
Generic and Updatable XML Value Indices Covering
Equality and Range Lookups

Lefteris Sidirourgos
CWI

Amsterdam, The Netherlands
E.Sidirourgos@cwi.nl

Peter Boncz
CWI

Amsterdam, The Netherlands
P.Boncz@cwi.nl

ABSTRACT
We describe a collection of indices for XML text, element,
and attribute node values that (i) consume little storage,
(ii) have low maintenance overhead, (iii) permit fast equi-
lookup on string values, and (iv) support range-lookup on
any XML typed value (e.g., double, dateTime). The equi-
lookup string value index depends on an elaborate hash func-
tion and on an associative combination function to facilitate
updates on both mixed-content and element nodes. We also
present techniques for creating range-lookup indices sup-
porting any ordered XML typed value. These indices rely
on a finite state machine that accepts the type specific lan-
guage, and on a state combination table for combining states
to speed-up updates. We evaluate the stability of the hash
function, the storage overhead, and the indices creation and
maintenance time in the context of the open-source XML
database system MonetDB/XQuery.

1. INTRODUCTION
The semantics of XQuery are designed to facilitate query-

ing both typed and untyped XML data, whose contents in
turn may vary from strongly structured data to very loosely
structured mixed-content data. For instance,

doc("persons.xml")//person[.//age = 42]

will return <person> nodes, that have at least one <age>

node with integer value 42. In absence of an XML Schema
that would give <age> a specific type, the equality predi-
cate will match all <age> nodes with a string value that is
castable to an xs:double with value 42.0, e.g.,

<age>42</age>

However, other matching instances exist, such as

<age>42.0</age> and <age> +4.2E1</age>

That is, any text node containing a decimal number, or a
double in various syntactical forms (including leading white
space characters) all cast to 42.0.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DATAX ’09, March 22, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-650-2 ...$5.00.

To further complicate things, the string value of an ele-
ment node or a mixed-content node, is the concatenation of
the string values of all descendant text nodes [10], such that
the following node also matches the predicate.

<age><decades>4</decades>2<years/></age>

While this flexibility is one of the crucial advantages that
XML offers over relational data management technology, it
complicates the generic use of value indices for general com-
parisons. As a result, XQuery systems typically require a
system administrator to specify the document sub-paths and
the value casts to be indexed. In case of DB2 PureXML [7],
for example, one could do

create index myindex on items(person) generate key

using xmlpattern "//person//age" as sql double

However, this approach has the following disadvantages: (i)
only queries that use the specific listed paths can be acceler-
ated, (ii) the index is type specific; i.e., an index on double
values cannot be used in case of string lookups, and (iii) in
contrast to current trends in data management systems, it
requires explicit (DBA-induced) index configuration.

In our view, the above mixed XML content example of
age being decomposed in decades and years, yet acciden-
tally mapping onto 42, is a rather unintended consequence of
the XPath and XQuery standards, that may even be called
undesired. However, it is part of these well-entrenched stan-
dards and should thus be supported by XML database sys-
tems. This work addresses the above by investigating index-
ing techniques that enable self-tuning index management,
by creating generic XML value indices that cover an entire
document, not just a single path with one particular value
type, and allow equi-comparisons on string values, as well
range-lookup on any XML typed value. The index struc-
tures presented in this paper are optimized for the cases
where values represented by a single node are looked up,
but also are able to correctly deal with mixed XML content.

String Equi-Index. The string value index depends on a
specialized hash function H(str) : int, carefully designed to
map arbitrary length string values into integer hash values in
such a way that hash collisions are kept low. The hash func-
tion can be used to index XML text, element, and attribute
node values. A (B-tree) index, constructed on the hash val-
ues, can be used for accelerating string value lookups, e.g.,
for evaluating the XPath expression

doc("persons.xml")//person[.//first="Arthur"]

that returns all <person> nodes with first name "Arthur".

person

name

first

"Arthur"

family

"Dent"

birthday

"1966-09-26"

age

decades

"4"

"2" years

weight

kilos

"78"

"." grams

"230"

Figure 1: XML Document about persons

In addition, we define an associative combination function
C(int, int) : int that can be used to derive the hash value of
the concatenation of a list of string values. This is achieved
by using the hash values computed over the individual string
values of the list, thus avoiding accessing the actual string
data which can be costly. Figure 1 depicts the tree rep-
resentation of an XML document about a person. In this
example, the string value of node <name> is "ArthurDent".
Thus, the XQuery query

doc("persons.xml")//*[fn:data(name)="ArthurDent"]

returns node <person>. In effect, the hash value of an ele-
ment can be computed by combining, through function C,
all hash values of its direct children. When updates are also
considered, reconstructing the hash value index requires vis-
iting all ancestors of the updated nodes and their immediate
children, in order to recompute the hash values with function
C. This means that on well-shaped trees, with log n depth
and a low fanout, index maintenance costs remain limited.

Typed Range-Index. Moreover, we construct indices for
range-lookup on other XML typed values, and still respect
the mixed-content and element node semantics. Of particu-
lar interest are the types xs:dateTime and xs:double [11].
Note that an index on xs:double can be used to accelerate
predicates on all numerical XQuery types.

This group of range-lookup indices relies on finite state
machines (FSM) that recognize the language that accepts
the specific type. For example, if double values are consid-
ered, an FSM can be defined such that it recognizes (po-
tential) valid lexical representations. This FSM will return
a reject state if an illegal sequence of characters is encoun-
tered, or the state in which the FSM terminated. In case
of doubles and for typical XML data, the majority of all
text nodes that do not represent a numeric value will be re-
jected immediately, avoiding waste of indexing resources. A
minority of nodes will contain potential valid lexical repre-
sentations, i.e., those that although they cannot be casted to
a double value, do not contain an illegal sequence of charac-
ters (they are just incomplete). For example, the text node
"78" rooted at node <kilos> in Figure 1 is a valid lexical
representation that can be casted to a double. On the other
hand, the text node "." rooted at node <weight>, although
not castable to a double value, is a potential valid represen-
tation – it misses one or more leading and trailing digits.

In addition to an FSM, a state combination table (SCT)
is defined for each supported XML typed value. The role of
the SCT is similar to that of function C for the string value
index: to efficiently decide if the combination of two nodes is
a (potential) valid lexical representation of the XML typed
value and to return their combined state. For example, con-
catenating all descendant text nodes of node <weight>, i.e.,

<kilos>78</kilos>.<grams>230</grams>

produces a valid lexical representation of a double value,
namely 78.230. As in the case of function C, SCT is used
during the creation and updates of the range-lookup index.
Finally, based on the selection of only those nodes that con-
tain a valid lexical representation of the indexed type pro-
vided by the FSM, a (B-tree) index is built on the values of
those nodes to facilitate fast range lookups.

The main characteristics and novelty of the indices pre-
sented in this work can be summarized in the following:

cover the entire document: all element, attribute, and
text nodes are indexed, independently from their path

respect the XQuery semantics: the indices works cor-
rectly even in the presence of intermediate and mixed-
content nodes

self-tuned: in the sense that no explicit index configura-
tion, which defines a type and/or a path, is required

consume little storage: no data replication is needed

updatable and low maintenance overhead: the design
of the indices are driven by the need of efficient updat-
able generic indices.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 and 4 details the indexing
techniques. Section 5 describes the implementation details
for creating and updating the indices. The experimental jus-
tifications of our claims are presented in Section 6. Section 7
concludes our work.

2. RELATED WORK
We focus our study of related work to fully functional

XML engines, and their implementation of value indices. To
the best of our knowledge there is no other work that address
the problem of generic XML value indices that work well, are
updatable and are able to deal with the abnormality of the
mixed-content node data values. All systems we examined
require a user-originated definition of specific paths to be
indexed, in contrary to our solution which covers the entire
document.

In the context of DB2 native XML engine [4, 7] value
indices are supported only for path-specific values and for
predefined types. A query is been accelerated by those in-
dices only if the path and the type match. The key of such
XML indices is [pathid, value, nodeid, rid]. The order
in which these tuples are indexed (e.g., on pathid or value)
facilitate different kind of query acceleration.

In [8] two different types of XML indices are constructed,
namely primary and secondary. The primary index is a
B+-tree on tuples of the form [ordpath, tag, nodetype,

value, pathid], ordered according to the document order.
The secondary indices are defined on top of the B+-tree
keys, and on the columns of interest. For example, the
XML value index is defined on [value, pathid, ordpath].
Such indices allow to speed up evaluation for specific queries,
however, as also pointed out in [9], they do not respect the
XQuery Data Model.

3. STRING VALUE INDEX
We present a fully updatable index covering equality lookups

on XML string values. The index is based on a specialized

Hash function H

input: XML string value str as sequence of chars

output: 32-bit hash value hval

1: hval = 0; /∗ initialize hval ∗/
2: /∗ populate the c-array ∗/

for (offset = 0; ∗str!=’\0’; str++)
c = ∗(str) & 127;

3: /∗ circular XOR operation∗/
hval ˆ= c << offset;
if (offset > 20)

hval ˆ= c >> (27 - offset);
4: offset += 5; /∗ update offset ∗/

if (offset > 26) offset -= 27;
5: /∗ set the offc bits ∗/

hval <<= 5; hval |= offset;

6: return hval;

Figure 2: Algorithm for Hash Function H

hash function H that maps string values to hash values.
Hash values are then indexed for fast lookup during query
time. Each hash value is associated with a set of candidate
XML node ids, which can then be further processed to select
those nodes whose value and path structure are relevant to
the query.

The hash function H accepts a sequence of characters (i.e.,
an XML string value) and outputs a 32-bit hash value. The
27 most significant bits of the hash value, called in the se-
quel c-array, are used for hashing characters. Since an XML
string value may be of arbitrary length we base the hash
function on a circular XOR operation. The circular XOR
operator works by applying the XOR operator between the
7 least significant bits of the value1 of each character and the
c-array, starting from the right most position (i.e., position
0), and gradually incrementing the offset by 5 bits to the left.
When the end of the c-array is reached, that is when the off-
set is set to 25, 2 bits of the next character are XOR-ed to
positions 25 and 26, while the remaining 5 bits are XOR-ed
back to positions 0-4 of the c-array. The next character is
then XOR-ed with the offset set to (25 + 5) mod 27 = 3,
thus circling around the c-array. The process is repeated
until all characters of the sequence are processed. To pro-
duce hash values with such circular XOR operation, the 5
least significant bits of the 32-bit hash value are reserved
for storing the offset information of the circle, i.e., the offset
where the next character should be XOR-ed. More specific,
the format of the hash value produced by the hash function
H is

C27 · · · 1
| {z }

27-bits

|OFFC
| {z }

5-bits

where

C1. . . 27: The 27 most significant bits, forming the c-array,
are reserved for hashing all characters of the XML string
value. The c-array is built by applying the circular XOR
operator.
OFFC: The least 5-bits form the offc field that encodes the
27 different offset positions of the c-array (i.e., the elements
of set Z27).

Figure 2 details the algorithm for computing the hash
value. The input is an XML string value str. The algo-
rithm populates the c-array by iterating over all characters
of str (line 2). The circular XOR operator is implemented
by first shifting offset times to the left the 7 least bits

1ASCII or UTF value depending on the implementation

"A": 1 0 0 0 0 0 1 offset=0

"r": 1 1 1 0 0 1 0 offset=5

"t": 1 1 1 0 1 0 0 offset=10

"h": 1 1 0 1 0 0 0 offset=15

"u": 1 1 1 0 1 0 1 offset=20

"r": 1 0 1 1 1 0 0 offset=25

hval 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 - 0 0 0 1 1
c-array offc

Figure 3: Example of computing H("Arthur")

of the current character, and then XOR-ing with hval (line
3). If the offset is larger than 20, then the remaining bits,
computed as (offset+7) mod 27, are XOR-ed back at the
beginning of the c-array. Next, the offset is incremented by
5 for the next iteration (line 4). When all characters of str
are consumed, the offc bits are set (line 5) and the hval is
returned (line 6).

Figure 3 depicts the iteration steps of function H for com-
puting the hash value of "Arthur", the text node of element
<first> in the XML document of Figure 1. The procedure
starts with offset=0. When the offset is 25, character "r"
has to be processed. The 7 least significant bits of "r" are
1110010. From those, the two least significant bits (10) are
XOR-ed with hval at positions 25 and 26, while the 5 re-
maining bits (11100) are XOR-ed to positions 0 to 4. The
algorithm ends and the hval is returned. The offc bits are
set to 3 (00011), indicating the next value of offset.

We define an associative function C(int, int) : int to com-
bine hash values during index creation and updates. Func-
tion C is designed such that given two string values strleft
and strright it holds that

H(concat(strleft, strright)) = C(H(strleft), H(strright))

where concat() is the string concatenation function.
The combination function C is used during the creation

of the index, as well in the event of updates. Suppose that
the string value of node <family> in Figure 1 is updated
from "Dent" to "Prefect". After computing the new hash
value of node <family> with H("Prefect"), the hash value
of node <name> must be updated too, and consequently node
<person>. Without the combination function C that would
call for evaluating once more

h<name> = H("ArthurPrefect"), and
h<person> = H("ArthurPrefect1966-09-264278.230").

Obviously, for large documents this is very inefficient since
the string values of all nodes in the document have to be
visited in order to reconstruct the hash values. However,
with function C we only need to invoke function H once
for the updated text node. The hash values of all ancestors
of the updated node are reconstructed by visiting only the
siblings of the ancestors, and reading their hash values, as
opposed to reconstructing their string values. For example
the new hash value of node <name> will be computed by

h<name> = C(h<first> , h<family>)

where h<first> and h<family> are the already computed hash
values of nodes <first> and <family>. Similarly, the new
hash value of node <person> will be

h<person> = C(h<name> , C(h<birthday> , C(h<age>, h<weight>))).

Combination function C

input: hash values hleft and hright
output: combined hash value hcomb

1: hcomb = 0; /∗ initialize hcomb ∗/
2: /∗ copy the c-array of the left operand to hcomb ∗/

hcomb |= mask27(hleft)
3: /∗ circular left shift ∗/

hcombˆ= (mask27(hright) << mask5(hleft)) |

mask27(mask27(hright) >> (27-mask5(hleft)));
4: /∗ add the offc bits of the left and right operands ∗/

hcomb |= (mask5(hleft) + mask5(hright)) % 27;
5: return hcomb;

mask5(h) := h & 31
mask27(h) := h & (~31)

Figure 4: Algorithm for Combination Function C

Figure 4 details the algorithm to combine two hash val-
ues, namely hleft (the left operand) and hright (the right
operand). The algorithm outputs the combined hash value
hcomb of the input hash values. First, the c-array of the left
operand is copied to hcomb (line 2). In order to combine the
c-array of the right operand with hcomb , we apply the stan-
dard circular left shift operation to the c-array of hright. The
c-array of hright is shifted to the left by as many positions
as indicated by the offc bits of hleft. The result is then
XOR-ed back to hcomb (line 3). Then, the offc bits of hleft

and hright are added, to update the offset information of the
result hash value hcomb (line 4). Finally, the combined hash
value hcomb is returned (line 5). The algorithm uses func-
tions mark5 () and mark27 (), which apply bit operations to
separate the c-array and the offc bits from the input 32-bit
hash values.

The correctness of the output of function C is based on
the observation that the XOR operator has the associative
property, i.e., if i, j, k are integers, then (î j)̂ k = î (j k̂). By
shifting the right operand to the left, we permute the posi-
tion 0 of the c-array to the position indicated by the offset
of the left operand. Recall that the offc bits of the hash
value indicate the offset where the next character should be
XOR-ed. Effectively, function C continues the circular XOR
operation of function H but in a different order of applying
the XOR operation. However, because the XOR operation
has the associative property the result is guaranteed to be
correct.

Next, we prove by induction the associative property of
function C, that is:

H(a1 · · · an) = (eq. 1)

= C(C(. . . C(H(a1), H(a2)) . . . , H(an−1)), H(an))

= C(H(a1), C(H(a2), . . . C(H(an−1), H(an)) . . .))

proof. The proof is by induction on n, the number of string
values a1, . . . , an that form the concatenated hash value
H(a1 · · · an). The base case is n = 2, that is H(a1a2) =
C(H(a1), H(a2)), which holds from the definition of function
C. For n greater than 2, assume that (eq. 1) holds for all
k ≥ 2 such that k < n.

H(a1 · · · an−1) = C(. . . C(H(a1), H(a2)) . . . , H(an−1))
(Ind. Hyp. with k = n − 1)

H(a1 · · · an−1an) = C(H(a1 · · · an−1), H(an))
(by base case)

e
e, E

s3

s1

s2

s4
0..9

−

+ 0..9

0..9

ws

0..9

ws

.d
0..9

.

s5 s6

s7

s8

s9

s10

.

0..9

0..9

0..9

E
+

−

0..9
0..9

0..9
ws

ws

0..9

ws
ws

E

d′

+
+

−
−

ws
ws

s11

s12

0..9

0..9 0..9

ws+

−

0..9

0..9

Figure 5: Finite State Machine for double values

H(a1 · · · an−1an) =

= C(C(. . . C(H(a1), H(a2)) . . . , H(an−1)), H(an))
(by base case and Ind. Hyp.)

Similarly, we can prove the second equality of equation (eq. 1).
Thus, changing the order of operations (i.e., the order of ap-
plying function C) does not produce a different hash value
H .2

In Section 5 we present an efficient and simple algorithm
for visiting the relevant nodes and (re)compute the hash
values, during index creation and updates.

4. TYPED RANGE-LOOKUP INDEX
We describe an updatable index covering range lookups

which can be defined over any XML typed value. We detail
the index over double values, however any other XML built-
in type can be supported by applying the same ideas. The
index is exact: it does not return false positives, neither it
misses any nodes with value that matches the query.

This family of indices is based on finite state machines
(FSM) that recognize the language that accepts the syntax
(i.e., lexical representation) of the indexed XML type. Fig-
ure 5 illustrates the corresponding FSM for double values.
Each distinct state of the FSM is depicted with a circle and
each transition from one state to an other by an arrow. The
arrows are labeled with the symbol of the language that per-
mits the specific transition (E stands for the exponent char-
acter of doubles, and ws for whitespace characters). Double
lined circles signify final states and states with incoming
edges without a source signify initial states. Each state is
marked with a unique label. In this content, all finite state
machines that recognize an XML type are deterministic.

Notice that although the FSM of Figure 5 appears to have
5 initial states and 3 independent state transition graphs,
each initial state is marked with a different symbol. Thus,
depending the first character of the node string value, a
different initial state is considered, implying the existence
of a virtual empty initial state that redirects to the correct

rej e . d s1 s2 . . .

rej rej rej rej rej rej rej . . .

e rej rej rej s3 rej rej . . .

. rej rej rej s5 rej rej . . .

d rej s6 s5 d s7 s8 . . .

s1 rej rej rej s3 rej rej . . .

s2 rej rej rej s3 rej rej . . .

.

.

.
...

...
...

...
...

...
. . .

Figure 6: State Combination Table (SCT)

initial state.
Moreover, if there is more than one path leading to the

same state, we expand the FSM in such a way that these
paths lead to different copies of the same state, which in
turn, the copied states are marked with a new unique label.
This normalization of the FSM allows to uniquely identify
the initial state and the path that leads to each state. For
the proposed index, only through this normalization of the
FSM, we can properly determine the consequences of con-
catenating arbitrary node string values by examining the
states and not their string values. For presentation reasons,
we have omitted the detailed expansion of the FSM in Fig-
ure 5: state d′ redirects the FSM to state d, and for each
distinct incoming edge of state d′ (e.g., +, -, s12, etc.) dif-
ferent new labels are applied to all states following d. As a
result, there are 60 different states including the reject state.
The reject state (not visible in Figure 5) is reached always
when the next character is not part of the language or it
does not infer a valid state transition.

According to the semantics of the XQuery Data Model,
each value of an XML node, if it does not evaluate to the re-
ject state, is a potential accepted value. That is, because of
the mixed content semantics: a non-final state may be evalu-
ated to a final state if its siblings are considered. Therefore,
the first step of creating the typed range-lookup index is
to associate each XML node with a state. More specific,
during the creation of the index, the lexical value of each
text node is fed to the FSM. The FSM returns the state at
which the recognition process has stopped. For example, if
the lexical value of the given text node is "E+93 ", state s4
is returned. Similarly, if the lexical value is " +32.3" then
the state labeled s11 + s5 is returned (state is not shown in
Figure 5, but implied by the jump from d′ to d). Finally,
if the lexical value is not a (potential) valid representation
of the typed value, for example "42 text", then the reject
state is returned. The result of this first step of the index
creation is that each text node is assigned a state accord-
ingly to the returned state of the FSM. Notice, that since
the total number of states is small – in the case of doubles
only 60 – the state can be saved with only one byte for each
node. Moreover, the nodes that are evaluated to the reject
state, which will be in most cases the majority, do not need
to store any state – the absence of a state signifies the reject
state.

The next step for creating (or updating) the index is to
determine the state of the intermediate nodes. The desire
is to be able to efficiently compute the state of an interme-
diate node without reconstructing the lexical representation
of that node. Moreover, it should be possible to early reject
intermediate nodes that do not have a valid lexical represen-
tation and thus avoid unnecessary traversal of the XML tree.

This desire is fulfilled by defining a state combination table
(SCT). The SCT is a succinct representation of all possible
valid combinations of the states. Valid combinations are the
ones that do not result in a reject state. The SCT for the
double type is depicted in Figure 6. The size of the complete
table is 60×60. However, most of the combinations result to
a reject state. The succinct representation of the SCT omits
all pairs that result in a reject state. Out of the 3600 differ-
ent combinations, only 389 are non-reject. Moreover, since
each state can be represented by a byte, the SCT consumes
even less memory space. Finally, the normalization of the
FSM described in the beginning of this section ensures that
such a SCT always exists.

To facilitate fast range lookups a clustered (B-tree) index
is built on top of the typed values which are associated with
the id of the node they belongs to. In addition, a second
index is built on the node ids. This index is used during the
creation and updates of the typed value index for retrieving
the state of a node id. The keys of the (B-tree) index are
tuples of the form [value, state, node id]2. Moreover,
some nodes may have a (potential) valid state but for storage
efficiency do not need to store a value. For example if the
state is s2, then there is no valid double value, and the state
label itself is sufficient to deduce the lexical representation,
namely "E-" or "e-" (which of the two equivalent represen-
tations is irrelevant for constructing the combined double
value). In addition, the (B-tree) indices are used during cre-
ation or update of the typed XML indices to reconstruct the
lexical representation of a specific node, without accessing
the document data. For example if the value of a node is
"26" while the state is s7, then the lexical representation of
that node is "26E+".

5. IMPLEMENTATION DETAILS
In this section we present the implementation details for

creating and updating the indices by employing the func-
tionality and data structures introduced in the previous sec-
tions. We have implemented both indices in the context of
the open-source XML database system MonetDB/XQuery
[6]. Although some details are system specific and are tightly
coupled with the internal data structures of the XQuery en-
gine at hand, we present the skeleton of the algorithms as
generic as possible. In general, only small adjustments would
be necessary to successfully apply these ideas to other sys-
tems.

5.1 Index Creation and Updates
Internally, MonetDB/XQuery stores an XML document in

such a way that permits efficient depth-first traversal. This
is achieved by employing a range encoding on the documents
nodes, similar to the pre/post encoding. For more details
we refer the reader to [1]. It is realistically assumed that
every XQuery engine provides a similar interface for efficient
traversal over the XML document tree.

All indices are created and updated with the same skeleton
algorithm, only the functions called in each case are changed.
The algorithm is based on a depth-first traversal of the XML
document and since all indices are independent of each other,

2depending the design of the XQuery engine – focusing on
space or computational efficiency – the second (B-tree) can
be clustered also, thus having tuples of the form [value,
node id] and [node id, state]

Index Creation
input: a sequence of all XML text nodes of a document as ctx

output: hash value or state for all XML nodes of the document

01: /∗ initialize variables ∗/
02: init all nodes.field to 0 or undef

03: cur_node = DFS.getRoot();
04: /∗ loop while all text nodes are consumed ∗/
05: while (ctx.hasNext())
06: if (ctx.current == cur_node)
07: cur_node.field = H(cur_node)|FSM(cur_node);
08: ctx.next();
09: else if (ctx.current descendantOf cur_node)

10: stack.push(cur_node);
11: cur_node = DFS.nextChildNode();
12: else if (ctx.current siblingOf cur_node)

13: father_node = DFS.getFatherNode();
14: father_node.field =

= C(father_node.field, cur_node.field)/
SCT[father_node.field][cur_node.field];

15: cur_node = DFS.nextSiblingNode();
16: else
17: pop_node = stack.pop();

18: pop_node.field =
= C(pop_node.field, cur_node.field)|

SCT[pop_node.field][cur_node.field];
19: cur_node = pop_node;

20: /∗ empty stack with visited nodes ∗/
21: while (stack.notEmpty())
22: pop_node = stack.pop();

23: pop_node.field =
= C(pop_node.field, cur_node.field)|

SCT[pop_node.field][cur_node.field];
24: cur_node = pop_node;

Figure 7: Algorithm for Index Creation

creating and updating multiple defined indices can be done
simultaneously with only one pass.

Figure 7 depicts the algorithm for creating both the string
equality index and the XML typed range index. Intuitively,
the algorithm works as follows. The depth-first traversal
starts at the root of the document until all text nodes are
visited (lines 3-5 of Figure 7). The traversal is guided down-
wards until the first text node is found, while each visited
intermediate node is pushed into a stack (lines 9-11). When
a text node is located, function H or the FSM is called (lines
6-8). Next, and to locate the next text node, either the node
on the head of the stack is popped (line 16), or the sibling
nodes of the current node are considered (line 12). These
cases traverse the XML document tree either upwards or
rightwards to locate the next text node. However, in both
cases the parent node of the current node has to be updated
with the combined hash value or state. This is achieved by
invoking function C or probing the SCT (lines 13-15 and
17-19). Finally, and after all text nodes are visited, the
stack is emptied and all nodes popped from the stack are
updated accordingly (lines 21-24). Notice that the func-
tions calls on the DFS module appearing in Figure 7 (e.g.,
DFS.nextSiblingNode()) are always evaluated against the
current node.

The update algorithm is outlined in Figure 8. It works
similar to the create algorithm in Figure 7. The first differ-
ence between the two algorithms is that when a new node is
added in the stack, its field is reset since it is not valid any
more (line 9). This is, because if the depth-first traversal
reached that node, it means that some of its descendants
have been updated. The second difference is that when a
node is popped from the stack, its new hash value or state
is the combination of all of its children. In other words, its

Index Update
input: a sequence of updated XML text nodes as ctx

output: updated hash value or state for all affected XML nodes

01: /∗ initialize variables ∗/
02: cur_node = DFS.getRoot();

03: /∗ loop while all text nodes are consumed ∗/
04: while (ctx.hasNext())
05: if (ctx.current == cur_node)

06: cur_node.field = H(cur_node)|FSM(cur_node);
07: ctx.next();

08: else if (ctx.current descendantOf cur_node)
09: cur_node.field = 0|undef;

stack.push(cur_node);
10: cur_node = DFS.nextChildNode();
11: else if (ctx.current siblingOf cur_node)

12: cur_node = DFS.nextSiblingNode();
13: else

14: pop_node = stack.pop();
15: while (DFS.hasSiblingNode())

cur_node = DFS.nextSiblingNode();

pop_node.field =
= C(pop_node.field, cur_node.field)|

SCT[pop_node.field][cur_node.field];
16: cur_node = pop_node;

17: /∗ empty stack with visited nodes ∗/
18: while (stack.notEmpty())
19: pop_node = stack.pop();

20: cur_node = DFS.leftMostSibling();
while (DFS.hasSiblingNode())

cur_node = DFS.nextSiblingNode();
pop_node.field =
= C(pop_node.field, cur_node.field)|

SCT[pop_node.field][cur_node.field];
21: cur_node = pop_node;

Figure 8: Algorithm for Index Updates

combined hash value or state must be recomputed across all
its immediate children (lines 14-16 and 19-21). A side effect
of this recomputation is that during the traversal of siblings
nodes (line 11) – contrary to the create algorithm – there is
no need to update the father node, this will happen even-
tually when that node is popped from the stack in a later
step.

The algorithm presented in Figure 8 expects only updates
on the value of a text node. However, in the case of a node
or subtree deletion, a slight change in the algorithm solves
the problem. More precisely, the algorithm gets as input the
node that served as the root of the subtree that was deleted.
In that case, the text value of that node –after the deletion
of the subtree– is either the empty string or a new value. In
either case, the update algorithm is invoked with the new
value of the node, oblivious of the deleted subtree.

5.2 Transaction Management
A final consideration for the update implementation is

transaction management overhead, in particular its locking
requirements. A general challenge in XML value indexing
is that the value of a node is (potentially) influenced by all
its descendants. This implies that each update may impact
the root node, and locking the root for each transaction can
easily become a bottleneck.

A first remark on the proposed typed XML range indices,
is that in typical XML documents, only leaf nodes and not
intermediate nodes (let alone the root) have a type such as
xs:double (see also Table 1). The proposed indexing scheme
only stores nodes with a potential valid typed lexical value,
which in general means that it contains only leaf nodes.
Therefore, an adaptive locking scheme that supports fine-

Data Size (MB) #Nodes #Text Nodes #Double Values #non-leaf
XMark1 112 4,690,640 3,024,328 (64%) 377,123 (8%) 0
XMark2 224 9,394,467 6,056,817 (64%) 754,936 (8%) 0
XMark4 448 18,827,157 12,138,505 (64%) 1,514,227 (8%) 0
XMark8 896 37,642,301 24,269,192 (64%) 3,026,029 (8%) 0

EPAGeo 170 6,558,707 4,372,404 (66%) 517,862 (7%) 0
DBLP 474 34,799,707 23,198,402 (66%) 3,748,565 (10%) 21
PSD 685 58,445,809 37,139,989 (63%) 2,441,791 (4%) 902
Wiki 2024 94,672,619 53,564,889 (56%) 104,059 (0.1%) 0

Table 1: Statistical information for the data sets

grained locks and is able to gradually enlarge the lock gran-
ularity [3] should work rather efficiently with this index.

For our other proposal concerning the equality index on
strings, we do have the situation that all XML nodes have
a string value and must be indexed, the root node inclu-
sive. Each single update changes the hash value of all its
ancestors, thus always affects the root node! However, in the
context of structural updates for the MonetDB/XQuery sys-
tem [2] it was shown that locking ancestors can be avoided
if updates are commutative, and the combination function
C has indeed been developed specifically with this property
in mind. It is in fact possible to avoid locking any ancestors
of updated nodes during transaction processing until the
commit point. A committing transaction should re-read the
latest value of all ancestor nodes of an update (and their di-
rect children, per the update algorithm) to recompute their
new hash values. Even if siblings of the updated node where
changed in the meantime and thus affected these ancestors,
the commutativity of the C function ensures that we will
compute the correct hash values in the end.

6. EXPERIMENTAL EVALUATION
In this section we present our experiments for evaluat-

ing the index creation time, the disk storage overhead, and
the maintenance overhead (i.e., update time), for both the
equality string and the range typed index. We also studied
the collisions introduced by the hash function H to asses
the stability of the string index and identify which cases of
abnormal input text values affect this stability.

The experiments were conducted on an IntelR CoreTM2
Quad CPU Q6600 machine, running at 2.40GHz with 4MB
cache memory. The machine had 8GB of RAM and 2 hard
disks with active raid level 0, capable of reading(writing)
from(to) disk with approximately 100MB/sec.

We used 8 different documents of varying size and struc-
ture. The first 4 documents were synthetically created with
XMark3 with scale factors 1, 2, 4, and 8, respectively. The
remaining 4 documents reflect “real life” data, since they
were download from online databases. The data set EPA-
Geo4 contains geospatial data, the PSD5 dataset contains
protein sequence data, while DBLP6 and Wiki7 contain text
data about publications and abstracts of articles, respec-
tively. Table 1 details the size (in MBs) of each data set
before shredding in the database, the number of nodes in
the document, the number of text nodes, and the number of

3http://www.xml-benchmark.org/
4http://www.epa.gov/enviro/geo data.html
5http://pir.georgetown.edu/
6http://dblp.uni-trier.de/xml/
7http://download.wikimedia.org/

text nodes that have a (potential) valid double lexical rep-
resentation. Next to the number of text and double nodes,
the percentage compared to the total nodes of the data set
is given to ease the comparison. The last column depicts the
number of non-leaf nodes that have a (potential) valid dou-
ble value. The datasets generated with XMark do not have
any such nodes, while only the DBLP and PSD datasets
have a few number of them. This observation strengths our
claim that intermediate nodes that cast to a specific XML
type is a rare phenomenon, nevertheless an XML value in-
dex should respect the semantics of the XQuery Data Model.
Our indices are semantically correct, and, as we will illus-
trate in this section, this is achieved without introducing
any significant overhead.

The first set of experiments study the time and space over-
head for creating the indices during shredding, that is when
the document is processed and stored in the database. All
runs were done in cold memory – none of the XML data
resided in memory – thus the total shredding time includes
the time needed to read the data from disk. We repeated
the same experiments three times and report the average
times. The deviation of each run from the average time was
minor (less than 10ms). The two upper graphs of Figure 9
list the time in milliseconds needed by MonetDB/XQuery
to shred the document, and the time needed by our create
algorithm to construct the string and double indices. The
bars in Figure 9 give a visual of the overhead percentage in-
troduced in the shredding process from the index creation.
For the string index, the overhead never exceeds 10% in the
worst case, while for half of the cases is less than 5%. For
the double index, the creation time overhead is less than 2%
in all cases. This is expected, since the combination step is
cheaper than that of the string index – probing an array vs.
invoking a function.

The lower part of Figure 9 depicts the storage consumed
by the string and double index compared to the storage de-
mands of the database for the specific documents. The stor-
age needs of the string index is at most 20% (e.g., EPAGeo,
PSD) over the total document and 10% in the best cases
(e.g., XMark, Wiki). The difference is explained by the dis-
tribution in each document of the string data and the num-
ber of nodes. Small number of text nodes with large size
of string data resort to less storage consumption than large
number of text nodes with few data in each node. On the
other hand, the storage demands of the double index is lim-
ited. It never exceeds 2-3% of the total size of the database.
This is mainly because a) each state is only 1 byte and b)
there are few text nodes that have a valid double lexical
representation compared to the total number of nodes.

We next evaluate the update performance of the indices.
The update queries were created by first defining the number

String Equi Index Double Range Index

20%
40%
60%
80%

100%

no
rm

al
iz

ed
 ti

m
e

string index time
shred time

508 1030 2104 4260 497 2261 3088 8968

68
42

14
87

7

28
07

9

55
68

0

78
38

51
34

7

62
51

0

21
38

75

20%
40%
60%
80%

100%

double index time
shred time

153 326 660 1345 154 1088 1445 2623

68
42

14
87

7

28
07

9

55
68

0

78
38

51
34

7

62
51

0

21
38

75

20%
40%
60%
80%

100%

XM
ar

k1

XM
ar

k2

XM
ar

k4

XM
ar

k8

EPAGeo

DBLP
PSD

W
iki

no
rm

al
iz

ed
 s

to
ra

ge

string index size
DB size

17.8 35.8 71.8 143.5 25.0 132.7 222.9 361.1

13
0.

1

24
2.

4

45
0.

1

83
2.

1

10
6.

5

73
9.

5

94
4.

0

27
02

.2

20%
40%
60%
80%

100%

XM
ar

k1

XM
ar

k2

XM
ar

k4

XM
ar

k8

EPAGeo

DBLP
PSD

W
iki

double index size
DB size

3.4 6.6 13.4 26.7 4.8 35.6 30.0 1.0

13
0.

1

24
2.

4

45
0.

1

83
2.

1

10
6.

5

73
9.

5

94
4.

0

27
02

.2

Figure 9: String and Double Index Creation Time and Storage Overhead

String Equi Index Double Range Index

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 10 100 1e+3 1e+4 1e+5

tim
e

(m
s)

number of updated nodes

XMark1
XMark2
XMark4
XMark8

EPAGeo
DBLP
PSD
Wiki

 0

 50

 100

 150

 200

 250

 300

 350

1 10 100 1e+3 1e+4 1e+5

number of updated nodes

XMark1
XMark2
XMark4
XMark8

EPAGeo
DBLP
PSD
Wiki

Figure 10: Update Time for String and Double Index

of text nodes whose values should be updated, and then ran-
domly picking the specified number of the text nodes for each
document in the database. The number of updated nodes
varied from 1 to 1 million. Each update query was run 20
times for each document and the average time is reported.
Figure 10 depicts the update times observed for both the
string and the double indices. As expected, because of the
faster combination step, the double index performs slightly
better than the string index. More importantly, for both
indices, even in the case of 1 million updated nodes and for
a document of size bigger than 2 Gigabytes (i.e., the Wiki
dataset), the update time is less than 400 ms. On the other
end, the time for updating a small number of nodes is kept
less than 50 ms for the smaller documents. The experimen-
tal results show that the indices presented in this work are
particularly suited for both cases of a) large number of up-
dated nodes in large datasets, and b) small (transactional)
updates with few updated nodes.

Finally, we study the stability of the hash function H ,
used in the equi-lookup index of strings. Many hash func-
tions produce a fixed size output from an arbitrarily long
input. In such a design, there will always be collisions,
because any given hash has to correspond to a very large
number of possible inputs [5]. Figure 11 depicts for all 8
documents the distribution of the number of distinct strings
that are associated with the same hash value. Almost all
of the strings produce a different hash value. Less than 1%
of the total string values collide with another one for most

1

10

100

1e+3

1e+4

1e+5

1e+6

1e+7

 1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 h

as
h

va
lu

es

number of distinct strings with the same hash value

XMark1
XMark2
XMark4
XMark8

EPAGeo
DBLP
PSD
Wiki

Figure 11: Hash Stability

of the documents, except the last larger ones, namely PSD
and Wiki. But even for those the collisions are kept to less
than 10%. Especially for the Wiki document there are cases
where 9 distinct strings all hash to the same value. This is
observed in the case of data representing URLs, were the
different characters between two distinct URLs are repeated
every 27 positions, while the rest data remain the same to all
strings, such as http://www.. In this case the hash function
fails to produce distinct values because each different char-
acter is been eliminated by appearing twice exactly after 27
positions.

In conclusion, the experiments presented in this section
show that the time and space overhead introduced by our
indices is acceptable, while the update time is kept to the
minimum and the XQuery Data Model is respected. Our

indices are able to support large documents and update mil-
lions of nodes while keeping the false positives – due to hash
collisions – during query time to a minimum.

7. CONCLUSIONS
We presented a family of generic updatable XML value in-

dices capable of answering equality lookups on string values
and range lookups on any XML typed value. These indices
are novel compared to prior solutions because they cover
the entire document, permit fast updates, and conform with
the semantics of the XQuery Data Model. The case were
a mixed-content/intermediate node cast to a specific XML
type is rare, nevertheless, an XML value index should sup-
port it.

We evaluated our design and algorithms in a widely used
open-source XML database system, MonetDB/XQuery. The
indices presented in this work will be part of a future stable
release of MonetDB/XQuery, thus putting our ideas to an
every-day test. We intend to expand our work by designing
indices capable of answering queries that involve substring
matching and regular expressions.

8. REFERENCES
[1] P. Boncz, T. Grust, M. van Keulen, S. Manegold,

J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In Proc. of the ACM SIGMOD, 2006.

[2] P. A. Boncz, S. Manegold, and J. Rittinger. Updating
the Pre/Post Plane in MonetDB/XQuery. In Proc. of
the 2nd XIME-P, 2005.

[3] M. P. Haustein, T. Harder, and K. Luttenberger.
Contest of XML Lock Protocols. In Proc. of the 32nd
VLDB, 2006.

[4] Kevin Beyer et al. System RX: One Part Relational,
One Part XML. In Proc. of the ACM SIGMOD, 2005.

[5] D. E. Knuth. Art of Computer Programming, Volume
2: Seminumerical Algorithms (3rd Edition).
Addison-Wesley Publishing Company, 1997.

[6] MonetDB. http://monetdb.cwi.nl.

[7] M. Nicola and B. van der Linden. Native XML
support in DB2 universal database. In Proc. of the
31st VLDB, 2005.

[8] S. Pal, I. Cseri, O. Seeliger, G. Schaller,
L. Giakoumakis, and V. Zolotov. Indexing XML data
stored in a relational database. In Proc. of the 30th
VLDB, 2004.

[9] A. Vyas, M. F. Fernandez, and J. Simeon. The
Simplest XML Storage Manager Ever. In Proc. of the
1st XIME-P, 2004.

[10] XQuery 1.0 and XPath 2.0 Data Model (XDM).
http://www.w3.org/TR/xpath-datamodel/.

[11] XML Schema Part 2: Datatypes Second Edition.
http://www.w3.org/TR/xmlschema-2/.

