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a b s t r a c t 

Recent years have seen a growing interest in using data-driven (machine-learning) techniques for the 

construction of cheap surrogate models of turbulent subgrid scale stresses. These stresses display complex 

spatio-temporal structures, and constitute a difficult surrogate target. In this paper we propose a data- 

preprocessing step, in which we derive alternative subgrid scale models which are virtually exact for 

a user-specified set of spatially integrated quantities of interest. The unclosed component of these new 

subgrid scale models is of the same size as this set of integrated quantities of interest. As a result, the 

corresponding training data is massively reduced in size, decreasing the complexity of the subsequent 

surrogate construction. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Most numerical simulations of turbulent flow only capture a

imited portion of all spatial and temporal scales present in the

roblem, which introduces the need for parameterizations. The ef-

ect of the unresolved flow scales enters the resolved-scale equa-

ions as an unclosed forcing term, often denoted as the subgrid

cale term or the eddy forcing (in a oceanographic context), which

s highly complex, dynamic, and shows intricate spatio-temporal

orrelations. Traditionally, the eddy forcing is approximated by de-

erministic parameterizations. In the context of geophysical flows,

arameterizations are for instance based on the work of Gent-

cWilliams [1] , or through the inclusion of a tunable (hyper) vis-

osity term meant to damp the smallest resolved scales of the

odel [2] . 

Other sophisticated deterministic parameterizations have also

een developed. For instance the authors of [3] use a maximum

ntropy approach to derive a probability density function for the

nresolved scales of a two-dimensional turbulent flow problem,

here the time average of the unresolved energy and enstrophy

erivatives are constrained to zero. In [4] , the transfer of energy

nd enstrophy in spectral space is analysed for a number of param-

terizations, and compared to a high-fidelity reference solution of a

wo-dimensional turbulent flow case. A deterministic ‘energy fixer’

cheme is proposed, based on adding a weighted vorticity pattern
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o the computed vorticity field. In [5] , the governing equations for

wo-dimensional turbulence are modified with a so-called ‘ther-

ostat’, to drive the energy at the high wave numbers towards an

bserved statistical average. 

Stochastic, data-driven methods for constructing a surrogate for

he eddy forcing have risen in popularity over the years. Early con-

ributions to this topic in the context of ocean modelling includes

he work of [6] , where the eddy-forcing is replaced by a space-

ime correlated random-forcing process. Furthermore, in [7] a con-

itional data resampling scheme is proposed to replace the un-

esolved scales of an ocean model. Other notable examples in-

lude the work of [8–10] . Probability density functions (pdfs) of

he eddy forcing were constructed using a reference solution, con-

itioned on a suitable, resolved-scale variable which showed high-

orrelation with respect to the reference eddy forcing. More re-

ently, approaches involving machine-learning have also found ap-

lication to (two-dimensional) turbulence. In the work of [11] , the

ddy-forcing is parameterized via a feed-forward neural net, and in

12,13] , neural networks are applied to predict the complete state

f a general circulation model. Finally, the authors of [14] use a

onvolutional neural net to predict the subgrid scale stresses of a

uasi-geostrophic ocean model. 

Before any such method can be used, a sufficiently large set of

eference data needs to be available. Common practice is to simply

) collect a database of snapshots of either the eddy forcing or the

tate of the reference model, and ii), proceed with the construc-

ion of some chosen surrogate method. The novelty of this paper

s its position in between these two steps. We propose to precede

https://core.ac.uk/display/301630848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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1 p ′ 
the surrogate construction by an additional procedure that replaces

the eddy forcing with a new subgrid scale term which: i) is tailor-

made to capture several spatially-integrated statistics of interest, ii)

strikes a balance between physical insight and data-driven mod-

elling, and iii) significantly reduces the amount of training data

that is needed. Due to the latter point, we denote these new source

terms as ‘reduced’ subgrid scale terms. Instead of creating a surro-

gate for an evolving field, we now only require a surrogate model

for one scalar time series per statistical quantity-of-interest. Hence

we no longer require a surrogate with the ability to capture the

complex spatial correlation structure of the eddy forcing. 

This paper is organised as follows. In chapter 2 , we discuss

the 2D turbulent flow problem we consider, and the discretisa-

tion method that is employed. The subsequent section outlines the

derivation of the reduced subgrid scale terms. Section 4 shows the

results of these new terms, as measured in their ability of captur-

ing different sets of hand-selected quantities of interest. Finally, we

conclude in Section 5 . 

2. Governing equations 

We study the same model as in [3,15] , i.e. the forced-dissipative

vorticity equations for two-dimensional incompressible flow. The

governing equations read 

∂ω 

∂t 
+ J ( �, ω ) = ν∇ 

2 ω + μ( F − ω ) , 

∇ 

2 � = ω. (1)

Here, ω is the vertical component of the vorticity, defined from the

curl of the velocity field V as ω := e 3 · ∇ × V , where e 3 := (0, 0,

1) T . The stream function � relates to the horizontal velocity com-

ponents by the well-known relations u = −∂ �/∂ y and v = ∂ �/∂ x .
As in [3] , the forcing term is chosen as the single Fourier mode

F = 2 3 / 2 cos (5 x ) cos (5 y ) . The system is fully periodic in x and y di-

rections over a period of 2 πL , where L is a user-specified length

scale, chosen as the earth’s radius ( L = 6 . 371 × 10 6 [ m ] ). The inverse

of the earth’s angular velocity �−1 is chosen as a time scale, where

� = 7 . 292 × 10 −5 [ s −1 ] . This choice of �−1 allows us to express a

simulation time period of a single ‘day’ as 24 × 60 2 × � ≈ 2 π
non-dimensional time units, which allows for an intuitive specifi-

cation of the decay time of the diffusion and forcing term through

the values of ν and μ. Since, once we are given these scaling fac-

tors, (1) is non-dimensionalized, and solved using values of ν and

μ chosen such that a Fourier mode at the smallest retained spa-

tial scale is exponentially damped with an e-folding time scale of

5 and 90 days respectively, see (4) . For more details on the numer-

ical setup we refer to [3] . Furthermore, our Python source code for

(1) can be downloaded from [16] . 

Finally, the key term in (1) is the Jacobian, i.e. the nonlinear

advection term defined as 

J ( �, ω ) := 

∂�

∂x 

∂ω 

∂y 
− ∂�

∂y 

∂ω 

∂x 
. (2)

It is this term that leads to the need for a closure model when

(1) is discretized on a relatively coarse grid which lacks the reso-

lution to capture all turbulent eddies. 

2.1. Discretization 

We solve (1) by means of a spectral method, where we apply a

truncated Fourier expansion: 

ω(x, y, t) ≈ ˜ ω (x, y, t) = 

∑ 

k 

ˆ ω k (t) e i (k 1 x + k 2 y ) , 

�(x, y, t) ≈ ˜ �(x, y, t) = 

∑ 

k 

ˆ �k (t) e i (k 1 x + k 2 y ) . (3)
he sum is taken over the components k 1 and k 2 of the wave num-

er vector k := ( k 1 , k 2 ) 
T , and −K 

′ ≤ k j ≤ K 

′ , j = 1 , 2 . These decom-

ositions are inserted in (1) , and solved for the Fourier coefficients

ˆ  k , ˆ �k by means of the real Fast Fourier Transform. To avoid the

liasing problem in the nonlinear term (2) , we use the well-known

/3 rule, such that in practice the maximum resolved wave num-

er is K , where K ≤ 2 K 

′ /3 [17] . 1 Remember that ν and μ are cho-

en such that a Fourier mode at the finest retained scale is damped

ith an e-folding time scale of 5 and 90 days. This leads to the fol-

owing expressions for ν and μ, where the former is a function of

 : 

= 

1 

24 · 60 

2 

1 

�

1 

K 

2 

1 

5 

and μ = 

1 

24 · 60 

2 

1 

�

1 

90 

, (4)

[3] . Like the 2/3 rule, the use of a (hyper) viscosity term is a so-

ution for removing high-wavenumber contributions from the solu-

ion [18] . Typically the viscosity is tuned in order to remove a build

p of energy near the smallest scales, i.e. so-called spectral block-

ng. Another option is high-order Fourier smoothing, which keeps a

ortion of the Fourier modes beyond the cutoff from the 2/3 rule,

ee e.g. [19,20] . 

To advance the solution in time we use the second-order accu-

ate AB/BDI2 scheme, which results in the following discrete sys-

em of equations [17] 

3 ̂  ω 

n +1 
k 

− 4 ̂  ω 

n 
k 

+ ˆ ω 

n −1 
k 

2�t 
+ 2 ̂

 J n k − ˆ J n −1 
k 

= − νk 2 ˆ ω 

n +1 
k 

+ μ
(

ˆ F k − ˆ ω 

n +1 
k 

)
, 

− k 2 ˆ �n +1 
k 

− ˆ ω 

n +1 
k 

= 0 . (5)

Here, �t is the time step and 

ˆ J n 
k 

is the Fourier coefficient of

he Jacobian at time level n , computed with the pseudo spectral

echnique, and k 2 := k 2 
1 

+ k 2 
2 
. 

.2. Multiscale decomposition 

As in [3] , we apply a spectral filter in order to decompose the

ull reference solution into a resolved ( R ) and an unresolved com-

onent ( U), i.e. we use 

ˆ  R 

k = 

ˆ T R ˆ ω k , ˆ ω 

U 
k = 

ˆ T U ˆ ω k , (6)

here the projection operators ˆ T R and 

ˆ T U are depicted in Fig. 1 .

ote that the full projection operator ˆ T := 

ˆ T R + 

ˆ T U also removes

ave numbers due to the 2/3 rule. 

Applying the resolved projection operator to the governing

q. (1) results in the following resolved-scale transport equation 

∂ω 

R 

∂t 
+ T R J ( �, ω ) = ν∇ 

2 ω 

R + μ
(
F R − ω 

R 

)
. (7)

ere, T R is the filter in physical space corresponding to ˆ T R . In

ractice we only use ˆ T R since we solve the equations in spectral

pace, see (5) . As mentioned, the key term is the Jacobian (2) , since

ue to its non linearity, T R J ( �, ω ) � = T R J 
(
�R , ω 

R 

)
. We therefore

rite 

 

R r := T R 

[
J ( �, ω ) − J 

(
�R , ω 

R 

)]
(8)

uch that T R r is the exact subgrid-scale term, commonly referred

o as the ‘eddy forcing’ [6] . We use the notation r̄ := T R r for the

ake of brevity. The resolved-scale Eq. (7) can now be written as 

∂ω 

R 

∂t 
+ T R J 

(
�R , ω 

R 

)
= ν∇ 

2 ω 

R + μ
(
F R − ω 

R 

)
− r̄ . (9)

A snapshot of the resolved vorticity ω 

R and corresponding re-

olved eddy forcing r̄ is depicted in Fig. 2 . Notice the abundence of

mall-scale structures in the eddy forcing compared to the vortic-

ty field. 
We use N × N grids, with an even N = 2 (e.g. p = 7 ), such that N = 2 K [17] . 
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Fig. 1. Example of spectral filters (black = 1, white = 0) for the full, resolved and unresolved solutions. Due to the fact that we use the real FFT algorithm, only part of the 

spectrum is computed, as Fourier coefficients with opposite values of k are complex conjugates in order to enforce real ω and � fields [17] . 

Fig. 2. A snapshot of the exact, reference vorticity field ω 

R and the corresponding eddy forcing. 
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.3. Prediction of statistical QoIs 

Our goal is to integrate (9) in time, such that we can com-

ute the long-term climate statistics of a set of chosen Quantities

f Interest (QoIs): Q = { Q 1 (t) , . . . , Q d (t) } . Consider a general time-

ependent quantity of interest Q i ( t ), normalised by the area of the

ow domain, as 

 i (t) = 

(
1 

2 π

)
2 

∫ 2 π

0 

∫ 2 π

0 

q i (ω 

R , ψ 

R ; x, y, t) d x dy , i = 1 , . . . , d. 

(10) 

here q i is some function of the primitive variables ω 

R and ψ 

R .

hen, Q i is governed by the following ordinary differential equation

ODE): 

d Q i 

d t 
= 

(
1 

2 π

)
2 

∫ 2 π

0 

∫ 2 π

0 

∂q i 
∂ω 

R 

∂ω 

R 

∂t 
+ 

∂q i 
∂ψ 

R 

∂ψ 

R 

∂t 
d x dy 

= 

(
∂q i 
∂ω 

R 

, 
∂ω 

R 

∂t 

)
+ 

(
∂q i 

∂ψ 

R 

, 
∂ψ 

R 

∂t 

)
, i = 1 , . . . , d. (11) 

ere, we employ the short-hand 

( α, β) = 

(
1 

2 π

)
2 

∫ 2 π ∫ 2 π

αβ d x d y. (12) 

0 0 
From now on, we will assume that every full-field quantity (i.e.

 quantity dependent upon x and y ), is resolved, unless otherwise

pecified, and we drop the superscript R . Several interesting phys-

cal quantities are governed by (11) , depending on the choice of q i .

or instance, setting q i = V · V / 2 , where V is the vector containing

he velocity components in x and y direction, yields the governing

quation of the energy Q i = E. In our particular case, this can be

ewritten as E := −( ψ, ω ) / 2 (see Appendix A ). The ODE for E then

ollows from (11) as 

d E 

d t 
= −1 

2 

(
ψ, 

∂ω 

∂t 

)
− 1 

2 

(
ω, 

∂ψ 

∂t 

)
= −1 

2 

(
ψ, 

∂ω 

∂t 

)

− 1 

2 

(
∇ 

2 ψ, 
∂ψ 

∂t 

)
= −1 

2 

(
ψ, 

∂ω 

∂t 

)
− 1 

2 

(
ψ, ∇ 

2 ∂ψ 

∂t 

)

= −1 

2 

(
ψ, 

∂ω 

∂t 

)
− 1 

2 

(
ψ , 

∂ 

∂t 
∇ 

2 ψ 

)
= −

(
ψ, 

∂ω 

∂t 

)
(13) 

In the third equality, we made use of the self-adjoint nature of

he Laplace operator, i.e. 
(∇ 

2 α, β
)

= 

(
α, ∇ 

2 β
)
. 
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Alternatively, when q i = ω 

n /n, for n = 1 , 2 , 3 , . . . , the governing

equations for Q i follow directly from (11) as 

d Q i 

d t 
= 

(
ω 

n −1 , 
∂ω 

∂t 

)
. (14)

The most well-known QoI of this class is the enstrophy, defined

as Z := ( ω, ω)/2. 

3. Deriving QoI-tailored subgrid scale models 

Ultimately, our goal is to construct a surrogate for r̄ , using a

database of reference snapshots in time. One possible approach is

to then attempt to directly construct a surrogate for the full-field

eddy forcing [11,21] . We will take a different approach. Instead of

directly creating a (complex) full-field surrogate we will first per-

form a data-preprocessing step designed to simplify the surrogate

construction. Note that our QoI Q i are spatially integrated quanti-

ties. This implies that we can replace the exact eddy forcing with

a simpler alternative that: 

1. Yields vorticity fields which ‘track’ the reference values of the

QoIs, i.e. where Q 

re f 
i 

(t) − Q i (t) is small for all t within the train-

ing period. Here, Q 

re f 
i 

is the reference value of Q i , e.g. computed

from (5) using the full projection operator displayed in Fig. 1 . 

2. Has an unclosed component which is of the same dimension as

the QoI we attempt to approximate. 

The second point implies that, instead of creating a surrogate

for an evolving field, we now only need to train a surrogate model

on one scalar time series per Q i . For this reason we apply the ad-

jective reduced to these new source terms, and to all quantities

that derive from them, i.e. the reduced training data and reduced

surrogates. 

Initial results along these lines can be found in [15] . These re-

sults were specific to the energy E and enstrophy Z , and employed

ad-hoc parameterizations in the reduced subgrid scale term. Here

we develop a generalised, less ad-hoc method to compute reduced

subgrid scale terms for any QoI set Q = { Q 1 , . . . , Q d } that follows

(11) . We begin with the following expansion for the reduced eddy

forcing term 

r = 

d ∑ 

i =1 

τi (t) P i (x, y, t) . (15)

Note that we denote the reduded eddy forcing by r , whereas

the exact eddy forcing is r̄ . The τ i are the unclosed time series we

wish to extract from the training data, and the P R 

i 
are resolved,

full-field ‘patterns’. For reasons explained shortly, we propose a

separate expansion for the P i : 

P i = T i, 1 (x, y ; t) −
d ∑ 

j=2 

c i, j (t) T i, j (x, y ; t) , i ∈ { 1 , . . . , d} (16)

where the T ij are user-specified resolved quantities, e.g. ω or ψ .

The time-dependent coefficients c i,j are also resolved, and com-

puted by imposing certain orthogonality conditions. 

For illustrative purposes, let us assume we have 3 QoI, i.e. d = 3 .

In this case there are 6 unknown c i,j in (16) . Also note that each

right-hand side of the 3 Q i ODEs (11) contains an inner product in-

volving ∂ ω/ ∂ t . We can insert the vorticity equations (9) here, such

that (amongst others), a ( ∂ q i /∂ ω, ̄r ) term appears in each ODE. Let

us now introduce the short-hand notation V i := ∂ q i / ∂ ω, such that

( V i , ̄r ) is the subgrid scale term in the transport equations of our

QoI. Thus, since we replace r̄ by r (given by (15) ), and that we aim

to track Q 

re f 
i 

via r , the only terms by which we can do so directly

have the following form 

( V i , r ) = τ1 ( V i , P 1 ) + τ2 ( V i , P 2 ) + τ3 ( V i , P 3 ) , i ∈ { 1 , 2 , 3 } . (17)
This gives a total of 9 different τ k ( V i , P k ) terms. As it stands

ow, all three τ k influence each QoI Q i through the above ( V i , r )

ource term. However, for controlling Q i , we would prefer to train

1 solely for tracking the reference value of Q 1 , τ 2 solely for Q 2 ,

nd so on. By examining (17) , we see that this can be achieved by

mposing the following orthogonality conditions: 

V i , P j 
)

= 0 if i � = j. (18)

n the case of 3 QoI, (18) gives us 6 linear equations, closing the

ystem for the 6 unknown c i,j of (16) . When we group these equa-

ions by P i , and insert (16) , we get 3 linear systems: (
V j 1 , T i, 2 

) (
V j 1 , T i, 3 

)(
V j 2 , T i, 2 

) (
V j 2 , T i, 3 

)][
c i, 2 
c i, 3 

]
= 

[(
V j 1 , T i, 1 

)(
V j 2 , T i, 1 

)], i ∈ { 1 , 2 , 3 } . (19)

Here, the index set { j 1 , j 2 } is defined as { j 1 , j 2 } := {1, ���, d } \ { i },

.g. as {1, 3} for i = 2 and d = 3 . If we are tracking two QoI, (19) re-

uces to 2 uncoupled algebraic equations that can be solved for c i ,2 
s 

 i, 2 = 

(
V j , T i, 1 

)(
V j , T i, 2 

) , i ∈ { 1 , 2 } , j = { 1 , 2 }\{ i } . (20)

Finally, the general case for tracking d QoI leads to d linear sys-

ems A i c i = b i , where 

 i = 

⎡ 

⎢ ⎣ 

(
V j 1 , T i, 2 

) (
V j 1 , T i, 3 

)
. . . 

(
V j 1 , T i,d 

)
. . . 

. . . 
. . . (

V j d−1 
, T i, 2 

) (
V j d−1 

, T i, 3 
)

. . . 
(
V j d−1 

, T i,d 
)
⎤ 

⎥ ⎦ 

∈ R 

d −1 ×d −1 , 

c i = 

⎡ 

⎣ 

c i, 2 
. . . 

c i,d−1 

⎤ 

⎦ ∈ R 

d−1 , and b i = 

⎡ 

⎢ ⎣ 

(
V j 1 , T i, 1 

)
. . . (

V j d−1 
, T i, 1 

)
⎤ 

⎥ ⎦ 

∈ R 

d−1 

i ∈ { 1 , . . . , d} , j ∈ { 1 , . . . , d}\{ i } . (21)

We reiterate that these linear systems involve only resolved

uantities, and can therefore also be solved at any time in a pre-

ictive setting where we do not have access to training data. With

18) now satisfied, the Q i subgrid scale term (17) now consist of

ust 1 term 

( V i , r ) = τi ( V i , P i ) , i ∈ { 1 , . . . , d} . (22)

The physical insight we gained is that for Q i , our eddy-forcing

arameterization (15) results in a Q i source term containing ( V i ,

 i ), which can act to either dissipate or produce Q i at any given

ime. Therefore, in light of our goal to track the reference value

 

re f 
i 

during the training phase, the task of τ i must be to switch

n dissipation or production conditional on the value of �Q i :=
 

R Q 

re f 
i 

− Q i . Hence, the value of τ i should depend on �Q i . 

In [15] , we used ad-hoc parameterizations of the form

i ∝ tanh ( �Q i / Q i ) × sign(( V i , P i )), which ensured that τ i has the

orrect sign, given a value for �Q i . Finding the proportionality con-

tant requires tuning, although for Q = { E, Z} the simple choice of

 produces good results. However, this is unlikely to generalise to

rbitrary sets Q , which we confirmed with numerical experiments

hich included ( ω 

2 , ω)/3 in Q . Here we opt for a different param-

terization which drops the ad-hoc functional tanh assumption. To

nd the value of τ i directly, we equate (22) to a simple linear re-

axation term, 

i ( V i , P i ) = �Q i , i ∈ { 1 , . . . , d} . (23)

Thus, if we set τi = �Q i / ( V i , P i ) , we obtain a training data set

or the τ i which relaxes Q i towards Q 

re f 
i 

, if ( V i , P i ) � = 0. In the next

ection we will show for a number of cases that we obtain a τ i 

raining data set with a (near) perfect accuracy for our QoI, that is

educed in size by a factor N 

2 / d compared to the full-field eddy-

orcing data from (8) . Note that N is the spatial discretization of
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he resolved model in one dimension (typical values are 2 6 , 2 7 or

igher). Hence, we obtain a reduction in the number of degrees of

reedom of several orders of magnitude, and it is therefore not a

rivial matter that we retain accuracy of our QoIs. 

. Results 

We now showcase our method on a number of examples. The

ain results can be reproduced by downloading the Python script

rom [22] . 

.1. Numerical setup 

As a reference solution, we will solve (5) on a 256 × 256

omputational grid. This grid corresponds to Fourier modes with

 

′ = 128 (see (3) ), which is reduced to a maximum resolved wave

umber K of 85 after applying the 2/3 rule [17] . In this case ν =
 . 394 · 10 −6 and μ = 1 . 764 · 10 −3 , see (4) . For a resolved model,

e use a projection operator ˆ T R with a maximum resolved wave

umber of 21 (which corresponds to the accuracy of a 64 × 64

patial discretization). We could keep ν as stated above for the re-

olved model, although for this value of ν , spectral power tends

o accumulate at the cutoff wave number, which results in noisy

orticity fields. It is common practice to add an ‘eddy-viscosity’

odel to introduce additional damping [3] . Note that in a geo-

hysical context (to which this work belongs), an ‘eddy viscosity’

odel amounts to an increased value of ν , and should not be con-

used with the more eloborate eddy-viscosity models as found in

he Reynolds-Averaged Navier-Stokes simulation paradigm. In our

ase this model is introduced by setting K = 21 in (4) , in order to

btain an increased value for the viscosity, i.e. ν = 7 . 198 · 10 −5 . Un-

ess otherwise stated, we will use this value for the viscosity. 

As an initial condition we use 

(x, y, 0) = sin (4 x ) sin (4 y ) + 0 . 4 cos (3 x ) cos (3 y ) 

+ 0 . 3 cos (5 x ) cos (5 y ) + 0 . 02 sin (x ) + 0 . 02 cos (y ) , 

(24) 

4] , from which we first spin up the model for 250 days before

erforming the analysis detailed below. 

.2. Tracking 2 QoI 

We will first demonstrate our approach by deriving a source

erm r which tracks the reference energy E and enstrophy Z dur-

ng training. The choice of the Q i dictates the choice of the V i , due

o V i := ∂ q i / ∂ ω. Since the ODEs for E and Z are given by (13) and

14) (with n = 2 ), we must set V 1 = −� and V 2 = ω. On the other

and, the basis functions T i,j of the orthogonal patterns (16) are a

odelling choice. For simplicity, throughout the paper we will re-

trict the T i,j to the same set of terms that make up the V i . Starting

lways with T i, 1 = V i , we get the following two-term expansion for

he patterns P i 

 1 = −� − c 1 , 2 ω and P 2 = ω + c 2 , 2 �. (25) 

Through (20) , we find the values of the coefficients c ij . 

 1 , 2 = − ( ω, �) 

( ω , ω ) 
= 

E 

Z 
and c 2 , 2 = − ( �, ω ) 

( �, �) 
= 

E 

S 
, (26) 

here we have defined S as the squared integrated stream func-

ion; S := ( � , �)/2. Thus, the total source term in the vorticity

quation is 

 = −τ1 

(
� + 

E 

Z 
· ω 

)
+ τ2 

(
ω + 

E 

S 
· �

)
. (27) 
A  
he expressions for τ 1 and τ 2 are found via (23) , which amounts

o examining the source term in the E and Z equations produced

y (27) . In this particular case we find 

1 ( −�, P 1 ) = 2 τ1 

[
S − E 2 

Z 

]
= �E, 

τ2 ( ω, P 2 ) = 2 τ2 

[
Z − E 2 

S 

]
= �Z, (28) 

or the source terms in the E and Z equation respectively, which

re equated to �E and �Z . Here, �E := T R E re f − E and �Z :=
 

R Z re f − Z are data extracted from the training database, where 

.g. T R Z re f is the reference enstrophy computed with the projected

eference vorticity T R ω 

re f . At any time t n during training, the val-

es of τ 1 and τ 2 are found by 

1 ,n = 

1 

2 

[
�E n 

S n − E 2 n /Z n 

]
and τ2 ,n = 

1 

2 

[
�Z n 

Z n − E 2 n /S n 

]
. (29) 

Finally, after gathering all terms we get the following expres-

ion for the (full-field) reduced eddy forcing at t n 

 n = −1 

2 

[
�E n 

S n − E 2 n /Z n 

](
�n + 

E n 

Z n 
· ω n 

)
+ 

1 

2 

[
�Z n 

Z n − E 2 n /S n 

](
ω n + 

E n 

S n 
· �n 

)
(30) 

The analysis above is mainly for illustrative purposes. During

imulation, we do not need to expand every term, and instead can

irectly compute terms like ( −�, P 1 ) using numerical quadrature,

ee also Section 4.4 . 

Eq. (30) is a near-perfect substitute for the exact eddy forcing

¯ (8) as far as the computation of E and Z is concerned, while the

imension of the unclosed component is reduced from 64 2 in r̄ ,

own to 2 in r . To demonstrate this, we ran both the reference

nd the low-resolution model with (30) for 10 simulated years to

ather E and Z data. The probability density functions (pdfs) for

hese data are shown in Fig. 3 , which display a virtual overlap for

he reference and low-resolution resolved model. The results of an

ddy viscosity model, which is clearly too diffusive, are also shown

or reference. Finally, the reduced training data, i.e. the �E and �Z

ime series are shown in Fig. 4 . 

These results demonstrate that, as far as our QoIs are con-

erned, nothing is lost compared to the system forced by the exact

ddy forcing. Hence, we do not need to construct a (data-driven)

urrogate for the full-field eddy forcing, which displays complex

patial correlations. Instead, the two scalar time series (29) pro-

ide statistically equivalent training data, i.e. they yield the same E

nd Z pdfs as the exact eddy forcing. 

.2.1. Energy and enstrophy spectra 

Let us also examine the spectral breakdown of the energy and

nstrophy, i.e. the spectra in wavenumber space. To compute these

pectra, we map each wave number pair ( k 1 , k 2 ) of the Fourier ex-

ansion (3) to a real number via the Euclidean distance, and add

ll energy and enstrophy contributions that fall within the bins

iven by 

 − 1 

2 

≤
√ 

k 2 
1 

+ k 2 
2 

< k + 

1 

2 

, k = 0 , 1 , . . . , ceil 
(√ 

2 K 

)
. (31) 

3] . Here, ceil( · ) is the ceiling function which rounds a real num-

er to the nearest integer above. Remember that K is the cutoff

ave number, and the 
√ 

2 term in the maximum value of k is

 consequence of the square truncation in the spectral filter ˆ T ,
uch that the maximum Euclidean distance is 

√ 

K 

2 + K 

2 = 

√ 

2 K.

 further consequence of the square truncation is that between
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Fig. 3. The pdfs of the energy E (left), and the enstrophy Z (right) of both the reference (striped) and the low-resolution model (solid) with (30) for the eddy forcing. It is 

important to note that training data was used in the computation of the unclosed terms of (30) , we are not creating a surrogate model here. The results of an eddy viscosity 

model are also included (dotted). 

Fig. 4. The reduced training data. 
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k = K and k = ceil ( 
√ 

2 K) , all spectra of the resolved model are in-

accurate (i.e. too steep), due to the fact that, in this range of k ,
ˆ T R simply does not contain all ( k 1 , k 2 ) pairs that fall in the bins

[ k − 1 / 2 , k + 1 / 2] , see Fig. 5 . This inaccuracy also occurs if we use

the exact eddy forcing (8) , since it too is subject to the same trun-

cation. 

The spectra, averaged over the same 10 year simulation period

from the preceding section, are shown in Fig. 6 . The two vertical

lines denote the range k ∈ 

[
K, 

√ 

2 K 

]
, where indeed the spectra are

too steep compared to the reference. This is the case for both the

eddy viscosity model and the reduced model, which virtually over-

lap in the high wave number region. From Fig. 6 it thus becomes

clear that the reduced eddy forcing (30) modifies the response in

the low wave numbers. Since we track QoI averaged over all ( k 1 ,

k 2 ), there is no explicitly imposed requirement that the spectrum

of the reduced model will coincide with that of the reference for

every value of k . That said, if a certain subrange of k is of particular

interest, our approach can be easily modified in a scale-selective

manner to target specific wave numbers only. 
t  
.2.2. Concentrating on a specific wave number range 

Instead of V := {−�, ω} , here we use V := {−T K �, T K ω} ,
here T K corresponds to the spectral filter ˆ T K = 

ˆ T K 
(
K, ceil ( 

√ 

2 K) 
)

hown in Fig. 7 , which has the value of 1 only for −K ≤ k ≤
eil 

(√ 

2 K 

)
. When we further define our target QoIs as �Q i :=

 

K (Q 

re f 
i 

− Q i ) , the effect of the reduced eddy forcing is concen-

rated in the indicated subrange of k . If we repeat the 10 year sim-

lation, for the reference and the (concentrated) reduced model,

e obtain the results of Fig. 8 . Note that in this case, the reduced

odel yields more accurate spectra in the range K ≤ k ≤ ceil ( 
√ 

2 K) .

t is in fact more accurate here than the result of the exact eddy

orcing (not shown) would be. As previously mentioned, the ex-

ct eddy forcing also yields too steep spectra in K ≤ k ≤ ceil ( 
√ 

2 K) ,

ue to the square truncation. For smaller k , where our eddy forcing

arameterization now does not act, we do observe some discrep-

ncy with respect to the reference spectra. However, remember

rom Section 4.1 , that we increased the viscosity with respect to

he value of the reference setup, i.e. we included an eddy viscosity

erm in the resolved equations. The spectra, when using the same
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Fig. 5. The shaded area is the nonzero top left part of the spectral filter ˆ T R , see 

also Fig. 1 . Superimposed on top are contours of k , which form concentric quarter 

circles. Note that k = K = 21 is the last quarter circle completely encompassed by 

the filter. For k = ceil 
(√ 

2 K 
)

= 30 , only a single wave number is captured by ˆ T R . 

ν  

s  

r  

n  

t

d  

d  

o  

i  

t  

l  

V  

e  

e  

Fig. 7. The light shaded area is the top left part of the spectral filter ˆ T K (21 , 30) 

with value 1. Superimposed on top are contours of k , which form concentric quar- 

ter circles. The dark shared area indiates the region shared by ˆ T K and ˆ T R , which 

corresponds to the ( k 1 , k 2 ) vectors used by quantities such as T K ω 

R or T K ψ 

R . 

Quantities involving the reference, i.e. T K Q re f 
i 

, correspond to ( k 1 , k 2 ) vectors that 

live in the light shaded area. 

t  

g

4

 

Z  

A  

n  

s  

w  

n  

a  

p  

F

m

as the reference model (no eddy viscosity model included), are

hown in Fig. 9 . Here, we observe good overall agreement with the

eference for both the energy and the enstrophy spectrum. Only

ear k = K do we observe a small amount of spectral blocking, i.e.

oo much energy (and enstrophy) near the cutoff scale. 

However, it should be noted that using such concentrated T K 
o not lead to a near-perfect pdf for the Q i as before (not shown),

ue to the fact that we are only explicitly tracking T K Q 

re f 
i 

, instead

f the full Q 

re f 
i 

. The results are still improved over the eddy viscos-

ty model though. If we wish to obtain both a pdf and a spectrum

hat matches the reference, we can employ two (partially over-

apping) filters. For instance, we can use V 1 = −T K ( 0 , K ) ψ, and

 2 = −T K ( K − 5 , K ) ψ . The former ensures we track the overall en-

rgy, while the latter pushes the energy spectrum towards the ref-

rence just before the cutoff k = K. The pdf and spectrum of E ob-
ig. 6. Spectra of the energy and enstrophy for the reference (striped), model with edd

odel without reduced eddy forcing (dotted). 
ained in the manner are shown in Fig. 10 , both of which show a

ood match with the reference solution. 

.3. Tracking three QoI 

Let us define Z 2 := ( ω 

2 , ω)/3 as our third QoI, such that Q := { E,

, Z 2 }. In this case, we must set V := {−�, ω, ω 

2 } respectively.

gain, we choose the T i,j basis functions also from this set, begin-

ing with T i, 1 = V i . The remaining T i,j (2 in this case), are chosen

uch that all A i matrices (see (21) ) are symmetric. Moreover, they

ill be positive-semidefinite, see Section 4.4 . By examining (21) ,

ote that if we set the remaining T i,k as T i,k = V j k −1 
, we always get

 symmetric matrix. Once the T i,j are set, there is nothing left to

arameterise, and all analysis follows automatically. The orthogo-
y viscosity and reduced eddy forcing term (solid), and the baseline eddy viscosity 
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Fig. 8. Spectra of the energy and enstrophy for the reference (striped), model with eddy viscosity and reduced eddy forcing term with concentrated T K (21 , 30) filter (solid), 

and the baseline eddy viscosity model without reduced eddy forcing (dotted). Note that the spectra of the reduced model are accurate in the range of T K , i.e. k ∈ [21, 30]. 

Fig. 9. Spectra of the energy and enstrophy for the reference (striped), model with reduced eddy forcing term with a concentrated T K (21 , 30) filter (no eddy viscosity 

included) (solid), and the baseline eddy viscosity model (dotted). Note that the spectra of the reduced model are accurate in the range of T K , i.e. k ∈ [21, 30], but also for 

lower k , with the exception of some spectral blocking just before k = K. 
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nal patterns P i (16) become 

P 1 = T 1 , 1 − c 1 , 2 T 1 , 2 − c 1 , 3 T 1 , 3 = V 1 − c 1 , 2 V 2 − c 1 , 3 V 3 

= −� − c 1 , 2 ω − c 1 , 3 ω 

2 

P 2 = T 2 , 1 − c 2 , 2 T 2 , 2 − c 2 , 3 T 2 , 3 = V 2 − c 2 , 2 V 1 − c 2 , 3 V 3 

= ω + c 2 , 2 � − c 2 , 3 ω 

2 

P 3 = T 3 , 1 − c 3 , 2 T 3 , 2 − c 3 , 3 T 3 , 3 = V 3 − c 3 , 2 V 1 − c 3 , 3 V 2 

= ω 

2 + c 3 , 2 � − c 3 , 3 ω. (32)

After which the orthogonality condition (18) leads to [
( ω , ω ) 

(
ω , ω 

2 
)(

ω , ω 

2 
) (

ω 

2 , ω 

2 
)][

c 1 , 2 
c 1 , 3 

]
= 

[
−( ω, �) 

−
(
ω 

2 , �
)], [

( �, �) −
(
�, ω 

2 
)

−
(
�, ω 

2 
) (

ω 

2 , ω 

2 
) ][

c 2 , 2 
c 2 , 3 

]
= 

[
−( �, ω ) (
ω 

2 , ω 

) ]
, 
[
( �, �) −( �, ω ) 

−( �, ω ) ( ω , ω ) 

][
c 3 , 2 
c 3 , 3 

]
= 

[
−
(
�, ω 

2 
)(

ω , ω 

2 
) ]

. (33)

When we solve these three linear systems, we can compute the

erms −( �, P 1 ) , ( ω, P 2 ) and ( ω 

2 , P 3 ), and find the value of τ i from

he �Q i data via (23) . Written concisely, the reduced eddy forcing

ow reads 

 = 

�E 

( −�, P 1 ) 
P 1 + 

�Z 

( ω, P 2 ) 
P 2 + 

�Z 2 (
ω 

2 , P 3 
)P 3 , (34)

here P i = P i (x, y, t; c i, j ) . 

We once more repeat the test case from Section 4.2 , i.e. a 10

ear simulation in which both the full reference model and the

educed model are run. The pdfs for all QoI are found in Fig. 11 ,

hich again show a near-perfect overlap. Note that in this case the

ddy viscosity model does give an accurate prediction for the mean

f Z , although the variance is underestimated. 
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Fig. 10. (Left): Spectrum of the energy for the reference (striped), model with reduced eddy forcing term with a full T K ( 0 , 21 ) filter and a (partially overlapping) concentrated 

T K (16 , 21) filter (no eddy viscosity included) (solid), and the baseline eddy viscosity model (dotted). (Right): The corresponding pdfs of the energy. 

Fig. 11. The pdfs of the energy E (left), the enstrophy Z (middle), and Z 2 of both the reference (striped) and the low-resolution model (solid) with (30) as a model for the 

eddy forcing. The results of an eddy viscosity model are also included (dotted). 
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2 We are using FFT here, not real FFT, thus the ̂  V i ∈ R N 2 . 
.4. Quadrature and computational cost 

The main cost of our proposed method is the computation

f the various integrals that make up the linear system (21) . As

tated, we express the T i,j basis functions in terms of V i , such that

ur integrals have the form ( V i , V j ) (see e.g. (33) ). Then, given that:

) the order of the integrands is not important ( ( �, ω ) = ( ω, �) );

nd ii) repetition is allowed (e.g. ( ω , ω )), we end up with combi-

ations with repetition, such that the number of integrals n int that

eeds to be calculated at every time step is given by 

 int = 

(
n + k − 1 

k 

)
= 

(
d + 1 

2 

)
. (35) 

The last equality follows since we have n = d basis functions to

hoose from and k = 2 places in every ( · , · ) operator. Hence for

racking 2 QoI we had to compute 3 integrals per time step, for

 = 3 this was increased to 6, etc. 

The results in this paper were generated by running the refer-

nce and the resolved model simultaneously (using the same time

tep), and manually calculating each integral using Simpson’s rule

f integration (see the software on [22] ). Furthermore, for conve-

ience, the same grid was used for both the resolved and the ref-
rence model, they differed only in the spectral space, see Fig. 1 .

hile this serves as a proof-of-concept, it is not very efficient. 

Let us therefore propose a more efficient numerical scheme, the

ource code of which can also be found at [22] . Besides executing

he resolved model on its own, coarser, spatial grid, we also intro-

uce a more efficient integration scheme. Using the Fourier expan-

ions (see (3) ) directly in the integral, we get 

( α( x, y, t ) , β( x, y, t ) ) ≈
(

˜ α( x, y, t ) , ˜ β( x, y, t ) 
)

= 

∑ 

k 

̂ αk (t) ̂  β∗
k (t) = ̂

 αT ̂ β∗ := 

〈̂ α, ̂  β
〉
, (36) 

ee Appendix B . Here, ̂ α is the vector of all Fourier coefficients
 k , and ( · ) ∗ denotes the complex conjugate. Now, let ̂ V :=̂ V 1 , . . . , ̂

 V d 
]

∈ R 

N 2 ×d be the matrix of all Fourier coefficients 2 cor- 

esponding to V = [ V 1 , . . . , V d ] . Then, the integrals of the d linear

ystems (21) (approximated using the dot products (36) ), can all

omputed at once via a single dot product: 

 := ̂

 V 

T ̂ V = 

⎡ 

⎢ ⎣ 

〈̂ V 1 , ̂
 V 1 

〉
. . . 

〈̂ V 1 , ̂
 V d 

〉
. . . 

. . . 
. . . 〈̂ V d , ̂

 V 1 

〉
. . . 

〈̂ V d , ̂
 V d 

〉
⎤ 

⎥ ⎦ 

(37) 
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The matrices A i and their right-hand sides b i from (21) are fully

determined from the entries D i,j of matrix D , i.e. 

A i = 

⎡ 

⎣ 

D j 1 , j 1 . . . D j 1 , j d−1 

. . . 
. . . 

. . . 
D j d−1 , j 1 . . . , D j d−1 , j d−1 

⎤ 

⎦ and b i = 

⎡ 

⎣ 

D i, j 1 
. . . 

D i, j d−1 

⎤ 

⎦ 

i ∈ { 1 , . . . , d} , j ∈ { 1 , . . . , d}\{ i } . (38)

Note that D and the A i are Gramian matrices, and therefore are

positive-semidefinite [23] . 

Let us close with a simple experiment to estimate to compu-

tational cost of our method. We first run both the resolved and

the reference model in parallel for a simulated time of 50 days.

This corresponds to a training run with a wall-clock time of T train .

Next, we run only the resolved model, using stored data from the

training run to inform the τ i . The wall clock time T surr obtained in

this manner would correspond to a run with a surrogate for the

τ i , assuming that the surrogate itself introduces a negligible over-

head compared to the cost of running the resolved model. We ob-

tained a ratio T surr / T train ≈ 0.19, roughly a speed up of a factor of 5.

Note that we kept the time step the same for both models, which

we could have reduced for the resolved model in order to get a

larger speed up. Furthermore, note that these results are also de-

pendent upon the difference in the grid size of the reference and

resolved model. If we increase the reference grid from 256 × 256

to 512 × 512 or higher, this obviously impacts the speed up factor.

5. Conclusion 

We have proposed a data-preprocessing step for the closure

problem in dynamic turbulent flows, in which the exact subgrid

scale term is replaced by an alternative subgrid scale model which

retains accuracy for a set of hand-selected, time-dependent quan-

tities of interest. The size of the unclosed component of the new

subgrid scale term is reduced from a full-field term, down to a

component with the dimension equal to the number of quantities

we aim to approximate in the first place. The idea is that this will

facilitate easier, more transparent surrogate construction. 

We demonstrated our approach on the forced-dissipative, two-

dimensional vorticity equations, for a number of different quanti-

ties of interest, to showcase the generality of our approach. Our

alternative subgrid scale models can also be applied in a scale-

selective manner, where for instance only the finer scales near the

cutoff scale are modified. In ongoing work, we are constructing a

stochastic surrogate model using various neural nets, trained on re-

duced data. Somewhat similar to our approach, the recent work of

[24] employed a model with fixed spatial modes and time-varying

coefficients applied to a turbulent shear flow problem. They com-

pared neural nets with time-lagged features with long short-term

memory (LSTM) networks, regarding their ability to predict the

temporal evolution the coefficients. The LSTM networks displayed

promising results for capturing the dynamical behavior of such

chaotic systems. 

Another potential research direction is extending the approach

to three-dimensional problems. We do not expect large difficulties

here. The main difference would be that the quantities of inter-

est must be integrated over three spatial dimensions instead of

two. We derived our framework for tracking spatially integrated

QoIs with integrands that can be expressed as some function of

the primitive variables (the stream function and vorticity in our

case). In three dimensions, the same QoI type would be used. The

accuracy depends upon the ability of our method to track these

QoIs, which depends in turn upon the chosen model for the un-

closed τ i . In this paper we modelled them using linear relaxation

towards the reference, which worked well for all QoIs considered.

If in future applications accuracy problems arise, it is likely that
he linear relaxation model is insufficient, or that QoI-specific re-

axation time scales must be included. 
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ppendix A. Energy in terms of ψ and ω

The energy (density) is defined as 

 

R := 

1 

2 

(
1 

2 π

)
2 

∫ 2 π

0 

∫ 2 π

0 

V 

R · V 

R d x d y, (A.1)

here V 

R is the vector containing the velocity components in x

nd y direction. It can be rewritten as E R = −
(
ψ 

R , ω 

R 

)
/ 2 via 

 

R · V 

R = ∇ ψ 

R · ∇ ψ 

R = ∇ ·
(
ψ 

R ∇ ψ 

R 

)
− ψ 

R ∇ 

2 ψ 

R 

= ∇ ·
(
ψ 

R ∇ψ 

R 

)
− ψ 

R ω 

R (A.2)

The first equality follows from the definition V 

R :=
−∂ ψ 

R /∂ y, ∂ ψ 

R /∂ x 
)

T , while the second stems from the product

ule of a scalar ( ψ 

R ) and a vector ( ∇ψ 

R ): 

 ·
(
ψ 

R ∇ψ 

R 

)
= ∇ ψ 

R · ∇ ψ 

R + ψ 

R ∇ 

2 ψ 

R . (A.3)

Finally, the last equality of (A.2) simply follows from the gov-

rning Eq. (1) . The term ∇ ·
(
ψ 

R ∇ψ 

R 

)
disappears when integrated

ver the spatial domain, after application of the divergence theo-

em in combination with the doubly periodic boundary conditions.

his leaves E R = −
(
ψ 

R , ω 

R 

)
/ 2 [3] . 

ppendix B. Quadrature using the Fourier expansion 

Consider two real, spatially and time-dependent quantities α( x,

, t ) and β( x, y, t ), for which we aim to approximate 

( α, β) = 

(
1 

2 π

)
2 

∫ 2 π

0 

∫ 2 π

0 

αβ d x d y. (B.1)

We then insert the Fourier expansions for α and β

( α, β) ≈
(

˜ α, ˜ β
)

= 

(
1 

2 π

)
2 

∫ 2 π

0 

∫ 2 π

0 

∑ 

k 

ˆ αk e 
i (k 1 x + k 2 y ) 

×
∑ 

q 

ˆ βq e 
i (q 1 x + q 2 y ) d x d y 

= 

∑ 

k 

∑ 

q 

ˆ αk ̂
 βq 

(
1 

2 π

)
2 

∫ 2 π

0 

×
∫ 2 π

e i (k 1 x + k 2 y ) e i (q 1 x + q 2 y ) d x d y. (B.2)
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Due to the orthogonality of the Fourier modes: 

 2 π

0 

∫ 2 π

0 

e i (k 1 x + k 2 y ) e i (q 1 x + q 2 y ) d x d y = 

{
(2 π) 2 k = −q 

0 otherwise 
. (B.3) 

Thus, (B.2) becomes 

( α, β) ≈
∑ 

k 

ˆ αk ̂
 β−k . (B.4) 

Since α and β are real, ˆ β−k = 

ˆ β∗
k 

must hold, where ( · ) ∗ de-

otes the complex conjugate [17] . Hence we finally obtain, 

( α, β) ≈
∑ 

k 

ˆ αk ̂
 β∗
k . (B.5) 

Discrete Fourier transforms of α and β are scaled by a factor

 

−2 for two-dimensional quantities. Note that depending upon the

pecific implementation, these scaling factors may appear in either

he FFT or the inverse FFT, or sometimes a scaling factor is applied

o both. In our case, we used the Numpy FFT implementation to

ompute the Fourier coefficients, and we had to scale the right-

and side of (B.5) by N 

−4 . 
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