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ABSTRACT
Column-store database systems open new vistas for improved
maintenance through self-organization. Individual columns
are the focal point, which simplify balancing conflicting re-
quirements. This work presents two workload-driven self-
organizing techniques in a column-store, i.e. adaptive seg-

mentation and adaptive replication. Adaptive segmentation
splits a column into non-overlapping segments based on the
actual query load. Likewise, adaptive replication creates seg-
ment replicas. The strategies can support different applica-
tion requirements by trading off the reorganization overhead
for storage cost. Both techniques can significantly improve
system performance as demonstrated in an evaluation of dif-
ferent scenarios.

1. INTRODUCTION
Self-organization is a desirable property for a database sys-
tem with changing workloads and scarce resources for ad-
ministration and maintenance. A reorganization of data
structures and indices is ideally performed on-line and with
minimal overhead on the ongoing work.

In a row-store system reorganization typically affects the
indices [12, 13, 5] and materialized views. Both are expen-
sive to construct and their contribution strongly depends on
the stability of the workload characteristics and database
volatility. Since index maintenance itself is a costly opera-
tion, those that do not improve the workload performance
are discarded. The challenge is to balance these often con-
tradicting requirements, i.e. to determine which columns of
an n-ary table should be indexed.

In contrast, in a column-store system the individual storage
of columns opens different opportunities for indexing. There
are fewer degrees of freedom. A column is an independent
structure which can be indexed or not, without direct effect
on the access characteristics of other columns. This opportu-
nity does not exist in the row-stores where a clustered index
on one column directly affects the access characteristics on
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all other columns in a table. Secondary indices counter this
behavior as partial replicas of tables.

The materialized views boil down to management of repli-
cated portions of a column using a partial index to speed up
localization. Their selection still depends on an (online) as-
sessment of the workload. Some systems produce the repli-
cas as side-effect of their query execution paradigm at no
cost, i.e. all relational operations produce a materialized
result. In this case the key decision becomes what partial
result to retain.

In a self-organizing setting, decisions of this kind should be
made without human interference. Ideally the query load
is continuously analyzed and reorganization integrated with
the query execution scheme. The main contribution of this
paper is an exploration of reorganization opportunities in
the context of a self-organizing column-store database. We
address primarily read-only workloads, for which column-
stores have shown to provide substantial performance gains
[4]. We focus on scans over base tables and for each query
decide if the result influences our segmentation and repli-
cation scheme. We consider two dimensions: segmentation
with or without data replication. Adaptive segmentation re-
organizes data in-place. This strategy initially incurs a rel-
atively high overhead because large pieces of a column are
touched and copied for reorganization purposes. Adaptive
replication retains copies of query results to improve future
access. It incurs a larger storage requirement than adaptive
segmentation, but has a smaller performance overhead. All
pieces of no interest to queries are left untouched. Partial
replication should, however, control the number of replicas
for individual data items.

Existing column-stores typically use hardwired segmenta-
tion criteria. For example, in C-Store [15] a column is rep-
resented as a sequence of 64 KB blocks. Access methods pro-
vide one block at a time to the operations in the query plan
tree. Since column-stores have to reconstruct logical tuples
from individual columns, it is common to base the physi-
cal organization on positional order which accelerates this
tuple reconstruction process. This organization also means
that operations at leaf nodes of the query execution plan, of-
ten selection predicates, require access to the entire column
stored on disk.

As an alternative we consider value-based organization of
columns into a collection of segments, each of which covers
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a contiguous range of attribute values. Such an organiza-
tion allows a sparse index of segments to be maintained and
used by the query optimizer to pre-select and access only seg-
ments overlapping with the selection predicates on the col-
umn. Similarly to block-oriented operators, the query exe-
cution proceeds as iteration over segments. However, it does
not require a fixed, predetermined size of segments. Instead,
the best segmentation is the one that best reflects splitting
of the attribute domain into sub-ranges by the query work-
load. Unfortunately, the workload often cannot be predicted
and/or is changing with time, which means that the ideal
segmentation is hard to predict and achieve. However, the
system can use the workload and gradually create segments
for column pieces accessed by queries.

The storage aspects of value-based column organization are
also beneficial. A sparse index of segments requires limited
storage while at the same time providing for segment ac-
cess optimizations. In comparison, to speed up selections
by indexing a positional-based organization a dense index
is needed, which, depending on value distribution, may get
close to a full replica of the column, doubling the storage re-
quirements. Value-based organization can also be combined
with column-oriented compression algorithms [1, 18].

The suggested value-based column organization has its pit-
falls. Since the positional correspondence of values in multi-
ple columns is not kept, operators that rely on it, e.g., tuple
reconstruction, may become somewhat slower. In a proper
self-organizing system a trade-off between the advantages of
the value-based organization and the extra costs incurred
for other operators can be used as a criterion during the
physical design phase of a column-store database. This pa-
per provides a starting point and outlook on this important
research challenge.

The remainder of the paper is organized as follows: Section
2 provides an introduction to our experimentation platform.
Section 3 presents the main design issues of self-organization.
Sections 4 and 5 detail the segmentation and replication
techniques, respectively. An experimental evaluation of the
trade-offs of the techniques is given in Section 6. We round
off with a short comparison against related work and an
outlook on further research in this area.

2. MONETDB ARCHITECTURE
In this section we introduce the contours of MonetDB [10],
a widely used open-source column-store DBMS. It provides
a frame of reference for our self-organizing techniques and a
platform for real-life experiments.

The central storage component in MonetDB is a binary as-
sociation table (bat), i.e. a 2-column data structure. Bats
can be defined over any of the built-in set of data types.
The elements comprising a bat are physically stored in a
contiguous area. There are no holes, deleted elements, or
auxiliary data in this storage structure, which means that a
bat can be conveniently split at any point.

The MonetDB engine interprets query plans described in
the MonetDB Assembly Language (MAL), which provides
a rich set of relational operators over bats. In addition,
it provides a minimal set of building blocks, such as func-

function user.s1_0(A0:dbl,A1:dbl):void;
X1:bat[:oid,:dbl]:= sql.bind("sys","P","ra",0);
X16:bat[:oid,:dbl]:= sql.bind("sys","P","ra",1);
X19:bat[:oid,:dbl]:= sql.bind("sys","P","ra",2);
X23:bat[:oid,:oid]:= sql.bind_dbat("sys","P",1);
X30:bat[:oid,:lng]:= sql.bind("sys","P","objid",0);
X32:bat[:oid,:lng]:= sql.bind("sys","P","objid",1);
X34:bat[:oid,:lng]:= sql.bind("sys","P","objid",2);
X14 := algebra.uselect(X1,A0,A1,true,true);
X17 := algebra.uselect(X16,A0,A1,true,true);
X18 := algebra.kunion(X14,X17);
X20 := algebra.kdifference(X18,X19);
X21 := algebra.uselect(X19,A0,A1,true,true);
X22 := algebra.kunion(X20,X21);
X24 := bat.reverse(X23);
X25 := algebra.kdifference(X22,X24);
X26 := calc.oid(0@0);
X28 := algebra.markT(X25,X26);
X29 := bat.reverse(X28);
X33 := algebra.kunion(X30,X32);
X35 := algebra.kdifference(X33,X34);
X36 := algebra.kunion(X35,X34);
X37 := algebra.join(X29,X36);
X38 := sql.resultSet(1,1,X37);
sql.rsColumn(X38,"sys.P","objid","bigint",64,0,X37);
sql.exportResult(X38,"");

end s1_0;

Figure 1: select objId from P where ra between
205.1 and 205.12

tional abstractions, guarded blocks, and exception handling,
to obtain a computationally complete language. The execu-
tion paradigm is based on materialization of all intermediate
results.

The compilation stack consists of three components: SQL-
MAL code generator, a tactical optimizer, and the run time
engine. The SQL compiler for MonetDB maps the rela-
tional tables into collections of bats, whose head column
is an oid. The query is compiled into MAL using common
heuristic optimization rules aimed at data volume reduction.
The tactical optimizer is a MAL to MAL transformation sys-
tem. It is used to refine the plans using information about
resource availability, distribution, and general symbolic eval-
uation rules. Furthermore, each relational operator has an
embedded optimizer to choose the best algorithm for the
operands involved. This technique, called operational opti-
mization, has proved pivotal in the performance and main-
tenance of MonetDB system.

Figure 1 illustrates a cached non-optimized query plan de-
rived from the statement select objId from P where
ra between 205.1 and 205.12. After optimization the
complete plan involves about 80 MAL operations, includ-
ing resource management tasks, such as releasing bats with
intermediate results from the storage pool. The target for
our adaptation algorithms is to modify this plan before it is
taken into execution.

Even though MonetDB supports arbitrarily large bats, the
current implementation is optimized for operations having
their operands in main memory. The system relies on the
operating system to perform virtual memory I/O operations
efficiently, which hinders performance as soon as bat sizes
reach the memory limits.



Although the memory capacity of modern computers contin-
uously increases, the application data sizes also grow. Such
high volume data are typical in present-day scientific appli-
cations, such as the MonetDB/SkyServer project [8]. For
example, a single column of a 4-byte real type of the largest
table there already takes 1GB storage space. Although the
MonetDB engine touches only the columns relevant to the
query, the size of these columns together with the materi-
alized intermediates can quickly exhaust memory resources
and incur multiple I/O operations. Consequently, it is de-
sirable to find a column organization that allows to further
limit the I/O operations only to the relevant pieces of the
columns.

3. SOLUTION SPACE
A solution for self-organization must include answers to a
several design issues. This section discusses the most im-
portant of them, namely, the level of the software stack that
fits best for integration of self-organization; the schemes to
determine whether or not reorganization should be under-
taken, and when to perform the reorganization itself.

3.1 Integration in the Software Stack
The main design issue of a self-organizing system is where
in the software stack to make data segmentation decisions.
Those are commonly part either of the database code, e.g.,
as hardwired page sizes, or of the logical scheme, e.g. parti-
tioning conditions attached to individual table definitions.

Our quest to produce a self-managing system rules out the
second option. Reorganization should have no impact on
the front-ends, i.e. the user is unaware of any such decision,
nor able to control it directly.

Embedding segmentation decisions in the context of the data
structures and the relational operators would be a route
taken in a Volcano-style engine [6]. In MonetDB each and
every operator is highly tuned towards producing a mate-
rialized intermediate result using a main-memory frame of
reference. Implementing data segmentation on this level re-
quires a complete re-design of the engine, which would affect
thousands of algorithms.

Furthermore, in an ideal world the best segmentation is the
one that best anticipates and supports the query workload.
Since the future is hard to predict, the recent past is con-
sidered a good predictor. A hardwired solution based on a
priory fixed sized blocks are not considered a viable solution
in the volatile application environments.

Therefore, self-organization should aim at the tactical opti-
mization layer of the MonetDB software stack where global
resource decisions are made and MAL programs can be trans-
formed to cope with specific cases. We merely have to iden-
tify candidate bats and inject calls to a segment optimizer,
which transforms operations against a segmented bat into a
segment-aware instruction sequence against individual seg-
ments of the bat relevant to the query. Two principle re-
placement strategies are possible and the choice is based on
the number of segments, preferably known at query opti-
mization time. For a small number of segments, an instance
of the instruction is added for each segment relevant to the
query. For a large number of segments an iterator approach

is applied. In both cases an additional set of instructions
might be needed to construct the result from the partial
results if a blocking operator follows in the plan.

The optimizer also collects information about cpu and mem-
ory usage patterns of key operators against a bat and de-
cides to split it into pieces, or glue segments together. The
choice to integrate segmentation on the tactical optimizer
level is crucial to allow on-line reorganization during the
regular work of the system.

The segment optimizer uses an in-memory segment meta-
index that allows for easy detection of the segmented tables
in the query plans. The catalog describes various segment
properties that can be used during query optimization with-
out touching the data. For example, the information about
segment sizes is used to estimate the memory footprint of
the plan and for efficient memory allocation.

The segmentation decision at the optimizer level may still
require some segment aware operations. For example, it
is relatively easy to design a sum() over a segmented bat,
while sorting over a segmented column effectively requires
a major re-partitioning. Both algorithms are much faster
than their centralized version.

To illustrate the code produced by the segment optimizer, we
use the first selection operator from the example in Figure
1. The corresponding snippet from the execution plan is:

X1:bat[:oid,:dbl] := sql.bind("sys","P","ra",0);
X14 := algebra.select(X1,A0,A1);

Here the X1 variable is bound to a bat named ra, and the ex-
ecution plan parameters A0 and A1 are bound to the pred-
icate constants 205.1 and 205.12. The select operator eval-
uates the range predicate ra between 205.1 and 205.12.
For a non segmented ra bat with positional organization
the operational optimizer chooses an implementation based
on a full scan.

When the ra bat is split into value-ranged segments, the
segment optimizer transforms the snippet above into a se-
quence with an iterator over the segments as follows:

Y1:bat[:oid,:dbl] := bpm.take("sys_P_ra");
Y2 := bpm.new(:oid,:dbl);
barrier rseg:=bpm.newIterator(Y1,A0,A1);

T1:=algebra.select(rseg,A0,A1);
bpm.addSegment(Y2,T1);

redo rseg:= bpm.hasMoreElements(Y1,A0,A1);
exit rseg;

The Y1 variable is bound to the segmented on value ranges
column ra, while the Y2 variable is bound to a new seg-
mented bat to hold selection results. The iterator is pred-
icate enhanced and uses the segment meta-index to return
only those segments that overlap with the selected range of
[A0,A1]. The selection over those segments is registered in
the meta-index as a part of the result.

3.2 Segmentation Models
While a static segmentation is based on assumptions about a
stable and predictable query workload, self-organizing seg-
mentation adjusts to the workload continuously. Given a
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Figure 2: Gaussian Dice

selection predicate on a column, the system needs a policy
(also called segmentation model) to determine whether the
selection should be used to create a segment or not. In-
tuitively, the policies should avoid creating too many small
segments for two reasons: to keep the overhead of segment
maintenance minimal, and to avoid segment iteration over-
head. On the other hand, keeping large segments incurs
unnecessary disk reads and high memory footprint during
query execution. Hence, we are looking for models that aim
not only to split the column in query-beneficial places, but
also to find a balance with respect to segment sizes. Next, we
consider two such policies: Gaussian Dice (GD) and Adap-
tive Page Model (APM).

3.2.1 The Gaussian Dice
This policy exploits randomized behavior to guide segmen-
tation decisions. A naive scheme is to flip a coin with each
query to decide on continuous breaking up the column into
multiple pieces. To avoid creation of very small segments, we
use a ’learning’ random generator that reflects the changing
segment status as time progresses. The intuition behind this
is to give preference to operations that break a segment into
approximately equally sized pieces and reduce the impact of
point queries on the segments structure.

The ingredients of GD are the ratio between the sizes of the
segment produced P and the segment considered for split-
ting S, and the ratio between the size of S towards the total
column size. The basis of the model is a Gaussian proba-
bility distribution G with µ = 0.5 and σ = SizeS/TotSize.
The function O(x) = G(x)/G(0.5) is used as a decision func-
tion for all segment ratios. The shape of the probability for
several values of σ is shown in Figure 2. The choice of σ
parameter gives preference to selections splitting relatively
large segments.

Whenever a segmentation decision is made, we randomly
draw a number r ∈ [0..1) and check if r < O(SizeP /SizeS).
In this way selections that split a segment in a ratio x = 0.5
have higher probability to be used for reorganization than
operations extracting small pieces.

3.2.2 Adaptive Pagination Model
The second policy is an adaptive pagination model where
the decision about reorganization is taken deterministically

using estimates of the segment sizes. Aiming to achieve a
balance of segment sizes, we introduce a pair of bounds:
a lower bound Mmin is used to guard the system against
fragmentation into too small pieces, while an upper bound
Mmax , Mmin < Mmax specifies how many extra reads the
system is ready to pay for point queries. APM decides about
splitting a segment S based on the following rules:

1. if SizeS < Mmin , the segment is left intact.

2. if SizeS > Mmin the sizes of sub-segments created by
the selection are checked. If all of them have estimated
size above Mmin , the segment is reorganized using the
materialized result of the selection.

3. if the selection creates small pieces with size under
the Mmin bound, it is considered inappropriate to be
used for splitting. However, there is a chance that
the segment might be queried again in the near fu-
ture. To speed up subsequent queries and to better
control the memory footprint the segment is reorga-
nized if SizeS > Mmax . Since the query bounds would
cause creation of some small piece, the splitting point
in this case is chosen among the query bounds or an
approximation of the mean value in the segment.

A characteristic of the APM model is that sizes of segments
touched by queries converge relatively fast to the interval
Mmin <= SizeS <= Mmax . By adjusting the parameters
Mmin and Mmax we can tune the policy to be more or less
aggressive in issuing column reorganizations.

3.3 Self-organizing Techniques
When the segment optimizer decides that it is beneficial to
split a segment S, the third design issue is to decide when
to conduct the split. The major alternatives are:

• Post-processing. The optimizer only marks the seg-
ment for splitting, but the reorganization is performed
after the query is executed. This allows for finding
an ’ideal point’ for the split, for example producing
equi-depth sub-segments balancing memory resources.
Furthermore, several suggested splits can be combined
in one batch and performed at once choosing optimal
splitting points. This alternative resembles existing
off-line reorganization in many systems. However, the
potential delay may cause subsequent queries on the
same segment to miss potential benefits. The total
overhead can also be substantial, since the reorganiza-
tion requires all marked segments to be loaded again
in memory and scanned.

• Eager materialization. The optimizer keeps the se-
lected sub-segment and eagerly reorganizes the original
one. Thus, the creation of the selected sub-segment
is piggy-backed on the query execution and incurs no
extra costs. However, the sub-segments outside the
selection scope have to also be materialized, which in-
curs the main reorganization overhead. This overhead
substantially increases the processing time of initial
queries when the entire column or its large parts are
being reorganized. It becomes faster as more and more
queries are processed. Another issue for consideration
is that the selection bounds may not be the optimal



Algorithm 1 Adaptive segmentation

for all segments S overlapping with query range
[QL, QH] do

if segmentation model decides split of S then

scan S and materialize its sub-segments
replace S with its sub-segments

Figure 3: Segmentation example

split points from fragmentation and memory resource
point of view. We will call this alternative adaptive

segmentation.

• Lazy materialization. The materialized results of a
selection are kept and registered in the segment meta-
index, but the remaining pieces are reorganized upon
need when subsequent queries touch them. Thus, par-
tial replica segments are created which incurs bigger
storage requirements. The strategy also affects the
query execution when a best suited replica set needs
to be chosen for each query. The main advantage is
that almost entire reorganization is piggy-backed on
the query execution resulting in minimal total over-
head and minimal disturbance on the query load. We
will call this alternative adaptive replication.

In this work we consider the last two self-organization tech-
niques interleaved with the query execution. The segment
optimizer implements them by injecting calls to a corre-
sponding reorganizing module after select operations over
segmented tables. In the following sections we describe those
strategies in detail.

4. ADAPTIVE SEGMENTATION
With this technique a column is represented as a sequence
of adjacent non-overlapping segments. Initially, the column
is stored in a single segment which is gradually reorganized
into a list of segments as selection queries arrive. Each re-
quest creates an opportunity for splitting some segments.
Whether this opportunity is exploited by the system is de-
cided using the segmentation model, GD or APM. If the
model decides to split a segment, it is replaced by its two or
three sub-segments.

The main steps of adaptive segmentation are shown in Al-
gorithm 1. Figure 3 illustrates the process using the APM
model for an example load of three queries. In the initial
state S0, the column is represented by a single segment.
Query Q1 causes its reorganization into three segments (rule

Figure 4: Replication example

2). Next, Q2 issues a split of the first sub-segment, but not
of the second where the selection is too small (rule 2 is not
fulfilled). Note, that query Q2 does not need to scan the last
segment which does not overlap with its range, i.e. it im-
mediately benefits from the reorganization triggered by the
first query. Finally, query Q3 with small selectivity causes a
split at the mean value of the last segment (rule 3).

5. ADAPTIVE REPLICATION
In adaptive replication segments are organized in a hierar-
chical structure, a replica tree. A segment S is a child of a
segment P if the range of values in P is a super-set of the
range of values in S. The root of the tree is a segment con-
taining the entire domain of values of the attribute stored
in the column.

We introduce two types of segments: materialized and vir-
tual. The materialized segments contain real data. Vir-
tual segments are used to support the replica tree by com-
pleting the ranges of materialized segments. Consider a se-
lection query [QL, QH] that splits a segment S with range
R = [SL, SH] into two sub-ranges R1 = [SL, QL − 1] and
R2 = [QL, SH] and assume for simplicity an integer domain
and inequality SL < QL < SH < QH. The values in the
range R2 are materialized as a result of the selection op-
erator, and thus a sub-segment with this range is created
at no extra cost. The range R1 is a complement of the se-
lected range R2 to the original segment range R. A virtual
segment S1 is created with a range R1 and its size is esti-
mated, but no data is copied. Both new segments S1 and
S2 are attached to the replica tree as children of segment
S. If a later query hits the virtual segment S1, the system
may choose to materialize it. In that case the segments S1
and S2 would form a full replica of the segment S which al-
lows dropping the original segment S to reduce the storage
requirements.

The growing of the replica tree for the example workload
is illustrated in Figure 4. Virtual segments are depicted
with cross-filling. The result of selection Q1 is kept as a



Algorithm 2 Adaptive replication

1: procedure AdaptReplication(ql, qh)
2: cv ← getCover(ql, qh, root)
3: for all s ∈ cv do

4: M ← analyseRepl(ql, qh, s)
5: scanMat(s,M)
6: check4Drop(s)

7: end procedure

Algorithm 3 Find minimal covering set of a query

cover global variable for covering set
cur current position in cover
function getCover(ql, qh, s)

start← cur
if s.ancnumber = 0 then ⊲ Recursion bottom

if s.virtual then

return 0
else

cover[cur]← s
cur ← cur + 1
return 1

else ⊲ Recursion on ancestors
for all p ∈ s.ancestors do

if qh >= p.low ∧ ql <= p.hgh then

if (getCover(ql, qh, p) = 0) then

cur ← start ⊲ Backtrack
if s.virtual then

return 0
else

cover[cur]← s
cur ← cur + 1
return 1

return 1
end function

replica segment. Together with two complementing virtual
segments they cover the entire domain range. Note, that
both queries Q2 and Q3 overlap with virtual segments and
need to scan the entire column in contrast with adaptive
segmentation.

The main steps in adaptive replication are shown in Algo-
rithm 2. First, given the selection bounds [QL, QH] the
system determines a set of materialized segments to be used
for query answering. Each segment in the set is analyzed for
potential replication using the segmentation model. If the
system decides to create a replica, it is added to a material-
ization list, M . Then a single scan of the covering segment
is used to materialize the replicas in the list and the query
results. Finally, the algorithm checks if the segment can be
dropped from the replica tree in case its children fully repli-
cate it. Next, we will describe those steps in more detail.

Since data is partially replicated, query processing should
avoid generating the same results more than once. To ex-
ploit advantages of partial replicas, the system should de-
termine an optimal replica set to answer a query. Since vir-
tual segments do not contain data, the optimizer finds the
minimal set of materialized segments covering the selection
query. More formally, the minimal covering set S =

S

Si for
a query [QL, QH] is defined as follows:

Algorithm 4 Analyze possible replicas. Return list M

function analyzeRepl(ql, qh, s)
if s.ancn = 0 then ⊲ Recursion bottom

c← segModel(ql, qh, s)
switch c do

case 0 : ⊲ query entirely covers s or
⊲ small subsegments in small s

if s.virtual then

M ← s ⊲ s is materialized without split

case 1 : ⊲ query covers lower part of s
m← newSegment(s, s.low, qh,′ mat′)
v ← newSegment(s, qh + 1, s.hgh,′ vir′)

case 2 : ⊲ query covers upper part of s
v ← newSegment(s, s.low, ql − 1,′ vir′)
m← newSegment(s, ql, s.hgh,′ mat′)

case 3 : ⊲ query entirely inside s
v1← newSegment(s, s.low, ql − 1,′ vir′)
m← newSegment(s, ql, qh,′ mat′)
v2← newSegment(s, qh + 1, s.hgh,′ vir′)

case 4 : ⊲ some subsegment is small but s is large
if s.low < ql ∧ s.hgh > qh then

⊲ split on one query border
if qh− s.low < s.hgh− ql then

m← newSegment(s, s.low, qh,′ mat′)
v ← newSegment(s, qh + 1, s.hgh,′ vir′)

else

v ← newSegment(s, s.low, ql − 1,′ vir′)
m← newSegment(s, ql, s.hgh,′ mat′)

end switch

M ← m
else ⊲ Analyze ancestors for replication

M ← ∅

for all p ∈ s.ancestors do

if qh >= p.low ∧ ql <= p.hgh then

M ←M ∪ analyzeRepl(ql, qh, p)

return M
end function

1. All segments Si are materialized.
2. The selection range [QL, QH] is included in the union

of segment ranges [SLi, SHi].
3. No segment can be replaced by its materialized chil-

dren without violating rule 2.
4. No segment can be dropped from the set without vio-

lating rule 2.

The steps for finding the covering set are presented in Algo-
rithm 3. An important assumption while finding the cover-
ing set is that all segments are equally accessible in memory.

For each segment in the covering set the algorithm ana-
lyzes the overlap between the query range and the segment
bounds to decide about replica creation using the segmenta-
tion model, GD or APM, and their parameters. Algorithm
4 sketches the rules of this analysis. Following the main idea
to create replicas only for those parts in which queries have
expressed interest, the algorithm adds replicas of selection
ranges (cases 1, 2, and 3) or the smallest super-set of the
selection (cases 0 and 4).

As time passes, the number of replicas grows and the system
must take care to not over-utilize storage resources. This is
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Figure 5: Cumulative memory writes due to segment materialization. Uniform distribution
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Figure 6: Cumulative memory writes due to segment materialization. Zipf distribution

achieved by continuous checking for possible replica dele-
tions. If all immediate children of a segment are material-
ized, the segment can safely be dropped from the tree and
its children attached directly to its parent. If this is a mate-
rialized segment, the effect is a release of storage resources.
The steps are described in Algorithm 5. Currently, we do
not impose limitations on the replica tree depth, nor on the
total storage budget. These issues are a subject of future
work. The next section includes an evaluation of the depth
and storage parameters of the replica tree.

Algorithm 5 Check and drop replica

procedure check4Drop(s)
if s.ancnumber = 0 then return

for all p ∈ s.ancestors do

check4Drop(p)

for all p ∈ s.ancestors do

if p.virtual then

return ⊲ children do not replicate s

q ← s.parent ⊲ s can be dropped
for all p ∈ s.ancestors do

p.parent← q

replace s in q.ancestors with s.ancestors
free memory allocated for s

end procedure

6. EXPERIMENTAL EVALUATION
The evaluation includes a thorough simulation of both adap-
tive techniques complemented with experimentation with
adaptive segmentation on a real workload on a 100GB data
set from the SkyServer project [14].

6.1 Simulation
We simulated the core algorithms of MonetDB, its man-
agement in a constrained memory buffer setting, and its
read/write behavior as data is flushed to secondary store.
This architecture conscious simulator has proved to be a
good basis for assessing the techniques proposed before the
engineering task started.

The results reported here are based on a column with 100 K
values taken from a domain of a 1M different integer val-
ues. We simulated both adaptive segmentation and repli-
cation using both segmentation models GD and APM. The
APM bounds were set to 3KB and 12 KB, respectively for
Mmin and Mmax . The simulated workload contained 10 K
range selection queries. To investigate strategy behavior
with various workloads we chose two selectivity factors (0.1
and 0.01), as well as uniform and skewed (Zipf) distribution
of the queries over the attribute domain.
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Figure 7: Memory reads for the first 1000 queries.

Uniform distribution, selectivity 0.1

6.1.1 Overhead
To estimate the reorganization overhead we measured the
number of writes due to segment materialization with seg-
ments including query results, as shown in Figures 5 and 6
for uniform and zipf distribution, respectively. For all com-
binations of selectivity and distribution, adaptive replication
requires less writes than its counterpart segmentation. This
confirms our expectations, since the replication lazily ma-
terializes segments after being accessed by some query. For
the deterministic APM model, the reduction of writes is sta-
ble by a factor of 2.5 (note that graphs use log scale), while
for the GD model the difference depends on the workload
characteristics.

In general, the APM model stops reorganizing the column
after an initial number of queries. With uniform query dis-
tribution (Fig.5) this saturation comes after approximately
a hundred queries, while with skewed distribution (Fig.6)
we still observe reorganization after 3000 queries since some
previously untouched areas of the domain are hit for the
first time and reorganized. In contrast, the GD model keeps
issuing reorganization with decreasing probability, since it
does not have strict bounds for segment sizes.

A close look at the first few queries shows that the GD model
is less aggressive in replication and thus can be preferable if
we want to reduce the overhead on the initial workload.

The selectivity factor in the query load affects the segmen-
tation decisions. While segmentation reorganizes an entire
segment independently of the precise selected size, the repli-
cation overhead is directly affected by the selectivity factor,
as it can be seen for the initial queries. This observation also

Table 1: Average read sizes in KB for 10K queries

Strategy U 0.1 U 0.01 Z 0.1 Z 0.01

GD Segm 40.7 31.2 41.8 11.2
GD Repl 41.1 28.5 43.7 11.1

APM Segm 43.6 12.7 46.3 11.3
APM Repl 45.0 13.2 48.5 13.4

hints that the replication technique needs a guard against
replicating too big pieces.

6.1.2 Benefits
Next, we investigated how different strategies achieve the
main goal of segmentation, namely to improve performance
by limiting data scans to query-relevant pieces of the col-
umn. Figure 7 shows the number of memory reads dur-
ing the first 1000 queries with uniform distribution. As ex-
pected, the number of reads drops very fast with adaptive
segmentation for both APM and GD models. Initially, the
replication curves, especially the APM replication, show a
number of spikes corresponding to a full scan of the column.
Those spikes are caused by queries that hit untouched areas
of the attribute domain that are not covered yet by smaller
partial replicas (recall queries Q2 and Q3 in the example
in Section 5). In all cases the number of reads reduces and
stabilizes as query workload progresses.

Table 1 shows the average number of reads per query for
the entire experimental sequence of 10K queries. For the
workload with selectivity 0.1 the number of reads converges
to the minimal number of 40KB for all strategies and query
distributions, with values for replication slightly above the
segmentation values.

The number of reads with the APM model and selectivity
0.01, converges to 11-13KB and does not reach the mini-
mum determined by the selection size of 4KB. The reason
is that small selections trigger a split only if the segment
size SizeS > Mmax , set here to 12KB. Since entire segments
are read the number of reads cannot go under the segment
sizes. The GD strategy creates large segments for uniformly
distributed queries and selectivity 0.01. Since small selec-
tivity in GD, i.e. a small value of x, is associated with small
probability for a split, the reorganization is triggered very
rarely and segments remain relatively large.

6.1.3 Replica Tree
Since adaptive replication requires extra storage, we also
used the simulator to analyze the parameters of the replica
tree. With a uniformly distributed query load, the replica
tree needs extra storage of about 1.5 times the column size,
which reduces substantially after the first 250 queries (Fig.
8). The biggest drops in the storage curve correspond to
the moments when the initial segment containing the en-
tire column was fully replicated by its materialized children
and dropped. The replica tree transforms into a structure
very close to the segment list created by the adaptive seg-
mentation with occasional, small size replicas. This pro-
cess also occurs with skewed workload (Fig. 9) but it takes
much longer (between 3K and 6 K queries) until the skewed
queries hit and reorganize all areas of the attribute domain.



1MB

800KB

600KB

400KB

 50  100  150  200  250  300  350  400  450  500

R
e
p
lic

a
 s

to
ra

g
e

Queries

DB size
GD Repl

APM Repl

(a) Selectivity 0.1

1MB

800KB

600KB

400KB

 50  100  150  200  250  300  350  400  450  500

R
e
p
lic

a
 s

to
ra

g
e

Queries

DB size
GD Repl

APM Repl

(b) Selectivity 0.01
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Another observation is that storage needs always reduce
faster with the GD model. The main reason is that the
models treat large segments with small sub-segments differ-
ently: The APM would split a materialized segment S if
SizeS > Mmax materializing a sub-segment that is a super-
set of the selection. Thus, APM allocates storage but needs
to wait until a new query hits the non materialized sub-
segments before getting a full replica and releasing the stor-
age taken by S. In the same situation, due to the small
selection and, hence, small value of the parameter x, the
GD model will decide with high probability to not split,
thus not taking any extra storage. Similarly, if the segment
S is virtual, the GD decision to not split it causes its ma-
terialization at once, thus allowing its parent segment P to
be dropped if S was P ’s only virtual ancestor. APM again
materializes a sub-segment of S and waits for a new query to
trigger the materialization of complementary sub-segments
before it is possible to release the storage taken by P .

6.2 SkyServer Workload
To ground the simulation we also performed experimental
runs against a prototyped extension of the MonetDB sys-
tem. In this section we report on results obtained with the
adaptive segmentation algorithm on a real workload from
the SkyServer project [14].

The evaluation platform is a PC with two Dual Core AMD
Opteron(tm) Processor 270 2 GHz and 8GB memory. We
took a 100GB sample of the SDSS -4 database. This still fits
on a simple desktop PC, but certainly makes the database
disk bound on most queries. Even in a column-store DBMS.

We filtered the queries overlapping with the footprint of the
100GB database from a one-month query log of SkyServer.
The column of interest is the right ascension (ra), a real data
type, included in most spatial search queries. Three work-
loads, each of 200 queries, were extracted: random picks
one out of every 300 queries and covers the attribute domain
uniformly; skew extracts 200 subsequent queries from the
log that access two very limited areas of the domain, and
changing consists of four pieces of 50 subsequent queries
with changing point of access. We used two versions of the
APM model with Mmax set to 5MB and 25MB, respectively,
and Mmin set to 1MB.

We expected adaptive segmentation to show better query
times after the initial overhead is amortized with the gains
from the faster selection. We also expected the adaptive
strategies to suit better to the skewed workload.

Figure 10 shows the average time spent in adaptation vs.
selection after the first 200 queries. For all workloads the
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Table 2: Segments statistics

Load Scheme Segm.# Avg size Deviation

Random GD 31 5.6 7.9

Random APM 1-25 23 7.6 7.5

Random APM 1-5 62 2.8 1.3

Skewed GD 100 1.7 9.9

Skewed APM 1-25 6 28.9 9.6

Skewed APM 1-5 10 17.4 14.5

adaptation overhead for the APM schemes is smaller than
for Gaussian Dice since the former is more conservative in
splitting small segments. Similarly, the overhead for APM1-
5 is bigger than for APM1-25 which does not split when a
small range is selected out of a segment with SizeS < 25 MB.

Due to the smaller upper bound the APM1-5 scheme creates
smaller segments than APM1-25, as shown by the segment
statistics in Table 2. Smaller segments give bigger gain from
saved scanning as illustrated by the reduced selection times
in Figure 10.

Figures 11 and 12 show a more detailed picture of accumu-
lated and moving average query times, respectively, for the
adaptive schemes compared with a non-segmented database
on a random workload. The initial overhead for reorganiza-
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tion in adaptive strategies slows down the first queries but
provides better system response after a relatively small num-
ber of queries, with APM1-25 first amortizing the overhead
after 30 queries.

Figures 13 and 14 illustrate the accumulated and moving
average query times for skewed workload. The total over-
head of APM schemes is smaller than for a random load,
since the reorganization affects a very limited area of the
domain. However, the GD scheme hits its worst case. In
the skewed load queries hardly differ in their selection pred-
icate and chop very small pieces. As a result, 80% of the
segments contain less than 1000 tuples, which are expensive
to reorganize and, in addition, need gluing of small pieces
for the subsequent queries.

The performance for a changing workload in Figures 15 and
16 illustrates how shifting the point of query interest trig-
gers reorganization of untouched segments. It results in a
temporary increase of the overhead after queries 50 and 100,
which evens out soon after too.

7. RELATED RESEARCH
The major DBMS vendors support segmentation and repli-
cation in a static, non self-organizing way that requires ex-
plicit human guidance. Workload analyzers are considered
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the tools to help in this process [17, 16, 3]. The main prin-
ciple is to find an optimal configuration of the database for
the expected application workload. Since the task is re-
source intensive, it is performed off-line and relies on human
guidance to determine the representative workload and to
take the final decisions. AutoPart [11] proposes workload-
based database partitioning and illustrates it on the Sky-
Server database. The algorithm is applied off-line and on the
level of the SQL schema. In contrast, adaptive techniques
work continuously on the tactical optimizer level completely
transparently for the SQL front-end.

On-line tools for physical design tuning have been a hot area
of research in the last years [12, 13, 5]. They monitor the
query load, keep statistics on the existing and virtual alter-
natives and change the auxiliary access structures (indices
and materialized views). We however investigate reorga-
nization techniques applicable on-the-fly to the main data
structures in a column-store.

The related work on column-stores focuses on issues such
as materialization of intermediates in the query plan [2],
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combining compression with query execution [1], etc., and
strongly relies on the assumption about positional ordering
of columns. Projections (sets of columns) are organized us-
ing primary and secondary sorting which keeps positional
correspondence of values in multiple columns. Data access
is block-oriented and iterators process all blocks, while adap-
tive techniques presented here exploit a value-based organi-
zation per column to limit data access to the segments of
interest.

Our approach is in-line with the promising development of
database cracking [7], which, however, reorganize a complete
in-memory replica of the cracked column. In contrast, the
adaptive segmentation reorganizes the column itself in a way
suitable for large columns residing on disk and only needs
to keep the segment meta-index in memory.

Sybase-IQ is a system with column-store as an auxiliary in-
dexing scheme. It represents the case where a table attribute
is complemented with a replica organized as a bit-map. The
decision which attribute to handle this way is again a human
decision.



SD-SQL Server [9] also proposes dynamic reorganization of
the segments of scalable tables. The reorganization is, how-
ever, issued on the SQL front-end level, which requires spe-
cial SQL syntax when queries are posted against scalable
tables. Adaptive segmentation is supported on the tactical
optimizer level and is transparent to the front-ends. Split-
ting in SD-SQL Server is controlled by the inserted data
values and a pre-set segment capacity, while in adaptive
segmentation it is controlled by the access frequency in the
query workload. Finally, the target applications also differ:
SD-SQL Server aims to fulfill the needs of gradually grow-
ing tables for mixed-workload applications, while we address
data warehouse applications with few large bulk loads and
prevailing read-only queries.

8. SUMMARY
Adaptive segmentation and replication in a column-store
provide an outlook on significant performance improvements
and simplified management. Reorganization decisions can
be made an integral part of query execution, i.e. query re-
sults are harvested to improve future performance.

Both the careful simulation and the experimentation with
a prototype implementation of the adaptive segmentation
technique, confirmed our expectations for improved perfor-
mance due to optimized access to relevant pieces of the
columns with value-based segment organization.

Both strategies demonstrate their advantages and shortcom-
ings in different scenarios. The adaptive segmentation uses
a minimal amount of storage to maintain a sparse segment
index, but the start-up costs are relatively high. The adap-
tive replication trades off some extra storage to allow further
reduction of the overhead. Likewise, the APM segmentation
model can be chosen when a good overall long-term reduc-
tion of the overhead is preferable, while GD model is useful
if it is important to reduce the initial overhead or the extra
storage need of adaptive replication.

This research opens a number of interesting issues. Adaptive
replication needs further investigation on how to automati-
cally achieve optimal replica configuration in the presence of
storage limitations. To achieve complete self-organization,
the APM segmentation model needs to automatically deter-
mine the values of its controlling parameters. Another di-
rection of work are complementary merging strategies that
counter the fragmentation into small segments occurring
with GD model for some query workloads. Orthogonal to
the above issue is how to exploit the partitioning provided
by the segmentation and replication in a distributed column-
store system.
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