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ABSTRACT

E�cient resource usage is a key to achieve better performance in parallel database systems. Up to now, most

research has focussed on balancing the load on several resources of the same type, i.e. balancing either CPU load

or I/O load. In this paper, we present oating probe, a strategy for parallel evaluation of pipelining segments in

a shared-everything environment that provides dynamic load balancing between CPU- and I/O-resources. The

key idea of oating probe is to overlap|as much as possible with respect to data dependencies|I/O-bound build

phase and CPU-bound probe phase of pipelining segments to improve resource utilization. Simulation results

show, that oating probe achieves shorter execution times while consuming less memory than conventional

pipelining strategies.
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1. Introduction

Parallel processing in database systems is a key to the required performance improvements of modern
database applications. The increasing complexity of queries and the increasing transaction throughput
over a growing amount of data require higher performance of relational database systems. Hence, more
and more commercial database vendors are integrating parallelism in their products [DG92, Gra95].
In general, parallelism for the evaluation of database queries is classi�ed into three main categories

[SD90, YCWT93]: inter-query, inter-operator, and intra-operator parallelism. Much research has
been performed to determine which kind of parallelism to use for query processing. Database machines
research concentrated on intra-operator parallelism. Most commercial database systems have focused
on inter-query parallelism, so far [Gra95, Val93]. Recently, the use of inter-operator parallelism has
been investigated [CLYY92, HS93, SD90, SYT93, SE93, WA91, ZZBS93]. Pipelining parallelism is
of particular interest. In [SD90] Schneider and DeWitt study the e�ect of pipelining on a right-deep
tree of hash join operators in detail. The evaluation of queries is split into two distinct phases. First,
the inner relations are read from disk, and hash tables are built in parallel (build phase). Second, the
outer relation is piped bottom-up through all operators (probe phase).
To avoid I/O, the right-deep tree is decomposed into segments, which �t in main memory [CLYY92].

Segments are evaluated one at a time with maximal computing resources. Processors are assigned to
the operators of a segment based on work estimations. This approach achieves pipelining parallelism
between intra-parallel operators.
In [SYT93] this idea is expanded to bushy operator trees. The bushy tree is disjointed in right-deep
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pipelining segments. Each pipelining segment consists of a sequence of non-blocking operators, which
produce output on-the-y, like selection, projection (without duplicate elimination), or the probe
phase of either a hash join (for equi-joins) or a general index join (for �-joins). Only the last operator
in the sequence might be a blocking operator which has to collect all input before it produces any
output, e.g. sort or aggregation. For each segment pipelining parallelism can be exploited. This
combines the exibility of bushy operator tree with pipelining execution.
A major problem with the usage of pipelining parallelism are dependencies between operators,

i.e. the performance of the pipelining execution is dominated by the slowest operator. Hence, it is
important to predict the workload of the operators precisely to decide its degree of parallelism. There
are two problems: failures in the prediction of the operators' work (execution skew) and discretization

error [SE93, WFA95], i.e. a �xed number of processors cannot be assigned to the operators such
that every operator reaches its optimal degree of parallelism. Minimizing discretization error by using
more processes than processors as a straightforward solution adds the overhead of process context
switching. An additional problem with the dependencies between operators are the startup and
shutdown execution delay [GHK92, WA91, WFA95]. Processors assigned to operators at the end of a
pipeline are idle at the beginning of the computation, whereas processors assigned to operators at the
begin of the pipeline are idle towards the end of the execution. In [MOW97], we presented DTE, a new
strategy to execute the probe phase of pipelining segments in shared-everything environments, that
avoids both, discretization error and startup/shutdown delay, and is resistant against execution skew.
Thus, DTE provides optimal execution by switching from operator parallelism to data parallelism.
But still one problem with the execution of pipelining segments remains open: In typical database

environments, the build phase is I/O-bound (i.e. building a hash table takes less time than reading
the base relation from disk) while the probe phase is CPU-bound (as no intermediate results are
materialized on disk due to pipelining). Thus, execution cannot be optimal due to ine�cient resource
utilization: During the build phase the CPUs are idle, while during the probe phase the I/O system
is idle.
Hong presents a scheduling algorithm that executes one CPU-bound and one I/O-bound task con-

currently, to achieve a CPU-I/O-balanced workload [Hon92]. This algorithm is restricted to scheduling
distinct data-independent task (i.e. pipelining segments), whereas we focus on executing the two data-
dependent phases of a single segment.
The contribution of this paper is oating probe, a new strategy to combine I/O-bound build phase

and CPU-bound probe phase. Floating probe improves resource utilization by letting both phases
overlap as much as possible, and thus automatically balancing CPU- and I/O-workload during eval-
uation. The bene�ts of our new strategy are twofold: First, oating probe provides shorter execution
times than executing build and probe phase one after another. Additionally, oating probe requires
less memory during execution than the traditional strategy.
The remainder of the paper is organized as follows. In Section 2, we de�ne the problem we focus

on. Our strategy to evaluate the build phase is described in Section 3. In Section 4, we present
DTE, a strategy for e�cient evaluation of the probe phase. Section 5 studies the problems that occur
when combining both phases and presents our solution oating probe. A simulation model and a
comparative performance evaluation is given in Section 6. Section 7 contains our conclusion.

2. The Problem

In this paper, we focus on the issue of load balanced execution of pipelining segments in shared-
everything environments. We suppose that an optimizer has already generated a tree-shaped query
plan and partitioned the plan in pipelining segments with the following characteristics: (1) Only
the last operator of each segment might be a blocking operator, all other operators are non-blocking
operators. The optimizer tuned the size of each segment that (2) all necessary tables �t into in main
memory and (3) the probing then can be done without intermediate I/O (cf. [CLYY92, SD90, SYT93]).
To achieve this, the optimizer splits a sequence of non-blocking operators into multiple segments if
necessary.
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Figure 1: A pipelining segment Figure 2: Build phase and probe phase

Figure 1 depicts a sample pipelining segment consisting of three joins. Ri, Ii, and �i denote the
inner input relation, the intermediate result, and the join predicate of the i-th join, respectively. I0
denotes the outer input relation of the �rst join (i.e. the outer input of the whole segment). Each input
relation is either a base relation or the result of an other pipelining segment. All Ri are materialized
on disk. I0 is either materialized on disk, or received on the y from the network.
All segments are evaluated one after the other according to the producer/consumer data dependen-

cies between them. We do not consider parallel evaluation of data independent pipelining segments,
as this obtains no performance improvements [SYT93]. Evaluation of a segment proceeds in two
phases: The �rst phase loads all inner relations of joins in the segment by parallel I/O and builds
the (hash) indices in parallel (build phase). The second phase pipes all tuples of the outer relation
through selections, projections, or probe phases of joins (probe phase).
Figure 2 depicts the build phase an the probe phase of the sample segment. Bi denotes the operation

to build the hash table Hi of the i-th join, while P�i denotes the operation to probe Ii�1 against Hi

using the predicate �i.
In the following two sections, we present our execution strategies for the build phase and the probe

phase, respectively. Thereafter, in Section 5, we show, that executing these two phases one after
another is not optimal due to ine�cient resource utilization. Then, we present oating probe, our
new strategy to combine both phases, that provides shorter execution times while using less memory.

3. Table Building Phase

In this section, we discuss execution strategies for the build phase of pipelining segments. First, we
present a strategy how to build a single hash table in parallel. Then, we study techniques to build all
the hash tables of one pipelining segment.

3.1 Building a single hash table in parallel

Shared-everything systems provide uniform and parallel access to all disks. We assume that all base
relations are full declustered across all disks. Thus, full I/O parallelism|i.e. full I/O bandwidth|can
be used even when accessing only a single relation. Further, double bu�ering and asynchronous I/O
are used, so that CPU and I/O can overlap.
We use the following strategy to build a single hash table in parallel, i.e. using all disks and all CPUs.

One thread per CPU is started. Each thread reads tuples (one at a time) from a shared bu�er pool,
calculates the hash value and inserts the tuple into the corresponding hash table in shared memory.
As with DTE (cf. Sec. 4), the strategy provides optimal load balancing. The shared bu�er pool is
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continuously fed with pages of the base relation that are read from disk. To do this, we extend one
of the aforementioned threads by the functionality to invoke asynchronous parallel I/O to read pages
from disk. As the time to invoke the I/O of one page is by approximately three orders of magnitude
smaller than the time to read a page from disk, this single I/O thread does not form a bottleneck.
In the reminder of this paper, we use Build(Ri) to denote the parallel building of the hash table

that belongs to the i-th join within the pipeline.

3.2 Building multiple hash tables

There are two strategies to build all the hash tables of a pipelining segment. The �rst is to start
building all hash tables simultaneously and execute Build(R1) through Build(RN ) concurrently. The
second strategy is to execute only one single Build(Ri) at a time, i.e. to execute Build(R1) through
Build(RN ) one after the other. Remember, that we assume full declustering of all base relations. Thus,
both strategies can exploit the full I/O bandwidth. But the �rst strategy would lead to additional seek
time due to random I/O, as partitions of di�erent relations (located on the same disk) are accessed
concurrently. The second strategy outperforms the �rst one under these assumptions. Thus, we prefer
the second strategy here.

4. Tuple Probing Phase

The key idea of our strategy to evaluate the probe phase of pipelining segments is to dynamically
assign the available processors to the data that must be processed. We do this by gathering all
operators of a pipelining segment into one stage and assigning all processors to this stage. This leads
to optimal load balancing and e�cient resource utilization without any additional overhead.
As it is not possible to perform two successive operators on the same input tuple in parallel, our

approach is to switch from conventional operator parallelism to data parallelism. Data parallelism cov-
ers both, intra-operator (di�erent tuples, same operator) and inter-operator (di�erent tuples, di�erent
operators) parallelism.
To achieve this, we assign one thread per processor. Each thread is able to perform all operations

within the active pipelining segment. In [MOW97], we present this strategy | called Data Threaded

Execution (DTE) | in detail. In the reminder of this section, we give an overview of DTE.
Evaluation of a pipelining segment proceeds as follows: The input tuples for the pipelining segment

are provided in a single queue that all threads can access. Each thread takes one tuple at a time from
the global input queue and guides it the way through all the operators of the pipelining segment by
subsequently calling the procedures that implement the operators. A tuple does not leave the thread
(and thus the processor) during its way through the pipelining segment, until it has been processed
by the last operator or it failed to satisfy a selection or join predicate. As soon as one tuple has left a
thread, the thread takes the next input tuple from the queue. In the case that one tuple �nds more
than one partner in a join (i.e. the operator produces more than one output tuple from one input
tuple), the thread has to process all these tuples �rst, before it can proceed with the next input tuple
from the queue. Figure 3 depicts the data threaded execution of a pipelining segment (consisting of
three joins) on four processors.
There are no data dependencies between the threads. Thus, all threads start their processing

simultaneously without any idle time, and none of them is idle until it �nishes its work. In other
words, there is no startup execution delay and there is no idle time due to synchronization among
the processors. The only idle time that may occur is due to shutdown execution delay. As soon as
a processor has �nished its work and there are no more input tuples in the global queue, it is idle
until the other processors have �nished there work, too. But this time is at most the time that one
processor need to process one tuple though the pipelining segment.
DTE provides automatic and dynamic load balancing between the processors, as each thread can

process the next input tuple as soon as it has �nished the processing of the former tuple. Thus, all
processors are working as long as there are input tuples in the queue. i.e. neither startup delay nor
discretization error occur with DTE.
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Figure 3: DTE

In particular, load balancing (and thus e�cient resource utilization) does not depend on cardinal-
ities. Therefore, the e�ciency of DTE does not su�er from any errors when estimating cardinalities
and selectivities at compile time. Of cause, when such errors lead to a non-optimal query tree, DTE
cannot compensate this error. But it still provides a stable execution in the sense of e�cient resource
utilization without overhead.

5. Building and Probing

Before we discuss the di�erent strategies how to combine build phase and probe phase, we introduce
the notation we use in the remainder of this paper. Build(Ri) (in �gures abbreviated by Bi) denotes
the building of the i-th hash table. This includes reading Ri from disk. Alloc(Hi) (Ai) denotes
the allocation of the memory that is needed for a hash table. It returns yes if the allocation was
successful, i.e. if there was enough memory available, and no otherwise. Releasing the respective
amount of memory is denoted by Free(Hi) (Fi). Probe(Ii�1) (Pi�1) denotes the probing of intermediate
result Ii�1 through i-th join within the pipeline using DTE. Probe(Ii�1::Ij�1) (Pi�1::j�1) denotes the
parallel probing of the joins i through j (1 � i � j � N) using DTE. Thus both, Probe(Ii�1) and
Probe(Ii�1::Ij�1) represent the execution of the respective subset of operators of the whole pipeline
(Probe(I0::IN�1)). Table 1 gives further notation and some basic cost values taken from litrature. In
Figure 4, we present the cost functions for single operations as we will use them in the remainder of
this paper.

5.1 Deferred Probe

The simplest way to combine build and probe phase is the classical one: First, all hash tables are
built, and after that, the probing is done (using DTE, in our case). We call this deferred probe.
The execution of the whole pipelining segment (i.e. build and probe phase) proceeds as follows:

Alloc(H1); Build(R1); ..; Alloc(HN ); Build(RN ); Probe(I0::IN�1); Free(H1); ..; Free(HN ). The total
execution time is (cf. Fig. 4 and Tab. 1 for details):

T 0

deferred =

NX

i=1

max fOs(Ri) ;CB (Ri)g + max fOr (I0) +Or (IN ) ;CPx (I0::IN�1)g :

Suppose that build phase and probe phase either both are I/O-bound

8i 2 f1; ::; Ng : Os(Ri) > CB (Ri) ^ Or (I0) +Or (IN ) > CPx (I0::IN�1)
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name description value

N number of joins

Ri base relations, i 2 f1; : : : ; Ng

Hi corresponding hash tables, i 2 f1; : : : ; Ng

Ii intermediate results, i 2 f0; : : : ; Ng

p number of CPUs

d number of disks

TM CPU-time to transfer one tuple between CPU and memory 10.0 �s

TB CPU-time per tuple to build a hash table 5.5 �s

TP CPU-time to probe one tuple against a hash table 4.0 �s

TG CPU-time to generate one result tuple of a join 30.0 �s

TI CPU-time to invoke I/O for one block 7.4 �s

TW time to setup I/O-system 1.0 ms

TS average I/O seek time 1.2 ms

bw I/O bandwidth per disk 3 MB/s

bs size of one I/O block in bytes 8 kB

TR = bs
bw

, I/O time to read one block

tsR size of tuples of relation R in bytes 100-200 Bytes

jjRjj size of relation R in tuples

jRj =

�
jjRjj � tsR

bs

�
, size of relation R in blocks

Table 1: Notation

I/O time per relation without disk arm contention (sequential I/O):

Os(Ri) = TS +

�
jRij
d

�
(TW +TR) ; Os(Ri::Rj) =

jP
k=i

Os(Rk)

I/O time per relation with disk arm contention (random I/O):

Or (Ri) =

�
jRij
d

�
(TS + TW +TR) ; Or(Ri::Rj) =

jP
k=i

Or (Rk)

CPU time per relation to init I/O and to transfer a relation between CPU and memory:

Cx (Ri) =

�
jRij
p

�
TI +

�
jjRijj
p

�
TM ; Cx (Ri::Rj) =

jP
k=i

Cx (Rk)

CPU time to build a hash table (incl. initialization of I/O):

CB(Ri) =

�
jRij
p

�
TI +

�
jjRijj
p

�
TB ; CB(Ri::Rj) =

jP
k=i

CB(Rk)

CPU time to probe a join:

CP(Ii) =

�
jjIijj
p

�
TP +

�
jjIi+1jj

p

�
TG ; CP (Ii::Ij) =

jP
k=i

CP (Ik)

CPU time to probe joins (incl. fetching the input, storing the output and initialization of I/Os):

CPx (Ii::Ij) = Cx (Ii) + CP(Ii::Ij) + Cx (Ij+1)

Figure 4: Cost Functions
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or both are CPU-bound

8i 2 f1; ::; Ng : Os(Ri) < CB (Ri) ^ Or (I0) +Or (IN ) < CPx (I0::IN�1);

then this execution strategy provides the minimal execution time:

T 00

deferred = maxfOs(R1::RN ) +Or (I0) +Or (IN ) ; CB (R1::RN ) + CPx (I0::IN�1)g:

However, in most environments the build phase is I/O-bound while the probe phase is CPU-bound|at
least if the pipeline is long enough|, i.e.

8i 2 f1; ::; Ng : Os(Ri) > CB (Ri) ^ Or (I0) +Or (IN ) < CPx (I0::IN�1): (5.1)

In this case, the strategy presented above has one shortcoming: Resources are not used as e�ciently
as (theoretically) possible. During the build phase, CPU capacities are left free, while during the
probe phase, I/O capacities are left free. Thus, the execution time is not optimal:

Tdeferred = Os(R1::RN ) + CPx (I0::IN�1) > T 00

deferred:

Figure 5 depicts CPU and I/O load during the evaluation of a pipelining segment with four joins
using deferred probe.
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Multi-user and multi-query environments may balance the utilization of CPU and I/O. But these
environments su�er form the exhaustive use of memory of this strategy. The memory for the hash
tables is allocated (long time) before the hash tables are used in the probe phase and all memory is
released only after the whole pipeline is executed (cf. Fig. 6).In multi-user or multi-query environments,
not only execution time (T ) and maximal memory usage (m) should be regarded, but also the memory

usage area (M = amount of memory usage � time that the memory is occupied).

5.2 Floating Probe

To overcome the shortcomings of deferred probe, our approach is to let the build phase and the probe
phase overlap. As opposed to deferred probe, this results in a single phase that integrates build
and probe phase. Thus, resource utilization can be balanced by combining I/O-bound build and
CPU-bound probe.
The point is, that Probe(Ii�1) can be started as soon as Build(Ri) has �nished, i.e. Probe(Ii�1)

can be executed in parallel with Build(Ri+1). Thus, compared to conventional pipelining, some of the
probe work is done before the build of the last hash table has �nished. As building the hash tables is
I/O-bound, the elapsed time until all hash tables are build cannot be reduced. But the probe work
that has to be done after the last build is reduced, and thus, the overall execution time is reduced.
Two cases have to be distinguished �rst: Either Probe(I0) is CPU-bound (I0 already resides in

memory, is received via a fast network, or even reading from disk is faster than performing the
probing), or Probe(I0) is I/O-bound (reading I0 from disk is slower than performing the probing).
For the moment, we assume that Probe(I0) is CPU-bound. Then, the strategy proceeds as follows

(cf. Fig. 7 for a sample schedule of oating probe): At the beginning, the hash table of the �rst join
is built (Build(R1)). Thereafter, Probe(I0) and Build(R2) are started simultaneously and executed
concurrently. As the output tuples that Probe(I0) produces cannot immediately be processed by
Probe(I1), they have to be bu�ered. To avoid intermediate I/O, this should be done in memory.
If Probe(I0) ends before Build(R2) is ready, the hash table of the �rst join (H1) can be deleted.
Otherwise, as soon as Build(R2) has �nished, Build(R3) is started and the probe is extended, so that
the remaining tuples of I0 are piped through both probes (Probe(I0::I1)). As before, the output of
Probe(I0::I1) is materialized in memory. If then Probe(I0::I1) ends before Build(R3) is ready, H1 can
be deleted and the part of I1 that was materialized in memory during Build(R2) is processed through
Probe(I1). Otherwise, the probe is extended to the third join (Probe(I0::I2)), as soon as Build(R3) is
done. This proceeds until the last hash table is built. After that, only probing is done until all tuples
are processed: For each Ii that is (partially) materialized in memory Probe(Ii�1::IN�1) is executed.
In our new strategy, the pipelining segment is dynamically extended to the next join, as soon as

its hash table is built. Thus, allocated memory is used as soon as possible. On the other hand, hash
tables are deleted as soon as the respective probe phase is done. Thus, allocated memory is released
as soon as it is no longer needed.
We call this strategy oating probe. Figure 8 presents oating probe as pseudo code1. Figure 10



5. Building and Probing 9

begin

Init();

do

if next � N then

if �rst � last then

BuildAndProbe(Rnext ; I�rst ::Ilast );

else /* �rst > last */

BuildOnly(Rnext);

�;

else /* next > N */

ProbeOnly(I�rst ::Ilast);

�;

until �rst = N ;

end.

Init();

do

BuildOnly(Rnext);

until ProbeOnly(I�rst ::Ilast ) is I/O-bound;

a) Replacement for Init() in Fig. 8: late probing

Init();

BuildOnly(Rnext);

ProbeOnly(I�rst ::Ilast);

b) Replacement for Init() in Fig. 8: early probing

Figure 8: Floating probe (CPU-bound Probe(I0)) Figure 9: Floating probe (I/O-bound Probe(I0))
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depicts CPU and I/O load during the evaluation of a pipelining segment with four joins using oating
probe (I0 is receive via the network and I4 is written to disk) and Figure 11 shows the respective
memory usage.
Now, let's consider the case, that Probe(I0) is I/O-bound, i.e. reading I0 from disk is slower than

performing the probe. As I0 is also full declustered across all disks, there is no sense in running
Probe(I0) and Build(R2) in parallel due to disk access contention. We examined two strategies, how
to proceed in this case. The �rst is to defer Probe(I0) until enough (g) hash tables are built, such
that executing Build(Rg+1) and Probe(I0::Ig�1) concurrently is (approximately) CPU-I/O-balanced,
or at least such that executing Probe(I0::Ig�1) is CPU-bound. Thus, running Probe(I0) I/O-bound
is avoided. But on the other hand, the start of probing is deferred and Build(R2) through Build(Rg)

are run I/O-bound. As soon as is started Probe(I0::Ig�1), execution continues as usual. We call this
strategy late probing (cf. Fig. 9a).
The second strategy is to execute Probe(I0) right after Build(R1), materializing I1 completely in

memory, and to defer Build(R2) until Probe(I0) is done. Thus, Probe(I0) is run I/O-bound as well
as Build(R2) thereafter. But on the other hand, probing is started as soon as possible. We call this
strategy early probing (cf. Fig. 9b).
The case, that the result relation of the pipelining segment is not kept in memory, but rather written

to disk, does not need any special treatment. Probe(IN�1) can only be processed after Build(RN ) is
done. Hence, there is no I/O interference.
The gain of our new strategy is twofold: On the one hand the overall execution time is reduced as

some of the probe work is done before Build(RN ) has �nished. In our example, deferred probe needs
70 units, whereas oating probe needs only 52 units (cf. Figs. 5 & 10). Of course, there is a lower
bound, as the execution time cannot be less than needed to do the total work without any overhead
or synchronization. This bound is given by

Tmin
oating = max fOs(R1::RN ) +Os(I0) +Os(IN ) ; CB (R1::RN ) + CPx (I0::IN�1)g

(5:1)

� max fOs(R1::RN ) + CPx (I0::IN�1) ; Os(R1::RN ) + CPx (I0::IN�1)g

= Tdeferred:

The following equation shows, that the execution time of oating probe cannot be less than 50% the
execution time of deferred probe:

Tmin
oating � maxfOs(R1::RN ) +Os(I0) ; CPx (I0::IN�1)g �

Tdeferred

2
: (5.2)

On the other hand, if any probes �nish before Build(RN ) is done, the corresponding hash tables can be
released, and thus, the memory usage area (i.e. amount of memory used � time for that it is occupied)
are smaller than that of the classical strategy. In our example, the memory usage area of deferred
probe amounts to 2000 units, whereas that of oating probe is only 1219 units (cf. Figs. 6 & 11).
A drawback of this strategy is, that (parts of) intermediate results have to be materialized in

memory. This causes additional CPU costs and additional memory is needed. But the results of our
simulation experiments show, that oating probe outperforms deferred probe, despite these overheads.
Neglecting these overheads | and most of the synchronization that arises due to data dependencies

1The Procedures that are used here and with the pseudo codes of the following strategies are presented in Figure 16

in the Appendix.
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| for the moment, the minimal execution time of our new strategy is:

Toating = max fOs(R1) ; CB (R1)g+

max fOs(R2::RN ) +Os(I0) ; CB (R2::RN ) + Cx (I0) + CP (I1::IN�2)g+

max fOs(IN ) ; CP (IN ) + Cx (IN )g

� Os(R1) +

max fOs(R2::RN ) +Os(I0) ; CB (R2::RN ) + Cx (I0) + CP (I1::IN�2)g+

CP (IN ) + Cx (IN ):

6. Analysis

6.1 Simulation Model

According to the presentation of oating probe in the previous section, it seems to be rather compli-
cated do implement this strategy, as a lot of explicit scheduling overhead is necessary. In the following,
we discuss a rather simple but e�ective method to avoid this scheduling overhead.
Although both phases are no longer executed one after the other, they are still in some sense

independent of each other. The only dependency between the two phases is that a hash table has to
be built before the respective intermediate result can be probed against it. Thus, our solution is to
implement the build phase and the probe phase in distinct threads. The only communication between
build thread and probe thread is that the build thread has to inform the probe thread as soon as it
has built a hash table. Using this information, the probe thread can decide, whether it can probe the
current tuple through the next join or whether it has to materialize it as the next hash table is not
yet built. Both threads are started concurrently. To guarantee, that the probe thread only uses the
CPU resources that are not used by the build thread, the probe thread is run with lower priority than
the build thread. Using this implementation technique, scheduling is done by the operation system.
In order to compare oating probe to the conventional strategy, we designed and implemented

an event driven simulator using the Sim++ package [Fis95]. The simulator is very detailed, i.e. it
simulates each single page-I/O-operation as well as each single tuple-operation using the execution
times from Table 1. According to the aforementioned strategy, the simulator assumes distinct build
and probe threads, one of each per processor.

6.2 Experiments

We randomly generated pipelining segments of several classes. Each class is characterized by the
length N 2 f4; 8; 16g of the pipelining segment and the location L of I0 and IN . Due to space limits,
we restrict our discussion here to the two cases that either (1) I0 is initially stored on disk and IN
�nally has to be stored on disk (L = disk), or that (2) I0 is received via network and IN is sent to
the network (L = net). In the second case, no I/O is needed to evaluate the probe phase. The results
for the remaining two cases are similar to those presented.
We randomly generated n = 360 di�erent segments for each class, where the tuple size of each

base relation and each intermediate result varied between 100 and 200 bytes and the size of each base
relation and each intermediate result varied between 103 and 2 � 105 tuples. To guarantee, that the
build phase is I/O-bound while the probe phase is CPU-bound, all segments ful�lled condition (5.1).

For each segment S
N;L
i , we simulated the execution with both strategies, deferred probe and

oating probe2, for di�erent degrees of parallelism (p 2 f1; 2; 4; 8g, d = p). To compare
the performance of deferred probe and oating probe, we calculated the relative execution time
Toating(S

N;L
i ; p)=Tdeferred(S

N;L
i ; p). Within each class|identi�ed by N , p, and L|we calculated the

2If I0 and IN were located on disk, we simulated the execution for both variants of oating probe, early probing and

late probing. The di�erences between both variants were not signi�cant, thus, we present only those for late probing

here.
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average relative execution time over all the 360 queries:

T
N;L;p

f=d =
1

n

nX

i=1

Toating(S
N;L
i ; p)

Tdeferred(S
N;L
i ; p)

:

Figures 12 and 13 show the average relative execution times with and without probe-I/O, respec-

tively. Floating probe outperforms deferred probe in any case (T
N;L;p

f=d < 1), and the improvement
increases with the length of the pipelining segment. Further, the results show that the performance
gain of oating probe over deferred probe is bigger if no probe-I/O is needed. This is obvious, as
without probe-I/O, more probe work can be done concurrently with the build. Using oating probe
instead of deferred probe saves up to 31% of execution time for L = net and up to 27% for L = disk.
Remember, that at most 50% can be saved (cf. (5.2)). The average saving amounts to approximately
24% for L = net and 16% for L = disk.
In addition to the execution times, we also examined the memory usage of oating probe and

deferred probe. During the simulation, we calculated the total memory usageM(SN;L
i ; p). Analogous

to the average relative execution time, we calculated the average relative memory usage M
N;L;p

f=d .
Figures 14 and 15 show the results with and without probe-I/O, respectively. Again, oating probe
performs better|i.e. needs less memory|than deferred probe. Here, the di�erences between L = net

and L = disk are negligible. Floating probe saves up to 80% (55% on average) of memory allocation
compared to deferred probe.

7. Conclusion

This paper addresses the topic of e�cient resource utilization during query execution in parallel
database systems. We presented oating probe, a new technique to evaluate pipelining segments in
shared-everything environments. Floating probe balances the CPU- and I/O-workload between the
I/O-bound build phase and the CPU-bound probe phase of pipelining segments as good as possible
with respect to the data dependencies between both phases. Thus, oating probe achieves better
resource utilization than conventional deferred probe. This in turn leads to further advantages of
oating probe compared to deferred probe: (1) Floating probe provides shorter execution times while
(2) consuming less memory than deferred probe. Floating probe achieves these improvements without
explicit scheduling, thus, oating probe neither needs any preliminary cost estimations nor does it
cause any scheduling overhead.
We used various simulation experiments to compare oating probe and deferred probe in detail.
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The results show, that oating probe outperforms deferred probe in any case in terms of execution
time and memory usage.
Now, we plan to implement oating probe on di�erent platforms (e.g. on multi-processor SMP

workstations and a Cray T3E) to validate our simulation results. Further, we plan to use oating
probe as a building block to build a query evaluation system for hybrid architectures.
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Appendix: Procedures

procedure Init() do

toBuild [1::N ] := f1; ::; 1g; // part of each hash table that still has to be built

toProbe [0::N � 1] := f1; ::; 1g; // part of each intermediate result that still has to be probed

allocated [1::N ] := no; // memory for hash table already allocated ?

next := 1; // next hash table that has to be built

�rst := 0; // �rst intermediate result that has to be probed

last := � 1; // last intermediate result that can be probed

built := 0; // part of a hash table that has currently been built

probed := 0; // part of an intermediate result that has currently been probed

od;

procedure BuildOnly(Rnext) do

if allocated [next ] = no then Alloc(Hnext); allocated [next ] := yes; �;

Build(Rnext); toBuild [next ] := 0; next ++; last ++;

od;

procedure ProbeOnly(I�rst ::Ilast ) do

Probe(I�rst ::Ilast ); probed := toProbe [�rst ];

foreach i 2 f�rst ; : : : ; lastg do toProbe [i] -= probed ; od;

while toProbe [�rst ] = 0 ^ �rst < N do �rst ++; Free(H�rst); od;

od;

procedure BuildAndProbe(Rnext ; I�rst ::Ilast ) do

if allocated [next ] = no then Alloc(Hnext); allocated [next ] := yes; �;

do built :=Build(Rnext) k probed :=Probe(I�rst ::Ilast ); until �rst of both ends;

foreach i 2 f�rst ; : : : ; lastg do toProbe [i] -= probed ; od;

while toProbe [�rst ] = 0 ^ �rst < N do �rst ++; Free(H�rst); od;

toBuild [next ] -= built ;

if toBuild [next ] = 0 then next ++; last ++; �;

od;

Figure 16: Procedures


