
Towards P2P XML Database Technology

Ying Zhang
(supervised by Peter Boncz)

Centrum voor Wiskunde en Informatica
P.O.Box 94079, 1090 GB

Amsterdam, the Netherlands

Y.Zhang@cwi.nl

ABSTRACT
To ease the development of data-intensive P2P applications, we en-
vision a P2P XML Database Management System (P2P XDBMS)
that acts as a database middle-ware, providing a uniform database
abstraction on top of a dynamic set of distributed data sources. In
this PhD work, we research which features such a database abstrac-
tion should offer and how it can be realised efficiently by extending
and combining existing XML databases with P2P technologies.

The first step in this research is a distributed database extension
called XRPC. Our planned future work builds upon this, adding
P2P abstractions to all main database functionalities (query pro-
cessing, transactions and data storage).

1. INTRODUCTION
Developing P2P applications that need non-trivial distributed data

management facilities is still a cumbersome task, because the appli-
cations have to deal with information from different data sources.
As in P2P settings this set of data sources is highly dynamic,fore-
seeing all possible combinations of available data sourcesis im-
practical, putting a high adaptivity burden on the shoulders of the
application programmer. To ease development of P2P applications,
we envision a middle-ware P2P XML database system (P2P XDBMS)
that manages dynamic collections of heterogeneous data sources
and provides a uniform database abstraction to the application. We
choose XML as our basis, because XML is a flexible data format
for integrating different data sources, is ideal for distributed en-
vironments and XML query languages have gained standardisation
momentum, allowing the use of XQuery as lingua franca for PDMS
data sources. In this PhD work, we research which features such a
database abstraction should offer by extending and combining ex-
isting XML database management systems with P2P technologies.

Practical Challenges. While the P2P database concept has gen-
erated a research niche, it has not yet been widely recognised as
relevant. A first problem is that P2P database technology is under-
stood by different researchers to mean different things, and there is
no “role model” system (like what System-R was for the RDBMS)
as an orientation point for the community. Secondly, most proposed
techniques (e.g. P2P query processing algorithms) are evaluated in

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

simulations whose results are hard to extrapolate to behaviour in
real-world circumstances. A third and related problem is that so
far no “killer applications” for P2P database technology have been
recognised (in contrast to P2P systems – of which various mostly
file-downloading systems have found a large user audience).

Strategy. Our strategy for advancing the state-of-the-art is to in-
crementally extend functionality of stand-alone XML database sys-
tems to P2P in all database related dimensions (including query ex-
ecution, query optimisation, transaction management and data stor-
age) by developing a working P2P XDBMS prototype as a test-bed
for our research and to work on applications that benefit fromP2P
database technologies. This strategy requires – besides research
effort – a significant investment in prototype engineering.We are
glad to be able to build on MonetDB/XQuery [9], an open source
XDBMS based on purely relational query processing that supports
XQuery [7] and the XQuery Update Facility (XQUF) [12]. The
choice for XML as the data model – and web standards in gen-
eral – eases many aspects of distributed data management (i.e. the
XML data format is platform independent, and there is ubiquitous
support for URIs and specifically HTTP networking, that we use
for data and query transport).

We obtain P2P XDBMS functionality in two steps, byorthog-
onally extending XQuery first with explicit distributed querying
and second, by making this distribution more implicit, abstract and
self-managing (i.e. P2P). At this stage we have performed the first
step by introducing XRPC [38], a minimal XQuery language exten-
sion that enables efficient querying of heterogeneous XQuery data
sources. Our future work addresses the second step. As our vision
is a data management technology that supports building P2P appli-
cations on top ofheterogeneous data sources, a strong requirement
is adherence to standards, in this case XQuery.

XRPC enhances the existing concept of XQuery functions with
the Remote Procedure Call (RPC) paradigm. By calling RPC func-
tions inside an XQueryfor-loop to multiple destinations, and by
calling functions that themselves perform XRPC calls, complex
P2P communication patterns can be achieved. An important goal
of XRPC is interoperability, that is, the extension should allow dif-
ferent XQuery engines to jointly execute queries. Adoption of P2P
technology would be greatly helped by interoperability, and thus
we advocate XRPC as a step towards a standardised distributed
XQuery extension. Even while XRPC is currently only supported
in the open-source XDBMS MonetDB/XQuery, we provide awrap-
per that allows any XQuery peer to participate in distributed queries.

Adding high level P2P services (i.e. transparent querying of
shared data in P2P settings) to XQuery is the next item on our future
work agenda. A first step towards this direction has been formu-
lated in our other work [37], where we described two architectures
for coupling Distributed Hash Tables (DHTs) with an XDBMS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301631237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Research Questions. Our challenge of create P2P XDBMS tech-
nology is quite wide and concerns all three classical database re-
search areas: query execution, transaction management anddata
storage. During the Ph.D. project, we will gradually focus on a
subset of research questions from these areas.
– P2P Query Execution: How can we automatically rewrite nor-
mal (data-shipping) XQuery queries into distributed queries using
XRPC to perform function shipping strategies? While such query
distribution has been studied before, the new focus here is to en-
sure that proper XQuery semantics (in particular node identity) is
respected in this transformation. How to capture P2P query exe-
cution cost in models (that take peer-, data-, network- and query-
characteristics into account) and use those to guide the optimisation
process?
– P2P Transaction Management: Fully functional distributed trans-
action management does not scale to P2P environments. We see
Distributed Snapshot Isolation as particularly interesting for P2P
XDBMS as it needs weaker locking protocols. Thus, one question
is what semantics of Distributed Snapshot Isolation would still be
useful in P2P environments? If a useful isolation level is identified,
a further challenge is to develop proper transaction protocols for it.
– P2P Storage and Placement: How we abstract from the physical
locations of distributed XML documents in an elegant XQueryex-
tension? What can be the role of P2P data structures such as DHTs
in transparent, but also robust, distributed XML storage?

Project Embedding. This PhD work is part of the AmbientDB
project [8, 15], which in turn is a sub-project of the Dutch national
research project MultimediaN (www.multimedian.nl), that unites
multimedia and database researchers in various academic and in-
dustrial research institutes.

StreetTiVo is one of the demo applications being developed by
the MultimediaN project. The StreetTiVo application is a plug-
in for so-called Home Theatre PCs (MythTV and Windows Me-
dia Center Edition), which one can consider programmable digital
video recorders. The StreetTiVo plug-in enables real-timecontent-
based video retrieval and meta-data generation, by distributing com-
pute -intensive video analysis over multiple peers that have recorded
the same TV program. This application involves distributedcollab-
orator discovery, work coordination, and meta-data exchange in a
volatile WAN environment (but not video file exchange – the appli-
cation is strictly legal). The hypothesis that we test in StreetTiVo, is
whether a P2P XDBMS eases development of such an application.

Outline. Section 2 summarises our work until now around XRPC,
the XQuery extension for distributed querying [38, 37] and sec-
tion 3 elaborates the follow-up research directions. We discuss re-
lated work in Section 4 and draw conclusions in Section 5.

2. CURRENT STATUS: XRPC
The first main question towards P2P XDBMS was to devise an

elegant distributed query extension that aligns fully withthe W3C
XQuery Formal Semantics [13]. The resulting XRPC proposal,
presented in the VLDB conference co-located with this Ph.D.work-
shop [38] also takes into account the recent XQuery Update Facility
(XQUF) [12].

While we think XRPC is elegant and creates a perspective for
P2P interoperability between any peer that provides XQueryor
even only a SOAP-based web service, XRPC only provides explicit
distributed query execution (no transparency).

We also summarise some initial work on providing a higher level
of distributed abstraction, by using DHTs to providelogical net-
work locations for data shipping and function shipping [37](rather
than physical network locations).

2.1 The XRPC Language Extension
The XRPC syntax for remote function application is:

execute at { Expr }{ FunApp (ParamList) }

whereExpr is an XQueryxs:string expression that specifies the
URI of the peer on whichFunApp is to be executed. The func-
tion to be applied can be built-in or user-defined. For user-defined
functions, we currently restrict ourselves to functions defined in an
XQuery module. A small future extension to the network protocol
would also allow functions defined inside a query to be executed
over XRPC.

Use cases. As a running example, we assume a set of XQuery
DBMS (peers) that each store a movie database documentfilmDB.xml
with contents similar to:
<films>
<film><name>The Rock</name><actor>Sean Connery</actor></film>
<film><name>Green Card</name><actor>Gerard Depardieu</actor></film>

</films>

We assume an XQuery modulefilm.xq stored atx.example.org,
that defines a functionfilmsByActor():
module namespace f="films";
declare function f:filmsByActor($actor as xs:string) as node()*
{ doc("filmDB.xml")//name[../actor=$actor] };

We can execute this function on the remote peery.example.org
to get a list of films in the remote movie database, in which Sean
Connery plays:
import module namespace f="films" at "http://x.example.org/film.xq";
<films> {
execute at {"xrpc://y.example.org"} {f:filmsByActor("Sean Connery")}
} </films>

which yields:<films><name>The Rock</name></films>

We introduce here a newxrpc network protocol, accepted in the
destination URI ofexecute at. The generic form of such URIs
is: xrpc://< host > [: port] [/[path]]. Thexrpc:// indicates the
network protocol. The second part,< host > [: port], indicates the
remote peer. The third part,[/[path]], is an optional local path at
the remote peer.

The SOAP XRPC Protocol. The design goal of XRPC is to create
a distributed XQuery mechanism with whichdifferent XQuery pro-
cessors at different sites can jointly execute queries. This implies
that our proposal also encompasses anetwork protocol, which uses
the Simple Object Access Protocol (SOAP) [26] (i.e. XML mes-
sages) over HTTP. The choice for SOAP brings as additional advan-
tages seamless integration of XQuery data sources with web ser-
vices and Service Oriented Architectures (SOA) as well as AJAX-
style GUIs. The complete specification of the SOAP XRPC proto-
col can be found in [38]. Here we show, as an example, the XRPC
request message that should be generated for the query above:
<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"

xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>
<xrpc:request module="films" method="filmsByActor" arity="1"

location="http://x.example.org/film.xq">
<xrpc:call>
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>
</env:Body>

</env:Envelope>

2.2 XRPC Semantics
We have added two new semantic judgement rules (RFr

and
RFu

) to the XQuery Formal Semantics [13] to define the formal
semantics of basic read-only XRPC calls and XRPC calls to up-
dating functions, respectively. These rules specify how anXRPC
call is handled according to its read-only or updating property, and
how the execution of an XRPC call affects the database statesof
the local peer (from which the call originates) and the remote peer
(on which the function is actually applied). The database statedb
is defined as the documents stored in an XML database. In short, a
read-only XRPC call does not change the database states of either
peer; an updating XRPC callmay change the database of the remote
peer at the end of the function application. A thorough explanation
of these rules can be found in [38].

XRPC calls can be nested arbitrarily, i.e. a query can contain
multiple XRPC function applications and the called functions can
again perform XRPC calls. During the evaluation of a single XRPC
query, it may happen that multiple XRPC requests are sent to the
same peerp, and the database state ofp (denoted asdbp) may
thus be seen multiple times during query execution. In between
those multiple function evaluations, other transactions may update
the database and changedbp. Thus, those different XRPC calls
to the same remote peerp from the same query may see different
database states. This will not be acceptable for some applications,
and therefore, we deem it worthwhile to define rules to provide a
higher isolation level.

In [38], we defined two additional rulesR′
Fr

, which offers the
repeatable read isolation for read-only XRPC queries, andR′

Fu
,

which offers both repeatable reads and atomic distributed commit
for updating XRPC queries. In summary, both rules state thatto
evaluate XRPC calls on behalf of queryq, peerp always uses the
same database statedbp

q . To realise this, all requests sent for the
same query are labelled with the unique identifierq of the query,
such that upon receiving requests, a peer can recognise which re-
quests belong to the same query and thus associates an isolated
database state with them. In addition, the ruleR′

Fu
specifies that

updates produced by an individual XRPC call of queryq arestored
and only applied at the time queryq commits. This semantics corre-
sponds more closely to the intent of XQUF, in that no side effects of
a query are visible at any involved peer before the query commits.
Note that, atomically committing a distributed transaction requires
a protocol like the Two-Phase Commit protocol (2PC) or one ofits
more advanced derivatives [18, 28]. We decided not to add 2PCto
the SOAP XRPC network protocol, but rather rely on the recentin-
dustry standard WS AtomicTransaction [3, 2] that provides exactly
this feature for distributed web-service transactions.

2.3 Bulk RPC
Our SOAP XRPC protocol allows computing multiple applica-

tions of the same function (with different parameters) in asingle
request/response network interaction. We call thisBulk RPC and
it has several advantages. Firstly, Bulk RPC is much more effi-
cient than repeated single RPCs as network latency is amortised
over many calls, and performance becomes bounded by network
bandwidth or CPU throughput (hardware factors that scale much
better than network latency). Secondly, Bulk RPC exposes bulk
execution opportunities, such that e.g. a function that selects with
a constant argument is turned into a join against the sequence of all
arguments. Bulk RPC thus has a direct correspondence with set-
oriented processing as offered by query algebras, and we believe
it can be generally applied to any algebraic XQuery implementa-
tion. Thirdly, for simple XRPC queries, i.e. those that contain only
applications of the same remote function to one remote peer,bulk

total compile treebuild exec
echoVoid$x=1 275 178 4.6 92
echoVoid$x=1000 590 178 86 325
getPerson$x=1 4276 185 1956 2134
getPerson$x=1000 8167 185 1973 6010

Table 1: Saxon Latency via the XRPC Wrapper (msec)

RPC helps to avoid using costly isolation mechanisms, sincemul-
tiple RPCs are turned into a single request.

We conducted two experiments to study the effect of bulk RPC.1

We define anechoVoid function and call it over XRPC. We com-
pare the performance of bulk XRPC with one-at-a-time RPC by
varying the number of loop iterations$x.
module namespace test = "test";
declare function echoVoid() { () };

import module namespace t="test" at "http://x.example.org/test.xq";
for $i in (1 to $x)
return execute at {"xrpc://y.example.org"} {t:echoVoid()}

$x=1 $x=1000
one-at-a-time 2.6 2696
bulk 2.7 4

The table on the right shows
the results of the experiments (in
msec). It shows that the perfor-
mance is fairly similar at$x=1, such that we can conclude that the
overhead of Bulk RPC is small. At$x=1000, there is an enor-
mous difference, caused by(i) serialisation/deserialisation of the
request/response messages,(ii) network communication and(iii)
overhead of function calls (1000 instead of 1). This is easily ex-
plained as the one-at-a-time RPC experiments involves performing
1000 times synchronous RPCs. Thanks to bulk execution, XRPC
can achieve a minimum latency of 4 msec – which is close to that
of commercial-strength software like .NET ([17]).

2.4 XRPC Wrapper

XQuery Engine

XRPCWrapper

HTTP
response

request.xml

generated query

XRPC Response

XRPC Request

Cross-system distributed XRPC
querying can be achieved even with-
out XRPC being integrated into an
XQuery processing engine. What is
needed is a simpleXRPC wrapper on
top of the XQuery system, as shown
here. The XRPC wrapper is a SOAP service handler that stores the
incoming SOAP XRPC request message in a temporary location,
generates an XQuery query for this request, and executes it on an
XQuery processor. The generated query is crafted to computethe
result of a Bulk XRPC by repeatedly calling the requested function
on the parameters found in the message, and to generate the SOAP
response message in XML using element construction. Such an
XRPC wrapper only allowshandling calls with normally XRPC-
incapable systems, but obviously does not allow making outgoing
XRPC calls from them.

We conducted two experiments by running a simple XRPC wrap-
per on the Saxon XSLT/XQuery processor (we used Saxon-B 8.7).
The results are shown in Table 1. Again we vary the number of it-
erations ($x) to study the performance impact of Bulk RPC. By the
absence of a function cache, Saxon latency is dominated by start-
up and compilation time, so we focus here on the internal Saxon
timings (compile, treebuild, exec) and disregard network commu-
nication cost, which is a few msec at most.

From theechoVoid experiment, we see that Bulk RPC again
amortises XRPC latency well: with a 1000 times more work, theto-
tal latency increases just over a factor 2. As the execution time still
is increased by a factor 30, the low impact is due to other amor-
tised latencies, in parsing the XML request document, compiling
the query, etc.
1All experiments presented in this paper have been done on 2GHz
Athlon64 Linux machines connected on 1Gb/s Ethernet.

We also show the results of agetPerson() example, which re-
turns theperson node from an XMark document whose@id at-
tribute matches the given$pid:
declare function getPerson($pid as xs:string) as node()?
{ zero-or-one(doc("xmark.xml")//person[@id=$pid]) };

This exposes an additional benefit of Bulk RPC over just amor-
tised fixed latencies: whereas in the single-call case,getPerson()
behaves like a selection over the XMark document, the Bulk ver-
sion of getPerson(), which iterates over all calls in the request,
becomes anequi-join. Again, the total time for a Bulk RPC with
1000 calls is only about twice as much as a single call, but here we
see that the execution time impact has increased only by a factor
of 3 (was 30 inechoVoid). The explanation is that Saxon is able to
detect the join condition and builds a hash-table such that perfor-
mance remains linear in the size of the XMark document, just like
it was in the single call selection.

2.5 Distributed XQuery with XRPC
One of the design goals of XRPC is to have it serve as the tar-

get language for a distributed XQuery optimiser that takes queries
without XRPC calls as input (only data shipping) and produces a
decomposed query as output that uses XRPC for function shipping.

We conducted some experiments with the following example.
Assume a distributed XDBMS with two peers{pa, pb}. An XMark
document is distributed between these two peers, wherepa stores
all persons in “persons.xml”, and pb stores all items and auctions
in “auctions.xml”.
for $p in doc("persons.xml")//person,

$ca in doc("xrpc://B/auctions.xml")//closed_auction (Q1)
where $p/@id = $ca/buyer/@person
return <result>{$p,$ca/annotation}</result>

The queryQ1 above is executed at peerpa. For each person
and for every item this person has bought, the query returns the
person node and theannotation node of the bought item in a
new result node. For the moment, assume thatfn:doc() is in-
voked with a compile-time known constant URI from the special
URI name scheme “xrpc://”.

A minimal optimisation might be to push predicates that depend
only on a singlefn:doc("xrpc://p/..") into its data sourcep,
which we callPredicate Push-down. Thus, instead of copying the
wholeauctions.xml from pb to pa, we define a function to return
only closed auction nodes and execute this function onpb

But the possibilities of query rewriting need not stop at push-
down offn:doc("xrpc://..")-dependent expressions. Even if a
query depends on a setP of XRPC peers that contribute documents,
one could decide to select one peerpi from P and putall execution
to pi. We call this mechanismExecution Relocation. For example,
it might be beneficial to relocate all execution onpb, wrapped in a
function, if"auctions.xml" is much larger than"persons.xml".
Then peerpa only needs to call that function to get the results.

The classicaldistributed semi-join strategy [5, 36] can be em-
ployed as well. The XRPC equivalent of the semi-join strategy
uses an XRPC function call with a loop-dependent parameter.In
this case, the person@id for all persons could be passed in a loop
to a function executed atpb that returns those closed auctions with
buyers having that@id:
module namespace b = "functions_b";
declare function b:Q_B3($pid as xs:string) as node()*
{ doc("auctions.xml")//closed_auction[./buyer/@person=$pid] };

import module namespace b="functions_b" at "http://example.org/b.xq";
for $p in doc("persons.xml")//person
let $ca := execute at {"B"} {b:Q_B3($p/@id)} (Q2)
return if(empty($ca)) then ()

else <result>{$p, $ca/annotation}</result>

Total Time MonetDB Time Saxon Time

data shipping 28122 16457 11665
predicate push-down 25799 2961 22838
execution relocation 53184 69 53115
distributed semi-join 10278 118 10160
Table 2: Execution time (msec) of query Q2 distributed on
MonetDB/XQuery and Saxon (Saxon Time includes network).

This shows that federating data sources with XRPC (even via the
XRPC Wrapper) is more powerful than the “wrapper-architecture” [23]
used in federated database systems. Such wrappers typically lack
the possibility to push table-valued parameters to data sources, which
is required for the semi-join optimisation.

To demonstrate the interoperability, expressiveness and perfor-
mance potential of XRPC we run queryQ2 on two peers using all
four strategies. On peerpa (the local peer), we run MonetDB/XQuery
with the document “persons.xml” (1.1MB, 250person nodes); on
peerpb we run Saxon with the document “auctions.xml” (50MB,
4875closed auction nodes). There are 6 matches between the
person nodes and theclosed auction nodes. All communica-
tion between MonetDB/XQuery and Saxon happens via XRPC.
The XRPC wrapper described in section 2.4 is used to generate
the XQuery query from an XRPC request message.

The measured execution times are shown in Table 2. Column
“MonetDB Time” contains execution times on peerpa and column
“Saxon Time” contains execution times on peerpb. The Saxon
Time was measured by subtracting MonetDB Time from Total Time,
such that it also included communication. We should stress that this
experiment is not a rigorous evaluation of distributed query execu-
tion strategies, rather a demonstration of the possibilities of XRPC.
The results here show that the “data shipping” query is relatively
expensive, since it spends quite some Saxon time on shippingthe
50MB document and then still needs to do the join. The “predicate
push-down” approach improves the performance, as we would ex-
pect. The “execution relocation” largely relieves the MonetDB peer
from execution responsibilities, but still ships a significant amount
of data and tasks Saxon with the whole join and result construction
effort. The “distributed semi-join” is the strategy that incurs the
least data shipping, and is most efficient in this case.

2.6 DHT Coupling
A DHT-based network [35] provides(i) robust connectivity (i.e.

tries to prevent network partitioning),(ii) high data availability (i.e.
prevent data loss if a peer goes down by automatic replication), and
(iii) a scalable (key,value) storage mechanism withO(log(N)) cost
complexity (whereN is the number of peers in the network). A
number of P2P database prototypes have already used DHTs [10,
21, 22, 29]. An important design question is how a DHT could
be exploited by an XQuery processor, and if and how the DHT
functionality should surface in the query language.

We propose here to avoid any additional language extensions, but
rather introduce a newdht network protocol, accepted in the URI
of fn:doc(), fn:put() and execute at. The generic form of
such URIs isdht://dht id/key. Thedht:// indicates the network
protocol. The second part,dht id, indicates the DHT network to
be used. Such an ID is useful to allow a PDMS to participate in
multiple (logical) DHTs simultaneously. The third part,key, is used
to store and retrieve values in the DHT.

In the following, we show how support for PDMS applications
can be provided by thefn:doc() andfn:put() built-in functions
plus our XRPCexecute at language construction.

Loose DHT Coupling. The simplest architecture to couple a DHT
network with an XDBMS is to just use the DHT API to imple-

ment the XQuery data shipping functions. That is, the XQuery
function fn:put($node, $uri) is mapped to the DHT function
put(key, value) to store XML documents as string values on
DHT peers, and the XQuery functionfn:doc($uri) is mapped to
the DHT functionget(key):value to retrieve an XML documents
as a string value. The$uri is used as thekey to identify the string
value in the DHT.

The XRPC queries can be “simulated” by getting all documents
with a relative URI name from the DHT and then evaluating the
function locally. How this works exactly, is elaborated in [37].
Note that, while this approach allows zero-effort couplingof DHT
technology with DBMS technology, we consider it nothing more
than a workaround. Function-shipping is replaced by data-shipping,
which defeats the purpose of XRPC.

Tight DHT Coupling. In a tight coupling scenario, rather than
keeping XML as string blobs inside the DHT (in RAM), each DHT
peer uses its local XDBMS to store the documents. To realise this,
we need to extend the DHT API with a single new method:

xrpc (key, q, m, fr(ParamList)):item()∗,

which allows an XRPC request to be routed through the DHT to
the peerpi responsible forkey. When the DHT instance onpi re-
ceives such a request, it passes the request to the MonetDB/XQuery
instance on the same peer to be handled. The response is then trans-
ported back via the DHT towards the query originator. In thissce-
nario, the data-shipping functionsfn:put() andfn:doc() can be
mapped to an XRPC call, which causes the functions to be actually
executed on the remote peer that is responsible for the document’s
$uri as key.

In the tight coupling, we have to extend the DHT data struc-
ture. A positive side effect of this is that the DBMS gets access to
information internal to the P2P network. This information (peer re-
sources, connectivity, etc) can be exploited in query optimisation.
Also, bulk XRPC requests routed over the DHT may be optimised
(similar to Bulk RPC), by combining requests that follow thesame
route as long as possible in single network messages. In order to
reap the robustness benefit of P2P data structures, an additional
extension will need to be made in the automatic replication per-
formed by the DHT, which replicates (key,value) pairs on multiple
peers to avoid data loss under churn. As the tight coupling stores
the values in the peer XDBMS, such replication actions need to
perform distributed database updates. The needed protocols and
efficiency/robustness trade-offs are subjects of our future work.

3. NEXT STEPS

Distributed XQuery Optimiser. We are working on a distributed
XQuery optimiser that converts non-XRPC data shipping queries
into function shipping queries using XRPC, respecting the origi-
nal query semantics. The main new challenge is imposed here by
theby-value parameter and result passing of XRPC, which causes
nodes to lose their original identity at the remote side, andcuts
them off from their original ancestors and siblings. Also, possi-
ble relationships (e.g.descendant-or-self) between node pa-
rameters (or results) will be destroyed at the remote side. Thus, a
challenge is to identify those predicates in a data shippingXQuery
that can be shipped over XRPCwithout affecting the query seman-
tics. In principle, we can push predicates into other peers as long
as these predicates depend only on a singlefn:doc() function ap-
plication. Therefore, we will need to extend the work in [25]to
determine the dependence of XQuery sub-expressions for thepur-
pose of XRPC distribution. However, for semijoin-like rewrites,
part of the node processing needs to be done on the remote side.

Simple non-join XPath navigation can be done remotely, as long
as only the downwards axes are used. To expand our possibilities
here, we can enhance XRPC with so-calledby-fragment instead of
by-value result/parameter passing. This alternative SOAPformat
eliminates any duplicate XML sent in the XRPC SOAP messages,
and as a result conserves ancestor/descendant relationships. This
allows e.g. to execute (semi) join remotely for join predicates that
only use the downwards axes.

Scalable P2P Transaction Management. We deem it important
to define less strict but more scalable protocols for managing trans-
actions in P2P settings. We are especially interested in Distributed
Snapshot Isolation (DSI), because it requires weaker locking pro-
tocols, which makes it likely to perform better than classical two-
phase locking protocol in high-latency WAN environments. To our
knowledge, there has not been much previous work on Distributed
Snapshot Isolation, while lately in commercial applications (cen-
tralised) snapshot isolation has found wide user acceptance. One
idea here is to use Lamport Clocks [24] as the timestamp for DSI,
providing the notion ofLamport consistency. The objectives of this
work will contain a formal definition of this consistency criterion,
as well as an analysis of the protocols needed. We also plan tovali-
date this approach in the StreetTiVo application and in experiments
on PlanetLab (www.planet-lab.org).

Integrating XQuery and P2P. We will continue our initial work
described in section 2.6 of integrating DHTs with XDBMS tech-
nology, and in particular XRPC. A first goal of using DHTs is to
create “logical URL”s that specify XML data items without neces-
sarily pinning down the actual URL (hostname, path). Such logical
URLs may even be used as synonyms for XML data items that are
spread over multiple locations. Another benefit of using DHTs is
to allow O(log(N)) network cost equi-selections (N is the num-
ber of peers) and add self-managing properties to the distributed
system under churn, i.e. maintaining connectivity, and providing
an automatic replication mechanism that prevents data loss. Apart
from these design aspects of the XDBMS-DHT integration, we
are also interested in which query optimisation possibilities that a
tight DHT coupling can provide. On the practical side, we will be
testing algorithms and conducting experiments by couplingMon-
etDB/XQuery with the Bamboo [32] DHT; again carrying out ex-
periments on PlanetLab.

4. RELATED WORK
P2P networks are an active topic in networking research, espe-

cially Distributed Hash Tables [30, 33, 35, 39]. For practical pur-
poses, the systems Bamboo [32] and P-Grid [4] currently seemto
be the most usable.

[19] might be the first paper that discusses database management
issues in P2P environments and it proposes the Piazza system[20]
to manage data placement in P2P settings. PIER [21] is a P2P infor-
mation exchange and retrieval system on top of the Bamboo DHT.
It uses a relational data model and query language and has some
support for in-network joins. UniStore [22] provides an RDF-like
triple storage on top of P-Grid. XPeer [34] is a P2P XDBMS for
sharing and querying XML data, on top of a super-peer network.
The query algebra of XPeer takes explicitly into account data dis-
semination, data replication and data freshness. [29] is a proposal
for an XML-based database system on top of DHT (FreePastry),
which is also named XPeer. [29] uses XPath as its query language
and supports range queries. Of these systems, the PIER and UniS-
tore systems seem to be the most developed prototypes so far.

In the area of extending XQuery with distributed querying capa-
bilities, our work is closely related to DXQ [14], developedas an

extension of Galax. DXQ ships distributed query plans, in terms
of the internal Galax execution algebra, generated by the Galax op-
timiser, to remote peers to be executed. The syntax of XRPC is
inspired by XQueryD [31], which supports shipping of free-form
queries by using a runtime rewriter to scan the XQuery expressions
in theexecute statement for variables and substitute them with the
runtime values. In Active XML [6], calls to service functions are
embedded in XML documents. Service functions are defined us-
ing the XML query language X-OQL ([1]), which itself does not
allow distributed evaluation. The SOAP protocol used for AXML
services has not been specified formally; like XRPC it uses a doc-
ument/literal encoding to represent XML sub-tree values. Galax
Yoo-Hoo! [27] is related to our work in the sense that web services
are accessed using remote procedure calls and SOAP messagesare
used as the communication protocol, but messages must be manip-
ulated explicitly with element construction.

The AquaLogic Data Service Platform (ALDSP) [11] is a mid-
dle ware product recently introduced by BEA. ALDSP providesan
(XML-based) declarative way for building SOA applicationsand
services that need to access and compose information from a range
of (heterogeneous) enterprise data sources.

In the area of distributed query processing and transactions, much
prior research has been done. There have been several surveys
on these topics, such as [23], [36] and parts of [28]. Distributed
XRPC updates with isolation need a distributed commit protocol,
for which any of the 2PC protocol [28], the Paxos Commit algo-
rithm [18] and the distributed Sagas [16] could be used.

5. CONCLUSION
In this paper, we(i) motivated the need for P2P XDBMS,(ii)

presented the XML-based XRPC approach we took as the basis and
the current progress of the project, and(iii) discussed the challenges
we will address in the future. From the overview of the current
progress and the presented performance results in this paper, we
would conclude that XRPC is a sufficiently powerful foundation for
further research towards the envisioned P2P XDBMS technologies.

6. REFERENCES
[1] The Active XML Project. http://activexml.net.
[2] Web Services Atomic Transaction (WS-AtomicTransaction), August

2005. ftp://www6.software.ibm.com/software/developer/library/WS-
AtomicTransaction.pdf.

[3] Web Services Coordination (WS-Coordination), August 2005.
ftp://www6.software.ibm.com/software/developer/library/WS-
Coordination.pdf.

[4] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P
Information Systems. InCooplS, 2001.

[5] P. Apers, A. R. Hevner, and S. B. Yao. Optimization algorithms for
distributed queries.IEEE TSE, 9(1), 1983.

[6] O. Benjelloun.Active XML: A data-centric perspective on Web
services. PhD thesis, September 2004.

[7] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J.Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. W3C Candidate
Recommendation 8 June 2006.
http://www.w3.org/TR/2006/CR-xquery-20060608.

[8] P. Boncz. AmbientDB: P2P Database Technology for Ambient
Intelligent Multimedia Applications.ERCIM News, (55), October
2003.

[9] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner. MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. InSIGMOD, June 2006.

[10] A. Bonifati, E. Q. Chang, T. Ho, and L. V. Lakshmanan. HepToX:
Heterogeneous Peer to Peer XML Databases. Technical ReportUBC
TR-2005-15, 2005.

[11] M. Carey and the BEA ALDSP Team. Data Delivery in a
Service-Oriented World: The BEA AquaLogic Data Services

Platform. InSIGMOD, 2006.
[12] D. Chamberlin, D. Florescu, and J. Robie. XQuery UpdateFacility.

W3C Working Draft 11 July 2006.
http://www.w3.org/TR/2006/WD-xqupdate-20060711.

[13] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose,
M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. W3C Candidate Recommendation 8 June 2006.
http://www.w3.org/TR/2006/CR-xquery-semantics-20060608.

[14] M. Fernández, T. Jim, K. Morton, N. Onose, and J. Siméon. Highly
distributed xquery with dxq. InSIGMOD demo, June 2007.

[15] W. Fontijn and P. Boncz. AmbientDB: P2P Data Management
Middleware for Ambient Intelligence. InPERWARE, 2004.

[16] H. Garcia-Molina and K. Salem. Sagas. InSIGMOD, 1987.
[17] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Engelen, and

M. J. Lewis. Toward Characterizing the Performance of SOAP
Toolkits. InGRID, 2004.

[18] J. Gray and L. Lamport. Consensus on transaction commit. ACM
Transactions on Database Systems, 31(1), 2006.

[19] S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and D. Suciu.
What Can Peer-to-Peer Do For Databases, and Vice Versa? In
WebDB, 2001.

[20] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: data
management infrastructure for semantic web applications.In WWW,
2003.

[21] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis,
T. Roscoe, S. Shenker, I. Stoica, and A. R. Yumerefendi. The
Architecture of PIER: an Internet-Scale Query Processor. In CIDR,
2005.

[22] M. Karnstedt, K.-U. Sattler, M. Richtarsky, J. Müller, M. Hauswirth,
R. Schmidt, and R. John. UniStore: Querying a DHT-based Universal
Storage. Technical report, 2006.

[23] D. Kossmann. The state of the art in distributed query processing.
ACM Computing Surveys, 32(4), 2000.

[24] L. Lamport. Time, clocks, and the ordering of events in adistributed
system.Commun. ACM, 21(7), 1978.

[25] A. Marian and J. Siméon. Projecting XML Documents. InVLDB,
September 2003.

[26] N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C Recommendation
24 June 2003.
http://www.w3.org/TR/2003/REC-soap12-part0-20030624.

[27] N. Onose and J. Siméon. XQuery at Your Web Service. InWWW,
2004.

[28] M. T. Özsu and P. Valduriez.Principles of distributed database
systems (2nd ed.). Prentice-Hall, Inc., NJ, USA, 1999.

[29] W. Rao, H. Song, and F. Ma. Querying XML Data over DHT System
Using XPeer. InGCC, 2004.

[30] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
scalable content-addressable network. InSIGCOMM, 2001.

[31] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In
IIWeb, September 2004.

[32] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
Churn in a DHT. InUSENIX Annual Technical Conference, General
Track, 2004.

[33] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-PeerSystems.
In Middleware, 2001.

[34] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A
Self-Organizing XML P2P Database System. InP2P&DB, 2004.

[35] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. InSIGCOMM, 2001.

[36] C. Yu and C. Chang. Distributed query processing.ACM Computing
Surveys, 16(4), 1984.

[37] Y. Zhang and P. Boncz. Integrating XQuery and P2P in
MonetDB/XQuery*. InEROW, 2007.

[38] Y. Zhang and P. Boncz. XRPC: Interoperable and Efficient
Distributed XQuery. InVLDB, 2007. To appear.

[39] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for
Service Deployment.IEEE J-SAC, 22(1), January 2004.

