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Abstract

On R. von Mises' condition for the domain of attraction of exp(-e *).

There exist well-known necessary and sufficient conditions for the
domain of attraction of the double exponential distribution. For prac-
tical purposes a simple sufficient condition due to von Mises is very
useful. It is shown that each distribution function F in the domain is
a rather simple function of some distribution function satisfying

von Mises' condition.
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Suppose X1’ X2, X3, ... are independent real-valued random variables
with common distribution function F. We say that F is in the domain of

attraction of the double exponential distribution (notation F e D(A);

Alx) = exp(—e_x)) if there exist two sequences of real constants {bn}
and {an} (with a >0 forn=1, 2, ...) such that for all real x
max(X, ,X 5...,X )=Db
. 12800000 _
(1) lim P{ - 22 < x} = exp(-e7¥).
n->® n

Necessary and sufficient conditions for F e D(A) are well-known ([1]
and [2]) but rather intricate. The following relatively simple criterion
is due to R. von Mises ([3] p. 285). It is convenient for the formulation

of the theorem to use the symbol x, for the upper bound of Xi defined by

0

xo(F) = sup{x | F(x) < 1},

Theorem 1 Suppose F is twice differentiable and F'(x) is positive for

all x < xo. If

F'(x)01-F(x)} _ _,
{F' (x)}°

(2) 1lim
x+xo

then F e D(A).

A distribution function F satisfying (2) will be called a

von Mises function.

Our theorem states that each F from D(A) is linked to some von Mises

function in a relatively simple way.
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Theorem 2 a) Suppose F € D(A). There exists a von Mises function F,

and a regularly varying function U with exponent 1 such that for all

X <X
0

(3) = U(

b) 1If F, is a von Mises function and U a regularly varying function
with exponent 1, then any distribution function F given by (3) belongs

to D(A).

Proof a) We use theorem 2.5.3 of [2] which states that if F € D(A),

there exist a real constant c¢. and real-valued functions c, a and f

1
defined on (—w,xo) with
{

e(x) > 0 for all x < X0 lim c(x) = c,> 0,
x4x

0
1lim a(x) =1,
xfxo
(4) < f(x) is positive and differentiable for all x < x

0

and lim f'(x) = 0,

4
XXO

moreover 1lim f(x) = 0 if x,. < o,

0
x+xo
such that for x1 < X < XO
X
- a(t)
1 - F(x) = c(x). exp {- f e datl.

X

First suppose x, = «. Define the function F1 by

0

0 for x < 1
F1(X) = X

1 - exp(- J E%%T) for x > 1.
1



Clearly this distribution function is twice differentiable and from

1im f'(x) = 0 we have that F1 satisfies (2). Denote the inverse function

X—>

of Tlf by V and define U by
1

* a(v(t))
1 t

U(x) = c(V(X)).exp{f dt} for x > 1.

From (4) it follows by the representation theorem for regularly varying

functions (see e.g. [2] theorem 1.2.2), that U varies regularly with

exponent 1. It is easy to see that with these functions F1 and U we

have (3).
If Xq

b) A well-known theorem of Gnedenko [1] states that F ¢ D(A) if and

< » the proof goes through with obvious changes.

only if for some positive function f

1-F(t+x.f(t)) _ =-x
1-F (%) = e for all real x.

lim
t+x0

By assumption this relation holds for F, i.e. for some positive function

1

f1 we have

. 1 1 _ X
(5) lim 1—F1(t+x.f(t))/1—F (t) = e for all real x.

t+xo 1

If U is regularly varying with exponent 1, we have

. U(sy) _
lim U(s) =

e

uniformly on any interval of the form 0 < Y2V LY, <

Hence (5) implies

1
1-F(t) 1-F1(t+x.f1(t)))
1lim = 1im = e
1=-F(t+x.f,(t)) 1
t+xo 1 t+xo U(7:§:T%70

u(
X

for all real x

and so F e D(A). O
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