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Abstract. In the dawn of the data intensive research era, scientific dis-
covery deploys data analysis techniques similar to those that drive busi-
ness intelligence. Similar to classical Extract, Transform and Load (ETL)
processes, data is loaded entirely from external data sources (reposito-
ries) into a scientific data warehouse before it can be analyzed. This
process is both, time and resource intensive and may not be entirely
necessary if only a subset of the data is of interest to a particular user.
To overcome this problem, we propose a novel technique to lower the
costs for data loading: Lazy ETL. Data is extracted and loaded transpar-
ently on-the-fly only for the required data items. Extensive experiments
demonstrate the significant reduction of the time from source data avail-
ability to query answer compared to state-of-the-art solutions. In addi-
tion to reducing the costs for bootstrapping a scientific data warehouse,
our approach also reduces the costs for loading new incoming data.

1 Introduction

Thirty years of database research knowledge is slowly finding its way into the
domain of science [7]. This trend is driven by the need to handle the large
amounts of data that are the result of increasingly automated acquisition of
scientific data. Especially life and earth sciences obtain more and more data ever
faster and faster. The capacity to sequence genomes, e.g., has been outpacing
Moore’s Law in the last years and is expected to continue to do so [24].

In addition to the increasing data volume, the character of science itself
changes. In the past, researchers used to form hypotheses and validate them
using experiments. Today they first run cheap, high throughput experiments
and mine the results for “interesting” knowledge. This became known as eScience
and culminated in the formulation of the fourth paradigm [7]. In its essence, this
process (see Figure 1) is similar to that which drives business intelligence.

It is, therefore, natural to consider the techniques that helped meet the re-
quirements of business intelligence to help scientists in their daily work. A sig-
nificant amount of research has been done on various aspects of eScience. This
covers problems of querying [18], mining [13] and visualization [19]. However, all
of these assume that the underlying data is readily available in the scientist’s
database. This is generally not the case.

Instead, input data is usually collected in domain-specific files and reposi-
tories (i.e., semi-structured collections of files). The need to physically load all
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Fig. 1. EScience Knowledge Management (taken from [7])

data into a data warehouse system before analysis forms a burden that domain
scientists are reluctant to accept. This burden is exacerbated by the fact that few
scientists have access to data integration specialists. In general, scientists have to
take care of their data management needs themselves. Thus, they abstain from
“superior solutions” that require significant data management knowledge. Our
objective is to provide eScientists with a data ingestion system that is easy to
use, extensible and scalable to many terabytes of data. To this end, we present
a query-driven, on-demand Extract, Transform & Load (ETL) system that min-
imizes the burden of data ingestion.

To achieve the necessary scalability, our approach limits the initial loading
to the metadata of the input files. The actual data is extracted, transformed
and loaded transparently at query time for the files containing the data that the
queries require. In addition to reducing the cost for bootstrapping a scientific
data warehouse for a new file repository, our approach also makes updating and
extending a warehouse with modified and additional files more efficient.

We implemented our novel Lazy ETL system in MonetDB [1], an open-source
column-store Database Management System (DBMS). To showcase our solu-
tion, we use typical analysis tasks on seismological sensor data that is available
in mSEED files and a file repository as data source, which is one of the kinds
of source datastores that ETL processes deal with [23]. Extensive experiments
demonstrate the significant reduction of the overall time from source data avail-
ability to query answer compared to state-of-the-art solutions that require the
ETL task to be completed for the entire data before running queries. Even though
we focus on a particular scientific use case, we believe that other cases, like clas-
sical business ETL, can benefit from a similar approach, as also mentioned by
Dayal et al. [5] and Haas et al. [6].

We organized the rest of this paper as follows: In Section 2 we describe the
state of the art in data ingestion and discuss its shortcomings with particular
focus on scientific data management. In Section 3 we present our architecture for
overcoming these shortcomings without losing the merits of traditional ETL. In
Section 4 we evaluate our solution in a scientific case, and we draw conclusions
in Section 5.

2 State of the Art in Data Ingestion

As explained, the data ingestion needs of eScientists are very similar to those
of business analysts. We, therefore, describe the state of the art of data inges-



Lazy ETL for Data-Intensive Research 3

tion in business data warehouses before we explore the transferability into the
eScience domain. EScientists load data from sensor data files much like business
warehouses load data from Online Transaction Processing (OLTP) systems.

The most popular setup to serve transactional and analytical applications
is the following [4]: a row oriented operational DBMS for the OLTP-load and
a Data Warehouse for the analytical needs. New data enters the operational
system as it occurs and is loaded into the Warehouse in intervals using an ETL
process [14]. This, however, has several drawbacks:

1. The data that has not been transferred to the OLAP-store yet, will not
appear in the aggregated results, which renders the OLAP-store constantly
out of date [17].

2. All data has to be held redundantly which increases the costs for hardware
acquisition and maintenance [14].

3. The update process has to be maintained and run periodically to keep the
OLAP-store reasonably up to date. Since this process can be complicated
the added costs in hardware and personnel can be high [14].

The costs may increase even further with the complexity of the management’s
requirements. A common requirement that is especially interesting is real time
reporting. Vendors support this through means of Active Warehousing.

2.1 Active Warehousing

To increase the efficiency of business operations it is often required to do ana-
lytics in a relatively short period of time (an hour or even minutes). This kind
of Operational Reporting [10] is a trend that has been recognized by vendors
[3]. They aim at supporting it by means of Active Warehousing : Shortening of
the update interval. This reduces the deviance of the aggregates from the real,
transactional data and therefore allows almost real time reporting. It does how-
ever chronically increase the load on both the transactional and the analytical
database. The transactional database has to handle additional extracts which
cannot, as is common in traditional warehousing, be scheduled in the down-
time of transactional operations but have to be executed concurrently to the
transactional load.

2.2 Lazy Aggregates

The update interval in Active Warehouses is shorter than in traditional ware-
houses but still a constant. The deviance between the real data is therefore
undetermined because it may be changed arbitrarily by a transaction unless
special restrictions are implemented. A possibility to limit this deviance is pro-
vided by a technique known as Lazy Aggregates [15]. The warehouse update is
not triggered after a given interval but when the deviance exceeds a predefined
threshold. This assumes that it is significantly faster to calculate the deviance
that is induced by a processed transaction than to run the update. Depending on
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the aggregation function calculating the deviance without calculating the value
can be costly or even impossible (e.g., for holistic functions). In that case this
approach fails to yield any benefit.

2.3 Scientific Data Ingestion

We are not the first to recognize the need for solutions that support scientific
data ingestion. In particular, the problem of loading data from external files
has received significant attention from the database community. The SQL/MED
standard (Management of External Data) [21] offers an extension to the SQL
standard that simplifies the integration of external files into a relational schema.
It allows the SQL-server to control referential integrity, authorization, and recov-
ery for data in external files. However, it still puts the burden of managing the
files on the user. Using the Oracle Database File System (DBFS) [16], files with
unstructured data are transparently accessible as BLOB-attributes of relational
tuples. But DBFS provides no structured view to external file contents. Similarly,
there are also well-established techniques like external tables in any major com-
mercial system. These provide us access to data in external sources as if it were
in a table in the data warehouse. However, external tables require every query
to access the entire data as opposed to Lazy ETL accessing only the data that
queries require. DBMS query processing over flat data files is proposed by Idreos
et al. [8]. They provide query-driven on-demand loading as we do. However, they
limit the format to those that map straightforward to relational tables, such as
CSV and tables in Flexible Image Transport System (FITS). Consequently they
cannot handle more complex file formats that are common in eScience applica-
tions like MiniSEED (mSEED) or Geo Tagged Image File Format (GeoTIFF).
These files contain complex schemas of different types of objects and even point-
ers that should be resolved to foreign key constraints when loading. The need
for symbiosis of databases and file systems for eScience is in the core of the Data
Vault concept presented in [11]. Our work can be seen as a further development
of the idea of just-in-time access to data of interest integrated with the query
processing.

Hence, none of the above provides an adequate solution to the data ingestion
problem in eScience. In the following we present our approach to the problem:
Lazy ETL. While targeted at scientific use cases, we believe that our solution is
generally applicable to ingestion problems that involve (repositories of) external
files.

3 Lazy ETL

Traditional ETL relies on proactively filling the data warehouse with data. How-
ever, a user may only need a subset of the available database. In the extreme
case, he might only want a fast answer to one ad-hoc query. Nevertheless, he
still has to wait for the lengthy eager loading of all the input data. To mitigate
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this problem, only the “interesting” part of the data could be loaded. However,
without knowledge of the workload it is unclear which subset of data is interest-
ing. Hence, traditional ETL processes load and pre-aggregate all data that can
possibly be queried into the data warehouse.

Breaking with the traditional paradigm, we consider ETL as part of the query
processing. This allows us to run ETL only when required and only for the data
that is required by a query. We call this approach Lazy ETL. To implement
Lazy ETL, we create a virtual warehouse that is filled with data on demand.
While executing queries, required data that is not yet present in the warehouse is
loaded. This does not only facilitate the initial loading, but also the refreshing of
the data warehouse contents. After the initial loading, refreshments are handled
inherently when the data warehouse is queried.

In the following we illustrate how to replace a traditional ETL process with
our lazy ETL scheme without loosing the benefits of the traditional approach.
We visit each step of the lazy ETL process to discuss the further details.

3.1 Lazy Extraction

Extraction is the process of making the input data available for subsequent
transformation and loading. Traditionally all data items that may be needed
during transformation are extracted from the input data sources. In the typical
ETL case with OLTP systems as data sources, structured queries may be used
to limit the extracted data. This is particularly useful for incremental updates
after the initial loading [22]. For flat file repositories, however, such optimization
opportunities are limited to whatever the respective file format library provides.
This intensifies the challenge of incremental updates and provides additional
opportunities for lazy extraction.

Metadata Without any knowledge about the input data files, all available files
have to be considered “relevant” for a given query. Fortunately, many scientific
file formats define the notion of metadata. Metadata is data that provides some
insight into the content of a file but is still cheap to acquire. In an eScience
scenario this covers data such as the time, the sampling rate or the position of
a sensor. The costs to acquire such metadata is usually many orders of magni-
tude lower than loading the actual data. Metadata may even be encoded in the
filename which would allow extraction without even opening the file. Therefore,
we consciously decided to load the metadata eagerly. This initial investment will
be amortized with the first query and provides the user with some overview of
what to expect in the actual data. Although the definition of metadata might
differ with file format, use case and system performance, in most of the cases it
is relatively straightforward to decide which data to load eagerly. If no metadata
is available for a given data source it may prove beneficial to manually define it.

Actual Data We call all data that is not metadata actual data. In the eScience
domain actual data items usually describe individual data points and come with,
e.g., a timestamp and one or many measured values. In practice, we expect the
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majority of the data items to be actual data. Actual data is, therefore, subject
to lazy ETL. Although this query-driven on-demand extraction might cause
overhead in source datastores, it is still only for a smaller set of data required
for a query on the contrary to the eager incremental updates.

To select the files to load, the selection predicates on the metadata are ap-
plied. Once this part of the plan is executed, a rewriting operator is executed.
This operator uses plan introspection and modification that are provided by the
MonetDB system to replace all references to relational tables with operators that
load the necessary files. This allows us to seamlessly integrate lazy extraction
with query evaluation.

3.2 Lazy Transformation

An ETL process might contain transformations for different tasks, such as piv-
oting, one-to-many mappings, schema-level transformations etc. [22] [23]. Most
of these transformations (e.g., projections, joins, etc.) can be provided by a rela-
tional query processor. It is therefore common practice to express these transfor-
mations in SQL. Transformations that use richer data mining can be potentially
handled by user defined functions. This makes our approach similar to industrial
common practice ELT (Extract, Load & Transform), but ELT does not have the
laziness concept.

In our approach we implement all necessary transformations as relational
views on the extracted data. This happens transparent to the user and has a
number of benefits:

– It naturally supports lazy processing of the transformations because view def-
initions are simply expanded into the query. Only the minimal amount of
needed data items from the sources are transformed.

– It allows the transformations to benefit from query optimization. These may
even be based on information that is not known at “eager” load time (e.g.,
data distribution or selectivities).

– It provides an inherent means of data provenance since the transformations
are still visible at query time.

3.3 Lazy Loading

Loading in ETL is the storing of the extracted and transformed data into the
internal data structures of the data warehouse. This is largely done for perfor-
mance reasons and is, thus, treated as an optimization in our system. From a
query processing point of view, materialization of the transformed data is simply
caching the result of the view definition. Our target system, MonetDB, already
supports such caching in the form of intermediate result recycling [12].

Whilst not part of our current system, we consider integration of lazy ETL
with intermediate result recycling a promising optimization and part of future
work. This will make lazy ETL even lazier. Note that caching comes with the
challenge of keeping the cache up to date.
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4 Evaluation

To evaluate our approach, we have chosen seismology as the scientific domain
for our use case. Our choice is mainly driven by a tight cooperation with project
partners, seismologists from the Royal Dutch Meteorological Institute (KMNI).
We strongly believe that other scientific domains have similar use cases, and that
our techniques and result can thus be generalized to other science fields.

4.1 Data Source

Seismology is a scientific domain where huge amounts of data is generated with
ever lasting movements of the Earth’s surface. In seismology, the Standard for
the Exchange of Earthquake Data (SEED)[2] is the most widely used standard
file format to exchange waveform data among seismograph networks (e.g., trans-
ferring data from a station processor to a data collection center). A SEED volume
has several ASCII control headers and highly compressed data records, i.e., the
waveform time series. The control headers keep the metadata, which consists
of identification and configuration information about the data records (i.e., ac-
tual data). In our experiments we use mSEED files, which contain less metadata.
mSEED files are kept in large remote file repositories with direct FTP access [20].

4.2 Data Warehouse Schema

The normalized data warehouse schema for our use case is derived straightfor-
wardly from the mSEED file format. An mSEED file contains multiple mSEED
records (about 35 records per mSEED file on average in our data collection). An
mSEED record contains the sensor readings over a consecutive time interval, i.e.,
a timeseries of about 3500 values on average in our data collection. Consequently,
the normalized data warehouse schema — as given in Listing 1 — consists of
three tables and one view. Tables files and catalog hold the metadata per
mSEED file and mSEED record, respectively, while table data stores the actual
sensor data. Each mSEED file is identified by its URI (file location), and
contains the metadata describing the sensor that collected the data (network,
station, location, channel) as well as some technical data characteristics
(dataquality, encoding, byte order). Each record is identified by its (record)
sequence number (unique per file), and holds metadata such as start time, sam-
pling rate (frequency), and number of data samples (sample count). The data
table stores the timeseries data as (timestamp, value) pairs. For user conve-
nience, we define a (non-materialized) view dataview that joins all three tables
into a (de-normalized) “universal table”.

4.3 Sample Workload

Our sample workload consists of the eight queries presented in Listing 2 that
reflect characteristic data analysis tasks as regularly performed by seismologists
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Listing 1. Data Warehouse Schema

CREATE SCHEMA mseed;

CREATE TABLE mseed.files (
file_location STRING , dataquality CHAR(1),
network VARCHAR (10), station VARCHAR (10),
location VARCHAR (10), channel VARCHAR (10),
encoding TINYINT , byte_order BOOLEAN ,
CONSTRAINT files_pkey_file_loc PRIMARY KEY (file_location)

);

CREATE TABLE mseed.catalog (
file_location STRING , seq_no INTEGER ,
record_length INTEGER , start_time TIMESTAMP ,
frequency DOUBLE , sample_count BIGINT ,
sample_type CHAR(1),
CONSTRAINT catalog_file_loc_seq_no_pkey PRIMARY KEY (file_location , seq_no),
CONSTRAINT cat_fkey_files_file_loc

FOREIGN KEY (file_location)
REFERENCES mseed.files(file_location)

);

CREATE TABLE mseed.data (
file_location STRING , seq_no INTEGER ,
sample_time TIMESTAMP , sample_value INTEGER ,
CONSTRAINT data_fkey_files_file_loc

FOREIGN KEY (file_location)
REFERENCES mseed.files(file_location),

CONSTRAINT data_fkey_catalog_file_loc_seq_no
FOREIGN KEY (file_location , seq_no)

REFERENCES mseed.catalog(file_location , seq_no)
);

CREATE VIEW mseed.dataview AS
SELECT

f.file_location , dataquality , network , station , location , channel , encoding ,
byte_order , c.seq_no , record_length , start_time , frequency , sample_count ,
sample_type , sample_time , sample_value

FROM mseed.files AS f
JOIN mseed.catalog AS c

ON f.file_location = c.file_location
JOIN mseed.data AS d

ON c.file_location = d.file_location AND c.seq_no = d.seq_no;

while hunting for “interesting seismic events”. Such tasks range from finding
extreme values over Short Term Averaging (STA, typically over an interval of
2 seconds) and Long Term Averaging (LTA, typically over an interval of 15
seconds) to retrieving the data of an entire record for visualization and visual
analysis. Query 1 finds the maximum values (amplitudes) for a given channel
(BHN) per station in the Netherlands (NL) during the first week of June 2010.
Queries 2 and 3 compute the short term average over the data generated at
Kandilli Observatory in Istanbul (ISK) via a specific channel (BHE). The differ-
ence between Query 2 and 3 is that Query 3 has an additional range predicate
on the start time of the records that is semantically redundant, but might help
the query optimizer to pre-filter on the (small) catalog table before evaluat-
ing the predicate on sample time on the (huge) data table. Query 4 computes
the long term average over the data from the same station as Queries 2 and 3,
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Listing 2. Sample Queries

-- Query 1
SELECT station , MAX(sample_value)
FROM mseed.dataview
WHERE network = ’NL’

AND channel = ’BHN’
AND start_time > ’2010 -06 -01 T00 :00:00.000 ’
AND start_time < ’2010 -06 -07 T23 :59:59.999 ’

GROUP BY station;

-- Query 2
SELECT AVG(sample_value)
FROM mseed.dataview
WHERE station = ’ISK’

AND channel = ’BHE’
AND sample_time > ’2010 -01 -12 T22 :15:00.000 ’
AND sample_time < ’2010 -01 -12 T22 :15:02.000 ’;

-- Query 3
SELECT AVG(sample_value)
FROM mseed.dataview
WHERE station = ’ISK’

AND channel = ’BHE’
AND start_time > ’2010 -01 -12 T00 :00:00.000 ’
AND start_time < ’2010 -01 -12 T23 :59:59.999 ’
AND sample_time > ’2010 -01 -12 T22 :15:00.000 ’
AND sample_time < ’2010 -01 -12 T22 :15:02.000 ’;

-- Query 4
SELECT channel , AVG(sample_value)
FROM mseed.dataview
WHERE station = ’ISK’

AND sample_time > ’2010 -01 -12 T22 :15:00.000 ’
AND sample_time < ’2010 -01 -12 T22 :15:15.000 ’

GROUP BY channel;

-- Query 5
SELECT channel , sample_time , sample_value
FROM mseed.dataview
WHERE station = ’ISK’

AND sample_time > ’2010 -01 -12 T22 :15:00.000 ’
AND sample_time < ’2010 -01 -12 T22 :18:00.000 ’;

-- Query 6
SELECT station , MIN(sample_value), MAX(sample_value)
FROM mseed.dataview
WHERE network = ’NL’

AND channel = ’BHZ’
GROUP BY station;

-- Query 7
SELECT sample_time , sample_value
FROM mseed.dataview
WHERE seq_no = 1

AND file_location =
’/.../ knmi/ORFEUS /2010/152/ NL_HGN_02_LHZ .2010.152.16.47.34. mseed’;

-- Query 8
SELECT sample_time , sample_value
FROM mseed.dataview
WHERE seq_no = 1

AND file_location =
’/.../ knmi/ORFEUS /2010/158/ NL_OPLO_04_BHN .2010.158.09.26.51. mseed’;
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but now over all available channels. Query 5 retrieves a piece of waveform at
a given location, e.g., to visualize the data around a seismic event detected via
Queries 2, 3, 4. Query 6 is similar to Query 1, but calculates both minimum and
maximum for a given channel (BHN) per station in the Netherlands (NL) without
restricting the time period. Queries 7 and 8 retrieve the time series data of an
entire record from a given file, e.g., for visualization, or further analysis by an
external program. The difference between Query 7 and 8 is that Query 8 asks
for a file that does not exist, i.e., yields an empty result.

4.4 Experimental Setup

Our experimentation platform consists of a desktop computer equipped with a
3.4 GHz quad-core Intel Core i7-2600 CPU (hyper-threading enabled), 8 MB on-
die L3 cache, 16 GB RAM, and a 1 TB 7200 rpm hard disk. The machine runs a
64-bit Fedora 16 operating system (Linux kernel 3.3.2).

A copy of the ORPHEUS mSEED file repository is stored on a local server
and accessible via NFS. The extraction of (meta)data from mSEED files is real-
ized with the libmseed library [9].

We use MonetDB [1] as data warehouse, and extended it with our Lazy ETL
techniques.

records per table size
files catalog data mSEED CSV MonetDB +keys Lazy

5,000 175,765 660,259,608 1.3 GB 74 GB 13 GB 9 GB 10 MB
10,000 359,735 1,323,307,090 2.7 GB 148 GB 26 GB 18 GB 20 MB
20,000 715,738 2,629,496,058 5.5 GB 293 GB 50 GB 38 GB 36 MB

Table 1. Datasets and their sizes

We create 3 different datasets of increasing size by randomly selecting, re-
spectively, 5000, 10000, and 20000 files of the 161329 files from year 2010. Table 1
lists some characteristics of the 3 datasets used. (The whole ORPHEUS reposi-
tory holds more than 3.5 million files collected since 1988.)

We compare the following 3 different ETL approaches.

EagerExt refers to the traditional variant where an external stand-alone pro-
gram reads the mSEED files and extracts the data. The transformation step
involves solving a few schema- and value-level problems, since an mSEED
file has somewhat different representations of the same data (e.g., not nor-
malized). Then the program writes 3 CSV files, one for each table of our data
warehouse schema. These files are then bulk-loaded into the data warehouse
(using the COPY INTO SQL statement of MonetDB).

EagerSvr moves the functionality to read mSEED files into the DBMS server.
We extended MonetDB with the required functionality to read mSEED files
and extract their data into the tables of our data warehouse schema. Like
EagerExt, EagerSvr still eagerly reads and loads the data from all given
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mSEED files before querying can begin. However, it does not require to
serialize the data into a CSV file and parse that again. Rather, the data
from the mSEED files is directly loaded into the database tables inside the
DBMS server.

Lazy refers to our new approach as presented in Section 3. Initially, the database
server only extracts the metadata from all given mSEED files and loads it
into tables files and catalog. Only during query evaluation the actual time
series data is extracted and loaded at the granularity of an individual file
into a temporary data table and required records are taken. For now, to keep
the storage footprint of the database server at a minimum, the loaded data
is discarded as soon and the query has been evaluated. While caching loaded
data might avoid repeated loading of the same files, the chosen approach
inherently ensures up-to-date data even if the original files are updated. A
detailed study when and how to cache and update loaded data goes beyond
the scope of this paper and is left for future work.

In order to analyze the costs and benefits of creating and using primary
and foreign key constraints, we consider two variations of both EagerExt and
EagerSvr. The first variant — EagerExt- / EagerSvr- — omits the primary and
foreign key constraints, while the second variant — EagerExt+ / EagerSvr+ —
creates the respective indexes after data loading, but before querying starts. The
rationale is that creating primary and foreign key indexes, in particular for the
foreign keys from data into both catalog and files, increases the data loading
costs and storage requirements, but can speed up query processing. For Lazy,
we do not build any indexes.

With the rather small files and catalog tables, primary and foreign key
indexes do not show any significant performance advantage during query eval-
uation. For the data table, the foreign key indexes could only be built during
query evaluation after the data is loaded on-the-fly. However, since creating a
foreign key index basically means calculating the foreign key join, this does not
yield any benefit.

4.5 Loading

Table 1 lists the characteristics of our three datasets as well as the size of the
original mSEED files, the CSV files generated by EagerExt, the size after loading
into MonetDB without primary and foreign key indexes, the additional storage
required for the primary and foreign key indexes, and the size of the loaded
metadata only in the Lazy case. Due to decompression, serialization into a tex-
tual representation and explicit materialization of timestamps, the CSV files are
much larger than the mSEED files.

An interesting point is that our lazy ETL approach is more space-efficient
than eager approaches. The total amount of data stored in the data sources and
the data warehouse is significantly less for the lazy case than for the eager cases.

Figure 2 breaks down the data ingestion costs into (a) extracting data from
mSEED files to CSV files, (b) bulk loading data from CSV files into the DBMS
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(both for EagerExt), (c) loading the data directly from mSEED files into the
DBMS (EagerSvr), and (d) creating primary and foreign key indexes. Addition-
ally, Figure 2 shows the cumulative time for running all 8 workload queries both
“cold” (right after restarting the server with all buffers flushed) and “hot” (with
all buffers pre-loaded by running the same query multiple times after another).

The results confirm that although Lazy extracts metadata from all provided
mSEED files, extracting only the metadata is orders of magnitude faster than
extracting and loading all data. Also, EagerSvr is significantly faster than Ea-
gerExt, mainly due to avoiding expensive serialization to and parsing from a
textual (CSV) representation. Finally, creating primary and foreign key indexes
more than doubles the data ingestion times for the Eager variants. The bene-
fit of exploiting these indexes during query processing is visible. However, the
difference is rather small, such that the investment pays off only after many
queries.

4.6 Querying

Figures 3 through 5 show the individual times for all 8 queries as well as their
cumulative execution time (“all”) for the various cases discussed above. To ac-
commodate widely spread execution times, we use a logarithmic scale for the
y-axis. We see that for cold runs, Lazy consistently outperforms both Eager
variants. With hot runs, Lazy falls slightly behind Eager in some cases due to
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lazy ETL’s on-the-fly reading of mSEED data files during execution as explained
in section 3.

In Lazy, Query 3 is executed faster than Query 2 in all three datasets. This
shows us that query performance of lazy ETL increases as the number of selec-
tions in the query increase, narrowing down the query. The execution times stay
almost the same for eager variants, though. This is because an extra selection is
introduced on the catalog table, although the size of result gets smaller. This
also demonstrates that query performance of the lazy ETL process is dependent
on how much actual data is required for the query answer. Intuitively, for the file
repository case, it can range from loading no file at all (as for Query 8) to loading
all the files in the worst case, where then the performance becomes similar to
the initial loading of EagerSvr.

If we compare the total query times of 5000, 10000 and 20000 files, we see
that query times in the eager case benefit from the indices less towards larger
number of files. This is because the size of the indices is getting increasingly larger
than the available main memory, which makes disk IO overhead increasingly
dominant.

Running queries hot shows only a slight improvement in the performance for
20000 files, whereas it makes Eager approaches outperform the Lazy approach
for 10000 files and even more for 5000 files. This is heavily due to the following
reason. With the increase in dataset size, there is a significantly increased amount
of data to deal with. Similarly, the lazy ETL process has to load more and more
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files and ends up with more data in the data warehouse, but still small enough to
handle conveniently. This shows that lazy ETL is less vulnerable to performance
problems due to dataset sizes and can more easily scale to larger data sizes than
eager ETL.

4.7 Discussion

We demonstrated the significant decrease in the time from source data avail-
ability to first query answer provided by the lazy ETL. Eager ETL can lead to
better query performance after spending enough effort on initial loading. How-
ever, this results in data redundancy. Our approach also provides fresh actual
data, although metadata might become stale. Typical ETL techniques (i.e., pe-
riodic and incremental ETL processes) can be employed in this case for the
relatively small metadata only. Moreover, since we do not actually populate the
data warehouse, the amount of data to deal with for query execution in the data
warehouse tends to be relatively small. Furthermore, in the resumption problem
of ETL, if an eager ETL process fails, this affects the overall system performance.
On the other hand, if a lazy ETL process fails, only the query that triggered it
is affected.

5 Conclusion

Scientific domains can benefit from techniques developed for business ETL. We
proposed in this paper that the reverse is also correct. To make it possible, we
presented lazy ETL processes that integrate ETL with query processing of data
warehouses. Instead of actually populating the data warehouse, we temporarily
made actual data queried accessible to it. This saved us from the burden of prop-
agating updates for most of the data into the data warehouse, which has received
a lot of research effort from the ETL community. We believe this contributes to
the ETL research, at least in the case where the data sources are files.
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