View metadata, citation and similar papers at core.ac.uk

-

P
brought to you by i CORE

provided by CW!I's Institutional Repository

Towards P2P XML Database Technology

Ying Zhang
(supervised by Peter Boncz)
Centrum voor Wiskunde en Informatica
P.O.Box 94079, 1090 GB
Amsterdam, the Netherlands

Y.Zhang@cwi.nl

ABSTRACT

To ease the development of data-intensive P2P applicatienen-
vision a P2P XML Database Management System (P2P XDBMS)
that acts as a database middle-ware, providing a uniforabdae
abstraction on top of a dynamic set of distributed data ssurétn
this PhD work, we research which features such a databasaabs
tion should offer and how it can be realised efficiently byeexting
and combining existing XML databases with P2P technologies

The first step in this research is a distributed databasesixie
called XRPC. Our planned future work builds upon this, addin
P2P abstractions to all main database functionalitiesrgpeo-
cessing, transactions and data storage).

1. INTRODUCTION

Developing P2P applications that need non-trivial distiélol data
management facilities is still a cumbersome task, becesapli-
cations have to deal with information from different datases.
As in P2P settings this set of data sources is highly dynaimie;
seeing all possible combinations of available data soucés-
practical, putting a high adaptivity burden on the showddafrthe
application programmer. To ease development of P2P apiplita

simulations whose results are hard to extrapolate to bebavn
real-world circumstances. A third and related problem &t to
far no “killer applications” for P2P database technologyénbeen
recognised (in contrast to P2P systems — of which variouglynos
file-downloading systems have found a large user audience).

Strategy. Our strategy for advancing the state-of-the-art is to in-
crementally extend functionality of stand-alone XML datab sys-
tems to P2P in all database related dimensions (includirgycgx-
ecution, query optimisation, transaction management ataistor-
age) by developing a working P2P XDBMS prototype as a tedt-be
for our research and to work on applications that benefit fR2R
database technologies. This strategy requires — besidearah
effort — a significant investment in prototype engineeriige are
glad to be able to build on MonetDB/XQuery [9], an open source
XDBMS based on purely relational query processing that stpp
XQuery [7] and the XQuery Update Facility (XQUF) [12]. The
choice for XML as the data model — and web standards in gen-
eral — eases many aspects of distributed data managengenh§.
XML data format is platform independent, and there is ulimus
support for URIs and specifically HTTP networking, that we us
for data and query transport).

we envision a middle-ware P2P XML database system (P2P XDBMS We obtain P2P XDBMS functionality in two steps, bythog-

that manages dynamic collections of heterogeneous dataesou
and provides a uniform database abstraction to the apiglicatve
choose XML as our basis, because XML is a flexible data format
for integrating different data sources, is ideal for disfited en-
vironments and XML query languages have gained standdiatisa
momentum, allowing the use of XQuery as lingua franca for FDM
data sources. In this PhD work, we research which features au
database abstraction should offer by extending and comndpiex-
isting XML database management systems with P2P techrealogi

Practical Challenges. While the P2P database concept has gen-
erated a research niche, it has not yet been widely recafjmise
relevant. A first problem is that P2P database technologpden
stood by different researchers to mean different thingd,thare is

no “role model” system (like what System-R was for the RDBMS)
as an orientation point for the community. Secondly, mosppsed
techniques (e.g. P2P query processing algorithms) areateal in

Permission to copy without fee all or part of this materiajianted provided
that the copies are not made or distributed for direct consrakadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to possesvers
or to redistribute to lists, requires a fee and/or speciaipgsion from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3@./

onally extending XQuery first with explicit distributed querying
and second, by making this distribution more implicit, akst and
self-managing (i.e. P2P). At this stage we have performeditst
step by introducing XRPC [38], a minimal XQuery languagesext
sion that enables efficient querying of heterogeneous XQdata
sources. Our future work addresses the second step. Asgianvi
is a data management technology that supports building PP a
cations on top oheterogeneous data sources, a strong requirement
is adherence to standards, in this case XQuery.

XRPC enhances the existing concept of XQuery functions with
the Remote Procedure Call (RPC) paradigm. By calling RPC-fun
tions inside an XQueryor -loop to multiple destinations, and by
calling functions that themselves perform XRPC calls, claxp
P2P communication patterns can be achieved. An importaait go
of XRPC is interoperability, that is, the extension shouldva dif-
ferent XQuery engines to jointly execute queries. Adoption of P2P
technology would be greatly helped by interoperabilityd ahus
we advocate XRPC as a step towards a standardised disttibute
XQuery extension. Even while XRPC is currently only suppdrt
in the open-source XDBMS MonetDB/XQuery, we providerap-
per that allows any XQuery peer to participate in distributediigs.

Adding high level P2P services (i.e. transparent queryifg o
shared data in P2P settings) to XQuery is the next item on.ourd
work agenda. A first step towards this direction has been derm
lated in our other work [37], where we described two archiiezs
for coupling Distributed Hash Tables (DHTSs) with an XDBMS.


https://core.ac.uk/display/301631237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Research Questions. Our challenge of create P2P XDBMS tech-
nology is quite wide and concerns all three classical da@be-
search areas: query execution, transaction managemerdaaad
storage. During the Ph.D. project, we will gradually focus @
subset of research questions from these areas.

— P2P Query Execution: How can we automatically rewrite nor-
mal (data-shipping) XQuery queries into distributed geeriising
XRPC to perform function shipping strategies? While sucargu
distribution has been studied before, the new focus here é&nt
sure that proper XQuery semantics (in particular node itdgris
respected in this transformation. How to capture P2P queey e
cution cost in models (that take peer-, data-, network- amethyg
characteristics into account) and use those to guide th@isation
process?

—P2P Transaction Management: Fully functional distributed trans-

2.1 The XRPC Language Extension
The XRPC syntax for remote function application is:
execute at { Expr }{ FunApp ( ParanmList ) }

whereExpr is an XQueryxs: st ri ng expression that specifies the
URI of the peer on whichFunApp is to be executed. The func-
tion to be applied can be built-in or user-defined. For usdiréd
functions, we currently restrict ourselves to functionfired in an
XQuery module. A small future extension to the network peolo
would also allow functions defined inside a query to be exsgtut
over XRPC.

Use cases. As a running example, we assume a set of XQuery
DBMS (peers) that each store a movie database docurmembB. xm
with contents similar to:

<films>

action management does not scale to P2P environments. We S€€ ;| yp<nanesThe Rock</ name><act or >Sean Conner y</ act or ></ f |

Distributed Snapshot Isolation as particularly interggtior P2P
XDBMS as it needs weaker locking protocols. Thus, one gaesti
is what semantics of Distributed Snapshot Isolation wotiltze
useful in P2P environments? If a useful isolation level enitfied,

a further challenge is to develop proper transaction patofor it.

— P2P Sorage and Placement: How we abstract from the physical
locations of distributed XML documents in an elegant XQuexy
tension? What can be the role of P2P data structures such & DH
in transparent, but also robust, distributed XML storage?

Project Embedding. This PhD work is part of the AmbientDB
project [8, 15], which in turn is a sub-project of the Dutchional
research project MultimediaNww.multimedian.nl), that unites
multimedia and database researchers in various academiman
dustrial research institutes.

SreetTiVo is one of the demo applications being developed by
the MultimediaN project. The StreetTiVo application is aig
in for so-called Home Theatre PCs (MythTV and Windows Me-
dia Center Edition), which one can consider programmaltgéali
video recorders. The StreetTiVo plug-in enables real-thmetent-
based video retrieval and meta-data generation, by disiinigp com-
pute -intensive video analysis over multiple peers thaehiegorded
the same TV program. This application involves distributeliab-
orator discovery, work coordination, and meta-data exgkan a
volatile WAN environment (but not video file exchange — thelap
cation is strictly legal). The hypothesis that we test ire8tTiVo, is
whether a P2P XDBMS eases development of such an application

Outline. Section 2 summarises our work until now around XRPC,
the XQuery extension for distributed querying [38, 37] amd-s
tion 3 elaborates the follow-up research directions. Weudis re-
lated work in Section 4 and draw conclusions in Section 5.

2. CURRENT STATUS: XRPC

The first main question towards P2P XDBMS was to devise an
elegant distributed query extension that aligns fully wik W3C
XQuery Formal Semantics [13]. The resulting XRPC proposal,
presented in the VLDB conference co-located with this Piudrk-
shop [38] also takes into account the recent XQuery Updatiitya
(XQUF) [12].

While we think XRPC is elegant and creates a perspective for
P2P interoperability between any peer that provides XQuery
even only a SOAP-based web service, XRPC only providesakpli
distributed query execution (no transparency).

We also summarise some initial work on providing a higheelev
of distributed abstraction, by using DHTSs to proviligjical net-
work locations for data shipping and function shipping [8&ther
than physical network locations).

<filmp<nane>G een Card</ name><act or >Cer ar d Depar di eu</ act or></filnp
</films>
We assume an XQuery moddlel m xq stored ak. exanpl e. or g,
that defines a functiohi | nsByAct or () :

modul e nanespace f="filns";
declare function f:filmsByActor($actor as xs:string) as node()*
{ doc("filnDB.xm")//name[../actor=%actor] };

We can execute this function on the remote peexanpl e. or g
to get a list of films in the remote movie database, in whichnSea
Connery plays:

inport nodul e namespace f="films" at "http://x.exanple.org/filmxq";
<films> {

execute at {"xrpc://y.exanple.org"} {f:filmsByActor("Sean Connery")}
} </ films>

which yields: <fi | ms><nane>The Rock</nane></filns>

We introduce here a nexr pc network protocol, accepted in the
destination URI ofexecut e at. The generic form of such URIs
is:xrpc:// < host > [: port] [/[path]]. Thexrpc:// indicates the
network protocol. The second pa#t,host > [: port], indicates the
remote peer. The third par/[path]], is an optional local path at
the remote peer.

The SOAP XRPC Protocol. The design goal of XRPC is to create

a distributed XQuery mechanism with whidtfferent XQuery pro-
cessors at different sites can jointly execute queriess rhplies

that our proposal also encompassegtaork protocol, which uses

the Simple Object Access Protocol (SOAP) [26] (i.e. XML mes-
sages) over HTTP. The choice for SOAP brings as additionealrad
tages seamless integration of XQuery data sources with @eb s
vices and Service Oriented Architectures (SOA) as well asXAJ
style GUIs. The complete specification of the SOAP XRPC proto
col can be found in [38]. Here we show, as an example, the XRPC
request message that should be generated for the query above:
<?xm version="1.0"

<env: Envel ope xnl ns:
xm ns:

encodi ng="utf-8"?>
xrpc="http://monetdb. cwi.nl/XQuery"
env="http://ww: w3. or g/ 2003/ 05/ soap- envel ope"
xmi ns: xs="http://ww. w3. or g/ 2001/ XM_.Schema"
xmi ns: xsi ="http://ww. w3. org/ 2001/ XM_.Schena-i nst ance"
xsi :schemaLocation="http://nonetdb. cwi . nl/ XQuery
http://monetdb. cwi . nl / XQuery/ XRPC. xsd" >
<env: Body>
<xrpc: request modul e="filns" nethod="fil msByActor" arity="1"
| ocation="http://x.exanple.org/filmxqg">
<xrpc:cal | >
<Xrpc: sequence>
<xrpc: atonic-val ue
Xsi:type="xs:string">Sean Connery</xrpc: atom c-val ue>
</ xrpc: sequence>
</ xrpc:cal | >
</ xrpc: request >
</ env: Body>
</ env: Envel ope>



2.2 XRPC Semantics

We have added two new semantic judgement rufks, (and
Rg,) to the XQuery Formal Semantics [13] to define the formal
semantics of basic read-only XRPC calls and XRPC calls to up-
dating functions, respectively. These rules specify howKR#PC
call is handled according to its read-only or updating propend
how the execution of an XRPC call affects the database stétes
the local peer (from which the call originates) and the resser
(on which the function is actually applied). The databastesth
is defined as the documents stored in an XML database. In, short
read-only XRPC call does not change the database statether ei
peer; an updating XRPC catlay change the database of the remote
peer at the end of the function application. A thorough exalen
of these rules can be found in [38].

XRPC calls can be nested arbitrarily, i.e. a query can contai
multiple XRPC function applications and the called funciacan
again perform XRPC calls. During the evaluation of a singRPC
query, it may happen that multiple XRPC requests are seriteto t
same peelp, and the database state jpf(denoted aglbP) may
thus be seen multiple times during query execution. In betwe
those multiple function evaluations, other transactiosy mpdate
the database and changdbP. Thus, those different XRPC calls
to the same remote peerfrom the same query may see different
database states. This will not be acceptable for some apipins,
and therefore, we deem it worthwhile to define rules to prewad
higher isolation level.

In [38], we defined two additional rule®’s,, which offers the
repeatable read isolation for read-only XRPC queries, afidy,
which offers both repeatable reads and atomic distributednait
for updating XRPC queries. In summary, both rules state tihat
evaluate XRPC calls on behalf of quegypeerp always uses the
same database stadbg. To realise this, all requests sent for the
same query are labelled with the unique identifiesf the query,
such that upon receiving requests, a peer can recognisén \dc
quests belong to the same query and thus associates aredsolat
database state with them. In addition, the e, specifies that
updates produced by an individual XRPC call of qugarestored
and only applied at the time queqycommits. This semantics corre-
sponds more closely to the intent of XQUF, in that no sidect$fef
a query are visible at any involved peer before the query citsam
Note that, atomically committing a distributed transactiequires
a protocol like the Two-Phase Commit protocol (2PC) or onisof
more advanced derivatives [18, 28]. We decided not to addtdPC
the SOAP XRPC network protocol, but rather rely on the reaent
dustry standard WS AtomicTransaction [3, 2] that providescdy
this feature for distributed web-service transactions.

2.3 Bulk RPC

Our SOAP XRPC protocol allows computing multiple applica-
tions of the same function (with different parameters) isiragle
request/response network interaction. We call Butk RPC and
it has several advantages. Firstly, Bulk RPC is much more effi
cient than repeated single RPCs as network latency is asedrti

|| total || compile| treebuild | exec

echoVoid$x=1 275] 178 46] 92
echoVoid$x=1000 590 178 86 325
getPerso$x=1 4276 185 1956 [2134
getPersoi$x=1000 || 8167 185 1973 |6010

Table 1: Saxon Latency viathe XRPC Wrapper (msec)

RPC helps to avoid using costly isolation mechanisms, simale
tiple RPCs are turned into a single request.

We conducted two experiments to study the effect of bulk RPC.
We define arechoVoi d function and call it over XRPC. We com-
pare the performance of bulk XRPC with one-at-a-time RPC by
varying the number of loop iteratior$s.

modul e namespace test = "test";
declare function echovoid() { () };
inport nodul e namespace t="test" at "http://x.exanple.org/test.xq";

for $i in (1to $x)
return execute at {"xrpc://y.exanple.org"} {t:echoVoid()}

The table on the right shows ||$x=1]$x=1000
the results of the experiments (in‘one-at-a-timp 2.6 | 2696
msec). It shows that the perfor- bulk 2.7 4

mance is fairly similar agx=1, such that we can conclude that the
overhead of Bulk RPC is small. A#x=1000, there is an enor-
mous difference, caused Ifi) serialisation/deserialisation of the
request/response messagg@s, network communication andii)
overhead of function calls (1000 instead of 1). This is gasX-
plained as the one-at-a-time RPC experiments involvespeiiig
1000 times synchronous RPCs. Thanks to bulk execution, XRPC
can achieve a minimum latency of 4 msec — which is close to that
of commercial-strength software like .NET ([17]).

24 XRPC Wrapper

Cross-system distributed XRPC . cesponed
querying can be achieved even withs oo
out XRPC being integrated into an
XQuery processing engine. What is
needed is a simp¥RPC wrapper on
top of the XQuery system, as shown
here. The XRPC wrapper is a SOAP service handler that stioges t
incoming SOAP XRPC request message in a temporary location,
generates an XQuery query for this request, and execut@saho
XQuery processor. The generated query is crafted to contpete
result of a Bulk XRPC by repeatedly calling the requestedtion
on the parameters found in the message, and to generate &fe SO
response message in XML using element construction. Such an
XRPC wrapper only allowsandling calls with normally XRPC-
incapable systems, but obviously does not allow makingantg
XRPC calls from them.

We conducted two experiments by running a simple XRPC wrap-
per on the Saxon XSLT/XQuery processor (we used Saxon-B 8.7)
The results are shown in Table 1. Again we vary the number-of it
erations $x) to study the performance impact of Bulk RPC. By the
absence of a function cache, Saxon latency is dominatedably st
up and compilation time, so we focus here on the internal 8axo

XRPCWrapper

HTTP

over many calls, and performance becomes bounded by network!iMmings (compile, treebuild, exec) and disregard netwarkimu-

bandwidth or CPU throughput (hardware factors that scalermu
better than network latency). Secondly, Bulk RPC exposdis bu
execution opportunities, such that e.g. a function thacislwith

a constant argument is turned into a join against the sequafradl
arguments. Bulk RPC thus has a direct correspondence with se
oriented processing as offered by query algebras, and vievbel

it can be generally applied to any algebraic XQuery impletaen
tion. Thirdly, forssimple XRPC queries, i.e. those that contain only
applications of the same remote function to one remote e,

nication cost, which is a few msec at most.

From theechoVoi d experiment, we see that Bulk RPC again
amortises XRPC latency well: with a 1000 times more work tthe
tal latency increases just over a factor 2. As the executioe still
is increased by a factor 30, the low impact is due to other amor
tised latencies, in parsing the XML request document, cbngpi
the query, etc.

1All experiments presented in this paper have been done orz2GH
Athlon64 Linux machines connected on 1Gb/s Ethernet.



We also show the results ofgat Person() example, which re-
turns theper son node from an XMark document whog@d at-
tribute matches the give$pi d:
declare function getPerson($pid as xs:string) as node()?

{ zero-or-one(doc("xmark.xm")//person[ @d=$pid]) };

This exposes an additional benefit of Bulk RPC over just amor-
tised fixed latencies: whereas in the single-call cgseRer son()
behaves like a selection over the XMark document, the Butk ve
sion of get Person(), which iterates over all calls in the request,
becomes arqui-join. Again, the total time for a Bulk RPC with
1000 calls is only about twice as much as a single call, b tver
see that the execution time impact has increased only bytarfac
of 3 (was 30 inechoVoi d). The explanation is that Saxon is able to
detect the join condition and builds a hash-table such teebp
mance remains linear in the size of the XMark document, jist |
it was in the single call selection.

2.5 Distributed XQuery with XRPC

One of the design goals of XRPC is to have it serve as the tar-
get language for a distributed XQuery optimiser that takesrigs
without XRPC calls as input (only data shipping) and produae
decomposed query as output that uses XRPC for function isigjpp

We conducted some experiments with the following example.
Assume a distributed XDBMS with two peefpa, pp}. An XMark
document is distributed between these two peers, whgisores
all persons in fer sons. xm ”, and py, stores all items and auctions
in “auctions. xm .
for $p in doc("persons.xni")//person,

$ca in doc("xrpc://Blauctions.xm")//closed_auction

where $p/ @d = $cal buyer/ @erson
return <resul t>{$p, $ca/ annotation}</resul t>

(Q)

The queryQ; above is executed at peep. For each person
and for every item this person has bought, the query returas t
person node and thennot ati on node of the bought item in a
newresult node. For the moment, assume thatdoc() is in-
voked with a compile-time known constant URI from the spkcia
URI name schemextpc: //".

A minimal optimisation might be to push predicates that depe
only on a single n: doc("xrpc://p/..") into its data source,
which we callPredicate Push-down. Thus, instead of copying the
wholeauct i ons. xnl from py to pa, we define a function to return
only cl osed_auct i on nodes and execute this function pg

But the possibilities of query rewriting need not stop attpus
down off n: doc("xrpc://..")-dependent expressions. Even if a
query depends on a setof XRPC peers that contribute documents,
one could decide to select one p@efrom P and putall execution
to p;. We call this mechanistxecution Relocation. For example,
it might be beneficial to relocate all execution pj wrapped in a
function, if"aucti ons. xm " is much larger thatiper sons. xm ".
Then peerp, only needs to call that function to get the results.

The classicabistributed semi-join strategy [5, 36] can be em-
ployed as well. The XRPC equivalent of the semi-join strateg
uses an XRPC function call with a loop-dependent paraméter.
this case, the persa@d for all persons could be passed in a loop
to a function executed g, that returns those closed auctions with
buyers having tha@ d:
modul e namespace b = "functions_b";

declare function b: Q B3($pid as xs:string) as node()*
{ doc("auctions.xn")//closed_auction[./buyer/ @erson=$pid] };

import nodul e nanespace b="functions_b" at "http://exanple.org/b.xq";
for $p in doc("persons.xni")//person
let $ca := execute at {"B"} {b:QB3($p/@d)} (@)
return if(enpty($ca)) then ()

el se <result>{$p, $ca/annotation}</result>

||Total Time||MonetDB Time|Saxon Time

data shipping 28122 16457 11665
predicate push-dowh 25799 2961 22838
execution relocationy 53184 69 53115
distributed semi-joifj 10278 118 10160

Table 2: Execution time (msec) of query Q, distributed on
MonetDB/XQuery and Saxon (Saxon Time includes networKk).

This shows that federating data sources with XRPC (everheia t
XRPC Wrapper) is more powerful than the “wrapper-architeet [23]
used in federated database systems. Such wrappers typaK
the possibility to push table-valued parameters to datecesuwhich
is required for the semi-join optimisation.

To demonstrate the interoperability, expressiveness anfbip
mance potential of XRPC we run quedy on two peers using all
four strategies. On pegx, (the local peer), we run MonetDB/XQuery
with the document “persons.xml” (1.1MB, 25@r son nodes); on
peerp, we run Saxon with the document “auctions.xml” (50MB,
4875cl osed_auct i on nodes). There are 6 matches between the
per son nodes and thel osed_aucti on nodes. All communica-
tion between MonetDB/XQuery and Saxon happens via XRPC.
The XRPC wrapper described in section 2.4 is used to generate
the XQuery query from an XRPC request message.

The measured execution times are shown in Table 2. Column
“MonetDB Time” contains execution times on pggrand column
“Saxon Time” contains execution times on pgw: The Saxon
Time was measured by subtracting MonetDB Time from Totalelim
such that it also included communication. We should stiesisthis
experiment is not a rigorous evaluation of distributed guetecu-
tion strategies, rather a demonstration of the possislitif XRPC.
The results here show that the “data shipping” query is ikelbt
expensive, since it spends quite some Saxon time on shipiping
50MB document and then still needs to do the join. The “pradic
push-down” approach improves the performance, as we would e
pect. The “execution relocation” largely relieves the Miid® peer
from execution responsibilities, but still ships a sigrafit amount
of data and tasks Saxon with the whole join and result cocistn
effort. The “distributed semi-join” is the strategy thatums the
least data shipping, and is most efficient in this case.

2.6 DHT Coupling

A DHT-based network [35] provide§) robust connectivity (i.e.
tries to prevent network partitioning(ii) high data availability (i.e.
prevent data loss if a peer goes down by automatic replicatémd
(iii) a scalable (key,value) storage mechanism Witrog(N)) cost
complexity (whereN is the number of peers in the network). A
number of P2P database prototypes have already used DHTs [10
21, 22, 29]. An important design question is how a DHT could
be exploited by an XQuery processor, and if and how the DHT
functionality should surface in the query language.

We propose here to avoid any additional language extendions
rather introduce a newht network protocol, accepted in the URI
of fn:doc(), fn:put() andexecute at. The generic form of
such URIsiglht : // dht_id/ key. Thedht : // indicates the network
protocol. The second partht_id, indicates the DHT network to
be used. Such an ID is useful to allow a PDMS to participate in
multiple (logical) DHTs simultaneously. The third pady, is used
to store and retrieve values in the DHT.

In the following, we show how support for PDMS applications
can be provided by thien: doc() andf n: put () built-in functions
plus our XRPCexecut e at language construction.

Loose DHT Coupling. The simplest architecture to couple a DHT
network with an XDBMS is to just use the DHT API to imple-



ment the XQuery data shipping functions. That is, the XQuery
function f n: put ($node, $uri) is mapped to the DHT function
put (key, value) to store XML documents as string values on
DHT peers, and the XQuery functidm: doc($uri) is mapped to
the DHT functionget ( key) : val ue to retrieve an XML documents
as a string value. Theuri is used as thkey to identify the string
value in the DHT.

The XRPC queries can be “simulated” by getting all documents
with a relative URI name from the DHT and then evaluating the
function locally. How this works exactly, is elaborated iB7].
Note that, while this approach allows zero-effort couplofdHT
technology with DBMS technology, we consider it nothing mor
than a workaround. Function-shipping is replaced by dhaipping,
which defeats the purpose of XRPC.

Tight DHT Coupling. In a tight coupling scenario, rather than
keeping XML as string blobs inside the DHT (in RAM), each DHT
peer uses its local XDBMS to store the documents. To rediise t
we need to extend the DHT API with a single new method:

xrpc (key, g, m, fy(ParamList)):iten()*,

which allows an XRPC request to be routed through the DHT to
the peerp; responsible fokey. When the DHT instance op; re-
ceives such arequest, it passes the request to the Mone@Riy
instance on the same peer to be handled. The response isthen t
ported back via the DHT towards the query originator. In gus-
nario, the data-shipping functions: put () andfn: doc() can be
mapped to an XRPC call, which causes the functions to belctua
executed on the remote peer that is responsible for the dextsn
$uri as key.

In the tight coupling, we have to extend the DHT data struc-
ture. A positive side effect of this is that the DBMS gets asc®
information internal to the P2P network. This informatiqeér re-
sources, connectivity, etc) can be exploited in query ojs&iion.
Also, bulk XRPC requests routed over the DHT may be optimised
(similar to Bulk RPC), by combining requests that follow game
route as long as possible in single network messages. Im twde
reap the robustness benefit of P2P data structures, ancaditi
extension will need to be made in the automatic replicatierr p
formed by the DHT, which replicates (key,value) pairs on tipie
peers to avoid data loss under churn. As the tight coupliogest
the values in the peer XDBMS, such replication actions need t
perform distributed database updates. The needed pretacal
efficiency/robustness trade-offs are subjects of our &ruork.

3. NEXT STEPS

Distributed XQuery Optimiser. We are working on a distributed
XQuery optimiser that converts non-XRPC data shipping igger
into function shipping queries using XRPC, respecting thgi-o

nal query semantics. The main new challenge is imposed lyere b
the by-value parameter and result passing of XRPC, which causes
nodes to lose their original identity at the remote side, euts
them off from their original ancestors and siblings. Alsosgi-

ble relationships (e.gdescendant - or - sel f) between node pa-
rameters (or results) will be destroyed at the remote sidaeisTa
challenge is to identify those predicates in a data shipgi@gery
that can be shipped over XRR@thout affecting the query seman-
tics. In principle, we can push predicates into other pesri®iag

as these predicates depend only on a sifigleloc() function ap-
plication. Therefore, we will need to extend the work in [25]
determine the dependence of XQuery sub-expressions fquuhe
pose of XRPC distribution. However, for semijoin-like reétes,

Simple non-join XPath navigation can be done remotely, ag lo
as only the downwards axes are used. To expand our possbilit
here, we can enhance XRPC with so-calbgefragment instead of
by-value result/parameter passing. This alternative S@kRat
eliminates any duplicate XML sent in the XRPC SOAP messages,
and as a result conserves ancestor/descendant relapenshiis
allows e.g. to execute (semi) join remotely for join predésathat
only use the downwards axes.

Scalable P2P Transaction Management. We deem it important
to define less strict but more scalable protocols for margaans-
actions in P2P settings. We are especially interested itribiged
Snapshot Isolation (DSI), because it requires weaker hackiro-
tocols, which makes it likely to perform better than claabiwvo-
phase locking protocol in high-latency WAN environments.olir
knowledge, there has not been much previous work on Dis&ibu
Snapshot Isolation, while lately in commercial applicaiqcen-
tralised) snapshot isolation has found wide user acceptaf®ne
idea here is to use Lamport Clocks [24] as the timestamp fdr DS
providing the notion of.amport consistency. The objectives of this
work will contain a formal definition of this consistency tefiion,
as well as an analysis of the protocols needed. We also plalito
date this approach in the StreetTiVo application and in Brpents
on PlanetLabyyww.planet-lab.org).

Integrating XQuery and P2P. We will continue our initial work
described in section 2.6 of integrating DHTs with XDBMS tech
nology, and in particular XRPC. A first goal of using DHTSs is to
create “logical URL’s that specify XML data items withoutass-
sarily pinning down the actual URL (hostname, path). Sugickl
URLSs may even be used as synonyms for XML data items that are
spread over multiple locations. Another benefit of using BHS

to allow O(log(N)) network cost equi-selectiond(is the num-
ber of peers) and add self-managing properties to the bligéd
system under churn, i.e. maintaining connectivity, andvigliag

an automatic replication mechanism that prevents data fysart
from these design aspects of the XDBMS-DHT integration, we
are also interested in which query optimisation possibsithat a
tight DHT coupling can provide. On the practical side, wel \vé
testing algorithms and conducting experiments by couplittm-
etDB/XQuery with the Bamboo [32] DHT; again carrying out ex-
periments on PlanetLab.

4. RELATED WORK

P2P networks are an active topic in networking researctg-esp
cially Distributed Hash Tables [30, 33, 35, 39]. For praatipur-
poses, the systems Bamboo [32] and P-Grid [4] currently deem
be the most usable.

[19] might be the first paper that discusses database mamsgem
issues in P2P environments and it proposes the Piazza sj&igm
to manage data placement in P2P settings. PIER [21] is a R&P in
mation exchange and retrieval system on top of the Bamboo.DHT
It uses a relational data model and query language and has som
support for in-network joins. UniStore [22] provides an Ridke
triple storage on top of P-Grid. XPeer [34] is a P2P XDBMS for
sharing and querying XML data, on top of a super-peer network
The query algebra of XPeer takes explicitly into accounadis-
semination, data replication and data freshness. [29] iDposal
for an XML-based database system on top of DHT (FreePastry),
which is also named XPeer. [29] uses XPath as its query lgggua
and supports range queries. Of these systems, the PIER aSd Un
tore systems seem to be the most developed prototypes so far.

In the area of extending XQuery with distributed queryingaa

part of the node processing needs to be done on the remote sidebilities, our work is closely related to DXQ [14], developed an



extension of Galax. DXQ ships distributed query plans, imte

of the internal Galax execution algebra, generated by tHaxGgp-
timiser, to remote peers to be executed. The syntax of XRPC is
inspired by XQueryD [31], which supports shipping of frem+h
queries by using a runtime rewriter to scan the XQuery exgioes

in theexecut e statement for variables and substitute them with the
runtime values. In Active XML [6], calls to service functisrare
embedded in XML documents. Service functions are defined us-
ing the XML query language X-OQL ([1]), which itself does not
allow distributed evaluation. The SOAP protocol used forMiIX
services has not been specified formally; like XRPC it usesca d
ument/literal encoding to represent XML sub-tree valuesla®
Yoo-Hoo! [27] is related to our work in the sense that web sawy

are accessed using remote procedure calls and SOAP messages
used as the communication protocol, but messages must bp-man
ulated explicitly with element construction.

The Aqualogic Data Service Platform (ALDSP) [11] is a mid-
dle ware product recently introduced by BEA. ALDSP provides
(XML-based) declarative way for building SOA applicatioasd
services that need to access and compose information fremge r
of (heterogeneous) enterprise data sources.

Inthe area of distributed query processing and transastimnch
prior research has been done. There have been several survey
on these topics, such as [23], [36] and parts of [28]. Disted
XRPC updates with isolation need a distributed commit olo
for which any of the 2PC protocol [28], the Paxos Commit algo-
rithm [18] and the distributed Sagas [16] could be used.

5. CONCLUSION

In this paper, wg(i) motivated the need for P2P XDBMj)
presented the XML-based XRPC approach we took as the baskis an
the current progress of the project, gfid) discussed the challenges
we will address in the future. From the overview of the cutren
progress and the presented performance results in thig,pape
would conclude that XRPC is a sufficiently powerful foundatfor
further research towards the envisioned P2P XDBMS teclyieto

6. REFERENCES

[1] The Active XML Project. http://activexml.net.

[2] Web Services Atomic Transaction (WS-AtomicTransac}joAugust
2005. ftp://lwww6.software.ibm.com/software/develdfierary/WS-
AtomicTransaction.pdf.

[3] Web Services Coordination (WS-Coordination), Augud?2.

ftp://www6.software.ibm.com/software/developer/iby/WS-

Coordination.pdf.

K. Aberer. P-Grid: A Self-Organizing Access Structuoe P2P

Information Systems. I€ooplS, 2001.

P. Apers, A. R. Hevner, and S. B. Yao. Optimization algoris for

distributed queriedEEE TSE, 9(1), 1983.

0. Benjelloun.Active XML: A data-centric perspective on \Web

services. PhD thesis, September 2004.

S. Boag, D. Chamberlin, M. F. Fernandez, D. Floresc&abie, and

J. Siméon. XQuery 1.0: An XML Query Language. W3C Candidate

Recommendation 8 June 2006.

http://www.w3.0rg/TR/2006/CR-xquery-20060608.

P. Boncz. AmbientDB: P2P Database Technology for Ambien

Intelligent Multimedia ApplicationsERCIM News, (55), October

2003.

P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rigingand

J. Teubner. MonetDB/XQuery: A Fast XQuery Processor Pasvere

by a Relational Engine. IBIGMOD, June 2006.

[10] A. Bonifati, E. Q. Chang, T. Ho, and L. V. Lakshmanan. HeK:
Heterogeneous Peer to Peer XML Databases. Technical Repart
TR-2005-15, 2005.

[11] M. Carey and the BEA ALDSP Team. Data Delivery in a
Service-Oriented World: The BEA Aqualogic Data Services

(4]
5]
(6]
[7]

9]

(36]
[37]
(38]

[39]

Platform. INnSGMOD, 2006.
[12] D. Chamberlin, D. Florescu, and J. Robie. XQuery Updeility.
W3C Working Draft 11 July 2006.
http://www.w3.0rg/TR/2006/WD-xqupdate-20060711.
D. Draper, P. Fankhauser, M. Fernandez, A. MalhotraREse,
M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.thEbr
Semantics. W3C Candidate Recommendation 8 June 2006.
http://www.w3.0rg/TR/2006/CR-xquery-semantics-20068.
M. Fernandez, T. Jim, K. Morton, N. Onose, and J. Simétighly
distributed xquery with dxg. '8GMOD demo, June 2007.
W. Fontijn and P. Boncz. AmbientDB: P2P Data Management
Middleware for Ambient Intelligence. IRERWARE, 2004.
H. Garcia-Molina and K. Salem. Sagas. i&MOD, 1987.
M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Eglgn, and
M. J. Lewis. Toward Characterizing the Performance of SOAP
Toolkits. INnGRID, 2004.
[18] J. Gray and L. Lamport. Consensus on transaction conf@ivi
Transactions on Database Systems, 31(1), 2006.
[19] S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and Du&u.
What Can Peer-to-Peer Do For Databases, and Vice Versa? In
WebDB, 2001.
A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazzlata
management infrastructure for semantic web applicationgAMW,
2003.
R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P.riidais,
T. Roscoe, S. Shenker, I. Stoica, and A. R. Yumerefendi. The
Architecture of PIER: an Internet-Scale Query ProcessoCIDR,
2005.
M. Karnstedt, K.-U. Sattler, M. Richtarsky, J. Mullél. Hauswirth,
R. Schmidt, and R. John. UniStore: Querying a DHT-based éjsal
Storage. Technical report, 2006.
D. Kossmann. The state of the art in distributed quepcpssing.
ACM Computing Surveys, 32(4), 2000.
[24] L. Lamport. Time, clocks, and the ordering of events idistributed
system Commun. ACM, 21(7), 1978.
[25] A. Marian and J. Siméon. Projecting XML DocumentsMinDB,
September 2003.
26] N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C Recommegiah
24 June 2003.
http://www.w3.0rg/TR/2003/REC-soap12-part0-20030624
N. Onose and J. Siméon. XQuery at Your Web Servic&Wh\W,
2004.
M. T. Ozsu and P. Valdurie®rinciples of distributed database
systems (2nd ed.). Prentice-Hall, Inc., NJ, USA, 1999.
W. Rao, H. Song, and F. Ma. Querying XML Data over DHT ®yst
Using XPeer. INGCC, 2004.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Seig$ar. A
scalable content-addressable networkSIBCOMM, 2001.
C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. DistribditéQuery. In
11\W\eb, September 2004.
S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. ktand
Churn in a DHT. INUSENIX Annual Technical Conference, General
Track, 2004.
A. . T. Rowstron and P. Druschel. Pastry: Scalable,d@lized
Object Location, and Routing for Large-Scale Peer-to-Bgstems.
In Middleware, 2001.
C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XiPe&
Self-Organizing XML P2P Database SystemP2P& DB, 2004.
I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer LookupiSerfor
Internet Applications. '8 GCOMM, 2001.
C. Yu and C. Chang. Distributed query processiigM Computing
Surveys, 16(4), 1984.
Y. Zhang and P. Boncz. Integrating XQuery and P2P in
MonetDB/XQuery*. INEROW, 2007.
Y. Zhang and P. Boncz. XRPC: Interoperable and Efficient
Distributed XQuery. InVLDB, 2007. To appear.
B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Jdseand
J. D. Kubiatowicz. Tapestry: A Resilient Global-scale Qagifor
Service DeploymentEEE J-SAC, 22(1), January 2004.

[13]

[14]
[15]

[16]
[17]

[20]

[21]

[22]

[23]

[27]
(28]
[29]
(30]
(31]

(32]

(33]

[34]

(35]



