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1. Introduction
1. Let m and n denote positive integers. Let
Q denote the m-dimensional parallelepiped

(1) Ous Xu<bu  (=12..0.m),
where Qjyees Oy, By ye..,b, are integers and let P
denote the n-dimensional parallelepiped

(2) (XV(.S—'}ZV(;:)"GV <V: '2727'--'7"1.)

where Kqyeee,%y, Bry...,/3, are real numbers satis-
fying
(3) N 9’\]/ é(x)i+ ) ‘-’\‘1":1,2,....,!'?),

whereas the brackets mean that an arbitrary one
of the 2" different ways in which the signs "="
can be placed has been fixed.

Further let ég(x),...,f'(x) denote n real
functions which have been deflned for all lattice
points (x) = (x,,...,%,) of Q.

This paper deals with the solutions (x)¢€ Q
of the simultaneous didphantine inequalities

(4) xp& H0& Ay (mod 1) (¥=1,2,....,n),
i.e. with the lattice points (x) € Q to which

a lattice point (¥, y.-.,;¥,) corresponds such that
(5) aV(é)Fv(x)“yﬁé)ﬁy (.))::11‘2‘,---'-;”). 5
its purpose is to deduce an estimate for the
number N,(Q) of those solutions.
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In view of Wleyl's well known definition ¢f

uniform distribution modulo 1, we are especially
interested in the expression

(6) Re(@)=Np(G) - NGQJU&By Oy

where N(Q) denotes the number: of lattice points
(x)€ Q. The number Ry(Q) i$ called the remainder
in the uniform distribution of the system ({,,...,f,)
(with respect to P) and the upper bound of

\Rp(Q)

G

if P runs through the set of all possible parallepi-
peds (2) which satisfy (3) is called the discrepancy
in the uniform distribution of the system (%},...,fh).
The discrepancy will be denoted here by D(Q) =’.

If in stead of one parallelepiped Q, one con-
siders a sequence S of such parallelepipeds:

- T

and if to each Q€S a SyStem N, ye .« s 5B+ 13
satisfying (2) and a system f,,...,f, correspond, the
problem arises to study the order of magnitude of
EF(Q)( , as Q runs through S. It is to be remarked
that the couple of numbers m,n need not be the same
for two different parallelepipeds Q< S.

In the case that n is a fixed integer, indepen-
dent of Q, the system (# ,...,f,) is called uniformly
distributed modulo 1, if-for each -fixed péralleleﬁi~
ped P, we havé



Rp(Q)
—ET67->O, as Q runs through S.
It follows from some considerations of We i%
that this happens, if and only if

kD(Q)-%>O, as Q runs through S.

2. Some twenty-five years ago, J.G. van der
Corput proved the following theorem 1%, which he
applied to several problems in the theory of
diophantine inequalities. Neither the proof of
theorem 1%, nor the applications were published
by him then, as it was his intention to publish
them in the third part of a long memoir on
diophantine inequalities, which was to appear
in the Acta Mathematica. The first part of this
memoir 3 contains an exhaustive study of Weyl 's
criterion in the theory of uniform distribution
modulo 1 and its applications « Whereas the
theorems of that part are "qualitative", it was
van der Corput's intention that the theorems ef
the third part ("Estimations"), would begr a
quantitative character: Theorem 1% can be con-
sidered as a more dimensional and quantitative
form of the named criterian. The first part and
the first half of the second part (dedicated to
the theory of "rhythmic functions”) of the named
memoir anpcared in the Acta Math. 56 and 59?)but
the publication of the other parts was delayed
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by several circuastances. Jevevtheless Theorem 17°
has._been guoted-and applied several times by other

5

authors "

pipeda Q defined by (1), where a, and eu_are inte-

Theorem 1. Iet S denote a sequence of parallele-

gers. To each Q may correspond an integer n, fur-

ther 2n numbers X,, 2, , satisfying (3) and n real

functions f (x), defined for each lattice point

(x) = (x.,...,x ) € Q. For each Qé:S we p ut

s &gy : e --n-.,‘ f WY W& % %Y }
(7) T(\:f‘}: ; 1. ‘Tj'—';:_.‘ /,? P PHISEARY b 1y H’~ \/f )
ol ~ R T
where -~ is to be extended over all lattice DOlnts
\n‘ \ ! -

(8) T YRR P E
which satisfy

. B A ol s / N
(9) .y;ﬁ g e QJ ) LR T 0 LU -

1 Fa iv'_L\;r' JV - y .

Assume that for each fixed value of ¢ >0

(1Q) T(Q;c)—=>0, if Q runs through S.

Then we. have

Nip o)

i 3"‘ v; r"(’\l)

V-
if N(Q) denotes the number of lattice points (x) € Q
and if N?(Q) denotes the number of solutions of the

diophantine system

(11} ~p —> 4 , if Q runs through S

(12) Ky, 4'-'},{}(_)(;".)_1'3), (mod 1) (v=1,2,...,n)
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3. In many applications of theorem 1%, the
logarithm in the right-hand member of (9) is amnoy-
ing. Therefore about 1926 van der Corput posed =~ -
the question to replace (9) by a weaker condition
like -.

Ll ; < _LNniogen
i tag tes : RS e
. : fBV"C\,‘J ; ! ./3))'.0(}’

E=4,20eee,71)

3oth of us made several attempts, which did not
succeed. About fifteen years ago, we posed the
question in a somewhat other direction‘and tried
to replace theorem 1% by another theorem which
would enable us to eliminate the named logarithm
in all important applications. Such a theorem we
proved about 1935, but it was not before 1939 that
we decided to publish our proof (apart from

van -der Corput's paper in the Acta_Mathematica)
in the Compositio Mathematica. The correction of
the proofsheets was finished in 1940, but then

by war and occupation, the Compositio Mathematica
ceased to appear. After the deliberation the
printing proved to have gone lost. Our paper
contained a theorem, which not only permitted

to eliminate the logarithm in the wanted cases,
but also gave an estimate for the remainder

R,(Q) and the discrepancy D(Q)

Theorem 2% Let Q denote the parallelepiped

(1), where qu_and @a.are integers Qu:n
Zes 5 3T ) 6 Let «,,,3,s A, denote 3n real numbers,




such that

- A ‘/\ ” ‘)‘)"7’2

= - N
O * 31'_ 'E:\/\v Loy vep g N Tl lgeaens ¥

Ny NG

¥

and let the n real functions ?v(x) (¥ = 1,854 508)
be defined for all lattice points (x)€ Q. Iet N(Q)
denote the number of lattice points (x)&€ Q and

N”*(Q) thc number of those among them, for which

the simultancous inequalities

p
/»h—: (X)) &
hold. Put for K>O0

> s il ehe)
(o) = 7. e e
(Q) = h(Q) 7 Fﬂpt‘ hn/ﬂ!N(M?e

. Y X -
&, By (nod 1) (¥= 132y o wen g )

(h) ! e
i 5
where ° is to be extended over all lattice points
(h)- Kh\/:‘nl","n)?"\c"'c)
which satisfy
(13) !?h),ié 2500 A, oo(e:\ iOgloo« ,\),)) (V= 12,0 h)
whereas has been put -
. |7 . f
(14a) °, v:cﬁv_ava-i} » i ony =0,
s : oo . . _
(14D) Ry, = Min{sy o+ 5, KB ) isthylz 24,
d It/ 2, p Eigprs .
(14c) h‘,v.:ﬁ;\f::-z?wm;y}w K if :Hy!“} 2:’\); .

Then there _exists a numerical constant K, such that

(15) ,N (Q) - N(Q) /7(/3,,_.'“& ES
5// \/3 )-—(xv"' } 7[(-5))'"0\))}’\! G/-FTK(Q)N‘\’:J;




Morecover we proved that it is sufficient to put
i 7 1 5 1 R -4
K=z+{{fe—“-ﬁ'”ﬂ: }

I
b Ay ¥ /

th

but it is obvious that it is of very little use

to carry out calculations of K. In my "Dlophan-
tische Approximationen" (1936) I quoted the
special case n=1 of theorem 2™ with an outline

of the proof and with some applications. Our proof
was based on the following idea: IFf ©{Z) denotes
the characteristic function of the segment

O’k\ LC_)Aj and if this function is extended
periodically with a period 1 over the real axis,

we have . —;

:". 4
MR = X))

r;.T

\.f’

(X)é ,

Now ©(Z) is approximated by two functions G(2)
and €,(Z) which are 1nf1n1tely often derivable
nd such that

Then, expinding <, and <, in their Fourier-
series', one can deduce the.theorem. Our proof
of the full theorem 2% (m 2 1, n2 1) went on
the same line and was quite complicated.

Theorem 2* also has been quoted and applied by
by A. Drewes in his thesis 7 .
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thcorem, which is very similar to theorem 2* in the

4. In 1949, Brdds and Turir ~’/ published a

special case m = n = 1.

;!;heggg;n;}__:'. If 'bhc; rcal function -‘?:'(x) is defined

for x = 1,25.04¢,N and if
28
e 77' h'lk()'| . !
S & i /' ! 2
// (._‘ l ..\.‘< '\’\‘j g '.('.,Z,....,J’\A\/ )

1

| ox
where M denotes an 1nteger > 1, then for all real

X, & , satisfying
OsAR<3R¢e
we _have

® i .'; {_...N_
! N _i\"ﬁ~0‘\)r\il<C(M+1

|3
i

where N * denotes the number of integer solutionsx in

£ x < N af the inequality

*< f < R {imodi1).

It is clear that, if one renounces from the advan-
" by (14b) i.e.
by Min (p-0 + '}.’ r), put‘blng 0, = -& , thecorem 37
is sharper than the correspondlng special case
m=n=1 of theorem 2. In their proof of theorem
3%, Erdds and Turin don't use the functions €, and

€,, but they use "Dunham-Jackson"-means of the

tage of deflnlng the number P =P,

Fourier series far the discontinuous function.. © (u)
itself.

5. Applying the "Dunham-Jackson"-mecans, I now
prove the following general theorem 2, which con-



siders the more dimensional case m21, n21 and
which obviously is an improvement of theorem 2%.
I further prove, that theorem 2 contains as a
special case the following theorem 1, which is

an improvement of theorem 1%, as (9) has been
replaced by (9a). Further I prove that thcorem

2 contains as a special case the foilowing theo-
rem 3, which obviously is a refinement of theorem
3% R

gggorem 1. Let S denote a sequence of parallelepi-

peds Q defined by (1), where C%Aand h“ are integers.

To each Q may correspond an integer n, further 2n
numbers o,, 3, » which satisfy (3) and n real
functions #V(x) defined for each lattice point.
(x) = (%,,+-+,%y) € Q. For cach Qe S let T(Q;c)

be defined by (7), where-;%'15~to be extended
over all lattice points (8) which satisfy

(9a) lh,,g. -§€%%%%ffL- (v="1,250001) -

Assume thet for each fixed value of ¢ >0 the rela-
tion (10) holds, if Q runs through S. Then we have
(11), where NP(Q) denotes the number of solutions

(x) € Q ¢f the diophantine system (12).

Theorem 2. Let Q denote an m-dimensional parallele
piped (1), where'cv‘and gu.are integers. Let
KygeoesXpn 9 ByreesrBp denote 2 n real numbers
which satisfy (3) and let the n real functions
fi(x)ye.., (%) be defined for all lattice points
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(x)eQ Let Ayyee.,A, denote n positive numbers
> 1 and let be_put M, = A 1og(e Min(n, A ))

(\"— 1, 290'-9n),
- i(h, G+ };" %) i

(17) T(Q) = Z ﬁ’@ZQ Ae2m(' )+ F(x)thmv,
, x)€ . W1

(h)
where N(Q ) dénotcs the number of lattice points
(x) e @, whereas 2* has to be cxtendied over all

th)

lattice poin‘ts

(B) = (hyyeee,hy) # (0yens,s0)

for which

(18) ‘lhvl = Mv ?

whereas has bcen put

B, Mo BB )

Po =By =0 + 2
(h,;eo,y 152y ey

Then the number N*( Q) of solu‘tlons of the diophan-
tine system

(19) Ot,é)ﬂ S By (mod'\) (¥=12yeees 1)

satisfies the inecuality

INQ-N (Q)ﬂ(/s,-u,) {I?(ﬁ,-wi’f,)—ﬁ(ﬂv-«y)} N{Q)+-TQNQ-
@0 > e

Theorem_3. If the real function f (x) is defined for
1,2,0..,N and if :

N :
Z ezmhwc(X) e \P(h) (h=1,‘2, .... ’M),. o
where M denetes an integer 2 1, then fer all real

Il lI

Nll




S, iy P
*x,A3, satisfying O<B-Xs1,
we have

IN*-(s- 0Nl ‘5°“+Z A0,

with
Py, = Min(ﬁ-O(.}-LS_Q, 1-(3- o<)+’5° 30

§2. some Temma's.

Lemma 1. Let r and A be positive integers and put

(21) R =R(rA\) /(‘””M et .

Then

)\2 r

(22) - R>5V -

2)\ smm\t
Proof. R = 2/ / ————”,\t “mAdt

Lemma 2.VLe£ M.and r be positive integerslrpufw

A=A(M,r)={M]+1 |
and let R = R(r,A) be defined by (21). Let ¥
denote a number satisfying O £ ¥ < 1. Then the
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function

(23) e@)=eMnr%2)= / (S’S'?r?#f gt

which is defined for all real z , satisfies the

following relations

(m)  e@=F / (';::,é;f:z) ) ot

(25) @(z)=§/(§;;7¢,ﬁr- dt ;
Z-v
(26) OLE@E 1 ; ez+)=¢@);

: +M :
anihz
(27)  ©@)=po+ hEM pae
heo
where

(28) Pe=90 »

whereas also the numbers ph for hxO don't depend
on z and satisfy the inequalities

29)  lpales 5 IR le-d 5 Iple7 (heo)-

Proof. The formula (24) is trivial by the substi-
tution t = u -2z in the integral (23).

In order to prove (25) we only need to remark
that the integrand in (23) is an even function of




—~17.

t . Further we remark that we can write by (21)
At-2)\2" sinrA(t-2)
(30) R / (S‘SZn(t:)) dt/('smn(tz)) 2k,

as the integrand is periodic with period 1.
Therefore the first half of (26) is an immediate
consequence of (74). The second half of (26)
follows from (24) at once as the integrand of
(24) is a periodic function ef z with period 1.

We now shall prove (27). It is well known,
that for all p051t1ve integers A

A
sin(Z-2ny) A+ 2 A-h)cos 21h
(G2 b2 S s
(the empty sum for A = 1 denoting 0).

Hence the integrand of (2%) is a trigonome-
tric polynomial in the variable 27y of an or-
der
<(-)r s [%:'—]r <M.

Integrating, we find that ¢ (M,r ,¥ ,z ) is a
polynomial of order £ M too, say

M anihz
(31) e@=p,+ %(ahcosznhubhsmznhz) p+§Mph "

hzo

where
(32) 2ph=ah_ibh (h>o), p_h=ah+ib‘h (h>0),

whereas 2 s bh’ ph don't depend onz.



We now f£ind from '('M) by (24)
A2V
oA / ‘P(Z) dz / (s;;r; n(t-z) at .

SinTAt-2) Uy
/ / (smn(t Z) J dJc__ 4
because of (30).
By ¥31) and (26) we further find for h = 1

1 1
Q, = O/Cp(z)cos 2rhzdz = (cos 2rhg ygg(z)dz

= pocos'znhg
(0 £8 = 1) and therefore lale -
Similarly we find lbh\f_‘(y and thus by (32)
Pulsd heo.

Further we conclude from (31) and (24) for h =1
because of (30)

Qp= /@(Z)COSZthdz = . -
_ /cosznhzd/ _[gﬂ\ft_z_)_
. s:nn(t-z)

/ cosanhz 4, / G;T:#g-zz)) T / cos2rthz dz'{ s:sr:gg((:ct:zz))




c105 2rrhzdz_(cosznh\';) / Qll mn}\fc z? C At
4 Smﬂ(‘t-

o
= -(cos2mhg y / (5‘5?,:7()\(}5;,)

= -(1-¥)cos2mhg,

== =

(0 2%, £ 1). Hence
laplg1 - & -

Similarly we find ol £ 1 -& and thus by (32)
lpl £ 1-7¢ (h # 0) .

Now we shall prove the last part of (29).
Using (23) we write for h 2 1

ap= /ce(z)cos 2mhzdz =

sin A (&= Z smn)\z
- “‘h‘" / {(—-—-—E‘x——-}smn =) S }s; n2nhzdz

Hence by (30)

A,

Th

Similarly we have [by| < —73}1— and thus by (32)

Il = rrllhl (h = 0) . Q.e.d.

lapls




A
Iemma 3. Let il and r be positive integers, pub
A= A (M,r) = [II-‘T]-_+ 1 and let R = R(r,A) be
defined by (21). Let 5 denote a number with
0< < 1and let @{(z)=¢ (¢, r,&3z) be defined
as in Lemma 2. Then we have

33 > 1~ S - )
(33) ‘\?(Z). 21 AT VT { (AZ) Srel T Q\Q,_Z))Qr—l}

on 0<Z<J
2 1 1
34 <
(34) @(z)g 4rv?{ ) T g Q\G-Z)) 2r-—1}
on ¥<Lz<1.

Proof. First we suppose that 0<zZ< ¥ and we shall
prove (33). By (23) and (21) we have

& R ar
Y C
22

1-Z 1-Z

_ 1
/[ &/
Zz " ¥-z
Y

R
J-z

Now

1-z 1-2'
(36a) / = +/ , if ¥-z<& 3 & 1-%
¥z ks B -
2

|
] | o

- ¥-z
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L

(36b) J/Lz</[: , if 1-z<3

¥z =
1-Z ’,1-2
(36¢) / < , if 3<¥-Z-
Xz 3

We now shall distinguish two cases.
A) Assume that a‘—2§~1-2- . Then by

(37) sinrt ;-%—.nt (Of—_té%)

we get

Aty 2r. sinmAt )2
P[] ety EYAC LS
. A)Zl’ﬂ / Gmu rdu

TA@-2)

A /T aw (YT e
< (T) 2R v )—Ji' “\2/) 2R 2r1 {nAG-2}
TNS-Z

by (22).

A

2 -1
Ve {A(a_z)}2“'
B) Assume that -12~§1-Z . Then

1-Z
1 sinTAt Y
R /_% Sinirt d‘t &

‘sinrAt )2
- / sinmrt 4

the integrand being symmetric on O £t<1; hence



(7 \) . s A
Ll OULERILAL ,\Cd‘
=27 ;| (\"t P
"7
z wa o
(7 [ aud(@) 5L/ Sk
27 g MY “rkz

AN
( ’> ZR 2:_1 (r/\z)‘” <4"Vr Q\z)2'“1 by (22).

As at least one of the cases (36a), (36b), (36c)
occurs, .(33) follows immediately from (35) and the
results of A) and B). Q.e.d.

We now shall prove (34) and therefore assume
that J<z<1 . By (25) we have

(38)  @l2)= / (SN

Now

(3¢2) /12/32—_‘_‘1/2 , if z-¥glsz;
(39D) /z</ , it 2<% ;
(35¢) . ‘/ar =[ : if 1<z.%.

Ze Z

We again distinguish two cases.
A) Assume that z -a“_s_% . Then by (37)



1
sin AL \ )21 YsinmAt V.
/Z(suwnt) é 2 } ﬁ/ . TAt /’ﬂd’c
77'

=(2)"% A? 9 iy T
s A (z-

<(_71£)2‘”-11 < du
2 2R 7.8) u2r

_(ﬂ) = 1 1 )
=\3 o ard @'A(z-a))‘”

2
< {X—(Z"T)}”J by (22).

B) Assume that - <2 . Then we have by (37)
sn.nm\{ (Slnﬂ)\‘t
_sinmt, sinnt

r1 A't
_w /oY maar

m\

o
_(m\ P 1 smu 17_1\2"‘1 _j__/ du,
..( 9 ) ”M 2) ( 2) 2R f\62) w2’

_(77)\)2”_1__ I . <2 A,
N2/ 2R 2rd (WAGZDP T AVE (AP
As at least one of the cases (39a), (39b),

(39c) occurs, (34) follows immediately from (37)
and the results of A) and B). Q.e.d.
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shall consider an integer n 2 1 and n vnositive
numbers 9d;, Jo s+-+5Jn » an n=tuple of positive
integers M,,...,M, and an n-tuple of positive in-
tegers r,,...,7,, Wwhereas will be put M,=[%@%+ﬁ.
In this case we shall put g

(40) ?v(z) = g (Mpyry sa}yz)a

where ¢ is the function of Lemma 2.
Further we put

A G2z <] @)
Then we find by Lemma 2

(42) og(b( Zosessszg) 2 1

and

43) P (Zyyeenrzy) = & enety *(%*ﬁ"""if" i vh)

st hgsh d

* -
. where 2 is to be extended over all lattice
pOin'tS (h) = (h1’o'.,hn) # (0,... ’0) SatiSfy"
ing

(44) hlsM, (v=1,2,...,n),
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whereas the Fé\ satisfy the relations
sV

(45a) P;.,»'—'"v , H hy=0,
@b IR Jenu08 e 8 Jeat s if huro.

Finally, if f,{x),...,f,(x) denote real functions,
which have been defined for all lattice points
(x)e Q@ , where @ denotes a parallelepiped (1),
we shall write

(46) S(h) - Z e?ﬂi(h1f1 +ooo+hnfn),
Ve

(h) denoting a lattice point.

1. Let n,M1,...,M,,l denote positive integers, put

. ] ,
Py = Min(n,M,);r, = Max(4, logp, ); Ay = [?:],L 1
( V = 1,2,00- ,n) -

2. Let @ denote a parallelepiped (1), g.ge_r_-ga <b
(Mm=1,2,0..,m) are integers, let
f, (x)y..,f,(x) denote n real functions,
which are defined for all lattice points
(x) = (%;,..0,%y) € Q. The number of
lattice points (x) € Q@ be denoted by N(Q).
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3. Let P denote a parallelepiped

%22, 2,40, (¥=1,2,.00),

WheTe oygees 3%,y 6, y0.0,0, denote 2n real numbers,
such that

O;’(Svg'! (v=1,2,..- ,n).

Let NP(Q) denote the number of solutions (x)e @
of the system

(‘{7) (va__'F SRyt 6y (mOd 1) ())s 12,000 )n) .

Then for any given number K 2 1 we have the inegua-
1lity

Az h .
(470) Np@_s.e““’{g (GHINQ+ Z7q, q,,mnsS(h)a},

where S(h) is defined by (46) and where Z*is to be
extended over all lattice points (h)

(h)=(har > hn) £ (04150)

with (44), whereas has been put

(480q) Cl,hwy= 6v+ 2—‘(%3 ? if h,:O,

“gb) G, ,=Min(62e 64 Et, ) il hy o

V’

Se=====

of the real variable z, as follows:



: . 2K
A) T£° 6,<1 - s e pu‘taK_
(Qy( Z),) = ¢ (My:ryr dy““ T;’ zv)"
where @ (z) is the function defined in Iemma 2

and M,,r,, d,, Ay, K denote the numbers which have
been introduced in Lemma 4.

B) If 6,21 - ?XK;, we put
¢,(2,) = 1 for all values of z,.

We now remark that in both cases:

1 i 1 anith,z
Z,)= : ey
0,(z,) Pow ™ i, Bou €
with Dyl
t 2K
“9a)  0%p,, S6+

490 g JsMin(6,+38 516, 50)  (hy#0)-

In fact: in the case A) this assertion follows
immediately from Lemma 2; in the case B) we put

Pov=11 Pa,y=0 (hy#0) 3

then (49a) and (49b) are trivial.

We now define (I) = (P (Z49ee=9Zn) By (41),
hence

7”ig,thV

(50) ® (2,000, 2p) -778, -R

v (h) hi)‘ hpan

where ¥ is to be extended over all lattice
(h)



DA -
points (h) = (h,,...,h,) = (0,...,0) for which (44)
holds.
We now consider the “special parallelepiped P

..i;:;g_ z,¢6,+ -—’)%i, (¥=1,2,....,10).
If ( Z;y.+.,2,) belongs to P* we have for each » for
which our case A) occurs the inequality

(g)’ (Zv) >1_ —(zrv.-j), e

4
L:erFy K
by Iemma 3 and the definition of (z, ).

But in the case B) this inequality also holds be-

cause of @y(z ¥ = 1. Hence

-2r,+1 ’
P*(Q) 77 (1‘40\/‘ K ) (x)%Q@G 8-+ () -
Now for O< U <K 12' we have
(1-u)' < 1+2u

and" therefore we find, (as r, 2 4)

where

£ 5
w., = + “
e 4% g7

We now distinguish two cases with respect toy.




I. Assume that r, = 2log M,. Then
My @ pi o T
)\y = r‘vj +12>4 and
- BT R
w, =1+ .
Y M%K'? 4K2’\v

because of 1, > 4.
Hence we have in this case afortiori

wy S Min(l + &, 1+ —5—),
Mo 4

I1) Assume that ry = Max(4,%leg n).
We distinguish two subcases.

ITa) Let 1 £n £ 16. Then I, = 4 and
1 .

1
<1+ i
‘ 4nk’ |

w,=1 +
Y 64K

ITb) Let n > 16. Then t, = 21og n and

W T
w,= 1 + ]l 4+ ——,
Y nex? AnK!

Hence in both cases I) and II) ‘we have
estlma‘tlng roughly

”wv (1+ ) 77Mm(1+ w2 » 1+ 2o KzA )

Therefore we have by (51)

N;JQ)‘ (”Mm( T K’)\ )) o, “"_"Fn)“
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and therefore, because of (3C)

7
P*(Q ée K {]7 ( e qp\Z‘:\’

P Z O] e i)

hence, in view of (49a) and (49b)
» e n *
N;*(Q)éQQW{Equ*..% qh,,f‘"'qhn,n'S(h)l} )

where S(h) is to be extended over all lattice
poimts (h)=(h,y...,hs) # (0,...,0) with (44),
whereas S (h) is defined by (46) and %Gy DY
(484) and (48D). .
This proves our assertlon (47(1) in the spe01a1 case
that P = P*, :

*
Now replacing the function r(x) vy £, = §, -

- (-X,- —PX(- )s(v =1,2,...,n), we easily see that
the point v( £ seres£X )(mod 1) lies in P*, if

and only if (£ ,...,f,) (mod 1) lies in the

paral lelepiped P, which is defined in the third
assumption of our Lemma 4. Now this translation
does not inflict the value of |S(h)|and there-
fore applying our Lemma, as proved so fé.r, with
(10:) in steal of (f, ), we find that NP(Q),
denoting the number of solutions (X )€ @ of
(47), satisfies the inequality (47a).
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For sake of simplicity we formulate without
proof the following trivial
Lemma 5. If A, ,...,A,, B ,...,B, denote 2n
non-negative numbers and if PA denotes the

parallelepiped

0£Zy& Ay

and P,,g the parallelepiped

Oézv<Av+By (V=1,2, ..... 7n) )

each point (Z;y«..52Zn) € Payp lies in exactly
one of the 2" possible parallelepipeds

Cy é» zv«g)) Dv (V= 1,2, ..... ,n),
where either
Cv=o, Dv:Ay 2 (-2!? Cy.‘:Av ] Dv=Av+ Bv

(V:t.?, ------ ’n)
and where the double brackets mean that the

signs = have to be placed in a suitable waye.

Ranging these 2" parallelepipeds in some order,
we_shall denote them by H,;(g-: - SO - L |

such that F,= H,;, whereas H,n denotes the
parallelepiped

A,ez, ¢ A+By  (P=1,25-.5h).

The sum of the volumes of all Hg 's is

| 4]
ZT(A,+ B,); arithgetically :
V=1

= §,6,...6,= VZZ'(A,+ By)s



DI

where the left hand sun is to be extended over all
~Nich

possible products &= A, or d,= B,.

Now we shall prove

Lemma_6. Let the assumptions 1 and 2 of Lemma 4 be

valid. Let ¥y 9o+ ¥y denote n real numbers, such
that 0£,£1 1 and let P denote the parallelepiped

Hy<Zy< Kyt dy (P = 1,00 cayn)

Then the number NP(Q) of solutions (x)e @ of the
inequalities

mv<¥v<q,+ ¥y (mod 1) (v=1,2,...,n)

satisfieé the condition
' e no.o_. nA
(52) No(@280-2NQ-{Tl0,+5)-J] J,,}N(Q)

— %*ph"1 phz,z ..... Ph,_,,n‘ S(h)l -)

where S(h ) is defined by (46) and where %*

J (h
is to be extended over all lattice points

(h)= (bhy...,hn) # (0,...,0)

which satisfy (44), whereas has been pﬁt

(530) Poy= 3t g (=1s2semenn)
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(53b) th‘v=M'm(Jv+:’-;—{5; 1.5+ 82 . 393 (hy20)
V=1325.0--251)

Proof. We first restrict ourselves to the
parallelepiped P, for which xy= 0 (¥=1,2,...,n).
We put (according to (40) and (41))

n
Plzpseess ’2")=y]Z @(Mysrya2ys2y) 5

where (¢ denotes the function which we have
introduced in Lemma 2, whereas the numbers M,,
ry » ¥y have been defined in Tewma 6. Then we
write )

where Z, 1is to be extended over all NPO(Q)
solutions (x )€ Q eof the inequalities-

(55) o< <y, (M=1,2400050),

where 2>, is to be extended over all solutions
(x)€ Q of the inequalities

(56) ocf, <¥, (¥v=1,2,....,n),

which do not satisfy (55), whereas 23 is to
be extended over all other lattice points (x)eQ.
New we have, as O g{) £ 1, clearly

NPO(Q) 2 2 3



)

hence by (54)

> 216 TN 1 WS- S
(57) No(@2 2§ ond) -2, 2,
Now by (43) we have

(58) CP(z,, ----- sZn)= |
' ) ami(hZy+ . thnZy)
=[]0+ L F P .- D e
7[ ¥+ Z .

//<¢? MyaTy,3y52y) =
1

"‘\\

where %* is to be extended over all lattice
points

{59) (h)=(h,,-----,hn);\‘:(O,.....,O),

which satisfy (44), whereas (45a) and (45b) hold.
Hence

(60)55@‘1’(‘9("” ----- ,¥n(x)) 2 8,8y ¥n N@)+
* ll ..... p;: nlS('h)[ s

h,,1
where % is to be extended over all lattice
points (59) which satisfy (44), where has been put

11} ] ) < 1 2
(61) pw=zs,,p,;hszm(o\,,ur,,,m) (hy#0),

whereas S(h) denotes the sum (46).



T

We now shall give an estimate 1o the sun

Z,. Bvery point (z,,-+.,%n), whick.lies in
the parallelepiped
(62) 0=2zy<¥y,  (¥=1,2,...,n),
but not lying in
(63) 0 <Z,<dy (V= 1,2,00e,0)
lies in at least one of the n parallelepipeds
P's :
Oé Zv _<—:é\v (V'-: 1,2,...,n),

where é&:: 0 for eiactly one value of v
and &, =79, otherwise.

Applying Lemma 4 with K = 1 and
number ny(Q)ﬂfor each'such a parallele-
piped P' satisfies the inequality (47a).
Summing over all P’ we find that the
number of terms of the sum =,is

SN@QZ 7 (&3 ) +2Z S Z 0, g -

Using the idea of lemma O one easily sees
that this expression is

g%—N(Q){ZZW%)*v]:Z (?""“L—i_")}

whe re



510
qov_zf,,+ qhvv_Mm(Z{Jr AR . ’;FQI

(hv¢°>7

whereas the numbers. q,, ., are defined by (48a)
and (48b) with &y=%y ( » = 1,2,...,n).
As each term in 2 ,is 2 0 and £ 1, we thus

-
=

.....

+3 Z*(Ph,,1 ..... Phayn - p]’w ..... P'A,,,n)lS(h)I ,

where [0, . has been defined by (53a) and
1" ok

(53b) and Ph,,» b (A61).

Finally we shall deduce an estimate fer
Z3. Bach point (2,,...,2Zp) which lies in
but does not ly in the parallelepiped (62), be-
longs toexactly one of the g ~1 parallele-
pipeds H2 ’H3 ge e ,Hzn 9



/hich we have defined in Lemma 5, putting thcre
Av=ay) By=1—5v'
'ake a fixed such a parallelepiped H% (2 ¢€ g 2"),
tiven by the inequalities
() )
C¥% 2,<D%  (vet,2,0m)

and let u = My s Mo geeey Mg denote the values of
;he index ¥ for which

) €
C(%__:O,Dv—_-?iv,
vhereas 6 = 0; ,6, ,...,0, s may denote the values

»f ¥ for which | <
C(?: 5y D(;, =1 .

-

Then we have

v

520, N-521.

v

Now we cover H% by parallelepipeds
. Hg(k): Hg(k51 : ksz’."m’ kan_s) -
defined by '

(65) 027, <y, (1,2,008) 5

%kg; 2ksitt) (i
(66) Z"f - 2, < 36,' & ——7\:;;— (je1,25e-e=8) »
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where ksj is an integer which atis’ies
(67) ogksjgx- ,

Kj denoting the smallest non-negative integer

> Mgltde)

In the special case that for soﬁej we have
—%%> I-Jq y it is clear that Kj = 0. In this
case we replace (60) by
(660) Bﬁ§2q<1.
We now shall apply Lemma 4 with
P = H%(k), where (Kg, yo..,ks, ) denotes a

fized lattice point satisfying (67).
Hence
(X#l‘: O’ d/‘-*iza/'*i (i.': 1,2’..0’8 ),

2kg: (2 1
O\G‘i =b’5j + —-)\—Gj ’ 56) = M]Tl('&" ’1-861) (J=1,‘2,.....,]’1.S) g

Clearly the numbers O, (¥ = 1,2,...,n) satisfy the
relation 0 £ 0, < 1. They don't depend on the values
of kﬁj s, but only on.g « We express this dependence
by writing & in stead of &, . Writing N(Q;Hék))
in stead of Np(Q), we find from Lemma 4, putting
K= 1: )



=25 -

69 NQsH) 2T (674 3,)NQ)

[ ) *
+% qh,ﬂ ..... qhn)nlS(h)‘} ’

*
where - is to be extended over all lattice
points (59), which satisfy (44), whereas the
numbers g,  and S(h) has been defined in

v

Lemma 4.
From (68) we conclude a fortiori
©39) N(Q;Hglk)) € BE

where has been put

(69) B _2]7< )+%)N(Q)+22 q ..... Qyﬁfin 'S(h)l 5

Tlft? = Z&l (=1,2, :5) >

i v

®_2 (1=152,...--s11-5)

Tlﬁj )\GJ J
(%) % :

qu: 3.F %u ;<:1,thi #‘.—_Mm( Mﬂ 'h 0

(hu#0) (1-1,2, ..... ,s) 3

(‘5’) 5 . 4%

Yo %) ° haj,o;M‘“(Aa, lhs,k)

‘(hsj #0)  (=1200508).
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It is eclear that both terms of = o only depend on
€ and not on the la'ttlce point \K,‘,... y ks, ¢) which
defines Hg(k) Hence BY is the same number for all
parallelepipeds Hg(k) which cover Hg.

We now consider the value of

43(11, """ ’zn)=ZZ1(Q<M\”Y‘v 28 32y)

for o point { ZsesusZn) € Hg(k).
We always have

0% @(My,1y,¥y,2v)5 1

and, if
1< kﬁngJ-_z ,

we have by Lemma 3 for v=6;

4 1 1
i Q(Mv Tooly ,2,,) é‘{rvw:v{ kéfd +(Kj‘k6j r\,_1}

< ——1——{—1-— + —-1—"7}
= 128 kgj (Kj’kﬁj)

by r,24 (cf the definition of H,%(k) by (65) and
(66).
Hence because of 6Bg) the sum

Z“CI)(\C,(X), ..... ,'Fn(x)) 3
where =" is to be extended over the N(Q,Hg(k))
lattice points (x) € Q , for which (f;,...,%)
(mod 1) lies in H,%(k), satisfies the inequality



Z"@({” ..... n) B ]7 0. (kOJ/ )

where

'Q‘(kﬁ'):“ Py if k5-= ,C’Yj{ ks. =Kj.-1 s O = KJ' 3

L

Therefore

9% (F9s--r-s%a00) »

)
where :ZQ% has to be extended over all lattice
points (x)e & , for which (f, ye..,f,)(mod 1)
lies in Hg, satisfies the inequality
\
=0, ... 5)< ZZ‘Bg%”ﬂ(ks),
where %g has to be extended over all lattice

points (k)=( ks je+.,ks ) which satisfy (67).
HKence a fortiori
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Using this result, we find from (¢9) and n-s 2 1

Z(?)@(ﬂ’ ____ "Fn)é 7"'517(7'L + )N(Q)

n- (
70 203 P ISt

and a fortiori

where has been put

©_,8 _y , 3 @
g/*i—ql-*i— Mi+ )‘Ma ((=1.2,-..-:,5) ,

: 5 As/ g,
®_® 3. ® . @
= =4 - =
Po’/*i qvo,,ui Mi )\/,L;,': ‘h,ui’/ui ’q'h/-\i M

3 2
——Mln( + , “*‘)\Mi”hﬁ»l(\) (h ‘¢O)

,oo,csj 0,6; )\5
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Consequently we find

2 o) -2, Z 50004
7NQ )277‘?@)#2 IS(h)IZ ..... p} -

-V1

In order to carry out the summation over‘g y WEe

use Lemma 5. Putting there
3 70
Ay=5v+‘x; ’ By:")\—v »

we find

S7he% /7(er+ 78)_ 77(er+§->

\;2%1

and putting for a fixed lattice point (h)%(0,..,0)
with (44)

3 : .
A)":b’v"-_x; 9 lf hv:'o 3 Av= Mln (Xv+ %y,‘i-x)ﬁ'f;,, "2;‘)

if hyz0,

we find

> = ones -
53 phm ..... phn,n th,y th’v ’



where
xx 72 K¥  pisaf 73 .7 v %
po’v-—b‘v*h_;; ? phmv_ : im-\bﬁ,.+ Ay 2 Ay’ FiRE >
(.h)l?éo),
S P L Min(a,e 2103, 2
p.o,y" b’v'i' ,-\v P th,)i =2 M’I;l(bu. —/\:\),1,5.‘11-—)-\-»,‘_6:‘ s
(hy20) -

Hence, we have a fortiori

where [0  is defined by (53a) and (53b) whereas

Py, is defined by (61).
From (64) and (70) we deduce

0,4+ 2,5 N(Q){ZZ(XQ %)-5:71 xv}

and therefore it follows from (57) and (60) that
No@)22 2,2
P°()meQ 2 3
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which proves (52) in the special case P=P,
Replacing f, by ¥, -a&,, we remark that this
does not infliet the right hand member of (52).
Hence the theorem follows at once for an arbi-
trary system of inequalities xy,<f,<3, (mod 1)
instead of the special system (55). Q.e.d.

be valld. Let ¥y, ¥ y+--5 ¥, denote n real
numbers, such that O £ J,£ 1 and let P denote
the parallelepiped

(71) KYEZHExytdy (V=1,2, ..... ,‘n) .

Then the number Ny (Q) of solutions (x)e@ of the

inequalities

(72) xygfy 2oty t¥y Mod ) B=1,2,.....,0)

gsatisfies the condition

+Z B R‘ nIS(h)‘

where S(h ) is defined by (46) and where
is to be extended over all lattice points

o} 18§ SRR W TP NSO ) [

which satisfy (44), whereas has been put




(74a) POV:ZSIN— %\5 (M=132,..0009N)
H v - o

(b ) ph”vzr/tm(\xﬁi‘x@“,txﬁ?)i;,ﬁ}%) (hy£0) .

Proof. We first restrict ourselves to the parallele-
plpedpfor which o, =0 ( v=1,2,... ,n) We put, accor-
ding to (40) and (41) : g I

(75) @ = @(Z,, """ azn)={’Z‘€(Mva}"v ab'v.a'zva’a

where @ denotes the function which we have intro-
duced in Lemma 2, whereas the numbers M, , n, .
have been introduced by the assumptionsof Lemma
4, which hold in our case.

Now lct 2* denote a sum which is to be extended
over all lattice points ( x )€ Q for which the

sy stem ﬂ . ,?n satisfies the inequalities

(76 ) osf, ¥, (mod1) B=1,2,.....,n).

Then the number NPO(Q) of those lattice points
satisfies the following relation

Np (@ =25 1 = 7 Qi) + 25 (1B i)
7Y (22 Q)+ 22 (-G )

winQ



h 3=
bacause of (42). Now from (43) =2nd (77) it
immcdiately follows:

(h)

+ 2 (1230 nrf),

(78 ) NPO(Q)éa}Zz ----- B'HN(Q)‘*E*P;Hﬂ """ P;]n’nis(h)!

where S (h) denotes the sum which is defined by
(46) and where Zi* is to be extended over
(n

all lattice points (h )= (hy,...,h,) £ (0,...,0),
satisfying (44), whereas has been put

(79 ) p(;,v-_—. b’v N P}l_’v,v= Min(gy,1_8\; 37';1!"&‘) (hy#O)

We now shall deduce an estimate for

Using the notation (40), we find from (75) and
0s@, <1

the inequality
n ‘N
¢ =E% =!Z(1-(1-<(7\,))§ 1 _EA(L(@\,) }
Hence

(80) Z=(1-lFys--.sF )éé Z(1-e,R).
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1

We now fix an arbitrary index 6 {1 £ 5 < n) and we
denote by Kg the smallest non-negative integer,
which is

Further we denote by (r (k) (k= 0,1,...,Kgs) the
parallelepiped which is defined by the inequalities

(81) 0SZy< ¥y  (V=152,-0e005n 5 ¥£6) ,
: 2k 2k+2
(82)° —Xéé Zs5 T =

Thefir B is entirily covered by the parallelepipeds
Gg(k ) (k= 0,1,...,Kg ). In the case that 72\'6.”5’
we have Kg=0 and we replace (82) by 0£2z4% ¥s.
Their we shall have

Ks
(837 7% (1_ts(fs))2 kZ_ON(Q;Grs(k)) Max(1-¢4(2)

where the Max is tobe extended over %\E £z< 2—"7\% , and

where N (Q; Gg(k)) denotes the number of lattice
poimts (x)€ Q for which (f;,...,f,) (mod 1)
falls into G ( k).

We now fix a value of k (0 £k < Kg ) amd apply Lemma
4 with K = 1 to the parallelepiped P =Gg( k),
putting

(8"') av:o,‘év:gv (\’:1,2, ..... ,n;v*6>’

(85 ) xKe = ’2—")\1‘56 P 66 = Min(%‘e ? XG) .
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Then N,(Q)=N(Q, Gelk) ) and we find
(86) N(Q,Grs(k)s Ds

where we have put

g * @ @)
(87) D6=2£<Q<ja-§v)w(@)+% q,:;ﬂ ..... %:,JS(W'»

with

G
(88) { T(v)._.b'v B=1,25.....0M3 V£6) »

(67_ 2
MTe™Rs 2

® .3 . @ o . -
qo,v - av+ 'Xv ° qhv,)):Mln(Xv*-_Xv"Lav*-%y’ l—h;l)

(89) : (hy20) (V=1,2,.we513 V£S)
@ ©
5 "
q'O,G = -)—\é P q’hs,@ = Mm (%6 ? ﬂj?‘s'!) (hG-’,éO) )

whereas S(h) is definedby(46).
Obviously Dg does not depend onk . Thus for
fixed 6 the number Dg is the same for all
parallelepipeds Gg(k )« We now consider the
value of 1 - (QG(Z) for a number Z

of %\% -4 2—%\4—? .
By Lemma 3 we find because of r=rz 4



], o
1.¢2)%1,if k=0,0r k=Ks-1,Ks -
1-¢5(2)2 1%5{];1—,—1 +(K—;‘-T<)zr.1} ,if 12kgKs-2.
Pherefore we have by (83) and (86)

2 (1. Qs(ﬂs)) D6(3+6q k7>
<Ik@+—@+ 24)<Z Ds -

Hence, it follows from ( 80 )

gk
7= (1_ 3. ,ﬁ,))g-g—g D
and therefore from (8'7")

25 (-3 )27 2 [ T+ 2INQ

w72 dy YISk

and hence a fortiori

{115 %)-17 5| NQ)

+(Zh) {pm e hn,n —P;lm ..... } lg(l‘\)'

because of (88), (89) and Lemma 5. Here the num-
bers ph 5 satisfy (#a) and (#b), whereas the
b'L )

numbers p;) , are defined by (79 ). Now we find
2 4]
from () immediately



;/_‘

+%* phrﬂ ..... thnlS'Oq)! -

which proves the lemma in the special case
that P =P, . Replacing f, by f,- *, , we remark
that this replacement does not inflict the right
hand member of (73), which proves the lemma in
full generalitye.

4. Proof of Theorem 2. Considering the numbers
Ny Aysecey Ay s Myyeo.y My which have been
defined in Theorem 2, we ' put

P = M]n (n,)\v\ ) (V=1 32 gussivy n),
) = Max (4, [Jogfv]) (P=1,2, o1V

and we remark that

(90 ) [%E’-J +1= [ﬂ%(—:g?—a@] +‘1 > Ay

We now for V= 1,2,...,n choose an integer

¥,

21 by the relation
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o

which is always possible, by putting M, = r,(A,-1).
Then we- have by (90)
M, <M, .

We now apply the Lemma's 6 and 7, writing there
M, instead of M, . Then we find the inequality

(IN*Q-NQT8y-,)

<{ (o ) AN+

L +% B phmn|8(h)| .

using the notation of the named lemma's. Now
because of M, < M, and (17 ) the sum %* in
h

£

(91) ¢

(91) clearly - satisfies +the inequality
*
% <T(@Q). N
and therefore (20) follows from (91 ) immediately.

4. Deduction ef Theorem 1.
We choose a constant C > 4. For each parallelepiped
ReS , we put

- Cn
2= B,

M, =2\, logan .



=
Then we have M,>M, , where M, denotes
the constant which we have defined in Theorem
2. '

Now applying Theorem 2, we find at once
1 o)< (i) o}
(+150) T(Q,C‘)

150 19
(6 _1) +e

9

a2

CT(Q,0).

As C can be chosen arbitrarilylarge and as

T(Q,C) >0 for a fixed value of ¢ , if
Q runs through the sequence S , our
assertion (11 ) follows at once.
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