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Abstract

High-performance data-intensive query processing tasks
like OLAP, data mining or scientific data analysis can be
severely I/O bound, even when high-end RAID storage
systems are used. Compression can alleviate this bottle-
neck only if encoding and decoding speeds significantly ex-
ceed RAID I/O bandwidth. For this purpose, we propose
three new versatile compression schemes (PDICT, PFOR,
and PFOR-DELTA) that are specifically designed to extract
maximum IPC from modern CPUs.

We compare these algorithms with compression tech-
niques used in (commercial) database and information re-
trieval systems. Our experiments on the MonetDB/X100
database system, using both DSM and PAX disk storage,
show that these techniques strongly accelerate TPC-H per-
formance to the point that the I/O bottleneck is eliminated.

1 Introduction

High-performance data processing tasks like OLAP, data
mining, scientific data analysis and information retrieval
need to go through large amounts of data, causing a need
for high I/O bandwidth. One way to provide this band-
width is to use large multi-disk (RAID) systems. Table 1
lists the hardware configurations used in the current offi-
cial TPC-H [15] results on the 100GB database size (for the
most common case of a 4-CPU system). These configura-
tions contain 42 to 112 disks, connected through a high-end
storage infrastructure. A disadvantage of this brute-force
approach of meeting I/O throughput requirements is a high
system cost. The last column of Table 1 shows that between
61% and 78% of hardware price can be attributed to disk
storage.

In real-life, though, it is highly questionable whether
databases of “only” 100GB are likely to get stored on 100
drives or more, as in these TPC-H benchmark setups. Using
an order of magnitude more disks than required for storage
size alone is unsustainable on large data sizes due to the

hardware cost, expensive maintenance and increased fail-
ure rate. Currently, it is cheaper and more manageable to
store a database of 100GB on a RAID of 4-12 drives, which
can be accommodated inside a server case. However, such
a more realistic configuration delivers significantly less I/O
throughput; which necessarily leads to real-life OLAP per-
formance that is lower than suggested by the official TPC-H
results.

CPUs RAM Disks
4xPower5 1650MHz (9%) 32GB (13%) 42x36GB=1.6TB (78%)
4xItanium2 1500MHz (24%) 32GB (15%) 112x18GB=1.9TB (61%)
4xXeon MP 2800MHz (25%) 4GB (3%) 74x18GB=1.2TB (72%)
4xXeon MP 2000MHz (30%) 8GB (7%) 85x18GB=1.6TB (63%)

Table 1. TPC-H 100GB Component Cost.

1.1 Contributions

To obtain high query performance, even with more
modest disk configurations, we propose new forms of
lightweight data compression that reduce the I/O bandwidth
need of database and information retrieval systems. Our
work differs from previous use of compression in databases
and information retrieval in the following aspects:

Super-scalar Algorithms We contribute three new com-
pression schemes (PDICT, PFOR and PFOR-DELTA), that
are specifically designed for the super-scalar capabili-
ties of modern CPUs. In particular, these algorithms
lack any if-then-else constructs in the performance-critical
parts of their compression and decompression routines.
Also, the absence of dependencies between values be-
ing (de)compressed makes them fully loop-pipelinable by
modern compilers and allows for out-of-order execution
on modern CPUs that achieve high Instructions Per Cy-
cle (IPC) efficiency. On current hardware, PFOR, PFOR-
DELTA and PDICT compress more than a GB/s, and de-
compress a multitude of that, which makes them more than
10 times faster than previous speed-tuned compression al-
gorithms. This allows them to improve I/O bandwidth even
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on RAID systems that read and write data at rates of hun-
dreds of MB/s.

Improved Compression Ratios PDICT and PFOR are
generalizations of respectively dictionary and Frame-Of-
Reference (FOR) or prefix-suppression (PS) compression,
that were proposed previously [10, 7, 18]. In contrast to
these schemes, our new compression methods can grace-
fully handle data distributions with outliers, allowing for
a better compression ratio on such data. We believe this
makes our algorithms also applicable to information re-
trieval. In particular, we show that PFOR-DELTA com-
pression ratios on the TREC dataset approach that of a re-
cently proposed high-speed compression method tuned for
inverted files [2] (“carryover-12”), while retaining a 7-fold
compression and decompression speed advantage.
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Figure 1. I/O-RAM vs RAM-CPU compression.

RAM-CPU Cache Compression We make a case for com-
pression/decompression to be used on the boundary be-
tween the CPU cache and RAM storage levels. This implies
that we also propose to cache pages in the buffer manager
(i.e. in RAM) in compressed form. Tuple values are decom-
pressed at a small granularity (such that they fit the CPU
cache) just-in-time, when the query processor needs them.

Previous systems [14] use compression between the
RAM and I/O storage levels, such that the buffer manager
caches decompressed disk pages. Not only does this mean
that the buffer manager can cache less data (causing more
I/O), but it also leads the CPU to move data three times in
and out of the CPU cache during query processing. This is
illustrated by the left side of Figure 1: first the buffer man-
ager needs to bring each recently read disk block from RAM
to the CPU for decompression, then it moves it back in un-
compressed form to a buffer page in RAM, only to move
the data a third time back into the CPU cache, when it is

actually needed by the query. As buffer manager pages are
compressed, a crucial feature of all our new compression
schemes is fine-grained decompression, which avoids full
page decompression when only a single value is accessed.

We implemented PDICT, PFOR and PFOR-DELTA
in the new ColumnBM storage manager of the Mon-
etDB/X100 system [3], developed at the CWI for OLAP,
data mining and multimedia/information retrieval applica-
tions. Our experiments show that on the 100GB TPC-H
benchmark, our compression methods can improve perfor-
mance with the compression ratio in I/O constrained sys-
tems, and eliminate I/O as the dominant cost factor in most
cases. We tested our compression methods both using DSM
column-wise table storage [6] as well as a PAX layout,
where data within a single disk page is stored in a vertically
decomposed fashion [1]. While the TPC-H scenario favors
the column-wise approach, PAX storage also strongly ben-
efits from our compression, extending its use to scenarios
where the query mix contains more OLTP-like queries.

1.2 Outline

In Section 2 we relate our algorithms to previous work
on database compression. We also give a short overview of
CPU trends and show how they impact algorithm efficiency,
and sketch how our MonetDB/X100 database system is
designed to extract maximum performance from modern
CPUs. Section 3 then introduces our new PFOR, PFOR-
DELTA and PDICT compression algorithms. We use CPU
performance counters on three different hardware archi-
tectures to show in detail how and why these algorithms
achieve multi GB/s (de)compression speeds. We evaluate
the effectiveness of our techniques using MonetDB/X100
on TPC-H in Section 4, as well as on information retrieval
datasets from TREC and INEX in Section 5. We conclude
and outline future work in Section 6.

2 Background

2.1 Related Work

Previous work on compression in database systems coin-
cides with our goal to save I/O, which requires lightweight
methods (compared with compression that minimizes stor-
age size), such that decompression bandwidth clearly out-
runs I/O bandwidth, and CPU-bound queries do not suffer
too great a setback by additional decompression cost. In
the following, we describe a number of previously proposed
database compression schemes [18, 8, 7]:

Prefix Suppression (PS) compresses by eliminating com-
mon prefixes in data values. This is often done in the special
case of zero prefixes for numeric data types. Thus, PS can



be used for numeric data if actual values tend to be signifi-
cantly smaller than the largest value of the type domain (e.g.
prices that are stored in large decimals).

Frame Of Reference (FOR), keeps for each disk block
the minimum minC value for the numeric column C, and
then stores all column values c[i] as c[i]−minC in an inte-
ger of only dlog2(maxC −minC + 1)e bits. FOR is efficient
for storing clustered data (e.g. dates in a data warehouse)
as well as for compressing node pointers in B-tree indices.
FOR resembles PS if minC = 0, though the difference is that
PS is a variable-bitwidth encoding, while FOR encodes all
values in a page with the same amount of bits.

Dictionary Compression, also called “enumerated stor-
age” [4], exploits value distributions that only use a subset
of the full domain, and replaces each occurring value by
an integer code chosen from a dense range. For example,
if gender information is stored in a VARCHAR and only takes
two values, the column can be stored with 1-bit integers
(0="MALE", 1="FEMALE"). A disadvantage of this method is
that new value inserts may enlarge the subset of used values
to the point that an extra bit is required for the integer codes,
triggering recompression of all previously stored values.

Several commercial database systems use compression;
especially node pointer prefix compression in B-trees is
quite prevalent (e.g. in DB2). Teradata’s Multi-Valued
Compression [10] uses dictionary compression for entire
columns, where the DBA has the task of providing the dic-
tionary. Values not in the dictionary are encoded with a
reserved exception value, and are stored elsewhere in the
tuple. Oracle also uses dictionary compression, but on the
granularity of the disk block [11]. By using a separate dic-
tionary for each disk block, the overflow-on-insert problem
is easy to handle (at the price of additional storage size).

The use of compressed column-wise relations in our
MonetDB/X100 system strongly resembles the Sybase IQ
product [14]. Sybase IQ stores each column in a separate
set of pages, and each of these pages may be compressed
using a variety of schemes, including dictionary compres-
sion, prefix suppression and LZRW1 [19]. LZRW1 is a
fast version of common LZW [17] Lempel-Ziv compres-
sion, that uses a hash table without collision list to make
value lookup during compression and decompression sim-
pler (typically achieving a reduced compression ratio when
compared to LZW). While faster than the common Lempel-
Ziv compression utilities (e.g. gzip), we show in Section 3
that LZRW1 is still an order of magnitude slower than our
new compression schemes. Another major difference with
our approach is that the buffer manager of Sybase IQ caches
decompressed pages. This is unavoidable for compression
algorithms like LZRW1, that do not allow for fine-grained
decompression of values. Page-wise decompression fully
hides compression on disk from the query execution engine,
at the expense of additional traffic between RAM and CPU

cache (as depicted in Figure 1).
An interesting research direction is to adaptively deter-

mine the data compression strategy during query optimiza-
tion [5, 8, 18]. An example execution strategy that op-
timizes query processing by exploiting compression may
arise in queries that select on a dictionary-compressed col-
umn. Here, decompression may be skipped if the query
performs the selection directly on the integer code (e.g. on
gender=1 instead of gender="FEMALE"), which both needs
less I/O and uses a less CPU-intensive predicate. Another
opportunity for optimization arises when (arithmetic) op-
erations are executed on a dictionary compressed column.
In that case, it is sometimes possible to execute the oper-
ation only on the dictionary, and leave the column values
unchanged [14] (called “enumeration views” in [4]). Opti-
mization strategies for compressed data are described in [5],
where the authors assume page-level decompression, but
discuss the possibility to keep the compressed representa-
tion of the column values in a page in case a query just
copies an input column unchanged into a result table (un-
necessary decompression and subsequent compression can
then be avoided).

Finally, compression to reduce I/O has received signif-
icant attention in the information retrieval community, in
particular for compressing inverted lists [20]. Inverted lists
contain all positions where a term occurs in a document
(collection), always yielding a monotonically increasing in-
teger sequence. It is therefore effective to compress the
gaps rather than the term positions (Delta Compression).
Such compression is the prime reason why inverted lists are
now commonly considered superior to signature files as an
IR access structure [20]. Early inverted list compression
work focused on exploiting the specific characteristics of
gap distributions to achieve optimal compression ratio (e.g.
using Huffman or Golomb coding tuned to the frequency
of each particular term with a local Bernoulli model [9]).
More recently, attention has been paid to schemes that trade
compression ratio for higher decompression speed [16].
In Section 5, we show that our new PFOR compression
scheme compares quite favorably with a recent proposal in
this direction, the word-aligned compression scheme called
“carryover-12” [2].

2.2 Super-Scalar CPUs

In a pipelined CPU, execution of an instruction is split
into several subsequent stages. Each clock cycle, a new
instruction is taken into execution, and all instructions in
the pipeline advance one stage. An instruction leaves the
pipeline upon completion of its final stage. By dividing the
pipeline into more stages, each stage has to do less work,
thus terminates quicker, allowing for a higher CPU clock
rate. While the 1988 Intel 80386 CPU executed one instruc-



tion in one (or more) cycles, the 1993 Pentium already had
a 5-stage pipeline, to be increased to 14 in the 1999 Pen-
tiumIII and to 31 in the 2004 Pentium4. This architectural
trend has helped increase the CPU frequency significantly
above the increase brought by smaller transistor sizes in the
last decade.

Super-scalar CPUs add the possibility to issue more then
one instruction per cycle. As long as these instructions are
independent, each of them is dispatched into one of sev-
eral parallel pipelines. Therefore, a super-scalar CPU can
achieve an IPC (Instructions Per Cycle) higher than 1.

Pipeline throughput suffers from two dangers (“hazards”
in VLSI design terminology): a (i) data hazard happens if
one instruction needs the result of a previous instruction.
The second instruction cannot start executing right after the
first, but must wait until the first instruction has produced
its result. Often, CPUs reduce this amount of wait cycles
with store-and-forward techniques, that use local data stor-
age (called “reservation stations”) located inside the execu-
tion unit to pass results directly to another waiting instruc-
tion (without e.g. going through the registers). Therefore,
(ii) control hazards are the more costly form of instruction
dependencies. They happen when an if-then-else or a
dereferenced function call (e.g. late method binding) oc-
curs in a program. As these modify the program counter
that determines which instruction is next, the CPU does not
know which instruction to fetch next, such that it stalls fully.

To avoid control hazards introduced by
if-A-then-B-else-C constructs, modern CPUs em-
ploy branch prediction techniques. The CPU tries to
predict the outcome of A, based on past branching behavior,
and starts executing the predicted path. Many stages
further, when the evaluation of A finishes, it may determine
that it guessed wrongly (i.e. mispredicted the branch), and
then it must flush the pipeline (discard all instructions in it)
and start over with B. Obviously, the longer the pipeline,
the more instructions are flushed away and the higher
the performance penalty. Translated to database systems,
branches that depend on table values, such as those found in
a selection operator on data with a selectivity that is neither
very high nor very low, are impossible to predict and can
significantly slow down query execution [12]. The Intel
Itanium2 CPU has a feature called branch predication for
eliminating branch mispredictions, by allowing to execute
both the THEN and ELSE blocks in parallel and discard
one of the results as soon as the result of the condition
becomes known. It is also the task of the compiler to detect
opportunities for branch predication.

2.3 MonetDB/X100 Architecture

Our MonetDB/X100 engine is being designed to ex-
tract high IPC from super-scalar CPUs. Its vectorized

query engine is a Volcano-like operator pipeline where
each relational algebra operator implements a standard
open-next-close interface. Contrary to other implemen-
tations, the next() method yields not one new tuple, but
a vector – an array typically consisting of a few hundreds
of values. Consequently, the primitive functions, called by
the relational operators to perform computations, are tight
loops that perform very simple operations (e.g. addition) on
arrays of values, producing arrays of results. The benefits
are: (i) the compiler can use loop-pipelining, and (ii) func-
tion call cost (in general around 20 cycles) is only paid once
per vector.

This design allows primitive operations in Mon-
etDB/X100 to take between 3-10 cycles per value; where
in standard relational engines these take 50-100 cycles. It
was shown that in a read-only main-memory scenario, Mon-
etDB/X100 achieves impressive TPC-H scores [3]. Our
work on the new ColumnBM buffer manager and super-
scalar compression methods aims to remove both the “read-
only” and “main-memory” restrictions. In fact, the TPC-H
100GB experiments on a 4GB RAM system presented in
Section 4 already substantiate the latter claim: all queries
run CPU-bound and with high efficiency.

Our approach to super-scalar data (de)compression is
similar to that of our CPU-efficient arithmetic primitives,
namely to create vectorized compression and decompres-
sion algorithms, that follow these guidelines:

1. (small) arrays of values should be com-
pressed/decompressed in a tight loop.

2. if-then-else inside the loop should be avoided;

3. the loop iterations should be kept independent.

The computational complexity of generic compression
algorithms (e.g. LZW) makes it very challenging to adhere
to these guidelines, while the new algorithms we propose
are specifically designed to meet this challenge.

Work in MonetDB/X100 is ongoing to support efficient
updates using differential files [13]. The idea is to store
modifications in (in-memory) delta structures, and to treat
the tables on disk as “immutable” objects that are only up-
dated in a batched manner. During the scan, data from
disk and delta structures are merged, providing the execu-
tion layer with a consistent state. As depicted in Figure 1,
ColumnBM stores disk pages in compressed form and de-
compresses them just before execution on a per-vector gran-
ularity. Thus (de)compression is performed on the bound-
ary between CPU cache and main memory, rather than be-
tween main memory and disk, saving both cache misses and
allowing more data to be cached in RAM. This approach
nicely fits the delta-based update mechanism, as merging
the deltas can be applied after decompression, and chunks
(see 3.1.1) need to be re-compressed only periodically.
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Figure 2. Comparison of various compression algorithms on a subset of TPC-H columns.

3 Super-Scalar Compression

In this section we describe how insight in extracting
high IPC (Instructions Per Cycle) efficiency from super-
scalar CPUs led us to the design of PFOR, PFOR-DELTA
and PDICT. Figure 2 shows that state-of-the-art “fast” al-
gorithms such as LZRW1 or LZOP usually obtain 200-
500MB/s decompression throughput on our evaluation plat-
form (a 2.0GHz Opteron processor). However, we aim for
2-6GB/s.

Let us first motivate the need for such speed with the
following simple model (all bandwidths in GB/s):

B = I/O bandwidth
r = compression ratio

Q = query bandwidth
C = decompression bandwidth
R = result tuple bandwidth

Our goal with compression is to make queries that are I/O
bound (i.e. Q > B) faster:

R =

{
Br : Br

C + Br
Q ≤ 1 (I/O bound)

QC
Q+C : Br

C + Br
Q ≥ 1 (CPU bound)

(1)

Many datasets in e.g. data warehouses and information
retrieval systems can be compressed considerably [8, 7].
Section 4 shows that even the synthetic TPC-H dataset, with
its uniform distributions, allows for a good compression ra-
tio. With these ratios, we often have B < Q < Br, such that
the query becomes CPU bound using compression. Also,
modern RAID systems deliver B > 0.3GB/s, so with r = 4
one needs C = 1.2GB/s just to keep up with that. As we
desire to spend only a minority of CPU time on decompres-
sion, we need C = 2.4GB/s to keep overhead to 50% of CPU
time, and C = 6GB/s to get it down to 20%. These rules of
thumb motivate our design goal of C = 2−6GB/s.

We must point out that achieving such high decompres-
sion bandwidth is hard. If we assume the decoded values to
be 64-bit integers, e.g. C = 3GB/s means that 400M inte-
gers must be decoded per second, such that we can spend
at most five cycles per tuple on our 2.0GHz machine! This
motivates our interest in getting high IPC out of modern
CPUs.

3.1 PFOR, PFOR-DELTA and PDICT

All our compression methods classify input values as
either coded or exception values. Coded values are rep-
resented as small integers of arbitrary bit-width b, with
1 ≤ b ≤ 24. The bit-width used for code values is kept con-
stant within a disk block. Exception values are stored in
uncompressed form, thus they should be infrequent in order
to achieve a good compression ratio.

Our compression schemes are defined as follows:

PFOR Patched Frame-of-Reference: the small integers are
positive offsets from a base value. One (possibly nega-
tive) base value is used per disk block. Unlike standard
FOR, the base value is not necessarily the minimum
value in the block, as values below the base can be
stored as exceptions.

PFOR-DELTA PFOR on deltas: it encodes the differences
between subsequent values in the column. Decompres-
sion consists of PFOR-decompression, and then com-
puting the running sum on the result.

PDICT Patched Dictionary Compression. Integer codes
refer to a position in an array of values (the dictionary).
Not all values need to be in the dictionary; there can be
exceptions. A disk block can contain a new dictionary
but can also re-use the dictionary of a previous block.



The microbenchmarks presented throughout this section
all compress 64-bit data items into 8 bits codes, but we
implemented and tested our algorithms for all (applicable)
datatypes and bit-widths b. In general, we found that,
(de)compression bandwidth varies proportionally with the
compression ratio.

Datasets encountered in practice are often skewed, both
in terms of value distribution and frequency distribution.
However, the existing FOR and dictionary compression
cannot cope well with this. FOR compression needs
dlog2(max−min + 1)e bits, and is thus vulnerable to out-
liers if the data (i.e. value) distribution is skewed. In con-
trast, our new PFOR stores outliers as exceptions, such that
the [maxcoded ,mincoded ] range is strongly reduced. Simi-
larly, dictionary compression always needs dlog2(|D|)e bits,
even if the frequency distribution of the domain D is highly
skewed. In PDICT, however, infrequent values become ex-
ceptions, such that the size |Dcoded | of the frequent domain
is strongly reduced on skewed frequency distributions.

3.1.1 Disk Storage

The minimum physical granularity for data storage on disk
in ColumnBM is the chunk, which is a multiple of the
filesystem disk block size, chosen such that sequential
throughput on single-chunk requests approaches the disk
bandwidth (depending on the hardware, values tend to range
between 1MB and 8MB). Chunks contain one or more seg-
ments. In case of column-wise storage, a segment is iden-
tical to a chunk. In case of PAX [1], a chunk contains a
segment for each column, and all segments in the chunk
contain the same number of values, which implies that these
segments may have different byte-sizes (that sum to a num-
ber close to the chunk size).

Uncompressed fixed-width data types are stored in a seg-
ment as a simple array of values.1 Figure 3 shows the struc-
ture of a compressed segment that divides the segment in
four sections:

• a fixed-size header, that contains compression-method
specific info as well as the sizes and positions of the
other sections.

• the entry point section that allows for fine-grained tu-
ple access. For every 128 values, it contains an offset
to the next exception in the code section, and a corre-
sponding offset in the exception section.

• the code section is a forward-growing array with one
small integer code for each encoded value. This sec-
tion takes the majority of the space in the block.

1Variable-width data types such as strings are stored in two segments:
one byte-array that contains all values concatenated and a segment with
integer offsets to their start positions.
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Figure 3. Compressed Segment Layout (en-
coding the digits of π: 31415926535897932
using 3-bit PFOR compression).

• the exception section, growing backwards, stores non-
compressed values that could not be encoded into a
small integer code.

3.1.2 Decompression

A pre-processing step in decompression is bit-unpacking:
the transformation of b bits-wide code patterns in the disk
block into an array of machine-addressable integers (resp.
bit-packing is post-processing for compression). It is done
with highly optimized routines that are loop-unrolled to
handle 32 values each iteration. We found this (un)packing
to take up only a moderate fraction of our (de)compression
cost, so we omit these details in our code.

The naive way to implement any decompression scheme
that distinguishes between coded and exception values, is
to use a special code (MAXCODE) for exceptions, and continu-
ously test for it while decompressing:

/* NAIVE approach to decompression */
for(i=j=0; i<n; i++) {
if (code[i] < MAXCODE) {

output[i] = DECODE(code[i]);
} else {

output[i] = exception[--j]);
}

}

The above decompression kernel is applicable to both
PFOR and PDICT, though the way they encode/decode val-
ues differs. In our pseudo code, we abstract from these dif-
ferences using the following macros: (i) int ENCODE(ANY),
that transforms an input value into a small integer, and (ii)
ANY DECODE(int), that produces the encoded input value
given a small integer code.

The problem with the NAIVE approach is that it violates
our guideline to avoid if-then-else in the inner loop. This
hinders loop pipelining by the compiler, and also causes
branch mispredictions when the else-branch is taken (as-
suming exceptions are the less likely event). The lower-left
part of Figure 4 demonstrates most clearly on Pentium4 how
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lines) and branch miss rate (thin lines) as a
function of the exception rate.

NAIVE decompression throughput rapidly deteriorates as
the exception rate gets nearer to 50%. The cause are branch
mispredictions2 on the if-then-else test for an exception,
that becomes impossible to predict. In the graph on top, we
see that the IPC (Instructions Per Cycle) takes a nosedive
to 0.5 at that point, showing that branch mispredictions are
severely penalized by the 31 stage pipeline of Pentium4.

To avoid this problem, we propose the following alterna-
tive “patch” approach:

int Decompress<ANY>( int n, int b,
ANY *__restrict__ output,
void *__restrict__ input,
ANY *__restrict__ exception,
int *next_exception )

{
int next, code[n], cur = *next_exception;

UNPACK[b](code, input, n); /* bit-unpack the values */

/* LOOP1: decode regardless */
for(int i=0; i<n; i++) {

output[i] = DECODE(code[i]);
}
/* LOOP2: patch it up */
for(int i=1; cur < n; i++, cur = next) {

next = cur + code[cur] + 1;
output[cur] = exception[-i];

}
*next_exception = cur - n;
return i;

}

Different from the NAIVE method, decompression is
now split in two tight loops without any if-then-else state-
ments, that all can be loop-pipelined by a compiler.

Figure 3, depicting the integer sequence of π stored us-
ing 3-bit PFOR with mincoded = 0, shows that all exception
values (i.e. digits ≥ 8) use their code value to store an offset
to the next exception, forming a linked list.

2We collected IPC, cache misses, and branch misprediction statistics
using CPU event counters on all test platforms.

The first loop simply decodes all values, which will gen-
erate wrong values for the exceptions. The second loop then
patches up the incorrect values by walking the linked excep-
tion list and copying the exception values into the output
array. The idea of patching rather than escaping exception
values is central to our new algorithms, hence the “P” in
their name derives from it.

Following the linked list during patching violates our
guideline that one iteration should be independent of the
previous one. Iterating the list poses a data hazard to the
CPU, however, and not a control hazard, such that it is not
very expensive. Moreover, the second loop processes only
a small percentage of values, and the data it updates is in
the CPU cache. That makes its overhead easily amortized
by the performance improvement of the first loop.

The results in Figure 4 show, that the performance of
our patching algorithms decreases monotonically with in-
creasing exception rates. Contrary to the NAIVE approach,
decompression bandwidth degrades roughly proportionally
with the compression ratio, or the size of the compressed
data, as one would expect. The relatively flat IPC lines sug-
gest that the overhead of the data dependency in LOOP2 is
negligible with respect to the increase in memory traffic.

This does not hold for the NAIVE kernel, for which on
Pentium4 and Opteron we observe a clear increase in de-
compression bandwidth towards an exception rate of one.
This suggests that its performance is not determined by the
size of the compressed data, but by branch mispredictions in
the CPU, as both decompression bandwidth and IPC follow
the inverse of the bell-shaped branch misprediction curve.

On Itanium2, the branch mispredictions are avoided
thanks to branch predication explained in Section 2.2. As a
result, the performance of the NAIVE kernel closely tracks
that of PFOR and PDICT, as presented in the rightmost
graph in Figure 4. Overall, the patching schemes are clearly
to be preferred over the NAIVE approach, as they are faster
on all tested architectures.

3.1.3 Compression

Previous database compression work mainly focuses on de-
compression performance, and views compression as a one-
time investment that is amortized by repeated use of the
compressed data. This is caused by the low throughput
of compression, often an order of magnitude slower than
decompression (see Figure 2), such that compression band-
width is clearly lower than I/O write bandwidth. In contrast,
our super-scalar compression can be used to accelerate I/O
bound data materialization tasks. In OLAP and data min-
ing environments, such materialization happens quite fre-
quently for sorting, ad-hoc joins that require partitioning,
or (view) materialization of intermediate results that are re-
used by a subsequent query batch. Efficient compression is
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Figure 5. PFOR compression bandwidth as
a function of exception rate, using an
if-then-else (NAIVE), predication (PRED)
and double-cursor predication (DC).

also important for re-compression of data chunks occurring
in case of updates, as described in Section 2.3. Note that
I/O write bandwidth tends to be considerably lower than
read bandwidth. Therefore, the design goal of compression
throughput can be lower than for decompression, e.g. 1-
2GB/s. The bottom graphs in Figure 5 show that PFOR
compression meets this target on all our test platforms.

To achieve such high throughput, we again use the prin-
ciple of avoiding if-then-else in the inner loop. The first
loop uses a temporary array miss to make a list of exception
positions. The second loop constructs the linked patch list
and copies the exception values.

int Compress<ANY>( int n, int b,
ANY *__restrict__ input,
void *__restrict__ code,
ANY *__restrict__ exception,
int *lastpatch

) {
int miss[N], data[N], prev = *lastpatch;

/* LOOP1: find exceptions */
for(int i=0,j=0; i<n; i++) {

int val = ENCODE(input[i]);
data[i] = val;
miss[j] = i;
j += (val > MAXCODE);

}
/* LOOP2: create patchlist */
for(int i=0; i<j; i++) {

int cur = miss[i];
exception[-i] = input[cur];
data[prev] = (cur - prev) - 1;
prev = cur;

}
PACK[b](code, data, n); /* bit-pack the values */
*lastpatch = prev;
return j; /* #exceptions */

}

Appending a position to the miss list without
if-then-else uses a technique called predication [12]: the

current position is always copied to the end of the list, and
the list pointer is incremented with a boolean.

Predication transforms a control dependency into a data
dependency, which is more efficient. Still, the presence of a
data dependency on the variable j in the first, performance-
critical loop, violates our guideline that iterations should be
independent. Data dependencies cause delay slots in the
CPU pipeline. The left-upper graph of Figure 5 shows that
Pentium4 has an IPC of < 1. We can try to improve IPC
by offering it more independent work using a technique
called double-cursor. It runs two cursors through the to-be-
encoded values, one from the start, and one from halfway.
Two independent miss lists are used to detect exceptions,
processed one after the other in the sequel (omitted):

/* LOOP1a: find exceptions */
int m = n/2;
for(int i=0, j_0=0, j_m=0; i<m; i++) {

int val_0 = ENCODE(input[i+0]);
int val_m = ENCODE(input[i+m]);
code[i+0] = val_0;
code[i+m] = val_m;
miss_0[j_0] = i+0;
miss_m[j_m] = i+m;
j_0 += (val_0 > MAXCODE);
j_m += (val_m > MAXCODE);

}

Double-cursor is not the same as loop-unrolling, and
cannot be introduced automatically by the compiler.

Figure 5 shows that double-cursor significantly improves
the IPC and throughput of PFOR on Pentium4, while it
behaves the same as single-cursor PFOR on Opteron. On
Itanium, where single-cursor already achieved a very high
IPC (4), performance degrades somewhat. As the gains on
Pentium4, which is also the more prevalent, outweigh the
loses on Itanium, double-cursor can be considered the over-
all winner.

3.1.4 Fine-Grained Access

While we anticipate that most performance-intensive
queries will decompress all values in a compressed segment
sequentially, some queries may perform random value ac-
cesses. A random lookup in the buffer manager will likely
cause a CPU cache miss, so if decompression overhead
stays in the same ballpark as DRAM access (i.e. 150-400
CPU cycles per cache miss), we deem it efficient enough.

It is easy to randomly access the code section at any po-
sition x, but we should also know whether position x is an
exception and if so, where in the exception section the real
value is stored. For this purpose, the entry point section
keeps a pointer to the next exception, as well as its position
in the exception section, for each position that is an exact
multiple of 128. Each entry point, stored once every 128
values, is a combination of a 7-bits patch start list and
a 25-bits start exception, hence the storage overhead of
fine-grained access is 32/128 = 0.25 bits per value. Note
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Figure 6. How compulsory exceptions in-
crease the real exception rate E ′ for b ≤ 4.

that 25-bits exception codes limit our segments to a max-
imum of 32MB, which is more than sufficient for now to
obtain high sequential bandwidth on any RAID system. We
can obtain the value at position x in the block, as follows:

ANY finegrained_decompress(int x,
int*__restrict__ code,
ANY*__restrict__ exception,
entry_t*__restrict__ entry,

) {
int i = entry[x>>7].start_list + x & ˜127;
int j = entry[x>>7].start_exception;
while(i < x) {

i += code[i]; j--;
}
return (i == x) ? exception[j] : DECODE(code[x]);

}

This tight pipelinable loop that walks the linked list takes
8,9 and 11 cycles per iteration on respectively the Opteron,
Itanium2 and Pentium4 CPUs. Even in the worst realistic
case of 30% exceptions, it thus takes on average only a lim-
ited (< 128 ∗ 0.3/2 = 21) number of iterations on average,
such that random access decoding takes around 200 CPU
work cycles per value.

In case of PFOR-DELTA, we must also store the cur-
rent running total for each entry point. Sticking with 64-
bit integers, this induces an additional storage overhead of
0.75 bit per value. Also, fine-grained PFOR-DELTA ac-
cess requires decompressing a vector of 128 values (which
usually causes one cache miss in both the code and excep-
tion sections, bringing memory access cost to 300-800 cy-
cles). Since our decompression algorithms typically spend
between 3-6 cycles per value, uncompressing 128 values is
in the same order of cost.

3.1.5 Compulsory Exceptions

A complication of patching is that the compressed integer
codes only have a range from [0,2b-1]; hence the maximum
distance between elements in the linked list of exceptions is
2b. If gaps exceeding this distance occur, so-called compul-
sory exceptions must be introduced. A compulsory excep-
tion is a value that can be compressed but is represented as
an exception anyway, just in order to use its code value to
keep the exception list connected.
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Figure 7. RAM-RAM (thin) versus RAM- Cache
PFOR decompression (thick).

We do not always have to insert compulsory exceptions
if the gap is larger than 2b though. Each entry point starts a
new exception list, and these lists need not be connected to
each other. Thus, gaps between exceptions at the start and
end of each 128-value sequence never need compulsory ex-
ceptions. This effectively reduces the area in the code sec-
tion that must be “covered” by a linked exception list per
128 values by 1/E, where E is the exception rate caused by
the data distribution. From this, we can compute E ′, which
is the effective exception rate after taking into account com-
pulsory exceptions as E ′ = MAX(E, 128E−1

128E 2−b). Figure 6
shows that with bit-width b = 1 for miss rates E > 0.01,
the effective exception rate E ′ quickly increases to a rather
useless 0.47. With b = 2, it goes to an already more us-
able E ′ = 0.22, while for all bit-widths b > 4, the effect of
compulsory exceptions is negligible.

3.1.6 RAM-RAM vs. RAM-Cache Decompression

Figure 7 presents the results of a micro-benchmark con-
ducted to evaluate our choice for fine-grained, into-cache
decompression, as opposed to decompression on the granu-
larity of disk pages. Into-cache decompression is achieved
by decompressing a page on a per-vector basis, always stor-
ing the result in the same cache-resident result vector, over-
writing any previous results. In the page-wise approach, the
full, uncompressed page is materialized in RAM.

Results show that RAM-Cache decompression is much
more efficient than RAM-RAM decompression. Perfor-
mance of the former approach degrades with the excep-
tion rate, and thus the size of the compressed data. The
flat shape of the latter approach suggests that performance
is constrained by the need to materialize the uncompressed
result, which is always constant in size.

Another benefit of the RAM-Cache approach is that the
cache-resident result vector can be fed directly into an op-
erator pipeline. In the RAM-RAM approach, the uncom-
pressed page needs to be read back into the CPU, present-
ing an additional overhead which is not even incorporated



TPC-H compression Opteron 2GHz Pentium4 Xeon 3GHz 8 x P4 Xeon 2.8GHz
query ratio 4-disk RAID, 4GB RAM 12-disk RAID, 4GB RAM 142 disks, 16GB

DSM PAX dec.speed DSM PAX dec.speed DSM PAX IBM DB2
MB/sec unc. M ⇒C unc. M ⇒C MB/sec unc. M ⇒C M ⇒ M unc. M ⇒C UDB 8.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

03 3.04 1.66 2546 35.0 11.3 183.5 113.6 2306 8.9 6.0 7.1 45.5 27.0 15.1
04 8.15 1.82 3018 18.2 2.4 115.5 65.9 3709 4.8 1.8 2.3 30.2 16.5 12.5
05 3.81 2.24 2119 54.3 15.3 300.1 155.9 2421 17.2 16.2 16.7 81.2 36.7 84.0
06 4.39 2.25 2031 48.2 10.7 232.7 104.3 2200 10.8 4.6 6.1 51.0 22.5 17.1
07 1.71 2.01 1251 119.8 72.0 614.2 349.4 1457 34.4 40.8 48.3 158.0 76.5 86.5
11 2.14 1.08 3225 27.0 14.6 180.9 162.2 4084 18.8 18.5 19.4 38.8 35.6 19.5
14 1.91 1.94 2888 23.7 12.2 90.6 46.9 3688 5.8 4.9 5.4 22.1 11.5 10.9
15 2.70 2.13 2464 44.9 22.4 209.8 97.1 2584 30.3 31.2 31.3 49.6 40.0 21.6
18 3.56 2.75 3833 181.9 50.6 1379.7 704.9 4315 38.9 13.6 21.3 419.9 151.5 318.2
21 4.11 2.12 2520 197.6 46.6 1423.5 759.2 2600 43.2 24.2 32.1 338.0 157.6 374.9

Legend: unc. – uncompressed data, M ⇒C – memory-to-cache decompression, M ⇒ M – memory-to-memory decompression

Table 2. TPC-H SF-100 experiments on MonetDB/X100 (except DB2 results, taken from www.tpc.org)

in the RAM-RAM results from Figure 7.

3.1.7 Choosing Compression Schemes

The table materialization operator in MonetDB/X100
should automatically decide which compression method to
use for each disk chunk, and with what parameters. The
idea is to first gather a sample (e.g. s=64K values) and look
for the best settings for all applicable schemes. For numeric
data types (e.g. integers, decimals) all three schemes apply.
Otherwise, only PDICT is usable.3

When a column is being compressed, the compression
ratio can be easily monitored at the granularity of a disk
chunk. When it strongly deteriorates, we could re-run
the compression mode analysis to adapt the parameters
for the next chunk or even choose another compression
scheme. The complexity of choosing a compression mode
is O(s logs) to the size of the sample s, because it must be
sorted as a preprocessing step. We now discuss for each
method, how the optimal parameters are found using the
sorted sample.

In PFOR, we can determine in one pass through the
sorted sample where the longest stretch of values starts,
such that the difference between first and last is repre-
sentable in b bits.

PFOR_ANALYZE_BITS(int n, ANY *V, int b) {
int len=0, min=0, range=1<<b;

for(int lo=0, hi=0; hi<n; hi++)
if (V[hi]-V[lo] >= range) {
if (hi-lo > len) {

min = lo; len = hi-lo;
}
while(V[hi]-V[lo] >= range) lo++;

}
return (min,len+1);

}

3In the near future, we plan to add new super-scalar compression algo-
rithms targeted at floating point data and text.

We simply invoke this function for all relevant bit-widths
b and choose the setting that yields best compression, i.e.
1 ≤ b < 8∗sizeof(V) where b+EPFOR(b) ∗8∗sizeof(V)
is minimal. In this equation the exception rate EPFOR(b) =
s−lenb

s , where lenb is returned by the above function, when
invoked on the sample with parameter b.

The parameters for PFOR-DELTA are derived by run-
ning this same algorithm on the sorted differences of the
sample.

For PDICT, we use once again the sorted sample, to cre-
ate a (smaller) frequency histogram h, which we re-sort de-
scending on frequency. PDICT will encode the first (i.e.
largest) 2b buckets of this histogram such that the excep-
tion rate EPDICT (b) = 1 −∑

2b

i=1
h[i]
s . Again, by trying all

relevant settings of b, we can quickly determine the b that
yields the highest compression rate. The first 2b values from
the histogram are subsequently used to create a super-scalar
perfect hash function that is used during PDICT compres-
sion to compute the integer codes for values that must be
compressed. Discussion of the particular hashing technique
used is left out of scope here due to space limitations. In all,
it achieves PDICT compression bandwidth of > 1GB/s on
all our three test platforms.

4 TPC-H experiments

Table 2 shows the performance of our compression al-
gorithms in MonetDB/X100 running the TPC-H bench-
mark [15] with scale factor 100 on two different hard-
ware platforms. Low-end servers are represented by an
Opteron 2GHz machine with a 4-disk RAID system deliver-
ing around 80 GB/s. The example of a middle-end system is
a Pentium4 machine with 12-disk RAID delivering around
350GB/s. Both machines are dual CPU systems with 4GB
memory, but MonetDB/X100 currently uses only one CPU.



PFOR-DELTA carryover-12 shuff
comp comp dec comp comp dec comp comp dec
ratio MB/s MB/s ratio MB/s MB/s ratio MB/s MB/s

INEX 1.75 679 3053 2.12 49 524 2.45 3.5 82
TREC fbis 3.47 788 3911 4.26 98 740 5.11 190 164
TREC fr94 3.12 682 3196 3.49 84 689 4.65 149 154

TREC ft 3.13 761 3443 3.47 84 704 4.89 178 157
TREC latimes 2.99 742 3289 3.30 79 683 4.61 164 153

Table 3. PFOR-DELTA on Inverted Files.

We used the same data clustering and index structures
as in the previous in-memory MonetDB/X100 TPC-H SF-
100 experiments [3]. Only a subset of TPC-H queries is
presented, since the X100 execution layer currently misses
some of the features necessary to run the remaining ones in
a disk-based scenario.

While ColumnBM by default uses the DSM storage
model [6], we also present the results for PAX storage [1].
I/O-wise they are comparable to an NSM system running
DB2, for which the last column lists the official TPC-
H scores. This system uses eight Pentium4 Xeon CPUs
(2.8GHz), 16GB RAM and 142 SCSI disks. Thus, while the
CPU used is roughly equivalent to our middle-end server, it
has 4-12x more hardware resources across the board. We
urge not to draw any further conclusions from these num-
bers other than that the MonetDB/X100 results are in the
high-performance ballpark.

The TPC-H data was compressed using PFOR, PFOR-
DELTA and PDICT (enum) compression schemes. The
second and third columns of Table 2 show the compres-
sion ratios achieved per query. Note, that since “comment”
fields could not be compressed with our algorithms, the
PAX queries achieve significantly lower compression ratios.
Columns 4 and 9 show that in most cases we reach our de-
compression speed target of > 2 GB/s.

On the Opteron system, the speedup for most of the DSM
queries is in line with the compression ratio. As the left part
of Figure 8 shows, this is related to the fact that the low-end
disk system makes the queries I/O-bound even with com-
pression. The middle part of Figure 8 shows, that on the
Pentium4 system with a faster RAID the situation is differ-
ent with much higher CPU usage in the uncompressed case.
As a result, after increasing the perceived I/O bandwidth by
decompression, all the queries become CPU-bound, such
that the performance gain is less than the compression ra-
tio. With the PAX storage model and its increased I/O re-
quirements, the CPU processing impact is reduced again,
resulting in better speedups than in the DSM case.

We also implemented the possibility to perform full-page
decompression in ColumnBM. Column 12 of Table 2 shows
that such decompression from memory into memory is sig-
nificantly slower than the fine-grained decompression be-
tween RAM and the CPU Cache, presented in column 11.

The main reason for this is the high-cost of in-memory ma-
terialization of decompressed data. Another interesting fea-
ture of our fine-grained decompression can be observed in
Figure 8, where the processing in the compressed case is
slightly faster. This is caused by the fact that the main-
memory access is performed by the decompression rou-
tines, and the query execution layer reads the data directly
from the CPU cache.

5 Inverted File Compression

Compression of inverted files to improve I/O bandwidth
and sometimes latency (due to reduced seek distances on the
compressed file) is important for the performance of infor-
mation retrieval systems [20]. In this area, there is a trend to
use lightweight-compression schemes rather than the clas-
sical storage-optimal schemes [16, 2].

We evaluated the performance of PFOR-DELTA with
respect to both compression ratio and speed on inverted
file data derived from the INEX and TREC document col-
lections, and compared it with the implementation of the
recently proposed carryover-12 compression scheme [2],
which was designed for high decompression speeds. Fur-
thermore, performance was compared to that of a semi-
static Huffman coder, which is commonly used for inverted
file compression. Table 3 summarizes the results on our
3GHz Pentium 4 machine, and shows that PFOR-DELTA
improves decompression bandwidth of carryover-12 6.5
times, while only reducing the compression ratio by 15%.

To verify the need for such decompression speeds, we
measured the raw query bandwidth of a typical retrieval
query that looks up the top-N documents in which a given
term from the TREC fbis dataset occurs most frequently (a
merge-join of the postings table with the document offsets,
followed by ordered aggregation and heap-based top-N).
Within our MonetDB/X100 system, this query was able to
process a list of d-gaps at 580MB/s, which implies that even
on our 350MB/s RAID system it would remain I/O-bound.
Using equation 1 to compute the decompression bandwidth
C that achieves an equilibrium between CPU time spent on
query processing and decompression, yields 580×C

580+C = 350,
which leads to C = 883MB/s. Table 3 shows that decom-
pression bandwidths from shuff and even carryover-12 are
below this point, hence only make the query slower, while
PFOR-DELTA accelerates it from 350MB/s to 504MB/s.

6 Conclusions and future work

In this paper, we presented our work on using data com-
pression to scale the high performance of MonetDB/X100
engine to disk-based datasets. We proposed a new set of
super-scalar compression algorithms. Their “patching” ap-
proach allows these algorithms to handle outliers gracefully
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Figure 8. TPC-H SF-100 results, split in decompression time, other CPU time, and I/O time.

while still exploit the pipelined features of modern CPUs.
Additionally, we introduced the idea of decompressing be-
tween RAM and the CPU Cache, rather than the common
idea to apply it between I/O and RAM. Our results show
that this not only allows the buffer manager to store more
(compressed) data, but is also faster to (de)compress. As
a result, our algorithms provide decompression speeds in
the range of > 2GB/s. This is an order of magnitude faster
than conventional compression algorithms, making decom-
pression almost transparent to query execution. By using
these techniques in TPC-H, TREC and INEX datasets, we
managed to significantly reduce or completely eliminate the
I/O bottleneck.

In the future, we plan to extend the applicability of our
system by introducing additional compression algorithms
specialized for other data types and distributions. These
extensions will be driven by our intent to use the Mon-
etDB/X100 system to analyze huge repositories of multi-
media and scientific (e.g. astronomical) data.

Finally, we believe that with the upcoming families of
multi-core CPUs, the demand for high-performance data
delivery will rapidly increase. With this increasing (par-
allel) CPU processing power, highly data-intensive applica-
tions might suffer not only from disk but also from a main-
memory bandwidth bottleneck. Preliminary results show
that our high-performance decompression routines can al-
ready improve this bandwidth on parallel architectures.
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