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OF DYNAMIC PROGRAMMING1 
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This paper considers the discrete time finite state Markovian decision 
problem with the average return criterion. A modified form of the itera­
tive method of dynamic programming is studied. Under the assumption 
that the maximal average return is independent of the initial state the as­
ymptotic behaviour of the sequence of functions generated by this modified 
method is found. It is shown that the modified iterative method supplies 
both upper and lower bounds on the maximal average return and .-optimal 
policies. Moreover, a convergence result is proved for the policies produced 
by the modified iterative method. 

1. Introduction. We are concerned with a dynamic system which at times 
t = 1, 2, . . . is observed to be in one of S states labeled 1, ... , S. After ob­
serving state i, an action a must be chosen from a finite set A(i) of possible 
actions. Let X 1 and !::J. 1 , t = 1, 2, ... , denote the sequences of states and ac­
tions. If the system is in state i at time t and action a is chosen, then two things 
happen: 

(i) We receive an immediate (expected) reward r(i, a) and 
(ii) P{X1+1 = j I X1, !::J. 1 , • • •, X 1 = i, !::J. 1 = a} = p;;(a), where both the rewards 

r(i, a) and the transition probabilities P;;(a) are assumed to be known. 

A policy R for controlling the system is any (possibly randomized) rule which 
for each t specifies which action to take at time t given the current state X 1 and 
the history (X1 , !:li, • • •, X 1 _ 1, !::J. 1_ 1). A stationary policy f is a rule which for 
each i selects an action /(i) E A(i) such that action /(i) is always taken whenever 
the system is in state i. For any stationary policy /, let r(f) be the S com­
ponent column vector whose ith element is r(i,/(i)), and let P(f) be the S x S 
Markov matrix whose (i,j) element is p;;(/(i)). It is known that the sequence 
(n + lt1 I;;:= 0 [P(JW converges as n - oo to a Markov matrix P*(f) such that 
P*(f)P(f) = P*(f). 

We shall be concerned in this paper with the average return criterion. For 
any policy R, let 

(1) for i = 1, ... , S . 

Thus <j>(i, R) is the long run average expected return per unit time when the 
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initial state is i and policy R is used. Clearly, for any stationary policy/,¢,(/) = 
P*(/)r(/), where ¢,(/) is the S component column vector whose ith element is 
¢,(i, /). Let 

g(i) = supR ¢,(i, R) for i = I, · .. , S. 

A policy R is called optimal if ¢,(i, R) = g(i) for all i. It is known that there is 
a stationary policy which is optimal (cf. Derman [6]). 

Let {a,., n = I, 2, ... } be an arbitrary sequence of finite numbers, and let 
y0(i) be an arbitrary function. Define for n = I, 2, ... , 

(2) for i = I, ... , S. 

The purpose of this paper is to investigate the iterative method given by (2). 
If a,. = 1, then (2) reduces to the standard iterative method of dynamic pro­
gramming. For the case a,. = I the asymptotic behaviour of the sequence 
{y,.(i), n ~ O} was studied by Bather [I], Brown [4], Denardo [5], Hordijk and 
Tijms [8], Lanery [IO], and Schweitzer [12]. Bather [I] investigated also the 
sequence {y,.(i)} for the case a,. = I - 1/n. For a Markov decision model with 
a finite number of communicating states and a convex decision space, he used 
this sequence to prove the existence of an optimal policy. Also, under the as­
sumption that for each stationary policy the associated Markov chain {Xt} is 
irreducible, Bather [ l] determined the asymptotic behaviour of the sequence 
{y,.(i)}. This latter result will be generalized in Section 2. Under the assump­
tion that g(i) = g for some constant g, we shall prove that for each sequence 
{ a,.} which satisfies certain conditions a sequence {r ,.} can be found such that 
y,.(i) - r,.g has a finite limit as n-+ oo for all i. This limit result was established 
for the case a,. = 1 under the additional assumption that for each optimal sta­
tionary policy the associated Markov chain {Xt} is aperiodic (see [1], [4], [5], 
[8], [IO], and [12]). Further, we find in Section 2 a result concerning the second 
term of the Laurent series expansion of the total expected discounted rewards 
of a stationary policy that is a-optimal for all a close enough to l (see [2] 
and [11 ]). 

In Section 3 we shall show that the iterative method (2) supplies upper and 
lower bounds on the maximal average return g(i) and, moreover, yields at each 
iteration a stationary policy whose average return is at least as good as the lower 
bound found ·at that iteration. If g(i) is independent of i and if {a,.} satisfies 
certain conditions, then for all n sufficiently large the policy found at the nth 
iteration is optimal. 

As compared with the standard iterative method of dynamic programming 
the modified method (2) has the advantage that it is insensitive to possible perio­
dicity of the Markov chains {Xt} associated with the stationary policies. 

2. Asymptotic behaviour of {y,.(i)}. The discussion in this section will be 
based on the next assumption. 

AssuMPTION. For some constant g, g(i) = g for i = 1, ... , S. 
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This assumption is satisfied if there is an optimal stationary policy such that 
the associated Markov chain {X1} has a single recurrent class. 

Given the sequence {a,.}, we define the sequence {r ,.} by 

(3) ro = 0 and r,. = 1 + a,.r n-1 for n = 1, 2, ... 

Under certain conditions on {a,.} we shall prove that lim,._00 {y,.(i) - r ,.g} ex­
ists and is finite for all i. To do this, let f(i, a) = r(i, a) - g, and define for 
n = 1, 2, ... , 

(4)' for i = l, .. · , S , 

where y0(i) = y0(i) for all i. By induction on n, we obtain from (2) and (4) that 

(5) j,.(i) =y,.(i) - r .. Y for i = l, .. •, S and n = 0, 1, • •·. 

Further, for any a with O < a < 1 and any policy R, let 

Va(i, R) = .I;;"'=l a 1
-

1ER{f(Xt> ~1) I xl = i} and VG(i) = supR Va(i, R). 

That is, given a reward function f(i, a) and a discount factor a, Va(i, R) is the 
total expected discounted return when the initial state is i and policy R is used, 
while Va(i) is the maximal expected discounted return. It is known that Va(i) 
is the unique solution to (Blackwell [3] and Derman [6]) 

(6) Va(i) = maxa {f(i, a)+ a l:}=iPi;(a)Va(j)} for i = 1, · · ·, S. 

Using the fact that there is a stationary policy f such that Va(i, /) = Va(i) 
for all i and all a close enough to 1 (see Blackwell [2]), the next lemma follows 
easily from the Laurent series expansion of Va(i, /) for a near 1 (see Miller 
and Veinott [11], page 367). 

LEMMA 1. There is a number a*, 0 < a* < 1, and a finite constant B such that, 
for all i, 

/oral! a,/3E(a*,l). 

The next theorem gives the asymptotic behaviour of the sequence {y,.(i)}. 

THEOREM 1. Let the sequence {a,., n = 1, 2, ... } be such that (i) 0 < a,. < 1 
for all n ~ 2; (ii) a,.-+ 1 as n-> =; (iii) a 2 a 3 • • • a,.-> 0 as n-> =; (iv) 

l:7=2 (a,.a,._1 • • • a;)la; - a;-il-> 0 as n-> =· Then, 

lim,._00 {y,.(i) - r,. g} exists and is finite for all i . 

PROOF. The proof is a generalization of one given in [7]. For any S component 
vector x, let I lxl I = maxi lxil • For any n ~ 2, denote by V,. the S component vec­
tor whose ith element is (\,.(i), and for n ~ 1, let j,. be the S component vector 
whose ith element is j,.(i). From (4) and (6) we easily deduce 

(7) IIJ .. - v .. 11 ~ a,.llf .. -1 - v .. 11 for n = 2, 3, .... 

Since a,.-> 1 as n-> oo, we have by Lemma 1 that there is an integer n0 ~ 2 
and a finite constant B such that 

(8) IIV .. - v ... 11 ~ la,. - a,..IB for all n, m ~ n0 • 
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Fix now an integer K ;?; n0 • By the triangle inequality, we obtain from (7) and 
(8) that for n = 1, 2, ... , 

11.Y .. +K - v,.+KII ;;;; a,.+KIIJ\+K-1 - v .. +K-111 + a,.+Kla .. +K - a .. +K-1IB. 
Iterating this inequality, we find for n = 1, 2, ... 

11.Y .. +K - v .. +KII ;;;; (a,.+K ... aK+1)IIYK - VKII 
+ I;'.;;!:;+1 (a,.+K · · · a;)la; - a;_ 1IB, 

from which we get lim,._00 {y,.(i) - V,.(i)} = 0 for all i. It follows from rela­
tion (8) that V,.(i) has a finite limit as n - oo for all i, so, by (5), the proof is 
complete. 

REMARK. Using the fact that n' - (n - l)';;;; 1 for n;?; I and r;;:= 1 k-< -
Sf x-< dx is bounded inn when O < c;;;; 1, it is readily verified that the condi­
tions (i)-(iv) of Theorem 1 are satisfied for any choice a,. = 1 - n-b with 
½ < b;;;; 1. In case a,.= 1 - 1/n for all n, then r .. = (n + 1)/2 for n;?; 1. 

For the choice a,. = 1 - 1/n Theorem 1 was proved in a different way by 
Bather [1] under the assumption that for each stationary policy the associate­
Markov chain {X1} is irreducible. 

In general the sequence {y,.(i), n ;?; O} will diverge. This numerical difficulty 
can be circumvented as follows (cf. White [ 14]). Fix some state s. For any 
n ;?; 0, let v,.(i) = y,.(i) - y,.(s) for i = 1, ... , S, and let g,. = y,.(s) - a,.y,._1(s) 
for n ;?; 1. By (2) we can compute for any n ;?; 1 these quantities from 

g,. = maxa {r(s, a) + a,. I;J=1 p,;(a)v,._1(j)}, 

v,.(i) = maxa {r(i, a) + a,. I;J=iPi;(a)v,._1(j)} - g,. for i = I , .. · , S . 

THEOREM 2. Suppose that {a,.} satisfies the conditions (i)-(iv) in Theorem 1. 
Then, g,. converges to g as n - oo and v,.(i) has a finite limit v(i) as n - oo for all 
i, where 

g + v(i) = maxa {r(i, a) + ~J=iPi;(a)v(j)} for i = 1, ... , S . 

Let the stationary policy f be a-optimal for all a close enough to 1, and let u(i) 
be the ith element of the vector H(f)r(f) where H(f) = [ I - P(f) + P*(f)J-1 

-

P*(f). Then, for all i = 1, • • •, S, y,.(i) - r,.g converges to u(i) as n - oo and 
v(i) = u(i) - u(s). 

PROOF. The first assertion is an immediate consequence of Theorem 1. Using 
the relation H(f)ge = H(f)P*(f)r(f) = 0 (see [2]), and the partial Laurent 
series expansion given in [2], it follows that Va(i) converges to u(i) as a - 1 
for all i. In the proof of Theorem 1 it was shown that y,.(i) - V,.(i) converges 
to zero as n - oo for all i. The theorem now follows. 

REMARK. The bias of any I-optimal policy (cf. [2], [5], and [13]) is given by 
the vector whose ith component is lim,._00 y,.(i) - r,.g. 

3. Bounds on the maximal average return and o:-optimal policies. The next 
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theorem deals with the question how well the maximal average return and an 
optimal policy can be approximated with the iterative method (2). The first 
part of the theorem below involves no assumption about the chain structure of 
the Markov chains {X1} associated with the stationary policies or about the 

sequence {a,.}. 

THEOREM 3. For any n ~ l, denote by r,. the set of the stationary policies f such 
that f(i) maximizes the right-hand side of (2) for all i. Let L,. = mini {y,.(i) -
a,.y,._1(i)}, and let U,. = maxi {y,.(i) - a,.y,._ 1(i)}. Then, (a) For each n ~ 1, L,. ~ 

<f>(i, j) ~ g(i) ~ U,. for all i = l, .. . , Sand f Er,.. (b) If g(i) = g for all i for 

some constant g and if the sequence {a,.} satisfies the conditions (i)-(iv) of Theorem 

l, then both L,. and U,. converge as n - oo to g, and, moreover, there is a finite 
integer N such that for all n ~ N each policy from r,. is optimal. 

PROOF. (a) Let y,. be the S component column vector whose ith element is 
y,.(i), and let e be the S component column vector of ones. Fix n. Let f be any 
stationary policy. Then, by (2), r(J) + a,.P(f)y,._1 ~ y,., so 

r(f) + a,.P(f)y,._1 ~ a,.y,._1 + U,.e. 

Multiplying both sides of this inequality by P*(f) and using the relations</>(/) = 
P*(f)r(f) and P*(J)P(f) = P*(f), we find </>(/) ~ U,. e. Hence g(i) ~ U,. for 
all i, since g(i) = max1 <f>(i, f) for all i. Choose now f Er,.. Then, by (2), 

r(J) + a,.P(f)y,._1 = y,., so 

r(J) + a,.P(f)y,._ 1 ~ a,.y,._ 1 + L,.e. 

Multiplying both sides of this inequality by P*(/), we find</>(/)~ L,.e. This 
completes the proof of (a). 

(b) By Theorem 1 and (3) we have that both L,. and U,. converge as n - oo 
to g. Since the number of stationary policies is finite, it follows that a finite 
integer N exists with the following property: if f E rm for some m ~ N, then 
f E r,. for infinitely many values of n. Let f E r,. for some n ~ N. Choose a 
sequence {nd with nk - oo ask - oo such that f Er "k for all k. By (2) and (3}, 

y,.k - r,.kge = r(f) + a,.kP(f)[y,.k_1 - r,.k_1 ge] - ge for all k. 

Letting k - oo and using Theorem 1, we find v = r(f) + P(f)v - ge for some 
S component column vector v. Multiplying both sides of the latter equality by 
P*(f), we find P*(f)r(J) = ge, so policy f is optimal. This ends the proof. 

It follows from Theorem 3 that if g(i) is independent of i, then, by an appro­
priate choice of a,., we can determine by (2) for each e > 0 a stationary policy 
whose average return differs at most e from the maximal average return. In 
contrast with Howard's [9] policy-iteration algorithm the iterative method (2) 
does not involve the solution of a set of linear simultaneous equations at each 
iteration. 
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