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Chapterr  1 

Introductio n n 

Relationall  Database Management Systems (RDBMS) are commonly used 
forr many business application for almost three decades. Their user friendly 
declarativee query language and abstract logical view on data organization 
aree the main reasons for this success. This declarative query language re-
leasess business application developers from dealing with implementation de-
tails.. They only have to focus on what information is needed, not on how to 
gett it. The later is the task of a query language compiler using a relational 
algebraa as a sound mathematical basis, and gives many ways of optimization. 

Sincee commonly available hardware makes it possible to capture and 
storee images, a need for databases with image management capabilities 
arose.. Large collections of images can easily be obtained from sources like 
CD-roms,, DVD and the Internet. Searching through these collection for 
particularr images is a complex task which requires a proper image retrieval 
queryy language. A research problem still lacking general acceptable solu-
tions. . 

Imagee databases can be used for many applications. Simple examples 
includee presentations, games and educational software. We could think of 
ann educational program teaching students a foreign language or taking an 
examm on the traffic rules. In these applications the image database is used as 
aa persistent image store, which gives the user physical data-independence. 
Thee image is physically stored somewhere, but the user/application is not 
interestedd in its whereabouts. Instead the image can be retrieved using a 
logicall  name. Physical data-independence permits a database administrator 
too move the image without the application noticing it. The advantage is 
thatt the images could be scattered over many disks, distributed over various 
fil ee systems, located worldwide. 

Anotherr application domain which would benefit from image database 
supportt is image analysis. Image analysis applications try to determine the 
semanticss of an image. The image analysis process involves, segmentation, of 
imagess into objects, clustering objects, searching and data reduction. These 

7 7 
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operationss are strongly supported by database systems. In the image anal-
ysiss domain each image is a scene taken from the real world. The transition 
fromm a real 'continues' world to a 'digital' world introduces many challeng-
ingg problems. The image analysis domain could benefit substantially from 
usingg an image database management system. 

Imagee analysis applications require that images can be accessed on other 
methodss than logical names. Retrieval of stored images requires access meth-
odss based on annotations or the image content. Therefore, new query prim-
itivess and search methods are needed. A complicating factor is the lack 
off  accurate data. The data involved, both the image itself and the data 
derived,, are fuzzy since perfect image capturing devices do not exist. Also 
imagess are subject to varying interpretations. An image wil l be interpreted 
differentt by any other person, caused by the persons background knowledge. 

Imagee database researchers focus on an important subset of applications; 
calledd Image Retrieval by Content. These applications try to retrieve images 
basedd on the content of the images. A recurring querying scheme is 'query 
byy example'. Given a sample image the system finds a small set of images 
withh similar content. The critical points here are what is considered similar 
andd what content aspects, called features, should be used. 

Similarityy is often defined as a mathematical function on the features. 
Thesee so called similarity measures make calculation of similarity possible. 
Manyy different similarity measures have been proposed, examples can be 
foundd in [63]. Histogram intersection [106] and weighted Euclidean distance 
[41]]  are among the most commonly used measures. 

Too facilitate image queries a two step process is used. First the images 
aree loaded in the database. Secondly for each image feature values are 
extracted,, a fixed set of features is used. The image queries are expressed 
inn terms of these features and selection is based on predefined similarity 
measures.. Most image retrieval systems provide limited control over the 
featuress used and definition of similarity measures. 

1.11 RDBMS vs IDBM S 

Imagee database management systems (IDBMS) differ from traditional data-
basess management systems in major ways. The first difference is the data 
complexity.. Transaction records are composed of simple data elements like 
namess and numbers. Images, on the other hand, are complex, large arrays 
off  complex values. Also the derived data in an IDBMS is complex, for ex-
amplee at we the contour of an object in an image can be described using a 
polygon. . 

Onn top of the complex data problem is the problem of large object sizes. 
Too illustrate, image databases handle large amounts of sizeable objects (from 
aa few Kil o bytes to several Mega bytes). The granularity of transactions 
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rangess from a few hundred to a few Kil o bytes. These large data elements 
resultss in new requirements for the IDBMS physical storage mechanism. 

Queryy formulation in image databases is more complex. The image do-
mainn brings along a large set of operations. The combination of this set 
off  operations inside the realm of relational operators gives an explosion of 
possibilitiess making it difficult to oversee. The interplay between the various 
operatorss is difficult to predict. 

Thee semantics of the data stored in an IDBMS is unknown. In a tradi-
tionall  transaction processing application all data values are understood by 
casuall  users. When we query the database for all persons with age between 
188 and 25 we know exactly what we get back. Contrary an image query is 
worthh a thousand words conveying a multitude of semantics. It may well 
havee various interpretations. These semantics have no mathematical basis. 
Thiss complicates posing and answering queries. A related issue is that data, 
especiallyy derived data is fuzzy. Many measurement errors may have altered 
it .. The image may largely differ from the real world scene from which it 
iss taken. Therefore, the database should be able to handle incomplete and 
noisyy data. 

Thee last difference from traditional database systems lays in the way 
thee databases are used. The general use of a database in business applica-
tionss involves many transactional updates, such as inserting, updating and 
deletingg values. In image database systems updates tend to be much more 
incremental.. Once an image is inserted there is littl e chance that the im-
agee is changed or deleted. Therefore, image database applications are much 
moree query intensive than traditional systems. Knowing these characteris-
ticss makes it possible to improve the overall system performance. 

1.22 Contributions and Thesis Outline 

Thee main contribution of this dissertation is an exploration of facilities 
neededd for the design and construction of a successful image database sys-
tem.. Portions have been implemented in the context of the Monet DBMS to 
obtainn a first assessment of the choices made. However, a complete IDBMS 
iss beyond the scope of this thesis, for it requires a large, multi person, engi-
neeringg effort. The facilities needed are organized by chapter as follows. 

Chapterr 2 introduces the basic requirements for an image database, i.e. 
imagee storage and management. We founded the requirements on the theory 
off  the image algebra, which supplies us with a complete set of image types 
andd operations. 

Inn Chapter 3 we introduce the physical representation for our image 
dataa type. We map the image processing operations on relational operators 
makingg it possible for query optimizers to optimize these operations. Also 
wee show possible optimizations of mapping both in storage and processing 
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requirements. . 
Too obtain the requirements for image retrieval we looked at new image 

retrievall  methods: the multi-level signature and region image indexing. 
Onee requirement obtained using these experiments is the need for a spe-

ciall  image retrieval query language. Therefore, we developed the image re-
trievall  algebra which forms the proper basis for such a language. In Chapter 
44 this algebra is introduced. Many new database primitives are introduced 
andd their relevance is shown via a preliminary benchmark definition geared 
att image retrieval queries. 

Inn Chapter 5 we proved the applicability of image databases in the field of 
imagee analysis, using a case study. In this study we looked at line clustering, 
aa basic step in many image analyzing applications. We showed databases 
aree effective; they reduce the programming effort and stimulate code reuse, 
andd they are efficient; our implementation proved significant performance 
improvementt over the earlier attempts in this area. 

Thee inherently fuzzy data as found in this field lead to algorithms which 
searchh for similar objects. To handle such queries better we introduce in 
Chapterr 6 a new query predicate, the fitness join. Making this key operator 
explicitt at the algebra level provides a handle to optimize its processing. A 
feww directions for optimization are described. 

Inn Chapter 8 we introduce an indexing structure, the metric index struc-
ture,ture, to optimize this fitness join operation at a minimum of cost overhead. 
Wee showed that metric indexing is a low cost index structure outperforming 
thee R-tree[52]. This structure uses the triangular inequality to reduce the 
numberr of calculations of a fitness function. 

Thee Chapters mark a route to a successful IDBMS. The individual steps 
takenn have been commented upon by the research community These Chap-
terss were published earlier in other forms: 

 The Multi-level Signature image retrieval method was explained in 
thee paper, 'Database support for image retrieval using spatial-color 
features'' [78]. 

 An earlier version of the Region Image Indexing was explained in the 
paper,, 'Region-based Indexing in an Image Database'[79]. 

 The paper 'The Acoi Algebra: A Query Algebra for Image Retrieval 
Systems'[80]]  introduced the first image retrieval algebra. 

 In the paper 'Database support for line clustering'[81] image databases 
weree first introduced for image analyzing tasks. 

 Metric indexing was explained in the paper 'Metric Indexing to Im-
provee Distance Joins'[82]. 

 The fitness joins are explained in 'Fitness joins in the Ballroom'[66]. 
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Otherr related publications not discussed in this thesis: 

 The papers, 'Image Retrieval Using Linear Greyscale Granulometries'[3t 
andd 'Color Image Texture Indexing'[36] explain image retrieval tech-
niquess where texture is described using object granularity. 

Inn Chapter 8 we summarize the results of the thesis and look forward 
forr further research possibilities. 





Chapterr  2 

Imagee Databases 

Inn this chapter we explain what kind of database management system ap-
propriatee is to construct and manage image collections. In particular, we 
introducee a requirement list for assessing a DBMS for deployment in this 
area.. Subsequently we introduce our experimentation platform, the Monet 
DBMSS [8], in more detail. We conclude with a short evaluation of com-
merciall  database and image retrieval systems, including Monet, against our 
requirementt list. 

2.11 Multi-Media Database Systems 

Thee research field of image database systems can be characterized as a subset 
off  the field of multi-media database systems. Multi-media database man-
agementt systems are software systems dealing with data both with weil-
andd ill-defined semantics. Data with well-defined semantics is usually called 
structuredd data, examples are numbers and formatted records. Data with 
ill-definedd semantics is usually called unstructured data, such as text, au-
dio,, image and video. Example application areas for Multi-Media database 
managementt systems are Digital Libraries, Video on demand systems and 
newss archives. 

Thee combination of multiple media imposes additional requirements on 
thee DBMS, because they typically can not be dealt with in isolation. The 
combinationn of multiple media gives additional valuable information and 
mayy therefore be easier to understand. Another important issue is quality 
ofof service, i.e. the clients of the multi-media database may not be able to 
handlee a fast multi-media stream. 

Inn this thesis, we restrict our research to a single media type, namely still 
imagess from the context of database research. Although this greatly reduces 
thee domain, it makes the project manageable within the limited resources 
given. . 

Wee belief that progress obtained in the design of image database man-
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agementt systems carries over to the subsequent extensions to deal with other 
mediaa types. The trajectory followed results in a requirements list for image 
databases.. Many of these requirements also hold for multi-media databases 
att large. 

Thee basic functionality to support Image Database Management Systems 
centerss around the following issues: 

 Image Storage 

 Image Operations 

 Derived Image Data 

 Image Semantics 

 Image Queries 

Thesee issues are elaborated upon in the next sections. 

2.1.11 Image S to rage 

Thee first requirement for an Image Database Management Systems (IDBMS) 
is,, of course, the ability to store images. The image processing community 
usess many image file formats. Well known examples include: TIFF, GIF, 
PNG,, JPEG, PPM, BMP, PICT and XPM. These formats have been de-
signedd for specific applications or as an attempt to set a standard for image 
dataa exchange, however, non is general enough to support all image types. 
Too illustrate, many of these Mie formats, such as GIF, PNG, JPEG, PICT 
andd XPM were designed for viewable images, i.e. mono-chrome, gray scale 
andd color images. This restricted domain makes them not suited for storing 
imagess in an IDBMS. For example, satellite images and stereo images can 
nott be stored using these formats. Moreover, the image processing com-
munityy still lacks a standard image file format, i.e. there does not exist an 
(extensible)) data model to reason about images. As a result, we are chal-
lengedd to come up with an appropriate image representation to cater for all 
intendedd use. For such an image representation scheme, the DBMS should 
providee an abstract data type (ADT) facility which provides for: 

1.. Extensible representation and algebra 

2.. Multipl e views on components to support segmentation. 

3.. Cheap (de)compress functions. 

4.. Easy Input/Output Facilities 
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Extensiblee Representat ion and Algebra 

Inn our search for a flexible image representation scheme, we came across 
thee image algebra [90]. Before we continue with the discussion of our image 
representationn of choice we give a synopsis of its concepts. 

Thee image algebra[90] is a mathematical theory focused on the analysis 
andd transformation of digital images. The main goal was to define a com-
prehensivee and unified theory of image transformations, image analysis and 
imagee understanding. 

Thee image algebra is defined as a heterogeneous algebra. Such an algebra 
iss defined as follows: 

Definit ion .. An algebra A is a pair A = (ƒ", C), where 

1.. T — {FA}AG A is a family of non-empty sets of different 
typess of elements and the subscripts A are members of some 
indexingg set A, and 

2.. Ö = {Ok}k£K is a s et of finitary operations (for some in-
dexingg set K), where each Ok £ Ö is a mapping of the 
Cartesiann product of some of the FA'S to another. 

Thee elements FA of T are called the sets of operands of A, and the elements 
OfcÉÖÖ are called the operators of (or operations on) A. 

Ann Algebra A is called a homogeneous or single valued algebra, if T con-
tainss only one element i.e., T — {F} , otherwise A is called a heterogeneous 
orr many valued algebra. 

Thee Image algebra[90] defines an image as follows. 

Definition .. Let F be a homogeneous algebra and X a topo-
logicall  space. An F-valued image on X is any element of F . 
Givenn an F-Valued image a e F x , then T is called the set of 
possiblepossible range values of a and X the spatial domain of a. 

I tt is often convenient to let the "graph" of an image a E Fx represent a. 
Thee graph of an image is also referred to as the data structure representation 
off  the image. Given the data structure representation a — {(x,a(x)) : x £ 
X},X}, then an element (a;, a(x)) of the data structure is called a picture element 
orr pixel. The first coordinate x of a pixel is called the pixel location or image 
point,point, and the second coordinate a(x) is called the pixel value of a at location 
x. . 

Manyy digital images require the topological space X to be a subspace of 
ZZ22.. A sequence of images can be modeled using X — Z3, with x e X of the 
formm x = (x,y,t), where the first coordinates (x,y) denote spatial location 
andd where t denotes a time variable. 

Thee value set F can be replaced with Z2k or with (Z2k,Z2i, ^ m ). The 
firstfirst provides us with digital integer-valued images of k-bits. The second 
providess us with digital vector-valued images. 
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Thee image algebra defines a logical image representation, we wil l follow 
thiss definition of an image. To use a logical representation calls for an 
implementation,, i.e. a physical representation. We elaborate more on our 
physicall  image representation including performance analysis in Chapter 3 

Colorr  Models 

Mono-chromee and grayscale images can easily be represented using F = 0,1 
andd F = Z. More problems arise when we try to model color images. 
Physicallyy color is a composition of light signals of different wavelengths. 
Thesee signals are discretized and represented using so called color models. 
Manyy such models exist and each has its strong and weak points, see [45]. 
Exampless are RGB, CMY, HSV, HSI, L*a*b* , XYZ, UVW and xyz. The 
RGBB and CMY models are used for output devices, such as displays and 
printers.. XYZ is a color model which is device independent. The L*a*b*  and 
L*u*v **  are perceptually uniform, i.e. distances in these spaces correspond 
too human perceptual differences. The HSV and HSI are intuitive to the 
user,, Hue is the bare color, Saturation is the infection of this hue with other 
colors,, and I is the intensity of the color. 

Thee different models have different applications, RGB and CMY color 
modelss are used for output. For many image operations other color models 
aree more appropriate. Therefore, conversion primitives from one color model 
intoo another is a pre-requisite for any image analysis system. 

Ann additional requirement for color images is to store the color model 
information.. This can be done directly, using a separate table, or implicitly , 
usingg a special pixel value type. 

Fromm a semantic point of view there is no reason to differentiate among 
monochrome,, grayscale or color images. They are all images. They can all 
bee stored using (the more general) color images. We therefore like to treat 
alll  images equal. Unfortunately the theory for color images is less evolved 
thenn for gray and monochrome images. This makes explicit type coercion 
necessary. . 

Imagee Segments 

Segmentss represent interesting parts of an image. Many image processing 
applicationss first reduce their problem by looking only at the segment or re-
gionn of interest within an image. This pre-processing can reduce the resource 
requirementss substantially. This leads to the image database requirement 
off  segment representation and segment construction. 

Ass a consequence images can also be seen as a collection of disjoint seg-
ments.. Each segment would contain different, but interesting information. 
Thiss alternative view on images and segments indicates the concepts are 
closelyy related. To fully exploit this resemblance the concepts should be 



2.1.2.1. MULTI-MEDIA DATABASE SYSTEMS 17 7 

representedd using the same logical representation. Image operations should 
thereforee also work on segments without additional work. 

Ourr image representation, a mapping from a spatial domain X to a 
domainn of range values F, fits both concepts of images and segments. Op-
erationss to segment an image would therefore easily return new images. 

Imagee Compression 

Ann image database wil l store lots of images, taking up lots of disk space. 
Compressionn techniques to reduce storage can be used. Two alternatives 
exist,, we can compress each image in isolation or we can compress a set 
off  images together. The second wil l result in better overall reduction, but 
thee first makes access to a single image still reasonably fast. This choice 
betweenn performance and storage wil l depend on the applications using the 
database.. Therefore, the database administrator should be able to make 
thiss choice. We therefore support compression on the image and table level. 

Wee aim with image set compression on sets of images that contain very 
similarr images. Therefore, we envision of set image compression using a base 
imagee and image differences. Each image in the set is stored based on a base 
image.. The differences are computed and stored. Each resulting image can 
thenn again be compressed using the single image compression techniques. A 
3DD wavelet-based approach over the set might be effective. 

Input /Outpu tt  Facilities 

Anotherr important requirement for an image ADT are easy input and output 
facilities.. We support input from and output to various image file formats. 
Thiss makes it possible to access the large number of images currently stored 
inn these formats. Support for output into these types makes it possible 
too reuse the huge amount of existing software. In our image input/output 
modulee we support conversion of our image ADT to JPEG, GIF, TIFF and 
PPM. . 

2.1.22 Image Opera t i ons 

Fromm a database perspective having a single image data type in the query 
languagee is ideal. It greatly simplifies query construction and optimization. 
Thiss single image data type should come with a complete set of operations, 
suchh that by combining operations all relevant logical image operations can 
bee performed. 

Thee Image Algebra [90] defines a complete set of operations for all image 
types.. It consists of operation on images and templates. Al l operations use 
basicc mathematical functions on the spatial domain or range value domain. 
Therefore,, the semantics are properly determined by the semantics of these 
basicc operations. 
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Forr some image types considered in practice, however, most of the math-
ematicall  operations have no clear semantics. For example mathematical 
morphologicall  operations on multi channel images, such as color images, 
havee no proper theoretical background yet. Also there is no consensus on 
thee linear filter theory for these images. In these directions progress is made 
ass can be read in [21], [107] and [37]. 

Althoughh a complete set of operations is known for the individual image 
types,, their results are usually very different. A histogram of a color image 
iss different from a histogram of a gray scale image. This complicates any 
queryy language greatly. 

Dynamicc resolution of the result types would make query optimization 
impossible.. A query optimizer needs to know the result types of all opera-
tionss to be able to make a complete query graph. With a single image type 
thiss is impossible. Therefore, we need to express an image as a complex 
dataa type which is uniquely described by the type of its spatial domain and 
itss range domain. This requires a polymorphic image data type. 

Operat ions s 

Followingg the image algebra [90] we can classify the operations on images in 
thee following categories. 

 Restriction and Extension 

 Induced pixel operations 

 Reduction Operations 

 Spatial Operations 

 Template Image Operations 

 Template Operations 

Thee image algebra defines two operations, domain(a) and range (a.), to 
extractt point sets and value sets from a particular image, a. The domain of 
ann image is the set of points expressing the spatial extent of the image. The 
rangee of an image are the range values of an image, for example the gray 
valuess or colors of the image. 

Imagee Restriction removes pixels from an image. This can be realized 
throughh both the spatial domain and range value domain. Given a set of 
points,, an image can be reduced to include only these positions. Or given a 
sett of range values, an image can be restricted to only include these values. 
Thee inverse of image restriction is image extension. This operation adds 
pixelss to an image, which it not yet contains. A combination of image 
restrictionn and extension could be used for replacing parts of an image, for 
examplee the blue screen replacement often seen in video editing. 
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Inducedd pixel operations are unary and binary operations on individual 
imagee pixels. If the operation 7 is a binary operation on F, then 7 induces 
aa binary operation 7 on Fx defined as follows: 

Lett a,be Fx, then 

a'yba'yb = {(x, c(x)) : c(x) = a(x)/yb(x), x 6 X} 

Iff  the operation 6 is a unary operation on F, then 9 induces a unary opera-
tion,, also called 9 on Fx denned as follows: 

Lett a G Fx, then 

6(a)6(a) = {(x , c(x)) : c(x) = 9a(x),x € X} 

Seee table 2.1 for a list of unary and binary image operations. 

Operation n 

—a —a 
->a ->a 
sin(a) sin(a) 

aa + b 
aa — b 
a*b a*b 
a/b a/b 
aWb aWb 
aa A 6 
aa < b 
aa >= 6 

Descript ion n 

imagee negation 
logicall  image negation 
sinuss image 

imagee addition 
imagee subtraction 
imagee multiplication 
imagee division 
imagee minimum 
imagee maximum 
imagee smaller than 
imagee larger equal than 

Tablee 2.1: Example Induce Pixel Operations 

Whenn for one of the operands of the binary operation a constant value 
iss used we get a scalar operation. If the operation 7 is a binary operation 
onn F, then 7 induces a binary scalar operation 7 on Fx defined as follows: 

Lett k G F and a e Fx, then 

aalklk — {(xic(x))  c(x) = a(x)jk,x e X} 

Aryaa = {(x,c(x)) : c(x) = kya(x)7x e X} 

Thee global reduction operations reduces an image into a single complex 
value.. Let operation 7 be a binary operation on F, then 7 induces a unary 
operation n 

TT : Fx -> F 

calledd the global reduce operation, which is denned as 

TaTa = TxeXa(x) = T%=la(xk) = a(xi)^a(x2)i.. .^a{xn). 
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Simplee examples of reduce functions are addition, multiplication, minimum 
andd maximum of pixels. 

Spatiall  operations transform images based on the point set, which rep-
resentss the topology of the image. Examples of spatial transforms are image 
translation,, rotation and reflection. Also the family of afhne transforms are 
spatiall  operations. Let ƒ : Y —> X and a e Fx, then we define the induced 
imagee a o ƒ e FY by: 

aof={(y,a(f(y))):yeY} aof={(y,a(f(y))):yeY} 

Templatee image operations transform images based on templates. A 
templatetemplate is an image whose pixel values are images (functions). Formally 
definedd as follows: 

Definit ion .. A template t is an F-valued template from Y 
too X is a function t: Y -> F x . Thus, t e ( FX ) Y and t is an 
Fx -valuedd image on Y. 

Forr notational convenience we define ty = t (y) V y e Y . The pixel values 
ttyy(x)(x) of this image are called the weights of the template at point y. 

Wee can divide templates into two categories, the translation variant and 
invariantt templates. A template is called translation invariant when for each 
triplee x,y,z e X we have ty(x) = ty+z{x + z). Many of the translation in-
variantt templates can be defined pictorially. See Figure 2.1.2 for an example 
pictoriall  definition of a template. 

y-1 1 y+1 1 

y+1 1 

y-1 1 

-1 1 

-1 1 

4 4 

-1 1 

-1 1 

Figuree 2.1: Example Template 

AA template image operation performs an induced pixel operation for each 
image,, ty, in the template. Each resulting image is reduced using a global 
imagee reduce operation. The resulting value wil l be the pixel value at the 
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pixell  position y in the resulting image. Formally, let template t e (GX)Y, 
imagee a e Ex, and a O ty € Fx and T(a Q ty) e F. It follows that the 
binaryy operations O a nd 7 induce a binary operation 

©© : Ex , (Gxf - Fr, 

where e 
bb = aQ)teFY 

iss defined by 
Ky)Ky) = T(a O ty) = TxEX(a(x) O tv(x)) 

==  (a(xi) O ty(xi))j{a(x2) O tyMh • • • l(a(xn) Q ty{xn)). 

Thiss is the right product of image a with template t also the left product of 
aa with template t exists. 

Examplee template operations are image convolution and the basic mor­
phologicall operations, dilation and erosion. In case of the convolution, the 
originall image is multiplied with each template image. Each resulting image 
iss summed to a single value. 

AA histogram for an image a{x) can be calculated uses template opera­
tions.. A template, t —> (NY)X, used together with a function, 

+(+(  \ i \ — ƒ 1 if a ( x ) — J t{a)t{a)xx{j){j)  - | Q o t h e r w i s e 

transformm an image into a set of images. Using an image reduce operation 
whichh sums each image the histogram is calculated. 

Templatess are just a special kind of image. This assures all image oper­
ationss are also defined on templates. We can restrict and extend templates. 
Thee induced operations on templates map each operation on each pixel, i.e. 
ann image. So template addition maps to image addition for each image in 
thee template and the image addition will map to pixel addition for each 
valuee in these images. These template operations make the image algebra 
suchh a powerful framework. 

Requirementss Summary 

Thee requirements involving image primitives are summarized as follows. 

1.. Requires support for a polymorphic image type. 

2.. Requires support for the complete set of image operations as specified 
byy the image algebra on this image type. 
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2.1.33 Features 

Anotherr basic requirement for image databases is storing and managing de­
rivedd data. In the image processing domain derived data types are called 
features.features. These features are used to describe, interpret or understand the 
imagee data. The features derived from the complete image are usually called 
globall features as opposed to the local features calculated at a region, seg­
mentt or single point within the image. 

Overr the years, a large collection of image features has been proposed, 
whichh can be grouped into a few categories: color, texture, frequency anal­
ysis,, and shape features. Some examples in each category are given below. 

Colorr  Features Average color, dominant color, color histogram, color dis­
tributionn and color variance. 

Textur ee Features Dominate angle, object granularity. 

Frequencyy Features wavelet and discrete Fourier transforms 

Shapee Features Circularity, eccentricity, bounding energy, boundary, mo­
mentt features. 

Examplee single pixel value features include intensity, color and reflec­
tivity.. Over a region or segment a histogram of the pixel values can be 
calculated,, this is called a complex feature. From this histogram many fea­
turess can be derived, like dispersion, mean, variance, mean square value and 
averagee energy. A second order histogram, a histogram of all pairs of pixel 
values,, is also used often [28]. 

Texturee is observed in the structural patterns of surfaces of objects such 
ass wood, grain, sand, grass and cloth. Textures are usually described us­
ingg a repetition of basic texture elements. Natural textures have usually 
randomm repetitions and changing texture elements. Artificial textures are 
oftenn deterministic and periodicy. Often the textures are described using 
measuress for the coarseness of the basic textures, periodic and orientation. 
Manyy other texture features exists. Examples can be found in [49, 60] and 
[61]. . 

Exampless of frequency features are based on the discrete Fourier and 
wavelett transforms. The Discrete Fourier Transform (DFT) results in a 
decompositionn of the image in the frequencies of cosine functions. The fre­
quenciess tell us something about the content of the image. A high number of 
highh frequency cosine functions indicates many small changes in the image. 
Loww frequencies would indicate a rather smooth image. 

Thee wavelet transform [31, 104, 114] analyses an image at multiple scales. 
Itt recursively decomposes an image using a low and a high band filters. This 
givess a similar description of the image as a Fourier transform, but with 
ann additional component of locality. The Fourier transform only globally 
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decomposess a signal in its frequencies, i.e. no locality is preserved. The 
wavelett transform uses small filters with a limited size so it preserves locality. 

Shapee features can be divided into two categories, geometrical and mo­
mentt features. Examples of geometrical features are perimeter, area, max-
minn radii and eccentricity, corners, roundness, bending energy, holes, Euler 
numberr and symmetry. Moment features are e.g. center of mass, orienta­
tion,, bounding rectangle, best-fit ellipse and eccentricity. Object boundary 
andd skeleton are also interesting features. Shape can also be described using 
Fourierr and wavelet coefficients. 

Anotherr important category are the spatial relations within the image. 
However,, they are not often used in prototype image retrieval systems. Ex­
amplee spatial relations are overlap, touch and disjoint. 

Thiss list of features is by no means complete, but it gives a good indica­
tionn of the various features studied in the field. New features are likely to 
bee found to solve specific problems. This requires that the database man­
agementt system needs an extension mechanism for both data structures and 
operationss on (complex) features. 

Althoughh many features exist, a limited number of data structures would 
sufficee to store them. Many features are single values, i.e. no need for extra 
dataa structures. Some examples are area, pixel sum, and mean orientation. 
Thesee can be stored using the database management systems built-in types, 
suchh as integer and floating point number. 

Multii value features, like histograms of pixel values, vectors of eigenval­
ues,, moment description vectors and segment descriptions, such as polygons, 
needd additional data structures. However, a vector of complex data values 
wouldd suffice to represent many of them. For polygons and histograms 
speciall data structures are needed. In the area of geographic information 
systemss proper representations and index structures for geographic data like 
polygonss exist [13]. 

Thee local features are calculated over parts of an image. For instance 
aa single pixel or a segment can be the basis for this calculation. Since an 
imagee may have several pixels or segments, these features usually result in 
featuree value sets for the whole image. This complicates calculation but the 
additionall information may also produce better retrieval results[100]. 

Invarian tt  features 

Onee aspect of features has received great interest from the image processing 
community,, namely their in variances to certain aspects, such as scale, ro­
tation,, view point and light source. To illustrate, assume we are searching 
forr a certain scene in our image database. We do not care if the scene is 
recordedd under a white or under a colored light source. In that case we 
shouldd use features invariant under light sources. This means we have to 
lookk at the hue color component only or extract the color shift. But when 
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interestedd in sunsets or images taken at indoor dance parties, we definitely 
wantt variant features. In case of the sunsets we would like natural light 
sources,, in the later case we look for artificial light sources. A similar story 
holdss for the other variances, for example scale invariance could be useful 
unlesss your searching for objects you know the size of. 

Thee negative aspect of invariance in feature space is that it reduces the 
featuree selectivity. Invariance to some aspects makes a feature less specific 
and,, therefore, less selective. Therefore, from a retrieval point of view invari­
antt features are certainly not more important then variant features. Using 
thee appropriate one at the correct time is far more crucial. This means that 
invariancee is a predicate to be expressed at the query time only. 

Retrievall requires that the permissible variances can be modeled explic­
itly.. Modeling (in)variances requires the knowledge about the aspects that 
aa feature is variant to. So if a feature is variant to a light source we should 
recordd that. 

Requirementss Summary 

Thee requirements involving image features are summarized here. 

1.. The IDBMS should support for feature data types 

2.. The IDBMS should have support for modeling feature (in)variances. 

3.. Invariance can be expressed in the Query Language. 

2.1.44 I m a ge Semant ics 

Imagee recognition is research concerned with object recognition, i.e. tries to 
recognizee the objects in an image and attache a description to these objects. 
Unfortunately,, the image recognition problem has not been (and cannot be) 
solvedd in general. 

However,, in certain sub-domains interesting results have been obtained. 
Onee striking example is face recognition[86]. When it is possible to recog­
nizee the objects, we can construct a semantic description. Such semantic 
descriptionss should be stored in an image database as well, which introduce 
neww interesting problems. We will mention two: the multiple interpretation 
problemproblem and the accumulated error problem. 

Thee former stems from the fact that an image has many interpretations. 
Everybodyy can have its own interpretation of an image depending on the 
knowledgee and cultural setting of the person. This results in many possibly 
largee semantical descriptions. The consequence is that at query time, such 
ann image database should be able to reason with multiple interpretations. 

Thee second problem, the accumulated errors, results from the fact that 
imagess are always derived from inaccurate devices. When recoding an image 
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usingg some sensor error signals are added to the original scene. Also because 
off the digitization errors are introduced. Building semantic descriptions for 
thesee images will yield an accumulated error. The database management 
systemm should therefore be able to handle errors and error propagation. 

Requ i r emen t ss S u m m a r y 

Thee image recognition problem is still an open research area. Therefore, 
thee problems related to representing the semantic information will not be 
consideredd in this thesis. In the future when semantics are attached to 
imagess these problems will come back and will than result in requirements for 
thee image database system. Mostly at level of data modeling and semantic 
drivenn querying. 

2.1.55 Image Queries 

Inn database systems all relational operations are based on logical predicates 
beingg either true or false. This rigid logic perspective works, because the 
semanticss of the data entities in business database systems are known and 
fixed. . 

Forr image database systems this is no longer sufficient. The world of 
imagess is a lot more fuzzy. Images can be very similar, but are hardly ever 
exactlyy the same. This makes it hard to write boolean predicates, such as 
imagee equality. A fuzzy set approach is in order here as an alternative. 

Imagee queries are often navigational and steered by a user. Take for 
examplee image retrieval systems, which let a user navigate through the image 
space.. In such systems the user constantly refines his query to navigate to 
thee desired image. The reason for this navigational query approach are two 
fold.. First, the mentioned fuzzy data makes predicates hard to use. The 
secondd reason is there is still little knowledge of the applications that uses 
ann image database. This makes it hard to predict what sort of queries are 
needed,, because it is unknown what the interesting data is. 

Sincee the predicate logic expressions are hard to use, they should be 
replacedd by a new technique for comparison. A solution found in many 
imagee retrieval systems is based on similarity measures. 

Definition .. A Similarity Measure, S(a,b) —• 7£[o,i], ex­
pressess how similar two objects are. 

Manyy similarity measures have been denned. For vectors different simi­
larityy measures exist as for value sets. One such fixed form similarity mea­
suree is based on the Minkowski metric. 

S(aS(a::b)b) = ]^= olla\bj. (2.1) 
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Thiss measure assumes the features in the vector are all unrelated, which is 
usuallyy not the case. For example is the color of an object preserved by a 
humann dependent on the colors in the area around the object. 

Thee best known similarity measure is histogram intersection, which is 
formallyy defined as: 

S M )) = EE^»KM (2.2) 

Thiss is a non symmetrical definition, i.e.. the similarity for a,b and b,a 
aree not equal. Therefore, the following symmetrical definition is also used 
frequently. . 

22i=O22i=Omaxmax((aaiiii bbi) i) 

Thesee measures are both used for color histogram similarity calculations. 
Thee reason for its popularity is its robustness against cluttered images, and 
itss invariance to scale and rotation. Also the measure is less variant to 
differentt view points. The measure also assumes the features in the vector 
aree unrelated, for color histograms this is clearly not the case. 

Therefore,, another well known measure, i.e. the weighted Euclidean 
similarityy measure is used. This measure comes from the family of squared 
similarityy measures, which is formally defined by: 

S(a,b)S(a,b) = l -.. X > - M2 (2-4) 
\i=0 \i=0 

Andd the weighted Euclidean similarity measure is defined by: 

S(a,b)S(a,b) = 1 - aWbT (2.5) 

Wheree W is an (n * n) matrix which represents the weighting factor 
forr each i, j pair. Using this weighting factors the relations among feature 
valuess in the vector can be modeled. This W should be derived from global 
databasee properties. 

Measuringg the similarity between feature sets is a less touched research 
direction.. One known measure is the set intersection measure, as defined 
by: : 

s ( o ' 6 ) = I SS (2-6) 
Thee problem of feature set comparison becomes even more difficult when 

thee values in the sets are fuzzy. In that case the set elements need to be 
comparedd also using some similarity metric. Then the semantics of the fl 
andd U operators have to be changed too. 

AA database query will usually involve many different features, which 
shouldd be compared using different similarity measures. Queries over mul­
tiplee similarity spaces could be handled in various ways. A simple solution 
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couldd be to used traditional boolean predicates. For example selecting im­
agee on color and texture requires the color feature similarity value should 
excidee a threshold tc and the texture feature similarity value should excide 
aa threshold tt-

AA more advanced method could be a combination of the feature values 
involved[58].. This method has the drawback that the search space explodes, 
sincee it combines two feature spaces in one, which makes query optimization 
difficult. . 

Anotherr method is based on fuzzy logic operators. Fuzzy logic theory 
mapss the and and or  logical operators to minimu m and maximum oper­
ations.. For example the query showing in Figure 2.1.5 which selects images 
similarr to an example image ex, will calculate the minimum of the color 
andd texture features and the maximum of this with the combined color and 
texturee features. 

select t 
fro m m 

where e 
and d 

or r 

imagess i 
i.. color = ex. color 
i.. texture = ex. texture 
i.color_texturee = ex.color_texture 

Figuree 2.2: Example Query 

Thee introduction of this new query model with similarity measures and 
withh fuzzy logic operators requires new index structures. Such structures are 
moree generally applicable when they are independent of the logic operator 
orr similarity measure used. 

Requirementss Summary 

Thee main requirement coming from image queries is a new query model. The 
currentt binary logic model is not suited for image queries. One suggested 
queryy model is the fuzzy logic model. Currently, similarity measures are 
usedd mainly. 

2.22 DBM S 

Inn this section we introduce our extensible main memory database manage­
mentt system, which is the appropriate system for image based applications. 

2.2.11 Extensible 

Importantt requirements we found for an image database management system 
are e 
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1.. There is a strong need for Image and feature data types, and their 
operations. . 

2.. There is a need for Index structures for efficient queries on images and 
features. . 

Therefore,, we need an extensible DBMS. 
Ann extensible database management system can be extended with new 

abstractt data types, new commands and new index structures. This makes 
itt possible to add an image data type to the system. An image would be 
treatedd the same way as ordinary types, like integers and strings. So the 
basicc algebraic functionality, like the set operations: union, intersection, 
minus,, and symmetrical difference and the relational operators: select, join 
andd anti-join, would work without extra coding. 

Inn addition new image processing commands can be added to such a 
system.. Also new feature data types can be added. The new data structures 
cann be large and expensive to query, therefore new index structures may be 
addedd to speed up the retrieval of these structures. 

2.2.22 M a i n M e m o r y 

AA design issue so far ignored is performance. Image applications are CPU 
demandingg and often time critical. Example applications, like surveillance, 
authenticationn and error detection all demand high performance. But also 
interactivee access of an IDBMS calls for a performance wise approach to 
avoidd loosing interest of end users. 

Therefore,, a database management system for image applications needs 
too deliver high performance. At the hardware level this can be achieved 
withh better CPUs, memory and, disks. Such a system is no longer io-bound 
butt CPU-bound, giving the system the appreciated performance. The ideal 
systemm for this is a main memory DBMS. 

Too further improve the performance of a database system shared memory 
multi-processorr systems are needed. On these systems parallelism could be 
exploitedd to improve the throughput. 

2.2.33 O b j e c ts versus Sets 

Ass image processing software moves more and more towards object oriented 
programm languages [68, 112, 105] it seems wise to choose an OODBMS for 
imagee database applications. The same programming language can then be 
usedd for both application and database specific code. The problem with this 
seeminglyy ideal case is the mismatch between the imperative programming 
paradigmm and the declarative paradigm of the database. The advantage of 
onlyy declaring what is needed will be lost in such a situation, because the 
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imperativee programming paradigm of the object oriented requires you to 
specifyy how to obtain it. 

AA possible solution is to use a proper object oriented query language, 
likee OQL, to interact with the database. Although such a combination 
off an object oriented language, such as C++ , and an object oriented query 
languagee solves the mismatch, it requires proper programming practice from 
thee application programmers to make full use of the database functionality. 
Itss too easy to fall back to object at a time processing. 

AA better approach is to identify a minimal, but complete set of primitives 
forr image applications, including both image operations and image query 
primitives.. These combined with an extendable SQL like query language, 
suchh as SQL-'99, would leave space for optimization and put no extra burden 
onn the programmers programming skill. It clearly separates database use 
fromm application programming tasks. 

2.33 Architectur e of Monet 

Monett is a novel database kernel under development at the CWI and UvA 
sincee 1994. Its development is based on experience gained in building 
PRISMA,, a full-fledged parallel main-memory RDBMS running on a 100-
nodee multi-processor, and on market trends in database server technology. 

Developmentss in personal workstation hardware are at a high and contin­
uingg pace. Main memories of > > 1 GB are now affordable and mass-market 
CPUss currently can perform over 1000 MIPS. They rely more and more on 
efficientt use of registers and cache, to tackle the ever-increasing disparity1 

betweenn processor power and main memory bus speed. These hardware 
trendss pose new rules to computer software - and to database systems -
ass to what algorithms are efficient.Another trend has been the evolution of 
operatingg system functionality towards micro-kernels, i.e. those that make 
partt of the Operating System functionality accessible to customized appli­
cations.. Prominent research prototypes are Mach, Chorus and Amoeba, 
butt also commercial systems like Silicon Graphics' Irix and Sun's Solaris 
increasinglyy provide hooks for better memory and process management. 

Givenn this background, we applied the following ideas in the design of 
Monet: : 

•• binary relation model. Monet vertically partitions all multi-attribute 
relationshipss into Binary Association Tables (BATs), consisting of 
[DID,a t t r ibu te ]] pairs. 

Thiss Decomposed Storage Model (DSM) [27] facilitates table evolu­
tion,, since the attributes of a relation are not stored in one fixed-width 
relation.. Figure 1 shows this model in detail. 

Inn recent years this disparity has been growing with 40% each year 
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Figuree 2.3: Decomposed Storage Model 

Thee price paid for the DSM is small: the slightly bigger storage re­
quirementss are compensated by Monet's flexible memory management 
usingg heaps. The extra cost for re-assembling multi-attribute tuples 
beforee they are returned to an application, is negligible in a main-
memoryy setting, and is clearly outweighed by saving on I/O for queries 
thatt do not use all the relations attributes. 

Finally,, maintaining all attributes in different tables enables Monet to 
clusterr each attribute differently and to precisely advice the operating 
systemm on resource management issues, for each attribute according 
too its access path characteristics. 

'perform'perform all operations in main memory. Monet makes aggressive use 
off main memory by assuming that the database hot-set fits into main 
memory.. All its primitive database operations work on this assump­
tion,, no hybrid algorithms are used. For large databases, Monet relies 
onn virtual memory by mapping large files into it. In this way, Monet 
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avoidss introducing code to 'improve' or 'replace' the operating system 
facilitiess for memory/buffer management. Instead, it gives advice to 
thee lower level OS-primitives on the intended behavior2 and lets the 
MMUU do the job in hardware. 

Unlikee other recent systems that use virtual memory, Monet stores its 
tabless in the same form on disk as in memory (no pointer swizzling), 
makingg the memory-mapping technique completely transparent to its 
main-memoryy algorithms. 

•• extensible algebra. As has been shown in the Gral system [51], many-
sortedd algebras have many advantages in database extensibility. Their 
openn nature allows for easy addition of new atomic types, functions on 
(setss of) those types. Also, an SQL query calculus-to-algebra trans­
formationn provides a systematic framework where query optimization 
andd parallelization of even user-extended primitives becomes manage­
able.. Monet's Interface Language (MIL) interpreted language with a 
C-likee syntax, where sets are manipulated using a BAT-algebra. 

•• coarse grained shared-memory parallelism. Parallelism is incorporated 
usingg parallel blocks and parallel cursors (called "iterators") in the 
MIL.. Unlike mainstream parallel database servers, e.q. PRISMA [2] 
andd Volcano [50], Monet does not use tuple- or segment-pipelining. 
Instead,, the algebraic operators are the units for parallel execution, 
whichh simplifies query optimization. Their result is completely mate­
rializedd before being used in the next phase of the query plan. This 
approachh benefits throughput at a slight expense of response time and 
memoryy resources. 

2.3.11 M o n et Arch i tec tu r e 

Thee architecture of Monet is structured as a frontend/backend system. The 
currentt implementation has frontends for the Monet interface language, the 
objectt database management groups[17] object definition language (ODL) 
andd for the structured query language (SQL) (see Figure 2.3.1) 

Thee Monet database system is designed to be a extensible in all direc­
tions.. Meaning, new data types, commands and accelerators can be added. 
Thee MIL has a sister language called the Monet Extension Language (MEL), 
whichh should be used to specify extension modules. These modules can con­
tainn specifications for new atomic types, new instance- or set-primitives and 
neww search accelerators. Implementations have to be supplied in C/C+-1-
compliantt object code. 

Thiss functionality is achieved with the mmapO, madvise(),and mlockQ Unix system 
calls. . 
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Figuree 2.4: Monet Architecture 

2 .3 .22 M o n e t I n t e r f a ce L a n g u a g e 

Thee Monet Interface Language is a low level BAT-manipulation database 
queryy language, extensively described in [9]. For self containment of this 
thesis,, we introduce some part of Monet's instructions set and programming 
concepts. . 

Tablee 2.2 lists the relational operations with there functionality. Monet 
usess binary tables (BAT) all relational operations are defined on those. The 
firstfirst column of a BAT is called its head column and the second its tail 
column. . 

Thee select operation selects all binary units (BUNs) where the tail value 
off the input BAT is between the lower and upper bounds given. The semi-
jo inn operation selects all BUNs of the a BAT whose head value also occurs 
inn the (3 BAT. The jo i n operation implements a natural equi-join based on 
thee tail of the a BAT and the head of the (3 BAT. 

Thee difference operation (diff ) selects all BUNs which occur in a but not 
inn (3 BAT. The un ion and intersect are the well known set operations. The 
un iquee operation selects all unique BUNs from a BAT. All these functions 
workk over both the value in the head and tail. i.e. an intersection between 
twoo BATs is the intersection between the pairs of head and tail values. They 
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alll have an equivalent version based only on the head value, these functions 
havee the same name prefixed with a k, i.e. kdiff , kunion and kintersect. 

RELATIONALL Operation 

selectt (BAT a, T low, T high) 
semijoin(BATT a, BAT p) 
join(BATT a, BAT p) 
S E TT Operation 

diff(BATT a, BAT p) 
union(BATT a, BAT p) 
intersectt (BAT alpha, BAT p) 
unique(BATT a) 

functionalit y y 

{ab{ab : ab £ a A low < b < high} 
{ab{ab : ab € a Acd € P Aa = c} 
{ad{ad : ab e a Acd e p Ab = c} 
functionalit y y 

a/p a/p 
aUp aUp 
anp anp 
{ab{ab : 3ab G a} 

Tablee 2.2: Monet's Relational and Set Operations 

Tablee 2.3 lists the construction and update operations with there func­
tionality.. Bats are created using the new(ht, t t ,capacity) constructor, 
wheree ht and tt represent the head and tail column type, respectively. The 
capacityy is an optional parameter to identify the initial table size. A proper 
guesss of the tables size reduces memory fragmentation. 

Batss can be updated using the insert(BAT , h,t), replace(BAT, h,t), 
andd delete(BAT, h, t) primitives. Insert appends a single pair of atom 
valuess to the end of the table. Replace updates all tail values for binary 
recordss (BUN) with the given head value. Delete removes all matching 
pairs.. Monet assures BUN's are in consecutive memory, i.e. no holes are 
allowedd between BUN's. Therefore, the BAT scan operations can be kept 
simplee and fully optimized. 

Performingg a single operation on all tail values of a table can be done 
usingg the [] multiplex operator. For example adding the tails of two tables 
cann be done using the statement [+](a,b), this will find pairs with equal heads 
andd add the tail values together. Aggregating groups can be done using the 
{}} operator. This operator performs an operation for each group in the given 
BAT.. Groups are identified by unique values in the head column of the given 
table.. For example to sum all groups we can use {sum}(a), where sum is a 
BATT operation to add all tail values in the BAT. The sum operation gets 
onee parameter, a BAT. In the same way an average, min, and max operators 
overr groups can be defined. Such operator gets the group BAT so it can do 
anyy initialization steps it self, i.e. for the sum start at zero, and also any 
postt processing, i.e. for the average dividing the sum by the group count. 

MILL is a procedural language. It has well-known flow of control con­
structss such as, whil e and i f / then/e lse statements. Also BAT related 
iteratorss such as batloop, and hashloop(a), iterates over all BUN's exe­
cutingg a MIL block. New MIL procedures can be introduced using the proc 
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11 proc sum (BAT[any,int] b) : int := { 
22 var res := 0; 

33 b<3batloop(){ 
44 r e s += $t ; 
55 } 
66 r e t u r n r es; 
77 } 

Figuree 2.5: Example mil procedure 

keyword.. See Figure 2.5 for a simple MIL procedure which sums a BAT. 
Thee first line defines the procedure. Sum gets a BAT of integers as param­
eter,, and returns a single integer. In line 2 the res variable is initialized. 
Linee 3 to 5 loop over the BAT and add the BUN's tail value ($t) to the res 
variable.. Finally in fine 6 the sum is returned to the caller. 

Operat ion n 

new(ht,, t t , capacity) 
insert(BATT a, T h, T t) 
delete(BATT a, T h, T t ) 
replace(BATT a, T h, T t) 

sum(BATT a) 
avg(BATT a) 
max(BATT a) 
min(BATT a) 

[op](BAT[h,tl]] a, BAT[h,t2] j3) 

{op}(BAT[h,tt]] a) 

functionalit y y 

BAT[ht,tt] ] 
aUht aUht 
{ab{ab : ab € a A a ^ h Ab ^ £} 
{at{at : (at G a A a ^ / j ) V (ab E a A a = h)} 

aoo + . . . + an A a o , . . . , an e a 
(a00 + . -. + an)/n A a 0 , . . . , an e a 
max(ao,max(ao,...,..., an) A a o , . . . , a n £ a 
min(amin(a00,,...,..., a„) A a 0 , . . . , an G a 
{at{at : ab E a A ac e P A t = 
op(b,c))} op(b,c))} 
{ab{ab : f3 — {c : ac € a} Ab = op(j3) 

} } 

Tablee 2.3: Monet's BAT Update Operations 

2.3.33 M o n et Ex tens ion Language 

Monett is an extensible database system, and hence MIL is an extensi­
blee language. Experts in some application domain can extend the Monet 
databasee system to store new kinds of data and define operations on them. 

Extendingg Monet is achieved by writing an extension module in the 
Monett Extension Language (MEL). The MEL is a specification-only lan-
guage,, see Figures 2.6, 2.7, 2.8 and 2.9 for an example MEL specifications. 

AA MEL module describes the types (atoms), index structures (accelera-
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tors),, and commands to include in the Monet kernel. The module definition 
alsoo contains help texts on the new primitives, which will be inserted in 
Monet'ss online help system. Finally, the module contains references to C 
functionss that implement the primitives. 

Mell modules can contain any of the following Monet extensions: 

neww atomic data types Mil has builtin support for { boolean, charactei 
in teger,, o id, pointer , f l o a t , double, long, and s t r i n g } val­
ues.. You can add new types, like da te or vector  readily (see Figure 
2.6). . 

neww algebraic commands or  operators Algebraic commands get passe( 
aa set of values as parameters, then do some execution, and return one 
value.. Mil allows for overloading of algebraic commands and opera­
tors.. The extension programmer should specify a type-signature and 
MILL chooses dynamically which command to use on the basis of the 
actuall parameters (see Figure 2.8). 

neww search accelerators Some operations on tables need additional -
persistentt - data structures for efficient execution. Famous examples 
aree R-trees and hash-tables. The accelerator builder should provide 
thee interface operations to create, destroy, and traverse such tables. 
Thee database needs to keep these tables consistent under updates; for 
thiss reason additional update interface operations, insert and delete, 
aree required from the extension programmer (see Figure 2.9). 

ME LL  Modules 

Moduless are the unit of extension in Monet: a module is loaded, or not. 
Whenn it is loaded, all its new language elements are added to the Monet's 
interpreterr language. When a module is dropped, they are removed. 

Thee . prelude and . epi logue constructs allow for C routines to be called 
whenn a module is loaded and dropped physically. An example for its use 
iss the initialization of (empty) c structures, or for instance the creation 
(/destruction)) of shared locks. The C routines are parameterless and do not 
returnn any value. 

Thee . load and .drop keywords allow for the specification of MIL code 
thatt is to be executed when a module is loaded. These features come es­
peciallyy handy for denning standard MIL procedures (procs) and constants. 
Ass opposed to the prelude/epilogue initializations, the load/drop scripts are 
executedd at logical load and drop points: each time a user loads or drops a 
moduless (they are executed in the context of that user). The prelude and 
epiloguee are only execute once at physical module load and unload. 
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.modulee vectors; 
.atomm vector2D[8,4] ; 
.tostrr = vector2D_tostr; 
.fromstrr = vector2D_fromstr; 
.COMPP = vector2D_comp; 
.HASHH = vector2D_hash; 
.nulll = vector2D_null; 

.end; ; 

.atomm vector3D[3,1]; 
.tostrr = vector3D_tostr; 
.fromstrr = vector3D_fromstr; 
.COMPP = vector3D_comp; 
.HASHH  = vector3D.hash; 
. n u l ll = vector3D_null ; 

.end; ; 
.endd v e c t o r s ; 

Figuree 2.6: Example of the mel ATOM definition 

atomicc types 

Ann important design issue of Monet's atomic types is that there are basically 
twoo classes: 

f ixed-sizee atoms Their memory management is simple, because all pos­
siblee instances have the same size. They are stored directly in the 
BUNN heap (tuple heap) of a BAT. These types are very efficiently 
implementedd in Monet. 

variable-sizee atoms From the builtin-types, s t r i n g is the only variable 
sizedd type. Values are stored in a separate heap, the BUN heap con­
tainss integer byte-offsets into this heap. Monet ensures in this way that 
thee BUN heap can be implemented as an array of fixed-size elements, 
evenn if it contains values of variable-size. 

Thee correct functioning of all Monet's standard operations (like j o i n and 
s e l e c t )) is guaranteed by suppling the atom interface for any new ADT, see 
Figuree 2.4 and 2.5. 

Forr instance, a hash-function on a s t r i n g is required to make Monet's 
hash-joinn work on columns of s t r i n g s . The heap provides a context for 
domainn dependent optimization. For example, the implementation of the 
stringg atom uses a hash-based catalogue in this heap. The catalogue is used 
too have only a single copy of a string in the heap. MIL will recognize each 
neww atom as a keyword. 
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Function n 

FromString g 
ToString g 
hash h 
nequal l 
comp p 
null l 

description n 

constructss the atom from a string 
convertss the atom to a string 
calculatess a hash number for the atom 
testss it two atoms are not equal 
comparess two atoms, returns smaller, equal or larger 
gett the nil value for this atom type 

Tablee 2.4: Fixed Atom Interface 

Function n 

heap p 
put t 
get t 
del l 
len n 

description n 

createss and initializes the heap 
insertt an atom in the heap 
gett a copy of an atom from the heap 
deletee an atom from the heap 
gett the size of the atom 

Tablee 2.5: Additional functions for Variable Sized Atom Interface 

Redefinedd Atom s A feature borrowed from Object Orientation is atom 
overloading.. One atom can be implemented using the existing interface 
functionss implemented by a parent atom. For instance an rgb atom is 
implementedd as a different interpretation of a vector3D atom, See Figure 
2.7.. The new type is different from its implementation type on the logical 
levell in MIL, but at the physical level it uses the implementations of its 
parentt type (or actually its root ancestor). 

.modulee rgb ; 
.atomm rgb = vector3D; 
.end; ; 

. opera to rr (rgb) "+1' (rgb) : rgb = rgb_add; "rgb add i t i on" 

. ope ra to rr (rgb) " -" (rgb) : rgb = rgb_min; "rgb s ub s t r a c t i on " 

.opera torr (rgb) "*" (rgb) : rgb = rgb_mul; "rgb m u l t i p l i c a t i o i 
.endd rgb; 

Figuree 2.7: example of the overloading of Monet ATOMs 

2.3.44 n ew pr imi t i ve s 

Apartt from atomic types, the MEL extension mechanism also allows for 
introductionn of new execution primitives into MIL . 
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Commandss and operators are much alike. The exact way in which a 
commandd implementation in C will get passed its parameters and what it 
iss expected to return will not be discussed here. 

Thee functional part of the MIL language is a set of algebraic commands 
andd binary and unary operators. Commands get passed a set of values as 
parameters,, then do some execution, and return a (single) value. A collection 
off such commands and operators, where foreach ƒ (D) C D holds, is called 
ann algebra. 3 

Figuree 2.8 shows an example image module containing some new mil 
commandss and operator. 

.modulee image; 
.atomm image = BAT; 
.tostrr = imagetostr; 
.fromstrr = imagefromstr; 

.end; ; 

.commandd width( image ) : int = imagewidth; 
"Gett the width of this image" 

.commandd height( image ) : int = imageheight; 
"Gett the height of this image" 

.operatorr (image) "=" (image) : bit = imageeq; 
"Testt if the images are equal" 

.operatorr (image) "!=" (image): bit = imagene; "" 
"Testt if the images are not equal" 

.commandd readFile( str filename ) : image = readFile; 
"readd an image from the file, the extension 
expressess the format in which the image is stored" 

.commandd writeFile( str filename ) : image = writeFile; 
"writee an image to the file, the extension expresses 
thee format in which the image should be stored" 

.endd image; 

Figuree 2.8: The image module 

Itt is actually not correct to call this a true algebra, since BAT-parameters are call-by 
referencee (as opposed to the simple values which are call-by-value), and can hence be 
modified.. This is just a pragmatical choice. 
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MELL also allows for overloading of the multiplex, [], and group aggregate 
operations,, {}. At run time when MIL resolves the formal call [+] to a 
physicall function it will take the special optimized case for this operator. 
Thee default implementation of the [+] operator uses a batloop and calls a 
++ function for each BUN. 

2.3.55 New Search Accelerators 

AA search accelerator is denned as 'a data structure associated with a data­
basee column kept up to date with changes'. The prime reason for main­
tainingg such data structures is to achieve better speed on common database 
operations. . 

Well-knownn search accelerators for traditional data types are the B-tree 
andd hash-tables. Examples from the GIS application domain are Grid-files 
andd R-trees[52, 4, 83]. 

Forr this reason the Monet's extension mechanism allows for addition 
off new (persistent) search accelerators. A BAT can hold two user-defined 
searchh accelerators: one for the head and one for the tail. Monet provides 
twoo standard search accelerators oriented towards main-memory relational 
processing:: the index binary tree index and the hash chained bucket hash-
tables. . 

Thee metric accelerator which will be introduce in Chapter 8 is shown 
inn Figure 2.9. This example accelerator requires besides the construction 
(BUILD)) and destruction (DESTROY) only insert and delete instructions 
too keep the accelerator inline with the underlying BAT. It includes the def­
initionss of the vector module using the USE statement. 

Monett will recognize each new accelerator as a MIL keyword. 

2.44 State of the Art of Image Database Systems 

Inn this section we give a short overview of image database management sys­
tems,, image retrieval systems and Image indexing techniques described in 
literature.. Each image database management and image retrieval system 
iss first described individually. These sections conclude with a evaluation 
basedd on the requirement list. This means we evaluate each IDBMS on ex­
tensibilityy with new data types, commands and index structures. For image 
retrievall systems we evaluate based on the existance of image operations, the 
availablee image file formats, and on the available global and local features. 

2.4.11 Commercial Image Databases 

Despitee the awareness in the database research community that general data­
basee technology would be a clear asset to multi-media application domains, 
limitedd progress has been made so far. This partly stems from a lack of 
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.MODULEE me t r i c ; 
.USEE v e c t o r s ; 

.ACCELERATORR met r ic_acc(Vec tor ) ; 
.BUILDD = metr ic_acc_bui ld ; 
.DESTROYY = metr ic_acc_des t roy; 
.INSERTT = me t r i c_acc_ inse r t ; 
.DELETEE = met r i c_acc_de le te ; 

.END; ; 

.COMMANDD me t r i c_acc_se l ec t ( BAT[oid,Vector] , Vector, 
f i tt max_dist ) : BAT[oid,Vector] = m_select ; 

"AA d i s t ance se l ec t ( s e l e c t a l l wi th in max.d is t ) 
us ingg t he metr ic_acc" 

.ENDD me t r i c ; 

Figuree 2.9: Example of a MEL accelerator extension module 

applicationn domain knowledge within the database community to isolate 
thee functionality needed, as well as the lack of experience in using database 
technologyy in the image research community to focus the effort on query 
formulationn and evaluation instead of dedicated storage and index manage­
ment. . 

Moreover,, it has only recently become manageable to enhance the data­
basee kernels with application domain functionality. For example, research 
prototypee database systems, such as postgress[103], Jasmine [26] and Starburs 
showedd the route towards low-level extensibility of a database kernel. This 
routee is only recently followed by Oracle, DB2 and INFORMIX. It is ex­
pectedd that these facilities will become available in all commercial systems 
withinn a few years. 

Orac lee D a t a Cartr idges[84] 

Thee Oracle 8 universal server supports a form of abstract data type (ADT) 
extensibility.. Oracle calls extension modules "data cartridges". A data 
cartridgee defines new "Object data types" (ODT) with their behavior. The 
descriptionn specifies both the ODT attributes in terms of existing Oracle 
dataa types, member functions and procedures on these data types. 

Thee procedures can be written both in PL/SQL, Oracle's extended struc­
turedd query language, and in C using external shared libraries. The PL/SQL 
iss not well suited for object member function implementations, because this 
highh level interpreted language caries to much weight to achieve the required 
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highh performance. The shared libraries runs in a separate process, which 
ensuress Oracle's server stability under bogus member function implementa­
tions.. The downside of this separate process model is performance. A call 
too a separate process is orders of magnitude less efficient than an in process 
functionn call. Furthermore, the external libraries can only access the server 
viaa Oracles call interface (OCI), which again reduces performance. So both 
implementationn paths are perfomance wise not very promising. 

INFORMI XX Data Blades[57] 

Thee INFORMIX-Universal Server provides a very advanced extensibility in­
terface,, called Data Blades. A Data Blade module may include the following 
components;; new data types, functions, access methods, tables and indexes, 
andd client code. 

Userr defined data types are treated as built in types. The database 
allowss various new data type definitions, the opaque type definition offers 
maximumm flexibility. It allows any data represented in C structures to be 
nativelyy stored and processed by the server. 

Thee function component is a collection of function definitions which oper­
atee on any data types, new or built in. These functions extend the processing 
andd aggregation functionality of the database. 

Thee access method component enables Data Blade developers to write 
speciall index structures . An index structure for the INFORMIX server is 
definedd by a set of methods, open a scan, get next record, insert, delete, 
replacee and close scan. 

Thee interface component can be used to export functionality of a Data 
Blade.. So, for instance an image retrieval Data Blade can use a text retrieval 
Dataa Blade for keyword search. 

AA Data Blade developer can store and index data needed for the Data 
Bladee in tables and index structures directly. The client code component 
containss the code which exports a client user interface for the new data 
types. . 

INFORMIXX supports an extensibility mechanism which is powerful enougl 
too support an image data type and operations on it. There is no support 
forr polymorphic data types. 

D B / 22 Universal Database[56] 

Thee DB/2 Universal Database from IBM also supports extensibility, called 
extenders.. These extenders can extent the DB/2 server with user defined 
typess and user defined functions. These user defined types can only be 
storedd in large objects. This way common relational operators on these 
newlyy created types are lost. The defined functions can be used from the 
DB/22 SQL interface. 
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Thee supported extensibility of DB/2 is limited. New data types are 
treatedd different than built-in types and it is not possible to extend the 
serverr with special index structures. 

Jasminee OO Database server 

Jasminee is a fully object oriented database management system. It supports 
additionn of new classes, inheritance and method overloading. The index is 
hidden,, i.e. no support for advanged index structures is available. 

Thiss database has been extended with multi-media classes. The main 
featuree is data independence. Images can be stored in the database, so the 
physicall location is no longer needed. 

Imagee Database Comparison 

Thee differences between the commercial systems and Monet's extensibility 
aree summarized in table 2.6. A + indicates the extensibility is available (-
meanss not available). A + + means available and has a superior performance. 

Database e 

Oraclee 8 
Informix x 
DB/2 2 
Jasmine e 
Monet t 

AD T T 

+ + 
++ + 
+ + 
++ + 
++ + 

Commands s 

+ + 
++ + 
+ + 

++ + 
++ + 

accelerators s 
--

++ + 
--
--

++ + 

Tablee 2.6: Image Database Comparison 

Ass can be seen from this comparing table the Informix and Monet system 
clearlyy support the extensibility needed. The Monet system was chosen 
becausee of its superior performance which comes from its main memory 
orientedd implementation. 

2.4.22 Commerc i al Image Retr ieval S y s t e m s 

Virage::  Visual Informatio n Retrieval Modul e 

Thee Virage Visual Information Retrieval (VIR) Module extends commercial 
databasee management systems, such as Oracle 8, INFORMIX Universal 
Server,, Sybase and Object Store from Object Design, with image storage 
andd management capabilities. In addition developers can use the VIR Image 
Enginee to interact with their own DBMS. The VIR Image Engine capabilities 
include: : 

storagee Reading and writing multiple image file formats. 
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thumbnai ll  Automatic thumbnail creation. 

contentt  Analysis and comparison of images based on their visual content. 

Thee storage capability provides users shared access to images centrally 
storedd in a DBMS. The VIR Image Engine supports translations between 
popularr image file formats during storage and retrieval, the following im­
agee file formats are supported: JPEG, BMP, SGI, PSD, Sintex CT, TIFF, 
PICT,, TGA, MAC, RLE, EPS, PNG and PCX. The Hst of file formats again 
illustartess the lack of a standardized image data type. 

Thee VIR Image Engine provides a simple interface for image thumbnail 
creation.. A reference to the original full size image is maintained. The 
thumbnaill creation is offered for performance reasons. The lack of a complete 
sett of image operations makes this special feature necesary. 

Thee visual comparison capability allows users to search for images based 
onn their content. Virage uses four features, i.e. color, color composition, 
structuree and texture to describe an image. These quantitative measures 
providee easy access based on a similarity metric. 

Thee VIR Image Engine provides no query language enhancements, such 
ass fuzzy or probabilistic reasoning. All queries should be defined as boolean 
predicatess on the features extracted from the images. Querying for similar 
featuress involves full scans of the feature tables, because no special index 
structuress is added. 

Excaliburr  Visual Retrieval War e 

Excaliburr has build retrieval software, which runs on Jasmine, INFORMIX 
andd Oracle. It uses of the image contents shape, color and texture to index 
thee database. Retrieval is supported by query by example or by sketch. 

Thee Excalibur Visual Retrieval Ware is based on Excalibur's Adaptive 
Patternn Recognition Processing (APRP) technoligy. APRP acts as a self-
organizingg system that automatically indexes binary patterns in the digital 
information,, creating a pattern-based memory that is self-optimized for the 
nativee content of the data. The bases for this indexing are the shape, color 
andd texture features extracted from the images. 

Oraclee Visual Image Retrieval Data Cartridg e 

Oraclee also has its own image cartridge, the Oracle8 Visual Image Retrieval 
Cartridge.. This cartridge supports image storage in various image formats. 
Noo support for image operations and image query extensions is provided. 

2.4.33 Research Image Ret r ieval S y s t e ms 

Severall image database retrieval projects are underway, see survey [91]. A 
feww snapshot descriptions are illustrative for the approaches taken. 
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Keywordd based image retrieval is supported by the web search engines 
Yahooo and Alta Vista. They support search for images based on categories 
andd keyword matching. Yahoo manually annotates the images. Alta Vista 
usess an annotated stock photo archive. No support for image retrieval on 
imagee content can be found here. 

Thee QBIC project [41], which later became a commercial product, stud­
iess methods to query image databases based on the image content, it is 
basedd on IBM's DB/2 Image extenders. The content features include color 
distribution,, texture, and position and shape of edges. The color feature 
iss described by the average RGB and Munsell[74] color coordinates and by 
aa 64 bins color histogram. The texture is summarized by a triplet, i.e. 
coarseness,, contrast and directionality. Shape is described as a combination 
off area, circularity, eccentricity, major axis orientation and a set of alge­
braicc moments. The similarity measure used are limited too quadratic form 
distancee functions, like the Euclidean distance. 

Too improve efficiency, the search space is reduced using a lower bound 
metricc on the color histogram Euclidean distance. The average color turns 
outt to be a lower bound for this distance [93]. Therefore, using the average 
colorr does not result in missing actual hits, though extra false hits will be 
introduced. . 

Thee VisualSEEk image retrieval system, as described in [101], automat­
icallyy segments the image into objects with equal color-set content. A color 
sett represents the colors in a segment. The spatial information about these 
objectss is stored. Using both the spatial and color properties the user can 
queryy this database. A large database of 12,000 images is used in their web 
demo. . 

Itt has an interesting graphical interface, called SaFe where spatial rela­
tionss between features can be modeled by sketch. The features used for this 
searchh type are color and spatial relations between similar regions. 

Recentlyy two other research projects appeared with a system using spa­
tiall relations, ExSight[120] and Blobworld[16]. Both systems start by auto­
maticallyy segmenting the images in the database. The user can then specify 
thee queries by selecting segments from sample images and spatially arange 
themm to from a spatial image query. The system searches for all similar im­
agess based on these spatial arangements using the segments features. Query 
resultss show why an image is returned by displaying the segments used and 
optionallyy the features can also be visualized. 

Thee Photobook [87] provides a large amount of image processing func­
tionalityy useful for content-based image retrieval. An example is the se­
manticss preserving image compression technique, which reduces images to 
aa small set of perceptually-significant coefficients. Using a training set of 
images,, the "eigenimage" vectors are computed. These vectors are used to 
compresss the image content information. The similarity between two images 
iss computed using the distance in this compressed "eigenimage" space. This 
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hass been successful in face recognition. 
Thee approach taken by the PictoSeek [46] is to build histograms of the 

hue,, the dominant hue edges and hue corners. The hue color component is 
chosenn since it is invariant to surface specularities, like shadow and high­
lights.. The similarity measure is color histogram intersection [106], which is 
lesss variant to occlusion and less dependent on the view point. Histograms 
aree invariant under a number of transformations. A web demo is available 
withh various databases, the largest contains 10000 images. 

Too improve retrieval performance various experiments are done with sig­
natures.. A signature indates the presense or absense of a color in the image. 
Usingg binary operators such as and, or, and x-or quickly a set of images 
withh similar colors can be retrieved. 

Imagee Retrieval System Comparison 

Thee difference between the various (non-)commercial image retrieval systems 
andd Monet's image retrieval system are given in tables, 2.7 and 2.8. Table 2.7 
expressess how the image retrieval systems score on the availability of image 
operationss and image input /output routines to various standard image file 
formats.. Scoring is again done with + + (very good), + (available) and -
(nott available). The non commercial image retrieval systems have limited 
documentationn about their image ADT. 

Retrieval l 

Virage e 
Excalibur r 
Jasmine e 
Oracle e 
Monet t 

Operations s 

+ + 
--

++ + 
--

++ + 

Input /Outpu t t 

++ + 
+ + 
+ + 

++ + 
+ + 

Tablee 2.7: Image Retrieval Systems Comparison of the image ADT 

Thee second table shows the level on which the retrieval takes place, 
globalyy or localy (segments or pixels). 

Ass can be seen from this comparing these tables none of the commercial 
retrievall systems include all required functionality. The VisualSEEk, Blob-
worldd and ExSight score in the same range as Monet. We will explain more 
aboutt the Monet's image retrieval system in the chapters 4.2 and 4. 

2.4.44 Image index ing techn iques 

Dataa structures for image feature indexing have received quite some research 
attention.. The baseline is to replace the search key of an ordinary index 
structuree by a feature vector and to include a proper comparison operator. 
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Retrieval l 

Virage e 
Excalibur r 
Jasmine e 
Oracle e 
QBIC C 
VisualSEEk k 
PhotoBook k 
PictoSeek k 
Blobworld d 
ExSight t 
Monet t 

globall  features 

++ + 
++ + 

--
--

++ + 
++ + 
++ + 
+ + 
+ + 

++ + 
++ + 

locall  features 

--
--
--
--
--
+ + 
--
--

++ + 
+ + 

++ + 

Tablee 2.8: Image Retrieval Systems Comparison of feature levels 

Forr example, quad-trees can be easily extended to encode multilevel color 
histograms,, by Lu et.al. [53]. This enables fast similarity searches based on 
thosee color histograms. 

Signaturee files, originally developed for textual information retrieval, 
havee been extended by Faloutsos [3]. The trick is to use the important 
imagee features as signatures for the images. Fast retrieval can be achieved 
usingg bit comparison on the signature files. 

Changg et.al.[98] proposed a "2D-string representation" to encode the 
objectss and their spatial relationships. Similarity retrieval of images encoded 
inn 2D strings is mapped to substring matching. 

Nabill et.al. [75] use a graph-based encoding of the objects and their 
spatiall relationships. Subsequently, retrieval is turned into a weighted graph-
matchingg problem. 

Thee Fourier transform of a signal yields a frequency decomposition which 
iss rather unsuited to describe local transitions. The wavelet transform [31, 
104,, 114] is designed to describe signals at different scales. The wavelet 
coefficientss yield a multiresolution decomposition of a signal. 

Jacobss et al[59] apply a fast Haar wavelet transform to each color band of 
thee images. The feature vector is composed of the N maximal coefficients of 
thee wavelet transform, only the sign and indices are use not the values. Also 
thee average pixel values of each color channel are used. Using this feature 
vectorr they claim to be able to find an image based on an in accurate (low-
resolution)) version of the image. 

Wangg et.al. [115, 116] uses the Daubechies 4-layer 2-D fast wavelet trans­
form.. They use a hierachical query method. First based on the standard 
deviationn in the 8*8 low frequency bands of the wavelet transform is used 
too fast reduce the result set. This set is furture reduced using the weighted 
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distancee between the 8*8 low frequency bands. The last step uses the 16*16 
loww frequency bands to find the best matching images. 

Inn [99] a method for segmentation based on the quad-tree index structure 
iss introduced for texture based image queries. Each image is recusively split 
inn four parts util the distances in the texture-feature space between the parts 
andd its enclosing part exceeds a certain threshold. Image parts are merged 
whenn their texture feature distance is less than this threshold. For each 
resultingg segment the texture is calculated. So each image is represented 
byy a set of segment, texture pairs. A user can query this by suppliing an 
examplee texture. The texture features are based on the Quadrature Mirror 
Filterr wavelet representation. 

Inn [120, 101, 16] methods based on segmented images are described in­
cludingg the segmentation algorithm. The Blobworld segmentation is done 
basedd on color features using the HSV color model and texture features. 
Safee only uses color to segment and query the images. The segments in 
Blobworldd are described using its centroid and scatter matrix expressing the 
variance,, excentricity and orientation. The queries in Blobworld use fuzzy 
operatorss to combine feature values. Use of the and operator in a query 
willl take the min imu m of the two feature values incase of the or operator 
thee maximum is used. 

2.4.55 Requirements 

Fromm the existing systems we can deduce a list of requirements. Aside from 
thee basic requirements, i.e. storing and retrieving of images and derived 
features,, these systems need to compare features using similarity measures, 
manyy of which exist. Unfortunately none perform perfectly in all cases. So 
wee need to support a large set of these feature comparing measures. Because 
wee use an extensible system later found measures can be easily added to the 
system. . 

Mostt current systems do not allow for partial image queries, i.e. give me 
alll images which contain the following parts. Only the SaFe, ExSight and 
Blobworldd systems, lets users specify a query using combinations of spatial 
relationss and color and texture features. 





Chapterr  3 

Databasee Assisted Image 
Processing g 

Thee activities in image and database research fields seem opposites of a 
spectrum.. Image processing usually involves object (image) at a time pro-
cessingcessing and database systems use set at a time processing. However, taking 
aa closer look, they are more related then one might expect. In this chapter 
wee will demonstrate a database approach for image processing, which will 
openn new ways to optimize image processing algorithms against large image 
collections. . 

3.11 Data Structures 

Storagee consideration has long been driving the design of image processing 
packages.. Packages, such as SCILIMAGE, Horus[112], IUE, Khoros, Matlab 
andd PhotoShop, store images in two dimensional arrays of pixel values. This 
simplifiedd data representation requires no storage for the spatial component 
off a pixel; its location is implicit. The implicit spatial component is used 
throughoutt the algorithms. 

AA usual further reduction is obtained by using limited pixel value types. 
Forr example, 255 gray levels present in an image can be stored in a single 
bytee pixel value. Although the storage requirement drops, it also creates 
ann overflow problem. Performing a pixel value operation can result in an 
overflow,, i.e. the value does not fit in the byte representation. 

Thee storage considerations for modern image processing packages are less 
import.. With memory prices dropping quickly, current workstations easily 
holdd 256M of memory, which is more than adequate for image processing 
gearedd towards a limited set of fully exploded images (1-7MB a piece). 

Althoughh the two dimensional array approach has its advantages, it also 
hass some difncienties. 

49 9 
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•• Optimization decisions are visible to the user 

•• Can not handle arbitrary shaped images 

•• Low level application programmers interface (API) only, i.e. only pixel 
levell operations are used. 

•• Cannot handle other regular or ir-regular grids, for the spatial com­
ponent. . 

Ann important database concept is to have a generally defined type at 
thee logical level and to hide the storage optimizations at the physical level. 
Suchh a general definition for the logical level is defined in the Image Algebra, 
whichh defines an image as a mapping from a spatial domain X into a range 
valuee domain F. 

Inn the Monet DBMS we would map an image to a BAT[X,F]. For 
suchh mapping we need atomic types to represent the pixel positions and 
values.. The atoms currently provided in the Monet image database system 
aree shown in Table 3.1 together with the MEL packages supporting these 
types.. These packages can be extended with operators needed for new image 
operations. . 

P IXELL Type 
Mell  Package 

Implementat ionn Type 
representation n 

Singlee value types 
monochrome e 
grayscale e 
reall valued 

bit t 
byte e 
float t 

2DD Vector types 
location n 
gradient t 

int t 
float float 

3DD Vector types 
color r 
color r 

rgb b 
HSI I 

Tablee 3.1: Pixel Types 

Thiss logical image definition solves the earlier mentioned problems re­
latedd to the two dimensional array approach. It supports arbitrary shaped 
images,, and can handle different spatial representations. The costs for this 
flexibilityy is high, because we potentially loose the storage savings of the 
implicitt spatial component. Later in this Chapter we will come back to this 
storagee overhead. 
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3.22 Primitive s 

Thee data models for images and database relations are closely related, but 
cann we also show that their primitives are closely related ? In this investiga­
tionn we follow the operation classes as denned by the image algebra (Section 
2.1.1). . 

Imagee restriction on its range values can be mapped directly on the well 
knownn select operations in database systems. For example, a restriction to 
alll pixels with values above a constant k maps to a selection of all records 
withh attribute range value above k. Restrictions on its spatial domain map to 
aa range selection (when the spatial ranges are known). When the restricting 
spatiall set is know a natural-semi-join operation can be used. Let a,b be a 
bat(X,bat(X, F) and k e F then formally the mapping is as follows: 

a\\>ka\\>k <=>  a.select{k,nil) 

a\t,a\t, <*=>• a.semijoin(b) 

Thee image extension primitive maps on a combination of the set union 
andd difference operations. An extension of a with b is formally mapped as 
follows: : 

a\a\ -«=*> a.uaion(b.kdiff(a)) 

Thee range(a) and domain(a) operations map to the project operation in 
Monet,, projecting the column of interest. They are mapped as follows: 

range{a)range{a) <=>• [nil'  ~ a] 

domain(a)domain(a) <=$>• [a ~ ' nil'] 

Inducedd image operations in Horus[112] map onto combinations of nat­
urall joins and scan operations in Monet. A binary image operation can be 
mappedd using a natural join between the two spatial attributes and a scan 
overr the resulting table, performing the binary pixel operation on the range 
valuee attribute. In Monet the induced image operation A between two image 
aa and b can be concisely expressed as follows: 

aXb^^aXb^^ [A] (a, b) 

Monett already has some global reduction operations, namely : min, max, 
sum,, count and histogram. They perform the obvious reduction operations 
onn BATs. Since Monet has no general BAT aggregation operation, each 
globall reduction operation requires an implementation effort. This can be 
donee both by MIL procedures and C functions. A general interface for such 
operationss can be defined to reduce this effort. This interface specifies three 
operations:: the init, next and finalize operations. The init function initializes 
thee reduction operation, e.g. setting variables. The next operation is called 
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forr each element in the BAT. The finalize operation is called wrap up the 
result. . 

Spatiall operations are somewhat more complex to map into MIL. The 
problemm with such mapping is that the spatial domain of the result should 
bee a priori known. Then it is similar to the induce image operations. First, 
aa scan is performed to transform the spatial domain of the result into the 
spatiall domain of the original image, calling ƒ for each position. The func­
tionn ƒ should be defined for the two dimensional space. Finally, a join is 
requiredd to look up the range values. Some y £ domain(f) may require 
valuess outside the domain of a, i.e. f(y) g X. These will not be present in 
thee induced image. 

aa o ƒ <̂ => [f](domain(f)).join(a) 

Too check whether the template image operations maps onto database 
operations,, we first need a mapping of a template. A template is defined as 
ann image of images, which maps to a table of tables. A template operation 
willl map to a scan of the template pixels, which are again images. For each 
templatee image, an induced image operation is performed. The resulting 
image,, which will after being reduced using an image reduce operation, form 
thee resulting pixel value. 

tt (X)a ^=^ [template.op] (t, [t  ~ const a]) 

where e 
A([Q](ty,a))A([Q](ty,a)) — template_op(ty,a) 

Thee [t~ const a] construction creates a temporary template from the 
imagee a, so both operands of template.op have the same table of tables for­
mat.. The template_op operation performs the real induced image operation 
andd reduction. 

Too make the mapping of template operations to the BAT algebra oper­
ationss clear we will explain the mapping of a well known image processing 
operation,, convolution. The image convolution is a template operation 
whichh requires an induced image multiplication between the image and each 
templatee image. The resulting images are reduced using a summation im­
agee reduction operation. Figure 3.2 shows the implementation of image 
convolutionn in MIL. 

Ass shown the image algebra operations map onto the binary relational 
algebraa operations. Since templates are just a special kind of images, their 
operationss also map into the algebra operations. 

3.33 Benefits of BAT representation 

Thee mapping solution proposed solves the identified problems with the two 
dimensionall array representation. The true benefits should still be made 
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procc image_mul( BAT[any,any] im, BAT[any,any] ty ):={ 
[*](im,ty); ; 

} } 
procc image_sum( BAT[any,any] im ):={ 

varr res := v.fetch(O); 
vbatloop(l,v.count()) - 1){ 

ress := [+](res,$t); 

} } 
returnn res; 

} } 
procc image_convolution( BAT[any,any] image, 

BAT[any,BAT]] template ):={ 
varr a :— [image_mul]([template ~ image], template); 
varr r := [image_sum](a); 
returnn r; 

} } 

Figuree 3.1: Example Template Operation 

clear.. We already discussed the advantage that arbitrary image segments 
aree obtained without additional work. In addition, we have the following 
advantagess of using binary relational tables as data representation for im­
ages: : 

•• Image Integration at the core of the DBMS. 

•• Simplification of Data Structures and Code Reuse. 

•• Query Optimization. 

•• Database Supported Parallelism . 

•• Performance and Storage Improvements. 

3 .3 .11 I m a g e I n t e g r a t i o n 

Wee simulated the Horus image representation and operations with the core 
off the Monet database system. An important immediate benefit is the avail­
abilityy of index structures which come with the binary tables. These index 
structuress can be used to improve the performance of some image operations 
drastically.. For example, searching the spatial and range domains can be 
optimizedd using proper accelerators [8]. 

Segmentationn algorithms cluster pixels to form segments. For example 
[47]] describes a segmentation algorithm based on k-means clustering in color 
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space.. Having an index structure or automated lookup table on the pixel 
valuess is beneficial. 

3.3 .22 S impl i f i ca t io n of D a t a S t ruc tu re s 

Thee binary table is Monet's main data structure. The decision for a single 
complexx structure (storing relatively simple atomic types) has proven to 
bee crucial for its core development and its impressive performance. With 
thee mapping we proofed (again) that this is also a powerful data structure 
too handle image data types. The single structure can be used as image, 
butt also as data structure to store derived data sets. This means users 
(i.e.. image researchers) only have to understand a single complex data type, 
whichh significantly decreases the learning curve. 

Thee reuse of the BAT data structure has another important advantage, 
namelyy code reuse. All image algebra operations map on combinations of 
existingg relational operators. There is no additional implementation effort. 
Introducingg new image processing operations can easily be done by supplying 
thee pixel value operations required for it. In many cases a simple MIL 
proceduree suffices. 

3.3.33 Que ry Op t im iza t io n 

Thee key to fast responds in a DBMS is the query optimizer. By mapping 
imagess into tables we can benefit from these techniques, i.e. the query 
optimizerr has all information to choose an optimal query execution plan. 
Somee techniques are introduce shortly. 

Translationn invarian t templates 

AA possible optimization is to use the properties of a translation invariant 
template.. When we know that a template is translation invariant, we can 
selectt one image from the template, for example ty with y — (0, 0), and use it 
too represent the template. All other template images tx can be regenerated 
usingg this image and a translation of its pixel values from y to x. 

Too illustrate, instead of doing an induced image operation followed by a 
reductionn for each position of the template t, we translate the original image 
aa over x for each x £ X, where X is the position set of the template rep­
resentantt image. For each resulting image perform a binary scalar induced 
imagee operation, where the scalar is the pixel value at position x. The last 
stepp is to reduce the set of images using the reduce operation as the operator 
off an induced image operation. Using this scheme reduces the number of 
lookupss of the pixel values of the template images. The steps are displayed 
graphicallyy in Figure 3.3.3 
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y+x x 

Figuree 3.2: Translation invariant convolution 

Reusee of intermediate results 

Havingg translation invariant templates and some values v in the image ty ex­
istss multiple times, we can further reduce the number of operations required. 
Forr each value in ty we apply the induced image operation, i.e removing any 
duplicates.. The optimized set of operations is displayed graphically in Fig­
uree 3.3.3 

Figuree 3.3: convolution reusing intermediate results 

Forr some translation invariant templates, the values of the image ty 

aree not used. They are set to the unit value, i.e. it only expresses the 
selectionn of the image pixel values. For example in a uniform filter the 
valuess are not used, only the positions are of interest. The image algebra 
denotess these as neighborhood operators. These operators only require the 
translationn and reduction steps of the template image product. Example 
neighborhoodd operations are uniform filter, median filter and dilation and 
erosion. . 

Furtherr optimizations, such as "sliding windows", for the uniform image 
filterr can be supported by specialized operations. These operators place a 
windoww over the original image, calculate a single result pixel from using 
thee pixels in the window, slide the window, and calculate the next pixel 
reusingg the pixel calculations in the intersection of the two windows. There 
shouldd be a way to express when a image template operation should use 
thesee operations, i.e. a translation invariant template where all template 
valuee are equal can use the fast uniform image filter[61] implementation. 

Figuree 3.3.3 shows the implementation of an optimized translation in­
variantt convolution. The translation invariant template is represented by a 

y+x x 
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singlee BAT[y,F]. First the unique values are discovered. Using these the im­
agee multiplication is done. Each resulting image is translated over the given 
vector.. The resulting images are combined (added) using the sumJmages 
operation.. The resulting values are divided by the sum of the pixel values 
inn the translation invariant template. 

procc image_mul( BAT im, BAT ty ):—{ 

returnn [*](im,ty); 

} } 
procc sumJmages( BAT im ):={ 

varr res := im.fetch(O); 
varr rest := im.slice(l,im.count()); 
rest@batloop(){ { 

ress := [+](res,$t); 
} } 
returnn res; 

} } 
procc image_ti_convolution( BAT[any,any] image, 

BAT[any,any]] template ):={ 
varr unique_values := template.reverse().kunique(); 
unique_valuess := 

unique_values.join(unique_vames.. re verse); 
varr mulJms := 

[image_mul]] ([unique_values const im] ,unique_values); 
varr trans Jms := [translate]( mulJms, template.reverse() ); 
varr sum Jms := sumJmages( trans Jms ); 
returnn sum Jms; 

} } 

Figuree 3.4: Translation Invariant Convolution 

F i l t e rr Decompos i t i on 

Somee translation invariant templates can be decomposed into a set of smaller 
templates.. Such decomposed templates reduce the number of operations 
neededd to calculate a image template product. For example a 3x3 template 
iss decomposed into a 1x3 and a 3x1 template the number of operations 
requiredd for the template image product reduces from 9 to 6 per pixel. So 
fromm 0(n2) to 0(n). 

AA query optimizer is the right place to find out such decompositions and 
usee it to optimize the query plan. 
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3.3.44 Para l le l i sm 

Mappingg the image algebra operations onto relational algebra operations 
openss a road to parallel execution. For relational algebra operations many 
parallell algorithms exist. For example a template image product can be per­
formedd in parallel. The work needed for all the induced image operations 
cann be spread over the pool of processors. Even lower granularity parallelism 
cann be achieved using horizontal decomposition parallelism. A table is hor­
izontallyy decomposed into multiple smaller fragments. These fragments are 
distributedd over the processors and the work is done there. The resulting 
fragmentss are on return gathered to form the result. 

Ann other form of parallelism is single instruction multiple data (SIMD), 
whichh can be found in nearly all modern CPU. Example instruction sets are 
Intel'ss MMX and SSE, AMD's 3D Now, Motorola's AltiVec, and Sun VIS. 
Alll are geared at multi-media applications, but these operations can just as 
easilyy be used by database systems. Having the image algebra mapped on 
thee relational algebra it will seamlessly use the SIMD optimized operations. 
Inn this thesis, parallelism is not considered. 

3.3.55 Per fo rmance and Storage Improvemen ts 

Thee mapping of images into Monet's BATs can be implemented with a 
storagee overhead comparable to the two-dimensional array image definition 
commonlyy used by the image processing software packages. In this section 
wee also indicate how to further optimize storage requirements. 

Too understand the solution, we first explain the BATs data structure. 
Figuree 3.3.5 shows a typical BAT structure used in Monet. Each binary 
tablee consists of a Binary unit (BUN) heap, to store the head and tail of the 
relation.. Each column has a fixed or variable type and optionally multiple 
searchh accelerators. Fixed sized atoms are stored directly in the BUN heap. 
Variablee sized atoms are stored in a separate heap. In the BUN heap the 
positionn of the variable atom is stored. A BAT with a head type oid and a 
taill type chr will require 8 bytes, because integers require 4 bytes alignment 
onn most systems. 

Althoughh this storage scheme proved flexible, deployment in the data 
miningg showed another way to reduce the storage requirements. Let us take 
aa look at Figure 1, which shows the decomposition of a relational table 
intoo BATs. The head of the BATs contain enumerations of unique object 
identifiers.. This information can be represented by a single object identifier, 
indicatingg the first value, and a counter. Leading to virtual object identifiers 
(voids)) [12]. Using the void type reduces the storage requirements drastically, 
sincee only one column needs to be stored. 

Wee can use the virtual object identifiers (voids) trick to solve the re­
dundantt spatial information. Just using the void type as the head is not 
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Variabl e e 
sized d 
atom m 

columnim p p 

Figuree 3.5: BAT data structure 

sufficient,, because the spatial information would be lost. Therefore, we in­
troducee a separate BAT to store dimensionality information, i.e. the image 
widthh and height. Image operations using the spatial component should take 
caree of handling these images based on void BATs. They should lookup the 
dimensionss and generate the implicit spatial component before performing 
thee actual operation. 

Thiss way, we achieve a huge storage reduction for the spatial component 
XX of image. Can we also save storage for the F component? A 1024 by 1024 
244 bit color image requires, after spatial reduction, still leaves 1024*1024*3 
bytes,, i.e. 3 MB, which is still huge when considering image databases with 
overr 1M images (i.e. 3 TB databases). Fortunately, the cardinality of the 
differentt values in the images is usually much lower than the number of 
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pixels.. This fact is also exploited by image compression schemes, such as 
foundd in the JPEG image format. In our Monet implementation a reduction 
mayy be possible using an indirection to find the pixel value. Instead of 
storingg all values ƒ directly, a position in a lookup table is stored. 1 

Ann important consequence of the lookup table is the possibility to defer 
non-spatiall operations on the pixel values to the lookup table, reducing the 
numberr of operations dramatically. Example candidate image operations 
aree unary and binary-scalar induced operations. 

3.44 Experiments 

Too demonstrate that this approach is also feasible from a performance point 
off view, we performed some experiments with one of the most important 
imagee operations, the image convolution. As a sanity check, we compare 
ourr implementation against the implementations done in Horus. 

Horuss is a new image process library developed by the university of 
Amsterdam.. It is designed to be a general image processing library, intended 
forr image analyzing tasks, implemented in C + + making heavy use of code 
templates.. The main focus of the library is performance. Therefor, some 
off the generality of the image algebra is given up in favor of processing 
speed.. The Horus library only looks at translation invariant templates, 
calledd kernels. These are the ones used most frequently. Also the image 
implementationn of Horus is focused on square shaped images, it lacks implicit 
imagee segment support. 

Too show whether our optimizations have the desired effects we compare 
ourr default convolution of invariant templates with a convolution using the 
indirectedd pixel value, i.e, using a lookup tables "ColorMap" representation 
whichh requires less multiplication operations. 

Wee compared the execution times of image convolution operations for 
variouss image sizes, from 16x16 to 512x512 and various templates. The 
resultss for each template are shown in the figures 3.4, 3.4, 3.4 and 3.4. 
Thesee figures show the results for the Horus convolution and both Monet 
convolutionss with and without pixel value lookup table optimization. 

Figuree 3.4 shows that the mapping of images to BATs is only approx­
imatelyy 20% more expensive. This is relative small since it is achieved by 
thee existing relational operators. The use of the lookup table directly pays 
offf it gives a performance gain off 20% over Horus. 

Figuree 3.4 shows that both Monet implementations have approximately 
thee same performance, which is 25% better than Horus. The reason is that 
thee Horus implementation can not make use of the fact that all values in the 

AA reduction from 3 bytes to 1 byte can be achieved when less than 256 different pixel 
valuess exist. Many images coming from the world wide web have this property. 
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Figuree 3.6: Execution times of convolution operation 
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Figuree 3.7: Execution times of convolution operation 

templatee are equal. A user could solve in Horus by calling the neighborhood 
operation,, but that shows the optimization to the user. 

Figuree 3.4 shows that the mapping pays of. The Horus cannot handle 
arbitraryy shaped images and templates and therefore the convolution imple­
mentationn has to go through the whole 3x3 template values, even though 4 
valuess are 'zero'. 

Thee last figure shows the combination of the previous two optimizations, 
i.e.. reuse the intermediates and no calculations for the 'zero' template values. 
Thiss gives already about 50% performance increase. 

3.55 Requirements 

Thee requirements coming from using binary tables as the data structure for 
imagess are: 

DBMSS should be extensible with new abstract data types, for pixel 
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Figuree 3.8: Execution times of convolution operation 
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Figuree 3.9: Execution times of convolution operation 

positionn and pixel values. 

•• The DBMS requires a void data type with virtual identifiers. 

•• The DBMS requires BATs which store values using a lookup table. 

•• The DBMS should allow for operator overloading. 

Inn our research we found a huge gape between the research communities 
off image processing and database management systems. A long history of 
differentt single object versus set at a time processing has widened the gap. 
Withh this chapter we hope to reduce this gap a little, since we know both 
worldss can benefit substantially from each other. 

3.66 Conclusions 

Inn this chapter we showed our mapping of images to BATs, i.e. binary tables. 
Wee indicated how a default implementation of the image algebra operations 
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cann be achieved. This also proves the completeness of our approach. Using 
thiss representation we indicated many roads towards optimization. We in­
dicatedd how these optimizations are obtained by the query optimizer to find 
betterr query plans. 

Wee showed that sets of images can be compressed with an additional 
BATT interface. The interface allows for transparent access to BATs with 
compressedd data. 



Chapterr 4 

Thee Image Retrieval Algebra 

4.11 Introductio n 

Withh the advent of large image databases becoming readily available for 
inspectionn and browsing, it becomes mandatory to improve image database 
queryy support beyond the classical textual annotation and domain specific 
solutions[117].. An ideal image DBMS provides a data model to describe the 
imagee domain features, a general technique to segment images into meaning­
full units, and provides a query language to study domain specific algorithms 
withh respect to their precision and recall capabilities. However, it is still 
largelyy unknown how to construct such a generic image database system. 

Thee early image retrieval systems, such as QBIC[41] and VisualSEEk[102], 
havee demonstrated some success in supporting domain-independent queries 
usingg global image properties, such as dominant angle and color histograms. 
Thee prototypical query posed to the system is (Qi) "find me images simi­
larr to this on". The user should supply such image or a sketch, leading to 
techniquess called query by visual example (QBE). The system searches for 
alll "similar" images based on pre-calculated features and builtin similarity 
measures. . 

Thiss query evaluation technique is bound to fail in the long run for several 
reasons.. First, it assumes that the user has a correct sample of the envisioned 
samplee set. It presupposes that the envisioned target image is stored in the 
database,, and that progressing from a random sample set will lead to it 
quickly.. This assumption does not hold when the databases becomes large, 
suchh as envisioned for the Acoi image database1. Using (Random) sample 
setss to steer the query process becomes confusing, because they likely lack 
ann evident color, texture and shape relationship with the semantic domain 
off interest. 

!Acoii is the experimental base for the national project on multi-media index­
ingg and search (AMIS). More information about Acoi can be on the web site: 
http:/ /www.cwi.nl/acoi i 
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Imagee databases are rarely used to answer query Q\. Instead, the user 
formulatess a query (Q2) :"find me an image that contains (part of) the one 
selected"" where the containment relationship is expressed as a user con­
trolledd metric over selected features or directly (Q3) :" find me an image 
thatt contains specific features using my own metric". 

Secondly,, global image properties alone are not sufficient to prune false 
hits,, spatial information about object locality is also needed. For example, 
inn a large image database one could be interested to locate all images that 
containn part of the Coca-cola logo. This query could be formulated by 
clippingg part of a sample Coca-cola logo to derive its reddish (R) and white 
(W)) color and to formulate a (SQL-like) query of the form: 

selectt display(img) 
fro mm image_segment sl,s2, image img 

wheree distance(sl.avghue, R) < 0.2 
andd distance(s2.avghue, W) < 0.2 
andd si.area overlaps s2.area 
andd si in img 

sortt  by distance(sl.avghue, R), 
distance(s2.avghue,, W) 

Thiss query uses two primitive parameterized metric functions. The func­
tionn distance calculates a distance in the hue color space and overlaps de­
terminess segment containment. The former is defined as part of the color 
dataa type and the latter for the segment data type. In principle, the DBMS 
shouldd support overloading and refinement of this function by the user. 

Thee big challenge for image database designers is to identify the minimal 
sett of features, topological operators, and indexing structures to accommo­
datee such image retrieval queries. In particular, those (indexed) features 
wheree their derivation from the source image is time consuming, but still 
cann be pre-calculated and kept at reasonable storage cost. Features may be 
viewpoint,, scale, rotation, and translation invariant, but need not be, see 
Sectionn 2.1.3. These problems becomes even more acute when the envisioned 
databasee is to contain over a million images. Observe also that SQL is a 
declarativee language, which should be translated into an execution algebra. 
Thiss lead to the requirement of a supportive Image Algebra satisfying the 
followingg global requirements. 

Navigat ionall  queries Image retrieval applications have a strong navi­
gationall behavior. A user guides the search for a collection of interest by 
repeatedlyy rephrasing the query posed to the system. Usually it starts with 
aa randomly selected image set taken from the database. The first real query 
posedd by a user is to select all images similar to an element of this sample 
set.. By selecting a new image from the result obtained, the user presumably 
navigatess to the collection of interest. 
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Extensionall  relational framework Many researchers are looking for 
neww similarity measures to compare and rank images. Therefore, it should be 
easyy to extend the algebra with new data types, operators, and algorithms. 
Thiss way code-reuse can be guaranteed. 

Proximit yy queries Features are derived from the image data. Since the 
imagee data is inherently imprecise, so will the feature data. Therefore, 
queriess based on feature spaces should be supported by proximity queries, 
probabilisticc reasoning, and a toolkit of similarity measures. This way the 
userr has precise control over the query model which is needed to advance 
research. . 

Computat ional l yy Complete The algebra should be computationally 
complete.. We want image analysis researchers to start using database tech­
niques.. Therefore, we should at least support the operations necessary. 
Besidess that it should be extensible using third generation languages and 
alloww rapid prototyping using scripting languages. 

4.22 Image Retrieval by Content 

Thee early attempts for image retrieval systems used primarily keyword 
annotations[18,, 19, 20]. Image retrieval is simplified by formulation in terms 
off keywords. The annotation is mainly manual, although some automatic 
approachess exist. Examples like [119, 102, 43] use words found in the sur­
roundingg of the image. 

Experiencee with keyword based retrieval systems has been accumulated 
inn the area of information retrieval for several decades[113]. The wide spread 
usee of WEB search engines illustrate their limited effectiveness. Although 
successfull in bibliographical information retrieval, keyword annotation for 
imagee retrieval suffers from major problems. The first problem is its lack 
off scalability. Manually annotation of 1000 images may still be reasonable, 
butt databases with of over 100,000 images to annotate, becomes practically 
impossible.. At best a rough classification is done. Secondly, each person 
willl describe an image by a different set of keywords. This is a result of the 
person'ss perception of the information found on the image. Therefore, using 
onlyy keywords to describe images for retrieval purposes becomes impossible 
forr image databases in mind. 

Theree are two solutions to the problem. The first is to broaden the 
groupp of annotaters, which leads to social indexing. The second is to improve 
manipulationn of content, which will be our focus. This solution is simple, 
justt stick to the information found in the image, i.e. use the image content. 
Althoughh this sounds trivial, its realization is not. Deciding what content 
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too use and how to compare these image contents is still an open research 
issue. . 

Retrievall methods based on color features, such as color histograms, are a 
promisingg track [46, 41, 106]. Color is a powerful retrieval feature. However, 
thesee retrieval algorithms largely ignore spatial information in the matching 
process.. At best a query can be specified in terms of color percentages or the 
userr has to outline objects as part of entering the image into the database. 
Thenn color histograms for the (sub-) objects can be used in the retrieval 
process.. Although the index structures will be large for these methods, 
bothh cases lead to a high percentage of false hits. 

Too understand the requirements of image retrieval systems we imple­
mentedd a prototype system. The system is designed to answer best match 
forr complete image queries, based on color and spatial information. Our 
queryy interface is based on the query-by-example paradigm, and the system 
returnss a list of best matches in order of significance. 

Wee also use spatial features, since it adds significant information to the 
contentt description. It simply makes a lot of difference were a color appears 
inn an image. For example having blue on top often indicate air. 

4.2.11 Mu l t i -Leve l S ignature 

Queryy by features calls for a both color and spatial features. In this sec­
tionn we describe an index scheme, which combines both color and spatial 
features.. The indexing scheme proposed, called the MLS (Multi-Level Sig­
nature),, is based on a recursive splitting of the image. For each sub-image 
wee calculate the color feature. The color feature used is the average color 
inn the sub-image. Concatenation of the color features leads to a signature 
thatt characterizes an image at various levels of detail. 

Usingg spatial information directs us at considering space dividing meth­
ods,, such as multi-level grids. In this study we focus on two methods to 
thee MLS, called quad-tree and prime-factor split. The quad-tree split is 
basedd on the traditional quad-tree index structure[92]. The algorithm for 
thee quad-tree splitting process is shown in pseudo code in figure 4.1. 

Thiss algorithm first calculates the color feature, i.e. the average color, for 
thee image and stores this in the MLS. If we haven't met the stop criteria, 
thee image is recursively divided into four equal adjacent parts. For each 
partt this process is repeated (see Figure 4.2). Therefore, the MLS, keeps 
informationn on various levels of details. Each level describes the image color 
content,, deeper levels keep more details. 

AA potential problem of the quad tree splitting is that it ignores the object 
boundaries.. In general, objects of relevance will not nicely fit a cell. When 
ann object inside the image lays in the center of the image, its color features 
willl contribute to all four parts, so it will mix with the rest of the colors in 
thosee parts and, therefore, have a limited effect on the selection. Objects 
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mis(MLSS sig, Image i){ 
color_feature(sig,, i); 
iff (stop_condition(sig)) 

return; ; 
quad_sp l i t (( i , rOO, rOl , r lO , r l l ) ; 
m l s ( s i g ,, rOO); m l s ( s i g , r lO ) ; 
m l s ( s i g ,, rO l ) ; m l s ( s i g , r l l ) ; 

} } 

Figuree 4.1: Quad-split pseudo code 
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Figuree 4.2: The quad splitting process 

whichh extend over the borders of the image part may have less influence 
too the MLS. Therefore, we came up with a slight variation on the quad­
treee splitting process, the prime-factor method, the prime-factor splitting 
processs splits each time the original image in p2 parts, where p is a prime-
factor.. See figure 4.3. for a graphical example of a prime-factor split. The 
effectt of objects crossing grid boundaries is reduced, since the prime-factor 
splitt makes sure that grid boundaries are always on a different place for 
eachh level. Grid elements at lower levels are not fully contained in a cell at 
aa higher level. They combine information from parts of upper layer cells. 

Figuree 4.3: The prime splitting process 

4.2.22 D a ta M o d el for  M L S Image D a t a b a se 

Thee data produced in the splitting process is stored in BATs managed by 
Monet.. This required extension of the system with an atomic type Image. 
Itss implementation provides the operational primitives to handle image pro­
cessingg in a structured way; orthogonal to the other data types. See Section 
33 for details of this module. 
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MLSJmagee MLSJcon MLSsource MLS color MLSspatial 

OID D Image e OID D Image e OID D OID D OID D CREP P OID D SREP P 

Figuree 4.4: The relational data model used for storing the multi level 
signature. . 

Thee BATs for our retrieval system (MLS) are MLSsource, MLS-Color, 
MLSspatial,MLSspatial, MLS-image and MLSJcon, (see Figure 4.4). MLSJmage con­
tainss the actual image data. In MLSJcon an icon of the image is stored. 
Showingg icons instead of the whole image reduces retrieval cost (less data 
needss to be transfered) and image display. 

MLSsourceMLSsource contains the relationship between image fragments and their 
source.. For each image fragment a pair of object identifiers (cell, image) is 
storedd to indicating this relationship. Although we could have used a single 
dataa type to represent both spatial and color features together, using some 
formm of pyramid structure, we decided upon separation. This is done to 
easilyy extent the system with different features calculated over the image 
parts,, such as texture, shape and alternative color , and spatial features. 

MLS-ColorMLS-Color contains the color feature, i.e. the average color, for each 
image-fragment. . 

Inn our prototype implementation we use the prime color component of 
thee HSV-color model [65]. The reason is to be robust against light reflections [41 
Furthermore,, the hue closely resembles the human perception of related col­
ors,, which improves image retrieval from an ergonomie perspective. 

MLS.spatialMLS.spatial contains the spatial description of each image fragment. It 
describess the spatial information obtained by the splitting process. We use 
aa simple spatial representation, i.e. a box. To keep the description scale 
invariantt we used normalized positions, i.e. box(0,0,1.0,1.0) describes the 
wholee image, and box(0.5,0.5,0.5,0.5) describes the first bottom right image 
fragmentt of the quad split. 

4.2.33 Stop Condition 

Imagee splitting continues up to the point that further splitting does not 
producee significant new information about the spatial color distribution. 
Thiss requires a flexible and user-controlled stop condition. For example, 
splittingg stops when one of the following conditions occurs: 

1.. Stop when the split level equals some predefined a. 
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2.. Stop when the average color of corresponding parts on level n and n+1 
differss less than some <5. 

3.. Stop when there are less than 7 colors remaining in a sub image. 

4.. Stop when the MLS vector occupies too much space. 

5.. Stop when the area of the image fragments is less than (32 pixels. 

Thee first condition is independent of the image content. The second con­
ditionn is intended to signal smoothness, but it suffers from large outlayers. 
Thee third variant would be of use if the image contains a large number of 
smalll details with different color distributions. In the worst case the index 
becomess larger than the image itself, due to overhead of the index data 
structures.. The fifth condition uses a multi level resolution principle. We 
choosee the third option, since it is less sensitive to outlayers and combine it 
withh the first and last. This way, the index storage size will never exceed 
thee image size. 

4.2.44 Query in g t h e image da tabase 

Thee selection process is initiated when the user specifies a query image, 
whichh should be a representative sample of the desired answer set. The pro­
cesss will split the query image recursively and uses the signatures obtained 
too exploit the index. The spatial information is used to assure that can­
didatee images in the database have the same spatial relationships amongst 
themm as the query image. 

Wee will look at the selection process of quad split and calculate algo­
rithmm in detail. From the image database the candidate (sub) images C7s, 
aree selected based on an equal bounding box. Equal bounding boxes are 
required,, since we are only looking for similar images, not for images with 
aa similar sub-image. From this set of candidates images are selected which 
havee an average color within a given range from QIs average color. Using the 
sourcee relation the original images belonging to the selected (sub) images 
aree found. 

QII is then split into 4 parts as described before. For all parts the av­
eragee color and bounding box are calculated. They are used to reduce the 
candidatee image set. Again the (sub) images with equal bounding boxes are 
selectedd from the set of candidate images. Only those images which have 
forr all parts a similar average color as QIs parts are selected. 

Thee selection process continues until a small enough answer set is reached. 
Thee selected images are than ranked, based on a similarity measure taking 
bothh spatial and color properties into account. The similarity measures 
knownn from literature, Histogram intersection [106] and Histogram distance 
[41]] do not use spatial information. 
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Instead,, we use a similarity measure, called the Multi-level signature 
similaritysimilarity measure, which computes the weighted distance between the sig­
naturess of the query image and the selected images on the split level on 
whichh the images where retrieved. The similarity measure requires a non-
expensivee computation. Formally, at each level A the similarity between the 
QIQI and CI is calculated as 

6(QI,CI) 6(QI,CI) 
\! ! i=0 i=0 

a a Qh Qh CcuCcu ,2 

cb cb 
)2) ) 

Wheree Ci is the average color of the sub image with i as its spatial represen­
tation.. The n is the number of spatial descriptions at level A. The function 
iss normalized using the maximum color difference cb found in the database. 

MonetMonet Image Retrieval System 

Figuree 4.5: The prototype image retrieval system. 
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4.2.55 P r o t o t y p e and Expe r iment 

Ann early prototype image retrieval system was implemented in 1997. It uses 
thee Monet version 3.0 database kernel and the image extensions explained in 
Chapterr 3. A graphical user interface was build using Tcl/Tk[85]. Queries 
aree specified by selecting an example image from a set of image taken ran­
domlyy from the image database. Figure 4.5 shows a screenshot of the system. 
Thee result of this query are images ordered on their similarity. 

Ann indepth evaluating of image similarity measures and retrieval quality 
wass beyond the scope of this thesis. Our focus was to provide a layer of 
databasee functionality to be used by image analysis researchers to pursue 
thiss task. To illustrate that the MLS description is a valuable addition to 
thee existing set of image descriptions, we conducted a small (non-exhaustive) 
experiment.. The experiment is conducted with a database of video frames, 
comingg from multiple video sequences. Our approach returns all the frames 
off the same scene followed by images that have a significant less similarity 
value.. Even when they are distributed over multiple shots. 

00 600 1000 1600 2000 2600 3000 
nrret.. points 

Figuree 4.6: The results of the Scalability Experiment. 

Scalabilityy experiments were conducted using database sizes from 100 to 
30000 images to evaluate the query-by-example processing time. The results 
cann be seen in Figure 4.6. It confirmed that the processing time is linear in 
thee number of images, which is achieved because larger databases will require 
imagess to be compared on more levels. Although linear is adequate for small 
sizedd databases for larger databases better use of the index structures is 
required. . 

Thee retrieval performance of the prime-split algorithm is about the 20 
too 50 percent better. This indicates less calculations are required to answer 
thee queries, i.e. smaller trees need to be compared. 
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4.2.66 Conc lus ion 

Monett  could be used -extended, queried- for  the task a hand 
Promm this exercise we can derive requirements for the Image Retrieval Al­
gebra: : 

Mult ip l ee Image Descriptions Although the MLS is a valuable addition 
too the set of image descriptions, it becomes clear that alternative descriptions 
aree needed. Therefore, one or more abstract image descriptions are needed. 

Partia ll  Image Queries The Image Retrieval Algebra should support 
globall image queries, but also partial image queries (Point based retrieval 
doess not require an expensive index) 

Indexx Structures A retrieval algebra requires proper support by Index 
structures. . 

4.33 Segment Image Indexing 

Thee early experience with the MLS image description showed its advantages, 
butt its applicability is limited to support localization of images according 
too query Ql. It confirmed that the average color of successively partitioned 
regionss provide a good handle to steer the query process. 

Inn this section we evaluate the viability of a segment based approach, 
bothh the segmentation process and storage implications are considered hav­
ingg in mind a image database of 1 million images. Segment based image 
retrievall would accommodate queries of type, "find me images similar to 
(thiss and) this segment" (C^)- Again we take a grid base approach, know­
ingg that proper image segmentation is an unsolved process in image analysis 
research. . 

Segmentss are found using both a split and a merge image indexing algo­
rithm.. Two kinds of algorithms are considered; a top-down method based 
onn recursive splitting, called S-split, and a bottom-up method based on suc­
cessivee merging, called S-merge. The former recursively splits an image into 
smallerr segments until their feature vectors dissimilarities fall below a cut­
offf point. The image objects thus considered are all rectangular in shape. 
Thee latter uses a bottom-up strategy, i.e., rectangular regions are merged 
too form segments as long as their feature vectors are closely related. This 
leadss to more general image objects. The effect of this approach compares 
withh R-trees in GIS, which have proven effect for spatial filtering. 
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4.3.11 Segment Index in g 

Thee key challenge is to develop an efficient algorithm to locate the segments 
off interest for a given image. No attempt is made to detect or infer hidden 
faces.. Neither do we consider a search for optimal segmentation schemes 
commonn in image recognition research. We conceive the index primarily as 
aa filter for applications dealing with image retrieval. 

Thee algorithm S-split finds the collection of discriminating segments by 
recursivelyy splitting the image into two sub-images. Splitting is attempted 
bothh horizontally and vertically. Sub-images are chosen such that their dis­
similarityy in average Hue is maximal. This improves the selectivity of the 
individuall segments. 

Thee recursive process is controlled by several stop criteria as follows. 

-- Let Ii  be an image split into two segments I^i and 1^2, Then the new 
segmentss are added to the imgsegment index provided their average 
Huee differs from Ii  more then a given minimal threshold Hthreahold-
Thiss guards against storing redundant information into the database. 

-- The size of the resulting two segments should both be larger than some 
threshold.. This guards against border effects and too small segments. 

-- The maximal number of segments per image is limited by a system 
parameter,, H0bjects- This guards against repeatedly splitting images 
upp to the pixel level. Instead, we assume that a limited number of 
segmentss (possibly dependent on the image size) is often sufficient. 

Thee worst case complexity of this algorithm is 0(d * n2) with n the 
maximumm image width or height and d is equal to H0f,jects. 

Usually,, d will be less than H(^jects because of the first stop condition. 
Thee algorithm S-merge attempts to merge segments into larger units. The 
algorithmm starts by dividing the original image into equal sized segments 
usingg a grid layout. Each grid element is a candidate segment for inclusion 
inn the imgsegment index. The minimal grid size considered is Hgrid pixels. 

Subsequently,, we repeatedly attempt to combine segments into larger 
unitss as follows. Let I{  and Ij  be two segments, then they are merged into 
aa single segment Ik if the following criteria hold. 

-- The average Hue of both segments Ii  and Ij  differ at most by a given 

constantt Hthreahold-

-- Both segments share at least one edge. Otherwise far apart segment 
willl be merged 

-- The merge is locally optimal. Only merge the closest neighbor both 
inn spatial and in color distance. 
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AA spatial join operation finds all pairs in the 8-connected neighborhood. 
Then,, in a recursive process, the similarity measures for all pairs are cal­
culatedd using the average hue. Using Hthr€shold the merge candidates are 
selected.. One segment can have 8 possible merge candidates. We can not 
simplyy merge all candidates, because then the similarity measures between 
thee segments merged together could be much larger than Hthreshold- Only 
onee pair could be merged per iteration. We select the candidate with maxi­
mumm similarity. If there are more candidates with equal similarity we select 
onee at random. Once the pairs are selected we can update the histograms. 
Thee image features are derived from the enlarged image ƒ*. using the prop­
ertiess of its constituents. 

Thiss process continues until no more segments can be merged. The 
worstt case complexity of this algorithm is 0(n2ln(n)), with n the number 
off segments to start with. 

Theree are large differences between the two algorithms considered. The 
S-splitt algorithm uses a simple segment representation, since splitting a 
rectanglee always results in two new rectangles. Conversely, S-merge needs a 
polygonn to follow the object boundaries. 

Ann advantage of S-merge is that it enables reuse of the hue average. The 
naturee of splitting does not allow us for such reuse of intermediate results 
att all. At each stage we have to inspect all pixels. A potential disadvantage 
off S-merge would be the large number of polygons to start with. The split 
algorithmm starts with only one rectangle. In Section 4.3.3 we study the 
performancee cost to gain a better understanding of the scalability. 

Bothh algorithms are based on the same similarity function. They merely 
differr in its interpretation. The similarity function calculates the weighted 
distancee between the features in that segment. The similarity for a single fea­
turee of two segments is calculated using the following function: S(R\, R2) — 
(—*'e~,^22 )2 , with segments R\ and R2 and primary feature F. 

Thee collection segments following from the S-split/S-merge phase are 
usedd to calculate the secondary segment features. These features are inserted 
intoo the described BATs. 

4.3.22 T h e Que ry Pr imi t i ve s 

Queryy formulation is based on a single sample, i.e. query_by_example. This 
commandd returns a ranked list of images similar to the sample image. The 
commandd first calculates the collection of no overlapping segments from 
thee given example image using the S-split/S-merge algorithms. For each 
segmentt the a set of features are calculated. These features are used to 
selectt similar segments, using a special similarity join operation. 

Forr all selected images the total similarity is calculated. This is the sum 
off the similarity measures of all the supporting segments divided by the 
numberr of segments in the example image collection of segments. 
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Thee query processing is facilitated by the primitives shown in Table 4.1. 
Thee first group controls the global or segment features to be used, such as 
controll over invariance to certain transformations. For example to search 
invariantt of rotation the user should not use the dominant texture angle. 

Thee second group controls how much segment features may differ to still 
bee classified as "similar". The similarity join operation uses this primitive 
featuree to find the similar segments. This join operation finds all pairs 
x,yy where the similarity of the features for x and y is within the specified 
minimum. . 

Thee last group controls which query type should be used. Also both 
queryy by example types can be selected. The primitives for text based 
retrievall are not given here. 

Queryy Primitive 
use_avg_hue e 
use_dom_angle_freq q 
use_dom_angle e 
useJüstogram m 
use_area a 
use_neighboorr _dist 
avg_hue_diff f 
dom_angle_freq_diff f 
dom_angle e 
histogram_diff f 
areajiiff f 
neighboor_dist t 
subJmage_queriing g 
image_queriing g 

comments s 
usee the average hue 
usee the frequency of the dominant texture angle 
usee the dominant texture angle 
usee the global hue histogram feature 
usee the area of the segments 
usee the distance between the closest neighbor 
max.. difference between hue values 
max.. difference between angle frequencies 
max.. difference between angles 
max.. difference between histograms 
max.. difference between the areas 
max.. difference between neighboor distances 
Queryy type B 
Queryy type A 

Tablee 4.1: The Query Primitives 

4.3.33 Experimental results 

Wee conducted several experiments to show that the envisioned database 
off one million images could use a technique, like Region Image Indexing, 
too support partial image queries. Construction of this database requires 
aa step-wise approach, because its construction is both CPU and storage 
intensive.. Therefore, we conducted two kinds of initial experiments. First, 
wee determine the resource requirements for the indexing algorithms on a 
smalll footprint 500-image database. Second, a web-robot is used to take a 
samplee to assess scalability. 

Thee 500-image database is a standard database for image analysis research 
att the University of Amsterdam. As such it provides a reference point for the 
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algorithmss in terms of precision later on. We fed a sample of 100 256x256 
sizedd images to both S-split and S-merge to determine the average num­
berr of segments in an image. This depends on the algorithmic parameters 

HthresholdiHthresholdi ^objects &QQ -"grid-

Figuree 4.7 illustrates that S-merge should start with a reasonable grid 
size,, i.e. very small grid sizes gives to many regions. Figure 4.8 illustrates 
thatt H0bjects should be set to 32, since splitting deeper will generally not 
resultt in more segments, due to the image size. It also illustrates that S-split 
findsfinds more segments. 

"HH thfashoia-0.1" 
"HH [hrashold=0 Or 

"HH tfireshold=0 OOV' 
JH_tfir9sho!d=00 OOOf 

Figuree 4.7: The number of segments using the S-merge algorithm 

Basedd on these experiments we can predict the storage and processing 
requirementss for the complete database. The segment administration con­
sumess 18 bytes in the current implementation. This should be multiplied by 
min{{ H0bjects, S} where S is the actual number of segments determined by 
thee algorithm. With a starting grid size of a single pixel the average number 
off segments found by S-merge is less than 200, i.e. approximately 4Kb to 
storee the segment features and index structures. S-split leads to many more 
objectss and requires about 9Kb per image. This leads to an index size of 
aboutt 4 Gbyte for a database of 1M images. 

Inn addition, we need space for the global features, e.g. URL, keywords 
andd key-phrases, and secondary features, e.g. histogram and texture. To 
assesss the size and to confirm the index resource requirements, we used the 
web-robott to obtain the first sample of about IK GIF images from the NL 
domain.. Table 4.2 shows the BAT sizes of thiss 1000 image large database. It 
indicatess that far less than 200 segments are found per Internet image. This 
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Figuree 4.8: The number of segments using the S-split algorithm 

meanss that our 500-sample is an upperbound for the storage requirements. 
Thee table also shows the number of keywords and the distribution of multi­
mediaa objects. The storage requirements of the icon is 7.5 K and about 2.5 
forr the remaining features, leading to a total of about 15 Gbyte. 

## BAT name 
mmo_url l 
mmojiame e 
txt-keyword d 
txt_phrase e 
img_segment t 
irJiue e 
ir.texture e 
ir.area a 

count t 
1002 2 
1002 2 
17340 0 
612 2 
9042 2 
9042 2 
9042 2 
9042 2 

Tablee 4.2: Bat sizes 

Thee final question to consider at this stage is whether creation of the 
Regionn Image Indexing database won't take forever. To quantify this, we 
rann a small experiment on 100 images to determine the wall-clock for the 
completee process. The Figures 4.9 and 4.10 show the timing results for the 
S-mergee and S-split using different threshold values. 

S-splitt and S-merge dominate the insertion cost, e.g. with a grid size of 
4x44 pixels S-merge takes less than 3 seconds. Since localization and down-
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Figuree 4.9: Execution times S-merge algorithm 

loadd of the candidate images can take place in the background in parallel 
thiss enables downloading of 30K images per day per CPU. 

4.3.44 Conc lus ions 

Inn this section we have introduced the necessary data structures and op­
eratorss to build a image database system aimed at supporting embedded 
imagee querying. We have experimentally demonstrated that a bottom-up 
indexx construction outperforms a top-down approach in terms of storage re­
quirementss and performance. The storage overhead for the segment feature 
indexx of an image is about 4 Kbytes. 

Promm this exercise we can also derive requirements for the Image Re­
trievall Algebra: 

Extensiblee wi t h new Region/Segment features The set of Region 
andd Segment features will only grow. Therefore, the image algebra should 
bee extensible with new region and segment features. 

Queryy Primit ive s for  Segment construction and Retrieval To 
supportt multiple segmentation algorithms primitives are needed for segment 
constructionn and retrieval. 

Indexx Structures for  Region/Segments To make efficient use of re­
gionss and segments index structures are required. 
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Figuree 4.10: Execution times S-split algorithm 

4.3.55 Image Ret r ieval A lgeb r a 

Thee image retrieval problem is a special case of the general problem of object 
recognition.. When objects can be automatically recognized, and condensed 
intoo semantic object descriptors, the image retrieval problem can be solved 
usingg conventional database technology. Unfortunately, object recognition 
iss solved for limited domains only. This calls for an image feature database 
modell and a query algebra in which a user can express domain specific 
knowledgee to recognize the objects of interest. 

Suchh query algebra has the following requirements: 

1.. The algebra should support navigational queries and query refinement. 

2.. The algebra should be data independent. 

3.. The algebra should be based on an extensional relational framework. 

4.. The algebra should support proximity queries and the computational 
approachh should be configurable by the user. 

5.. The algebra should be computationally complete to satisfy the wide 
communityy of (none-database) image users. 

Researchh on image retrieval algebras has so far been rather limited. The 
runningg image retrieval systems support query by example[41] or by sketch 
[101],, only. For example, the interface of the QBIC system lets the user 
choosee for retrieval based on keywords or image features. These systems 
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havee a canned query for which only a few parameters can be adjusted. It 
doess not provide a functional or algebraic abstraction to enable the user to 
formulatee a specific request. In the WebSeek Internet demo the user can 
adjustt a color histogram of a sample image to specify the more important 
colors.. However, this interface allows no user defined metric on colors. * 

Onlyy Photobook [87] supports user denned similarity metric functions 
throughh dynamically loadable C-libraries. Although this approach is a step 
forward,, it is still far from a concise algebraic framework that has boosted 
databasee systems in the administrative domain. In section 4.4 we introduce 
thee components of such an algebra. 

4.3 .66 Logical I m a ge D a ta M o d el 

Thee logical data model needed for an image retrieval systems is shown in 
Figuree 4.11. Requirements for a logical data model are: be able to capture 
thee raw data and provide hooks to reason about semantic objects. 

Thee top of the data model captures the image. In abstract terms, an 
imagee is a mapping from a set of pixel positions (X) to a set of pixel value 
(F).(F). In traditional systems the constraints implicit in the data model is that 
alll possible pixel values in a 2-D region are part of an image. As explained 
inn Chapter 3 we use the BAT to store these mappings. 

Pixell values and their pixel positions are the raw data of the images. 
Pixell positions can be grouped together to from regions. Each region is a 
twoo dimensional fully connected space, i.e. no holes. Each pixel position 
cann only be part of one region. 

Thee next level consists of segments. Segments are simply a set of re­
gions.. Since many image segmentation algorithms exist, all with their own 
strengthss and weaknesses, regions could be assigned to many segments. 
Thesee segmentation algorithms could use both the spatial and range val­
uess of the pixels of the underlying regions. A segment can contain holes, 
sincee a set of regions with similar features, for example similar color and 
texture,, could enclose other segments with completely different features. 

Segmentss can be merged to form objects. Each segment can end up in 
manyy objects. Object represent semantic entities, such as cars and persons. 
Forr example a car is made up out metal, glass and rubber, which all have a 
differentt features. 

Thiss shows that a logical image data model requires topological and 
spatiall operators and abstract data types. 

4.3 .77 Phys i cal Segment Rep resen ta t i on 

Thee bulk of the storage deals with region and segment representation. Large 
imagee databases require a segment representation, which is compact without 
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Figuree 4.11: Image Retrieval Algebra Data Model 

dataa loss. Many different approaches exist. All have proven to be useful in 
aa specific context, but none is globally perfect. 

Thee chain code as described by Freeman [44] encodes the contour of a 
segmentt using the 8-connected neighborhood directions. Chain codes are 
usedd in edge, curve and corner finding algorithms [70]. It is not useful for 
segmentt feature extraction, since it only represents part of the boundary 
off an area, no interior structure is seen. The complexity is 0(p) for both 
storagee and performance, where p is the perimeter of the segment. 

Manyy boundary representations exist [61], e.g. polygons and functional 
shapee descriptors. Functional shape descriptors use a function to approxi­
matee the segment boundary. Fourier, fractal and wavelet analysis have been 
proposedd for this [22, 71, 95]. Although these representations can have low 
storagee requirements, i.e. each boundary could be represented using a few 
parameters,, they are of limited use aside from shape representation. Re­
calculationn of the segments interior from polygons is very hard and from 



82 2 CHAPTERCHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA 

functionall descriptions generally impossible. 
AA representation to also describe the interior of the segment is run length 

encodingg using (position, length) pairs in the scan direction [48]. This simple 
jett compact representation captures details description of the segments out­
line.. Diagonal shaped segments are handled poorly by this coding schema. 

Thee pyramid structures [109, 108] represent an segment using multiple 
levelss of detail. They are used in image segmentation and object recognition 
[109,, 89]. These structures are in carnations of to the quad tree [92]. The 
quadd tree is a hierarchical representation, which divides segments recursively 
intoo four elements. The quad tree has been used to represent binary images 
efficiently.. The tree needs only to store those segments which have a different 
colorr than its parent nodes. The complexity of this structure per segment 
iss 0{p + n), where the segment is located in a 2" * 2n image and p is again 
thee perimeter of the segment. Quad trees can be stored efficiently using a 
pointerlesss representation. 

Sincee none of the structures above solve the segments representation 
problem,, there is a strong need for an extensible framework. It would permit 
domainn specific representations to be integrated into a database kernel, such 
thatt scalable image databases and their querying becomes feasible. 

Too explore this route we use a minimalistic approach, i.e. regions are 
describedd by rectangular grids and segments by sets of regions. In line with 
Sectionn 4.3, the underlying DBMS can deal with them in an efficient manner. 

D a t a b a s ee Scheme 

Thee core of the database schema is illustrated in Table 4.3. 
Thee first BAT group illustrate the administration of multi-media objects 

locatedd on the Web. Observe that their URL is sufficient to gain access upon 
need.. The second BAT group contains features obtained from the source, i.e. 
informationn part of the image representation format. 

Thee final group contains features to support region-based querying. Fea­
turess are used for the image segmentation process. For each obtained seg­
mentt a set of features can be calculated. The imgjegion BAT enumerates 
thee regions in each image. The remaining BATS represent features derived 
too support image querying. 

4.44 Algebraic Primitives 

Analysiss of the requirements encountered in image retrieval application and 
thee techniques applied in prototype image systems, such as [41, 101, 46], 
indicatee the need for algebraic operators listed in Table 4.4. The parameter 
ii  denotes an image, p a pixel, r a region, s a segment and o an object. Most 
functionss are overloaded for many types. TQ indicates that the function is 
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BATT name 
mmo_url l 
mmo-Qame e 
mmoJdnd d 
mmo.cntxt t 
mmojtime e 
mmo_censor r 
txt_keyword d 
txt.phrase e 
] ] 

i i 

] ] 

] ] 

] ] 

i i 

] ] 

] ] 

] ] 

] ] 

] ] 

img.type e 
img^size e 
img_depth h 
imgjstamp p 
imgJcon n 
img_region n 
ir_color r 
ir_domhue e 
ir_domangle e 
irJiistogram m 
ir^area a 

Comments s 
resourcee locator 
documentt base name 
{audio,image,, video} 
enclosingg document 
lastt access time 
{{ copyrighted, X-rated } 
keywordss for an MMO 
keyy phrase for an MMO 

{gif,tiff,jpeg,png,bmp,ppm} } 
imagee width x height 
pixell depth 
derivedd icon 
userr defined icon 
image-regionn mapping 
regionn average hue 
dominantt hue 
dominantt angle 
regionn hue histogram 
regionn area 

Tablee 4.3: Database schema 

definedd to work on the types: pixel, region, segment and object. T\ indicates 
thee function are denned for all types in To and on images. 

Thee first group provides access to the basic image features, such as pixels, 
regions,, segments and objects. Their value is either redundantly stored as 
ass materialized vier or calculated upon need. The Point, Color, Vector and 
Histogramm datatypes are sufficient extensions to the base types supported by 
thee database management system to accommodate the features encountered 
inn practice so far. 

Thee second group defines topological relationships. This set is taken 
fromm [25], because there is no fundamental difference between spatial infor­
mationn derived from images and spatial information derived from geographic 
informationn systems. 

Thee third group addresses the prime algorithmic steps encountered in 
algorithmss developed in the Image processing community. They have been 
generalizedd from the instance-at-a-time behavior to the more convenient 
set-at-a-timee behavior in the database context. This group differs from tra­
ditionall relational algebra in stressing the need for #-like joins and predicates 
describedd by complex mathematical formulae. 

AA image join (F_join) combines region pairs maximizing a match func­
tion,, ƒ(rs, rs) —> float. The pairs found merge into a single segment. The 
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metricmetric join (M-join) finds all pairs for which the distance is less than the 
givenn maximum m. The distance is calculated using a given metric func­
tion,, d(rs,rs) —> float. The last function in this group, called predicate 
joinn (P_join), is a normal join which merges regions for which the predicate 
pp holds. An example of such an expression is the predicate " similar", which 
holdss if regions r\ and r2 touch and the average colors are no more than 0.1 
apartt in the domain of the color space. A functional description is: 

similar(rr r i , r r2) := 

touch(r\,r2)touch(r\,r2) and 
distance(r\.avg-Color,r2.avg.color)distance(r\.avg-Color,r2.avg.color) < 0.1 

Thee next group of primitives is needed for selection. The image find 
(F^find)(F^find) returns the region which best matches the given region, according 
too function ƒ (rs, rs). The metric select (Mselect) returns a set of regions at 
mostt at distance m, using the given metric d(rs, rs) function. The predicate 
selectt (P^select) selects all regions from the input set for which the predicate 
iss valid. 

Thee last group can be used to sort region sets. We have encountered 
manyy algorithms with a need for a partial order. P_sort derives a partial 
orderr amongst objects. Each entry may come with a weight, which can be 
usedd by the metric sort (M_sort). This sort operation is based on a distance 
metricc between all regions in the set and a given region. The N_sort uses a 
functionn to map regions onto the domain Af. 

Afterr the partial order the Top returns the top n objects of the ordered 
table.. The Slice primitive will slice a part out of such an ordered table. The 
SampleSample primitive returns a random sample from the input set. 

4.55 Acoi Image Retrieval Benchmark 

Too show the maturity of the algebra we can now formulate a functional 
benchmarkk for image retrieval problems. Many such benchmarks have steered 
progresss in DBMS development in a variety of application areas. Examples 
inn transaction processing are the TP series developed by the transaction 
processingg community[55] and in geographic information systems the SE­
QUOIAA 2000 storage benchmark. We are not aware of similar widespread 
benchmarkss for image retrieval. 

Thee construction of such a public benchmark would benefit both the 
databasee and image processing community. Its primary purpose is to demon­
stratee function and to support research in image processing and analysis in 
aa database context. Based on our experimentation in both fields, we de­
rivedd the following characteristics from the algorithms used in the image 
processingg domain. 

•• Large Data Objects The algorithms use large data objects (>40k). 
Bothh in terms of base storage (pixels), but also the data derived incurs 
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largee space overhead. 

•• Complex Data Types The algorithms often use specialized complex 
dataa types. No distinction is made to between logical and physical 
models.. Derived data is often stored in special data structures. 

•• Fuzzy data The computational model used is based on heuristics and 
fuzzyy data often embedded in application code orr a probabilistic model. 
Thiss fuzzy data should be accompanied by some form of fuzzy logic. 

Th ee Acoi Benchmark Data The database for the benchmark consists 
off two Image sets, one of IK images and one of 1M images. The images are 
retrievedd randomly from the Internet using a Web robot. The set contains 
alll kinds of images, i.e. binary and gray scale, small and large but mostly 
colorr images. 

Th ee Acoi Benchmark Queries Based on the characteristics encoun­
teredd in the image processing community, a set of 6 distinctive queries for 
thee benchmark has been identified, as shown in Table 4.6. 

Queryy 1 loads the database from external storage. This means stor­
ingg images in database format and calculation of derived data. Since the 
benchmarkk involves both global and local image features this query may also 
segmentt the images and pre-calculate local image features. 

Queryy 2 is an example of global feature extraction as used in QBIC. 
Thiss query extracts a normalized color histogram. We only use the Hue 
componentt of the HSB color model. The histogram has a fixed number of 
644 bins. In query 3 these histograms are used to retrieve histograms within 
aa given distance and the related images. The histogram h should have 
166 none-zero bins and 48 zero. The none-zero bins should be distributed 
homogeneouss over the histogram. The query Q3a sorts the resulting set for 
inspection. . 

Queryy 4 finds the nearest neighboring regions in an image. Near is 
definedd here using a user-defined function ƒ. This function should be chosen 
soo that neighbors touch and that the colors are as close as possible. 

Queryy 5 segments an input image. Segmentation can also be done with 
specializedd image processing functions, but to show the expressive power of 
thee algebra we also include it here in its bare form. Finally Q6 searches 
forr all images in the database which have similar segments as the example 
image.. The resulting list of images is sorted in query 6a. 

Th ee Benchmark Evaluation To compare the results of various im­
plementationss of the benchmark we used the following simple overall eval­
uationn scheme. The performance of the Acoi Benchmark against differ­
entt implementation strategies can be compared using the equation score — 
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((Qii + Q-i)jDBsize + Q3 + Qza + QA + Qs + Qe + <?6a)/8, where Qx are the 
executionn times. This way moving a lot of pre-calculation to the DB-load 
queryy will not improve performance unless the information stored has low 
storagee overhead and is expensive to recalculate on the fly. 

4.66 Initial Performance Assessment 

Thee benchmark has been implemented in Monet using its extensible features. 
Thee DB-load query loads the images using the image import statement into 
thee AcoiJmages set. We only load the images in the system. No pre­
calculationn has been performed. 

Thee color histogram query (Q2) can be expressed in the Acoi algebra as 
follows: : 

varr Q2 := [normalized_color_histogram](Acoi_Images); 

Thee brackets will perform the operation normalized„color ^histogram on 
alll images in the AcoiJmages set. It returns a set of a histograms. Q3 
usess a M_select with the I? metric. The sorting of Q3a can be done using 
thee M_sort primitive. Query Q4 is implemented in the Acoi algebra using a 
F_joinn with the function f(ri, r2) defined as follows: 

/ ( r i , i * 2 ) :: = 
dist(( r \.color {), r2.color()) if r\.touch(r2) 
max_dist t 

Queriess 5 and 6 are implemented by longer pieces of Monet code??. The 
segmentationn of query Q5 use an iterative process. This process can make 
usee of the F_join primitive to find the best touching regions based on the 
colorr distance, see [79] for full details. 

Queryy Q6 can be solved using a series of M.select calls. For each segment 
inn the example image we should select all Images with similar segments, 
wheree similar is defined using the metric given. The intersection of the 
selectedd images is the result of query 6. This can be sorted using the M_sort 
primitive. . 

Th ee Benchmark Results We run these queries using the small Acoi 
databasee of IK images. The small benchmark fits in main memory of a large 
workstation.. The database size is approximately 1G. We used a Sparc Ultra 
III with 128 MB of main memory running the Solaris operating system, 
too perform the benchmark on. Using the Acoi algebra we were able to 
implementt the benchmark with little effort. 

Thee initial breakdown of the results can be found in Table 4.6, which 
leadss to the overall benchmark score is 1.158. 

Inn the result we can see that the DB-load query takes more than 80 
percentt of the overall benchmark result. This unexpected result stems from 
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heavyy swapping of the virtual memory management system. Main memory 
runss out quickly, so swapping will influence the performance. Based on our 
earlyy experimentation with multi-Giga-byte databases this problem can be 
resolvedd with some careful loading scripts. 

Wee found that the results of queries Q4 and Q5 were low. The non-
optimizedd current implementation of F.join was responsible for the low per­
formance.. To improve it we moved the spatial constrains out of the F_join. 
Thiss allows us to find candidate pairs based on the spatial relation between 
regionss quickly. This way we improved the performance of the queries Q4 
fromm 5 to 1 second and Q5 from 21 to 1.2 seconds using a few minutes of pro­
gramming.. A similar step in a traditional image programming environment 
wouldd have meant partly re-coding several pages of c/cH—h code. 

4.77 Conclusions 

Inn this chapter we introduced an algebraic framework to express queries on 
images,, pixels, regions, segments and objects. We illustrated the expressive 
powerr of the Acoi algebra using a representative set of queries in the image 
retrievall domain. The algebra allows for user-defined metric functions and 
similarityy functions, which can be used to join, select and sort regions. The 
algebraa is extensible with new region properties to accommodate end user 
drivenn image analysis in a database context. 

Wee have implemented the algebra within an extensible DBMS and devel­
opedd a functional benchmark to assess its performance. In the near future 
wee expect further improvement using extensibility in search methods and 
indexx structures to improve the performance of the algebra. As soon as the 
fulll Acoi database is ready we will perform the benchmark on the set of 1M 
images. . 
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Properties s 
area(T\)area(T\) —• 
perimeterperimeter (T\) —> 
centercenter (7\) —> 
avgjcolor{T\)avgjcolor{T\) —> 
colorcolor Jiist{T\) —• 
texture(T\)texture(T\) —> 
moment{T\)moment{T\) —• 

float float 
float float 
point point 
color color 
Histogram Histogram 
vector vector 
float float 

Topologicall operations 
touch(Ttouch(T00,, T0) -> 
inside(To,To)inside(To,To) —> 
crosss (T0, T0) —• 
overlap(TQ,Toverlap(TQ,T00)) —• 
disjoint(To,disjoint(To, To) —• 

boolean boolean 
boolean boolean 
boolean boolean 
boolean boolean 
boolean boolean 

Joinn operations 
F _ ^ n / ( r o , T o ) ( { T 0 } ,, {T0}) -> 
M_7omd(ToiTo)im({T0},{T0})) -> 
P_jomp(ToiTo)({To},{T0})) -> 

{To} {To} 
{To} {To} 
{To} {To} 

Selectionn operations 
FF .find f (Tl jTl) ({Ti}, Ti) -+ 
M_seZecid(Tl |Tl)jTn({Ti},Ti)) - • 
P_se/ecip ( r i )T l )({Ti},Ti)) -» 

Ti i 

{Ti} {Ti} 
{Ti} {Ti} 

Rankingg and Sample operations 
P_sort({Ti})) -> 
M_sorid(Tl ]T l ){{T1},Ti)) -> 
iV_sort({Ti})) - • 
Top({Ti},mt)) -> 
5/ice({Ti},int,, znt) —* 
5a7np/e({Ti},mt)) —• 

{Ti} {Ti} 
{Ti} {Ti} 
{Ti} {Ti} 
{Ti} {Ti} 
{Ti} {Ti} 
{Ti} {Ti} 

Tablee 4.4: The Image Retrieval Algebra 

Joinn operations 
F.joinF.joinff(L,R)(L,R) -^{T0} 
MjoinMjoindi7ndi7n(L,R)(L,R) -^{T0} 
P_joinP_joinpp(L,R)(L,R) ^ { T 0 } 
Selectionn operations 
F.findF.findff(L,r)(L,r) -+Tx 
MselectMselectdd,,mm(L,r)(L,r) -^{Ti} 
Pselectp(L,r)Pselectp(L,r) —>{Ti} 

result t 
{/r|/rr e Ti?, ,3/V e L/2 A ƒ (/', r') > ƒ(/, r)} 
{lr\lr{lr\lr  e LRAd(l,r) < m} 
{lr\lr{lr\lr  <E T # A p ( / , r ) } 
result t 
I e L , ^ ' G i A / ( r , r ) >> /(Z,r) 
{/|JJ 6 L Ad(l,r) < m} 
{l\leLAp(l,r)} {l\leLAp(l,r)} 

Tablee 4.5: Signatures of the Join and Selection operations 
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nr r 

Ql l 
Q2 2 
Q3 3 
Q3a a 
Q4 4 
Q5 5 

Q6 6 

Q6a a 

query y 

DB-load d 
{h\i{h\i  E Imgs A h = normalized .color Jiistogram(i)} 
{i\i{i\i  G Imgs A L'2distance(normalized_colorJiistogram(i), h) < 0.1} 
sortt Q3 
{n\ri2\nin2{n\ri2\nin2 e Regs(im)A fln3 e Regs f (711,713) > f'(711,722)} 
{rs\rs{rs\rs C Regs(i) A VriT2 e # £ : 

LL22distance(avgjcolor(r\),avgjcolor(r2))distance(avgjcolor(r\),avgjcolor(r2)) < 0.1 
A3soo ... sn £ rs : 
rr  touch so A 
SiSi touch Sj+iA 
s nn touch s} 

{i\Vsi{i\Vsi e Q6(z)3se G Segs(e) 
d(si,d(si, se) < mirudisi] 

sortt Q6 

Tablee 4.6: Benchmark Queries 

Query y 

Ql l 
Q2 2 
Q3 3 
Q3a a 

Time(s) ) 
2865 5 
598 8 
1.5 5 
0.3 3 

Query y 
Q4 4 
Q5 5 
Q6 6 
Q6a a 

Time(s) ) 
1.0 0 
1.2 2 
1.5 5 
0.3 3 

Tablee 4.7: The Acoi Benchmark Results 





Chapterr  5 

Imagee Analysis: A case study 

Imagee retrieval systems form an interesting, but small subset of the potential 
applicationn of image databases. Our conjuncture is that image analysis 
researcherss can also benefit from such systems in their day-to-day activities. 

Currently,, in image processing research, each analysis step is programmed 
inn a third generation programming language. These languages are not known 
forr their ease of programming, code maintenance, and reuse-ability. An ob­
jectt oriented programming style, such as seen in Java and C++ , partly solves 
thee maintenance and reuse problems. Java still suffers from performance 
problems.. These problems are countered with proprietary data structures 
andd associated operations to obtain better performance. Likewise, C + + still 
sufferss major compiler compatibility problems when distribution to different 
platformss is the objective. 

Besidess the cumbersome programming language, programmers in image 
analysiss often focus on hard recognition problems in isolation. It is not 
uncommonn to be confronted by throw away code, because there is limited 
tendencyy to develop code for reuse. As a result, they also lack writing proper 
documentationn and the image analysis community is stuck with software 
hardd to maintain and reuse. Although, exceptions on these rules exist, 
suchh as the Horus image library[112], the current software approach hinders 
progresss in this area. 

Thee approach taken in this thesis is to use database technology as a step 
forward.. A database system challenged to support image analysis has to 
overcomee the following problems: 

Erroneouss Data The initial image data (and all derived data) contains 
errorss due to inaccuracy of the measuring devices. Errors largely come 
inn two flavors: the discretisation error from scanning (devices) and 
usee of inadequate data structures. To illustrate the former, scanning 
devicess have physical constraints on the LED's. To illustrate the latter, 
onee could store a line simply by the end points, which again makes 
itt dependent on the discretisation technique (i.e. grid precision)[51], 

91 1 
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Anotherr option is to use a triplet of center point, orientation and 
length,, which is much less dependent on the discretisation technique. 

Proximit yy and Probabil ist i c reasoning The fuzzy data involved requires 
mechanismm to support proximity-based queries and a probabilistic 
computationall model, This is currently not supported by database 
managementt systems. A step into this direction is researched by [32]. 

Mult ipl ee representations Many possible derived data features exist and 
eachh one can be represented in several ways, while transformations 
betweenn them is generally not loss-less. The system should be able to 
handlee all in a uniform way and decide on what to materialize. 

Exist in gg Algor i thm s Many image analysis algorithms exists and one may 
nott expect image researchers to rewrite them into database queries. 
Instead,, these often time consuming algorithms should be callable from 
thee query language directly. To be useful in a database context they 
shouldd be side effect free, otherwise any optimization is impossible. A 
criterionn hardly ever met. 

Inn this chapter, we propose to add core image processing functionality to 
thee database management system, making it a better tool for image analysis 
researchh as well. The approach taken is to identify missing parts using a 
singlee representative case: "line clustering". The "line clustering" problem 
hass been chosen, because it is a long standing problem in image analysis 
researchh and, therefore, an acceptable solution is known. The outcome of 
thiss experiment are operator and database requirements. 

Thee human visionary system seem to recognize straight lines in images 
easily.. Even when the lines are broken into segments, partially visible, and 
withh a small angular distortion. Actually, a human clusters the visible line 
segments,, such that with a certain confidence he or she claims they belong to 
thee same line. This confidence is based on syntactic information, i.e. "most 
liness are straight" and a priori semantic information "we deal with power 
lines".. The later aspect is a focus for model driven image analysis. 

Inn the rest of this chapter we show, by means of the case study, that 
ann IDBMS simplifies experimentation with the different image analysis al­
gorithmss and it takes less time to implement them. However, it is not our 
intentionn to solve the line clustering problem at large. Consequently, we 
don'tt explore all performance aspects, but focus on the translation of an 
imagee analysis problem into a database problem. 

5.11 The line clustering problem 

Manyy computer vision and image processing applications involve the seem­
inglyy simple problem of line detection. A clustering of segments into lines 
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thatt faithfully represent the original image is a pre-requisite for many image 
understandingg algorithms. 

Conversionn of an image into a set of lines is a two-phase process. In 
thee first phase, the image is converted into an edge map using a segment 
detectionn algorithm, such as [15]. The second phase deals with extracting 
thee straight lines from the edge map. 

AA major problem encountered in practice is the lack of accurateness 
inn the segment extraction algorithms [14, 39]. Segments may be broken, 
rotatedd or translated from their actual position in the source image. These 
shortt comings of the detection/extraction algorithms show up more when the 
originall image contains different line styles, such as dashed and dotted lines, 
orr the image is cluttered with lines. Some segment extraction algorithms 
mayy be better in handling rotations, others in handling width displacements. 
Sincee edge detection and segment extraction are long standing topics in 
computerr vision it is unlikely that error free algorithms will be found shortly. 
Thee result is that image analysis starts with a large collection of segments 
thatt barely resemble the lines in the original image. 

Thee way out of this dilemma is to focus on segment clustering algorithms 
too derive approximately correct lines. By developing clustering algorithms 
withh a few controlling parameters it becomes possible to automate line de­
tectionn up to a point that human intervention is reduced to a minimum. The 
properr parameter settings can be obtained by an expert user in an inter­
activee application, which shows the clustering results for various parameter 
settings. . 

Figuree 5.1: Example Image with Line Segments 

Forr practical purposes [40, 76, 64] assume an image with a sparse number 
off lines, e.g. contours of a single sharp object. The example image, Figure 
5.1,, is taken from [64] which deals with powerline maps. 



94 4 CHAPTERCHAPTER 5. IMAGE ANALYSIS: A CASE STUDY 

5.1.11 C lus te r in g Hierarch y 

Thee line clustering problem can be redefined as clustering the segments ob­
tainedd from the extraction algorithm to form lines closely resembling the 
originall line in the image. The predominant way to solve this is by con­
structingg a clustering hierarchy, which groups of segments are more likely to 
belongg to the same original line. 

Figuree 5.2: Example Clustering Hierarchy 

Seee Figure 5.1.1 for a sample segment set taken from a utility map and 
thee corresponding cluster hierarchy. In such a hierarchy each node represents 
aa hypothetical line si, which best fits the underlying segment set. The 
leavess of the hierarchy contain the initial segments. Each node combines 
twoo segment sets into Si. Note that sj may, but need not collide with a 
detectedd edge. 

5.1.22 C lus te r in g Factors 

Thee error classes caused by the detection phase are: orthogonal distance 
d(si,Si),d(si,Si), rotational displacement 9Sl - 9Si, and difference in line width be­
tweenn a segment and the hypothetical line. For dashed lines we include the 
factorr coverage, i.e. coverage(s;, {SJ}) , measured as the sum of the segment 
lengthss projected on the hypothetical line Sj, as the ratio to its total length. 

-v -v / / 

Figuree 5.3: Example Rotational Error 

Thee clustering factor orthogonal distance d(si,Si) specifies that segments 
farr apart are less likely to belong to the same original line. The same holds 
forr segments with a large angular displacement. This factor depends on 
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thee length of the line segments, since small segments are subject to larger 
discretisationn errors than long segments. Figure 5.1.2 clearly shows the error 
causedd by a single pixel shift. A detector cannot separate a point from a 
smalll line. 

Thee width difference factor models that segments of a single original line 
cannott differ too much in width. The coverage ratio needed to detect dashed 
liness states that the more of the hypothetical line is covered by the segments 
thee higher the support for that hypothetical line is. 

5.1.33 Clustering Function 

Segmentt sets {si} are constructed using a cluster function M ( { S J } ) , which 
producess a likelihood value in the range [0..1] for a set of segments supporting 
aa single hypothetical line si. The hypothetical line si for a set of segments 
{si}{si}  is obtained through a least square fitting algorithm. From [64] we 
obtainedd the following cluster function: 

M({8M({800,8,811,...,s,...,snn})=})=  y/\(si, s0) * \(sh si)*...* X(si, sn) * ™ ' * ' " 

(5.1) ) 
Wheree the support function X(si,Si) is defined as: 

A(si,, si) = Gaai(ti) (0Sl -dSi)*  Gao(d(*u * ) ) (5.2) 

Andd where Ga(x) is defined as the Gaussian distribution: 

GGaa(x)(x) =  (5.3) 
y-Kuy-Ku1 1 

Thee standard deviation of the rotational displacement 0 of s\ and s% is 
controlledd by crai{s.y The permissible deviation is larger for shorter seg­
ments.. In Equation 5.2 d(si,Si) is the orthogonal distance between si and 
S{S{,, measured as the shortest distance between the center of Si and the line 
si.si. The standard deviation in orthogonal distance is controlled by a0. 

Thee last part of Equation 5.1 controls the gap size between segments. 
L(si,L(si, {SJ}) is the sum of the lengths of all segments projected onto the line si 
andd lSc is the total length of covered segment of the line sj. Larger coverage 
indicatess a higher chance that these segments belong to the same original. 
Thesee functions are used to calculate clustering values to build a hierarchy 
off segment sets. 

Thee hierarchy is build bottom up in an iterative process with the initial 
treee containing the individual segments as leaves. Using a hill-climber algo­
rithmm the tree is constructed by repeatedly combining two nodes. Once a 
clusteringg set is formed it cannot be split again. 
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Twoo Segment sets are clustered if there is no other combination with a 
higherr support value. In particular, at each step, node pairs with a maxi­
mumm support value are located and merged into a new node. The support 
functionn value is always based on the original segments, because even the 
bestt fitting algorithm for finding a hypothetical line has inaccuracies. Merg­
ingg inaccurate hypothetical lines could result in lines that do not represent 
anyy of the lines in the original image. For example a circle broken into 
segmentss could mistakenly be clustered into a single straight line. 

Thee clustering process continues until all nodes have been merged into 
setss and the clustering tree is completed by a single root. The hierarchy 
iss then a complete clustering of all the segments into a single hypothetical 
line.. From the clustering hierarchy, it becomes possible to select a clustering 
accordingg to a user controlled threshold value. This threshold could be 
foundd using a process of visual feedback, i.e. an edgemap overlayed with the 
clusteringg for a given threshold 5. Clustering of segment sets which are too 
farr apart or have very different orientations are ignored. 

Thee algorithms proposed in [76, 64] calculates the likelihood value for 
eachh segment subset. This leads to a combinatorial explosion, because of the 
largee number of segments involved. The algorithm does not scale. Their al­
gorithmicc complexity is cubic in the number of segments, (n), considered for 
clusteringg 0(n3). Furthermore, the clustering function is expensive, because 
itit recalculates the hypothetical line from the segment set considered. 

5.22 Database Optimization 

Thee solution described in the previous section involves user controllable 
parameterss (o"a(i(s))> ^o» 6), and are based on complex calculations. Moreover, 
thee clustering algorithm uses a single hypothetical line at a time processing. 
Althoughh it gets the job done, it is far from optimal. 

Conversionn of this approach to a database set-oriented approach seems 
beneficial.. The following optimizations strategies would be applied by a 
databasee programmer confronted with the task: 

•• Domain independent methods 

Usee spatial indices, to reduce the 0(n2) problem with appropriate 
filters. . 

-- Factoring out expensive calculation, to reduce the CPU cost. 

•• Domain specific filtering 

-- Use angular distortion to start the search for lines under the 
assumptionn that their angular distance is always limited. 

-- Use line length to start with long lines, these are considered less 
erroneous. . 
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•• Domain specific algorithms 

—— Use a set oriented approach gives a better handle to reduce re­
peatedd calculations. 

-- Divide & conquer using repetitive splitting into disjoint sets until 
thee optimum is found. 

Usingg the same algorithm we could reduce the calculation of the ex­
pensivee clustering function by careful selection of candidates for clustering. 
Wee can use domain independent indices to speed up this search, when a 
maximumm segment distance is known. For example searching for candidate 
clusteringg pairs could be done using a spatial index structure, such as the 
R-treee [52]. We could also factor out the constant factors in the clustering 
function,, which cannot be done transparently by a C-compiler. 

5.2.11 M a t h e m a t i c al Op t im iza t i o n 

Solutionss as described by [40, 76, 64] use functions to calculate a cluster­
ingg value for a set of segments, i.e. they all use similarity measures. The 
clusteringg function combines the clustering factors into a single value that 
quantifiess the support for the hypothetical straight line. A better approach 
iss in the first step to use these factors to filter out approximately 90 % of 
non-interestingg cases, and then solve the remainder using these expensive 
measures. . 

Thee clustering algorithm discussed uses a clustering hierarchy, but spe­
cificc applications will use a threshold value to select only a subset of this 
hierarchy,, i.e. all clusterings {SJ} where M{{si\) exceeds the threshold S. 
Havingg this threshold we could reverse engineer the clustering function and 
findfind information to reduce our search space. 

Twoo optimization methods could be applied: search optimization and 
filtering.. The first, improves searching for candidate clusterings. For exam­
plee a search for candidates based on spatial locality. In the naive algorithm 
thee candidates considered are all segment set combinations. A filtering op­
timizationn would significantly reduce the set of candidate clusterings using 
aa cheap operation as follows. Knowing two segments can never be clustered 
whenn their orientations differ too much, we could cheaply filter these out 
usingg a selection on their orientation difference. To see how we apply these 
optimizations,, take a closer look at the clustering function 5.1. 

Considerr Equation 5.1 and assume n — 1 segments perfectly fit the hy­
potheticall line si. This together with threshold 6 leads to Equation 5.4. 

V'AMJ .M^^ (5-4) 
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Whenn only considering the angular displacement, i.e. assume coverage 
iss perfect and orthogonal displacement is 0, leaves Equation 5.5. Only con­
sideringg the orthogonal displacement gives Equation 5.6. 

\^/™'> \^/™'> 

- ( Q j - t t l 2 2 

** e °'(«n) >6^8i 
a i (» n ) ) 

< < 

(5.5) ) 

** e 
d(s,,sd(s,,snn))

2 2 

''  „ „ 2 >5^d(si,s>5^d(si,snn)) < \ -log(Sn* (5.6) ) 

Assumingg no rotational and orthogonal displacement leads to Equation 
5.7.. The maximum gap between two segment sets, Si and 5 2 , can be ob­
tainedd when both the sets are perfectly aligned, then L(si, {SJ}) i s the sum 
off all segment lengths and lSc is the sum of all segment lengths plus the gap 
size. . 

Thiss gives an upper bound on the distance between to perfectly aligned 
segments,, i.e. a maximum gap size. 

L(si,{si}) L(si,{si}) 
>>  S =>• gap < *(L(5i)) + L(S2)) (5.7) ) 

llScSc ~ '  »~r - 5 

Too allow for candidate search based on segment distance we need to 
combinee this with the maximum rotational displacement and maximum or­
thogonall distance because these factors could influence the distance between 
segments.. There are three extremes to consider when searching the maxi­
mumm segment distance, maximum gap size, maximum orthogonal distance 
andd maximum rotational displacement. The maximum segment distance is 
thee maximum of these three extremes. See Figure 5.2.1 for these extremes. 
Thee gap size and orthogonal distance can be calculated directly. 

Figuree 5.4: (a) max. gap size (b) max. orthogonal distance (c) max. 
rotationall displacement 

Thee angle 9 between the hypothetical line s; and the segment sn depends 
onn the segment distance, d(si, sn). This leads to Equation 5.8. 

d(si,sd(si,snn)) < Jmax.gap2 + (sin(max jangle) * l/2l(sn))
2 (5.8) 
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5.2.22 Spl it based a lgo r i t h m 

Thee problem of the clustering algorithms discussed so far is their complexity. 
Forr each level of the clustering hierarchy n2 combinations are checked. 

Onee way to reduce the possible combinations is to look at the data 
characteristicss at hand. For example Figure 5.2.2 shows the segments length 
andd orientation of an A4 sized utility map. This figure clearly shows that 
thee large segments can be easily split into two groups around the peaks, 60 
andd 175 degrees. This could give two (disjoint) input sets for the optimized 
clusteringg algorithm. 

Whenn we apply the same method for the segment width and polar r 
coordinatee we can identify groups of segments, which are strong candidates 
forr clustering. The splitting in groups should allow for overlapping groups, 
sincee not all clustering factors have clear split positions. 
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Figuree 5.5: Angle Length 

5.33 A hybrid solution 

Inn this section we illustrate integration of an existing algorithm for line clus­
teringg with our extensible database management system Monet. The ap­
proachh taken is to store the segments and clustering hierarchy in a database 
table.. The clustering algorithm extracts portions of this table for processing 
andd stores the results back into the database. This hybrid algorithm is di­
rectlyy based on [64], and illustrates use of a DBMS as a single object server. 
Itt does not involve delegation of work. 

5.3.11 D a t a b a se represen ta t ion 

Integrationn of the line clustering algorithm and database technology requires 
definitionn of a data model. The ideal situation, from an image processing 

**tfl.hw«jfewtf»é . . 
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pointt of view, is when the C++ structures in the application program are 
understoodd and managed by the DBMS. This ideal is pursued by object-
orientedd systems, such as persistent C + + and ODBMS. 

Althoughh this leads to a seamless interconnection, i.e. no impedance 
mismatch,, the state of the art DBMS optimization techniques have lim­
itedd effect. The underlying reason is the iterative processing model still 
adheredd to in the application code, rather than a more declarative set-based 
approach. . 

Thee solution is to use an extensible relation DBMS, which offers a declar­
ativee query language which could be extended with new abstract data types, 
commandss and search accelerators. Examples are Postgres and Informix, 
wheree the user can introduce abstract data types, whose representation is a 
bytee sequence. Conversion of application data structures into their database 
equivalentss then merely amounts to conversions into/from a byte sequence. 

Anotherr example is our extensible database system Monet [8], which sup­
portss user-defined abstract data types, called atoms, search accelerators, 
andd new commands. These are introduced using the Monet extension and 
C / C + ++ programming language. 

5.3.22 D a t a M o d el 

Recalll that in Monet the data is fully vertically decomposed into Binary 
Associationn Tables (BATs), see Section 2.3. The data model for this appli­
cationn domain consists of object identifiers (oids), segments, and sets of oids. 
Oidss are part of the standard data types of Monet, and thus all operations 
neededd are at hand. For the segments a new atom (abstract data type) was 
needed,, see Figure 5.6 for the module specification. 

Thee input for the line clustering problem is a large set of line segments 
obtainedd by scanning a grey-value image, using an edge detector followed 
byy a straight line extraction algorithm. This initial information is placed in 
aa BAT, which contains for each segment an object identifier and a segment 
representation,, see Figure 5.7 for a slice taken from this BAT. 

Thee nodes of the hierarchy are also stored in a BAT. For each node again 
ann object identifier is used together with a set of oids. These sets of oids 
representt the sets of segments. See Figure 5.3.2 for the required schema. 

5.3.33 C lus te r in g A lgor i th m 

Thee subsequent step is to recode the algorithm [64] in MIL. Although this is 
aa straight forward mapping, it pays off to judiciously use indices to trim the 
spacee explored. The cost incurred by combinatorial explosion encountered 
inn the naive line clustering algorithm can be reduced using a spatial filtering 
technique.. The rationale is that two segments are merge candidates if they 
aree spatially local. 
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.MODULEE segment; 

.USEE point; 

.ATOMM segment[32,8]; 

.TOSTRR « segment_tostr; 

.FRQMSTRR = segment_fromstr; 
.NEQUALL = segment_comp; 
.HASHH = segment_hash; 

.NULLL = segment_nu.ll; 
.END; ; 

.COMMANDD direction( segment ) : dbl = segment.direction; 
"gett segment direction" 

.COMMANDD center( segment ) : point = segment_center; 
"gett segment center point" 

.COMMANDD length( segment ) : dbl = segment.length; 
"gett segment length" 
.ENDD segment; 

Figuree 5.6: The segment atomic type 

Thee database structure to support location of spatial objects is the R-
tree,, supported by one of the Monet extension modules [13]. An R-tree 
clusterss spatial local boxes together. We used this index on the bounding 
boxess of the segments. These boxes were blown up, because the maximum 
segmentt distance depends on the segment length. We used a R-tree join to 
findd overlapping bounding boxes and therefore find close by segments. We 
cann use this search accelerator without any further programming. 

Thee original algorithm finds all clusterings for a given threshold S. Based 
onn the threshold we find appropriate maxima for the clustering factors, see 
Sectionn 5.2.1. We calculate the maximum allowed distance between two 
segmentt sets. A maximum orientation, width and gap size difference which 
couldd still lead to a possible clustering. Based on these maxima we filter 
outt possible clusterings. These filters reduce a lot of expensive calculation 
off the support function. 

Thee hybrid algorithm follows the original hill-climbing process, which 
willl go through the following steps. 

Thee possible clusterings are found using a R-tree overlap join, which 
clusterss all overlapping boxes and, thus, all spatially local segments. The 
sett found is further reduced using the angle and width heuristic filters. In 

http://segment_nu.ll
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## # 

## BAT: tmp_28 # 
## (oid) (segment) # 
## # 

[[ 4286, ((3844.000000,15573.000000) 
[[ 4287, ((3834.000000,15578.000000) 
[[ 4288, ((3829.000000,15572.000000) 
[[ 4289, ((3844.000000,15563.000000) 
[[ 4290, ((482.000000,15590. 000000) , 
[[ 4291, ((491.000000,15596.000000), 
[[ 4292, ((478.000000,15602.000000), 
[[ 4293, ((475.000000,15600.000000), 
[[ 4294, ((480.000000,15591.000000), 
[[ 4295, ((480.000000,15589. 000000) , 
[[ 4296, ((5823.000000,15651.000000) 
[[ 4297, ((5830.000000,15660.000000) 
[[ 4298, ((5824.000000,15647.000000) 

,(3834.000000,15578.000000))] ] 
,(3829.000000,15572.000000))] ] 
,(3841.000000,15564.000000))] ] 
,(3852.000000,15560.000000))3 3 
(491.000000,15596.000000))] ] 
(478.000000,15602.000000))] ] 
(475.000000,15600.000000))] ] 
(476.000000,15590.000000))] ] 
(480.000000,15591.000000))] ] 
(480.000000,15589.000000))] ] 
,(5830.000000,15660.000000))] ] 
,(5822.000000,15660.000000))] ] 
,(5832.000000,15638.000000))] ] 

Figuree 5.7: Slice from the bat with segments 

Bat t 
segments s 
boxes s 
segmentt sets 
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headd type 
oid d 
oid d 
oid d 
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box x 
oidset t 
oid d 

Figuree 5.8: Schema 

otherr words, only the clusterings segments which are spatially local, and in 
thee same angle and width ranges, are the candidates considered. 

Inn stage 3 all clustering values are calculated using the original cluster 
function.. This cluster function has been shown to be accurate, but it is also 
ratherr expensive. It needs to find the hypothetical line with the maximum 
supportt value. Finding the best hypothetical line through the set of segments 
iss done using a least square fitting algorithm. Because the support function 
dependss on the hypothetical line, which changes when new segments are 
added,, no reuse of the calculations can be done. 

Thee support values are known, the clusterings with a maximum support 
valuee for each of the containing clusters should be selected. Thereafter the 
clusteredd segments and corresponding boxes are deleted from their BATs, 
andd the new sets are inserted in those BATs. For each new cluster a new 
boundingg box is calculated and inserted into the R-tree BAT. The bounding 
boxx of the set of segments is that box containing all segments. This stepping 
processs will continue until nothing more can be clustered. 
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Algori th mm hybri d 

1.. Spatial join , join all possible clusterings based on spatial locality 

2.. Heuristi c selection, make a selection based on the angle heuristics. 
Filterr out pairs with very dissimilar orientation. 

3.. Support values, calculate the precise support values for the hypo­
theticall line. 

4.. Select maximums, select clusterings which have a maximum support 
value e 

5.. Update, update the BATs containing the nodes and boxes 

Sincee segment clusters are represented by there segment identifiers, in­
terfacee functions should find the corresponding segments and convert those 
intoo the data structures needed for the clustering functions. This means 
theree is a lot of conversion overhead. For the different parts of the calcu­
lationn of the heuristics and support values a number of segment and node 
characteristicss are needed, like center point, angle, and mean angle. Also 
thesee characteristics have to be recalculated each time the different functions 
aree called. 

Usingg different selection criteria has proven to significantly reduce the 
numberr of times the support value is calculated. As a consequence the 
supportt function is no longer the dominant performance overhead. The 
heuristicss are now responsible for most of the execution time. 

Thee use of the R-tree reduces the search space depending on the thresh­
old.. Since the tree is build only once the cost is low compared to the costs 
off the other functions. 

5.44 Database Solution 

Inn this section we demonstrate how a modern DBMS can be used to tackle 
thee line clustering problem. In Section 5.4.2 we show that algorithms based 
onn these primitives outperform the solutions given in the previous section. 

5.4.11 Lin e c luster  model 

Thee input to the line clustering problem is a large set of line segments 
obtainedd by scanning a grey-value image. The segments are represented as 
atomicc values in the database using the extensions introduced in Section 5.3. 

Thee line clustering problem can be rephrased as finding (disjoint) sub­
setss that provide maximum support for a hypothetical line derived from the 
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Operation n 
[op](BAT[ht,tl]] a, BAT[ht,t2] /?) 
{op}(BAT[ht,tt]] a) 

functionalit y y 
{at{at : ab E a A ac € [3 At — op(b, c))} 
{ab{ab : j3 = {c : ac € a] A b = op{(3)} 

Tablee 5.1: Monet's BAT Update Operations 

segmentss in the subset. Alternatively, each segment is assigned to a sin­
glee subset and moving a segment from one cluster to another reduces the 
clusteringg value for both. 

Thee key operation of the line clustering algorithms is to analyze a seg­
mentt set. That is, the basic object of manipulation is a set of segments. In 
thee previous algorithm in fact, the object was constructed as soon as trans­
ferr occurred to the clustering algorithm. This is not necessary. Within the 
databasee environment a line can be represented by a multi-valued function 
fromm a group identifier to a set of segments. How these segments are glued 
togetherr to form a line is a separate issue. 

AA group can be reduced to a single value using the Reduce command. 
Usingg the Map command a function can be applied to each group member 
andd a group parameter, see Table 5.4.1. 

Thee algorithms are all linear in the size of their operands. They can also 
bee parallelized easily. 

Thee easiest way to represent the initial segment set within Monet is to 
introducee a mapping from gl —> {sj}, where gi denotes a group identifier and 
SjSj a segment identifier. This can be represented with a single Binary Asso­
ciationn Table called groups and forms the first level clustering of segments. 
Forr each group we calculate a bounding box gx —> {bi}.  The bounding boxes 
aree stored in the BAT named boxes. The remainder of the clustering runs 
ass follows: 

Algor i th mm D B M S 

Filterin gg on spatial locality Determine the candidate pairing of groups 
usingg an overlap operator over their bounding boxes, i.e. C := over-
lap(boxes,, boxes.reverse) 

Createe Groups Create a candidate group for each joined pair and store 
itt in a BAT, i.e. CG := C.markQ.join(nsegs) 

Filterin gg on max angle dif f Determine the maximum angle difference 
betweenn the average and the segments angle for all groups, and select 
thosee segments where the angle difference is less than than max_angle_dij 
i.e. . 
CangleCangle :=  {sum}(NG) 
CnrCnr :— sum(C.join(nnr)) 
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CmangleCmangle :=  f/J(Cangle, Cnr ) 
CmadiffCmadiff :=  max([angle-diffJ (Cangle, Cmangle)) 
CGCG :— CG.semijoin(Cmadiff.select( 0.0, max-ongle-diff)) 

Calculatee Hypothet ical lin e Calculate interpolated straight line throug] 
thee center points, First get center of all line segments in the candidate 
group,, from this calculate the center point for the hypothetical line, 
aa second point is calculated using interpolation, this point is used to 
findfind the lines orientation i.e. CCenter :=  [centerJ(CG) 
NCenterNCenter :=  [/J({sum} (CCenter)),Cnr) 
dxdx :=  [-]([xj(CCenter),[xJ(NCenter)) 
CXCX :=  [*](dx,dx) 
CYCY :=  [*J(dx,[y](CCenter)) 
CXsumCXsum :=  {+}(CX) 
CYsum:={+}(CY) CYsum:={+}(CY) 

AngleAngle : = [atan2]([-J (CXsum, fxJ(NCenter)), [-J(CYsum, [y](NCenter))) 
LineLine :=  [newJineJ(NCenter,Angle) 

Calculatee support values Calculate the product of the width, rota­
tional,, and orthogonal distance heuristics 

Selectt  new clusters Select groups with maximum support values for both 
containingg clusters 

Updatee retained informatio n Delete clustered groups and insert the 
neww groups 

Thee result of the distance join is used to construct groups of segments. 
Thiss again uses the search optimization based on spatial locality. These 
candidatee groups are further reduced using filters on orientation and segment 
width.. The operations needed for the calculation of the hypothetical lines 
aree done in a setwise fashion, which gives us the possibility to reuse the 
intermediatee results, such as the sum of the segment centers and the mean 
orientation.. The calculations needed for the filters can be reused during 
thee calculation of the support values. With these support values the best 
clusteringss could be selected. At the last step we have to update the retained 
information,, such as bounded boxes and mean orientation. 

Wee can reuse intermediate results because we changed from a single 
segmentt at a time approach to a more database approach of set at a time 
bulkk operations. There are no extra implementation efforts involved for this 
set-at-a-timee approach, because the primitives needed are already supported 
byy the database kernel. 

5.4.22 Experiments and Results 

Extensivee experiments were performed to compare both effectiveness and 
efficiencyy of the algorithms. The input for those experiments were segment 



106 6 CHAPTERCHAPTER 5. IMAGE ANALYSIS: A CASE STUDY 

setss obtained from real-life utility maps. Following [64] we used the standard 
deviationn a0 and aa 1.5 and 0.18 respectively. 

## segments 

300 0 
600 0 
1200 0 
1600 0 
2000 0 
2736 6 
4000 0 
5472 2 

time(s) ) 
sequential l 

23 3 
76 6 
298 8 
454 4 
660 0 
1330 0 
2749 9 
5280 0 

time(s) ) 
DBMS S 

2.3 3 
2.9 9 
4.7 7 
5.4 4 
6.9 9 
8.7 7 
15 5 
93 3 

Tablee 5.2: Results for the sequential and DBMS algorithms 

Thee first experiments show the efficiency of the database approach against 
ann algorithm used by [64] in image analysis. It enables comparison of the 
traditionall C + + based implementation with the DBMS algorithm. The set 
off segments S is extracted from a single utility map. A family, of sets F is 
constructed,, such that the elements in F form a subset lattice, i.e. V/j G F 
3/j:: e F : fi c fj The experiment was done with a fixed threshold ö of 0.5. 
Thee result are shown in Table 5.2. 

Ass can be seen form the first experiment the DBMS set at a time algo­
rithmm is an order of magnitude faster than the sequential algorithm. This 
resultt can be attributed to effectiveness of the spatial index. 

Thee second set of experiments with the hybrid and DBMS algorithms 
wass focussed on the efficiency of these algorithms. Different input sets were 
taken.. The sets were extracted from different utility maps each with its 
ownn segment density. Figures 5.4.2, 5.4.2 and 5.4.2 show the histograms of 
thee segment orientation. The experiment was done with various thresholds 
too evaluate the performance degradation under larger clustering hierarchies. 
Tablee 5.3 shows the results. 

Thee set at a time algorithm out performs the Hybrid algorithm on large 
dataa sets, because then it profits from the information retained. With small 
setss recalculation is less expensive. 

Alll the experiments were done on a Sun SPARC-X running the Solaris 
operatingg system and using an early Monet V3 version. 

5.55 Conclusion 

Itt has been shown that an extensible DBMS can be used to tackle the 
line-clusteringg problem. The overhead of the conversion between database 
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Figuree 5.9: Histogram of the line segment angles, small image 

structuress / application structures is not a dominant factor. Moreover, there 
existss a small algebraic extension to the DB core functionality, which enables 
uss to tackle the line clustering problem with database kernel support. The 
performancee is promising compared to the original solution written in C++ . 

## segments 
67 7 
67 7 
67 7 

2585 5 
2585 5 
2585 5 
4362 2 
4362 2 
4362 2 

threshold d 
0.25 5 
0.4 4 
0.75 5 
0.25 5 
0.4 4 
0.75 5 
0.25 5 
0.4 4 
0.75 5 

hybrid d 
1.1 1 
0.9 9 
0.5 5 
82 2 
56 6 
13 3 
77 7 
50 0 
9 9 

DBMS S 
1.4 4 
1.2 2 
0.8 8 
67 7 
36 6 
7 7 

45 5 
35 5 
4 4 

Tablee 5.3: Result for the Hybrid and DBMS algorithms 
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Figuree 5.10: Histogram of the line segment angles, A4 sized image 

&& 250 

"T T ITJM: : 

--

"te e sti i i p i i it.l l A0 0 hi i a" " 

--

400 60 80 100 120 140 16 

angle e 

Figuree 5.11: Histogram of the line segment angles, A0 sized image 



Chapterr 6 

Fitnesss Join 

6.11 Introductio n 

Joinn algorithms have a long tradition of interest in the database commu­
nity.. By the late-70s the key algorithms were published [7]. Nested-loop, 
sort-merge,, and hash-based join algorithms have successively been explored 
extensivelyy to reduce their running time, including their parallel versions. 
Forr an overview of these results see [73, 67]. In the object-oriented context 
joinss based on path traversals have been supported using join indices [111] 
andd pointer-based algorithms [33]. The results have been generalized into a 
methodologyy for index structures[38, 23]. 

Thee common denominator of the join studies is that they largely deal 
withh equi-join conditions. Algorithms with more complex conditions, i.e. 
theta-joins,, have been barely scratched upon [34], let alone their embedding 
inn real-life applications. 

Band-joinss have been identified as a crucial asset for engineering appli­
cations,, which require constraints on intervals around the join attribute. A 
traditionall sort-merge algorithm has been put forward as the best attack, 
whichh brings the problem back into the realm of the now classical algorithms 
[34]. . 

Moree recently, Helmer and Moerkotte [97] have investigated the exten­
sionn of main-memory join algorithms to deal with subset-join predicates. 
Promm an application perspective, near match solutions are considered of 
moree importance than total match. Further progress has been reported for 
optimizingg cross products in [97] and universally quantified predicates in 
[24]. . 

Thesee join activities are exemplary to better support novel applications 
inn a bottom-up fashion. Namely, the core relational algebra is extended 
graduallyy with new features. However, starting from the way novel (non-
database)) applications are being built, we have encountered the need for 
fitnessfitness joins, which take the form of identifying join pairs optimally placed 
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orr ranked under a given metric condition. The naive solution for a fitness 
joinn starts with producing the cross product followed by calculation of a 
fitnesss value for each pair using a (sub-)query. Thereafter the best (worst) 
fromm the perspective of one of its operands is (are) retained (for ranking). 

Thee contributions of this chapter rest on introducing a reference ex­
amplee to study the class of fitness joins, followed by chartering a road to 
developp new algorithms and optimization schemes. The search space for 
effectivee solutions is trimmed by presenting a concrete operator for fitness 
joins,, called the bounded theta join operator implemented in Monet [9]. The 
scopee for further optimization is illustrated using the mathematical prop­
ertiess as guidance for search heuristics. The bottom line being to extend 
aa query optimizer with a limited form of mathematical reasoning to derive 
effectivee processing heuristics. 

Thee remainder of this chapter is organized as follows. Section 6.2 pro­
videss a motivational example to study the fitness joins. Section 6.3 illustrates 
howw fitness joins can be handled in both a traditional and extensible data­
basee setting. It also introduces the bounded-theta solution in Monet. Sec­
tionn 6.4 charters the contours of mathematical query optimization. Section 
6.55 summarizes a concrete implementation and its evaluation. We conclude 
withh challenges for subsequent research. 

6.22 Motivation 

Inn this section we introduce the class of joins considered with an artificial 
example,, the ballroom, followed by an indication of the application domains 
inn which they appear. 

6.2.11 T h e B a l l r o o m Examp le 

Considerr the database shown in Figure 6.1, which lists the participants of 
aa yearly ballroom contest. All persons are qualified dancers as illustrated 
byy their repertoire. In the training session for the contest it makes sense 
too identify (or rank) potentially good teaching partners, i.e. those with 
aa good overlap of dance repertoire and partners of similar age. During 
aa dance session it is mandatory to quickly find a partner with the proper 
dancee repertoire on the dance floor when the music changes, because dancing 
withh an inexperienced person does not contribute to the training experience, 
especiallyy with the Tango. Positions of the dancers are also shown ( [x ,y ] ) . 

Thesee questions can be rephrased to database queries as follows: 

Qi Qi 
Q2 Q2 

QA QA 

Q 5 5 

FindFind a partner of opposite gender and closest in age. 
FindFind a partner with the best overlap in dance repertoire. 
FindFind a male partner with a larger dance repertoire. 
FindFind the closest Tango partner on the floor. 
RankRank the dance partners by experience. 
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Person n 
name e 

Tina a 

Brian n 

Mary--
Susan n 
Edward d 
Owen n 
Ruth h 
Peter r 

gender r 

female e 

male e 

female e 
female e 
male e 
male e 
female e 
male e 

age e 

21 1 

24 4 

25 5 
28 8 
30 0 
32 2 
33 3 
36 6 

[x.y ] ] 

[4,4] ] 

[0,5] ] 

[4,2] ] 
[1,41 1 
[5,4] ] 
[5,2] ] 
[3,4] ] 

[5,1] ] 

r e p e r t o i r e e 

{rumba,, samba, jive} 
{tango,, foxtrot, 
rumba,, samba, 
waltz,, jive} 
{tango,, foxtrot, wait} 
{foxtrot,, waltz} 
{rumba,, foxtrot, jive} 
{foxtrot} } 
{rumba,, jive} 
{foxtrot,, waltz, jive} 

experience e 

6 6 

10 0 

8 8 
4 4 
8 8 
1 1 
3 3 
8 8 

Figuree 6.1: The Ballroom database 

Let'ss have a more detailed look at the requirements. Q\ can be answered 
usingg the age difference over persons, i.e. fi(r, s) — abs(r.age — s.age), and 
too retain those that minimize this function for all possible couples. Query 
QiQi calls for comparison of set-based attributes, where we have to map dance 
capabilitiess into a relevant information quantifier. Good partners are those 
thatt have an identical dance repertoire. The best dance partner would be 
onee that maximizes the fitness function that compares the repertoire sets of 
couples: : 

\r.repertoire\r.repertoire D s.repertoire\ 
'' |r.repertoire U s.repertoire\ 

Choosingg a good teacher calls for inspection of the repertoire of the 
potentiall partners. Their dance repertoire should exceed your own and the 
bestt teacher is selected by repertoire count. This can be answered with the 
followingg simple fitness function: 

JJ \repertoire(s.name)\ if r.repertoire D s.repertoire 
ƒ33 (r,s) = | Q otherwise 

Thee teacher selection procedure can be further refined by keeping a tally 
onn the experience of each dance performed by a person. However, then 
wee run into a semantic problem as to precisely define by what is meant 
withh a good teacher. The predominant approach is to look at the experi­
encee histogram distributions for two repertoire sets and determine a metric 
similarity.. The best teacher is then someone with larger repertoire and a 
maximall distance in the experience space. This, however, quickly breaks 
down.. An Euclidean metric would favor a super expert on a single dance 
overr someone who has adequate dance experience in multiple dances. The 
wayy out of this dilemma is to consider alternative (standard) metrics or 



112 2 CHAPTERCHAPTER 6. FITNESS JOIN 

too call upon the user to give a fuzzy mathematical definition of the metric 
intended. . 

Queryy Q4 combines a simple predicate with a spatial term using the Eu­
clideann distance in the ballroom and we retain those minimizing the fitness 
function. . 

f*(r,s)=f*(r,s)=  < 

dist(r,dist(r, s) = y{r.x — s.x)2 + (r.y — s.y)2 

dist(r,s)dist(r,s) if "tango" E r.repertoire n s.repertoire 
AA r.gender ^ s.gender 

ni ll  otherwise 

Rankingg the dance partners by experience (Q5) calls upon sorting the 
possiblee couples using e.g. the function /5(r , s) = s.experience or fr(r, s) = 
s.experiences.experience I \r.repetoir e U s.repetoire\. Sorting boils down to an iteration 
overr the candidates, finding the next best partner not ranked yet. Although 
sortingg can be implemented with repeated joins, it is certainly not the best 
solution. . 

Inn practice, arbitration may also be required to assure a maximum num­
berr of couples on the dance floor, i.e. minimizing the total dissatisfaction. 
Thiss aspect is not dealt with in this thesis. 

6.2.22 F i t ness Jo ins 

Thee ballroom examples leads to the class of fitness joins. The basis is formed 
byy two sets of objects R and S organized into a bi-partite graph. This graph 
iss obtained by taking the cross-product over R and S retaining pairs that 
satisfyy a priori selection criteria. Each edge carries a value obtained from 
evaluationn of a fitness function. Prom this enriched graph we retain all edges 
thatt minimize (maximize) the edge weight from the perspective of the first 
operand. . 

Forr example, the figures below represents the bi-partite graphs and fit­
nesss join result for the dancers under fitness functions for ƒ1, ƒ2 and ƒ4, 
respectively.. It illustrates that persons may be assigned several candidates 
andd that (in principle) the function is not symmetric. 

Thee functions are built from the standard repertoire of mathematical 
functionss in a DBMS. Furthermore, we have encountered the need to also 
describee discontinuous and constrained functions, e.g. 

{ ExpriExpri if Cond\ 
ExprExprnn-i-i  if Cöndn-i 
ExprExprnn o the rwise 

Thee function lines being interpreted in sequential order until a condition 
holds.. For example, in case the ballroom lacks experienced dancers of op­
positee gender, we may relax the partner choice. This fuzzy function could 
bee described as: 

file:///r.repetoir
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Brian n 

Edward d 

2\ \ 

Owen n 

1 \ \ 

Peter r 
3 3 

Tina a 

^^ Mary 

^^ Susan 

\\ Ruth 

Brian n 

0 ^ 3 \ \ 
Edward/ / 

0)333 , 

Owenn 5Y 

Peter/1 1 

Tina a 

\\ Mary 

Susan n 

\\ Ruth 

Brian n 
vv 5 

Edward d 

Owen n 

Peter r 

Tina a 

^^ Mary 

Susan n 

Ruth h 

Queryy Q1 Queryy Q2 Queryy Q4 

Figuree 6.2: Query Fitness Graphs 

f{x,y) f{x,y) 

11 if x.gender  ̂ y.gender 
AA x.repertoire (~1 y.repertoire =̂  

0.77 if x.repertoire n y.repertoire ^ 
0.11 otherwise 

Caree should be taken on the definition of ƒ. Besides being type correct 
wee ignore all candidate pairs where either f(r,s) or f(r,t) is undecided or 
evaluatess to nil . In general, this function can not be mimicked with an SQL 
CASEE statement and the user is forced to create a query batch to simulate 
thee behavior intended. 

Inn the context of an extended relational model the fitness join can now 
bee defined as follows: 
Definitio nn Let R and S be two (object) relations. Then the minimal fitness 
joinn <f over R and S under function ƒ is defined by: 

R<R<ffSS ={(r,s)\reR,r + s e S V* + r £ S f(r,s) < f{r,t)} 

Thiss definition combines tuples that minimize the fitness function ƒ, it 
identifiess (local) minima in the function space from R. If both arguments 
too a fitness join are one and the same table then the definition assures that 
wee do not retain the identity pairs as being most fit. Likewise we can pair 
objectss to maximize the fitness function. 
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Definit io nn Let R and S be two (object) relations. Then the maximal fitness 
joinn <F over R and S under function ƒ is defined as follows: 

RR <  f S = {(r, s) |r £ R,r £ s e S Vi ^ r G S ƒ(r, 5) > ƒ (r, t)} 

Thee consequence of our liberal definition of fitness functions is that, in 
general,, the fitness joins are not symmetric ( R < f S ^ S < f R), nor 
transitivee ( (R < * S) <  f T  ̂ R < f (S < f T)). For a given point there 
mayy exist several minima (maxima). 

6.2.33 Application domains 

Thee Ballroom problem has notably many incarnations in literature. We 
havee also encountered them in several applications developed for Monet [13, 
79,, 12]. They often appeared as heuristic functions written in a traditional 
languagee ( c ,C++) . A pattern emerged that called for better support to 
analyzee object pairs using a concise mathematical formulae, i.e. the fitness 
function,, as a necessary step in an iterative process to combine elements into 
largerr semantic units (objects). Good database support for the fitness join 
alleviatess these programs from using dedicated data structures and heuristic 
thatt makes re-use of the code base near to impossible. To illustrate: 

•• In image databases there is a need to compare high-dimensional data 
elements,, such as color histograms under a distance metric[62]. A 
high-dimensionall data structure is called upon, which is known to 
bringg the dimensionality curse, while at the same time its semantic 
interpretationn falls in the trap indicated for Q3. A more precise fitness 
functionn specification may provide clues to weed out bad pairs by 
exploitationn of the mathematical properties. 

Inn image processing there is a need to recognize complex-objects from 
primitivee objects, e.g. triangularizations, grid-based decompositions, 
andd more general image blobs. For example, lines should be recovered 
fromm line segments recognized during poor scanning [79, 81, 77]. The 
fitnesss function in this context binds segments that are angular similar, 
nott too far apart, and of similar thickness. The clustering algorithm 
thenn attempts to maximize fitness to determine the candidates to pair 
intoo larger units. 

•• In geographical information systems, there is need to better support 
spatiall joins and nearest neighbor search. To deal with it in an effective 
wayy emphasis is placed on spatial index structures, such as illustrated 
byy [96, 42]. The fitness function in this context takes the form of an 
Euclideann distance metric using (a posteriori) filtering of candidate 
usingg attribute constraints. 
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•• In engineering there is a need to deal with the imprecision of signals, 
callingg for relaxation of the traditional equi-join condition. The con­
ceptt of band-joins, e.g. v.age — d\ < s.age < r.age + d,2, is a step into 
thiss direction [34], but also a special case of the fitness join. 

•• In data mining applications partial functions are used to classify infor­
mationn into coarse grain groups before the mining algorithms are fired 
too infer business models [54, 88] regrouping is needed. The groups 
dependd on a fitness function. 

•• In time series applications, the fitness function translates into selecting 
aa 'best-fit' between time series fragments [30, 29]. 

Althoughh this list is by no means exhaustive, it highlights the need to 
considerr specific support of the fitness join at the DBMS system level. Leav­
ingg the problem with the application programmer to deal with it on a case 
byy case basis is from the database perspective not acceptable. We should 
findd and assess algorithms and techniques to better support this large com­
munity. . 

6.33 Fitness Join Algorithm s 

Inn this section we analyze the necessity to extend a database kernel with 
aa tailored implementation of the fitness joins. Such an extension should 
bee weighted against required orthogonality of its instruction set and the 
opportunitiess to provide optimized versions otherwise not available or easily 
detectablee by the query optimizer. 

6.3.11 SQL Framework 

Promm a computational perspective, the fitness joins can be readily supported 
byy object-relational and O-O systems. However, due to the fitness join 
definitionn we have to fully exploit the DBMS's capabilities to group objects, 
too express the complex mathematical function (through a stored procedure), 
andd to select specific elements from each group considered. 

Inn the context of flat relational systems fitness joins lead to complex 
batchess of SQL requests. Although multiple query optimization schemes 
mayy reduce the overhead incurred to some extent, the state-of-the-art in 
thiss field does not provide generic solutions in the near future. 

Too illustrate, in a relational system we can simulate the fitness join Q\ 
usingg the SQL framework below. Its proper evaluation requires a nested 
queryy and exploits SQL's iterative semantics. Such queries are known to 
bee notoriously difficult to optimize [1]. At best the optimizer can extract 
commonn sub-expressions or (erroneously) flatten it to a double cross-product 
expression. . 
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selectt  r.name, s.name 
fro mm Person r, Person s 
wheree r.gender < > s.gender 
andd abs(r.age-s.age) < (select abs(r.age-t.age) fro m Person 

wheree s.name < > t.name 
andd r.gender < > t.gender) 

Queriess Q2 and Q3 are further complicated by a metric over set-valued at­
tributes.. Resolving this query in a flat relational framework is cumbersome. 
Forr an object-based framework with set operators it can be solved using 
aa query to derive the table temp(rname,sname,f i tness) . Subsequently, 
aa simply aggregate query can extract the best partner. Traditional query 
optimizerss have a hard time to optimize the cross-products and aggregates 
[94]. . 
Queryy Q4 uses the Euclidean distance metric, which is ideally supported by 
aa Data Cartridge or Datablade for geographical information systems. The 
resultingg basic SQL framework is shown below. Again not much can be done 
too improve response time. An R-tree index helps to solve point, region, and 
spatiall joins, but it can not directly be used by a query optimizer to solve 
thiss fitness equation. The optimizer would have to detect that there is a 
betterr alternative for calling the two distance functions in the first place. 

selectt  r.name, s.name 
fro mm Person r, Person s 
wheree r.gender < > s.gender 
andd distance(r.age,s.age) < (select distance(r.age,t.age) 

fro mm Person t 
wheree t.name < > s.name 

andd r.gender= t.gender) 
Notee that this query depends on explicit naming of the distance function. 
Replacingg it with the underlying definition would seriously jeopardize per­
formance,, because a query optimizer would not recognize easily the benefits 
off an R-tree. Likewise, the user could solve query QA using a built-in func­
tionn to access a nearest neighbor for any given point in the space covered. 
Thiss solution works if, a priori, we split the Person into two tables, one for 
eachh gender, and to built a R-tree accelerator for fast access on locality. 
Thereafter,, we can solve Q4 with the following SQL query: 

selectt  r.name, nearest neighbor(Females, r.x,r.y) 
fro mm Males r 

AA query optimizer will typically generate a scan over Males and call the 
functionn for each instance. It will (normally) not consider building a search 
acceleratorr on Males first, followed by an index specific nearest neighbor 
algorithm,, e.g. traversing the R-tree of both operands in parallel. 
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Person_name e 
oid d 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 

name e 

Tina a 
Brian n 
Mary y 
Susan n 
Edward d 
Owen n 
Ruth h 
Peter r 

Person_gender r 
oid d 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 

name e 

female e 
male e 
female e 
female e 
male e 
male e 
female e 
male e 

Personage e 
oid d 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 

Perse e 
oid d 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 

age e 

21 1 
24 4 
25 5 
28 8 
30 0 
32 2 
33 3 
36 6 

>n_[x,y] ] 
point t 

[4,4] ] 
[0,5] ] 
[4,2] ] 
[1,4] ] 
[5,4] ] 
[5,2] ] 
[3,4] ] 
[5,1] ] 

Person_dance e 
oid d 

0 0 
0 0 
0 0 
1 1 
1 1 
1 1 
1 1 
1 1 
2 2 
2 2 
2 2 
3 3 
3 3 
4 4 
4 4 

4 4 
5 5 
6 6 
6 6 
7 7 
7 7 
7 7 

dance e 

rumba a 
samba a 
jive e 
foxtrot t 
rumba a 
samba a 
waltz z 
jive e 
tango o 
foxtrot t 
wait t 
foxtrot t 
waltz z 
rumba a 
foxtrot t 

jive e 
foxtrot t 
rumba a 
jive e 
foxtrot t 
waltz z 
jive e 

Person.experience e 
oid d 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 

experience e 

6 6 
10 0 
8 8 
4 4 
8 8 
1 1 
3 3 
8 8 

Figuree 6.3: The Monet Ballroom database 

6.3.22 M o n et so lu t ions 

Too improve upon the situation sketched, we study the opportunities of ex­
tendingg a relational algebra engine. The system being considered here is 
Monet,, a binary relational algebra engine, including powerful grouping prim­
itivess and facilities to extend its behavior through dynamic loadable modules 
[9,, 12]. The Monet schema for the Ballroom database is shown in Figure 
6.3.2. . 

Thee naive solution for the fitness joins R < ƒ S is to generate an iterative 
programm in the Monet Interface Language (MIL) [9]1, that collects the min­
imaa for each r e R. It would be the default route taken by most relational 
queryy optimizers. 

Inn the remaining sections we focus on a more general scheme, using the 
fitnesss function of Q\ as the focal point. Support for set-based operations 

11 The papers can be accessed through ht tp : / /www.cwi .n l /~monet 

http://www.cwi.nl/~monet
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att the kernel level has been dealt with in the context of datamining support 
[11].. A synopsis is beyond the scope of this chapter. Furthermore, the spatial 
operatorss and their implementation in the context of Monet are reported in 
[13]. . 

Crosss Table Solut ion 

Thee next step is to identify the necessary extensions to the relational alge­
bra,, such that performance gains can be obtained from bulk operations. In 
thiss quest, we follow Monet's approach to fully materialize results of binary 
operators.. This has proven to be effective in most situations, because it 
tradess storage space against memory cycles lost by MIL interpretation and 
contextt switching [12, 10]. The key problems to be addressed for the fitness 
joinss are then to build a cross-table (sparse matrix) of the candidate pairs, 
calculatee the fitness value per element, and retain the minima per row (R) 
order. . 

Thee first step is to extend the algebra with the notion of cross table 
togetherr with primitives to query it. In Monet the cross table could be rep­
resentedd by two binary tables Rmap : idx -> oid and Smap : idx -> oid 
wheree their idx constitutes an index into the 2-dimensional space spanned 
byy \R\ x \S\. The OlDs can be used to access the attributes of R and S 
tuples,, respectively. These tables are produced with a tagging operator, 
R.tag(X,Y,Z),R.tag(X,Y,Z), which assigns the index value to each element in R x S 
usingg a conventional array-layout algorithm as shown in Figure6.4. The 
tag—tag—operationoperation can be implemented cheaply using a single scan over its 
operand. . 

Subsequently,, cross table specific operators can be introduced, such as 
fetchingg elements using a idx, slicing a portion of the cross table for further 
processing,, transformation of the cross table, and other matrix-like opera­
tions.. For solving the fitness problem we need cross-table aggregates such 
ass row Min, row Max,... to work on rows and columns. These are straight­
forwardd extensions of their regular implementations. 

Withh the algebraic extensions in place, we can solve the fitness join query 
QiQi in the Monet Intermediate Language (MIL) as follows.2 

Seee for details on MIL [9] and http://www.cwi.nl/~monet 

http://www.cwi.nl/~monet
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procc t ag (R,X,Y,Z) := { 
varr answer := n e w ( i n t , i n t ) ; 
varr i :=0; 
varr k :=0; 
RQbatloopCH H 

varr j : = 0 ; 
i :== k; 
whilee (j<X){ 

a n s w e r . i n s e r t ( i , $ h ) ; ; 
j : == j +1 ; i := i+Y; 

> > 
k:== k+Z; 

} } 
r e t u r nn answer; 

Figuree 6.4: Monet Tagging Operation 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 0 
11 1 
12 2 

R<R<ff S 
R R 
S S 
Rmap p 
Smap p 
Rage e 
Sage e 
delta a 
best t 
pairs s 
v l l 
answer r 
a l l 
a2 2 

==  {(r,s)\r £R,s£SVt£S ƒ( 

== gender, select ("male") 
== gender. select ("female") 
== R.tag(count(S),l,count(S)) 
== S.tag(count(R),count(R),l) 
== Rmap.join(age) 
—— Smap.join(age) 
== [abs](Rage[-]Sage) 
== delta.minRow(count(S)) 
== best.duplicate() 
== Rmap.reverse.join(pairs) 
== vl.join(Smap) 
== R.reverse.join(answer) 
—— al.join(S) 

r,s)<f(r,t)} r,s)<f(r,t)} 

## R:oid —+ str 
## S: oid -+ str 
## Rmap:idx —> oid 
## Smap:idx —• oid 
## Rage:idx —> int 
## Sage:idx —-• int 
## delta: idx —• int 
## best: idx —• int 
## pairs:idx —+ idx 
## vl:oid —»• idx 
## answer:oid -^ oid 
## al:name —> oid 
j ^  ̂ a2:name —> name 

Thiss script uses the Monet core algebra, multi-cast, and cross-table group 
operations.. Lines 0,1 dissects the gender (binary) table into one for males 
(R)(R) and females (5). Lines 2,3 constructs the candidate pairs mapping both 
tabless into the cross-table space using the tag operation. Lines 4,5 associates 
thee age values with each cell. 

Thee multi-cast expression [abs](Rage[—}Sage) in line 6 evaluates the age 
subtractionn against all elements Rage and Sage with corresponding keys 
producingg the table {Rage.idx,Rage.age — Sage.age). Subsequently, the 
abs()abs() function is applied to all tuple tails, producing the table 
{Rage.idx,{Rage.idx, abs(Rage.age — Sage.age)}. 

Thee minimum value per row is retained in line 7 using the cross-table 
enhancement.. Line 8 replicates the key to prepare for the selection of couples 
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oidss in line 9 and 10. Finally, line 11 replaces the oid by the person's name. 
Thee storage required for this script to work is \R\ -+- | 5 | + 3 * \R\ * \S\ 

usingg eager garbage collection of intermediates. The processing cost is in 
thee order of 4 * \R\ + 4 * \S\ + 5 * \R\ * \S\ steps. Evidently still too expensive 
too consider as the default for evaluation for large ballroom contests, because 
thiss algorithm still uses complete cross-products. Fortunately, for a large 
classs of fitness functions a better solution exists. 

Boundedd Theta-Join Algorith m 

Bothh the iterator and cross-table solutions ignored the mathematical prop­
ertiess of the fitness function. Yet, exploitation of these semantics may prove 
valuablee in reducing the processing cost even further. For example, recon­
siderr query Qi, the minimum age difference, where the following equations 
hold: : 

r.ager.age < s.age < t.age r.ager.age S s.age S t.age 
abs(r.ageabs(r.age — s.age) < abs(r.age — t.age) 4$ < r.age > s.age > t.age 

s.ages.age < r.age < t.age 

Theyy illustrate that ordering on the age domain of s and t could be used 
too reduce the number of candidates. Furthermore, a pair (r, s) such that 
r.ager.age < s.age, can be determined with a theta-join. The algorithm could 
bee rephrased accordingly and it halves the space of candidates considered. 
However,, this is still too many, because the fitness join requires for each r 
justt one s; its closest neighbor under the fitness expression. 

Too tackle this problem, we have extended the relational algebra with 
aa bounded theta join operation, e.g. btj(R,S,0,n) where 9 is one of the 
relationall operators ( < , > , < , > ) and n is the bound on the number of results 
retainedd per left operand value. An efficient implementation of the theta-
joinn is already available in the Monet engine. It uses an index on one of the 
operandss to speed up the search. If necessary, this index is created on the 
fly.. Looping through the second operand, it produces the qualifying pairs, 
whichh are copied into the result table. 

Itss refinement for the bounded case n = 1 is relatively straightforward. 
Itt merely has to check the result table for duplicate insertion on the r com­
ponentt and to retain the minimum s encountered. The general case n > 1 
requiress slightly more work to retain the n—set of minimal values. The 
easiestt way is to also create a sorted access path on the join attribute of 
SS (if not already there). Then we can optimize the btj by merely doing a 
indexx lookup followed by a constrained (n)-step walk along the index to find 
thee candidates of interest. Such tactical decisions are commonplace in the 
Monett kernel and prove to be highly efficient [9]. 

Usingg the bounded theta-join the Monet script of can be augmented as 
follows. . 
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R<R<ff S 

00 R 
11 S 
22 Rage 
33 Sage 
44 right 
55 left 
66 cand 
77 Rmap 
88 Smap 
99 Rage 
100 Sage 
111 delta 
122 best 
133 pairs 
144 v l 
155 answer 
166 a l 
177 a2 

==  {{r,s)\reR,seSVteS 

—— gender, select ("male") 
== gender, select ("female") 
== age.semijoin(R) 
== age.semijoin(S) 
== theta join (Rage, Sage, <,1) 
== theta join (Rage, Sage, >,1) 
== union(right,left) 
== cand. mark () 
== cand.reverse.markQ 
== Rmap.join(Ra) 
== cand.reverse.mark() 
== [abs](Rage[-]Sage) 
== delta.minRow(count(S)) 
== best.duplicateQ 
== Rmap.reverse.join(pairs) 
== vl.join(Smap) 
== R.reverse.join(answer) 
== al.join(S) 

f(r,s)<f(r,t)} f(r,s)<f(r,t)} 
## R:oid —> str 
## S: oid —> str 
## Rage:oid —* int 
## Sage:oid —• int 
## right : oid —>oid 
## left : oid —*  oid 
## cand: oid —> oid 
## Rmap: idx —+ oid 
## Rmap: idx —> oid 
## Rmap: idx —• oid 
## Rmap: idx —• oid 
## delta: idx —• int 
## best: idx —• int 
## pairs:idx -^ idx 
## vl:oid —» idx 
## answer:oid —• oid 
## al:name —> oid 
## a2:name —> name 

Liness 0,1 again identifies the males and females and line 2,3 obtain their 
agee attribute. The left and right candidates are obtained with the bounded 
thetaa join in lines 4 and 5. They are combined to form the candidates in 
linee 6. Line 7 and 8 construct the cross-table representation by introducing 
thee cell identifier using a builtin routine number(). The remainder of the 
algorithmm is identical to the previous version. 

Thee prime effect of this preparatory step is that the storage cost is sig­
nificantlyy reduced. Instead of \R\ * \S\ candidates there are only 2 * \R\ 
candidatess in the main part of the algorithm. The processing cost is re­
ducedd accordingly to 2 * \R\ *  5 + 2 * \R\. 

6.44 Query Optimization Schemes 

Inn this section we indicate the opportunities to exploit the fitness functions at 
queryy optimization time and accelerator data structures to support complex 
cases. . 

6.4.11 Mathematical Query Optimizatio n 

Thee fitness join expressions indicates a route for further exploration. For, 
whenn we compose functional expression over the operator set {+,-,*,/,log,exp, 
sqrt},, a single attribute, and constants, we maintain monoticity of the re­
sult.. This means that the bounded-theta-join solution presented in Section 
77 can readily be applied. 
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Thee case considered for fitness function fi illustrates how a query op­
timizerr can deal with discontinuous single attribute functions. It should 
breakk the underlying domains into pieces, such that within each piece the 
bounded-theta-joinn becomes applicable. Actually the optimizer should pro­
ducee the first derivative in each point and determine the domain ranges 
wheree it can use the btj method. This analysis is relatively straightforward 
forr the operator set considered. 

Beyondd these cases, a symbolic analysis of the fitness function could 
exploree the following routes: 

•• Sandwich method. A fitness expression can be approximated using 
boundingg functions that may be easier to compute, i.e. 

f(r,s)<f(r,s)<f{r,8) f(r,s)<f(r,s)<f{r,8) 

•• Transformation method. If the fitness expression can be subjected to 
ann affine transformation (rotation, translation) with clear boundaries, 
wee could solve the function in a fraction of the domain and use a 
lookupp table to speed up evaluation. For example, 

f(r,s)f(r,s) = f(r + S,s + 5) 

•• Candidate method. If the operands involved 'identical objects' with 
respectt to the attributes of concern in the fitness expression, it suffice 
too use one in solving the fitness problem. 

Thee sandwich method is of interest if the underlying domain deals with 
sequencee data. For example, in a stock exchange time series the band in 
whichh the stock price function fluctuates may be determined with a single 
scann over the underlying table. It provides a crude, but effective approxi­
mationn of the function to filter candidates by looking at ƒ (r, s) (or ƒ (r, s)) 
first.first. It is even possible to break the sequence into bull and bear market 
segmentss before fitness expressions are calculated. 

Thee transformation method could be used in those cases where the un­
derlyingg object incurs repetition. For example, in a fractal encoding of 
ann image the fitness expression needs to be solved once for each fractal 
component.. Subsequent join results can be found by applying the fractal 
transformationn to the operands. 

Thee candidate method calls for a projection over the attributes of interest 
andd to keep the identity of one record r (or s) to partake in the fitness test. 
Wee then know that the result obtained holds for all other members in the 
samee group. 

Thee price paid for such optimizations is to include a mathematics rea­
soningg system as part of the query optimizer. For elementary analysis this 
iss not more difficult than finding common subexpressions. Finding appro­
priatee sandwich functions could be encoded as static optimization rules for 
thee classes of operators considered. 
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6.4.22 D a ta s t ruc tu re s for  fitness jo in s 

Oncee we enter the realm of multi-attribute expressions, e.g. the distance 
fitnesss (ƒ4), or set-based expressions (ƒ2) the bounded-theta-join solution 
shouldd be generalized to multiple dimensions. For example, the bounded-
theta-joinn with distance 1 over a spatial domain equates with the nearest 
neighborr operation often deployed. 

Thee set-based expressions can benefit from the partial order of the sub­
sett relation to reduce the number of candidates. Searching for the sets with 
maximumm overlap, as defined by ƒ2, can be answered using the po-tree in­
ducedd from this partial order. The bounded theta join can then use the order 
too speed-up matching as follows. To find pair (r,s) maximizing ƒ2 (r, s) we 
startt from the set closest to the repertoire of r. This starting point can be 
foundd in a single walk through the po-tree. A bounded number of sets with 
maximumm overlap could then be determined by traversing the po-tree from 
thiss point in sub and super-set direction. Each newly found set should, if 
thee bound is not reached, also be used as a new start point for traversal. 

6.55 Evaluation 

Too assess the impact of the techniques described, we set out for a first 
experimentall validation of the bounded-theta-join. For this purpose, we 
havee implemented the ballroom contest in Monet. This system provides 
sufficientt hooks to extend the algebraic engine with new operators and search 
accelerators.. The implementation involved coding the naive, cross-table, 
andd bounded-theta-join approach using a C-module. Moreover, we added a 
modulee for the po-tree over sets. 

6.5.11 D a n ce par tner s by age 

Too evaluate the performance results, we faked a large ballroom contest with 
aa party of trolls, dwarfs and elfs to obtain a sizeable collection of different 
ages.. The database was initialized with a equal number of males and females. 
Wee experimented with subsets in the range of 8 to 9192 dance couples. The 
dancee couples are formed using query Q\. 

Thiss choice assumes that traditional optimization steps, such as reducing 
thee number of individual candidates as quickly as possible using attribute 
basedd selection, has already been performed. The second optimization step 
assumed,, is to solve the fitness join for just one distinctive element in each 
group.. Therefore, we project the operands over the attributes mentioned in 
thee fitness join expression, keeping one person for the evaluation. After the 
fitnesss join has been evaluated, the equivalent persons can be joined back 
intoo the result to find for each male the group of females of the same minimal 
age. . 
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Thee performance of the three algorithms for query Q\ is shown in Figure 
6.5(a).. The incremental memory requirements (Kb) of the algorithms are 
shownn in Figure 6.5(b). 

00 1000 2000 3000 4OO0 5000 6TX» 7030 8000 9030 10OO0 0 1000 2000 3000 4003 5000 60O0 7000 8000 9000 10000 

nrr ol couples nr of couples 

(a)) (b) 

Figuree 6.5: Execution Times and Memory Requirements. 

Thee experiments confirmed the expected behavior. The iterative solution 
iss relatively fast for small dance parties (up to 64). Thereafter, the quadratic 
complexityy of the algorithm results in poor performance. The Cross table 
solutionn performs even worse, because it consumes large amounts of memory, 
butt also its performance follows the space consumption. Above 2048 dance 
coupless the memory requirements even exceeded the available resources. The 
bounded-theta-joinn stands out as a winner, despite the overhead incurred in 
constructionn of an accelerator on the fly. The investment is quickly earned 
backk in improved response time. The bounded-theta-join only needs to 
constructt an accelerator when none of the two given tables is sorted or 
alreadyy contains an index structure. If the accelerators are available up 
front,, the performance is even much better. 

6.5.22 D a n ce par tner s by reper to i r e m a t ch 

Inn a second dance contest problem couples were formed using a query Q2: 
findd the partner of opposite gender and with best overlap in dance repertoire. 
Againn the operands are trimmed using the rules applied above. In the next 
stepp the search for the best overlapping dance repertoire is made, using 
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functionn f2 to compare partners abilities. 
Queryy Q2 was solved using three algorithms again; iterator, cross table 

andd po-tree. All three use bit sets to represent the repertoire. Their per­
formancee is shown in figure 6.6(a). The incremental memory requirements 
(Kb)) of the algorithms are shown in figure 6.6(b). 

(a)) (b) 

Figuree 6.6: Execution Times and Memory Requirements. 

Againn these experiments confirm the expected behavior. The iterator 
solutionn is optimal only for very small dance parties. Even smaller than for 
queryy Qi. This stems from the more expensive / 2 for finding the set overlap. 
Thee cross table suffers even more from memory consumption, because more 
intermediatee results are needed to find the set overlap. The potree is a clear 
winner,, especially for larger dance parties. The investments of building it on 
thee fly are quickly earned back. The tree size is only related to the number 
off dances involved; it is unrelated to the number of dancers. Therefor the 
costt of building the po-tree becomes even a relatively smaller investment for 
largerr dance parties. Even better performance can be obtained when the 
po-treee is built up front. 

6.66 Conclusion 

Inn this chapter we have introduced the class of fitness joins, which appear 
regularlyy as building blocks in advanced database applications. They ex­
tendd the traditional equi-, theta- and set-joins by a mathematical complex 
formulaa in the join condition combined with a selection from a (ranked) 
group. . 

Wee have shown that this class can be handled efficiently for relatively 
simplee fitness functions using moderate extensions to the relational algebra. 
AA method to manipulate cross-tables or sparse matrices provides the hook to 
representt results from sparsely populated cross-products. Furthermore, the 
boundedbounded theta-join appears a valuable addition to the standard repertoire of 
algebraicc operators and it can be implemented using traditional optimization 



126 6 CHAPTERCHAPTER 6. FITNESS JOIN 

techniques.. It extends early work on theta-joins [34] by uncovering the 
reall handle to tackle the problem efficiently. Namely, judicious use of the 
monoticityy properties of compound mathematical functions combined with 
aa variation of the theta-join. 

Furtherr optimization by exploring the mathematical properties of the 
fitnesss expressions have been indicated. It is an open research area, while 
mostt interactions with a database system come from applications where 
mathematicall analysis is a integral activity. The optimizer framework of 
Monett is extended along this line and we plan to isolate and include the 
primitivess for further experimentation in its algebra. Better support for 
fitness-basedd ranking remains on our wish list as well. 



Chapterr 7 

Metricc Indexing 

i i 

7.11 Introductio n 

Ann emerging class of database applications heavily relies on spatial informa­
tion,, e.g. geographical and multi-media information systems. The majority 
off queries involves exploration of the spatial information, such as finding 
elementss in a given region. Furthermore, join queries over a spatial domain 
oftenn boil down to calculation of a distance function to locate point pairs 
withinn close vicinity of one-another. They are conventionally implemented 
usingg a spatial index (like R-tree) to filter candidate pairs. 

Anotherr important field for spatial joins is Multi-Media. In these fields 
thee queries passed are not always exact but often fuzzy. Fuzzy queries need 
differentt index structures for performance improvement. 

Sincee these application areas are still very new the queries will change 
rapidly.. So reuse of previous intermediate results which showed to be very 
profitablee in traditional systems will only result in loss of storage. Because 
off the low reuse possibility index structures should be generated on the fly. 

Inn this chapter we introduce a cheap and fast index structure to speed up 
suchh distance joins. In particular, we demonstrate that an index structure 
basedd on the distance metric is both cheap to construct and competitive in 
performance. . 

Becausee the index structure can be built very fast and its storage over­
headd is minimal, it is it a good candidate for on the fly construction, and can 
hiddenn behind Monet operations, as part of a query processing plan. Since 
thee index structure captures the metric information to answer distance joins 
directly,, it reduces the number of times the expensive distance function is 
evaluatedd considerably. 

Metricc Indexing is developed together with W. Quak 

127 7 
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Thee key property exploited is that distance joins involve a well-defined, 
butt expensive, (Euclidean) distance function. Moreover, these functions 
satisfyy the mathematical triangular inequality property, i.e. the distance 
betweenn two points is always smaller or equal than the distance between the 
pointss considered and a third point. Based on the triangular inequality it is 
possiblee to build an index structure to speed up several query classes, such 
as: : 

•• point-match, for each A find the points B positioned at the same 
locationn (e.g. A.pos=B.pos). 

•• A>nearest neighbor, for each A find the k nearest elements B under 
thee distance function. 

•• ^-search, find all B points within delta Ö range away from A. 

•• (5-join, find all A,B point pairs within delta 6 range. 

Inn this chapter we ignore the point-match and A>nearest neighbor queries, 
becausee they are special cases of the 5-search. The point-match can be re­
phrasedd as a delta-join with Ö — 0, while the fc-nearest neighbor can be 
implementedd using a binary traversal over delta values until k values have 
beenn obtained. The ^-search is part of the inner-loop of the 5-join algorithm. 

Thee remainder of this chapter is organized as follows. In Section 7.2 we 
revieww index structures that deal with spatial joins in high dimensions. Sec­
tionn 7.3 explains the use of the triangular inequality in a multi-dimensional 
space.. In Section 7.4 the metric index data structure and algorithms are 
explained.. Section 7.5 provides a mathematical estimation of the effective­
nesss of the new index structure. Section 7.6 reports on experimentations to 
validatee the approach taken. Finally, in section 7.7 we draw our conclusions 
andd pointers for future research. 

7.22 Index Structures for Spatial Joins 

Mostt previous work on searching in multi-dimensional spaces is concentrated 
onn low dimensional data-structures, such as R-tree [52, 4] and and K-D-
treess [5]. These structures can be extended to higher dimensions, but this 
resultss in two problems. The performance degrades, because as the dimen­
sionn increases the querying cost often increases exponentially; it is called the 
dimensionalitydimensionality curse. Consequently, the index structures deployed become 
lesss effective as a pre-filter for selections and join operations. 

Thiss curse also stems from the metric effects in higher dimensions, which 
leadss to a clustering of objects at the 'edge' of the n-dimensional space, while 
alll points theoretically become placed at 'equal' distance of any other point 
inn this space. This holds under the assumption of homogene distributed 
objects. . 
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Thee prime route explored in literature to tackle the former deals with 
thee scalability limitations of most data structures. Examples considered 
heree are the X-tree, SS-tree and TV-tree: 

Thee X-tree [6] tackles the dimensionality problem by observing that the 
performancee degradation in the R-tree based index structures is mainly due 
too the high overlap between the nodes in the R-tree itself. This overlap 
causess an increased number of nodes to be visited when querying the R-
tree.. The X-tree solves this problem by allowing nodes of the X-tree to 
bee bigger than one disk block (the so-called super nodes) if a split node 
wouldd generate a high overlap. This technique makes an X-tree behave like 
ann R-tree in low dimensions, while in higher dimensions the join behavior 
convergess to that of a nested loop. 

Anotherr data structure for indexing high-dimensional vectors is the SS-
treee [118]. The SS-tree is an R*-tree based structure using bounding (hy­
per)) balls instead of rectangles. In 2-dimensions bounding circles are more 
appropriatee for performing similarity queries. Furthermore, they store some 
additionall statistical data in the nodes to support various operations used 
inn image retrieval. 

Thee TV-tree [69] reduces the size of internal nodes by projecting the 
dataa in internal nodes to a lower dimension. By using different projections 
inn different parts of the tree, all parts of the original vectors are used. If 
somee dimensions of the input data are more important than others a big 
speedupp can be gained. This is done by first projecting the data to these 
importantt dimensions. It is unclear how well the TV-tree performs when all 
dimensionss are equally important. 

Despitee the progress reported in reducing the storage/processing cost 
inn moving to higher dimensional indices, these data structures are focussed 
onn the spatial organization. We focus on point and region-based retrieval 
operations.. Our key operation, 6-joins, requires a relaxation of the spatial 
joinss supported by several systems. It behaves more like a theta-join within 
aa spatial context. The role of the index structures in this case are primarily 
aimedd at reducing the number of candidates for consideration. 

7.33 Triangular Inequality 

Ass mentioned before, distance functions play an important role in real life 
applications,, e.g. GIS, CAD/CAM, Image Retrieval and multi-media ap­
plications.. For example in GIS and CAD/CAM applications require spatial 
queries,, like "find me the closest restaurant to a given location" and "find 
objectss that are so closely placed that they generate electro-static interfer­
ence".. Many content based text, image and multi-media applications use 
similarityy based queries, like "find similar colored objects". To illustrate, 
thee functions encountered in the areas considered are: 
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1.. The Great Circle Distance is used in GIS to calculate the 'as the crow 
flies'flies' distance between two places in the world. 

2.. A distance function amongst customer profiles (time series) in the 
dataminingg area. 

3.. The Weighted Euclidean Distance over a vector space: 

d(V,W)d(V,W) = (V- W)TA{V - W) = ^ E ^ ( V ' - WOW - WJ) 
ii  3 

4.. Histogram Intersection 

d{V,d{V, W) nm nm 
Mostt distance functions are expensive to calculate and, because they are 

calledd repeatedly, they contribute considerably to the total querying cost. 
Ourr index structure aims to reduce the number of calls to these functions 
inn a naive implementation of the ó-join. This is achieved by using the met­
ricc properties. The key to the solution proposed relies on the triangular 
inequalityinequality relationship. 

Thee mathematical properties for a metric, \xy\, where x,y and z are 
multi-dimensionall vectors, are: 

•• Posi t iv i t y \xy\ > 0 A \xx\ = 0 

 Symmetry \xy\ — \yx\ 

 Triangula r  inequality \xy\ < \xz\ + \zy\ 

Itt enables to set-up an index that is both effective (on low selectivities) 
andd fast to construct. 

7.3.11 U s i ng t h e Triangula r  Inequa l i t y 

Thee naive implementation of the envisioned £-join is a nested loop. For each 
pairr considered the distance should be calculated. Since this results in many 
expensivee calculations it becomes mandatory to reduce candidate pairs to re­
usee results being calculated. This is achieved by taking a reference point (or 
sett of reference points) and to calculate the distances between the reference 
pointt and each vector in a join operand first. 

Noww consider a query looking for all points within distance 5 from a 
queryy point q, i.e. all points p with \pq\ < S. The metric properties enables 
reusee of distances calculated between p and reference point r. 

Assumee that for points in our space we know its distance to a reference 
pointt r. Then the query \pq\ < Ö could use this information as follows. The 
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Figuree 7.1: Circles 

triangularr inequality provides us with \rq\ < \rp\ + \pq\. So we have an upper 
boundd \rq\ < \rp\ + 6. Since also \pq\ < \pr\ + \rq\ holds, we also know that 
\pr\\pr\ — 6 < \rq\ holds. Using the metric symmetry we can use \rp\ directly, 
elsee we could also store \pr\. Figure 7.1 shows the use of the triangular 
inequalityy in the 2 dimensional case. 

Iff the query point is already close to the reference point, we can remove 
alll possible points with large distance from r from consideration. They 
typicallyy fall behind the horizon of 2 * Ö. Alternatively, if the query point is 
farr away from the reference point we can remove all possible points which 
aree close to the reference point r. 

7.44 Metric index structure 

Inn this section we will explain how the metric index structure is built and 
howw it is used in the select and join algorithms. 

7.4.11 Th e reference po in t s 

Theree are various ways to select a reference point: random, center of gravity, 
orr middle point. A randomly selected reference point would be the prime 
choicee considered when it is a priori known that the space is large. The 
centerr of gravity would be of interest if the space contains several clusters. 
Thenn each cluster leads to a reference point. Unfortunately, cluster detection 
and,, subsequently, the reference point is expensive to calculate. Instead we 
usee the heuristic to randomly select reference points. 

Givenn a reference point, we calculate its distance to each point in the 
table.. The points are subsequently sorted by distance using a tree-like struc­
ture.. This will speed-up searching later for elements at a given distance from 
thee reference point. 
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7.4.22 T h e op t im ized d i s tance se lect 

Selectionn using the metric index follows the traditional route of pre-filtering; 
thee index is used to reduce the candidates to consider to solve the 6-se\ect. 
Thee following pseudo code routine explains how this can be done. 

ó-selectt ( ps, q, 6 ){ 
selectt  p fro m 

selectt  p from ps 
whe r ee \pr\ - 5 < \rq\ < \pr\ + 6 

whe ree \pq\ < 6 

} } 

Thee inner select selects all points p form the point set ps where the 
distancee of the reference point r to the query point q is between \pr\-6 and 
\pr\\pr\ + 5. This identifies candidates in a cylinder around the reference point. 
Itt can be solved with a single lookup because we know the distance to r. 
Thee outer select filters this set by checking for the actual distance between 
pp and q. 

Similarly,, we can use the metric index to speed-up the 5-join using the 
generalizedd triangular inequality. 

\pq\<\pq\< |pn>l + ln)ri| + ••• + \rnq\ 

5-joinn ( ps, qs, 6 ){ 
selectt  p, q fro m 

selectt  p, q from ps, qs 
whe r ee ||prp| - \rprq\ - 6\ < \rqq\ 

<<  \WP\ + \rPrq\ +  6 

whe r ee \pq\ < S 

} } 

Thee algorithm can be simplified when both tables use the same reference 
point. . 

Thee use of multiple reference points merely leads to a few and parts 
inn the query. The following code shows the simplified version for a three 
referencee points query. 

5-joinn ( ps, qs, S ){ 
selectt  p, q fro m 

selectt  p, q fro m ps, qs 
whe r ee ||pro| — S\ < \roq\ < \pro\ + S 
a n dd \\pri\ - ö\ < \nq\ < \pri\ + 5 

file:///pr/-6
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andd ||jW2| — 6\ < \r2q\ < |pr2 | + ö 
wheree \pq\ < S 

} } 

7.55 Effectiveness of the metric index 

Inn this section we give an estimate on the expected hit ratio of the candidates 
selected,, i.e. "Is the metric index a good filter?". This estimate is only given 
forr the case where one reference point is chosen. Moreover, all estimates 
aree based on the (simplifying) assumption that the vectors are uniformly 
distributedd in space; this means that the size of a query result is linear with 
thee volume covered by the query. A formula for the volume of a hyperball 
withh dimension d and volume r, is denoted Vr^. First, we give a formula for 
ballss with r = 1. This formula is denned recursively where the volume in 
onee dimension is expressed in volumes of the lower dimensions. The volumes 
inn dimensions 1 and 2 are given: 

V MM = 2, Vh2 =  7T, Vl4 = ^ V M _ 2 

Inn fact Vi;i is the length of the interval [—1,1] and V\  ̂ is the area of the 
circlee with radius 1. The formula for balls with given r becomes: 

VVr4r4 = rd V14 

Thee next step is to estimate the size of the query result and the size of the 
filterr set of the range query with range S around query point q with reference 
pointt r. The two dimensional case of this query is depicted in Figure 7.1. 
Duee to the uniform distribution the size of the query result is equivalent to 
thee volume of a ball with radius Ö around point q. The candidate points 
(pointss which pass the filter step) are all the points in the (hyper)disc of all l 
pointss with distance between \rq\ — S and \rq\ + 5. Now the effectiveness of 
thee filter is the number of hits divided by the number of candidates. 

#hi t ss _ VS4 

#candidatess V\rq\+64 - V\rq\-54 

^ ^ 
(\rq\(\rq\ +6)d- (\rq\ - Ó)d 

Inn Figure 7.2 the effectiveness of a few selectivity values is shown. In this 
Figuree we keep the answer set constant by increasing 5 for higher dimensions. 
Ass can be seen, the filter effectiveness degrades for high dimensions. But 
theree are also some aspects to take into account to make life bearable in 
practice. . 
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Figuree 7.2: Effectiveness 

•• In this analysis only one reference point is taken into account. Im­
provedd gain may come when more reference points are used, because 
theyy break the cylinders into pieces. This analysis will be done exper­
imentally. . 

•• The effectiveness of the filter is still good for small query results. A 
situationn likely to occur in large multi-dimensional applications. 

•• The uniform distribution assumption is not likely to hold in practice. 
Clusteredd spaces will lead to more opportunities to filter out irrelevant 
points. . 

Too assess the impact of the choice of the reference point on the effec­
tiveness,, we calculated the expected performance while varying the distance 
\rq\\rq\ between 0.0 and 0.1. In Figure 7.3 we plot the effectiveness for various 
dimensionss while fixing 5 on 0.001. 

Althoughh the analysis in this section re-enforced the existence of the 
dimensionalityy curse when dealing with distance joins in high-dimensional 
spaces,, it also indicates good behavior for low selectivity values and a small 
5.5. We conjuncture that it will further improve with sparsely (skewed) pop­
ulatedd in real-life applications. 

Onee way to improve the filter effectiveness of the metric index is the use 
multiplee reference points. For two reference point, the filtering step becomes 
aa windowing query on points in IR2. See Figures 7.4 and 7.5. Adding more 
referencee points yields windowing queries in n-dimensional space. In fact 
thiss leads to a filter step which converts an n-dimensional range query into 
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Figuree 7.3: Impact of location reference point 

aa windowing query of any dimension (depending on the number of reference 
points). . 

d2+6 6 

d1+8 8 

Figuree 7.5: Range Query 

Figuree 7.4: Distance Query 

7.66 Experimentation 

Too assess the performance of the metric index in a real setting, we have 
extendedd the Monet [13] system with a software module for 5-joins, <5-select, 
andd a metric index. Subsequently, we conducted experiments on data sets 
generatedd using a standard pseudo-random number generator. All vector 
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fieldss domains are [0..1). 
Thee first experiment conducted was geared to get a handle on the cost 

off the distance function. Therefore, we measured the execution time of 
aa naive implementation -with a simple loop- of the distance select. The 
resultss are shown in Figure 7.6. It shows the execution time of a distance 
selectt for databases sizes ranging from 10 to 100K with vectors of dimensions 
2,4,8,16,322 and 64. All selects were done with an equal distance of 0.1. So 
onlyy very close points were retrieved. 

Thee cost of this naive loop could be invested in construction of a metric 
index.. Once it is available, it can be used as a pre-filter. Figure 7.7 shows the 
resultss against the same query using the index structure. The benefit from 
thee index is evident. For the low selectivity considered it leads to an overall 
performancee improvement. Since the investment in the index structure are 
alreadyy recovered with 2 5-selects. 

Forr the <5-join a similar experiment was conducted. Figures 7.8 and 7.9 
showw the results of the naive nestedloop- and metric index based implemen­
tations.. The cost of metric index construction is neglectable compared to 
thee gain. Again the benefit of the index is evident. 

„ .. _ „ ,T . j. , Figure 7.7: 5-search using 
Figuree 7.6: Naive d-search ° 

Too assess the degradation caused by increasing the result size we con­
ductedd an experiment with fixed database size of 100K and with dimensions 
22 to 64, but with increasing query selectivity ranging from 0.01% to 1.0%. 
Figuree 7.10 shows the execution times of the distance selects using the in­
dexx structure. It clearly shows the reduced usability of the index structure 
forr larger answer sets. Only for low dimensions the index structure seems 
effective.. This stems from the uniform generated data. 

Too show that the index structure is a cheap alternative for spatial queries 
inn low dimensions we also compared our method with the R-tree data struc­
ture.. Because our current version of the R-tree only works on two-dimension 
vectors,, this test is only run on two dimensional data. The results of this 
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Figuree 7.10: increasing selectivity 

experimentt are show in Figures 7.11 and 7.12. They show the construction 
andd execution times of the <5-join for naive (nor), optimized (opt), optimized 
withh 2 reference points (opt2) and Rtree (rtree). From the figure we can 
concludee that the metric index with two reference points is overall better 
andd that for relative low selectivity also the single reference point performs 

well. . 
Thee last experiment was conducted to investigate the improved selectiv­

ityy of the index structure when using multiple reference points. We exper­
imentedd with 1 up to 16 reference points. Three synthetic data sets were 
used.. We generated one using a uniform distribution, two using uniformly 
distributedd clusters, where the clusters internal distribution was zip-f or 
gausss around the cluster center. 

Wee measured the ratio between the number of points selected based on 
thee index only i.e. without the real distance post filter, and the actual result 
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Figuree 7.11: Construction Cost Figure 7.12: Two Dimensions 

size.. Figure 7.6 shows the results for the various data sets. It clearly shows 
thatt multiple reference points in the clusters with zip-f internal distributions 
willl clearly not improve. This was to be expected since most of the points 
willl be close around the cluster centers. In case of the gauss internal distri­
butionn multiple reference points improve the selectivity enormously. We see 
aa similar effect for the uniform data. 

7.77 Conclusions 

Inn this chapter we presented a cheap index structure to improve the query 
performancee of joins involving a distance metric. This index structure works 
onn any distance metric, as long as it obeys the triangular inequality. There 
iss no need for a full metric. We showed that the index structure is profitable 
inn higher dimensions for small selectivities. 

Severall areas require further investigation. First, our assumption of uni­
formm distribution of points in the space leads to a worst-case behavior, es­
peciallyy in high dimensions. All points appear at the border of the space 
andd are equally spaced. We conjuncture that data obtained from real-life 
applicationss are extremely sparse and that clustering of points (the focus of 
thee query) lead to good performance for acceptable ranges of selectivity. 

Second,, the implementation of the n-dimensional R-tree in Monet should 
bee finished to balance the results obtained so far. We conjuncture that the 
effectss of the dimensional curse for such data structures are worse than those 
experiencedd in our metric index. Experiments in both directions are under 
way. . 
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Chapterr  8 

Summary y 

Thee objective of this thesis was to design an architecture for image database 
systems.. In this quest we explored many techniques effective in both image 
retrievall and image analyses systems. The exploration lead to several refined 
objectives. . 

Thee first refined objective is how to incorporate images and image opera­
tionss in an extensible DBMS ? The extensible DBMS was Monet. In chapter 
33 we showed a mapping of images to BATs, i.e. binary tables. We indicated 
howw a default implementation of the image algebra operations could be read­
ilyy achieved. This also proved the completeness of our approach. Using this 
representationn we showed many possible optimizations to be used by the 
queryy optimizer to find better query plans. 

Itt convinced us that pixel-set based image processing in a DBMS context 
iss a viable alternative against the image (C++) data structure approach, 
thee dominate approach taken in image analyses domain. It permits one to 
focuss on effectiveness and lets the query optimizer take care of the efficient 
evaluation. . 

Thee second refinement of the global objective dealt with queries, i.e. how 
shouldd an image database system support image retrieval queries ? 

Inn chapter 4 we introduced an algebraic framework to express queries 
onn images, pixels, regions, segments and objects. We showed the expressive 
powerr of the Acoi algebra using a representative set of queries in the image 
retrievall domain. The algebra allows for user-defined metric functions and 
similarityy functions, which can be used to join, select and sort regions. The 
algebraa is extensible with new region properties to accommodate end user 
drivenn image analysis in a database context. 

Inn Section 4.2.1 we showed our prototype image retrieval system and 
explainedd the Multi-level signature image description. The multi-level sig­
naturee approach shows that an image algebra should accommendate multiple 
imagee descriptions and requires multiple index-structures. 

Inn Section 4.3 we have introduced the necessary data structures and op-
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eratorss to build an image database system aimed at supporting embedded 
imagee querying. We have experimentally demonstrated that a bottom-up 
indexx construction outperforms a top-down approach terms of storage re­
quirementss and performance. 

Wee have implemented the algebra within an extensible DBMS and devel­
opedd a functional benchmark to assess its performance. In the near future 
wee expect further improvement using extensibility in search methods and 
indexx structures to improve the performance of the algebra. 

Thee third refinement dealt with image analysis, could an image database 
systemm be used for image analyses tasks ? 

Inn chapter 5 we showed that an image database could be used profitably 
too support image analyses researchers. In a case study it has been shown 
thatt an extensible DBMS can be efficiently used to tackle the line-clustering 
problem.. The overhead of the conversion between database structures and 
applicationn structures is not a dominant factor. Moreover, there exists a 
smalll algebraic extension to the DB core functionality, which enables us to 
tacklee the line clustering problem. The performance is promising compared 
too the original solution written in C+-h 

Althoughh we proved the effectiveness of using a database system for 
imagee analyses, the image community is far from taking up this route. The 
mainn reason for this is a mentality issue. It is hard to change a researchers 
approachh which has been used for over a decade. In due time we expect that 
thee object-at-a-time approach, as dictated by the imperative languages like 
C + + ,, is replaced with a set-based approach. 

Thee next refinement to the global objective dealt with similarity queries, 
howw to support similarity queries ? 

Inn chapter 6 we have presented and analyzed the class of fitness joins, 
whichh appear regularly as building blocks in advanced database applications. 
Theyy differ from the traditional equi-, theta- and set-joins by a mathematical 
complexx formula in the join condition combined with a selection from a 
group. . 

Wee have shown that this class can be handled efficiently for relatively 
simplee fitness functions using moderate extensions to the algebra. In particu­
lar,, the bounded theta-join appears a valuable addition to the standard reper­
toiree and can be implemented using traditional optimization techniques. It 
extendss early work on theta-joins [34] by uncovering the real handle to tackle 
thee problem efficiently. Namely, judicious use of the monoticity properties of 
compoundd mathematical functions combined with a variation of the theta-
join. . 

Furtherr optimization, along the line of exploring the mathematical prop­
ertiess of the fitness expressions have been indicated. Its scope has been 
barelyy scratched upon and we foresee much better support of advanced ap­
plicationss when their mathematical properties are properly accessed by an 
optimizer.. The optimizer framework of Monet is extended to cope with the 
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informationn presented and we plan to isolate and include the primitives for 
furtherr experimentation in its algebra. 

Derivedd from the objective to deal with similarity queries was the objec­
tivee to improve the performance of similarity queries. In chapter 8 we pre­
sentedd a cheap index structure to improve the query performance of joins 
involvingg a distance metric. This index structure works on any distance 
metric,, as long as it obeys the triangular inequality. There is no need for 
aa full metric. We showed that the index structure is profitable in higher 
dimensionss for small selectivities. 

8.11 General Research Directions 

Thiss thesis opens new research directions. The first direction, there is a need 
forr more investigation in Region-based Querying. We defined regions as the 
basicc building blocks for image descriptions. The regions describe small 
partss of the image by associating region features. The query implications of 
suchh regions needs more investigation. 

Thee multiple-features associated with regions will form a single high 
dimensionall space. All problems associated with the high dimentionality 
cursecurse are valid. Therefore, all regions will be evenly distributed over this 

space. . 
Thee predicate query model as available in current database manage­

mentt systems proved inadequate for image retrieval queries. More advanced 
queryy models such as Proximity-based Querying and Relevance feedback are 
consideredd good alternatives and need more research. 

Opposedd to this we could question such a fuzzy query evaluation model. 
Iss the current accepted query model, i.e. image retrieval based on similarity, 
thee proper solution. Is such a Fuzzy model really needed? Maybe we could 
guidee the user to better understand the image descriptions used to describe 
thee image content. A better understanding of the image descriptions could 
leadd to precise image queries which could be handled using the predicate 
queryy model. 

Thee main problem of image retrieval systems is that the results obtained 
throughh an index using similarity measures are often only understood by the 
thee image analyses experts. For naive users, it is often difficult to understand 
whyy the answer to a query image showing e.g. a sunset should return nice 
imagess about the African savanne. This is typically an artifact of non-precise 
queryy formulation and weak indexing structure. 

AA way out of this problem is to give the user more insight in the features 
usedd to solve the query against the image database. This insight is given by 
specifyingg the query and showing the results in terms of the indexed image 
featuress directly. 

Thee usage of image databases by image analyzing researchers will give 
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thee database researchers more input on there query behavior and require­
ments.. This input could be used to improve the performance of image 
analyzingg applications. Once the image analyzing community has accepted 
sett based processing they can again focus on the image analyzing problems 
andd let the database take care of the performance issues. 
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