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ABSTRACT
Comparisons between the merits of row-wise storage (NSM)
and columnar storage (DSM) are typically made with re-
spect to the persistent storage layer of database systems. In
this paper, however, we focus on the CPU efficiency trade-
offs of tuple representations inside the query execution en-
gine, while tuples flow through a processing pipeline. We
analyze the performance in the context of query engines us-
ing so-called ”block-oriented” processing – a recently popu-
larized technique that can strongly improve the CPU effi-
ciency. With this high efficiency, the performance trade-offs
between NSM and DSM can have a decisive impact on the
query execution performance, as we demonstrate using both
microbenchmarks and TPC-H query 1. This means that
NSM-based database systems can sometimes benefit from
converting tuples into DSM on-the-fly, and vice versa.

1. INTRODUCTION
As computer architecture evolves, and the“make the com-

mon case fast” rule is applied to more and more CPU fea-
tures, the efficiency of an application program can no longer
be measured by the number of instructions it executes, as
instruction throughput can vary enormously due to many
factors, among which: (i) CPU cache and TLB miss ratio,
resulting from the data access patterns; (ii) the possibility of
using SIMD operations (e.g. SSE) to process multiple data
items with one instruction; (iii) the average amount of in-
flight instructions unbound by code- or data-dependencies,
thus available to keep the instruction pipelines filled.

While such factors and their (significant) impact on per-
formance may be well-understood, even in the specific con-
text of data management tasks, and a range of so-called
architecture-conscious query processing algorithms has been
proposed, our goal is to investigate how such ideas can be
integrated in real database systems. Therefore, we study
how architectural-conscious insights can be integrated into
the (typical) architecture of query engines.

The central question addressed in this research is how tu-
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ple layout in a block-oriented query processor impacts perfor-
mance. This work is presented from the context of the Mon-
etDB/X100 prototype [5], developed at CWI. MonetDB/X100
uses the standard open-next-close iterator execution model,
but its most notable characteristic is the pervasive use of
block-oriented processing [15, 5], under the moniker “vector-
ized execution”. In block-oriented processing, rather than
processing a single tuple per next() call, in each iteration
the operator returns a block of tuples. This block can con-
tain from a few tens to hundreds of tuples, thereby striking
middle ground between tuple-at-a-time processing and full
table materialization. Typically, performance increases with
increasing block size, as long as the the cumulative size of
tuple-blocks flowing between the operators in a query plan
fits in the CPU cache. The main advantage of block-oriented
processing is a reduction in the amount of method calls (i.e.,
query interpretation overhead). Additional benefit comes
from the fact that the lowest level primitive functions in the
query engine now expose independent work on multiple tu-
ples (arrays of tuples). This can help compiler and CPU –
and sometimes the algorithm designer – to achieve higher
efficiency at run-time.

While MonetDB/X100 is known as a column-store1, our
focus here is not persistent storage, rather the representa-
tion of tuples as they flow through a block-oriented query
processing engine, which can be different from the storage
format. In particular, we experiment with both horizontal
tuple layout (NSM) and vertical layout (DSM) and also dis-
cuss indirect value addressing (to avoid tuple copying).

Our main research questions are: (i) what are the advan-
tages and disadvantages of DSM and NSM for tuple repre-
sentations during query execution? (ii) what specific oppor-
tunities and challenges arise when considering tuple layout in
the context of block-oriented processing (SIMD, prefetching,
block size)? (iii) can query executors be made to work on
both representations, and allowed to (dynamically) switch
between them, given that depending on the situation, and
even depending on the query sub-expression, either DSM or
NSM can be better?

1.1 Outline and Findings.
In Section 2 we first describe the NSM and DSM lay-

outs considered. Section 3 starts with a number of micro-
benchmarks contrasting the behavior of DSM and NSM in
sequential and random-access algorithms. DSM is signifi-
cantly faster in sequential scenarios thanks to simpler ad-

1In fact, it also supports the hybrid PAX layout [4].
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dressing, larger vector sizes fitting in the L2 cache, whereas
the higher spatial locality of NSM makes it the method of
choice when operators access memory areas larger than the
L1 cache randomly. SIMD instructions give an advantage to
DSM in all sequential operators such as Project and Select,
whereas in Aggregation only NSM allows to exploit SIMD
(in some cases). Therefore, ideally, a query processing en-
gine should be able to operate on data in both formats, even
allowing tuple blocks where some columns are in NSM, and
others in DSM. Further micro-benchmarks demonstrate that
thanks to block-oriented processing, converting NSM tuples
into DSM (and vice versa) can be done with high efficiency.

The consequences of these findings can be startling: we
show in case of TPC-H query 1, that systems with NSM
storage turn out to benefit from converting tuples on-the-fly
to DSM, pulling up the selection operator to achieve SIMD-
ized expression calculation, then followed by conversion back
into NSM, to exploit SIMD Aggregation.

We wrap up by discussing related work in Section 4 and
outlining conclusions and future work in Section 5.

2. TUPLE REPRESENTATIONS
To analyze different aspects of the DSM and NSM data

organization, for the experiments presented in this paper
we try to isolate the actual data access functionality from
unnecessary overheads. This is achieved with following the
block-oriented execution model, and analyzing the computa-
tionally simplest DSM and NSM data representations, pre-
sented in this section.

2.1 DSM tuple-block representation
Traditionally, the Decomposed Storage Model [9] proposed

for each attribute column to hold two columns: a surrogate
(or object-id) column and a value column. Modern column-
based systems [5, 16] choose to avoid the former column,
and use the natural order for the tuple reorganization pur-
poses. As a result, the table representation is a set of bi-
nary files, each containing consecutive values from a differ-
ent attribute. This format is sometimes complicated e.g.
by not storing NULL values and other forms of data com-
pression [21, 1]. In this case, some systems keep the data
compressed for some part of the execution [1], and some per-
form a fully-transparent decompression, providing a simple
DSM structure for the query executor [21]. Here, we choose
a straightforward DSM representation, with columns stored
as simple arrays of values. This results in the following sim-
ple code to access a specific value in a block:

value = attribute[position];

2.2 Direct vs. Indirect Storage
Variable-width datatypes such as strings cannot be stored

directly in arrays. A solution is to represent them as mem-
ory pointers into a heap. In MonetDB/X100, a tuple stream
containing string values uses a list of heap buffers that con-
tain concatenated, zero-separated strings. As soon as the
last string in a buffer has left the query processing pipeline,
the buffer can be reused.

Indirect storage can also be used to reduce value copying
between the operators in a pipeline. For instance, in Mon-
etDB/X100, the Select operator leaves all tuple-blocks from
the data source operator intact, but just attaches an array
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Figure 1: Diagram of the access-time optimized
NSM data organization during computation of TPC-
H Query 1

of selected offsets, called the selection vector. All primitive
functions support this optional index array:

value = attribute[selection[position]];

Other copy-reduction mechanisms are also possible. For in-
stance, MonetDB/X100 avoids copying result vectors alto-
gether if an operator is known to leave them unchanged (i.e.
columns that just pass through a Project or the left side of
an N-1 Join). Note that the use of index arrays (selection
vectors) is not limited to the Select operator. Other pos-
sibilities include e.g. not copying the build-relation values
in a HashJoin, but instead storing references to them. In
principle each column could have a different (or no) selec-
tion vector, which brings multiple optimization opportuni-
ties and challenges. In this paper, however, we focus on a
simple, direct data storage.

2.3 NSM tuple-block representation.
Typically, database systems use some form of a slotted

page for the NSM-stored tuples. The exact format of the
tuples in this model can be highly complex, mostly due to
storage considerations. For example, NULL values can be
materialized or not, variable-width fields result in non-fixed
attribute offsets, values can be stored explicitly or as ref-
erences (e.g. dictionary compression or values from a hash
table in a join result). Even fixed-width attributes can be
stored using variable-width encoding, e.g. length encod-
ing [17] or Microsoft’s Vardecimal Storage Format [3].

Most of the described techniques have a goal of reducing
the size of a tuple, which is crucial for disk-based data stor-
age. Unfortunately, in many cases, such tuples are carried
through into the query executor, making the data access and
manipulation complex and hence expensive. In traditional
tuple-at-a-time processing, the cost of accessing a value can
be an acceptable compared to other overheads, but with
block processing handling complex tuple representations can
consume the majority of time.

To analyze the potential of NSM performance, we define
a simple structure for holding NSM data, that results in a
very fast access to NSM attributes. Figure 1 presents the
layout of the tuples used for the processing of TPC-H Q1,
visualized in Figure 4, and analyzed in Section 3.3. Tuples
in a block are stored continuously one after another. As a
result, tuple offset in a block is a result of the multiplication
of the tuple width and its index. The attributes are stored
in an order defined by their widths. Assuming attributes
with widths of power of 2, this makes every value naturally
aligned to its datatype within the tuple. Additionally, the
tuple is aligned at the end to make its width a multiple of
the widest stored attribute. This allows accessing a value of
a given attribute at a given position with this simple code:

value = attribute[position * attributeMultiplier];
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Figure 2: Sequential access: performance of the SUM and ADD routines with DSM and NSM and varying
tuple widths.

3. EXPERIMENTS
In this section we analyze the performance of NSM and

DSM data organization schemas on database performance.
We start with a series of micro-benchmarks, presenting the
baseline performance on some basic data access and ma-
nipulation activities. Then we demonstrate how these mi-
crobenchmark results are confirmed during the processing of
the TPC-H Query 1. There, we also discuss some optimiza-
tion techniques, that depend heavily on data organization,
as well as on-the-fly data conversion.

3.1 Experimental setup
The experimental platform used is a Core2 Quad Q6600

2.4GHz with 8GB RAM running Linux with kernel 2.6.23-
15. The per-core cache sizes are: 16KB L1 I-cache, 16KB L1
D-cache, 4MB L2 cache (shared among 2 cores). All experi-
ments are single-core and in-memory. We used 2 compilers,
GCC 4.1.22 and ICC 10.03.

We have performed similar experiments on a set of other
CPUs: Athlon 64 X2 3800+ (2GHz), Itanium 2 and Sun
Niagara. For Athlon and Itanium the results were mostly
in line with the Core2 results. On Niagara the performance
benefit of DSM was typically higher, and the impact of the
data location was lower. This is caused by lower perfor-
mance of Niagara in terms of sequential execution: it has a
lower clock speed and in-order execution pipeline. Since Ni-
agara was designed with multi-threaded processing in mind,
it would be interesting to see how the presented, currently
single-threaded, benchmarks perform when running in par-
allel. This might be a topic for future research.

3.2 Microbenchmarks
In this section we analyze the baseline performance of

the DSM and NSM models in typical data-processing op-
erations: sequential computations, random-access, and data
copying.

2compilation: gcc -O6 -Wall -g -mtune=core2
3compilation: icc -O3 -Wall -axT

3.2.1 Sequential data access
The left part of Figure 2 present the results of the experi-

ment in which a SUM aggregate of a 4-byte integer column is
computed repeatedly in a loop over a fixed dataset. The size
of the data differs, to simulate different block sizes, which al-
lows identifying the impact of the interpretation overhead,
as well as the location (cache, memory) in block-oriented
processing. We used GCC, using standard processing, and
additionally ICC to generate SIMD-ized DSM code (NSM
did not benefit from SIMD-ization). In the NSM imple-
mentation, we use tuples consisting of a varying number of
integers, represented with NSM-x.

To analyze the impact of the data organization on CPU
efficiency, we look at the performance of NSM-1, which has
exactly the same memory access pattern and requirements
as the DSM implementation. The GCC results show that
for a single-integer table the performance of the DSM and
NSM-1 is very close. The small benefit of DSM, ca. 15%
in the optimal case, comes from the fact that thanks to a
simpler data access the compiler is able to generate slightly
more efficient code. However, with ICC-generated SIMD
instructions, DSM is a clear winner, being almost 5 times
faster in the optimal case. Note that SIMD can only be ap-
plied if the same operation is executed on adjacent memory
locations, therefore it can only be used in DSM.

The other aspect of this benchmark is the impact of the
interpretation overhead and data location. While for small
block sizes the performance is dominated by the function
calls4, for larger sizes, when the data does not fit in the
L1 cache anymore, the data location aspect becomes cru-
cial. Performance of NSM-1 and DSM without SIMD is
relatively flat, since even for main-memory sized data (1M+
tuples), the sequential bandwidth is close enough to balance
the CPU activity. However, with the highly efficient (sub-
cycle cost) SIMD DSM implementation, it operates fastest
while the block still fits in the L1 CPU cache, then goes to
an intermediate plateau when its fits L2, to become mem-

4In a real DBMS, function call overhead is significantly
larger [5] – this was a hard-coded micro-benchmark.
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Figure 3: Random access: running a grouped SUM aggregate on DSM input data, using a DSM or NSM
hash table, with or without prefetching, and a varying number of GROUP BY keys (X-axis)

ory bandwidth limited for larger sizes (i.e. L1 bandwidth
exceeds L2 bandwidth which exceeds RAM bandwidth).

Looking at the performance of wider NSM tuples, we
see that the performance degrades with the increasing tu-
ple width. As long as the tuples are in L1, all widths are
roughly equal. However, for NSM-16 and higher (64 byte
tuples or longer) once the data shifts to L2, the impact is
immediately visible. This is caused by the fact, that only a
single integer from the entire cache-line is used. For NSM-
2 to NSM-8, the results show that the execution is limited
by the L2 bandwidth: when a small fraction of a cache-line
is used (e.g. NSM-8) the performance is worse than when
more integers are touched (e.g. NSM-2). Similar behavior
can be observed for the main-memory datasets.

The SUM primitive has a relatively low memory demand
compared to the CPU activity, as it only consumes a sin-
gle attribute. The right part of Figure 2 presents a similar
experiment, that uses an ADD routine which consumes two
attributes and produces a new result attribute. Results fol-
low the trends of the SUM operation, but there are some
important differences. First, the higher number of parame-
ters passed to the NSM routine (pointers + tuple widths VS
only pointers) results in a higher interpretation overhead.
Secondly, comparing DSM and NSM-1 for L1-resident data,
shows that multiple more complex value-access computa-
tions in NSM have a higher impact on the CPU performance.
Finally, with a higher memory demand, the impact of data
locality on performance is significantly bigger, making even
the DSM implementation fully memory-bound and in par
with the NSM-1 version.

Concluding, we see that if access is purely sequential,
DSM outperforms NSM for multiple reasons. First, the
array-based structure allows simple value-access code. Sec-
ond, individual primitive functions (e.g. SUM,ADD) use
cache lines fully in DSM, and L2 bandwidth is enough to
keep up. As mentioned before, during query processing, all
tuple blocks in use in a query plan should fit the CPU cache.
If the target for this is L2, this means significantly larger
block sizes than if it were L1, resulting in reduced function
call overhead. Finally, the difference in sequential process-
ing between DSM and NSM can be huge if the operation is
expressible in SIMD, especially when the blocks fit in L1,
and is still significant when in L2.

3.2.2 Random data access
For this experiment, we use a table that consists of a single

key column and multiple data columns. The table contains
4M tuples, is stored in DSM for efficient sequential access,
number of data columns varies, and the range of the key
column differs from 1 to 4M. We perform an experiment
equivalent to this SQL query:

SELECT SUM(data1), ..., SUM(dataN)
FROM TABLE GROUP BY key;

To store the aggregate results, we use an equivalent of a
hash-table in the hash-aggregation, but instead of the hash-
value processing, we use the key column as a direct index.
In DSM, the result table it is just a collection of arrays, one
for each data attribute. In NSM, it is a single array of a
size equal to the number of tuples multiplied by the num-
ber of data attributes. We apply block-oriented processing,
using a block size of 256 tuples. In each iteration, all values
from different data attributes are added to the respective
aggregates, stored at the same vertical position in the table.

Figure 3 presents the results of this experiment for 1, 4
and 16 data columns. For a single column, the faster access
code of the DSM version makes it slightly (up to 10%) faster
than NSM as long as the aggregate table fits in the L1 cache.
Once it enters L2 or main memory, the results of DSM and
NSM are equal as they are memory-latency limited.

For wider tuples, DSM maintains its advantage for L1-
based key ranges. However, once the data expands into L2
or main-memory, the performance of DSM becomes signifi-
cantly worse than that of NSM. This is caused by the fact,
that in DSM every memory access is expected to cause a
cache-miss. In contrast, in NSM, it can be expected that
a cache-line accessed during processing of one data column,
will be accessed again with the next data column in the
same block, as all the columns use the same key position.
With the increasing number of computed aggregates, the
same cache-line is accessed more often, benefiting NSM over
DSM.

Figure 3 also shows experiments that use software prefetch-
ing, that is, we interspersed SUM computations with explicit
prefetch instructions on the next tuple block. On Core2 we
used the prefetcht0 instruction. We also made sure the ag-
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gregate table was stored using large TLB pages, to minimize
TLB misses. In general, our experience with prefetching is
that it is highly sensitive to the platform, and prefetch dis-
tances are hard to get right in practice. The end result is
that prefetching does improve NSM performance when the
aggregate table exceeds the CPU caches, however in con-
trast to [8] we could not obtain a straight performance line
(i.e. hide all memory latency).

These simple random and sequential DSM vs. NSM mi-
cro benchmarks echo the debate on cache-conscious join and
aggregation between partitioning and prefetching. In parti-
tioning [7], the randomly accessed (e.g. aggregate) table is
partitioned into chunks that fit the L1 cache. This table can
be stored in DSM and probed very efficiently. The disad-
vantage of this approach is the cost of partitioning, possibly
needing multiple sequential passes to achieve a good mem-
ory access pattern. The alternative is to have a NSM hash
table exceed the CPU cache sizes, and pay a cache miss
for each random probe. Unlike DSM, where random access
generates a huge bandwidth need that cannot be sustained
using prefetching, random probing in NSM benefits from
prefetching.

In the following, we study on-the-fly conversion between
DSM and NSM tuples. Using tuple conversion, it would
e.g. become possible for a DSM-based system like Mon-
etDB/X100 to use NSM (and prefetching) inside certain
random-access query processing operators.

3.2.3 Data conversion
Many column stores use a traditional query processor based

on NSM, calling for on-the-fly format conversion during the
Scan operator. In case of C-Store [16]5, this is done us-
ing (slow) tuple-at-a-time conversion logic. We rather per-
form conversion using block-oriented processing, avoiding
loop and function call overhead, where a single function call
copies all values from one column in a block of NSM tuples
into DSM representation (and vice versa):

NSM2DSM(int input[n], int width) : output[n]
for(pos=0; pos<n; pos++]
output[pos] = input[pos * width]

We performed micro-benchmarks, in which an NSM/DSM
layout conversion is performed for datatypes of different
widths. Table 1 shows that this can be done very efficiently,
typically below 1 nanosecond per data value (ca. 2 CPU
cycles on our test machine).

Therefore, given the different strengths and weaknesses
of DSM and NSM, it becomes conceivable for a query op-
timizer to select the most appropriate storage format for
certain sub-expressions in the query plan, and insert con-
version operators to change the representation on-the-fly,
potentially even multiple times. This could even lead to a
situation where a query processing operator gets some input
columns in DSM, and some in NSM (and the same for pro-
duced columns), similar as the persistent data is organized
in the data-morphing technique [12].

We also measured the performance of copying a full NSM
tuple into a different NSM representation. Such situation
can occur e.g. during the merge join, where rows from both
inputs need to be combined6. In this situation there are

5see Operators/TupleGenerator.cpp in C-Store 0.2
6Naturally, with more complex tuple representation the

Data conversion speed (ns / operation)
unit NSM⇒DSM DSM⇒NSM NSM⇒NSM

8-byte tuple, block size 1024
1-byte char 0.85 0.85 0.65
4-byte int 0.74 0.66 1.06
full tuple - - 8.42

16-byte tuple, block size 512
1-byte char 0.86 0.87 0.67
4-byte int 0.82 0.65 1.07
full tuple - - 9.62

32-byte tuple, block size 512
1-byte char 0.93 0.87 0.72
4-byte int 0.79 0.71 1.11
full tuple - - 9.76

64-byte tuple, block size 256
1-byte char 0.90 0.90 1.57
4-byte int 0.89 0.74 1.62
full tuple - - 10.09

128-byte tuple, block size 128
1-byte char 0.97 0.90 1.43
4-byte int 0.87 0.76 1.45
full tuple - - 13.17

Table 1: Data conversion speed for different tuple
widths and different conversion units. For each tuple
width, the best block size was chosen.

two choices: value-by-value copying and full-tuple copying
(e.g. with memcpy equivalent). In tuple-at-a-time processing,
the first choice will be typically significantly slower, due to
high overheads of function calls and attribute-list iteration.
However, Table 1 shows that in block-oriented processing,
with the overheads amortized over a set of tuples, value-by-
value copying can be very efficient. Full tuple copying, while
fast, still suffers from overheads, as seen with a minimal
performance difference between copying 8-byte and 128-byte
wide tuples. As a result, for many types of tuples, attribute-
by-attribute copying can be more efficient. This is especially
useful, if copying includes only a subset of attributes, or if
the field order in the result tuple needs to be different than
in the source.

3.3 TPC-H Query 1
To see the impact of data organization in a more realistic

scenario, we have evaluated the performance of the TPC-
H Query 1 with different settings. A sketch containing the
main primitives used in its query plan is presented in Fig-
ure 4. For simplicity, it does not include selection computa-
tion, connections between count and sum primitives to the
aggregates table, and post-processing of the aggregate re-
sults. As Figure 4 shows, the computation in Query 1 con-
sists mostly of 2 phases: sequential computation of input
for aggregation, and random-access computation of aggre-
gates. The microbenchmarks presented above suggest, that
the best data organization for the first phase is DSM, and
for the second phase it is NSM.

In this query plan we exploit the fact that l_returnflag

and l_linestatus are char datatypes. This makes the pos-
sible key combinations limited to 65536 values (in fact, there
are only 4 used). In this situation, instead of following the

copying can be avoided, but we assume simple (hence fast)
NSM organization
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Figure 4: Simplified plan of TPC-H Query 1 (omit-
ted date selection, links to the aggregates table, and
post-aggregation computations)

traditional hash-table based processing, we use direct aggre-
gation [5], in which the position in the aggregates table is
computed directly from the key attributes. Since the origi-
nal Query 1 only uses 4 GROUP BY key combinations, we also
tested a slightly modified version of it that adds a 3rd ex-

trakey column, and artificially fills all three key columns to
simulate different numbers of GROUP BY combinations.

3.3.1 Pull Selections Up
In DSM, calculations on simple directly addressed arrays

(i.e. without selection vector) are amendable for SIMD-
ization, hence execute significantly faster. Therefore, if a
Select does not eliminate many tuples and is followed by
computation (e.g. a Project), it becomes beneficial to first
do the calculations with SIMD, and the selection only after-
wards. This counter-intuitive “pull selections up” strategy is
in fact applicable to TPC-H Q1. Note that for this optimiza-
tion, it is not strictly necessary to put the Select on top of
the Project. In MonetDB/X100, the Select is still executed
first, but for each tuple-block by looking at the selectivity
(the length of the selection vector m) Project primitives may
choose to ignore the selection vector sel and compute results
for all n tuples, benefiting from SIMD:

ADD(long a1[n],a2[n]; int sel[m]): int output[n]
if (m > n/2) // if many selected, compute on all
for(pos=0; pos<n; pos++)
output[pos] = ADD(a1[pos],a2[pos]) // SIMD

else
for(idx=0; idx<n; idx++)
pos = sel[idx]
output[pos] = ADD(a1[pos],a2[pos])

In fact, this performance boost makes it beneficial for a plan
that starts with NSM tuples to switch to DSM.

3.3.2 SIMD Aggregation
Another SIMD optimization concerns grouped aggrega-

tion in NSM. If multiple identical aggregate functions must
be computed (e.g. TPC-H Q1 has 5 grouped SUMs), we can
SIMD-ize the aggregate update operation. This means that
we have a primitive SUM2 function, that sums two adjacent
NSM columns of 64-bit longs (its start pointer is denoted

col2 here) with two adjacent 64-bits aggregate totals (tot2):

SUM2(long tot2[m],col2[n]; int grp[n],w1,w2)
for(pos=0;pos<n;pos++)
simd_t* dst = (simd_t*) (tot2 + w2*group[pos])
simd_t* src = (simd_t*) (col2 + w1*pos)
*dst = SIMD_ADD2_LONG(*dst, *src)

As grouped aggregation takes more than half of the execu-
tion time in TPC-H Q1, applying SIMD here significantly
affects performance. In fact, SIMD Aggregation makes it
beneficial to switch back from DSM to NSM after the cal-
culations to profit from SIMD.

3.3.3 On-the-Fly NSM/DSM Conversions
We run TPC-H on data that is in both NSM and DSM

storage layouts, but consider switching layout before and
after doing the calculations (i.e. Select and Project). Also,
the format of the aggregate table can be DSM or NSM.

The results of the experiment, presented in Figure 5, con-
firm the trends from the micro-benchmarks. The DSM-
formatted input (A,B,C) achieves significantly better per-
formance. However, the DSM-formatted hash table suffers
from random memory accesses (A,D,E). Using an NSM hash
table removes this problem (B,G), and converting the DSM
data on the fly into NSM allows to perform SIMD-based
aggregation, further improving the performance (C,H). For
NSM input we see that converting it into DSM allows faster
sequential computation (E,G). For additional analysis of the
performance, Table 2 presents the profiling of different sce-
narios for a case with 32K unique GROUP BY keys. It shows,
that the extra data conversion before doing the projection
and the aggregation phase can be in some cases more than
balanced by the performance improvement gained in the fol-
lowing computation.

The performance benefits presented in this section are lim-
ited due to a fact that most of the computation is based on
8-byte integers. The currently available SSE3 SIMD instruc-
tion set provides only 128-bit SIMD operations, allowing just
2 operations to be executed at once. Since SIMD function-
ality is continuously improving, we expect these gains to
become more significant in the future.

4. RELATED WORK
Block-oriented processing [15, 5] recently gained popu-

larity as a technique to improve query processor efficiency.
Traditionally, its main goal was to reduce the number of
function calls [15]. Further research demonstrated that it
also can result in a much higher CPU instruction cache
hit-ratio [19]. Block-oriented processing is also an enabling
technique for different performance optimizations that re-
quire multiple tuples to work on: exploiting SIMD instruc-
tions [18], memory-prefetching [8], and performing efficient
data (de)compression [20].

The trade-offs between NSM and DSM as disk storage for-
mats were analyzed in [13], where it is demonstrated that
DSM performs better when only a fraction of the attributes
is accessed. In contrast to what our paper proposes, the
system described in [13] forces a conversion of DSM data
on disk into NSM before entering the block-oriented itera-
tor pipeline, allowing DSM layout only in the early scan-
select stages. Avoiding early materialization of NSM tuples
in column stores also was the topic of [2], but this work
still requires forming NSM tuples at some moment in the
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Figure 5: TPC-H Q1, with a varying number of keys and different data organizations (ht – hash table)

Time (millions of CPU cycles)

Source data DSM DSM DSM NSM NSM NSM NSM NSM
Projection phase DSM DSM DSM NSM NSM *DSM *DSM *DSM
Aggregation input DSM DSM *NSM NSM NSM DSM DSM *NSM
Aggregation table DSM NSM NSM DSM NSM DSM NSM NSM

Primitive (A) (B) (C) (D) (E) (F) (G) (H)

nsm2dsm discount 0.00 0.00 0.00 0.00 0.00 325.07 340.47 337.72
nsm2dsm extendedprice 0.00 0.00 0.00 0.00 0.00 17.73 18.24 17.99
nsm2dsm tax 0.00 0.00 0.00 0.00 0.00 25.17 20.03 19.64
nsm2dsm quantity 0.00 0.00 0.00 0.00 0.00 16.84 17.14 16.93
nsm2dsm shipdate 0.00 0.00 0.00 0.00 0.00 19.70 20.02 19.45
nsm2dsm linestatus 0.00 0.00 0.00 0.00 0.00 22.30 19.21 19.10
nsm2dsm returnflag 0.00 0.00 0.00 0.00 0.00 22.76 19.31 19.12
select 28.40 27.98 27.96 330.37 338.77 38.93 39.77 39.00
tmp = 100 - discount 53.57 52.36 52.07 30.31 30.17 14.85 14.14 13.89
discountprice = tmp * l extendedprice 47.52 47.17 47.33 40.67 40.99 18.52 17.56 17.80
tmp = 100 + l tax 50.08 50.18 49.89 27.76 27.83 13.64 13.93 13.70
charge = tmp * discountprice 18.04 17.10 17.35 40.08 44.63 20.89 18.18 17.83
key = 256 * l returnflag 20.66 20.09 20.12 28.85 28.69 19.43 19.77 19.39
key = key + l linestatus 22.43 21.84 21.92 39.42 39.42 21.11 21.54 21.42
key = 256 * key + extrakey 33.66 32.95 33.07 64.39 64.46 32.38 32.78 32.24
dsm2nsm charge 0.00 0.00 18.73 0.00 0.00 0.00 0.00 20.41
dsm2nsm discountprice 0.00 0.00 20.07 0.00 0.00 0.00 0.00 20.09
dsm2nsm discount 0.00 0.00 17.50 0.00 0.00 0.00 0.00 17.54
dsm2nsm extendedprice 0.00 0.00 17.54 0.00 0.00 0.00 0.00 17.55
COUNT() 50.71 51.75 50.56 56.80 72.81 52.67 58.65 50.24
SUM( charge ) 55.05 80.24 0.00 59.49 0.00 56.98 104.75 0.00
SUM( l discount ) 52.49 56.47 0.00 62.92 0.00 51.69 62.81 0.00
SUM( discountprice ) 52.24 48.02 0.00 58.46 0.00 52.01 47.47 0.00
SUM( extendedprice ) 55.43 48.65 0.00 69.11 0.00 56.97 48.71 0.00
SIMD-SUM 0.00 0.00 107.68 0.00 226.44 0.00 0.00 130.98
SUM( l quantity ) 64.05 52.23 53.87 70.64 68.01 58.03 50.20 48.66
TOTAL 603.98 608.17 553.65 981.47 981.47 956.30 1006.63 931.14

Table 2: Primitive function profile of a modified TPC-H Q1 (SF=1) with different data organizations. Star
(*) denotes an explicit format conversion phase. Block size 128-tuples, 32K unique aggregation keys.
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query plan. Comparing DSM and NSM execution is also
the focus of a recent paper [10], though the methodology is
a high-level systems comparison without investigating the
interaction with computer architecture.

Some performance analysis of DSM and NSM data struc-
tures has been presented in [11] where the authors propose
“super-tuples” for both rows and columns. Related research
is PAX [4], a storage format that combines low NSM costs
for getting a single tuple from disk with good cache behavior
of ”thinner” DSM storage. In memory PAX is almost equiv-
alent to DSM (the only difference is a possible impact on the
possible block sizes), it has the same properties during the
processing. The PAX idea has been generalized in [12] in the
data-morphing technique, that allows part of the attributes
in a given disk page to be stored in DSM and part in NSM,
depending on the query load. This research, focused only
on persistent data reorganization based on the query load.
Our technique goes further, by proposing dynamic reorga-
nization of transient, in-flight data.

On many architectures, SIMD instructions expect the in-
put data to be stored in simple arrays, as in DSM. Since
most database systems work on NSM, the potential of SIMD
can often not be used. Notable exceptions include [18], as
well as the family of MonetDB processing kernels [6, 5].
SIMD instructions are also becoming more relevant due to
appearance of architectures such as Cell that provide SIMD
only [14]. Interestingly, in this context it was already shown
that grouped aggregates can only be SIMD-ized when using
a NSM-like data organization (array of structures).

5. CONCLUSIONS AND FUTURE WORK
We have shown how different tuple layouts in the pipeline

of a block-oriented query processor can strongly influence
performance. For sequential access, DSM is the best repre-
sentation, usually as long as the tuple blocks fit L2; DSM
also wins for random access inside L1. If a sequential op-
erator is amendable for SIMD-ization, this causes DSM to
strongly outperform NSM; the difference sometimes even
making it profitable to pull selections upwards to keep data
densely organized for SIMD. NSM, on the other hand, is
more efficient for random access operations (hash join, ag-
gregation) into memory regions that do not fit L1. Unlike
DSM, random access memory latency to NSM can be hidden
using software prefetching. Finally, grouped Aggregation al-
lows SIMD calculations only in case of NSM.

This means that it depends on the query which data lay-
out is the most efficient in a given part of the plan. With the
conversion between NSM and DSM being relatively cheap,
we show that query plans such as TPC-H Q1 can be ac-
celerated by using both formats with on-the-fly conversions.
Therefore, we think that this work opens the door for future
research into making tuple layout planning a query opti-
mizer task. Additionally, more complex data representations
should be investigated, including mixing NSM and DSM in
one data block, as well as using indirect data storage.
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