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Abstract

Many metaprogramming tasks, such as refactorings, auto-
mated bug fixing, or large-scale software renovation, require
high-fidelity source code transformations – transformations
which preserve comments and layout as much as possible.
Abstract syntax trees (ASTs) typically abstract from such
details, and hence would require pretty printing, destroying
the original program layout. Concrete syntax trees (CSTs)
preserve all layout information, but transformation systems
or parsers that support CSTs are rare and can be cumbersome
to use.
In this paper we present separator syntax trees (SSTs), a

lightweight syntax tree format, that sits between AST and
CSTs, in terms of the amount of information they preserve.
SSTs extend ASTs by recording textual layout information
separating AST nodes. This information can be used to re-
construct the textual code after parsing, but can largely be
ignored when implementing high-fidelity transformations.
We have implemented SSTs in Rascal, and show how it

enables the concise definition of high-fidelity source code
transformations using a simple refactoring for C++.

CCSConcepts • Software and its engineering→Trans-

lator writing systems and compiler generators; Source
code generation; Software maintenance tools.

Keywords metaprogramming, high-fidelity code transfor-
mations
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1 Introduction

Many metaprogramming tasks require high-fidelity source
code transformations: transformations that preserve as much
layout (comments, indentation, whitespace, etc.) of the input
as possible. Typical examples include:

• Automated refactorings [12];
• Mass maintenance scenarios [14];
• Automated bug fixing [10].

High-fidelity metaprogramming further promotes end-
user scripting of source code transformations, where pro-
grammers not only apply standard refactorings and restruc-
turings offered by mainstream IDEs or dedicated tools (such
as Coccinelle), but are able to script (one-off) transformations
themselves, using knowledge about their code bases.
Unfortunately, high-fidelity is a high bar to reach. Most

program transformation systems employ ASTs to represent
source code. While valuable in the sense that they abstract
from “non-essential detail”, simplifying metaprogramming
across the board, ASTs throw the baby out with the bath
water from the perspective of high-fidelity transformation
scenarios. Concrete Syntax Trees (CSTs), on the other hand,
represent source code in exactly the way it was parsed, con-
taining all syntactical information. While “unparsing” such
trees gives back the original source code, CSTs usually reflect
productions from some context-free grammar defining the
source language, which may not be available.
In this paper we present Separator Syntax Trees (SSTs),

a syntax tree representation that conveniently sits between
the abstraction provided by ASTs, and the complexity of
heavy-weight, full-blown CSTs (Section 2). Wemotivate SSTs
using an example transformation, define their structure, and
how they can be mapped back to source code. The use of
SSTs is further illustrated using a simple term rewriting
language (HifiTRS), detailing pattern matching, substitution,
and how to deal with (separated) lists (Section 3). Finally, we
discuss our implementation in the Rascal metaprogramming
system [8], evaluating SSTs on the definition of a simple C++
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refactoring (Section 4). Throughout the paper, we use Rascal
in the meta program code examples.

1.1 Overview and Motivating Example

At the heart of many programming transformations, are
rewrite rules such as the following:

ifThen(not(e), s1, s2) ⇒ ifThen(e, s2, s1)

This example uses pattern-matching against ASTs, matching
conditional statements with a negated conditional. The rule
replaces matching subtrees somewhere in the program with
the pattern on the right-hand side where the then and else
branches are swapped. Applying such rules to a program’s
AST produces another AST, which has to be rendered to
actual source code again.
The example illustrates two problems for high-fidelity

metaprogramming:
• Source code layout of the source is lost in translation;
• The new term constructed on the right-hand side has
no layout at all.

As a result, such metaprograms require post-transformation
pretty printing, inventing new layout for the transformed
program. In many cases this is unacceptable, because it loses
comments of the input source, and might make the trans-
formed program look foreign to the developers of the code,
because of coding conventions the pretty-printer is unaware
of.

Systems such as ASF+SDF [3], TXL [4], and Rascal [8] sup-
port CSTs, which preserve all layout of the source program;
additionally, such systems support concrete syntax patterns
to allow rewrite rules to be expressed directly in the object
language. For instance, the above rule could be expressed in
Rascal as follows:

(Stmt)`if (!<Exp e>) <Stmt s1> else <Stmt s2>` ⇒

(Stmt)`if (<Exp e>) <Stmt s2> else <Stmt s1>`

In this case the left-hand side matches against CSTs (ignoring
layout), which means that e, s1, and s2 will carry over all
internal layout information, when substituted in the right-
hand side. Conversely, the concrete pattern on the right-hand
side defines the layout of the rewritten conditional, as part
of the metaprogram.

In the previous example, the conditional on the right-hand
side is written (and parsed) as a one-liner. The metaprogram-
mer could have specified a different layout, for instance1:

(Stmt)`if (!<Exp e>) <Stmt s1> else <Stmt s2>` ⇒

(Stmt)`if (<Exp e>)

' <Stmt s2>

'else

' <Stmt s1>`

1The single quotes are not part of the pattern, but allows concrete patterns
to be indented nicely.

Concrete syntax trees solve a large part of the problem of
high-fidelity metaprogramming, yet suffer from a number
of drawbacks:
• Transformation systems that support CSTs are scarce,
and even if CSTs are supported, adapting existing
parsers to produce CSTs is non-trivial.
• Writing a grammar for a language from scratch in
the formalism of systems that do support CSTs is a
complex task [7], and hardly feasible for complex lan-
guages such as C++ and Cobol.
• Without support for concrete pattern matching, pro-
cessing CSTs can be cumbersome.

Separator syntax trees represent a middle-ground between
the fidelity of CSTs and the simplicity of ASTs. SSTs are like
ASTs, except each node is annotated with a list of strings, rep-
resenting the literal source code that separates the children
of the node. SSTs support unparsing, like CSTs, to obtain the
original textual source code.
In terms of metaprogramming, SSTs can be the basis of

rule-based rewriting systems that support rules like the fol-
lowing:

ifThen(not(e), s1, s2) ⇒

(Stmt)`if (<Exp e>) <Stmt s2> else <Stmt s1>`

In this case the left-hand side consists of an abstract pattern,
which will be matched against an SST (modulo the separa-
tors). As a result, e, s1, and s2 preserve their separator lists
when inserted into the right-hand side. The right-hand side
pattern is itself parsed into an SST, and hence will get the
layout as specified in the rule itself.

SSTs are easy to construct, either during parsing, or after-
wards if accurate source location information is available.
This opens the way to high-fidelity metaprogramming in sys-
tems like Rascal or TXL, when parsing is realized by reusing
external, black box parsers (cf. [1]).

2 Separator Syntax Trees

2.1 Introduction

As a compromise between ASTs and CSTs, we introduce
Separator Syntax Trees (SSTs). SSTs contain the structure
of abstract syntax, augmented with the separator strings
that are present in source code, filling the gaps around and
between abstract syntax nodes. Compared to CSTs, where
such separator strings might come in different forms (e.g.,
whitespace, or a literal representing some operator), in SSTs
this distinction is not made; the “non-essential” information
in between AST nodes is recorded simply as text.
Listing 1 shows the meta-definition of SSTs in the form

of the algebraic data type Term. The leaves of an SST are
represented by (literal) token nodes, corresponding to tokens
of a language. Their source representation is simply the
argument src. Such nodes are used to encode identifiers,
integer literals, and so on.
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Listing 1. ADT definition of Separator Syntax Trees (SSTs).
data Term

= token(str src)

| cons(str name , list[Term] args , list[str] seps)

| lst(list[Term] elts , list[str] seps);

The cons constructor represents an SST node, storing the
SST constructor name in the name parameter, and the SST
node’s arguments in the args parameter. The final argument
seps contains a list of strings, representing concrete syntax
fragments that are part of the node’s concrete syntax, but
are not covered by the node’s children.

The following invariants on SST nodes hold:
• |seps | = |args | + 1, because it contains the layout ele-
ments in between the arguments, as well as the layout
before and after the span of the children;
• for nullary SST nodes (i.e., |args | = 0), the singleton
string in seps is the whole source of the SST node.

Consider the following abstract grammar of a simple ex-
pression language:

data Expr

= lit(str val)

| paren(Expr e)

| call(str name , list[Expr] args)

| mul(Expr lhs , Expr rhs)

| add(Expr lhs , Expr rhs);

If we now have a source text (1), which corresponds to
the AST paren(lit("1")) over the Expr data type, this is repre-
sented as the Term tree:

cons("paren",

[cons("lit", [token("1")], ["", ""])],

["(", ")"])

Note how the outer parentheses are represented as the sepa-
rators on the paren tree.

As another example, consider the AST node of 1+2, which
is add(lit(1), lit(2)). This AST node will correspond to
the Term:

cons("add",

[cons("lit", [token("1")], ["", ""]),

cons("lit", [token("2")], ["", ""])],

["", "+", ""])

In this case, there is no layout before or after the AST node,
so the seps argument of the outer cons starts and ends with
the empty string, whereas the middle element corresponds
to the source text of the plus operator.

The lst constructor represents lists, where the elements of
the list are stored in the elts parameter, and the literal strings
separating elements in the seps parameter. Lists correspond
to the EBNF regular symbols like S*, S+, and S?. As such they
don’t have outer “separators”. Hence the invariants on lst

constructors are:

Listing 2. Yielding SSTs back to text.
str yield(cons(_, args , seps))

= yieldL(args , seps);

str yield(lst(xs, seps , _))

= yieldL(xs, ["", *seps , ""]);

str yield(token(x)) = x;

str yieldL(xs, list[str] seps)

= ( seps [0] | it + yield(xs[i]) + seps[i+1]

| int i ← [0.. size(xs)] );

• if |elts | > 0 then |seps | = |elts | − 1;
• if |elts | = 0 then |seps | = 0.

Lists are used, for instance, in the AST definition of call
nodes, which may have an arbitrary list of arguments. For
instance, the expression f(1, 2) corresponding to AST node

call("f", [lit("1"), lit("2")])

is represented by the following Term:

cons("call",

[token("f"),

lst([cons("lit", [token("1")], ["", ""]),

cons("lit", [token("2")], ["", ""])],

[", "])],

["", "(", ")"])

Note in this case how the comma between the arguments is
captured in the separators of the lst constructor, and how the
parentheses of the function call are recorded in the separators
of the outer "call" cons node.

2.2 Yielding SSTs back to text

The Term data type is a high-fidelity source code representa-
tion, containing literal layout information. When yielding
source code from a Term, this literal layout information has to
be inserted between the term’s child nodes. This algorithm
is given in Listing 2, which defines three cases for the yield

function, each of which handles one of the Term variants.
For constructors, the source code is yielded by starting with
the first separator string, and then repeatedly alternatingly
appending a (yielded) child node, and a separator. This is
factored out into the auxiliary function yieldL2.

Similarly, for lists, source code is yielded by alternating be-
tween list elements and separators, starting with a (yielded)
list element. By adding an empty string before and after the
seps list, we can reuse the yieldL function3. Finally, the source
code of a literal (token) term is simply the string it wraps.

2The ternary reducer expression ( initial | reduce | generator )
resembles a fold function commonly found in functional languages, with
it as a special variable containing the current reduct.
3The asterisk * is the splice operator: [1,*[2,3]] == [1,2,3].

29



PEPM ’20, January 20, 2020, New Orleans, LA, USA Rodin T. A. Aarssen and Tijs van der Storm

2.3 Creating Separator Syntax Trees

SSTs can easily be reconstructed from ASTs (or CSTs) if AST
nodes are annotated with accurate source location informa-
tion, in terms of (file) offsets and lengths, by reading out the
respective location. For token-like nodes, the text represen-
tation follows from the token value. For a node f (k1, . . . ,kn)
starting at offset i with length l , if n = 0, the corresponding
text is the source range (i, i+l). Ifn > 0, the separators can be
retrieved from the original source text from the consecutive
text ranges:

(i,k1.offset), . . . , (kj .offset + kj .length,kj+1.offset),

. . . , (kn .offset + kn .length, i + l)

where j ∈ {1, . . . ,n − 1}. Alternatively, SSTs can be created
during parsing, where such offset and length information is
often available directly.

3 Rewriting with Separator Trees

3.1 Introduction

To illustrate how to rewrite source code using SSTs, we intro-
duce a simple term rewriting model, in the form of a small
language, HifiTRS. This language allows the meta program-
mer to declare rewrite rules for a given object language,
where the left-hand side is specified using an abstract syntax
pattern (matching against SSTs), and the right-hand sides in
concrete, textual syntax4.

A simple example of a HifiTRS rule is the following:
rule mul(lit("2"), x) ⇒ "<x> + <x>"

This rule matches against a mul constructor from some ex-
pression language and rewrites it to the string <x> + <x> if the
multiplication consists of doubling an expression x . The left-
hand side pattern matches against SSTs modulo separators.
The right-hand side is parsed into an SST, after substituting
the textual value of x , so that the layout of the metaprogram
is used for the result of the substitution. The interpolated
metavariables x are bound to the SST of the second operand
of the multiplication, so retain their layout information.

3.2 Syntax

The abstract syntax of HifiTRS itself is given in Listing 3.
The left-hand sides are represented by the Pattern data type,
which closely resembles the Term data type, but without the
separator information (cf. Listing 1). Additionally, a rule’s
left-hand side may contain variables (var) to capture subtrees,
and list variables (lvar) to capture list slices (sublists).

The right-hand side of a rule consists of concrete syntax in
the object language, which is used to construct a replacement
SST term on a successful match. This is modeled using the Txt

4Note that HifiTRS gives an abstract view on SSTs, and that it is not intended
to be used in practice. The Rascal implementation (cf. Section 4) allows
arbitrary Rascal code to be executed at the right-hand side, as long as an
appropriate SST is produced.

Listing 3. Abstract syntax for HifiTRS.
1 data Rule = rule(Pattern lhs , Txt rhs);

2

3 data Pattern

4 = cons(str name , list[Pattern] args)

5 | lst(list[Pattern] elts)

6 | token(str src)

7 | var(str name)

8 | lvar(str name)

9 ;

10

11 alias Txt = list[Elt];

12

13 data Elt

14 = txt(str src)

15 | marked(str src)

16 | var(str name)

17 | lvar(str name);

data type: a string of Elt elements, which can be literal text
(txt), interpolated simple and list variables (var, lvar), and
marked text (marked). The var and lvar elements correspond
to the bracketed interpolation (using < and >) in the concrete
syntax of HifiTRS.
The marked element is needed to deal with separators in

the result of a rewrite rule, which might have to be deleted if
an interpolated sublist is empty. Consider, for instance, the
following rule:

rule call("f", [args *]) ⇒ "f(<args*>, logger)"

This rule matches the arguments of a function call into a
list variable args∗, and appends an extra argument to the
call expression. Since the original call to f might not have
arguments, args∗ might be empty, and substituting its text
yield into the right-hand side will lead to the incorrect string
f(, logger).
The rules for separators in such lists are object language

dependent, so there is no generic way to deal with this prob-
lem. Instead we require the metaprogrammer to indicate the
separator that needs to be removed if a list variable will be
empty using a special marker. In the case of the example, the
correct way to write this rule in HifiTRS would be:

rule call("f", [args *]) ⇒ "f(<args*>§, §logger)"

The text enclosed by the § signs corresponds to the marked

constructor of the Elt data type. If args∗ is empty, the sub-
stitution algorithm of HifiTRS will remove the marked node
from the result, before parsing the textual result of this rule
into an SST (cf. Section 3.5).

3.3 Semantics

Without loss of generality, we assume that the object lan-
guage used with HifiTRS rewrite rules is single-sorted. The
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basic evaluation of a set of rules on the SST of the subject
program is then as follows:
• Traverse the input SST in innermost fashion;
• when a rule R matches a subtree T with an environ-
ment env mapping left-hand side variables to bound
subterms:
– subsititute the yield of the bound variables in env
in the right-hand side of R (with the substitution
algorithm described below);

– parse the resulting string into an SST and replace T
with it;

• continue until no rules match anymore.
Note that at run time, the bound SSTs in the environment
are first yielded and then inserted into the concrete syntax
of the right-hand side, after which the reduct is parsed. The
innermost traversal strategy ensures that newly inserted
SSTs during the second step are targets for rewriting in
future iterations.

3.4 Matching SSTs

The pattern matching algorithm for HifiTRS is shown in
Listing 4. It supports non-linear matching (i.e., repeated vari-
ables in patterns are allowed), and implements matching
modulo separators (this is covered by the auxiliary function
equalModSep). The match function takes a Term, a Pattern, and
an environment.
Matching a term to a variable adds a new binding to the

environment, if it is not bound yet, otherwise it checks that
the current term is equal to the bound term. Literal nodes are
matched against literal patterns, if they have the same textual
content. SST cons nodes match if they have the same con-
structor name and arity, and all arguments match. List nodes
are matched using the auxiliary function matchL, shown in
Listing 5. For all other cases, match throws a failure exception,
which is used during list matching for local backtracking.

As an example, consider the rule from Section 3.1, of which
the left-hand side is mapped onto the Pattern ADT as
cons("mul", [cons("lit", [token("2")]), var("x")])

and applying this rule to the Term

cons("mul",

[cons("lit", [token("2")], ["", ""]),

cons("lit", [token("3")], ["", ""])],

["", " * ", ""])

which corresponds to the expression 2 * 3. The match algo-
rithm starts off in the fourth alternative, as both the pattern
and the term are cons nodes, and their names match ("mul").
As the pattern and term node have the same number of ar-
guments, the algorithm recurses pairwise into the children.
For the first child, this then boils to matching the pattern
cons("lit", [token("2")])

against the term
cons("lit", [token("2")], ["", ""])

Listing 4. Match algorithm for HifiTRS.
1 Env match(t, var(x), env) = env + (x: t)

2 when x notin env;

3

4 Env match(t, var(x), env) = env

5 when x in env , equalModSep(env[x], t);

6

7 Env match(token(x), token(x), env) = env;

8

9 Env match(cons(x, as, _), cons(x, bs), env)

10 = ( env | it + match(as[i], bs[i], it)

11 | i ← [0.. size(as)] )

12 when size(as) == size(bs);

13

14 Env match(lst(xs, seps), lst(ys), env)

15 = matchL(xs, seps , ys, env);

16

17 default Env match(_, _, _) = { throw Fail (); };

Listing 5. List matching on SSTs.
1 Env matchL ([], _, [], env) = env;

2

3 Env matchL ([], _, [!lvar(_), *_], _)

4 = { throw Fail (); };

5

6 Env matchL(ts, seps , [lvar(x), *ps], env) {

7 for (i ← [0.. size(ts)+1])

8 try {

9 sub = lst(ts[0..i], seps [0..i]);

10 if (x in env , !equalModSep(env[x], sub))

11 continue;

12 return matchL(ts[i..], seps[i..], ps,

13 env + (x: sub));

14 }

15 catch Fail() : ;

16 throw Fail ();

17 }

18

19 default Env matchL ([t, *ts], seps , [p, *ps], env)

20 = matchL(ts, seps [1..], ps, match(t, p, env));

Again, the pattern and subject constructors share the same
name, and their only child matches successfully through the
third match alternative. Matching the second child of the "mul"

cons nodes entails matching the pattern var("x") to the second
"lit" cons node of the term. Since the variable x is not bound
in the environment yet, matching succeeds through the first
match alternative, binding x to the 3 literal. The matching
algorithm now successfully terminates with an environment
containing a mapping for the x variable.
The matchL function matches lists which may contain list

variables. Since the length of such list variables is unknown
in advance, the algorithm has to try out bindings to slices of
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lists of increasing size, until the whole list matches, or fails.
This way, the matchL function finds the first (shortest) match.

The base case is when both the subject and the pattern are
the empty list, in which case the environment of bindings
is returned, indicating success. If the subject list is empty,
but there are still patterns to be matched which are not list
variables, the match fails.

When matchL encounters a list variable (lvar), the algorithm
tries successive slices of the subject list as binding for the
list variable, and tries to match the rest of the pattern. If this
fails, the next slice is tried, otherwise the algorithm returns
successfully.

If both the head of the subject and the head of the pattern
list are ordinary patterns, matchL recurses back to match and
continues with the tail of both subject and pattern.
Consider the rule from Section 3.2 that adds a logger ar-

gument to function calls to some function f, applying it to
the code fragment f(1, /*higher*/2) that maps to the SST

cons("call",

[token("f"),

lst([cons("lit", [token("1")], ["", ""]),

cons("lit", [token("2")], ["", ""])],

[", /* higher */"])],

["", "(", ")"])

Note how the comment between the two arguments is stored
next to the comma as the sole separator string in the lst con-
structor. Matching the simple pattern fragments happens as
before; matching the list nodes is delegated to matchL, com-
paring the pattern lst([lvar(args)]) to the lst constructor
of the "call" cons node. Since the head of the pattern is a
list variable, the matchL algorithm tries to match an increas-
ing number of term elements, starting with zero elements.
Matching an empty pattern list against a non-empty subject
list subsequently fails, and matchL then backtracks locally and
tries to bind the list variable args to a single element. Again,
matching fails, and the algorithm backtracks. In the next
iteration, both arguments of the subject list are bound to the
args in the environment. Now, matchL continues to match an
empty pattern list to an empty subject list, which succeeds
through the first alternative. The list matching thus succeeds,
with both arguments bound to the meta variable args. Note
that the separator between the two arguments is propagated
as well (cf. line 9).

3.5 Substitution algorithm for HifiTRS

The matching algorithm of HifiTRS tries to match the left-
hand side of a rule by traversing the subject SST. On a suc-
cessful match, this algorithm returns a variable environment,
mapping the variables occurring in the left-hand side to the
SST term they were bound to during matching.
Right-hand sides of rules are modeled as a series of ele-

ments, where each element is either a string literal, a simple
or list variable, or a marked fragment (cf. Listing 3). The

Listing 6. Substitution algorithm for HifiTRS.
1 alias Env = map[str , Term];

2

3 str subst(txt , env)

4 = ( "" | it + e.src | e ← subst(txt , [], env) );

5

6 Txt subst([], hist , _) = hist;

7

8 Txt subst([token(x), *tail], hist , env)

9 = subst(tail , [*hist , token(x)], env);

10

11 Txt subst([var(x), *tail], hist , env)

12 = subst(tail , [*hist , token(yield(env[x]))],

13 env);

14

15 Txt subst([ marked(x), *tail], hist , env)

16 = subst(tail , [*hist , marked(x)], env);

17

18 Txt subst([lvar(x), *tail], hist , env) {

19 lst = env[x];

20 if (lst.elts == []) {

21 if (hist != [], hist[-1] is marked)

22 hist = hist [.. -1];

23 else if (tail != [], tail [0] is marked)

24 tail = tail [1..];

25 }

26 return subst(tail , [*hist , token(yield(lst))],

27 env);

28 }

variable environment is used to replace variables occurring
in the right-hand side with the SST terms bound to them.

The substitution algorithm is given in Listing 6. The sub-
stitution source code is constructed in a two-step process. In
the first pass, starting at line 6, the algorithm walks through
the list of elements, handling the head element and recursing
to the tail, while propagating the intermediate result. Lit-
eral and marked elements are simply propagated (lines 8-9,
15-16).

Simple variables are handled by looking up the correspond-
ing SST term in the environment, yielding it and appending it
to the intermediate result by wrapping it in a literal element
(lines 11-13). Similarly, for list variables, the corresponding
list slice is retrieved from the environment, is yielded and
appended to the intermediate result (hist).

Additionally, if the list variable is bound to the empty list,
the algorithm checks whether the preceding (or, alternatively,
following) element is a marked literal element. If this is the
case, this element is removed (lines 18-28). Finally, if there
are no elements left, the first pass concludes by returning
the intermediate result (line 6).
After the first phase, the list of elements only contains

literal and marked elements. The second phase consist of ap-
pending the string literals from these elements, yielding the
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final replacement source code (line 4). Note that if marked el-
ements were not removed due to an empty list interpolation,
they become part of the output, as is needed.

Again, consider the last rule application from Section 3.4.
The right-hand side is mapped onto the Txt ADT as

[txt("f("), lvar("args"),

marked(", "), txt("logger)")]

Recall that in that example, pattern matching was successful
and the args variable was bound to

lst([cons("lit", [token("1")], ["", ""]),

cons("lit", [token("2")], ["", ""])],

[", /* higher */"])

The first part of the substitution algorithm traverses the list
of textual elements. The first txt element remains untouched;
the lvar is replaced by a txt fragment after yielding the list
bound to args, which produces "1, /*higher*/2". As args was
not empty, no marked fragment is to be removed. The last two
list elements are left in place, and the first substitution phase
results in

[txt("f("), txt("1, /* higher */2"),

marked(", "), txt("logger)")]

The second substitution phase concatenates the strings val-
ues wrapped by the txt and marked constructors, yielding
f(1, /*higher*/2, logger).
Now, consider that the same rule is applied to the code

fragment f(). The rule is still applied successfully, but the
args variable is now bound to the empty list. During the first
substitution phase, the algorithm now detects that args is
empty (cf. line 20). The algorithm then checks surrounding
elements for marked text, and removes the marked frag-
ment trailing the args variable. The intermediate result of
substitution then becomes

[txt("f("), txt(""), txt("logger)")]

which, after concatenation, finally yields f(logger).

4 Evaluation

4.1 Introduction

In this section, we will discuss the implementation of SSTs
in Rascal [8]. In Section 4.2 we will illustrate how this imple-
mentation allows rewriting similar to the rules of HifiTRS,
using an example to add a logger parameter as the final for-
mal argument to function definitions. Finally, in Section 4.3,
we will discuss our efforts of implementing SSTs for C++ in
Rascal; we will show how to implement the Encapsulate Field
refactoring using our SST implementation, and additionally
show that we can write the left-hand side of a rewrite rule
in concrete syntax as well, by employing the Concretely
framework [1].

4.2 Implementation in Rascal

We have modified the Rascal pattern matching engine to

Listing 7. Adding Logger as last formal argument.
1 visit (sst) {

2 case funDef(t, n, [* formals], [*body])

3 ⇒ parse(subst("<t> <n>(<formals*>§, §Logger l) {

4 ' l.log(\" Entering <n >.\");

5 ' <body*>

6 '}"), #Decl)

7 }

support matching against SSTs, both using abstract patterns
and concrete syntax patterns (using the Concretely frame-
work [1]). Listing 7 shows an example transformation that
adds a logger argument as the final formal parameter to
function definitions, this time using abstract matching. In
this code fragment, a syntax tree sst is traversed using the
built-in visit statement, which tries to match the single case
pattern at arbitrary depth of the tree.
In Rascal, SSTs for a particular language are represented

using ADTs with keyword parameters to contain the seper-
ator strings. Keyword parameters are optional parameters
of constructors. The example presupposes an ADT with a
constructor for funDef, for instance, like:
data Decl(list[str] seps = [])

= funDef(Type typ , str name ,

SepList[Formal] formals , SepList[Stmt] body)

| . . .

;

In this definition all constructors of Decl get the extra list of
separators, initialized with the empty list. Keyword parame-
ters can be ignored during matching, as happens in Listing 7,
where the left-hand side of the visit-case does not specify
the seps parameter.
Note that the list of formal parameters and statements

in the body use a special SepList data type, to allow lists of
nodes to be annotated with seperators as well; this type is
defined as follows:
data SepList [&T]

= lst(list[&T] elts , list[str] seps);

Also, defining SSTs in this way makes it trivial to lower an
SST to an AST. The optional seps keyword parameter can
simply be dropped, and any occurrence of a SepList can be
replaced by the list it wraps.
On a successful match, the left-hand side variables t, n,

formals, and body are bound to actual SST subtrees. The right-
hand side of the rule gives the new concrete syntax for the
function definition: the function header is reconstructed with
an extra Logger parameter, putting the function type, name
and other parameters back in place. The function body is
reconstructed by adding a call to the newly added logger,
followed by the pre-existing function body. A call to the
subst function correctly replaces the variable meta syntax
for the variables by yielding the SST terms they were bound
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to. Here, the subst function does not explicitly receive the
variable environment (cf. Listing 6); the variable bindings
are retrieved using reflection.
The interpolated variables are formatted exactly as they

occurred in the original source code, using the literal SST
information. For the list variables formals and body, this means
that the original separators between the elements (e.g., a
comma between parameters, newlines between statement)
are put back in place again. The new function definition
itself is formatted exactly the way it was written down at
the right-hand side of the pattern.
Finally, the parse function calls the parser for the decla-

ration type (#Decl), yielding the appropriate SST term to be
inserted into the traversed SST.

4.3 Refactoring C++

We have implemented SSTs in Rascal for C++, for which the
AST data types were already available. Instead of mapping
these ADTs to the Term data type (cf. Listing 1), we have
embedded the essential literal syntax information directly
into the data type definitions.
ASTs that are produced by the parser are converted to

SSTs by reading out the file the AST corresponds to, and
filling the seps lists for every node and list, using their source
location attributes (cf. Section 2.3)5.
In this section, we evaluate SSTs by describing a simple

C++ refactoring, based on SSTs. In object-oriented program-
ming, encapsulation is the restriction of access to data mem-
bers of classes. These members are not directly accessible
from outside of the class, but the class provides public getter
and setter methods to query and update members. Achieving
encapsulation on a class requires two things. First, all mem-
bers with public visibility must be made private6. Second,
public getter and setter functions for such members must be
added to the class. Member variables that are not public, as
well as non-variable members should not be touched by the
refactoring.

Previously, we have used abstract syntax to match on SSTs.
While this allows for highly specific pattern specification,
it requires the meta programmer to have in-depth knowl-
edge of the intricacies of the abstract syntax. Concretely
is a technique that allows specification of patterns in con-
crete syntax, converting these to abstract patterns under the
hood [1]. We have adapted Concretely to produce SSTs, al-
lowing us to write concrete syntax both in left-hand side and
right-hand side patterns of rewrite rules. In contrast, Con-
cretely as defined in [1] only supported concrete matching,
but not high-fidelity transformation.

5Rascal’s existing C++ parsing front-end unfolds preprocessor macros,
which is necessary to be able to produce ASTs. Putting macros back in
newly constructed source code is an orthogonal problem to rewriting with
SSTs, and will not be addressed in this paper.
6In the refactoring described in this section, we chose to make public mem-
bers private, and leave protected members as is.

Listing 8. Encapsulate field for C++ in Rascal using SSTs.
1 visit (sst) {

2 case (Decl)`class <Name c> {

3 ' <Decl* pre >

4 ' public :

5 ' <Decl* between >

6 ' <Type t> <Name n>;

7 ' <Decl* post >

8 '};`

9 : {

10 if (hasPrivateOrProtected(between )) {

11 fail;

12 }

13 name = capitalize(yield(n));

14 src = subst(

15 "class <c> {

16 ' <pre*>§

17 ' §public :

18 ' <between*>§

19 ' §private :

20 ' <t> <n>;

21 ' public :

22 ' void set" + name + "(<t> val) {

23 ' <n> = val;

24 ' }

25 ' <t> get" + name + "() {

26 ' return <n>;

27 ' }§

28 ' §<post*>

29 '}");

30 insert parse(src , #Decl);

31 }

32 }

Listing 8 shows how this refactoring can be implemented
using SSTs. Again, an SST is traversed in a visit statement.
The left-hand side of the case describes a pattern tomatch out
class definitions with public fields, in concrete C++ syntax,
interpolated with Rascal meta variables. When this pattern
matches on a subtree, it is checked that the matched variable
is indeed public, by ensuring no private: or protected: visi-
bility labels occur between the public visibility declaration
and the variable7. Then, the variable name is capitalized to
allow the getter and setter functions to be in camel case.
The meta variables are then substituted. Note that the list
variables pre, between, and post have a marked source code
fragments that will be removed if they are bound to empty
lists, ensuring there are no unnecessary empty lines. Finally,
this source code is parsed, and inserted into the SST with
the insert statement.
Listing 9 shows an example C++ class definition on the

left-hand side. This definition contains three members, of
which only the declaration of x is a target for encapsulation.
7The fail keyword aborts the current match and makes the traversal
algorithm backtrack.
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Running the refactoring of Listing 8 yields the declaration
that is given at the right-hand side. Indeed, the declarations
for foo and y are left as is. A private: visibility label is inserted
before the declaration of x, after which visibility is reset to
public and the newly constructed getter and setter functions
are inserted. Note that the comment between the public
visibility label and the method declaration is preserved, as it
was stores as part of the separator between these elements.
The other comment, however, is lost, as this comment is
stored in the separator list of the class body, but is not covered
by either between or t. If required, one could explicitly access
these separators through the class definition and, e.g., with
a regular expression, try to match out any comments.
For comparison, Listing 10 shows the same refactoring,

but implemented using CSTs. In terms of complexity and
length, the SST-based and CST-based implementations are
similar. In the CST-based implementation, there is no built-in
support for conditionally including separators around list
variables; possible errors would need to be taken care of
explicitly. Furthermore, all interpolated meta variables are
explicitly typed. The applicability check and name capital-
ization are placed in the when clause, followed by calls to
the parser of the Name nonterminal to create names for the
getter and setter function8. Compared to the SST-based ap-
proach, where the full pattern is parsed at runtime, each time
the traversal algorithm finds an appropriate match, in the
CST-based version the full concrete pattern is parsed once
at compile-time; only the new CST nodes for the function
names are parsed at run-time. Listings 8 and 10 show that
the effort of implementing a refactoring in either formalism
is similar; however, the SST formalism is much more light-
weight and does not require a grammar in Rascal’s grammar
formalism.

5 Discussion and Related Work

Van den Brand and Vinju introduced rewriting with layout
by adding explicit layout nodes in grammar productions [2].
The ASF+SDF interpreter preserves these layout nodes in a
way similar to our SST implementation. The modifications
to the interpreter proved to be insignificant. While we did
not carry out benchmarks, this matches our observation for
SSTs.

Kort and Lämmel discuss common concerns for rewriting
systems, and propose annotated syntax trees as the preferred
formalism for refactoring [9]. SSTs can be seen as a form
of annotated syntax trees; in fact, in our implementation
(cf. Section 4.3), we partly implemented SST features by an-
notating syntax trees. While this can be seen as a form of
code tangling, such an addition to a data type is non-invasive

8In Rascal, only CSTs can be interpolated into a CST. The [Type]source
construct calls the parser for the Type nonterminal with source as input.

Listing 9. Result of applying Encapsulate Field.

class C {

public :

// Important

int foo();

// target

int x;

protected :

int y;

};

⇒

class C {

public :

// Important

int foo();

private :

int x;

public :

void setX(int val) {

x = val;

}

int getX() {

return x;

}

protected :

int y;

};

Listing 10. Encapsulate field for C++ in Rascal using CSTs.
1 visit (sst) {

2 case (Decl)`class <Name c> {

3 ' <Decl* pre >

4 ' public :

5 ' <Decl* between >

6 ' <Type t> <Name n>;

7 ' <Decl* post >

8 '};`

9 ⇒ (Decl)`class <Name c> {

10 ' <Decl* pre >

11 ' public :

12 ' <Decl* between >

13 ' private :

14 ' <Type t> <Name n>;

15 ' public :

16 ' void <Name setter >(<Type t> val) {

17 ' <Name n> = val;

18 ' }

19 ' <Type t> <Name getter >() {

20 ' return <Name n>;

21 ' }

22 ' <Decl* post >

23 '};`

24 when !hasPrivateOrProtected(between),

25 str name := capitalize("<n>"),

26 Name setter := [Name]"get <name >",

27 Name getter := [Name]"set <name >"

28 }

– for example, pattern matching on syntax trees was not
influenced by the extension.
The second issue, persistent normalisations, is not appli-

cable to SSTs, as no simplification or normalization occurs
in the process of creating SSTs. Similarly, we do not insert
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low-level annotations into the object code or tree. If a pre-
processing phase is necessary to gather information, it is
possible to do this offline.

Restriction to tree-shaped data is discussed as the final con-
cern, arguing that with tree-shaped data, it is impossible to
simply navigate between two non-related nodes (e.g., nav-
igating from call site to declaration site). We see this as an
issue of the underlying meta programming environment,
and not as a problem of the data structure. In our SST imple-
mentation, it is straightforward to generate relations over
SST nodes by tree traversal.

The Haskell Refactorer, HaRe, is a fully functional tool for
high-fidelity transformations on Haskell code [11]. Origin
information is maintained both in ASTs and in the token
stream, allowing locations to link AST nodes and tokens.
Transformations are carried out both on AST and token
stream simultaneously. Finally, refactored source code is
produced from the token stream, rather than from the AST.
Similarly to SST-based refactorings, refactoring targets are
found using matching on syntax trees. As the name suggests,
however, HaRe specifically targets Haskell as the object
language.

Hills et al. have described their efforts in successfully im-
plementing a script-supported refactoring in Rascal of the
Rascal interpreter, in which the Visitor pattern was changed
to the Interpreter pattern (V2I) [5]. In this context, a refactor-
ing script is a meta program that may construct, analyze and
transform models of software. We see SSTs as an interesting
implementation vehicle for such ad hoc refactorings. The V2I
refactoring employs string templates to generate source code,
leaving it vulnerable to generating type-incorrect source
code. Since source code is parsed during SST construction,
SST-based transformations provide syntax-safety.
Coccinelle is a matching and transformation tool for C

code, aimed at collateral evolution and bug fixing [10]. It
comes with the SmPL language in which semantic patches
are specified declaratively. A semantic patch differs from a
regular patch in that it abstracts away from irrelevant details
such as whitespace and variable names. As such, a semantic
patch can modify any number of files. Just like with SSTs,
in SmPL, concrete C syntax is used, intertwined with meta
variables. Contrary to SSTs, semantic patches are matched
against the Control Flow Graph of a piece of code.

De Jonge and Visser have developed an algorithm to pre-
serve layout for Spoofax-based code transformations [6]. Ar-
guing that simply pretty printing an AST is not desirable, the
algorithm yields incremental text patches, based on origin
tracking, and non-affected parts of the source code are left
untouched. The algorithm includes heuristics whitespace ad-
justment around newly constructed terms, and for comment
migration, based on work of Van de Vanter [13]. Newly con-
structed AST nodes are pretty printed, contrary to SST-based
transformations, where the concrete syntax of the meta pro-
gram is used. Since the algorithm requires an underlying

grammar, the distinction between layout and comments can
be made, allowing better control over comments than with
SSTs.

Coining the high-fidelity term in the scope of code transfor-
mations, Waddington and Yao have discussed their transfor-
mation system Proteus, supporting high-fidelity C++ code
transformations [15]. As the underlying formalism, Proteus
uses Literal-Layout ASTs (LL-ASTs), which augment sim-
ple ASTs first by adding nodes representing literals from
their own grammar productions, and second by introducing
layout nodes between every node.

Transformations are specified in the YATL language, which
uses Stratego primitives under the hood. Specifically aimed
at refactoring C++ code, macro expansions and includes are
tracked by inserting low-level annotations (cf. [9]). Construc-
tion of LL-ASTs for Expressions and Statements is possible
using concrete C++ syntax.

In SSTs, there is no distinction between literal information
stemming from production literals, or layout literals. The
creation of LL-ASTs requires a concrete grammar to decide
which tokens are literal or layout nodes, whereas SSTs do
not require a grammar to reconstruct such information. Our
SST implementation for C++ also allows for the construction
of SST nodes using concrete syntax, and supports more non-
terminals to be parsed besides Statements and Expressions.
Proteus has some heuristics about inserting layout and re-
moving comments. In the context of SSTs, it is not possible
to distinguish between layout and comments.

5.1 Limitations

The precedence of operators is not modeled in the SST for-
malism. For example, in the Expr language described in
Section 2.1, it is possible to write rewrite terms into terms
that have wrong precedence: consider, for instance, rewrit-
ing a literal 2 to 1+1 on a code fragment 2*3, which would
incorrectly yield 1+1*3. Using parentheses, the meta program-
mer can force correct binding; however, always introducing
parentheses may yield redundant parentheses in the result.
There is no general solution to this. However, if the prece-
dence relation is known – and if parentheses are part of
the abstract syntax, as is the case in Expr – extra rewrite
rules could be added that, based on the precedence relation,
remove redundant nesting.

If code fragments are moved, they might end up in a posi-
tion with a different desired indentation depth than at the
original position. In order for the target code to look well-
formatted, the indentation level would need to be adjusted
for the inserted code. Again, there is no general solution to
this problem, but it is possible to define language-specific
heuristics, which could be injected into the subst function
(cf. Section 3.5) to fix indentation.
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6 Conclusion

Many source code transformations, such as automated refac-
torings, require high-fidelity: transformations that preserve
as much of the textual layout and comments of the original
code as possible. Concrete Syntax Trees (CSTs) are a solution
to this problem, but they are heavy-weight, not available
in many transformation systems, and not easy to construct
from pre-existing parsers. In this paper we have introduced
Separator Syntax Trees (SSTs), a simple middle-ground be-
tween ASTs and CSTs, which can be used to implement
high-fidelity metaprograms.
SSTs maintain textual layout between AST nodes as lists

of strings. This allows accurate reconstruction of the original
source code from them. We defined the meta-datatype of
SSTs, and showed how they enable high-fidelity rewriting
using a simple term rewriting language HifiTRS. In particu-
lar, we showed how to deal with pattern matching modulo
separators, and substitution in the presence of potentially
empty list variables.
SSTs have been implemented in the Rascal [8] metapro-

gramming system, as an extension of the Concretely frame-
work [1]. This supports high-fidelity source code rewriting
using Rascal’s built-in pattern matching and rewriting en-
gine, with concrete syntax patterns. We show the viability
of the approach with a simple refactoring on C++, to encap-
sulate fields.
We hypothesize that SSTs provide a convenient syntax

tree format, combining the light-weight simplicity of ASTs
with the fidelity and syntax safety of full-blown CSTs.

Future work includes optimizing the implementation to
avoid repeated parsing of concrete patterns, and applying
SSTs in the context of large-scale transformation on realistic
languages.
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