
Foundations and Trends R• in Databases
Vol. 5, No. 3 (2012) 197–280
c• 2013 D. Abadi, P. Boncz, S. Harizopoulos,

S. Idreos and S. Madden
DOI: 10.1561/1900000024

The Design and Implementation of Modern
Column-Oriented Database Systems

Daniel Abadi
Yale University
dna@cs.yale.edu

Peter Boncz
CWI

P.Boncz@cwi.nl

Stavros Harizopoulos
Amiato, Inc.

stavros@amiato.com

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

Samuel Madden
MIT CSAIL

madden@csail.mit.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301631010?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 198

2 History, trends, and performance tradeo�s 207
2.1 History . 207
2.2 Technology and Application Trends 209
2.3 Fundamental Performance Tradeo�s 213

3 Column-store Architectures 216
3.1 C-Store . 216
3.2 MonetDB and VectorWise 219
3.3 Other Implementations 223

4 Column-store internals and advanced techniques 227
4.1 Vectorized Processing . 227
4.2 Compression . 232
4.3 Operating Directly on Compressed Data 238
4.4 Late Materialization . 240
4.5 Joins . 248
4.6 Group-by, Aggregation and Arithmetic Operations 254
4.7 Inserts/updates/deletes 255
4.8 Indexing, Adaptive Indexing and Database Cracking 257
4.9 Summary and Design Principles Taxonomy 263

ii

iii

5 Discussion, Conclusions, and Future Directions 266
5.1 Comparing MonetDB/VectorWise/C-Store 266
5.2 Simulating Column/Row Stores 267
5.3 Conclusions . 269

References 271

Abstract

In this article, we survey recent research on column-oriented database
systems, or column-stores, where each attribute of a table is stored in
a separate file or region on storage. Such databases have seen a resur-
gence in recent years with a rise in interest in analytic queries that
perform scans and aggregates over large portions of a few columns of a
table. The main advantage of a column-store is that it can access just
the columns needed to answer such queries. We specifically focus on
three influential research prototypes, MonetDB [46], VectorWise [18],
and C-Store [88]. These systems have formed the basis for several well-
known commercial column-store implementations. We describe their
similarities and di�erences and discuss their specific architectural fea-
tures for compression, late materialization, join processing, vectoriza-
tion and adaptive indexing (database cracking).

D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos and S. Madden. The Design and
Implementation of Modern Column-Oriented Database Systems. Foundations and
Trends R• in Databases, vol. 5, no. 3, pp. 197–280, 2012.
DOI: 10.1561/1900000024.

1
Introduction

Database system performance is directly related to the e�ciency of the
system at storing data on primary storage (e.g., disk) and moving it
into CPU registers for processing. For this reason, there is a long his-
tory in the database community of research exploring physical storage
alternatives, including sophisticated indexing, materialized views, and
vertical and horizontal partitioning.

Column-stores. In recent years, there has been renewed interest in
so-called column-oriented systems, sometimes also called column-stores.
Early influential e�orts include the academic systems MonetDB [46],
VectorWise [18]1 and C-Store [88] as well as the commercial system
SybaseIQ [66]. VectorWise and C-Store evolved into the commercial
systems Ingres VectorWise [99] and Vertica [60], respectively, while
by late 2013 all major vendors have followed this trend and shipped
column-store implementations in their database system o�erings, high-
lighting the significance of this new technology, e.g., IBM [11], Microsoft
[63], SAP [26] and Oracle.

Column-store systems completely vertically partition a database
into a collection of individual columns that are stored separately. By

1Initially named MonetDB/X100.

198

199

1
2
3
4
5
6
7
8
9

10

saleid prodid date region

...

Sales

1
2
3
4
5
6
7
8
9

10

saleid prodid date region

...

Sales

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

saleid prodid date region

...

Sales

(a) Column Store with Virtual Ids (b) Column Store with Explicit Ids (c) Row Store

Figure 1.1: Physical layout of column-oriented vs row-oriented databases.

storing each column separately on disk, these column-based systems
enable queries to read just the attributes they need, rather than hav-
ing to read entire rows from disk and discard unneeded attributes once
they are in memory. A similar benefit is true while transferring data
from main memory to CPU registers, improving the overall utiliza-
tion of the available I/O and memory bandwidth. Overall, taking the
column-oriented approach to the extreme allows for numerous innova-
tions in terms of database architectures. In this paper, we discuss mod-
ern column-stores, their architecture and evolution as well the benefits
they can bring in data analytics.

Data Layout and Access Patterns. Figure 1.1 illustrates the
basic di�erences in the physical layout of column-stores compared to
traditional row-oriented databases (also referred to as row-stores): it
depicts three alternative ways to store a sales table which contains sev-
eral attributes. In the two column-oriented approaches (Figure 1.1(a)
and Figure 1.1(b)), each column is stored independently as a separate
data object. Since data is typically read from storage and written in
storage in blocks, a column-oriented approach means that each block
which holds data for the sales table holds data for one of the columns
only. In this case, a query that computes, for example, the number
of sales of a particular product in July would only need to access the
prodid and date columns, and only the data blocks corresponding to
these columns would need to be read from storage (we will explain
the di�erences between Figure 1.1(a) and Figure 1.1(b) in a moment).
On the hand, in the row-oriented approach (Figure 1.1(c)), there is
just a single data object containing all of the data, i.e., each block

200 Introduction

in storage, which holds data for the sales table, contains data from
all columns of the table. In this way, there is no way to read just
the particular attributes needed for a particular query without also
transferring the surrounding attributes. Therefore, for this query, the
row-oriented approach will be forced to read in significantly more data,
as both the needed attributes and the surrounding attributes stored in
the same blocks need to be read. Since data transfer costs from storage
(or through a storage hierarchy) are often the major performance bot-
tlenecks in database systems, while at the same time database schemas
are becoming more and more complex with fat tables with hundreds
of attributes being common, a column-store is likely to be much more
e�cient at executing queries, as the one in our example, that touch
only a subset of a table’s attributes.

Tradeo�s. There are several interesting tradeo�s depending on the
access patters in the workload that dictate whether a column-oriented
or a row-oriented physical layout is a better fit. If data is stored on
magnetic disk, then if a query needs to access only a single record (i.e.,
all or some of the attributes of a single row of a table), a column-store
will have to seek several times (to all columns/files of the table refer-
enced in the query) to read just this single record. However, if a query
needs to access many records, then large swaths of entire columns can
be read, amortizing the seeks to the di�erent columns. In a conven-
tional row-store, in contrast, if a query needs to access a single record,
only one seek is needed as the whole record is stored contiguously, and
the overhead of reading all the attributes of the record (rather than
just the relevant attributes requested by the current query) will be
negligible relative to the seek time. However, as more and more records
are accessed, the transfer time begins to dominate the seek time, and a
column-oriented approach begins to perform better than a row-oriented
approach. For this reason, column-stores are typically used in analytic
applications, with queries that scan a large fraction of individual tables
and compute aggregates or other statistics over them.

Column-store Architectures. Although recent column-store
systems employ concepts that are at a high level similar to those in
early research proposals for vertical partitioning [12, 22, 55, 65], they

201

include many architectural features beyond those in early work on
vertical partitioning, and are designed to maximize the performance
on analytic workloads on modern architectures. The goal of this article
is to survey these recent research results, architectural trends, and
optimizations. Specific ideas we focus on include:

• Virtual IDs [46]. The simplest way to represent a column in
a column-store involves associating a tuple identifier (e.g., a nu-
meric primary key) with every column. Explicitly representing
this key bloats the size of data on disk, and reduces I/O e�-
ciency. Instead, modern column-stores avoid storing this ID col-
umn by using the position (o�set) of the tuple in the column as
a virtual identifier (see Figure 1.1(a) vs Figure 1.1(b)). In some
column-stores, each attribute is stored as a fixed-width dense ar-
ray and each record is stored in the same (array) position across
all columns of a table. In addition, relying on fixed-width columns
greatly simplifies locating a record based on its o�set; for ex-
ample accessing the i-th value in column A simply requires to
access the value at the location startOf(A) + i ú width(A). No
further bookkeeping or indirections are needed. However, as we
will discuss later on and in detail in Section 4, a major advan-
tage of column-stores relative to row-stores is improved compres-
sion ratio, and many compression algorithms compress data in a
non-fixed-length way, such that data cannot simply be stored in
an array. Some column-stores are willing to give up a little on
compression ratio in order to get fixed-width values, while other
column-stores exploit non-fixed width compression algorithms.

• Block-oriented and vectorized processing [18, 2]. By pass-
ing cache-line sized blocks of tuples between operators, and op-
erating on multiple values at a time, rather than using a con-
ventional tuple-at-a-time iterator, column-stores can achieve sub-
stantially better cache utilization and CPU e�ciency. The use of
vectorized CPU instructions for selections, expressions, and other
types of arithmetic on these blocks of values can further improve

202 Introduction

throughput.

• Late materialization [3, 50]. Late materialization or late tu-
ple reconstruction refers to delaying the joining of columns into
wider tuples. In fact, for some queries, column-stores can com-
pletely avoid joining columns together into tuples. In this way,
late materialization means that column-stores not only store data
one column-at-a-time, they also process data in a columnar for-
mat. For example, a select operator scans a single column at a
time with a tight for-loop, resulting in cache and CPU friendly
patterns (as opposed to first constructing tuples containing all
attributes that will be needed by the current query and feeding
them to a traditional row-store select operator which needs to ac-
cess only one of these attributes). In this way, late materialization
dramatically improves memory bandwidth e�ciency.

• Column-specific compression [100, 2]. By compressing each
column using a compression method that is most e�ective for
it, substantial reductions in the total size of data on disk can
be achieved. By storing data from the same attribute (column)
together, column-stores can obtain good compression ratios using
simple compression schemes.

• Direct operation on compressed data [3]. Many modern
column-stores delay decompressing data until it is absolutely nec-
essary, ideally until results need to be presented to the user. Work-
ing over compressed data heavily improves utilization of memory
bandwidth which is one of the major bottlenecks. Late material-
ization allows columns to be kept in a compressed representation
in memory, whereas creating wider tuples generally requires de-
compressing them first.

• E�cient join implementations [67, 2]. Because columns are
stored separately, join strategies similar to classic semi-joins [13]
are possible. For specific types of joins, these can be much more
e�cient than traditional hash or merge joins used in OLAP set-
tings.

203

• Redundant representation of individual columns in dif-
ferent sort orders [88]. Columns that are sorted according to
a particular attribute can be filtered much more quickly on that
attribute. By storing several copies of each column sorted by at-
tributes heavily used in an application’s query workload, substan-
tial performance gains can be achieved. C-Store calls groups of
columns sorted on a particular attribute projections. Virtual IDs
are on a per-projection basis. Additionally, low-cardinality data
that is stored in sorted order can be aggressively compressed.

• Database cracking and adaptive indexing [44]. Database
cracking avoids sorting columns up-front. Instead, a column-
store with cracking can adaptively and incrementally sort (in-
dex) columns as a side-e�ect of query processing. No workload
knowledge or idle time to invest in indexing is required. Each
query partially reorganizes the columns it touches to allow fu-
ture queries to access data faster. Fixed-width columns allow for
e�cient physical reorganization, while vector processing means
that we can reorganize whole blocks of columns e�ciently in one
go, making adaptive indexing a realistic architecture feature in
modern column-stores.

• E�cient loading architectures [41, 88]. Finally, one con-
cern with column-stores is that they may be slower to load and
update than row-stores, because each column must be written
separately, and because data is kept compressed. Since load per-
formance can be a significant concern in data warehouse systems,
optimized loaders are important. For example, in the C-Store sys-
tem, data is first written into an uncompressed, write-optimized
bu�er (the “WOS”), and then flushed periodically in large, com-
pressed batches. This avoids doing one disk seek per-attribute,
per-row and having to insert new data into a compressed col-
umn; instead writing and compressing many records at a time.

Are These Column-store Specific Features? Some of the fea-
tures and concepts described above can be applied with some variations
to row-store systems as well. In fact, most of these design features have

204 Introduction

been inspired by earlier research in row-store systems and over the years
several notable e�orts both in academia and industry tried to achieve
similar e�ects for individual features with add-on designs in traditional
row-stores, i.e., designs that would not disturb the fundamental row-
store architecture significantly.

For example, the EVI feature in IBM DB2 already in 1997 allowed
part of the data to be stored in a column-major format [14], provid-
ing some of the I/O benefits modern column-stores provide. Similarly,
past research on fractured mirrors [78] proposed that systems store two
copies of the data, one in row-store format and one in column-store
format or even research on hybrid formats, such as PAX [5], proposed
that each relational tuple is stored in a single page as in a normal row-
store but now each page is internally organized in columns; this does
not help with disk I/O but allows for less data to be transferred from
main-memory to the CPU. In addition, research on index only plans
with techniques such as indexing anding, e.g., [69, 25], can provide
some of the benefits that late materialization provides, i.e., it allowed
processors to work on only the relevant part of the data for some of
the relational operators, better utilizing the memory hierarchy. In fact,
modern index advisor tools, e.g., [21], always try to propose a set of
“covering” indexes, i.e., a set of indexes where ideally every query can
be fully answered by one or more indexes avoiding access to the base
(row-oriented) data. Early systems such Model 204 [72] relied heav-
ily on bitmap indexes [71] to minimize I/O and processing costs. In
addition, ideas similar to vectorization first appeared several years ago
[74, 85] in the context of row-stores. Futhrermore, compression has been
applied to row-stores, e.g., [30, 82] and several design principles such
as decompressing data as late as possible [30] as well as compressing
both data and indexes [31, 47] have been studied.

What the column-stores described in this monograph contribute
(other than proposing new data storage and access techniques) is an
architecture designed from scratch for the types of analytical applica-
tions described above; by starting with a blank sheet, they were free
to push all these ideas to extremes without worrying about being com-
patible with legacy designs. In the past, some variations of these ideas

205

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

Column"Store" Row"Store"

Ru
n$

m
e'
(s
ec
)'

Performance'of'Column3Oriented'Op$miza$ons'

–Late"
Materializa:on"

–Compression"

–Join"Op:miza:on"

–Tuple@at@a@:me"

Baseline"

Figure 1.2: Performance of C-Store versus a commercial database system on the
SSBM benchmark, with di�erent column-oriented optimizations enabled.

have been tried out in isolation, mainly in research prototypes over tra-
ditional row-store designs. In contrast, starting from data storage and
going up the stack to include the query execution engine and query
optimizer, these column-stores were designed substantially di�erently
from traditional row-stores, and were therefore able to maximize the
benefits of all these ideas while innovating on all fronts of database
design. We will revisit our discussion in defining modern column-stores
vs. traditional row-stores in Section 4.9.

Performance Example. To illustrate the benefit that column-
orientation and these optimizations have, we briefly summarize a result
from a recent paper [1]. In this paper, we compared the performance of
the academic C-Store prototype to a commercial row-oriented (“row-
store”) system. We studied the e�ect of various column-oriented opti-
mizations on overall query performance on SSBM [73] (a simplified ver-
sion of the TPC-H data warehousing benchmark). The average runtime
of all queries in the benchmark on a scale 10 database (60 million tu-
ples) is shown in Figure 1.2. The bar on the left shows the performance
of C-Store as various optimizations are removed; the “baseline” sys-

206 Introduction

tem with all optimizations takes about 4 seconds to answer all queries,
while the completely unoptimized system takes about 40 seconds. The
bar on the right shows the performance of the commercial row-store
system. From these results it is apparent that the optimized column-
store is about a factor of 5 faster than the commercial row-store, but
that the unoptimized system is somewhat slower than the commercial
system. One reason that the unoptimized column-store does not do
particularly well is that the SSBM benchmark uses relatively narrow
tables. Thus, the baseline I/O reduction from column-orientation is re-
duced. In most real-world data-warehouses, the ratio of columns-read
to table-width would be much smaller, so these advantages would be
more pronounced.

Though comparing absolute performance numbers between a full-
fledged commercial system and an academic prototype is tricky, these
numbers show that unoptimized column-stores with queries that se-
lect a large fraction of columns provide comparable performance to
row-oriented systems, but that the optimizations proposed in modern
systems can provide order-of-magnitude reductions in query times.

Monograph Structure. In the rest of this monograph, we show
how the architecture innovations listed above contribute to these kinds
of dramatic performance gains. In particular, we discuss the architec-
ture of C-Store, MonetDB and VectorWise, describe how they are sim-
ilar and di�erent, and summarize the key innovations that make them
perform well.

In the next chapter, we trace the evolution of vertically partitioned
and column-oriented systems in the database literature, and discuss
technology trends that have caused column-oriented architectures to
become more favorable for analytic workloads. Then, in Chapters 3
and 4, we describe the high level architecture and detailed internals
primarily of C-Store, MonetDB and VectorWise but also those of sub-
sequent commercial implementations. Finally, in Chapter 5, we discuss
future trends and conclude.

2
History, trends, and performance tradeo�s

While column-oriented storage techniques appeared as early as the
1970s, it was not until the 2000s that column-store research gained
recognition and commercial column-stores took o�. In this chapter, we
trace the history of column-stores, examine technology and application
trends that led to the recent resurgence of column-oriented systems,
and finally present a summary of recent studies on the fundamental
performance tradeo�s between column- and row-stores.

2.1 History

The roots of column-oriented database systems can be traced to the
1970s, when transposed files first appeared [65, 12]. TOD (Time Ori-
ented Database) was a system based on transposed files and designed
for medical record management [90]. One of the earliest systems that
resembled modern column-stores was Cantor [55, 54]. It featured com-
pression techniques for integers that included zero suppression, delta
encoding, RLE (run length encoding), and delta RLE–all these are com-
monly employed by modern column-stores (we discuss column-oriented
compression in later chapters). A dynamic programming algorithm was

207

208 History, trends, and performance tradeo�s

 NSM Page DSM Pages

Figure 2.1: Storage models for storing database records inside disk pages: NSM
(row-store) and DSM (a predecessor to column-stores). Figure taken from [5].

used to choose compression methods and related parameters.
Research on transposed files was followed by investigations of ver-

tical partitioning as a technique for table attribute clustering. At the
time, row-stores were the standard architecture for relational database
systems. A typical implementation for storing records inside a page
was a slotted-page approach, as shown on the left part of Figure 2.1.
This storage model is known as the N -ary Storage Model or NSM.
In 1985, Copeland and Khoshafian proposed an alternative to NSM,
the Decomposition Storage Model or DSM–a predecessor to column-
stores [22] (see left part of Figure 2.1). For many, that work marked
the first comprehensive comparison of row- and column-stores. For the
next 20 years, the terms DSM and NSM were more commonly used
instead of row- or column-oriented storage. In the DSM, each column
of a table is stored separately and for each attribute value within a
column it stores a copy of the corresponding surrogate key (which is
similar to a record id or RID), as in Figure 1.1(b). Since surrogate
keys are copied in each column, DSM requires more storage space than
NSM for base data. In addition to storing each column in the same
order as the original table (with a clustered index on surrogate keys),

2.2. Technology and Application Trends 209

the authors proposed to store a non-clustered index on each column’s
attribute values, providing a fast way to map any attribute value to
the corresponding surrogate key.

An analysis (based on technology available at the time) showed
that DSM could speed up certain scans over NSM when only a few
columns were projected, at the expense of extra storage space. Since
DSM slowed down scans that projected more than a few columns, the
authors focused on the advantages of DSM pertaining to its simplicity
and flexibility as a storage format. They speculated that physical design
decisions would be simpler for DSM-based stores (since there were no
index-creation decisions to make) and query execution engines would
be easier to build for DSM. The original DSM paper did not examine
any compression techniques nor did it evaluate any benefits of column
orientation for relational operators other than scans. A follow-up paper
focused on leveraging the DSM format to expose inter-operator paral-
lelism [59] while subsequent research on join and projection indices [58]
further strengthened the advantages of DSM over NSM.

Although the research e�orts around DSM pointed out several ad-
vantages of column over row storage, it was not until much later, in
the 2000s, that technology and application trends paved the ground for
the case of column-stores for data warehousing and analytical tasks.

2.2 Technology and Application Trends

At its core, the basic design of a relational database management
system has remained to date very close to systems developed in the
1980s [24]. The hardware landscape, however, has changed dramati-
cally. In 1980, a Digital VAX 11/780 had a 1 MIPS CPU with 1KB
of cache memory, 8 MB maximum main memory, disk drives with 1.2
MB/second transfer rate and 80MB capacity, and carried a $250K price
tag. In 2010, servers typically had 5,000 to 10,000 times faster CPUs,
larger cache and RAM sizes, and larger disk capacities. Disk transfer
times for hard drives improved about 100 times and average disk-head
seek times are 10 times faster (30msec vs. 3msec). The di�erences in
these trends (10,000x vs. 100x vs. 10x) have had a significant impact

210 History, trends, and performance tradeo�s

on the performance of database workloads [24].
The imbalance between disk capacity growth and the performance

improvement of disk transfer and disk seek times can be viewed through
two metrics: (a) the transfer bandwidth per available byte (assuming
the entire disk is used), which has been reduced over the years by
two orders of magnitude, and (b) the ratio of sequential access speed
over random access speed, which has increased one order of magnitude.
These two metrics clearly show that DBMSs need to not only avoid
random disk I/Os whenever possible, but, most importantly, preserve
disk bandwidth.

As random access throughout the memory hierarchy became in-
creasingly expensive, query processing techniques began to increasingly
rely on sequential access patterns, to the point that most DBMS archi-
tectures are built around the premise that completely sequential access
should be done whenever possible. However, as database sizes increased,
scanning through large amounts of data became slower and slower. A
bandwidth-saving solution was clearly needed, yet most database ven-
dors did not view DSM as viable replacement to NSM, due to limi-
tations identified in early DSM implementations [22] where DSM was
superior to NSM only when queries access very few columns. In order
for a column-based (DSM) storage scheme to outperform row-based
(NSM) storage, it needed to have a fast mechanism for reconstructing
tuples (since the rest of the DBMS would still operate on rows) and it
also needed to be able to amortize the cost of disk seeks when access-
ing multiple columns on disk. Faster CPUs would eventually enable the
former and larger memories (for bu�ering purposes) would allow the
latter.

Although modern column-stores gained popularity for being e�-
cient on processing disk-based data, in the 1990s, column-stores were
mostly widely used in main-memory systems. By the late 1990s there
was intense interest in investigating in-memory data layouts for ad-
dressing the growing speed disparity between CPU and main memory.
Around 1980, the time required to access a value in main memory
and execute an instruction were about the same. By the mid 1990s,
memory latency had grown to hundreds of CPU cycles. The MonetDB

2.2. Technology and Application Trends 211

project [16, 46] was the first major column-store project in the academic
community. The original motivation behind MonetDB, which was ini-
tially developed as a main-memory only system, was to address the
memory-bandwidth problem and also improve computational e�ciency
by avoiding an expression interpreter [19]. A new query execution al-
gebra was developed on a storage format that resembled DSM with
virtual IDs. Subsequent research studied cache-conscious query pro-
cessing algorithms (a comprehensive presentation of MonetDB follows
in Section 3.2).

PAX (for Partition Attributes Across) adopted a hybrid NSM/DSM
approach, where each NSM page was organized as a set of mini
columns [5]. It retained the NSM disk I/O pattern, but optimized cache-
to-RAM communication (seeking to obtain the cache latency benefits
identified in Monet without the disk-storage overheads of DSM with
its explicit row IDs). Follow on projects included data morphing [39],
a dynamic version of PAX, and Clotho [84] which studied custom page
layouts using scatter-gather I/O.

Fractured Mirrors [78] leveraged mirroring for reliability and avail-
ability. The idea is to store one copy of the data in NSM format and
one separate copy in DSM, thereby achieving the performance benefits
of both formats. Since data is often replicated anyway for availability,
Fractured Mirrors allows one to get the benefits of both formats for
free.

Around the same time (1996), one of the first commercial column-
store systems, SybaseIQ [28, 29, 66], emerged, demonstrating the ben-
efits that compressed, column-oriented storage could provide in many
kinds of analytical applications. Although it has seen some commer-
cial success over the years, it failed to capture the mindshare of other
database vendors or the academic community, possibly due to a com-
binations of reasons, e.g., because it was too early to the market,
hardware advances that later favored column-storage (and triggered
database architecture innovations) such as large main memories, SIMD
instructions, etc. where not available at the time, and possibly because
it lacked some of the architectural innovations that later proved to
be crucial for the performance advantages of column-stores, such as

212 History, trends, and performance tradeo�s

(extreme) late materialization, direct operation on compressed data
throughout query plans, etc. Sybase IQ did o�er some early variations
of those features, e.g., compressing columns separately, or performing
joins only on compressed data, avoiding stitching of tuples as early as
loading data from disk, etc. but still it did not o�er an execution en-
gine which was designed from scratch with both columnar storage and
columnar execution in mind.

Other than Sybase IQ, additional early signs of exploiting columnar
storage in industry appeared in systems such IBM EVI [14] which al-
lowed part of the data to be stored in column format or SAP BW/Trex
which o�ered columnar storage but was a text search engine as opposed
to a full blown relational engine.

By the 2000s column-stores saw a great deal of renewed academic
and industrial interest. Incredibly inexpensive drives and CPUs had
made it possible to collect, store, and analyze vast quantities of data.
New, internet-scale user-facing applications led to the collection of un-
precedented volumes of data for analysis and the creation of multi-
terabyte and even petabyte-scale data warehouses. To cope with chal-
lenging performance requirements, architects of new database systems
revisited the benefits of column-oriented storage, this time combining
several techniques around column-based data, such as read-only op-
timizations, fast multi-column access, disk/CPU e�ciency, and light-
weight compression. The (re)birth of column-stores was marked by the
introduction of two pioneering modern column-store systems, C-Store
[88] and VectorWise [18]. These systems provided numerous innovations
over the state-of-the-art at the time, such as column-specific compres-
sion schemes, operating over compressed data, C-store projections, vec-
torized processing and various optimizations targeted at both modern
processors and modern storage media.

Through the end of the 2000s there was an explosion of new column-
oriented DBMS products (e.g., Vertica, Ingres VectorWise, Paraccel,
Infobright, Kickfire, and many others) that were influenced by these
systems. This was later followed by announcements and acquisitions
by traditional vendors of row-store systems (such as Oracle, Microsoft,
IBM, HP, SAP and Teradata) that added column-oriented systems and

2.3. Fundamental Performance Tradeo�s 213

features to their product lineups.
Some notable examples in industry include IBM BLU [79] which

originated from the IBM Blink project [11] and provided innovations
mainly in providing an architecture tightly integrated with the abil-
ity to process compressed columns, as well as SAP HANA [26] which
stores data both in a row-format and in a column-format to combine
online analytical processing and online transaction processing in a sin-
gle system. In addition, Microsoft soon followed with extensions in
the architecture of the SQL Server row-store which brought features
such as column-oriented storage, vectorized processing and compres-
sion [62, 61]; initially columns were used as an auxiliary accelerator
structure, i.e., column indexes [63] but subsequent versions provide a
more generic architecture which allows also base data to be stored in
columnar form [62].

2.3 Fundamental Performance Tradeo�s

While DSM made it possible to quickly scan a single column of a table,
scanning multiple columns or, even worse, scanning an entire table
stored in columns was significantly slower than NSM. This was due
to various overheads in reconstructing a tuple from multiple columns,
accessing multiple locations on disk, and processing extraneous, per-
column information. In order for column-stores to become competitive
with row-stores, they needed to provide good performance across a
range of workloads, and that included queries that needed to access
large fractions of a record (large projectivity) or entire records. As CPU
speed increases kept outpacing disk bandwidth increases, and software
optimization e�orts focused on read-optimized data representations,
accessing multiple columns during column-store scans became more
and more competitive with row-store scans. This was demonstrated by
several studies over the past ten years.

• In Fractured Mirrors [78], the authors proposed several optimiza-
tions for DSM. Each DSM column was stored inside a B-tree,
where the leaf nodes contained all the column attribute values.
They eliminated the IDs per column, amortized the header over-

214 History, trends, and performance tradeo�s

0

1

2

3

4

5

6

0% 20% 40% 60% 80% 100%

Ti
m

e
(n

or
m

al
ize

d
to

 ro
w

-s
to

re
 sc

an
)

Projectivity

Normalized Row-store/NSM scan
DSM (from Ailamaki et al. 2001)
DSM optimized (Ramamurthy et al. 2002)
Column-store scan (Harizopoulos et al. 2006)
FlashScan (PAX-scan, Tsirogiannis et al. 2009)
FlashScan with 0.01% selectivity

Figure 2.2: Performance of column-oriented scans for various degrees of projec-
tivity (percentage of a full-row tuple that needs to be reconstructed) compared to
(normalized) row-store scan, from various studies over the years.

head across multiple column values (Graefe also describes an ef-
ficient method for storing columns inside a B-tree [33]), and used
chunk-based tuple reconstruction.

• In [40] the authors provide a comparison of column and row scan-
ners using a from scratch implementation, a stand-alone storage
manager, as well as read-optimized storage representations and
large prefetching units to hide disk seeks across columns. This
time, with technology available at 2006 and in worse-case sce-
narios where every column in a table was accessed, column-store
scans were shown to be only 20-30% slower than row-store scans.

• Finally, in [89] the authors considered Flash solid state drives as
the primary storage media for a database system, and demon-
strated the e�ectiveness of column-based storage models for on-
disk storage. Since Flash SSDs o�er significantly faster random
reads than HDDs, column schemes in this case have a comparable
I/O cost to a row-store scan when reading full-row tuples (since
there are no expensive disk-head seeks).

2.3. Fundamental Performance Tradeo�s 215

Figure 2.2 consolidates some of the results of the above-mentioned
studies into a single graph. Column-store (or DSM) scan times are
normalized against row-store scans (which always have a constant I/O
cost) for di�erent projectivity (percentage of a tuple that is read). The
baseline DSM performance is copied from a 2001 paper [5] which also
used it as baseline to compare I/O performance against PAX and NSM.
Over time, worse-case scenarios for column-stores (projectivity close to
100%) came increasingly closer to row-store performance. Interestingly,
when it comes to solid state storage (such as Flash SSDs), column-
oriented storage was shown to never be worse than row storage, and in
some cases where selective predicates were used, it outperformed row
storage for any projectivity; if selectivity is high, then column-stores
can minimize the amount of intermediate results they create which
otherwise represents a significant overhead.

3
Column-store Architectures

In this chapter, we describe the high level architecture of the three early
column-oriented research prototypes: C-Store, MonetDB and Vector-
Wise. These architectures introduced the main design principles that
are followed by all modern column-store designs. This chapter high-
lights the design choices in each system; many core design principles
are shared but some are unique in each system. The next chapter dis-
cusses those individual features and design principles in more detail as
well as it provides query processing and performance examples.

3.1 C-Store

In C-Store, the primary representation of data on disk is as a set of col-
umn files. Each column-file contains data from one column, compressed
using a column-specific compression method, and sorted according to
some attribute in the table that the column belongs to. This collection
of files is known as the “read optimized store” (ROS). Additionally,
newly loaded data is stored in a write-optimized store (“WOS”), where
data is uncompressed and not vertically partitioned. The WOS enables
e�cient loading of data, and amortizes the cost of compression and

216

3.1. C-Store 217

seeking. Periodically, data is moved from the WOS into the ROS via a
background “tuple mover” process, which sorts, compresses, and writes
re-organized data to disk in a columnar form.

Each column in C-Store may be stored several times in several dif-
ferent sort orders. Groups of columns sorted on the same attribute
are referred to as “projections”. Typically there is at least one pro-
jection containing all columns that can be used to answer any query.
Projections with fewer columns and di�erent sort orders are used to
optimize the performance of specific frequent queries; for example, a
query that accesses the number of sales in a specific region per month
over a certain time frame could benefit from a projection containing
the product id, sales date, and region attributes sorted by product
region and then date. Sorting allows e�cient subsetting of just the rel-
evant records, and also makes it possible to aggregate the results one
month at a time without maintaining any intermediate aggregation
state. In contrast, another query which just needs to count the sales
by month, regardless of region, might benefit from a projection that
just stores data sorted by date. Figure 3.1 illustrates these two alter-
native projections for the sales table (in C-Store, we use the notation
(saleid,date,region|date) to indicate a projection of the sales table
containing saleid, date and region attributes sorted by date). Note
that these projections contain di�erent columns, and neither contains
all of the columns in the table.

Each column in C-Store is compressed and for each column a dif-
ferent compression method may be used. The choice of a compression
method for each column depends on a) whether the column is sorted
or not, b) on the data type and c) on the number of distinct values in
the column. For example, the sorted product class column is likely
to have just a few distinct values; since these are represented in order,
this column can be encoded very compactly using run-length encoding
(RLE). In RLE, a consecutive series of X products of the same class
is represented as a single (X, product class) pair, rather than X

distinct tuples. More details on compression methods used in column-
stores are discussed in Chapter 4.

C-Store does not support secondary indices on tables, but does

218 Column-store Architectures

17
22
6

98
12
4

14
7
8
11

1/6/08
1/6/08
1/8/08

1/13/08
1/20/08
1/24/08
2/2/08
2/4/08
2/5/08

2/12/08

West
East

South
South
North
South
West
North
East
East

1
2
3
4
5
6
7
8
9

10

saleid date region

(a) Sales Projection Sorted By Date

5
9
4

12
5
7

22
3

18
6

1/6/08 West

1/6/08 East

1/8/08 South
1/13/08 South

1/20/08 North

1/24/08 South

2/2/08 West

2/4/08 North

2/5/08 East
2/12/08 East

1
2
3
4
5
6
7
8
9

10

prodid date region

(b) Sales Projection Sorted By Region, Date

(saleid,date,region | date) (prodid,date,region | region,date)

Figure 3.1: Two di�erent projections of the Sales table.

support e�cient indexing into sorted projections through the use of
sparse indexes. A sparse index is a small tree-based index that stores
the first value contained on each physical page of a column. A typical
page in C-Store would be a few megabytes in size. Given a value in
a sorted projection, a lookup in this tree returns the first page that
contains that value. The page can then be scanned to find the actual
value. A similar sparse index is stored on tuple position, allowing C-
Store to e�ciently find a given tuple o�set in a column even when the
column is compressed or contains variable-sized attributes.

Additionally, C-Store uses a “no-overwrite” storage representation,
where updates are treated as deletes followed by inserts, and deletes are
processed by storing a special “delete column” that records the time
every tuple was deleted (if ever).

Query execution in C-Store involves accessing data from both the
ROS and WOS and unioning the results together. Queries are run as
of a specific time, which is used to filter out deleted tuples from the
delete column. This allows queries to be run as of some time in the past.
Queries that modify the database are run using traditional two-phase
locking. If read-only queries are tolerant of reading slightly stale data
they can be run without setting locks by executing them as of some
time in the very recent past. Finally, C-Store’s query executor utilizes

3.2. MonetDB and VectorWise 219

a number of advanced execution techniques, including late material-
ization, various column-oriented join techniques, and batch processing.
These optimizations are described in more detail in Chapter 4.

Finally, in addition to complete vertical partitioning, C-Store was
conceived as a shared-nothing massively parallel distributed database
system, although the academic prototype never included these features
(the commercial version, Vertica, does). The idea behind the paral-
lel design of C-Store is that projections are horizontally partitioned
across multiple nodes using hash- or range-partitioning, and queries
are pushed down and executed as much as possible on each node, with
partial answers merged to produce a final answer at the output node.
Most of C-Store’s parallel design was based on the design of early shared
nothing parallel systems like Gamma [23], so we do not concentrate on
these features here.

3.2 MonetDB and VectorWise

In this section, we first discuss the architecture of MonetDB, while
subsequently we focus on VectorWise.

MonetDB. MonetDB is designed from scratch focusing on han-
dling analytical workloads e�ciently on modern hardware. MonetDB
stores data one column-at-a-time both in memory and on disk and ex-
ploits bulk processing and late materialization. It solely relies on mem-
ory mapped files avoiding the overhead and complexity of managing a
bu�er pool. MonetDB di�ers from traditional RDBMS architecture in
many aspects, such as its:

• Execution engine, which uses a column at-a-time-algebra [19],

• Processing algorithms, that minimize CPU cache misses rather
than IOs [17],

• Indexing, which is not a DBA task but happens as a by-product
of query execution, i.e., database cracking [50],

• Query optimization, which is done at run-time, during query in-
cremental execution [4] and

220 Column-store Architectures

• Transaction management, which is implemented using explicit
additional tables and algebraic operations, so read-only workloads
can omit these and avoid all transaction overhead [19].

Traditional query execution uses a tuple-at-a-time, pull-based, it-
erator approach in which each operator gets the next input tuple by
calling the next() method of the operators of its children in the opera-
tor tree. In contrast, MonetDB works by performing simple operations
column-at-a-time. In this way, MonetDB aimed at mimicking the suc-
cess of scientific computation programs in extracting e�ciency from
modern CPUs, by expressing its calculations typically in tight loops
over fixed-width and dense arrays, i.e., columns. Such code is well-
supported by compiler technology to extract maximum performance
from CPUs through techniques such as strength reduction (replacing
an operation with an equivalent less costly operation), array block-
ing (grouping subsets of an array to increase cache locality), and loop
pipelining (mapping loops into optimized pipeline executions). The
MonetDB column-at-a-time primitives not only get much more work
done in fewer instructions - primarily thanks to eliminating tuple-at-
a-time iterator function calls - but its instructions also run more e�-
ciently in modern CPUs. That is, MonetDB query plans provide the
CPU more in-flight instructions, keep the pipelines full and the branch
misprediction and CPU cache miss rates low, and also automatically
(through the compiler) allow the database system to profit from SIMD
instructions.

The column-at-a-time processing is realized through the BAT Al-
gebra, which o�ers operations that work only on a handful of BATs,
and produce new BATs. BAT stands for Binary Association Table, and
refers to a two-column <surrogate,value> table as proposed in DSM.
The surrogate is just a Virtual ID; it e�ectively is the array index of
the column and is not materialized. Both base data and intermediate
results are always stored in BATs, and even the final result of a query is
a collection of BATs. MonetDB hence takes late tuple materialization
to the extreme. BATs are essentially in-memory (or memory mapped)
arrays. The BAT algebra operators consume and produce BATs. For
example a select operator consumes a single input BAT, applies a filter

3.2. MonetDB and VectorWise 221

(memory mapped) simple memory array

BAT ’byear’BAT ’name’

(virtual) dense surrogates

SQL
front−end

XQuery
front−end

0

1

2

3

SPARQL
front−end

1907

1927

1927

1968

BAT Algebra

1

2

0

1

0

11

23

33

0

1

2

3

John Wayne\0

Roger Moore\0

Bob Fosse\0

Will Smith\0

select(byear,1927)

MonetDB back−end

Figure 3.2: MonetDB: BAT Algebra Execution.

to every value in the underlying array and produces a new BAT with
the qualifying tuples.

The absence of tuple reconstruction fits another goal of MonetDB,
namely using a single internal data representation (BATs) to manip-
ulate data of widely di�erent data models. MonetDB follows a front-
end/back-end architecture, where the front-end is responsible for main-
taining the illusion of data stored in some logical data model. Front-
ends have been created that allow storage and querying of purely re-
lational data, but also object-oriented, XML RDF and graph data in
MonetDB. The front-ends translate end-user queries in (SQL, OQL,
XQuery, SPARQL) into BAT Algebra, execute the plan, and use the
resulting BATs to present results. Figure 3.2 shows query plans in BAT
Algebra being generated by various front-ends to be executed in the
MonetDB back-end.

The reason behind the e�ciency of the BAT Algebra is its hard-
coded semantics, causing all operators to be predicate-less. For com-
parison, in the relational algebra in traditional systems, the Join and
Select operators take an arbitrary Boolean column expression that de-
termines which tuples must be joined and selected. The fact that this
Boolean expression is arbitrary, and specified at query time only, means
that the RDBMS must include some expression interpreter in the criti-

222 Column-store Architectures

cal runtime code-path of the Join and Select operators. Such predicates
do not occur in BAT Algebra; therefore we also say it has “zero degrees
of freedom”. This absence of freedom means the interpreter is removed
from inside the operator; all BAT algebra operators perform a fixed
hard-coded action on a simple array. As such, complex expressions in
a query must be mapped into multiple subsequent BAT Algebra oper-
ators. Expression interpretation in MonetDB e�ectively occurs on the
granularity of whole column-at-a-time BAT Algebra operators, which
much better amortizes interpretation overhead.

The philosophy behind the BAT Algebra can also be paraphrased
as “the RISC approach to database query languages”: by making the
algebra simple, the opportunities are created for implementations that
execute the common case very fast.

More recent research has shown that further advantages can be
achieved by going the extreme route and compiling code on-the-fly (i.e.,
during query processing). The rational is that compiled code optimally
fits query patterns and data layouts for a specific query, increasing the
performance of scan intensive workloads, e.g., [43, 70], with operators
that perform only the required actions for the particular scan at hand,
minimizing indirections, function calls and thus cache misses.

To handle updates, MonetDB uses a collection of pending updates
columns for each base column in a database. Every update action af-
fects initially only the pending updates columns, i.e., every update
is practically translated to an append action on the pending update
columns. Every query on-the-fly merges updates by reading data both
from the base columns and from the pending update columns. For ex-
ample, when applying a filter on column X, there will be one select
operator applied directly on column X and another select operator ap-
plied on the pending updates columns of X, while subsequently quali-
fying pending inserts are merged or pending deletes are removed from
the corresponding intermediate result. Periodically, pending columns
are merged with their base columns.

VectorWise. While MonetDB pioneered many core column-store
design principles, still it misses some of the signature design points
later introduced by C-store and VectorWise. MonetDB stores columns

3.3. Other Implementations 223

uncompressed on disk, and uses memory mapping to provide the BAT
Algebra operations direct access to it, unhindered by any API. The
absence of a bu�er manager means MonetDB must rely on providing
virtual memory access advice to the OS, which means the system does
not have absolute control over I/O scheduling. An additional drawback
of the column-at-a-time execution model is its full materialization of
intermediate results. For example, if a select operator consumes its
complete input column in one go, then it needs to materialize a result
which represents all qualifying tuples, resulting in a significant overhead
especially as we scale to bigger data inputs. Together, these aspects
make MonetDB vulnerable to swapping when its working set starts
exceeding RAM.

These problems were addressed by a new system, developed in
the same research group at CWI, called VectorWise [96]. VectorWise
marked a new from scratch development to address the shortcomings of
MonetDB and to provide an architecture tailored for modern hardware.
The main innovation in VectorWise is its vectorized execution model
which strikes a balance between full materialization of intermediate re-
sults in MonetDB and the high functional overhead of tuple-at-a-time
iterators in traditional systems. Essentially, VectorWise processes one
block/vector of a column at a time as opposed to one column-at-a-time
or one tuple-at-a-time.

VectorWise does perform explicit I/O, in an advanced way, adap-
tively finding synergy in the I/O needs of concurrent queries through
its Active Bu�er Manager (ABM) and Cooperative Scans [98]. Vector-
Wise also provides a novel way of handling updates (Positional Delta
Trees [41]), and new high-speed compression algorithms [100]. We dis-
cuss those features in detail in the next chapter.

3.3 Other Implementations

Subsequent designs from industry share the fundamental principles of
VectorWise and C-Store (which we discuss in more detail in the next
chapter). There are two main architectures that have been used by
industry in adopting a column-store or a column-store-like design.

224 Column-store Architectures

Columnar Storage Only. The first approach involves storing data
one column-at-a-time on disk but relies on a standard row-store exe-
cution engine to process queries. That is, every query may access only
the columns referenced, thus seeing some savings in terms of I/O but
once all relevant data arrives in memory, it is immediately stitched
into a tuple N -ary format and is fed to a classic row-store engine. In
this way, such a design is relatively easy to adopt as it only requires
a mapping of columns to tuples when loading from disk, but it also
means that such designs cannot exploit the run-time benefits of op-
erating on one column-at-a-time which allows for better exploitation
of the whole memory hierarchy. Some characteristic examples of such
implementations at the moment of writing this monograph include Ter-
adata/Asterdata and EMC/Greenplum. An advantage of such a design
is that it allows for a smoother transition phase to a completely new
architecture as well as that it allows for databases where some of the
data may be stored in the original row format while other parts of the
data may be stored in a column format and still both kinds of data can
be processed by the same execution engine.

Native Column-store Designs. The second and more advanced
direction has to do with vendors that adopted the full column-store
model, providing both a columnar storage layer and an execution engine
which is tailored for operating on one column-at-a-time with late tuple
reconstruction. Then, this new engine is integrated with a traditional
row-oriented execution engine.

IBM BLU/BLINK. A prime example of the second paradigm is
IBM BLU [79] which originated from the IBM BLINK project [11, 52].
Essentially, IBM BLU sits on the side of the standard row-store DB2
engine and becomes responsible for part of the data. The optimizer then
knows which queries to push to the BLU engine and which queries to
push to the standard engine. In this way, queries which may benefit
from column-store execution may do so and vice versa and in fact
queries may scan data from both row-oriented and column-oriented
tables.

Other than exploiting standard column-store design practices such
as late materialization, IBM BLINK/BLU also introduced novel tech-

3.3. Other Implementations 225

niques especially in the area of compression. Frequency partitioning [81]
is used in order to maximize the storage savings gained by compression
but at the same time remain within the general design column-store
principles. The general idea is that columns are reorganized with the
intention to minimize the variability in each data page. That is, each
page is compressed separately with dictionary compression and by min-
imizing the possible values within a page (by reorganizing the column),
IBM BLU reduces the amount of di�erent codes needed to represent
the data. With fewer codes (compared to having a single dictionary for
the whole column) IBM BLU may use less bits to write these codes
which in turn reduces the storage space needed to store the referenced
data.

Frequency partitioning means that, contrary to other systems, IBM
BLU allows for variable width columns. Each page has its own dictio-
nary and code length; within each page all values/codes are fixed-width
but di�erent pages of the same column may use a di�erent value width
in order to maximize the amount of data that fits in the page. Thus,
similarly to other column-stores, IBM BLU can exploit operator de-
signs which rely on tight for-loops and are cache and CPU friendly;
it only needs to adjust as it moves from one page to the next. This
leads to a slightly more complex page design; it is not purely based on
array storage but now needs to store information regarding the dictio-
naries and other metadata unique to each page such as the mapping of
the local tuples to the global order. Given that frequency partitioning
reorganizes data and given that this happens typically at the level of
individual columns, this means that the various columns may be stored
in di�erent order and thus there needs to be a way to be able to link tu-
ples together across all column of the same table. We discuss frequency
partitioning in more detail in the next chapter along with other core
column-store design principles.

Microsoft SQL Server Column Indexes. Another notable
paradigm of a major vendor adopting a columnar architecture is SQL
Server from Microsoft [62]. SQL Server provides native support for
columnar storage and column-oriented execution, adopting many of
the critical design features that are common in column-stores, such as

226 Column-store Architectures

vectorized processing and heavily exploiting compression. These fea-
tures have been integrated with the traditional row-store design of
SQL Server, providing the flexibility of choosing the appropriate phys-
ical design depending on the workload. Columns can be used either
as “column indexes”, i.e., auxiliary data, enhancing scans over specific
attributes for part of the workload or they can also be used as the
primary storage choice for purely scan intensive scenarios.

4
Column-store internals and advanced techniques

Having seen the basics of column-stores in the previous chapters, in
this chapter we discuss in more detail specific design features which
go beyond simply storing data one column-at-a-time and which di�er-
entiate column-stores from traditional architectures. In particular, we
focus on vectorized processing, late materialization, compression and
database cracking.

4.1 Vectorized Processing

Database text-books generally contrast two strategies for the query
execution layer, namely the “Volcano-style” iterator model [32], which
we also refer to as tuple-at-a-time pipelining, versus full materialization.
In tuple-at-a-time pipelining, one tuple-at-a-time is pushed through the
query plan tree. The next() method of each relational operator in a
query tree produces one new tuple at-a-time, obtaining input data by
calling the next() method on its child operators in the tree. Apart from
being elegant in the software engineering sense, this approach has the
advantage that materialization of intermediate results is minimized.

In full materialization, on the other hand, each query operator

227

228 Column-store internals and advanced techniques

works in isolation, fully consuming an input from storage (disk, or
RAM) and writing its output to storage. MonetDB is one of the few
database systems using full materialization, product of its BAT Alge-
bra designed to make operators and their interactions simpler and thus
more CPU e�cient. However, MonetDB therefore may cause excessive
resource utilization in queries that generate large intermediate results.

To illustrate the di�erences between the above two models, assume
the following query: select avg(A) from R where A < 100. With
tuple-at-a-time pipelining the select operator will start pushing quali-
fying tuples to the aggregation operator one tuple-at-a-time. With full
materialization, though, the select operator will first completely scan
column A, create an intermediate result that contains all qualifying
tuples which is then passed as input to the aggregation operator. Both
the select and the aggregation operator may be implemented with very
e�cient tight for loops but on the other hand a big intermediate result
needs to be materialized which for non-selective queries or for big data,
exceeding memory size, becomes an issue.

We now turn our attention to a third alternative called “vectorized
execution” pioneered in VectorWise, which strikes a balance between
full materialization and tuple pipelining. This model separates query
progress control logic from data processing logic. Regarding control
flow, the operators in vectorized processing are similar to those in tu-
ple pipelining, with the sole distinction that the next() method of each
operator returns a vector of N tuples as opposed to only a single tuple.
Regarding data processing, the so-called primitive functions that oper-
ators use to do actual work (e.g., adding or comparing data values) look
much like MonetDB’s BAT Algebra, processing data vector-at-a-time.
Thus, vectorized execution combines pipelining (avoidance of material-
ization of large intermediates) with the array-loops code patterns that
make MonetDB fast.

The typical size for the vectors used in vectorized processing is such
that each vector comfortably fits in L1 cache (N = 1000 is typical in
VectorWise) as this minimizes reads and writes throughout the memory
hierarchy. Given that modern column-stores work typically on one vec-
tor of one column at a time (see also discussion on late materialization

4.1. Vectorized Processing 229

in Section 4.4), this means that only one vector plus possible output
vectors and auxiliary data structures have to fit in L1. For example,
a query with multiple predicates one multiple columns will typically
apply the predicates independently on each column and thus only one
vector of a single column at a time has to fit in the cache (a detailed
query processing example with late materialization is shown in Section
4.4).

There are numerous advantages with vectorized processing. We
summarize the main ones below:

• Reduced interpretation overhead. The amount of function
calls performed by the query interpreter goes down by a factor
equal to the vector size compared to the tuple-at-a-time model.
On computationally intensive queries, e.g., TPC-H Q1, this can
improve performance by two orders of magnitude.

• Better cache locality. VectorWise tunes the vector size such
that all vectors needed for evaluating a query together comfort-
ably fit in the CPU cache. If the vector size is chosen too large (as
in MonetDB, where vector size is table size), the vectors do not fit
and additional memory tra�c slows down the query. Regarding
instruction cache, the vectorized model also strikes a balance be-
tween tuple-at-a-time processing and full materialization; control
now stays for as many iterations as the vector size in the same
primitive function, thus creating instruction locality.

• Compiler optimization opportunities. As mentioned in the
description of MonetDB, vectorized primitives which typically
perform a tight loop over arrays, are amenable to some of the
most productive compiler optimizations, and typically also trigger
compilers to generate SIMD instructions.

• Block algorithms. The fact that data processing algorithms
now process N tuples, often gives rise to logical algorithm opti-
mizations. For instance, when checking for some condition (e.g.,
output bu�er full), a tuple-at-a-time execution model performs
the check for every tuple, while a vectorized algorithm can first

230 Column-store internals and advanced techniques

check if the output bu�er has space for N more results, and if so,
do all the work on the vector without any checking.

• Parallel memory access. Algorithms that perform memory ac-
cesses in a tight vectorized loop on modern CPUs are able to gen-
erate multiple outstanding cache misses, for di�erent values in a
vector. This is because when a cache miss occurs, modern CPUs
can speculate ahead in such tight loops. This is not possible in
the tuple-at-a-time architecture, since the late-binding API calls
which the CPU encounters between processing di�erent tuples
inhibit this. Generating multiple concurrent cache misses is nec-
essary to get good memory bandwidth on modern computers. It
was shown in [96] to be possible to vectorize memory lookups in
all major relational database operators, e.g., sorting, hash-table
lookup, as well as hash-table probing. Such lookups often incur
cache-misses, in which case code that through out-of-order specu-
lation generates multiple parallel misses often performs four times
faster than non-vectorized memory lookups.

• Profiling. Since vectorized implementations of relational opera-
tors perform all expression evaluation work in a vectorized fash-
ion, i.e., array-at-a-time for hundreds or even thousands of tuples
in one go, the overhead of keeping performance profiling measure-
ments for each individual vectorized operation is low (as book-
keeping cost is amortized over hundreds or thousands of tuples).
This allows vectorized engines to provide highly detailed perfor-
mance insight into where CPU cycles are spent.

• Adaptive execution. Building on the latter point, performance
profile information on vectorized primitives can also be exploited
at run-time, during the execution of a query. For example, Vec-
torwise decides adaptively in case of arithmetic operations on
vectors where only a subset of the values in the arrays is selected
by some predicate, whether to compute the result only for the
selected tuples iteratively, or for all tuples in the array. The lat-
ter strategy, while performing extra work, leads to a tight loop
without if-then-else, where SIMD instructions can be used, mak-

4.1. Vectorized Processing 231

ing it overall faster as long as the percentage of selected tuples
is relatively high. The Micro Adaptivity mechanism of Vector-
Wise [77] generalizes the concept of using run-time statistics to
optimize query processing. An adaptive “Multi Armed Bandid”
algorithm has the task of choosing at run-time the best “flavor”
(alternative implementation) for a vectorized function. Periodi-
cally, during the query – during which a vectorized primitive may
be called millions of times – it tests all alternative implementa-
tions and subsequently uses the best performing implementation
most of the time. This approach resists di�erences in compil-
ers and compiler flags (by linking in the same function multiple
times, compiled di�erently, available as di�erent flavors) as well
as hardware changes (eliminating the need of detailed cost mod-
eling, cost model maintenance and calibration) and can also react
to changes in the data distribution during the query.

Vectorized execution mostly concerns the query operators and their
handling of in-flight tuple data flowing through a query execution tree.
There can be a distinction made between the data layout used for
persistent storage by the storage manager, and the data layout used
by the query executor. While vectorized execution in its current form,
was developed and analyzed in the column storage context of Vector-
Wise, the principle can also be applied to row stores as it is not tied
to the storage manager. In fact, past research in row-stores has been
experimenting with such concepts as early as in 1994 [85] where the
first e�orts appeared towards minimizing cache misses and instruction
misses. Subsequent e�orts proposed even more generic solutions either
for block based query processing [74] or even by adding so called bu�er
operators [95] within traditional tuple-at-a-time row-store query plans
which simulate the e�ect of blocking by not allowing tuples to be prop-
agated through a plan until bu�ers are full.

In [101] it was shown that a vectorized query execution system can
support both vertical (column) and horizontal (record) tuple repre-
sentations in a single execution framework easily, and even can store
in-flight tuples in mixed mode (some columns together as a record,
and others vertically). This study also showed that performance of op-

232 Column-store internals and advanced techniques

erators can be significantly influenced by the storage format, where
operator characteristics, hardware parameters and data distributions
determine what works best. Typically, sequential operators (project,
selection) work best on vertical vectors (exploiting automatic memory
prefetching and SIMD opportunities), whereas random access operator
(hash-join or -aggregation) work best using blocks of horizontal records,
due to cache locality. Since conversion between horizontal and vertical
formats is cheap using vectorized execution, this creates the possibility
that a query plan would change the tuple-layout as part of the query
plan, possibly multiple times. This opens a new ground for query opti-
mizers of query layout planning that should determine the best layout
for each stage of the query execution plan using cost-based estimation.

4.2 Compression

Intuitively, data stored in columns is more compressible than data
stored in rows. Compression algorithms perform better on data with
low information entropy (i.e., with high data value locality), and val-
ues from the same column tend to have more value locality than values
from di�erent columns.

Compressing one column-at-a-time. For example, assume a
database table containing information about customers (name, phone
number, e-mail address, snail-mail address, etc.). Storing all data to-
gether in the form of rows, means that each data page contains infor-
mation on names, phone numbers, addresses, etc. and we have to com-
press all this information together. On the other hand, storing data in
columns allows all of the names to be stored together, all of the phone
numbers together, etc. Certainly phone numbers are more similar to
each other than to other fields like e-mail addresses or names. This
has two positive side-e�ects that strengthen the use of compression in
column-stores; first, compression algorithms may be able to compress
more data with the same common patterns as more data of the same
type fit in a single page when storing data of just one attribute, and
second, more similar data implies that in general the data structures,
codes, etc. used for compression will be smaller and thus this leads to

4.2. Compression 233

better compression. Furthermore, if the data is sorted by one of the
columns, which is common with column-store projections, that column
will be super-compressible (for example, runs of the same value can be
run-length encoded).

Exploiting extra CPU cycles. Usually, the bottom line goal of
a database system is performance, i.e., processing one or more queries
as fast as possible, not compression ratio. Disk space is cheap, and
is getting cheaper rapidly. However, compression does improve perfor-
mance (in addition to reducing disk space); if data is compressed, then
less time is spent in I/O during query processing as less data is read
from disk into memory (and from memory to CPU). Another important
motivation here is that as CPUs are getting much faster compared to
memory bandwidth, the cost of accessing data costs more in terms of
CPU cycles than it did in the past. Intuitively, this means that now we
have more CPU cycles to spare in decompressing compressed data fast
which is preferable to transferring uncompressed and thus bigger data
at slow speeds (in terms of waisted CPU cycles) through the memory
hierarchy.

Fixed-width arrays and SIMD. Given that performance is what
we are trying to optimize, this means that some of the “heavier-
weight” compression schemes that optimize for compression ratio (such
as Lempel-Ziv, Hu�man, or arithmetic encoding), are less suitable than
“lighter-weight” schemes that sacrifice compression ratio for decom-
pression performance. Light-weight compression schemes that compress
a column into mostly fixed-width (smaller) values (with exceptions han-
dled carefully) are often preferred, since this allows a compressed col-
umn to be treated as an array. Iterating through such an array (e.g.,
for decompression) can leverage the SIMD instruction set on modern
CPUs for vectorized parallelism (as described above), significantly im-
proving performance. With SIMD instructions we can decompress or
process multiple compressed values with one instruction as long as they
are packed into fixed-width and dense arrays (that nicely fit into SIMD
registers of modern processors), maximizing parallelism. Since column-
stores exploit fixed-width dense arrays anyway, they can exploit SIMD
execution even with uncompressed data. However, with compression,

234 Column-store internals and advanced techniques

more (compressed) data values will fit in a SIMD register compared to
when we do not compress the columns and as a result we are able to
process even more data with a single instruction at a time. For exam-
ple, a modern processor has SIMD registers that typically fit 4 4-byte
integers at a time and thus a column-store without compression may
process 4 values at a time in this case. If data is compressed by a fac-
tor of 2 though, then we will be able to fit 8 compressed integers in
the SIMD register and we can process 8 values at a time, increasing
parallelism.

Overall, compression has been shown to heavily improve perfor-
mance in modern column-stores and it is now an integral part of all
column-stores in industry. In addition, it is interesting to note that the
extra storage space which is gained on disk due to compression can be
used towards materializing auxiliary data structures/copies, i.e., such
as the projections proposed in C-Store. In turn, this improves perfor-
mance even more because now queries may enjoy better access patters.
There have been several research studies on compression in column-
stores [2, 100, 43, 15]. Most of this work was pioneered in C-Store and
VectorWise but significant advances were made in industry as well.
In particular, the IBM BLINK project [11] proposed the so called fre-
quency partitioning scheme which provides a much more tight integra-
tion of compression with a column-store architecture.

Frequency partitioning. The main motivation of frequency par-
titioning is to increase the compression ratio while still providing an
architecture that relies on fixed-width arrays and can exploit vectoriza-
tion. This requires a more tight design of compression with the system
architecture. With frequency partitioning a column is reorganized such
as in each page of a column, we have as low information entropy as
possible. To do this IBM BLINK reorganizes each column based on the
frequency of values that appear in the column, i.e., frequent values are
stored together in the same page(s). This allows the system to use com-
pact per page dictionaries for dictionary compression, requiring fewer
codes which can in turn be stored with fewer bits (compared to having
a single dictionary for the whole column). For example, if we only have
to distinguish between two values in a single page of a column, then we

4.2. Compression 235

only need a single bit for the dictionary codes in this page. Within each
page, all values/codes are fixed-width which allows for operators with
CPU and cache friendly access patterns as in a typical column-store
architecture, while the system performs vectorized processing at the
granularity of one page-at-a-time.

Compression algorithms. There have been several research
studies that evaluate the performance of di�erent compression algo-
rithms for use with a column-store [2, 100, 43, 42, 15]. Some of these
algorithms are su�ciently generic that they can be used in both row-
stores and column-stores; however some are specific to column-stores
since they allow compression symbols to span across multiple consec-
utive values within the same column (this would be problematic in
a row-store, since, in a row-store, consecutive values from the same
column are not stored consecutively on storage).

There are numerous possible compression schemes that can be ap-
plied, i.e., run-length encoding, bit-vector encoding, dictionary com-
pression and patching. We describe those techniques in the following
sections.

4.2.1 Run-length Encoding

Run-length encoding (RLE) compresses runs of the same value in a
column to a compact singular representation. Thus, it is well-suited
for columns that are sorted or that have reasonable-sized runs of the
same value. These runs are replaced with triples: (value, start position,
runLength) where each element of the triple is typically given a fixed
number of bits. For example, if the first 42 elements of a column contain
the value ‘M’, then these 42 elements can be replaced with the triple:
(‘M’, 1, 42).

When used in row-oriented systems, RLE is only used for large
string attributes that have many blanks or repeated characters. But
RLE can be much more widely used in column-oriented systems where
attributes are stored consecutively and runs of the same value are com-
mon (especially in columns that have few distinct values). For exam-
ple, with ideas such as C-Store projections where each column may
be stored in multiple projections/orders, many columns end-up being

236 Column-store internals and advanced techniques

sorted (or secondarily sorted) and thus there are many opportunities
for RLE-type encoding.

Given that RLE replaces arbitrary blocks of values with a single
triple at a time, it results in variable width and variable length columns.
This implies that we cannot use the kind of operators described pre-
viously for fixed-width columns as well as that tuple reconstruction
becomes a little bit more complicated. This is a tradeo� one has to
balance against the storage gains and thus the I/O and performance
improvements that RLE brings on a particular column based on the
underlying data distribution.

4.2.2 Bit-Vector Encoding

Bit-vector encoding is most useful when columns have a limited number
of possible data values (such as states in the US, or flag columns).
However, it can be used even for columns with a large number of values
if the bit-vectors are further compressed. In this type of encoding, a
bit-string (whose number of bits is equal to the size of the column) is
associated with each possible unique element from a column’s domain,
with a ‘1’ in the ith position in the bitstring if the ith value in the
column is equal to the domain element that the bitstring is associated
with, and a ‘0’ otherwise. For example, the following column data:

1 1 3 2 2 3 1

would be represented as three bit-strings:

bit-string for value 1: 1100001
bit-string for value 2: 0001100
bit-string for value 3: 0010010

Since an extended version of this scheme can be used to index row-
stores (so-called bit-map indices [71]), there has been much work on
further compressing these bit-maps and the implications of this further
compression on query performance [68, 8, 7, 53, 91, 93, 92].

4.2. Compression 237

4.2.3 Dictionary

Dictionary encoding works well for distributions with a few very fre-
quent values, and can also be applied to strings. The simplest form
constructs a dictionary table for an entire table column sorted on fre-
quency, and represents values as the integer position in this table. These
integers can again be compressed using an integer compression scheme.
The global dictionary may grow large, and the value distribution may
vary locally. For such situations, and also to accommodate updates
more easily, sometimes a per-block dictionary is used [76, 11]. Dictio-
nary compression normally lends itself to optimizing queries by rewrit-
ing predicates on strings into predicates on integers (which are faster),
but this is easiest to accomplish with a global dictionary.

One benefit of dictionary compression is that it can result in fixed
width columns if the system chooses all codes to be of the same width.
This requires sacrificing a little bit in terms of the ultimate storage
gains, but allows for CPU e�cient access patterns. In fact, it is interest-
ing to note that even though plain MonetDB does not exploit compres-
sion throughout its architecture (this was introduced in VectorWise) it
still uses dictionary compression for (variable width) string columns in
order to transform them into fixed-width columns (of codes).

One practical point of consideration is how to dictionary compress
e�ciently, which depends on fast hashing. One particularly fast tech-
nique is cuckoo hashing [97].

4.2.4 Frame Of Reference (FOR)

If the column distribution has value locality, one may represent it as
some constant base plus a value. The base may hold for an entire disk
block, or for smaller segments in a disk block. The value then is a small
integer (which takes fewer bits to store than larger integers); hence the
physical representation of a block of FOR values is the base followed
by one small integer for each tuple [31]. For example, the sequence of
values: 1003, 1001, 1007, 1006, 1004 can be represented as: 1000, 3,
1, 7, 6, 4. Frame of reference can also be combined with delta coding,
where the current value is represented as a delta with respect to the

238 Column-store internals and advanced techniques

preceding value. This is especially useful when the next value is strongly
correlated with the preceding value. One typical example is inverted list
data which consists of ascending integers.

4.2.5 The Patching Technique

Dictionary and FOR compression rates su�er if the domain of values
becomes too large, or has outliers, respectively. However, if the fre-
quency of the distribution is skewed, then we can still compress the
data if the compression is done only for the most frequent values.

A simple extension to both FOR and Dictionary encoding is to allow
so-called exception values which are not compressed. The exception
technique is typically implemented by splitting a disk block into two
parts that grow towards each other: the compressed codes at the start
of the block growing forward, and an error array at the end growing
backwards. For tuples encoded as exception values, the compressed
code would be a special escape. Checking for this escape with an if-
then-else, however, constitutes a di�cult to predict branch in the very
kernel of the algorithm, which does not run well on modern CPUs
(branch mispredictions).

The patching technique [100], rather than storing escape values in
the codes, uses these to maintain a linked list. Decompression first com-
presses all codes regardless exceptions. In a second step, the linked list
is traversed and the exception values are “patched into” the decom-
pressed output. While doing more work than naive testing for escapes,
patched decompression performs better, by separating the problematic
branch from the main work. The patch technique can also be considered
an example of the algorithmic optimizations opportunities provided by
block-wise processing.

4.3 Operating Directly on Compressed Data

In many cases, the column-oriented compression algorithms discussed
above (in addition to some of the row-oriented algorithms) can be op-
erated on directly without decompression. This yields the ultimate per-
formance boost, since the system saves I/O by reading in less data but

4.3. Operating Directly on Compressed Data 239

does not have to pay the decompression cost. This benefit is magnified
for compression schemes like run length encoding that combine mul-
tiple values within a column inside a single compression symbol. For
example, if a run-length encoded column says the value “42” appears
1000 times consecutively in a particular column for which we are com-
puting a SUM aggregate, the operator can simply take the product of
the value and run-length as the SUM, without having to decompress.
Another example, is when dictionary compression uses order preserving
encoding; that is, the code representing a column value is guaranteed
to be smaller than all codes representing bigger values and bigger than
all codes representing smaller values. In this way, comparison actions
during filtering, e.g., within a select operator, may be performed di-
rectly on the codes without decompressing the data; we only need to
encode the filter bounds/pivots instead.

However, operating directly on compressed data requires modifica-
tions to the query execution engine. Query operators must be aware of
how data is compressed and adjust the way they process data accord-
ingly. This can lead to highly non-extensible code (a typical operator
might consist of a set of ‘if statements’ for each possible compression
type). One solution to this problem is to abstract the general properties
of compression algorithms in order to facilitate their direct operation
so that operators only have to be concerned with these properties. This
allows new compression algorithms to be added to the system without
adjustments to the query execution engine code.

This is done by adding a component to the query executor that en-
capsulates an intermediate representation for compressed data called
a compression block. A compression block contains a bu�er of col-
umn data in compressed format and provides an API that allows
the bu�er to be accessed by query operators in several ways. Com-
pression blocks do not necessarily have a mapping to storage blocks.
In fact, a compression block can be quite small in its representa-
tion footprint (e.g., a single RLE triple); in general, a storage block
can be broken up into multiple compression blocks. These compres-
sion blocks expose key properties to the query operators. For exam-
ple, RLE and bit-vector blocks tend to describe a list of locations

240 Column-store internals and advanced techniques

for a single column value. A query operator such as a count aggre-
gation operator simply needs to call the getSize() method from the
API of the compression block, without having to iterate through the
block. Properties that are highly relevant to many query operators
are isSorted(), isPositionContiguous(), and isOneValue(). Based
on these properties, query operators can elect to extract high level
information about the block (such as getSize(), getFirstValue(),
and getEndPosition()) instead of iterating through the compression
block, one value at a time.

By abstracting away the key properties of compression schemes that
enable direct operation on compressed data, the query operators do not
need to be changed when an additional compression scheme is added
to the database system. If an engineer desires to add a new compres-
sion scheme, the engineer must implement an interface that includes
the following code: (a) code converts raw data into a compressed rep-
resentation (b) code that breaks up compressed data into compression
blocks during a scan of compressed data from storage (c) code that
iterates through compression blocks and optionally decompresses the
data values during this scan (d) values for all relevant properties of the
compression algorithm that is exposed by the compression block, and
(e) code that derives the high level information described above (such
as getSize()) from a compression block.

Results from experiments in the literature show that compression
not only saves space, but significantly improves performance. However,
without operation on compressed data, it is rare to get more than a
factor of three improvement in performance [2]. Once the query execu-
tion engine is extended with extensible compression-aware techniques,
it is possible to obtain more than an order of magnitude improvement
in performance, especially on columns that are sorted or have some
order to them.

4.4 Late Materialization

In a column-store, information about a logical entity (e.g., a person) is
stored in multiple locations on disk (e.g., name, e-mail address, phone

4.4. Late Materialization 241

number, etc. are all stored in separate columns), whereas in a row
store such information is usually co-located in a single row of a table.
However, most queries access more than one attribute from a particular
entity. Furthermore, most database output standards (e.g., ODBC and
JDBC) access database results entity-at-a-time (not column-at-a-time).
Thus, at some point in most query plans, data from multiple columns
must be combined together into ‘rows’ of information about an entity.
Consequently, this join-like materialization of tuples (also called “tuple
construction”) is an extremely common operation in a column store.

Naive column-stores [38, 40] store data on disk (or in memory)
column-by-column, read in (to CPU from disk or memory) only those
columns relevant for a particular query, construct tuples from their
component attributes, and execute normal row-store operators on these
rows to process (e.g., select, aggregate, and join) data. Although likely
to still outperform the row-stores on analytical workloads like those
found in data warehousing, this method of constructing tuples early in
a query plan (“early materialization”) leaves much of the performance
potential of column-oriented databases unrealized.

More recent column-stores such as VectorWise, C-Store, Vertica,
and to a lesser extent, SybaseIQ, choose to keep data in columns until
much later into the query plan, operating directly on these columns.
In order to do so, intermediate “position” lists often need to be con-
structed in order to match up operations that have been performed
on di�erent columns. Take, for example, a query that applies a pred-
icate on two columns and projects a third column in the same table
after the predicates have been applied. In a column-store that uses
late materialization, the predicates are applied to the column for each
attribute separately, and a list of positions (ordinal o�sets within a
column) of values that passed the predicates are produced. Depending
on the predicate selectivity, this list of positions can be represented as
a simple array, a bit string (where a 1 in the ith bit indicates that the
ith value passed the predicate) or as a set of ranges of positions. These
position representations are then intersected (if they are bit-strings,
bit-wise AND operations can be used) to create a single position list.
This list is then sent to the third column to extract values at the desired

242 Column-store internals and advanced techniques

positions.
Example. Figure 4.1 shows a simple example of a late material-

ization query plan and execution in a modern column-store. Here, we
assume that intermediate results are represented with position lists
and, in order to focus solely on the late materialization issues, and for
ease of presentation, no compression is used and we show the example
using bulk processing. The query in Figure 4.1 is a select-project-join
query; it essentially filters three columns of two separate tables (R,S)
and then joins these two tables on two columns, while subsequently it
performs a sum aggregation on one of the tables (R). Figure 4.1 shows
graphically the various steps performed to answer this query, as well as
it shows the query plan in MAL algebra and how each MAL operator
behaves.

Late materialization means that we always operate on individual
columns, i.e., in Figure 4.1 the select operators filter each column in-
dependently, maximizing utilization of memory bandwidth as only the
relevant data is read for each operator. In this way, after having fil-
tered column R.a in Step 1 of Figure 4.1, a position list contains the
positions of the qualifying tuples. Recall that positions are used as row
IDs. All intermediate results which are position lists in Figure 4.1 are
marked with a dashed line. Then, in Step 2, we reconstruct column
R.b which is needed for the next filtering action. Since the positions in
the position list (inter1) are ordered (as we sequentially scanned R.a

in Step 1), we can project the qualifying R.b values in a cache-friendly
skip sequential access pattern. In Step 3, we scan intermediate result
inter2 to apply the second filter predicate (on R.b). In the same way
as before, this results in a new intermediate array that contains the
qualifying positions which we then use in Step 4 to fetch the qualifying
values from column R.c (which we need for the join).

Subsequently, we filter column S.a in the same way as we did for
table R and we fetch the qualifying values from the other join input
column (S.b). In Step 7 we reverse this intermediate result in order to
feed it in the proper order to the join operator. The join operator in Step
8 operates on the individual join input columns, and it produces two
position lists which may be used for projecting any attributes needed in

4.4. Late Materialization 243

12
34
75
45
49
58
97
75
42
55

11
35
62
44
29
78
19
81
26
23

Relation R

Ra

Rb
Relation S
Sa Sb

select sum(R.a) from R, S where R.c = S.b and
5<R.a<20 and 40<R.b<50 and 30<S.a<40

Initial Status

12
34
53
23
78
65
33
21
29
0

Rc

3
16
56
9
11
27
8

41
19
35

Ra
2
4
5
7
9

inter1

select(Ra,5,20)

3
16
56
9
11
27
8

41
19
35

2
4
5
7
9

inter1
12
34
75
45
49
58
97
75
42
55

34
45
49
97
42

34
45
49
97
42

Rb inter2
reconstruct(Rb,inter1)

inter2 inter3
2
4
5
7
9

2
4
5
7
9

4
5
9

select(inter2,30,40)

inter3

4
5
9

12
34
53
23
78
65
33
21
29
0

Rc join_input_R

23
78
29

4
5
9

join_input_R

23
78
29

4
5
9

reconstruct(Rc,inter3)

1. inter1 = select(Ra,5,20)
2. inter2 = reconstruct(Rb,inter1)
3. inter3 = select(inter2,30,40)
4. join_input_R = reconstruct(Rc,inter3)
5. inter4 = select(Sa,55,65)
6. inter5 = reconstruct(Sb,inter4)
7. join_input_S = reverse(inter5)
8. join_res_R_S = join(join_input_R,join_input_S)
9. inter6 = voidTail(join_res_R_S)
10. inter7 = reconstruct(Ra,inter6)
11. result = sum(inter7)

17
49
58
99
64
37
53
61
32
50

Sa
3
5
7
8

10

inter4
select(Sa,55,65)

17
49
58
99
64
37
53
61
32
50

62
29
19
81
23

inter5
reconstruct(Sb,inter4)

3
5
7
8

10

3
5
7
8

10

inter4
11
35
62
44
29
78
19
81
26
23

Sb
62
29
19
81
23

inter5
3
5
7
8

10

62
29
19
81
23

join_input_S
3
5
7
8

10

reverse(inter5)

62
29
19
81
23

join_input_S
3
5
7
8

10

4
9

10
5

join_res_ R_S

4
9

10
5

join(join_input_R,join_input_S)
join_res_ R_S

4
9

inter6
voidTail(join_res_R_S)

4
9

inter6

Ra

3
16
56
9
11
27
8

41
19
35

9
19

inter7

9
19

inter7
reconstruct(Ra,inter6)

28

result
sum(inter7)

Query and Query Plan (MAL Algebra)

(1) (2) (4)(3)

(5) (6) (7)

(8) (9)

(10) (11)

Figure 4.1: An example of a select-project-join query with late materialization.

244 Column-store internals and advanced techniques

the select clause by either table. In this case, we need only the position
list for table R so we “void” the tail of the join result and use this
position list in order to fetch the qualifying values from column R.a

which we need for the aggregation. Finally, in Step 11, we perform the
aggregation (again on one column-at-a-time) enjoying CPU and cache
friendly access patterns, reading only the relevant data.

Every time we fetch the values of a column given a position list
(which is the result of a previous operator) we say that we perform a
tuple reconstruction action. Such actions have to be performed multiple
times within a query plan, i.e., at least N ≠ 1 times for each table,
where N is the number of attributes of a given table referenced in a
query. Tuple alignment across columns and enforcement of sequential
access patterns reduces the costs of tuple reconstruction actions. In
Figure 4.1, we demonstrated an architecture where intermediate results
are materialized in the form of row-id lists (positions). However, as
we discussed earlier, many more alternatives are possible (typically
depending on selectivity) such as using bit vectors or filtering columns
independently and merging results as in [80].

Another interesting observation is that with C-Store projections,
tuple reconstruction becomes a more lightweight action. Given that
each projection is sorted by one leading column, then a query which
selects a range on this column immediately restricts its actions for
tuple reconstruction to the range defined by the first selection. Since
the projection is sorted on this attribute, this is a contiguous range
on the projection, which in turn means that any tuple reconstruction
actions take place only in a restricted horizontal partition as opposed
to the whole projection; this inherently provides better access patterns
as there will be less cache misses. Sideways database cracking [50] (to
be discussed later on) provides the same e�ect but in a self-organizing
way, i.e., partially sorting columns as the workload evolves, adapting
to workload patterns and avoiding creating whole projections a priori.

Advantages of late materialization. The advantages of late ma-
terialization are four-fold [3]. First, selection and aggregation operators
tend to render the construction of some tuples unnecessary. Therefore,
if the executor waits long enough before constructing a tuple, it might

4.4. Late Materialization 245

be able to avoid the overhead of constructing it altogether. Second, if
data is compressed using a column-oriented compression method (that
potentially allow compression symbols to span more than one value
within a column, such as RLE), it must be decompressed during tu-
ple reconstruction, to enable individual values from one column to be
combined with values from other columns within the newly constructed
rows. This removes the advantages of operating directly on compressed
data, described above.

Third, cache performance is improved when operating directly on
column data, since a given cache line is not polluted with surrounding
irrelevant attributes for a given operation [5]. This is particularly im-
portant as the bandwidth between memory and CPU increasingly be-
comes a bottleneck in modern computing systems. For example, when
applying a predicate evaluation operation in the where clause (such as
WHERE salary > $100,000), memory bandwidth is not wasted ship-
ping other attributes from the same set of tuples to the CPU, since
only the salary attribute is relevant for that particular operator.

Fourth, the vectorized optimizations described above have a higher
impact on performance for fixed-length attributes. In a row-store, if any
attribute in a tuple is variable-width, then the entire tuple is variable
width. In a late materialized column-store, fixed-width columns can be
operated on separately.

Despite all the reasoning above, late materialization can sometimes
be slower than early materialization (especially if a naive implementa-
tion is used). For example, if a predicate is used that is not restrictive
(e.g., WHERE salary > $100 AND age > 5 AND ...) on many at-
tributes within a tuple, the process of intersecting large amounts of
positional intermediate data (one for each predicate applied) and then
extracting and materializing a large percentage of tuples in the table
that pass all the predicates is more costly than simply constructing
tuples and avoiding all the positional calculations inherent in the late
materialization model.

Multi-column blocks. There are several directions to further im-
prove performance of tuple reconstruction or even to eliminate it alto-
gether in some cases. The high level idea is to store data in groups of

246 Column-store internals and advanced techniques

0
1
1
0
0
1
1

Position
descriptor

Start 47
End 53

LINENUM
values

(encoded)

RLE
val = 5

start = 47
len = 7

RETFLAG
values

(encoded)

Bit-vector
1 0 0
0 1 0
0 0 0
1 0 0
0 0 1
0 0 1
1 0 0

start = 47
values

(65,78,82)

SHIPDATE
values

Uncomp.
8040
8041
8042
8043
8044
8044
8046

Figure 4.2: An example multi-column block containing values for the SHIPDATE,
RETFLAG, and LINENUM columns. The block spans positions 47 to 53; within
this range, positions 48, 49, 52, and 53 are active (i.e., they have passed all selection
predicates).

columns, as opposed to one column-at-a-time, in what is called multi-
column blocks [3], or vector blocks [18] or even column-groups [11].

A multi-column block or vector block contains a cache-resident,
horizontal partition of some subset of attributes from a particular re-
lation, stored in their original compressed representation. Figure 4.2
shows an example. One way to think about multi-column blocks is
that it is a storage format similar to PAX [5] with the di�erence that
not all attributes of a relational table have to be in the same page.
Multi-column blocks allow predicates to be applied to the compressed
representation of each column involved in a query predicate separately,
and the position list results from the predicate application are pipelined
to an intersection operator that intersects them (while they are still in
cache) and outputs the result to a position descriptor (shown to the
left of the Figure 4.2) indicating (using a bit vector in this example)
which tuples passed all predicates. This data structure can be passed

4.4. Late Materialization 247

page%1% page%2% page%3% page%4% page%5% page%6% page%7% page%8%

A% B% C% D% E% F% G% H%

A% B% C% D% E% F%

page%1% page%2%

G% H%

%%

page%3%

A% B% C% D% E% F%

page%1% page%2%

G%

page%3%

pu
re
%c
ol
um

ns
%

m
ul
>?
co
lu
m
n%
bl
oc
ks
%

H%

page%4%

co
lu
m
n?
gr
ou

ps
%

Figure 4.3: An example of a alternative storage formats in modern column-stores.

to higher level operators for further processing.
Although multi-column blocks do not eliminate the need for inter-

secting positions, only small subsets of each column are operated on at
once, allowing the pipelining of predicate evaluation output (position
lists) directly to the intersection operator, and therefore enabling the
construction of tuples to occur while the values that are going to be
stitched together are still in cache. This allows late materialization to
outperform early materialization for all but the most extreme queries
[3] as long as no joins are involved. However, late materialized joins
can be problematic without further optimizations, as will be discussed
in the next section.

Column-groups, used in IBM Blink [11], propose an even more flex-
ible layout where some of the columns stored in the same page of a
multi-column block may also be stored in a row format (thus forming
a column-group). By row-store format here we do not mean traditional

248 Column-store internals and advanced techniques

row-store formats as in slotted pages; instead data is still in the form of
fixed-width dense arrays, but a subset of the columns in a page may be
“glued” together, forming a matrix. This can be beneficial for operators
that need to work over all these columns, avoiding completely the need
for intermediate results and tuple reconstruction (as long as no other
attributes are required by a query).

Similar directions to column-groups and multi-column blocks ap-
peared in the row-store context with ideas such as multi-resolutions
blocks [94]. The idea was that each row-store page may contain only
few of the table’s attributes, which helps to avoid loading unnecessary
data attributes from disk for queries that do not want to access all
attributes. Internally, the pages were still organized in a slotted format
and processing was done in a standard row-store engine.

An example of the various alternative storage formats in modern
column-stores is shown in Figure 4.3. Each page, may hold one column-
at-a-time, or multiple columns, internally organized in a columnar for-
mat or even glued together in fixed-width rows.

Column-groups and variations are supported by most modern
column-stores including Vertica, VectorWise, and IBM BLU. One draw-
back of multi-column blocks is that one needs to make such decisions a
priori, i.e., to decide which columns will be grouped together at load-
ing time; this requires workload knowledge and rather stable workload
patterns. Research work on VectorWise shows that it is even beneficial
to construct such column-groups on-the-fly during query processing
when the expected benefit in terms of access patterns outweighs the
transformation costs [101], while vision systems expect features such
as continuous adaptation of storage formats, i.e., the proper column-
groups, based on query patterns [45].

4.5 Joins

Join operators present a plethora of opportunities for performance im-
provements in column-stores, but these opportunities can also lead to
bottlenecks and complexities if not dealt with appropriately. If an early
materialization strategy is used relative to a join, tuples have already

4.5. Joins 249

been constructed before reaching the join operator, so the join functions
as it would in a standard row-store system and outputs tuples (yield-
ing the same performance profile as a row-store join). However, several
alternative algorithms can be used with a late materialization strategy.
The most straightforward way to implement a column-oriented join is
for (only) the columns that compose the join predicate to be input
to the join. In the case of hash joins (which is the typical join algo-
rithm used) this results in much more compact hash tables which in
turn results in much better access patterns during probing; a smaller
hash table leads to less cache misses. The output of the join is a set
of pairs of positions in the two input relations for which the predicate
succeeded. For example, the figure below shows the results of a join of
a column of size 5 with a column of size 4:

42
36
42
44
38

1

38
42
46
36

=

1
2
3
5

2
4
2
1

For many join algorithms, the output positions for the left (outer)
input relation will be sorted while the output positions of the right
(inner) input relation will not. This is because the positions in the left
column are often iterated through in order, while the right relation is
probed for join predicate matches. For other join algorithms (for ex-
ample, algorithms that sort or repartition both sets of input) neither
position list will be sorted. Either way, at least one set of output po-
sitions will not be sorted. Unsorted positional output is problematic
since typically after the join, other columns from the joined tables will
be needed (e.g., the query:

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

requires the age column to be extracted from the emp table and the
name column to be extracted from the dept table after performing

250 Column-store internals and advanced techniques

the join). Unordered positional lookups are problematic since extract-
ing values from a column in this unordered fashion requires jumping
around storage for each position, causing significant slowdown since
most storage devices have much slower random access than sequential.

Luckily, there have been several improvements proposed in the re-
search literature to avoid this problem of jumping around in storage
to extract values at an unordered set of positions. One idea is to use
a “Jive join” [64, 89]. For example, when we joined the column of size
5 with a column of size 4 above, we received the following positional
output:

1
2
3
5

2
4
2
1

The list of positions for the right (inner) table is out of order. Let’s
assume that we want to extract the customer name attribute from
the inner table according to this list of positions, which contains the
following four customers:

Smith
Johnson
Williams

Jones

The basic idea of the Jive join is to add an additional column
to the list of positions that we want to extract, that is a densely
increasing sequence of integers:

4.5. Joins 251

2 1
4 2
2 3
1 4

This output is then sorted by the list of positions that we want
to extract (this sort causes the newly added column to now be out of
order):

1 4
2 1
2 3
4 2

The columns from the table are then scanned in order, with values
at the (now sorted) list of positions extracted and added to current
data structure.

1 4 Smith
2 1 Johnson
2 3 Johnson
4 2 Jones

Finally, the data structure is sorted again, this time by the column
that was added originally to the join output, to revert the current
data structure back to the original join order (so as to match up with
join output from the other table).

252 Column-store internals and advanced techniques

2 1 Johnson
4 2 Jones
2 3 Johnson
1 4 Smith

This algorithm allows all columns to be iterated through sequen-
tially, at the cost of adding two sorts of the join output data. The cost
of these additional sorts increases with the size of the join output (i.e.,
the number of tuples that join). Since most database systems have a
fast external sort algorithm implemented (that accesses the input as se-
quentially as possible), this algorithm can cause significant performance
improvements relative to the random access that would result from the
more naive implementation of a late materialized join described above.

Further research has resulted in additional improvements to the
above algorithm. It turns out that a complete sort is not necessary to
reduce random access performance overhead in value extraction of join
output. This is because most storage media are divided into contigu-
ous blocks of storage, and random access within a block is significantly
cheaper than random access across blocks. Therefore, the database does
not need to completely sort the position list before using it to extract
values from columns; rather, it just needs to be partitioned into the
blocks on storage (or an approximation thereof) in which those posi-
tions can be found. Within each partition, the positions can remain
unordered, since random access within a storage block is much cheaper
(e.g., the di�erence between memory and disk I/O, or the di�erence
between cache and memory I/O). The column from which we are ex-
tracting values is therefore accessed in block order, but not in exact
position order. The Radix Join [17] is an example of a late materialized
join along these lines, and provides a fast mechanism for both perform-
ing the partitioning of column positions into blocks before the column
extraction, and reordering the intermediate data back to the original
join order after the extraction has occurred, as long as all data involved
are from fixed-width columns.

In practice, due to the additional engineering complexity, many
commercial column-store implementations do not implement pure late-

4.5. Joins 253

materialized joins, despite the promising experimental results presented
in the literature of the above-described algorithms. Instead, for join
algorithms that iterate through the left (outer) input in order and
probes the right (inner) input out of order, a hybrid materialization
approach is used. For the right (inner) table, instead of sending only the
column(s) which compose the join predicate, all relevant columns (i.e.,
columns to be materialized after the join plus the predicate column)
are materialized before the join and input to the join operator, while
the left (outer) relation sends only the single join predicate column.
The join result is then a set of tuples from the right relation and an
ordered set of positions from the left relation; the positions from the
left relation are used to retrieve additional columns from that relation
and complete the tuple construction process. This approach has the
advantage of only materializing values in the left relation corresponding
to tuples that pass the join predicate while avoiding the penalty of
materializing values from the right relation using unordered positions.
For join algorithms that iterate through both input relations out of
order, both relations are materialized before the join.

Multi-column blocks (described above) provide an alternative op-
tion for the representation of the right (inner) relations. Instead of
materializing the tuples of the inner table, the relevant set of columns
are input to the join operator in a sequence of multi-column blocks. As
inner table values match the join predicate, the position of the value is
used to retrieve the values for other columns (within the same block),
and tuples are constructed on the fly. This technique is useful when
the join selectivity is low and few tuples need to be constructed, but
is otherwise expensive, since it potentially requires a particular tuple
from the inner relation to be constructed multiple times.

Finally, since the rebirth of column-stores in the early 2000s, the
work on MonetDB and C-store joins triggered a plethora of research
work towards e�cient main-memory joins, e.g., [9, 10, 6]. What all these
e�orts have in common is that they follow the high level practices first
adopted in column-store operators such as a focus on main-memory
performance, being sensitive to hardware properties and trends, being
cache conscious, exploiting SIMD instructions, avoiding random access

254 Column-store internals and advanced techniques

and pointer chasing, etc.

4.6 Group-by, Aggregation and Arithmetic Operations

Regarding the possible relational operators, so far we discussed selec-
tions and joins, in addition to tuple reconstruction. In this section, we
talk about other relational operators in column-stores such as group-
by, aggregation and arithmetic operators. Overall, these operators take
advantage of late materialization and vectorization as well as a layout
format which is based on fixed-width dense arrays, and thus being able
to work on only the relevant data at a time, exploiting SIMD instruc-
tions, and CPU- and cache- friendly patterns.

Group-by. Group-by is typically a hash-table based operation in
modern column-stores and thus it exploits similar properties as dis-
cussed in the previous section. In particular, we may create a compact
hash table, i.e., where only the grouped attribute can be used, leading
in better access patterns when probing.

Aggregations. Aggregation operations make heavy use of the
columnar layout. In particular, they can work on only the relevant col-
umn with tight for-loops. For example, assume sum(), min(), max(),
avg() operators; such an operator only needs to scan the relevant col-
umn (or intermediate result which is also in a columnar form), maxi-
mizing the utilization of memory bandwidth. An example is shown in
Figure 4.1 in Step 11, where we see that the sum operator may access
only the relevant data in a columnar form.

Arithmetic operations. Other operators that may be used in the
select clause in an SQL query, i.e., math operators (such as +,-*,/) also
exploit the columnar layout to perform those actions e�ciently. How-
ever, in these cases, because such operators typically need to operate
on groups of columns, e.g., select A+B+C From R ..., they typically
have to materialize intermediate results for each action. For example,
in our previous example, a inter=add(A,B) operator will work over
columns A and B creating an intermediate result column which will
then be fed to another res=add(C,inter) operator in order to perform
the addition with column C and to produce the final result. Vectoriza-

4.7. Inserts/updates/deletes 255

tion helps in minimizing the memory footprint of intermediate results
at any given time, but it has been shown that it may also be benefi-
cial to on-the-fly transform intermediate results into column-groups in
order to work with (vectors of) multiple columns [101], avoiding ma-
terialization of intermediate results completely. In our example above,
we can create a column-group of the qualifying tuples from all columns
(A, B, C) and perform the sum operation in one go.

4.7 Inserts/updates/deletes

Inherently, column-stores are more sensitive to updates compared to
row-stores. By storing each column separately in a separate file, this
means that each record/tuple of a relational table is stored in more
than one files, i.e., in as many files as the number of attributes in the
table. In this way, in order to perform even a single update action on
a single row, we need multiple I/O actions (as many as the attributes
in the table) in order to update all files. In contrast, a row-store can
perform a single update with a single I/O. The use of column-groups
can reduce the cost of updates but still we need to access multiple files.

Furthermore, column-stores in addition to vertical fragmentation
make heavy use of compression, and may also store multiple table
replicas or projections in di�erent value orders, all to enhance ana-
lytical query performance. Even if a user wants to insert many tuples
at once, these disk I/Os are scattered (random) I/Os, because of the
ordered or clustered table storage. Finally, compression makes updates
computationally more expensive and complex since data needs to be
de-compressed, updated and re-compressed before being written back
to disk. Extra complications occur if the updated data no longer fits
the original location.

Some analytical columnar database systems, such as C-Store and
MonetDB, handle updates by splitting their architecture into a “read-
store” that manages the bulk of all data and a “write-store” that man-
ages updates that have been made recently. Consequently, all queries
access both base table information from the read-store, as well as all
corresponding di�erences from the write-store and merge these on-the-

256 Column-store internals and advanced techniques

fly (a MergeUnion against insert, and MergeDi� against deletes). In or-
der to keep the write-store small (it resides typically in RAM), changes
in it are periodically propagated into the read-store.

A natural approach to implement the write-store is to store di�er-
ences (inserts, deletes, and updates) in an in-memory structure. Mon-
etDB uses plain columns, i.e., for every base column in the schema
there are two auxiliary columns to store pending inserts and pending
deletes; an update is a delete followed by an insert. C-Store proposed
that the write optimized store could also use a row-format which speeds
up updates even more as only one I/O is needed to write a single new
row (but merging of updates in the column format becomes potentially
more expensive). The disadvantage of storing deltas in separate tables
is that every query must perform a full merge between the read-store
and the di�erential table. However, there are several optimizations that
can be applied. For example, it is often possible to perform (parts of) a
query on the read-store and delta data separately, and only combine the
results at the end. For example, a select operator is applied indepen-
dently on all three columns (base, inserts, deletes) and only qualifying
tuples are merged and pushed further in the query plan. Also, deletions
can be handled by using a boolean column marking the “alive” status
of a given tuple, stored in RAM, using some updatable variant of the
compressed bitmap index.

The VectorWise system uses a novel data structure, called Posi-
tional Delta Trees (PDTs) to store di�erences. The key advantage is
that merging is based on knowledge of the position where di�erences
apply, and not on the sort key of the table, which can be composite and
complex. When a query commits, it immediately finds out which table
positions are a�ected. As such, it moves the activity of merging from
query time to update time, which fits the agenda of read-optimized
processing. In contrast, without PDTs, we would resort to CPU-costly
MergeUnion/MergeDi� processing that needs to be repeated by all
queries. Additionally, it makes each query read the sort key columns,
leading to additional I/O if these attributes were otherwise not required
for answering the query.

Keeping track of positions in an ordered table is tricky, as in-

4.8. Indexing, Adaptive Indexing and Database Cracking 257

serts/deletes halfway change the position of all subsequent tuples. The
PDT is a kind of counting B-tree that allows to keep track of positions
under logarithmic update cost.

Di�erential data structures such as PDTs, but also previous ap-
proaches like di�erential files, can be layered: one can create deltas
on deltas on deltas, etc. This hierarchical structure can also be ex-
ploited in the hierarchical memory architecture of computers, by, for
example, placing very small deltas in the CPU cache, larger ones in
RAM, and huge deltas on disk or on solid state memory. Addition-
ally, layered deltas are a tool for implementing isolation and transac-
tion management. The idea is that a new transaction adds an initially
empty top-level PDT to the layer of PDTs already present. By sharing
the immutable lower-level, bigger, PDTs, this provides cheap snapshot
isolation. As the transaction makes changes, these get added to this
top-level PDT, which e�ectively captures the write-set of the transac-
tion. The algorithms to keep PDT position tracking consistent under
concurrent transactions were shown in [41] to be exactly those required
to implement optimistic concurrency control.

Finally, a recent research trend is towards supporting both full
OLTP and OLAP functionality in a single system, by adopting many
of the principles pioneered in column-stores for fast OLAP processing.
System Hyper [57, 56] is the most representative example in this area
and its main design feature is that it relies on hardware-assisted page
shadowing to avoid locking of pages during updates. In addition, SAP
HANA [26] stores data in both column and row formats to enable both
kinds of functionalities.

4.8 Indexing, Adaptive Indexing and Database Cracking

In this section, we discuss indexing and adaptive indexing approaches
in column-stores. Even though column-stores allow for very e�cient
scans which typically significantly outperform traditional row-store
scans, still there is plenty of performance to gain by properly exploit-
ing indexing. Performing a scan in a column-store boils down to simply
traversing an array with a tight for-loop. Although this can be very

258 Column-store internals and advanced techniques

e�cient and CPU friendly, working with column-store indexes can be
one or more orders of magnitude faster [44]. Regarding the shape of
a column-store index, it was shown that it is more beneficial to work
over fully sorted columns as opposed to maintaining an in-memory tree
structure such as an AVL-tree on top of a column [44]. Tree structures
bring random access when traversing the tree, while on the other hand
if we fully replicate and sort a base column we can exploit e�cient
binary search actions during a range select.

Indexing. C-Store proposed the concept of projections, i.e., to
replicate each table multiple times and each replica may be ordered
by a di�erent attribute. In addition, each replica does not necessarily
have to contain all of the table’s attributes. A query may use a single
covering projection which is ordered (ideally) by the attribute which
participates in the query’s most selective predicate, thus minimizing
the e�ort needed to search as well as minimizing the e�ort needed for
tuple reconstruction. Given that columns compress very well, mate-
rializing these extra projections does not bring a significant storage
overhead when compared to a traditional row-store system. Of course,
the amount and the kinds of projections needed depends on the work-
loads and having extra projections brings an overhead for updates (very
much as it is with the case of indexes in a traditional system).

Another form of indexing which is typically used in column-stores
are zonemaps, i.e., to store light-weight metadata on a per page ba-
sis, e.g., min/max. For example, Netezza uses this kind of indexing to
speed up scans, i.e., by eliminating pages which are known not to con-
tain qualifying tuples. Other attractive ideas include the use of cache
conscious bitmap indexing [86] which creates a bitmap for each zone
as opposed to having simply min/max information.

Database Cracking and Adaptive Indexing. Indexing, in all of
its forms, requires idle time for set-up e�ort and workload knowledge;
however, these are becoming more and more scarce resources. In the
rest of this section, we discuss the early e�orts on database cracking [44]
in column-stores. Database cracking pioneered the concept of adaptive
indexing in modern database systems in the context of the MonetDB
system and introduced a column-store architecture tailored for adaptive

4.8. Indexing, Adaptive Indexing and Database Cracking 259

indexing [48, 49, 50, 51, 37, 35, 36, 83]. We discuss both the basics of
these e�orts and also the reasons why it is that such e�orts flourished
within the column-store context by exploiting key features of column-
store architectures.

One of the fundamental issues with traditional, i.e., non-adaptive,
indexing approaches is that we need to make fixed up-front decisions
regarding which indexes we are going to create. Creating every possi-
ble index is not feasible because of space and time restrictions; there is
not enough space to store all possible indexes but more crucially there
is typically not enough idle time to create all those indexes. In this
way, we need to make a decision on how to tune a database system,
i.e., choose a subset of the possible indexes to create. However, making
such choices requires workload knowledge; we need to know how we are
going to use the database system, the kinds of queries we are going to
ask, which data is more important for the users, etc. As we enter more
and more into the big data era, more and more application scenarios
exhibit a non-predictable behavior (ad-hoc), meaning there is no work-
load knowledge to allow for index selection. In addition, more and more
applications require as fast as possible to achieve good performance for
new data; in other words there is no time to spend in analyzing the
expected workload, tuning the system and creating indexes.

Such dynamic and online scenarios are the main motivation for
adaptive indexing. The main idea is that the system autonomously
creates only the indexes it needs. Indexes are created (a) adaptively, i.e.,
only when needed, (b) partially, i.e., only the pieces of an index needed
are created and (c) continuously, i.e., the system continuously adapts.
With database cracking, a database system can be used immediately
when the data is available; the more the system is used, the more
the performance approaches the optimal performance that would be
achieved if there was enough idle time and workload knowledge to fully
prepare all indexes needed for the current workload.

The main innovation is that the physical data store is continuously
changing with each incoming query q, using q as a hint on how data
should be stored.

Assume a query requests A<10. In response, a cracking DBMS

260 Column-store internals and advanced techniques

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Figure 4.4: Cracking a column [48].

clusters all tuples of A with A<10 at the beginning of the respective
column C, while pushing all tuples with AØ10 to the end. A subse-
quent query requesting AØv1, where v1Ø10, has to search and crack
only the last part of C where values AØ10 reside. Likewise, a query
that requests A<v2, where v2Æ10, searches and cracks only the first
part of C. All crack actions happen as part of the query operators,
requiring no external administration. Figure 4.4 shows an example of
two queries cracking a column using their selection predicates as the
partitioning bounds. Query Q1 cuts the column in three pieces and
then Q2 enhances this partitioning more by cutting the first and the
last piece even further, where its low and high bound fall.

Cracking brings drastic improvements in column-store performance.
For example, in recent experiments with the Sloan Digital Sky Sur-
vey that collects query and data logs from astronomy, MonetDB with
cracking enabled finished answering 160.000 queries, while plain Mon-
etDB was still half way creating the proper indices and without having
answered a single query [37]. Similarly, in experiments with the busi-
ness standard TPC-H benchmark, perfectly preparing MonetDB with
all the proper indices/projections took 3 hours, while MonetDB with
cracking enabled answered all queries in a matter of a few seconds
with zero preparation [50]. Figure 4.5 depicts such an example from
the analysis in [50] on TPC-H factor 10. The plain column-store (Mon-

4.8. Indexing, Adaptive Indexing and Database Cracking 261

 70

 330

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

R
e
sp

o
n
se

 t
im

e
 (

m
ill

i s
e
cs

)

Query sequence

TPC-H Query 15764

MonetDB

MonetDB presorted

 (presorting cost=3 hours)

MonetDB/Cracking

 1000

 10000 MySQL

MySQL presorted

Figure 4.5: Adaptively and automatically improving column-store performance
with cracking [50].

etDB) achieves good improvement over the row-store system (MySQL)
even when the row-store uses B-tree indexing (MySQL presorted). Us-
ing column-store projections (uncompressed) brings even further im-
provements (MonetDB/presorted) but at a huge initialization cost; in
these experiments it takes 3 hours to prepare the perfect projections for
the TPC-H benchmark. On the other hand, when cracking is enabled
MonetDB can immediately start processing queries without any prepa-
ration; after a few queries cracking reaches optimal performance, i.e.,
similar to that of the perfectly prepared system which had to spend a
significant amount of time preparing (and in addition assumes we had
good workload knowledge).

The terminology “cracking” reflects the fact that the database
is partitioned (cracked) into smaller and manageable pieces. Crack-
ing gradually improves data access, eventually leading to a significant
speed-up in query processing [48, 50], even during updates [49]; as it
is designed over a column-store it is applied at the attribute level; a
query results in reorganizing the referenced column(s), not the com-
plete table; it is propagated across multiple columns on demand, de-

262 Column-store internals and advanced techniques

pending on query needs with partial sideways cracking [50], whereby
pieces of cracker columns are dynamically created and deleted based
on storage restrictions. In [35], the authors show how to enable con-
current queries via limited concurrency control e�ort, relying purely on
latches as cracking read queries change only the index structure while
the index contents remain intact. In addition, stochastic cracking [37]
performs non-deterministic cracking actions by following query bounds
less strictly. This way it allows for a more even spread of the partition-
ing across a column, preventing the lingering of large unindexed areas
that are expensive to crack in the future.

Subsequent e�orts [51] extended the original cracking to adopt a
partition/merge-like logic with active sorting steps or with less active
radix partitioning, while working on top of column-stores where each
attribute is stored as a collections of vectors as opposed to a single
array. While original cracking can be seen as an incremental quicksort
(where the pivots are driven by the queries), these latest cracking ver-
sions explore the space between incremental quicksort and incremental
external merge sort to devise a series of adaptive indexing algorithms
(from very active to very lazy).

Database cracking followed a radically di�erent approach; up to this
point the query processing time was considered sacred and nothing else
could happen other than processing the current query. Cracking, on the
other hand, goes ahead and refines indexes on-the-fly, gaining both an
immediate and a long term performance benefit. This is a direct side-
e�ect of exploiting certain column-store architecture features. In par-
ticular, bulk processing and columnar storage enabled these adaptive
indexing ideas. By storing data one column at a time, as dense and fixed
width arrays, stored in continuous memory areas, means that database
cracking may easily rearrange an array at minimum cost compared to
having to deal with traditional slotted pages where locating even a
single value may require an indirection. In addition, bulk processing
means that each operator fully consumes its input column before the
query plan proceeds to the next operator. For database cracking this
means that each operator may work on top of a single column in one
go, performing e�ciently all refinement actions. Vectorized processing

4.9. Summary and Design Principles Taxonomy 263

works equally well with the main di�erence that each vector is inde-
pendently cracked and depending on the policy data may also move
across vectors [51].

The C-store projections discussed in previous sections are a form
of indexing as they allow multiple orders to be stored with a leading
attribute which is sorted for each distinct projection. At a high level,
the cracking architecture and in particular the sideways cracking ar-
chitecture may be seen as a way to achieve the same result as C-store
projections but in an adaptive way, i.e., we do not need to decide up
front which projections we are going to create and we do not need to
invest idle time in creating all projections up-front in one go.

Other than the benefits in terms of not needing workload knowledge
and idle time, database cracking also allows one to use database systems
without the complexity of tuning. As such it can bring down the cost
of setting up and using database systems as with cracking one does
not need a database administrator to take indexing decisions and to
maintain the indexing set-up over time as the workload fluctuates.

The concept of gradually and on-the-fly adapting index structures
as is done in database cracking has not been studied in the past in
database research. One work that comes close to some of the concepts
of cracking is the work on partial indexes [87] which allows one to create
a traditional non-adaptive index on part of a table only, thus avoiding
indexing data which potentially is not relevant for queries (assuming
good workload knowledge).

4.9 Summary and Design Principles Taxonomy

The design principles described in this chapter have been adopted by
most column-store database systems and provide a common ground for
all subsequent main-memory and cache conscious designs.

As it is evident by the plethora of those features, modern column-
stores go beyond simply storing data one column-at-a-time; they provide
a completely new database architecture and execution engine tailored for
modern hardware and data analytics.

In many cases, pure columnar storage helps to maximize utilization

264 Column-store internals and advanced techniques

Row-stores Column-stores

Minimize Bits Read

(1) Skip loading of Vertical partitioning, e.g., [12] Columnar storage
not-selected attributes PAX [5]

Multi-resolution blocks [94]
Column indexes [63]

(2) Work on selected Index only plans, e.g., [69, 25] Late materialization
attributes only (per-operator) Index anding, e.g., [80]
(3) Skip non-qualified values Indexes, e.g, [34] Projections

Multi-dimensional Cracking
clustering, e.g., [75]

Zone maps
(4) Skip redundant bits Compression, e.g., [30] Per-column

compression
(5) Adaptive/partial indexing Partial indexes [87] Database cracking

Minimize CPU Time

(1) Minimize instruction Block processing [74] Vectorized execution
and data misses Bu�er operators [95]

Cache conscious
operators [85]

(2) Minimize processing Operating on Operating on
for each bit read compressed data, e.g., [30] compressed columns
(3) Tailored operators Compiled queries, e.g., [70] RISC style algebra

Figure 4.6: Taxonomy of design features that define modern column-stores and
similar concepts that have appeared in isolation in past row-store research.

of these new design principles, i.e., compression is much more e�ective
when applied at one column-at-a-time or vectorization and block pro-
cessing help minimize cache misses and instruction misses even more
when carrying one column-at-a-time, i.e., only the column relevant and
for one (vector-based) operator. In this sense, we can say that a mod-
ern column-store system as it was redefined mainly by VectorWise and
C-Store is a system that includes all those design principles, not just a
column-oriented storage layout.

As we discussed throughout this and previous chapters some of
the design principles that came together in modern column-stores have
been investigated in some form or another in the past in the context
of traditional row-stores. There is no system, however, to provide a
holistic and from scratch design and implementation of a complete

4.9. Summary and Design Principles Taxonomy 265

DBMS with all those design principles until MonetDB, VectorWise
and C-Store were proposed. Essentially, they marked the need for a
complete redesign of database kernels, inspired by decades of research
in DBMS architectures in the database community.

Figure 4.6 summarizes the discussion in this chapter by providing
a list of features and design principles that altogether define modern
column-stores along with pointers to similar but isolated features that
have appeared in the past in the context of row-stores.

5
Discussion, Conclusions, and Future Directions

In this section, we briefly compare MonetDB, VectorWise and C-Store.
We also discuss the feasibility of emulation of a column-store in a row-
oriented database, and present conclusions and future work.

5.1 Comparing MonetDB/VectorWise/C-Store

Read-optimized database systems clearly benefit from CPU-e�cient
query execution. To this end, all three architectures – MonetDB, Vec-
torWise and C-Store – use some form of block-oriented execution [74],
but in di�erent ways. MonetDB takes the extreme with its column-
at-a-time execution that implies full materialization. Both C-Store and
VectorWise allow pipelined execution, with blocks of tuples rather than
single tuples being passed between operators. In C-Store this mostly
happens as a side-e�ect of compressed execution, where blocks of tu-
ples are kept as long as possible in a compressed format. VectorWise, in
contrast, follows a vectorized execution strategy in its entire execution
and storage architecture.

For handling loads and updates, MonetDB and C-Store follow a
similar approach, using a deletion bitmap and temporary tables hold-

266

5.2. Simulating Column/Row Stores 267

ing inserts (WOS). Especially in large join queries, this leads to merg-
ing overhead where the inserts and deletes need to be applied to the
main tuple stream before entering a join. The Positional Delta Tree
(PDT) data structure of VectorWise0 significantly reduces this over-
head, though the downside of PDTs is that they are quite complex, and
insert and delete operations are potentially more expensive.

Plain MonetDB does not employ compression (except automatic
string dictionaries), nor does it store tables in any particular order.
Both VectorWise and C-Store heavily employ compression, though only
C-Store o�ers compressed execution. C-Store follows the idea of storing
data multiple times in projections with a di�erent sort order. Vector-
Wise uses a highly sparse index on all columns storing minimum and
maximum values for tuple ranges, which can reduce I/O for range pred-
icates. It further reduces I/O pressure using cooperative scans.

5.2 Simulating Column/Row Stores

One common question about column-oriented databases is whether it
is possible to emulate a column-based system using a conventional row-
oriented system. There are two methods that can be used to perform
this kind of emulation: using a fully vertically partitioned design and
creating an index on every column [1]. We will discuss each of these
techniques in turn, and list the associated disadvantages of each one.

Vertical Partitioning. The most straightforward way to emulate
a column-store approach in a row-store is to fully vertically partition
each relation, as was done in the early column-stores described
above [58]. In a fully vertically partitioned approach, some mechanism
is needed to connect fields from the same row together (column stores
typically match up records implicitly by storing columns in the same
order, but such optimizations are not available in a row store). To
accomplish this, the simplest approach is to add an integer “position"
column to every table (this is often preferable to using the primary
key because primary keys can be large and are sometimes composite).
For example, given the following employee table:

268 Discussion, Conclusions, and Future Directions

Name Age Salary
Smith 40 56,000

Johnson 29 34,000
Williams 56 78,000

Jones 34 35,000

We would add a simple position column:

Position Name Age Salary
1 Smith 40 56,000
2 Johnson 29 34,000
3 Williams 56 78,000
4 Jones 34 35,000

We would then create one physical table for each column in the
logical schema, where the ith table has two columns, one with values
from column i of the logical schema and one with the position of that
value in the original table (this column is typically a dense sequence of
integers starting from 1):

1 Smith
2 Johnson
3 Williams
4 Jones

1 40
2 29
3 56
4 34

1 56,000
2 34,000
3 78,000
4 35,000

Queries are then rewritten to perform joins on the position attribute
when fetching multiple columns from the same relation.

The main disadvantages of this approach are (1) the additional
space overhead of the position data (and the associated performance
cost when scanning these columns due to the additional I/O) (2) the
need to implement a query rewriting layer to convert queries over the
original logical schema to the new physical schema (3) the explosion in
the number of joins per query that overwhelm the optimizer of most

5.3. Conclusions 269

row-store DBMS implementations and cause heuristics to be used that
can occasionally have disastrous e�ects on query performance (4) since
each column is stored in a separate table, each column now contains
a (potentially large) tuple header for each (much smaller) data value
(column-stores do not include a header for each column — instead
they store a singe tuple header in a separate column) (5) the inability
to use column-oriented compression schemes such as RLE (though this
disadvantage can be alleviated with some cleverness — [20]).

Creating an index on every column. This approach involves
creating a separate index for each column of each table in a database
system. This solves most of the problems of vertical partitioning de-
scribed above (at least problems (2), (3), and (4)), but has its own set
of problems. The most obvious problem is the space and update over-
head of the large number of indexes. However, the more subtle problem
is that each index will not generally store the values inside the index
in the same order that they appear in the raw table. Therefore, ma-
terializing two (or more) attributes into rows (which, as described in
Section 4.4, needs to happen at some point during query execution)
requires a full-fledged join on tuple-id (unlike the vertically partitioned
case, where this join can be performed by simply merging together the
two columns, here the two sets of values are entirely unaligned). Hence,
in practice, the database optimizer will do column projection using the
original row-store table, which results in the column-store I/O bene-
fits of only having to read in the necessary columns being completely
negated.

5.3 Conclusions

We described a number of architectural innovations that make modern
column-stores like MonetDB, VectorWise and C-Store able to provide
very good performance on analytical workloads. These include compres-
sion, vectorization, late materialization, and e�cient column-oriented
join methods. These ideas have found their way into a several commer-
cial products—both direct descendants of the academic projects (e.g.,
VectorWise and Vertica) as well as a number of other products (e.g.,

270 Discussion, Conclusions, and Future Directions

Aster Data, Greenplum, Infobright, Paraccel, etc). Even row-oriented
stalwart Oracle has implemented some column-oriented techniques in
their database appliance, Exadata (in particular, they have imple-
mented PAX page layouts and column-oriented compression). These
products are reputed to provide one to two orders of magnitude bet-
ter performance than older-generation row-oriented systems on typical
data warehousing and analytics workloads, and have been quite suc-
cessful commercially (with VectorWise, Vertica, Greenplum, and Aster
Data all having been recently acquired).

Despite the academic and commercial success of column-oriented
systems, there are still several interesting directions for future research.
In particular, there is a substantial opportunity for hybrid systems that
are partially column-oriented. For example, systems that store groups
of frequently accessed columns together could provide better perfor-
mance than a pure column-store. Additionally, systems that adaptively
choose between column and row-oriented layouts for tables, depending
on access patterns over time, will likely become important, as requir-
ing users to determine which type of layout for their data is not ideal
[45]. Microsoft recently announced a columnar storage option with vec-
torized query processing [61] for its SQLServer product. While these
features are still limited (the system is read-only, only vectorizes a sub-
set of operators and data types, and does not make automatic data
layout decisions), it is a step in this direction.

We also expect that column-oriented ideas will start to find their
way into other data processing systems, such as Hadoop/MapReduce
[27], which is increasingly being used for analytic-style processing on
very large data sets.

References

[1] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. Column-stores
vs. row-stores: how di�erent are they really? In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 967–980, 2008.

[2] Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira. Integrating
compression and execution in column-oriented database systems. In
Proceedings of the ACM SIGMOD Conference on Management of Data,
pages 671–682, 2006.

[3] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R.
Madden. Materialization strategies in a column-oriented DBMS. In Pro-
ceedings of the International Conference on Data Endineering (ICDE),
pages 466–475, 2007.

[4] R. Abdel Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX:
run-time optimization of xqueries. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 615–626. ACM, 2009.

[5] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Sk-
ounakis. Weaving relations for cache performance. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages
169–180, 2001.

[6] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Mas-
sively Parallel Sort-Merge Joins in Main Memory Multi-Core Database
Systems. Proceedings of the Very Large Data Bases Endowment
(PVLDB), 5(10):1064–1075, 2012.

271

272 References

[7] Sihem Amer-Yahia and Theodore Johnson. Optimizing queries on com-
pressed bitmaps. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 329–338, 2000.

[8] G. Antoshenkov. Byte-aligned data compression. U.S. Patent Number
5,363,098, 1994.

[9] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu.
Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. Proceedings
of the Very Large Data Bases Endowment (PVLDB), 7(1):85–96, 2013.

[10] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.
Main-memory hash joins on multi-core CPUs: Tuning to the underly-
ing hardware. In Proceedings of the International Conference on Data
Endineering (ICDE), pages 362–373, 2013.

[11] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick
Ho, Namik Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil
Lee, Tianchao Tim Li, Guy M. Lohman, Konstantinos Morfonios, René
Müller, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar Ra-
man, Richard Sidle, Knut Stolze, and Sandor Szabo. Business Analytics
in (a) Blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.

[12] Don S. Batory. On searching transposed files. ACM Transactions on
Database Systems, 4(4):531–544, 1979.

[13] Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins to solve
relational queries. J. ACM, 28(1):25–40, 1981.

[14] R. Bestgen and T. McKinley. Taming the business intelligence monster.
IBM Systems Magazine, 2007.

[15] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-
based order-preserving string compression for main memory column
stores. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 283–296, 2009.

[16] Peter Boncz. Monet: A next-generation DBMS kernel for query-
intensive applications. University of Amsterdam, PhD Thesis, 2002.

[17] Peter Boncz, Stefan Manegold, and Martin Kersten. Database architec-
ture optimized for the new bottleneck: Memory access. In Proceedings
of the International Conference on Very Large Data Bases (VLDB),
pages 54–65, 1999.

[18] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-
pipelining query execution. In Proceedings of the biennial Conference
on Innovative Data Systems Research (CIDR), 2005.

References 273

[19] Peter A. Boncz and Martin L. Kersten. MIL primitives for querying a
fragmented world. VLDB Journal, 8(2):101–119, 1999.

[20] Nicolas Bruno. Teaching an old elephant new tricks. In Proceedings of
the biennial Conference on Innovative Data Systems Research (CIDR),
2009.

[21] Surajit Chaudhuri and Vivek R. Narasayya. An E�cient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages
146–155, 1997.

[22] George P. Copeland and Setrag N. Khoshafian. A decomposition storage
model. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 268–279, 1985.

[23] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I.
Hsiao, and R. Rasmussen. The gamma database machine project. IEEE
Transactions on Knowledge and Data Engineering, 2(1):44–62, 1990.

[24] David DeWitt. From 1 to 1000 mips, November 2009. PASS Summit
2009 Keynote.

[25] Amr El-Helw, Kenneth A. Ross, Bishwaranjan Bhattacharjee, Chris-
tian A. Lang, and George A. Mihaila. Column-oriented query process-
ing for row stores. In Proceedings of the International Workshop On
Data Warehousing and OLAP, pages 67–74, 2011.

[26] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo
Müller, Hannes Rauhe, and Jonathan Dees. The SAP HANA Database
– An Architecture Overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[27] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep
Tata. Column-Oriented Storage Techniques for MapReduce. Proceed-
ings of the Very Large Data Bases Endowment (PVLDB), 4(7):419–429,
2011.

[28] Clark D. French. “One Size Fits All” Database Architectures Do Not
Work for DDS. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 449–450, 1995.

[29] Clark D. French. Teaching an OLTP Database Kernel Advanced Data
Warehousing Techniques. In Proceedings of the International Confer-
ence on Data Endineering (ICDE), pages 194–198, 1997.

[30] G.Graefe and L.Shapiro. Data compression and database performance.
In ACM/IEEE-CS Symp. On Applied Computing, pages 22 -27, April
1991.

274 References

[31] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing
relations and indexes. In Proceedings of the International Conference
on Data Endineering (ICDE), pages 370–379, 1998.

[32] Goetz Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73–170, 1993.

[33] Goetz Graefe. E�cient columnar storage in b-trees. SIGMOD Rec.,
36(1):3–6, 2007.

[34] Goetz Graefe. Modern B-Tree Techniques. Foundations and Trends in
Databases, 3(4):203–402, 2011.

[35] Goetz Graefe, Felix Halim, Stratos Idreos, Harumi Kuno, and Stefan
Manegold. Concurrency Control for Adaptive Indexing. Proceedings of
the Very Large Data Bases Endowment (PVLDB), 5(7):656–667, 2012.

[36] Goetz Graefe, Stratos Idreos, Harumi Kuno, and Stefan Manegold.
Benchmarking Adaptive Indexing. In Proceedings of the TPC Tech-
nology Conference on Performance Evaluation and Benchmarking
(TPCTC), pages 169–184, 2010.

[37] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap.
Stochastic Database Cracking: Towards Robust Adaptive Indexing in
Main-Memory Column-Stores. Proceedings of the Very Large Data
Bases Endowment (PVLDB), 5(6):502–513, 2012.

[38] Alan Halverson, Jennifer L. Beckmann, Je�rey F. Naughton, and
David J. Dewitt. A Comparison of C-Store and Row-Store in a Com-
mon Framework. Technical Report TR1570, University of Wisconsin-
Madison, 2006.

[39] Richard A. Hankins and Jignesh M. Patel. Data morphing: an adaptive,
cache-conscious storage technique. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 417–428, 2003.

[40] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel R.
Madden. Performance tradeo�s in read-optimized databases. In Pro-
ceedings of the International Conference on Very Large Data Bases
(VLDB), pages 487–498, 2006.

[41] S. Héman, M. Zukowski, N.J. Nes, L. Sidirourgos, and P. Boncz. Po-
sitional update handling in column stores. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 543–554, 2010.

[42] William Hodak. Exadata hybrid colum-
nar compression. Oracle Whitepaper, 2009.
http://www.oracle.com/technetwork/database/exadata/index.html.

References 275

[43] Allison L. Holloway, Vijayshankar Raman, Garret Swart, and David J.
DeWitt. How to barter bits for chronons: compression and bandwidth
trade o�s for database scans. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 389–400, 2007.

[44] Stratos Idreos. Database Cracking: Towards Auto-tuning Database Ker-
nels. CWI, PhD Thesis, 2010.

[45] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ail-
amaki. Here are my Data Files. Here are my Queries. Where are my
Results? In Proceedings of the biennial Conference on Innovative Data
Systems Research (CIDR), pages 57–68, 2011.

[46] Stratos Idreos, Fabian Gro�en, Niels Nes, Stefan Manegold, Sjoerd Mul-
lender, and Martin L Kersten. MonetDB: Two Decades of Research
in Column-oriented Database Architectures. IEEE Data Eng. Bull.,
35(1):40–45, 2012.

[47] Stratos Idreos, Raghav Kaushik, Vivek R. Narasayya, and Ravishankar
Ramamurthy. Estimating the compression fraction of an index using
sampling. In Proceedings of the International Conference on Data Endi-
neering (ICDE), pages 441–444, 2010.

[48] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database
cracking. In Proceedings of the biennial Conference on Innovative Data
Systems Research (CIDR), pages 68–78, 2007.

[49] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a
cracked database. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 413–424, 2007.

[50] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-organizing
tuple reconstruction in column stores. In Proceedings of the ACM SIG-
MOD Conference on Management of Data, pages 297–308, 2009.

[51] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe.
Merging What’s Cracked, Cracking What’s Merged: Adaptive Indexing
in Main-Memory Column-Stores. Proceedings of the Very Large Data
Bases Endowment (PVLDB), 4(9):585–597, 2011.

[52] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart.
Row-wise parallel predicate evaluation. Proceedings of the Very Large
Data Bases Endowment (PVLDB), 1(1):622–634, 2008.

[53] Theodore Johnson. Performance measurements of compressed bitmap
indices. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 278–289, 1999.

276 References

[54] Ilkka Karasalo and Per Svensson. The design of cantor: a new system
for data analysis. In Proceedings of the 3rd international workshop on
Statistical and scientific database management, pages 224–244, 1986.

[55] Illka Karasalo and Per Svensson. An overview of cantor: a new system
for data analysis. In Proceedings of the 2nd international Workshop on
Statistical Database Management (SSDBM), pages 315–324, 1983.

[56] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots.
In Proceedings of the International Conference on Data Endineering
(ICDE), pages 195–206, 2011.

[57] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, and
Henrik Mühe. HyPer: Adapting Columnar Main-Memory Data Man-
agement for Transactional AND Query Processing. IEEE Data Eng.
Bull., 35(1):46–51, 2012.

[58] Setrag Khoshafian, George Copeland, Thomas Jagodis, Haran Boral,
and Patrick Valduriez. A query processing strategy for the decomposed
storage model. In Proceedings of the International Conference on Data
Endineering (ICDE), pages 636–643, 1987.

[59] Setrag Khoshafian and Patrick Valduriez. Parallel execution strategies
for declustered databases. In Proceedings of the International Workshop
on Database Machines, pages 458–471, 1987.

[60] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandier, Lyric Doshi, and Chuck Bear. The vertica analytic database:
C-store 7 years later. Proceedings of the Very Large Data Bases Endow-
ment (PVLDB), 5(12):1790–1801, 2012.

[61] P.Å. Larson, C. Clinciu, E.N. Hanson, A. Oks, S.L. Price, S. Rangarajan,
A. Surna, and Q. Zhou. Sql server column store indexes. In Proceedings
of the ACM SIGMOD Conference on Management of Data, pages 1177–
1184, 2011.

[62] Per-Åke Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson,
Mostafa Mokhtar, Michal Nowakiewicz, Vassilis Papadimos, Susan L.
Price, Srikumar Rangarajan, Remus Rusanu, and Mayukh Saubhasik.
Enhancements to sql server column stores. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 1159–1168, 2013.

[63] Per-Åke Larson, Eric N. Hanson, and Susan L. Price. Columnar Storage
in SQL Server 2012. IEEE Data Eng. Bull., 35(1):15–20, 2012.

[64] Zhe Li and Kenneth A. Ross. Fast joins using join indices. VLDB
Journal, 8:1–24, April 1999.

References 277

[65] R.A. Lorie and A.J. Symonds. A relational access method for interactive
applications. In Courant Computer Science Symposia, Vol. 6: Data Base
Systems. Prentice Hall, 1971.

[66] Roger MacNicol and Blaine French. Sybase IQ multiplex - designed for
analytics. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 1227–1230, 2004.

[67] S. Manegold, P. Boncz, N. Nes, and M. Kersten. Cache-conscious radix-
decluster projections. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 684–695, 2004.

[68] A. Mo�at and J. Zobel. Compression and fast indexing for multi-
gigabyte text databases. Australian Computer Journal, 26(1):1–9, 1994.

[69] C. Mohan, Donald J. Haderle, Yun Wang, and Josephine M. Cheng.
Single Table Access Using Multiple Indexes: Optimization, Execution,
and Concurrency Control Techniques. pages 29–43, 1990.

[70] Thomas Neumann. E�ciently Compiling E�cient Query Plans for Mod-
ern Hardware. Proceedings of the Very Large Data Bases Endowment
(PVLDB), 4(9):539–550, 2011.

[71] Patrick O’Neil and Dallan Quass. Improved query performance with
variant indexes. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 38–49, 1997.

[72] Patrick E. O’Neil. Model 204 architecture and performance. In Proceed-
ing of the International Workshop on High Performance Transaction
Systems, pages 40–59, 1987.

[73] Patrick E. O’Neil, Elizabeth J. O’Neil, and Xuedong Chen. The
Star Schema Benchmark (SSB). http://www.cs.umb.edu/~poneil/
StarSchemaB.PDF.

[74] S. Padmanabhan, T. Malkemus, R. Agarwal, and A. Jhingran. Block
oriented processing of relational database operations in modern com-
puter architectures. In Proceedings of the International Conference on
Data Endineering (ICDE), pages 567–574, 2001.

[75] Sriram Padmanabhan, Bishwaranjan Bhattacharjee, Timothy Malke-
mus, Leslie Cranston, and Matthew Huras. Multi-Dimensional Cluster-
ing: A New Data Layout Scheme in DB2. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 637–641, 2003.

[76] M. Poess and D. Potapov. Data compression in oracle. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages
937–947, 2003.

http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

278 References

[77] Bogdan Raducanu, Peter A. Boncz, and Marcin Zukowski. Micro adap-
tivity in vectorwise. In Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 1231–1242, 2013.

[78] Ravishankar Ramamurthy, David Dewitt, and Qi Su. A case for frac-
tured mirrors. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 89 – 101, 2002.

[79] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malke-
mus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm,
and L. Zhang. DB2 with BLU Acceleration: So much more than just
a column store. Proceedings of the Very Large Data Bases Endowment
(PVLDB), 6(11), 2013.

[80] Vijayshankar Raman, Lin Qiao, Wei Han, Inderpal Narang, Ying-Lin
Chen, Kou-Horng Yang, and Fen-Ling Ling. Lazy, adaptive rid-list in-
tersection, and its application to index anding. In Proceedings of the
ACM SIGMOD Conference on Management of Data, pages 773–784,
2007.

[81] Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vi-
jay Dialani, Donald Kossmann, Inderpal Narang, and Richard Sidle.
Constant-Time Query Processing. In Proceedings of the International
Conference on Data Endineering (ICDE), pages 60–69, 2008.

[82] Mark A. Roth and Scott J. Van Horn. Database compression. SIGMOD
Rec., 22(3):31–39, 1993.

[83] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. The Un-
cracked Pieces in Database Cracking. Proceedings of the Very Large
Data Bases Endowment (PVLDB), 7(2), 2013.

[84] Minglong Shao, Jiri Schindler, Steven W. Schlosser, Anastassia Aila-
maki, and Gregory R. Ganger. Clotho: Decoupling memory page layout
from storage organization. In Proceedings of the International Confer-
ence on Very Large Data Bases (VLDB), pages 696–707, 2004.

[85] Ambuj Shatdal, Chander Kant, and Je�rey F. Naughton. Cache Con-
scious Algorithms for Relational Query Processing. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages
510–521, 1994.

[86] Lefteris Sidirourgos and Martin L. Kersten. Column imprints: a sec-
ondary index structure. In Proceedings of the ACM SIGMOD Confer-
ence on Management of Data, pages 893–904, 2013.

References 279

[87] Michael Stonebraker. The case for partial indexes. SIGMOD Record,
18(4):4–11, 1989.

[88] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin,
Samuel R. Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alexan-
der Rasin, Nga Tran, and Stan B. Zdonik. C-Store: A Column-Oriented
DBMS. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 553–564, 2005.

[89] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L.
Wiener, and Goetz Graefe. Query processing techniques for solid state
drives. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 59–72, 2009.

[90] Stephen Weyl, James Fries, Gio Wiederhold, and Frank Germano.
A modular self-describing clinical databank system. Computers and
Biomedical Research, 8(3):279 – 293, 1975.

[91] K. Wu, E. Otoo, and A. Shoshani. Compressed bitmap indices for
e�cient query processing. Technical Report LBNL-47807, 2001.

[92] K. Wu, E. Otoo, and A. Shoshani. Compressing bitmap indexes for
faster search operations. In Proceedings of the International Conference
on Scientific and Statistical Database Management (SSDBM), pages 99–
108, 2002.

[93] K. Wu, E. Otoo, A. Shoshani, and H. Nordberg. Notes on design and im-
plementation of compressed bit vectors. Technical Report LBNL/PUB-
3161, 2001.

[94] Jingren Zhou and Kenneth A. Ross. A Multi-Resolution Block Stor-
age Model for Database Design. In Proceedings of the International
Database Engineering and Applications Symposium (IDEAS), pages 22–
33, 2003.

[95] Jingren Zhou and Kenneth A. Ross. Bu�ering Database Operations for
Enhanced Instruction Cache Performance. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 191–202, 2004.

[96] M. Zukowski. Balancing vectorized query execution with bandwidth-
optimized storage. University of Amsterdam, PhD Thesis, 2009.

[97] M. Zukowski, S. Héman, and P. Boncz. Architecture-conscious hashing.
In Proceedings of the International Workshop on Data Management on
New Hardware (DAMON), 2006.

280 References

[98] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans:
dynamic bandwidth sharing in a DBMS. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 723–734,
2007.

[99] Marcin Zukowski and Peter A. Boncz. Vectorwise: Beyond column
stores. IEEE Data Eng. Bull., 35(1):21–27, 2012.

[100] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the Interna-
tional Conference on Data Endineering (ICDE), 2006.

[101] Marcin Zukowski, Niels Nes, and Peter Boncz. DSM vs. NSM: CPU
performance tradeo�s in block-oriented query processing. In Proceedings
of the International Workshop on Data Management on New Hardware
(DAMON), pages 47–54, 2008.

	Introduction
	History, trends, and performance tradeoffs
	History
	Technology and Application Trends
	Fundamental Performance Tradeoffs

	Column-store Architectures
	C-Store
	MonetDB and VectorWise
	Other Implementations

	Column-store internals and advanced techniques
	Vectorized Processing
	Compression
	Operating Directly on Compressed Data
	Late Materialization
	Joins
	Group-by, Aggregation and Arithmetic Operations
	Inserts/updates/deletes
	Indexing, Adaptive Indexing and Database Cracking
	Summary and Design Principles Taxonomy

	Discussion, Conclusions, and Future Directions
	Comparing MonetDB/VectorWise/C-Store
	Simulating Column/Row Stores
	Conclusions

	References

