain decomposition
uses the radial basis function kernel (3.9) in which γ is set to the advised value 1/Nc
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Fig. 8. SVM domain decomposition results. (left) Sample locations at different iterations for
the circular test case with γ = 1

2
. (right) Convergence of the misclassified portion for increasing

number of samples.

[36], where Nc is the number of classes. The sample locations for the circle test
case are shown in Figure 8 (left), along with the definition of the error measure (the
misclassified portion). Clustering of samples appears around the circularly shaped
discontinuity location, because the gradient based weight function (3.2) does not lead
to refinement if there is no intersection with the discontinuity. The sample locations
show symmetry, but after 5 iterations, the symmetry is slightly lost, although this is
not noticeable in Figure 8 (left). The domain decomposition error as a function of
the number of samples is shown in Figure 8 (right).

The misclassified portion of the domain decreases rapidly with the increasing
number of samples, but is in general not monotonically decreasing. As stated in section
II, discontinuity lines with sharp corners, in particular, the square and triangle, are
hard to approximate for the SVM with a radial basis function kernel. However, the
regularity of the classification boundary is often not known beforehand and therefore
we opt for the commonly used radial basis function kernel. The value for γ however
may significantly influence the accuracy of the discontinuity approximation, and the
advised value 1/Nc is in general not optimal. Therefore we search for a value of γ
that is optimal for the remaining test cases.

The optimal value for γ for our test cases is 3/Nc. We now investigate the
optimal value for γ by testing several candidate values for a large set of piecewise
constant functions. To clarify, the optimal shape parameter γ for the radial basis
function kernel (3.9) is sought for a specific family of discontinuous functions, such
that the classification procedure works best. The fact that this value may be optimal
for the radial basis function kernel, does not necessarily imply that it is optimal for
other kernels as well. Kernel (3.9) is used in this paper for classification; we focus
on the optimal shape parameter for this specific kernel. The parameter γ may in-
fluence the accuracy of the SVM domain classification. Many discontinuous QoIs in
engineering applications possess a discontinuity without corners, i.e., the exact dis-
continuity surface is a smooth hypersurface. For such discontinuities, the value of
1/Nc might not be optimal and therefore we search for an optimal value among a
set of candidates that are obtained by adding perturbations to the advised value:
{ 1
Nc+4 ,

1
Nc+3 ,

1
Nc+2 ,

1
Nc+1 ,

1
Nc
, 2
Nc
, 3
Nc
, 4
Nc
, 5
Nc
}. A set of 106 piecewise constant func-

tions, possessing up to 3 discontinuities, on the domain [−1, 1]2, is randomly gen-
erated. The discontinuity location is given by up to 3 nonintersecting polynomial
parametric curves up to degree 5, which have random coefficients. For each of these
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Fig. 9. Average correctly classified portion for different γ-values.

functions, an SVM domain decomposition is performed for each of the possible values
of γ. This domain decomposition is performed on 50 adaptively sampled points from
the MST-ME method, based on the weight function (3.2) and the initial configuration
shown in Figure 2(c). We add all correctly classified portions for each γ-value, and
divide the resulting sum value by 106 to obtain an average correctly classified portion
for all the randomly generated functions. The number of adaptive samples influences
the average correctly classified portion. A similar trend between the γ-values is ob-
tained. The results are shown in Figure 9. Figure 9 shows that γ = 3/Nc is the most
accurate choice for the generated family of piecewise constant functions. The incon-
sistency with the value for γ suggested in literature (1/Nc) and our value is possibly
due to the fact that we limit ourselves to a family of discontinuous functions, which
possess no sharp corners in the discontinuity surface. Hence, the value 3/Nc might not
be the optimal value for other families of discontinuous functions. The discontinuities
considered in the remainder of this paper have no sharp corners in the discontinuity
surface and γ = 3/Nc is therefore used there as well.

4.2. Genz functions approximation. To illustrate the accuracy/efficiency,
the proposed MST-ME method is applied to a standard benchmark problem, namely,
approximation of 1D Genz functions [44].

Edge weighting based on PDF and gradient is most robust. We consider the
following Genz functions:

g1(x, α) = cos(αx) ,(4.2)

g3(x, α, β) =

(
1

1 + αx

)1+β

,(4.3)

g5(x, α, β) = exp(−(α|x| − β)) ,(4.4)

g6(x, α, β) =

{
0, x > β ,
exp(αx), otherwise .

(4.5)

A uniform PDF is assumed on the interval [−1, 1] and the initial grid consists of
the two endpoints plus the middle point of this interval. As a reference, the MST-
ME solution is compared with the SC solution on a Gauss–Legendre grid, which is
essentially a least orthogonal interpolation using Gauss–Legendre sample locations
(see section III). Figure 10 shows that weighting based on the PDF only results in a
uniformly spaced sample grid. Interpolation on such a grid is in general not a good
idea, as it may produce unstable interpolants. The least orthogonal interpolation
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Fig. 10. Error of the approximation with respect to the exact function.

method partially circumvents this issue by choosing a subset of these samples in
constructing an interpolant. Consequently, the smooth Genz functions g1 and g3 are
well approximated, but g5 and g6 are not. Weighting based on the gradient alone leads
to improved results for the discontinuous function g6, but leads to less accurate results
for the smooth functions g1 and g3. The standard SC method performs well in smooth
cases, but converges slowly and also shows an oscillating error in some cases, due to
the Gauss–Legendre grid that includes the middle point of the domain only for an
odd number of samples. In contrast, the weight function based on both the PDF and
the gradient performs the best overall, by keeping track of the discontinuity location,
while still maintaining a sample distribution which resolves parts of the random space
away from the discontinuity. In the remainder of this paper we therefore use weighting
based on both PDF and gradient, (3.4).

Notice that all weight functions show slow convergence in the approximation of
g5. This is due to the absence of the second derivative in the weight function (3.4).
By basing the classification on the second derivative in the QoI, we can circumvent
the slow error convergence in the presence of a discontinuity in the first derivative.
However, we will not have any discontinuities in the first derivatives for the remaining
test cases in this paper. We therefore use classification based on the first derivative
only in the remainder of this paper.

The underlying PDF changes the sample grid. The effect of the underlying PDF is
now investigated. The two PDFs that we consider are a symmetric and an asymmetric
β-distribution, with parameters (10, 10) and (2, 7), respectively. The support of both
PDFs is scaled to [−1, 1] and we use the uniform distribution as a reference. The error
convergence for g1 and g6 is shown in Figure 11. The error convergence is similar to
the error convergence for the uniform distribution. Again the sample grid is not ideal
for interpolation, but the adaptive least orthogonal interpolation circumvents this by
using a subset of nodes.

MST-ME outperforms conventional Latin hypercube sampling (LHS) in multiple
dimensions. To investigate how the MST-ME method performs in multiple dimen-
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Fig. 11. Error convergence for different choices of PDFs.
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Fig. 12. Comparison of the MST-ME method and LHS+least orthogonal interpolation with
increasing dimensionality. (left) Error of the approximation with respect to the exact function as a
function of the dimension. (right) The number of samples needed to attain a certain accuracy as a
function of the dimension.

sions, the error is plotted for the smooth Genz function g1 and the discontinuous
Genz function g6, with increasing dimension d, in Figure 12 (left). These multidimen-
sional Genz functions are tensor products of the 1D Genz functions. The error for
each dimension is based on 1000 adaptively sampled points with an initial sampling
configuration equal to the one shown in Figure 2(c). The number of required samples
needed to attain a specific accuracy is also plotted as a function of the dimension of
the random space (right). As SC scales poorly to multiple dimensions when using
a tensor grid construction, we compare the MST-ME method with a method which
scales better to higher dimensions [45, 46]. As a comparison, we use isotropic LHS
in combination with the least orthogonal interpolation method, and the results are
shown in Figure 12. We clearly see the exponential increase of the required number
of samples for the MST-ME method, which is the well-known curse of dimensionality.
The LHS approach scales similarly when compared to the MST-ME for the smooth
case, but requires significantly more samples when compared to the MST-ME method.

4.3. Shallow water dam break. We study the performance of the MST-ME
method applied to a system of 1D conservation laws. This system consists of the 1D
shallow water equations (SWEs), which describe the inviscid flow of a layer of fluid
with a free surface, under the action of gravity, with the thickness of the fluid layer
small compared to the other length scales [47]:

(4.6)
∂

∂t

(
h
hv

)
+

∂

∂x

(
hv

hv2 + gh2/2

)
= 0 ,
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hl

hr=1

vl v      r=0
x

h

initial condition

1-1

x

h

example solution at t*

1-1

    u( t*)

state 1 state 2 state 3

rarefaction
shock

Fig. 13. Schematic representation of the shallow water test case.

where h is the free surface height (thickness of the fluid layer), v the velocity, and g
the acceleration of gravity. The initial condition for the system of PDEs is given by

(4.7)

(
h
v

)
(x, t = 0) =


(
hl
vl

)
, x ≤ 0 ,(

1
0

)
, x > 0 ,

leading to a Riemann problem shown in Figure 13. The solution of the Riemann
problem for these initial conditions can be computed exactly when working on an
infinite spatial domain [48]. The solution consists of two characteristic waves traveling
through the spatial domain; see Figure 13. Each wave is a shock or rarefaction wave.
When solid boundary conditions are imposed at x = ±1, an exact solution cannot be
obtained for all initial solutions. We therefore employ a finite volume method with
an exact Riemann solver [49] to compute the cell face fluxes, and solve the SWEs
using 256 cells. A Crank–Nicolson scheme is used to integrate the SWEs in time and
a ghost-cell method with reflective properties is used for the boundaries. The initial
left state (hl, vl) is assumed to be uncertain and uniformly distributed U between
[1.5, 2.5] and [−0.5, 0.5], respectively, i.e.,

(4.8) z =

(
hl
vl

)
∼
(
U(1.5, 2.5)
U(−0.5, 0.5)

)
.

The uncertainty in the initial conditions is large in order to ensure that we get different
characteristic behaviors of the QoI. The average thickness of the fluid layer is not
shallow compared to the domain length, but this is not important for showing the
performance of the MST-ME method. The QoI u is defined as the fluid height at
x = −1 at a certain time t∗. A schematic representation of this setup is shown in
Figure 13. Notice that the QoI is time dependent and that the characteristics of this
QoI will change significantly as time progresses. Either a transition between a shock
and rarefaction wave, or a difference in wave speeds, can result in a discontinuity
in u. This allows us to study the robustness of the MST-ME method, as this test
case comprises both smooth and discontinuous QoI responses. We emphasize that the
constructed surrogate for the QoI at t = t∗ cannot be reused for other time instances,
because the MST-ME method uses the QoI at the current time t∗ as a measure to
place new samples.

MST-ME automatically detects if a function is smooth or discontinuous. The
MST-ME method is used for three different QoIs, u = h(x = −1, t∗ ∈ {1.67, 4.16, 2.21}),
which correspond to a mildly nonlinear, highly nonlinear, and close to discontinuous
QoI, respectively. The surrogate model and sample grids after 10 iterations are shown
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Fig. 14. The three QoI surrogate models and corresponding sample grids after 10 iterations.
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Fig. 15. Convergence of the MST-ME solution in the L2,ρ-error (4.1).

in Figure 14. The discontinuity in the QoI at time t∗ = 2.21 is caused by a shock
wave, which hits the left boundary for certain values in the random space, but does
not yet hit the left boundary for other values in the random space.

To investigate the accuracy of the MST-ME method, we determine the conver-
gence. The error is based on 106 Monte Carlo samples. The convergence of the
L2,ρ-error (4.1) is shown in Figure 15. The results show that the error as a function
of the samples decays fast for the mildly and highly nonlinear cases, as expected. The
highly nonlinear case shows a sudden drop in the error, which is caused by transition
in the domain decomposition. First the classification procedure detects a large enough
jump in the sampled QoI to conclude that there is a discontinuity present in the QoI.
As the MST-ME progresses, samples are added in the area of the possible disconti-
nuity, until the jumps in the QoI values become small enough to classify the samples
properly. This transition to a correct classification explains the sudden drop in the
error for the highly nonlinear case. MST-ME automatically detects the smoothness
of the QoI, as the number of samples increases.

4.4. 3D dam break. As a last test case, the MST-ME method is applied to a
complex engineering problem, namely, a 3D fluid dam break problem with parametric
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Fig. 16. Schematic of initial condition for 3D dam break.

initial conditions. This test case is similar to the shallow water dam break, with the
difference that it describes fluid motion in 3D and contains more physics, i.e., viscous
effects and no shallow water assumption. Dam break problems are commonly used as a
benchmark in, for example, sloshing applications [9] and have been studied extensively
[9, 10, 11]. MST-ME can be used to gain physical insight into this parametric problem,
by constructing a surrogate model in the full parameter space, and this is our goal in
this test case. We do not focus on convergence, as it is computationally infeasible to
construct a reliable reference solution. A schematic representation of the test case is
shown in Figure 16. We consider two uncertain parameters, namely, the length of the
tank and the height of the right column of liquid. When the fluid is released, it starts
to flow to the left side of the domain and impacts the wall, shown in Figure 16. The
QoI is the maximum perpendicular wall force component Fx during first impact. SPH
is used to simulate the free surface flow, induced by the initial condition in Figure 16.
We use an open-source SPH solver, DualSPHysics [50]. The acceleration of gravity
is set to 9.81m/s2 and the kinematic viscosity ν is set to 10−6m2/s, which is the
value for water at room temperature. Surface tension is neglected. Approximately
106 particles are used for the simulations, which is considered as medium to high
resolution for free surface flows of these length scales. The simulations are performed
on a single GPU unit with 2048 cores and the average simulation time is approximately
14 hours. A typical time-dependent result for a height of 3 m and a length of 7 m,
along with the perpendicular wall force component Fx, is shown in Figure 17. The
four consecutive instances of the example simulation show the following: initial liquid
configuration; wave development due to pressure gradient; breaking wave impact on
wall; liquid after impact. Depending on the height difference between both liquid
columns, wave breaking may occur before the wave impacts the wall. In reality, a gas
pocket may be entrapped during this process. The gas pocket may be compressed
and next lead to an inside pressure buildup. However, the simulations performed here
are single phase free surface flows and the gas phase is not taken into account, so the
physics in an entrapped gas pocket is ignored. Obtaining a parametric solution is the
target, where both parameters are assumed to be uniformly distributed. The MST-
ME method is used to construct the unknown QoI response. A total of 6 iterations
of the sampling algorithm is performed with weight function (3.4), which results in
30 samples. We expect the MST-ME method to automatically distinguish smooth
and discontinuous behavior of the QoI, which is important for this problem, since
we have limited initial knowledge of the QoI as a function of the parameters. The
results are shown in Figure 18. The results indicate a smooth QoI response, which is
approximately constant along the lines height/length = constant. This implies that
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Fig. 17. Single simulation with height of 3 m and a length of 7 m. The QoI is the maximum
of the wall force Fx.
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Fig. 18. QoI of the 3D dam break problem, obtained by the MST-ME method with 6 iterations.

for single phase free surface flow, the force on the wall depends roughly on the ratio
of height and length, and not on their separate values. The wall force increases when
this ratio increases, which is intuitive from a physical point of view. Figure 18 (right)
shows that this increase is nonlinear, which corresponds to results previously reported
for dry-bed dam break problems [51].

Interestingly, in contrast to the SWE test case, the QoI shows no discontinuity
in the parameter space. This is possibly due to neglecting the gas phase in the
single phase free surface simulations. When simulated with a gas phase, the pressure
buildup in the entrapped gas pocket (see Figure 17) may lead to a discontinuity in
the QoI. The strength of our proposed MST-ME method is that we do not require
knowledge about the characteristics of the QoI beforehand, as it distinguishes smooth
and discontinuous behavior automatically.

5. Conclusion. In this paper we have presented a novel domain decomposition
based interpolation method, the MST-ME method. The unique property of the MST-
ME method is that it adaptively constructs a surrogate model as a function of a set of
uncertain parameters for both smooth and discontinuous quantities of interest. The
three key ingredients in the MST-ME method are (I) adaptive sampling based on an
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MST with a smart weight function, (II) discontinuity detection and sample classifica-
tion with an SVM algorithm, and (III) least orthogonal interpolation to construct local
approximations. This combination of robust methods makes the MST-ME method a
very practical method that is applicable to a wide range of UQ problems.

The MST-ME method has been applied to several numerical examples: domain
decomposition, Genz function approximation, 1D SWEs, and a 3D dam break prob-
lem. Discontinuities present in these test cases are effectively captured by the method.
In all cases, fast convergence is obtained, leading to an accurate surrogate model al-
ready at a relatively low number of model runs. This surrogate model can be directly
used as a fast tool for UQ (for example, with Monte Carlo type methods), but it is
also a great tool for the parametric solution of black-box models, including PDEs.
We also foresee application of this surrogate model in the solution of inverse prob-
lems. The freedom in the weighting function of the MST offers many applications,
such as adaptive sampling for reliability analysis, where the weighting function may
be adapted such that samples are placed in regions of low probability.

Currently, the MST-ME method does not include the option to detect discontinu-
ities that do not divide the random space into several simply connected subdomains.
Furthermore, the MST-ME method cannot yet preserve the symmetry in the node
distributions, which might be advantageous in certain special cases (e.g., when both
the model and the underlying PDF of the random variables are symmetric). Last,
the least orthogonal interpolation does not necessarily use all sample points in the
construction of the local approximation. By adding a term to the weight function of
the MST, which accounts for the stability of the interpolant (as is done for example in
Leja nodes [52]), the sample locations may be further improved, such that all samples
are used in the construction of the interpolant.
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