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Abstract. Multiphase flows are described by the multiphase Navier-Stokes equations. Numer-
ically solving these equations is computationally expensive, and performing many simulations
for the purpose of design, optimization and uncertainty quantification is often prohibitively
expensive. A simplified model, the so-called two-fluid model, can be derived from a spatial
averaging process. The averaging process introduces a closure problem, which is represented
by unknown friction terms in the two-fluid model. Correctly modeling these friction terms is a
long-standing problem in two-fluid model development.

In this work we take a new approach, and learn the closure terms in the two-fluid model from
a set of unsteady high-fidelity simulations conducted with the open source code Gerris. These
form the training data for a neural network. The neural network provides a functional relation
between the two-fluid model’s resolved quantities and the closure terms, which are added as
source terms to the two-fluid model. With the addition of the locally defined interfacial slope
as an input to the closure terms, the trained two-fluid model reproduces the dynamic behavior
of high fidelity simulations better than the two-fluid model using a conventional set of closure
terms.
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1 INTRODUCTION

The simulation of multiphase flow of gas and liquid in a pipeline is a problem of interest in
the oil and gas industry. The two fluids can have complex interactions leading to different flow
regimes, such as smoothly stratified flow, wavy stratified flow, and slug flow. Predicting the
transition from stratified flow to slug flow in dynamic simulations is a difficult problem [21],
for which we consider different computational models. We restrict ourselves in this paper to
incompressible 2D channel flow, as a simplified representation of 3D circular pipe flow.

A general model which can describe the flow regimes mentioned above is formed by the
well-known Navier-Stokes equations. These can be solved numerically, using for example a
volume-of-fluid (VOF) method [19] for the treatment of the interface. However, when many
model evaluations are needed, such as in uncertainty quantification, solving the full Navier-
Stokes equations is too computationally expensive.

We therefore consider a simplified model which is computationally less expensive, the so-
called two-fluid model [3]. The 1D two-fluid model is obtained by averaging the Navier-Stokes
equations for each fluid, over the respective cross-sections. This spatial averaging process in-
troduces a closure problem; the shear stresses in the flow become unknowns with a priori no
direct relation to the averaged quantities present in the two-fluid model. Relations between the
averaged quantities and the stresses need to be postulated; these relations are called ‘closure
terms’.

Conventionally, these closure terms for the two-fluid model are obtained from correlations
with experimental data for steady state pipe flow. A pressure difference is applied to a section of
the pipe and the resulting volumetric fluxes and liquid holdup (fraction of the total pipe cross-
section occupied by the liquid) are measured. These are related to the stresses via the steady
state balances for both fluids and via assumptions on the relations between the different stresses,
to form the closure terms. On this principle, for example, the widely used Taitel and Dukler
[40] closure terms are based.

Alizadehdakhel et al. [1] and Osgouei et al. [32] used physical experimental data to train
neural networks to predict pressure drops in two-phase pipe flow. They related the superfi-
cial velocities to the spatially and temporally averaged pressure drop, like in the conventional
approach, but used a neural network to construct the relation.

For bubbly flow in a vertical channel, Ma et al. [26, 27], introduced a more general approach.
They conducted 3D unsteady Navier-Stokes DNS (with front tracking), the results of which
can be related to the averaged quantities present in their low-fidelity 1D model, at any point
along the 1D model’s spatial axis and at any point in time. A neural network was employed to
learn the relation between the two. They report satisfactory results, and emphasize the general
applicability of their approach: no prior knowledge is needed on the relation between known
quantities and the quantities requiring closure. Ma et al. refer to earlier work by Lu et al. [24,
25], who trained a neural network with data from micro-scale DNS simulations of a gas-solid
mixture under influence of a shock, to provide closure relations for the particle-particle and
gas-particle interactions, for use in coarse macro-scale simulations. Besides these references,
in multiphase flow, the literature on machine learning for closure terms is sparse.

However, in the field of turbulence closure modeling, neural networks have already proved
their worth, when applied to specific cases. Sargini et al. [38] used a neural network to create a
subgrid scale (SGS) model for a Large Eddy Simulation (LES), which reproduces the dynamics
of LES using an expensive SGS model (Bardina’s scale similar (BFR) SGS model), at a lower
computational cost. A similar approach was taken by Tracey et al. [42] for air flow in a data
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center. Gamahara and Hattori [16] recently used DNS directly to obtain a functional relation for
the SGS tensor which shows performance close to that of a Smagorinsky SGS model. Ling et
al. [23] learned RANS stress tensors similarly, choosing the inputs and neural network structure
such that Galilean invariance is incorporated in the expressions directly.

Motivated by the success of machine learning in the field of turbulence closure modeling, we
continue the application of machine learning to multiphase flow, taking inspiration from Ma et
al. [26, 27]. We make two new contributions:

• We extend the methodology to more generic neural networks.

• We study a different physical situation (stratified flow versus bubbly flow), with a different
low-fidelity model, and different unclosed terms.

Compared to the conventional literature on closure terms for the 1D two-fluid model, the nov-
elties of this work are:

• We base closure terms on the results of fully resolved unsteady 2D Navier-Stokes simu-
lations (for channel flow), which we refer to as our high-fidelity simulations.

• We employ an artificial neural network to find the relation between the two.

• The preceding two points make it straightforward to add non-local, non-instantaneous in-
put variables to the closure relations; in this work we have added the streamwise derivative
of the interface height.

The differences between our approach and the conventional approach mean that:

• Closure terms can be constructed for specific cases (specific duct geometries or flow
regimes), as long as accurate high-fidelity simulations are available.

• Unsteady behavior may be reproduced more accurately by the low-fidelity model.

With our approach, it is our aim to use high-fidelity simulations to improve the accuracy of
low-fidelity simulations, with the promise to reach the accuracy of the high-fidelity model at
the cost of the low-fidelity model.

The structure of the paper is as follows. The physics and numerics of the high- and low-
fidelity models are discussed in section 2. This leads us to an explanation of the required
closure terms, and the fundamental limitations imposed by the model averaging process, which
are not fixable by improving closure terms of the considered form.

In section 3 we tune the neural network, and show that closure terms based on steady state
flow are unsatisfactory for the case of wavy unsteady flow. We then describe the training of
the tuned neural network on wavy unsteady flow data. Finally, section 4 presents the results of
applying the trained neural networks as closure terms in the low-fidelity simulations. Here the
agreement between the high-fidelity model and the enhanced low-fidelity model is evaluated.

2 HIGH- AND LOW-FIDELITY MODEL DESCRIPTION

Our approach is shown schematically in Figure 1. We have a 2D high-fidelity model for
channel flow, with horizontal and vertical velocity components u and w, being functions of the
coordinates s and h. The low-fidelity model is 1D and as such only knows velocities uL and uG,
which are averaged over the portions of the channel containing liquid and gas respectively, so
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that they are only functions of s (as is the interface height hint). From the 2D high-fidelity field
results we calculate these averaged quantities and their corresponding stresses. These represent
inputs and desired outputs to a neural network, respectively, between which the neural network
is given the task to find a relation. The resulting functions can be fed as closure terms to the
low-fidelity model.

High-fidelity model h

s

u

w

M = 1

M = 0

g

Neural network

Training data

Closure terms

∂hint
∂s

...
uL

hint

...

...

τint

τG

τL

Low-fidelity model H

s

uL

uGτG

τint

τL hint

g

Figure 1: An outline of the approach for learning closure terms from high-fidelity simulations.

2.1 High-fidelity model

The high-fidelity model that we use to generate the training data is the open source code
Gerris [33, 34]. It is based on the one-fluid formulation for multiphase flow. This entails the
solution of the Navier-Stokes equations for incompressible flow:

∇ · u = 0, (1)
∂u

∂t
+ u ·∇u =

1

ρ

(
−∇p+ ∇ ·

[
µ∇u + µ(∇u)T

])
+ g, (2)
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with velocity field u = u(s, h, t) and pressure field p = p(s, h, t) encompassing the entire
domain, gravitational acceleration g, density ρ, and viscosity µ (see Figure 1).

Gerris discretizes these equations spatially with a finite volume method on a colocated grid,
with central interpolation and the Van Leer generalized minmod limiter with θ = 2 for the face-
centered gradient calculation. We do not make use of Gerris’ capability to adaptively refine the
grid at different levels.

For temporal discretization Gerris uses a second order projection method [11], in which a
multilevel Gauss-Seidel iterative method is used to solve the pressure Poisson equation. The
velocity advection term is discretized according to the second order unsplit upwind scheme of
Bell et al. [4], and for the diffusion term a Crank-Nicolson discretization is employed.

In the one-fluid approach for multiphase flow, the density ρ and viscosity µ are functions of
the spatial coordinates, via a marker function M = M(s, h, t):

ρ = ρ(M), µ = µ(M).

This marker function M , typically 1 in the liquid and 0 in the gas, is advected by the velocity
field. We make the assumption of sharp interfaces [43, p. 22] and disregard phase transition, so
that the advection of the marker function can be described by

DM

Dt
=
∂M

∂t
+ u ·∇M = 0. (3)

Gerris advects the marker function numerically using the volume-of-fluid (VOF) method. In
the VOF method [19], the marker function is averaged over the grid cells to define the color
function

Ci =
1

Vi

∫
Vi

M dV. (4)

The color function is a function which gives the volume fraction of the reference fluid in a grid
cell. The material properties in grid cells i can then be expressed as functions of this color
function. We use the expressions

ρi = Ciρ1 + (1− Ci)ρ0, (5)

µi =

(
Ci
µ1

+
1− Ci
µ0

)−1
. (6)

with ρ1 and µ1 the density and viscosity of the fluid indicated by M = 1 and ρ0 and µ0 the
fluid indicated by M = 0. For the viscosity we do not use an arithmetic mean but rather
the harmonic mean [14], which improves the accuracy of the velocities and stresses at a flat,
horizontal interface.

Prior to the actual advection step, the interface is reconstructed from the color function using
the PLIC method [47]. The color function is then advected geometrically by the velocity field.

We use most of the standard Gerris settings, except that we lower the tolerance of the pro-
jection steps from 1 · 10−3 to 1 · 10−6. After a convergence study, the grid spacing ∆s = ∆h is
set to H/64, and the time step is set so that the maximum value of

CFL =
|u|∆t
∆s

(7)

anywhere in the simulation is 0.8. However, there is an additional constraint that in mixed VOF
cells the maximum value should be 0.5. We do not filter the color function (i.e. averaging over
multiple cells), to keep the interface relatively sharp.
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We choose the one-fluid formulation for multiphase flow with the VOF interface advec-
tion method for its conservative properties, its simplicity, and its similarity to our low-fidelity
model. Alternative interface advection methods for the one-fluid formulation of multiphase
flow include the front tracking [46] and level-set methods [39], but these are not naturally mass
conservative.

2.2 Low-fidelity model

Our low-fidelity model is known as the 1D two-fluid model. It is obtained by considering
control volumes in a channel, separate for liquid and gas, as pictured in Figure 2. The limit δs→
0 is taken, while the control volumes fill the full channel height. Since we do not consider phase
change, the velocities are continuous at the interface. The stresses tangential to the interface, the
shear stresses, must be continuous, and since we assume hydrostatic balance (without surface
tension) the pressure should be continuous along the vertical direction, as well as the stresses
along the vertical direction.

s

δs

Hh

hint

nG nG

nL nL

nL

nG

VG

VL
u

g

φ

nL

nG t

Figure 2: Two small (δs � H) control volumes for two-phase pipe flow. At the top and bottom the
control volume is bounded by impenetrable no-slip boundaries. The interface separates the two control
volumes.

We obtain one equation for mass balance and one for momentum balance for each fluid. In
channel flow these take the following form:

∂

∂t
(ρLhint) +

∂

∂s
(ρLuLhint) = 0, (8a)

∂

∂t
(ρG(H − hint)) +

∂

∂s
(ρGuG(H − hint)) = 0, (8b)

∂

∂t
(ρLuLhint) +

∂

∂s

(
ρLu

2
Lhint

)
= − ∂pint

∂s
hint + LGL + FL

− ρLhintg sin (φ),

(8c)

∂

∂t
(ρGuG(H − hint)) +

∂

∂s

(
ρGu

2
G(H − hint)

)
= − ∂pint

∂s
(H − hint) + LGG + FG

− ρG(H − hint)g sin (φ),

(8d)
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with uL and uG the averaged velocities of the liquid and gas respectively, ρL and ρG likewise for
the densities, hint the interface height, pint the interfacial pressure, and φ the channel inclination.
Here the stresses are bundled into closure terms

FL = τL − τint, FG = τG + τint, (9)

and the level gradient terms represent

LGL = − ∂

∂s

[
1

2
ρLg cos (φ)h2

int

]
, LGG =

∂

∂s

[
1

2
ρGg cos (φ) (H − hint)

2

]
. (10)

The equations are of the same form as those for pipe flow in circular cross-sections, but with
different relations between the cross-sections, perimeters, and interface height (see e.g. [36]).

In this research the ‘Rosa’ code developed by Sanderse et al. [35, 36, 37] is employed for
solving the incompressible form of (8).

The code discretizes the equations using a finite volume method on a staggered grid. This
allows for a strong and straightforward coupling between pressure and velocity. Interpolation
is needed for the convective scheme: here we employ a central interpolation, which ensures
second order spatial accuracy.

After the system is discretized spatially, the time stepping is considered. We use the constraint-
consistent time integration framework for the incompressible two-fluid model presented in [36],
with the three-stage, third order strong-stability preserving Runge-Kutta method referenced in
[37], which follows Gottlieb et al. [17].

2.3 Closure terms

The liquid wall stress τL, gas wall stress τG, and interfacial stress τint, which appear in (9),
represent the stresses acting in the streamwise direction:

τ = (τ · n) · ŝ, (11)

with τ the stress tensor and ŝ the unit vector along the s-axis. Accounting for the no-slip
boundary conditions, assuming hydrostatic balance and horizontal length scales far larger than
the vertical length scale, they are related to the velocity profile via

τL = −µL
∂u

∂h

∣∣∣∣
h↓0

, τG = µG
∂u

∂h

∣∣∣∣
h↑H

, τint = −µG
∂u

∂h

∣∣∣∣
h↓hint

= µL
∂u

∂h

∣∣∣∣
h↑hint

, (12)

in which x ↑ y and x ↓ y are limits from below and from above respectively (see [10] for a
more detailed discussion).

These stresses are a priori unknown in the 1D two-fluid model, since in this model the ve-
locities are not resolved in the transverse direction, meaning that the stresses cannot be cal-
culated according to (12). Conventionally, steady state experiments are employed to correlate
the stresses to the averaged quantities through the steady state balance, essentially implying a
streamwise and temporally averaged description of the flow. This yields relations of the form1

τL, τG, τint = f(hint, uL, uG, ρL, ρG, µL, µG, H), (13)

1Expressions for the stresses based on the body forces as opposed to the averaged velocities do not close the
steady state equations [13], and cannot generalize to unsteady flow.
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in which all the variables on the right-hand side are known in the 1D two-fluid model.
Many experiments are needed to obtain good relations, and therefore it may be difficult to

find closure terms in the literature which generalize well to the case at hand. Furthermore,
when considering wavy flow, with this method of generation of closure terms only the averaged
(positive) effect of waves on the interfacial friction can be taken into account; local effects are
averaged out.

For the strongly simplified case of laminar, flat interface, fully developed, steady channel
flow, Ullmann et al. [45] have derived analytical solutions for the stresses of the form (13).
They are given by

τL = −1

2
fLρLuL|uL|F ∗L, τG = −1

2
fGρGuG|uG|F ∗G, τint = −1

2
fGρG (uG − uL) |uG|F ∗int,G,

(14)
with friction factors

fL =
3

2

16

ReL
, fG =

3

2

16

ReG
, (15)

depending on Reynolds numbers

ReL =
ρL|uL|DL

µL
, ReG =

ρG|uG|DG

µG
, (16)

based on hydraulic diameters

DL = 2hint, DG = 2(H − hint). (17)

F ∗L and F ∗G are the two-phase correction factors for the wall friction:

F ∗L =
1 + 1

2
uG
uL

[
µL
µG

uL
uG

H−hint
hint

− 1
]

1 + µL
µG

H−hint
hint

, F ∗G =
1 + 1

2
uL
uG

[
µG
µL

uG
uL

hint
H−hint

− 1
]

1 + µG
µL

hint
H−hint

, (18)

and F ∗int,G that for the interfacial friction:

F ∗int,G =
1

1 + µG
µL

hint
H−hint

. (19)

These closure terms form a reference, with which we benchmark our solvers for the case of
steady flow, and to which we compare the new neural network closure terms.

2.4 Closure term limitations

By using closure relations of the form (13), we introduce a fundamental limitation. The
averaged velocities cannot be translated back uniquely to velocity profiles, the slopes of which
determine the stresses; information is lost in the averaging process. The consequence of this
uniqueness problem is that for collections of very different velocity profiles, with the same
averaged velocities, the closure relations will predict the same stresses, while the actual stresses
can in reality be very different. In most of the literature [2, 5, 12, 15, 20, 40, 44] the analysis is
therefore limited to fully developed steady state flow, for which the stresses are uniquely related
to the averaged velocities.

There is a second limitation to the degree to which the low-fidelity model can be made to
reproduce results of the high-fidelity model in this framework. Closure terms of the form (13)
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are introduced as source terms in the low-fidelity model, and cannot be expected to resolve the
entire difference in dynamics introduced by the averaging process and the associated assump-
tions. The difference between the dynamics of the high- and low-fidelity models, in absence of
friction (equivalent to taking the homogeneous part of the equations for the two-fluid model at
zero inclination), can be illustrated by performing a linear stability analysis of the two models.
Results of this are shown in Figure 3, based on the parameters from Table 1.

Figure 3: Dispersion relations ω(k) with k = 2π/λ, for the 1D two-fluid model without friction terms
[22], and for inviscid 2D potential flow [29]. The parameters are given in Table 1, with the steady state
solution given in Table 2.

Table 1: Test case parameters.

Parameter Symbol Value Units

Background pressure gradient ∂p/∂s −1 kg m−2 s−2

Liquid density ρL 998 kg m−3

Gas density ρG 1.2 kg m−3

Channel height H 0.01 m
Initial interface height hint 0.3H m
Liquid viscosity µL 1.002 · 10−3 kg m−1 s−1

Gas viscosity µG 1.82 · 10−5 kg m−1 s−1

Acceleration of gravity g 9.81 m s−2

Pipe inclination φ 0 degrees

With the analytical solution given by [6] and [45], the corresponding averaged velocities and
stresses (for the steady state) can be calculated. These are given in Table 2.

It is observed that the dispersion relation of the 1D model only converges to the dispersion
relation of the 2D model at large wavelengths. The cross-sectional averaging of the equations,
and the associated assumption of hydrostatic balance, implicitly implies the long wavelength
assumption [30].
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Table 2: Test case steady state solution, for the parameters given in Table 1.

Parameter Symbol Value Units

Averaged liquid velocity uL 0.00818 m s−1

Averaged gas velocity uG 0.232 m s−1

Liquid wall stress τL −0.00646 kg m−1 s−2

Gas wall stress τG −0.00354 kg m−1 s−2

Interfacial stress τint −0.00346 kg m−1 s−2

Liquid Reynolds number ReL 48.9 -
Gas Reynolds number ReG 214 -
Liquid Froude number FrL 0.00114 -
Gas Froude number FrG 0.391 -

2.5 Stress extraction

By extracting stresses from high-fidelity simulations via (12), it is possible to consider local
and unsteady effects. We can take any position along the s-axis in the simulations and calculate
the stresses, and the corresponding averaged variables uL, uG, hint, at that point. We can cal-
culate additional, local, quantities, which are not defined in a streamwise averaged description
— the streamwise derivatives of the averaged variables — and relate these to the stresses as
well. Since we can extract the averaged variables and stresses at any point in time in the un-
steady simulations, the same holds for temporal derivatives. Because we use a neural network,
such new inputs can easily be added to the closure relations, without prior information on the
complex relation between them and the stresses.

The stresses are determined practically by fitting cubic splines to the velocity profiles of the
liquid and gas separately and taking their analytical derivatives. For the final determination of
the interfacial stress, the stresses at the interface as calculated from the liquid and gas profiles
are averaged. For more details, see [10].

3 NEURAL NETWORKS

A neural network is used to construct a relation of the form (13), using the high-fidelity
model data. For laminar steady state flow the analytical solution can be used to train the neural
network instead of the high-fidelity solution (since they are equal). This simple case, for which
conventional closure terms are exact, is used to tune the neural network hyper-parameters (in
subsection 3.1 and subsection 3.2). Afterwards (in subsection 3.3 and subsection 3.4), the tuned
neural network is applied to the more difficult case of unsteady, wavy flow.

3.1 Neural network settings

The network is a multilayer perceptron network (MLP), implemented in the MATLAB Deep
Learning Toolbox [41]. It is tuned mainly by comparison of training data error and validation
data error as measured by a mean squared error cost function

C =
1

N

N∑
i=1

(yi − ŷi)2, (20)

where yi is the data for a set of input variables i and ŷi is the model prediction for these inputs.
The final value of the cost function is the average of (20) over the three stresses τL, τG, τint.
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The result is a network with 4 hidden layers with 18 nodes each, each with a hyperbolic
tangent activation function, and no regularization term in the cost function (given the size of
our training data set). The network is trained using the Levenberg-Marquardt training algorithm
[18], an efficient algorithm for smaller networks. A small percentage of the training data (15%)
is taken apart and not used for the training; the optimization is stopped if the error on this
validation data does not decrease. The training inputs and outputs are mapped to the range
[−1, 1] (the same translation and multiplication is later applied to unseen data).

We tested the effect of random initialization via the Nguyen-Widrow algorithm [31] and
found that different random initializations yield very similar final values of the validation data
error. We also verified the convergence of the training and validation errors with increasing
amounts of data. These results are available in [10].

3.2 Performance of networks trained on steady state data

Training the network with steady state data is useful for the network tuning. However, Fig-
ure 4 shows that networks trained on steady state data have little predictive capacity for stresses
found in wavy unsteady simulations. On the horizontal axis stress values observed in high fi-
delity simulations are set out, and on the vertical axis the neural network predictions for the
same hint, uL, uG, ... are given. We show the squared correlation coefficient

R2 = 1−
∑N

i=1 (ŷi − yl,i)2∑N
i=1

(
ŷi − (1/N)

∑N
i=1 ŷi

)2 , (21)

with a range between 0 and 1. In this definition, ŷi is the model prediction. We construct a
linear fit of the model prediction ŷi as a function of the data and call it yl. The value yl,i is the
value of the linear fit at the data point yi, corresponding to prediction ŷi.

Figure 4: Regression plots for τL, τG, and τint with a neural network trained on steady state data as the
model, tested on the wavy unsteady high-fidelity simulation data.

The poor performance shown in Figure 4, particularly for the strongly oscillatory liquid
stress, could have been expected, as the analytical stresses with which we train the network are
derived for steady state flow, while the actual flow is wavy unsteady. Similar poor results are
observed when using the analytical stresses as the model directly. This motivates training on
unsteady data.
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3.3 Generation of wavy unsteady data

We consider 2D channel flow with periodic boundaries left and right under a constant body
force in the form of a background pressure gradient ∂p/∂s. No-slip boundary conditions are
applied at the top and bottom walls. A sine wave perturbation with wavelength λ and amplitude
∆ĥint is applied to the interface between liquid and gas.

We generate data by running the high fidelity code Gerris 60 times, with varying input pa-
rameters randomly selected from the ranges given in Table 3. The parameters are selected from
these ranges using Latin Hypercube Sampling [28], ensuring a space-filling sampling, without
repetition of parameter values. The material properties, channel height, and the channel in-
clination are kept at the values given in Table 1. This limits the required amount of (costly)
simulations, while allowing practical application to an unsteady flow in a specified pipe and
with specified fluids.

The wavelength of the perturbation is fixed at λ = L = 0.12 m, where L is the length of the
domain.

Table 3: The ranges of the parameters of the unsteady high fidelity simulations used as training data.

Initialization hint [H] ∂p/∂s [Pa/m] ∆ĥint [H] Number of simulations

zero wavy [0.05, 0.95] [0,−3] [0.00, 0.04] 30
developed wavy [0.05, 0.95] [0,−3] [0.00, 0.04] 30

The simulations are initialized from two different initial conditions:

• ‘zero wavy’: the velocities in the entire domain are zero,

• ‘developed wavy’: the velocities are initialized at their (flat interface) steady state values
(determined analytically [6]),

and then run from t = 0 to t = 10 seconds. With these initial conditions and the given parame-
ters, we get slowly traveling standing waves (see Figure 9), initially approximated by

∆hint(s, t) = 2∆ĥint cos(ks− δωt) cos(ω0t). (22)

These waves are formed as the superposition of two waves traveling in the opposite direction
with wave velocities

c1 =
ω0 + δω

k
, c2 =

−ω0 + δω

k
, (23)

with δω � ω0 due to the small Froude numbers (see Table 2). Later, nonlinear and damping
effects become important; in most cases the waves are largely damped out at t = 10.

Note that the parameter ranges in Table 3 are chosen such that the perturbations damp out in
time, avoiding a transition to (near-) slug flow and problems of ill-posedness in the 1D two-fluid
model (see e.g. [7]).

3.4 Neural network training

At each time step and at each grid point along s the quantities given in (13) are extracted
from the Gerris simulations, yielding many data points, which may not all provide distinct
information. The networks are therefore trained on small random subsets of the data.

Neural networks are trained on different portions of the data:
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• ‘zero wavy net’: networks trained on data with the ‘zero wavy’ initial condition.

• ‘developed wavy net’: networks trained on data with the ‘developed wavy’ initial condi-
tion.

• ‘zero + developed wavy net’: networks trained on a combination of the data with the ‘zero
wavy’ initial condition and with the ‘developed wavy’ initial condition.

Per item in the above list, we sample the data with replacement to get five different data sets,
each a small percentage of the total data set2. We train (randomly initialized) networks on each
of these subsets of the data. The final prediction for the stresses is obtained by averaging the
predictions of each of the five networks, for a given set of inputs. This averaging procedure is
called ‘bagging’ and has been shown to improve accuracy for learning algorithms sensitive to
changes in the training data [9]. This technique was also employed by Ma et al. [27].

An extra input is added compared to those given by equation (13): the interface slope
∂hint/∂s. The interfacial slope can easily be added to the neural network as an input. This input
does not fit in conventional closure terms which are calculated for the fully developed steady
state, since it is a locally defined variable3. If fully developed flow is assumed, or similarly the
effect of the wavy interface is averaged out over a length of pipe (as is done by e.g. Andritsos
and Hanratty [2]), the average interface slope will be zero (for a flow with a wavy perturbation)
and cannot be used to differentiate stresses at different phases of the wavy perturbation.

With this addition, and the given selection of variable parameters, the neural network takes
the form shown in Figure 5.

Input Layer

∂hint
∂s

uG

uL

hint

Hidden Layers

...

...

...

...

Output Layer

τint

τG

τL

Figure 5: A schematic of the neural network trained in subsection 3.4, and tested in section 4, with four
variable inputs, four hidden layers (with 18 nodes per layer), and three outputs.

2The percentages of the data sets taken per individual training are 5% for the ‘zero wavy net’ and ‘developed
wavy net’, and 10% for the ‘zero + developed wavy net’

3An exception is Brauner and Moalem Maron [8], who modified conventional closure terms (based on Taitel
and Dukler [40]) to add a dependency of the interfacial stress on the interfacial slope, by matching experimentally
observed and theoretically calculated stability boundaries (the latter of which depends on the closure terms). The
advantage of our method is that the interfacial slope is included in the correlation from the beginning, in the same
straightforward manner as the other inputs.
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Resulting regression plots for a ‘zero + developed wavy net’ are shown in Figure 6. The
correlation is satisfactory, considering the variation in flow patterns found in the data. The
influence of the extra input parameter ∂hint/∂s is illustrated by comparison of Figure 6 to Fig-
ure 7, where in the latter figure results are shown if this parameter is left out. Apparently the
interfacial slope is an important piece of information for the determination of the stresses. This
parameter allows the stress prediction to vary based on the wave’s amplitude and local phase,
and allows distinction between fully developed and unsteady flow, alleviating the uniqueness
issue discussed in subsection 2.4.

Figure 6: Regression plots for a neural network trained on the data combined for both initial conditions
of Table 3 (‘zero + developed wavy net’).

Figure 7: Regression plots for a neural network trained on the data combined for both initial conditions
of Table 3 (‘zero + developed wavy net’) excluding the interface slope ∂hint/∂s as an input.

4 RESULTS

The true test of the learned closure terms lies in their application to the low-fidelity model
Rosa, and comparison of the resulting predictions to high-fidelity model Gerris predictions
(presumed to be the truth). At each stage in the Runge-Kutta time integration scheme, the
variables as given in (5) are fed to the trained neural networks to arrive at values for the stresses
τL, τG, and τint. The current MATLAB shallow neural network implementation significantly
slows down the Rosa code simulations, compared to when the analytical closure relations (14)
are used.
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In order to be able to compare Gerris and Rosa results (with different grid resolutions) quan-
titatively, cubic splines of the variables of interest are constructed, along the horizontal axis.
The resulting s-dependent Gerris result at t = ti is yi = yi(s), with ŷi = ŷi(s) the correspond-
ing Rosa result. We compute characteristic values yc for each variable of interest, based on
analytical solutions for laminar single phase flow. Table 4 shows the following relative error
measure for the difference between Gerris and Rosa results, termed the ‘normalized averaged
error’ (NAE):

NAE =
1

NT

NT∑
i=1

√
1

L

∫ L

s=0

(
yi − ŷi
yc

)2

ds. (24)

The parameter NT is the total number of time steps and L is the length of the domain.
This error is shown for simulations initialized from different initial conditions, and using

different closure terms. Analytical closure terms (14) are tested alongside closure terms learned
from the wavy unsteady data of Table 3, using neural networks. Where the neural network
assisted error is smaller than the analytical closure error, the error value is highlighted green in
Table 4.

Table 4: Normalized averaged errors (24) between Gerris and Rosa simulations, for different variables
of interest. Results are given for Gerris and Rosa simulations starting from different initial conditions,
with the Rosa simulations using either analytical or neural network closure terms. Where the neural
network closure terms outperform the analytical closure terms (for the same initialization), the result is
highlighted in green.

Case Normalized Averaged Error [10−3]

Initialization Closure hint uL uG τL τG τint

zero wavy analytical 1.05 84.6 13.9 212 7.33 26.4
zero wavy zero wavy net 0.31 754 4.22 283 26.2 38.5
zero wavy zero + developed wavy net 0.52 193 15.2 233 10.8 28.5
developed wavy analytical 1.09 75.5 12.2 215 7.56 18.2
developed wavy developed wavy net 0.42 385 3.52 215 5.07 18.7
developed wavy zero + developed wavy net 0.51 112 12.6 173 8.20 26.6

Overall, with error measure (24), the results with neural network closure terms do not show
a significant improvement, except perhaps for the interface height. However, this error measure
is crude and does not show how well the wave dynamics are reproduced.

We therefore study the values of hint, uL, uG, τL, τG, τint as a function of time in Rosa
simulations for the test case given by Table 1, at a point at the center of the domain (s =
0.06 m) (see Figure 8). The scale and form of the oscillations are captured better when using
the neural network closure terms; the wave damping behavior corresponds better to the high-
fidelity simulations. The interface height in the entire domain is shown in Figure 9 for a number
of time instants, with the shown Rosa simulations employing the neural network closure terms.

The problem with the analytical closure terms is highlighted in Figure 10, in which the same
simulation results are shown for later time instants (with the analytical closure). The waves
acquire a sharp wavefront, in the wake of which small spurious waves are formed. These effects
are unphysical and are not observed in the Gerris simulations. The neural network closure terms
do not suffer from these spurious effects, probably due to their better damping behavior.
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(a) Analytical closure. (b) Zero + developed wavy net closure.

(c) Analytical closure. (d) Zero + developed wavy net closure.

(e) Analytical closure. (f) Zero + developed wavy net closure.

Figure 8: Evolution in time of the velocities, stresses and interface height at the center of the domain.
Initialized with the ‘developed wavy’ initial condition.
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Figure 9: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in at
the interface (H = 0.01 m). Rosa results with a ‘developed wavy’ initialization and ‘zero + developed
wavy net’ closure.

Figure 10: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in
at the interface (H = 0.01 m). Rosa results with a ‘developed wavy’ initialization and analytical closure.
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Training the neural network on unsteady simulation data allows the closure terms to capture
the unsteady (damping) behavior, differentiating them from conventional steady state closure
terms (including those closure terms that consider the streamwise averaged effect of a wavy
interface). The addition of the extra closure input parameter ∂hint/∂s, allows the closure terms
to apply the learned differences between steady state and unsteady flow patterns. By providing
information on the wave amplitude and local phase, this input parameter enables distinction
between steady state flow and increasingly unsteady flow during application in Rosa. This
allows the closure terms to provide different results for different phases of the wave damping
process. Similarly, the closure terms can produce different stresses at different points along
the wave (beyond the distinction made possible by the small differences in interface height and
averaged velocities).

One of the problems still visible in Figure 8 is a discrepancy in the steady state gas velocity;
this can be solved by further grid refinement of the Gerris simulations.

The remaining main difference between Gerris simulations and Rosa simulations using neu-
ral network closure terms is a discrepancy in the wave speed. The wave speed of the Rosa
simulations is slightly higher than that of the Gerris simulations, so that the two slowly drift out
of phase. This difference in wave speed between Gerris and Rosa simulations can be explained
by the fact that a discrepancy between the models remains that cannot be solved via modeling
the closure terms (see subsection 2.4). The inviscid dispersion relations for the test case, plotted
in Figure 3, indeed show a higher wave speed for the 1D model than for the 2D model.

5 CONCLUSION & OUTLOOK

In this work, we have explored a new approach based on neural networks to solve the long-
standing closure problem for stratified multiphase flow in channels. We have trained neural
networks on high fidelity simulation data to learn closure terms for the wall and interfacial
stresses in a low fidelity model; the 1D two-fluid model for stratified channel flow. An important
novelty in our work is the inclusion of the streamwise derivative of the interface height as
a feature in the neural network. With this addition, the dynamic wave-damping behavior of
high-fidelity simulations was reproduced better than with the conventional (steady state) set of
closure terms available in literature [45].

With the proposed framework, closure terms can be constructed for specific flow regimes and
duct geometries, as long as high-fidelity simulations are available. The addition of extra inputs
to the closure relations, which is straightforward in this framework, alleviates their inherent
uniqueness problem. An example of possible extra inputs, besides the interface slope, are the
spatial and temporal derivatives of the velocities.

We note that, even with a highly accurate closure model for the stresses, the 1D model will
generally not exactly reproduce the 2D results, because the stresses are not the only source
of discrepancy between the 1D and 2D model. In principle, it might be possible to eliminate
these discrepancies by modeling the difference between high- and low-fidelity model predic-
tions directly, and adjusting the low-fidelity model accordingly. But this approach would be
less physical, so that it might not generalize as well.

In the future we aim to improve the framework through closer inspection of the structure
of the learned closure terms, and possibly through the inclusion of physical constraints in the
network structure. This will open the door to more challenging cases, such as the prediction of
slug flow.
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