
SciBORQ: Scientific data management with Bounds On
Runtime and Quality

Lefteris Sidirourgos
CWI

Amsterdam, the Netherlands

lsidir@cwi.nl

Martin Kersten
CWI

Amsterdam, the Netherlands

mk@cwi.nl

Peter Boncz
CWI

Amsterdam, the Netherlands

boncz@cwi.nl

ABSTRACT
Data warehouses underlying virtual observatories stress the capa-
bilities of database management systems in many ways. They are
filled, on a daily basis, with large amounts of factual information
derived from intensive data scrubbing and computational feature
extraction pipelines. The predominant data processing techniques
focus on parallel loads and map-reduce feature extraction algo-
rithms. Querying these huge databases require a sizable computing
cluster, while ideally the initial investigation should run interac-
tively, using as few resources as possible.

In this paper, we explore a different route, one based on the ob-
servation that at any given time only a fraction of the data is of
primary value for a specific task. This fraction becomes the focus
of scientific reflection through an iterative process of ad-hoc query
refinement. Steering through data to facilitate scientific discovery
demands guarantees for the query execution time. In addition, strict
bounds on errors are required to satisfy the demands of scientific
use, such that query results can be used to test hypotheses reliably.

We propose SciBORQ, a framework for scientific data explo-
ration that gives precise control over runtime and quality of query
answering. We present novel techniques to derive multiple inter-
esting data samples, calledimpressions. An impressionis selected
such that the statistical error of a query answer remains low, while
the result can be computed within strict time bounds.Impressions
differ from previous sampling approaches in theirbias towards the
focal point of the scientific data exploration, theirmulti-layer de-
sign, and theiradaptivenessto shifting query workloads. The ulti-
mate goal is a complete system for scientific data exploration and
discovery, capable of producing quality answers with strict error
bounds in pre-defined time frames.

1. INTRODUCTION
Scientific instruments produce huge amounts of information which

is stored in large data warehouses. Examples are virtual observa-
tories populated with astronomical data, or the Grid, a computer
cluster spanning the globe with experimental data originating from
the Large Hadron Collider at CERN. The data produced is so large
that in many cases a decade of intense exploration by the scien-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2011.
5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.

tists passes by before new observations are obtained and safe con-
clusions are drawn. The predominant data processing techniques
focus on massivly parallel loads and distributed processing on a
computer cluster. Although these approaches allow efficient ex-
ecution of complicated and computationally intensive workflows,
they do not provide interactive and low-cost means for the scien-
tists to make an initial exploration over the daily produced data.
The demand for data intensive scientific discovery led Jim Gray to
call the community to arms to face the challenge of the “Fourth
Paradigm” [11]. Facing this challenge calls for a database architec-
ture exhibiting features different from contemporary ones.

A significant portion of the processing time goes into loading
data into the science data warehouse and to prepare it for fast re-
trieval. The daily ingest may involve data sizes that are already hard
to manage. Indexing may take an exorbitant amount of time, oth-
erwise, massive data parallel processing is needed later on. Even
a raw scan is hindered by the sequential bandwidth required. Our
hypothesis is that in many real-life situations the scientist is ini-
tially satisfied with a properly chosen database sample as a starting
point for determining a query scenario. This scenario, once proven
correct and relevant, can be run in depth against all data overnight.
The key challenge is to determine what constitutes a good set of
sampled data, such that the interests of the scientist are met and
the computational tasks run efficiently, thus providing interactive
query performance. Traditional approximate query answering and
online aggregation methods do not satisfy the requirement of com-
plete control over both resource consumption and query result error
bounds.

In this paper we describe SciBORQ1, a novel architecture that
extracts multiple samples of a science database, calledimpressions
hereafter, to facilitate data exploration with guarantees on execu-
tion time and tight error bounds. The approach taken generalises
the samplingtechniques originally designed to maintain synopsis
and histograms for query optimisation. Contrary to existing work,
impressionsare large samplesbiasedtowards the scientist’s inter-
est as captured by taking note of the query workload. SciBORQ
constantlyadaptstowards the shifting focal points of real time data
exploration. Adaptive biased samplingis more suitable under the
observation that given a limitation on size, it is better to pick more
tuples from the areas of interest so as to minimise the error bounds.
New challenges emerge, such as providing correct estimators, sat-
isfactory error bounds, and execution time guarantees.

Unlike synopsis and histograms, which are traditionally used for
approximate query answering, the size of animpressionmay be
many gigabytes rather than just kilobytes or megabytes. Query
processing is designed such that a query may be evaluated against
multiple impressions, according to the specific user demands on er-

1pronounced ascyborg

296

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301630568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ror and time bounds. Therefore, multipleimpressionsof different
size and focus are derived. Depending on the policy chosen, some
scientists would be keen to keep the latest observations in their sam-
ples, while others may only be interested in events close to a point
of interest. Others may be interested in the outliers, i.e., peaks or
troughs of the data instead of average values. Finally, for practical
data exploration, it is imperative to control the statistical errors that
might occur when a database query is executed, or bound the pro-
cessing time to an acceptable limit, for example, “give me the most
representative result you can obtain within 5 minutes”.

The key features of SciBORQ can be summarised as follows:

• SciBORQ consists ofimpressions, which are created and up-
dated incrementally during parallel database loads, such that
a scientist’s interest captured by animpressionis satisfied.

• Impressionsadaptively reflect the focal point of scientific ex-
ploration, which is derived from the query workload.

• Bounded query processingis facilitated by recursively de-
finedimpressionswith strict control over their response time,
disk space, and statistical quality, leading to amulti-layer
data exploration framework.

The research opportunities under such an architecture are promis-
ing. Biased adaptive multi-layered samplesare an entirely new
concept, introducing new areas for research in database theory and
system design. Moreover, the specifics of sampling over a read-
optimised columnar architecture have not been studied in detail yet
– leaving ample space for exploration and rethinking of already es-
tablished sampling techniques. Bounded query answering calls for
developing a new query processing framework that can keep errors
under control by resorting to using more detailed impressions, or
in the extreme case, the base data. Finally, although there is an ar-
ticulated desire from the scientific community to provide database
engines with control over the execution time [22], no significant
steps have been done towards the realisation of such a system.

The rest of the paper is organised as follows. Section 2 presents
one of the scientific data warehouses that motivates our work. Sec-
tion 3 presents the design of SciBORQ. Section 4 details the con-
cept of adaptive and biased sampling. Section 5 presents related
work, followed by Section 6 with conclusions and future work.

2. SCIENTIFIC DATA WAREHOUSES
The proposed multi-layer query processing framework is tar-

geted towards an ongoing astronomy applications, the Sloan Digital
Sky Survey SkyServer. The SciBORQ implementation is designed
to work on top of MonetDB [17], a modern column-store database
system with a proven track record in various fields [12, 13, 16].
MonetDB is already integrated with the aforementioned applica-
tion as the underlying data management system.

2.1 Sloan Digital Sky Server
The Sloan Digital Sky Server realisation in SkyServer2 is a well-

known and complex science data warehouse. Its schema encom-
passes several tens of relational tables. Figure 1 shows a sum-
marised view of the schema. The main fact tablePhotoObjAll
contains hundreds of columns and several billion tuples. Each tu-
ple contains information about an astronomical image. Attribute
ra refers to the right ascension, anddec to the declination of
the image in the sky. More information is incorporated by join-
ing the foreign key attributes of the main fact table to the dimen-
sion tables. In addition, the SkyServer schema contains tens of
2http://www.sdss.org

PhotoTag

ObjMask

Frame

Field
.
.
.

Photoz

Mask

USNO

Roset

.
.
.

PhotoObjAll

dec

ra

select *
from Galaxy as G,
dbo.fGetNearbyObjEq(185,0,3) as N
where G.objID = N.objID

.
.
.

.
.
.

Figure 1: SkyServer Schema and Query

views and functions to facilitate data exploration. A fully func-
tional implementation of this 4TB database is available for Mon-
etDB. The publicly accessible query logs provide a basis to de-
rive areas of interest. A large percentage of the queries have the
form shown in the lower part of Figure 1. TableGalaxy is a
view of PhotoObjAll with many foreign key joins. This view
presents thegalaxy information according to the astronomers’ de-
sire. The functionfGetNearbyObjEq returns all objects found
in a nearby area specified byra=185 anddec=0. The scientists’
interest can be satisfied, even if only the data around the coordi-
natesra anddec are available, and not the entire data set. The
area described by the query predicate is the focal point of explo-
ration. Often this focal point is limited to a small part of the sky.
Queries can run anywhere from a few seconds on a large cluster, to
tens of minutes on a single machine.

The SkyServer application is prototypical for emerging projects,
such as Pann-Stars and LSST. The system is used by around 2000
astronomers worldwide to support and drive their research. The
majority of users, however, consists of amateur astronomers chal-
lenging the system with a large and complex query load.

3. SciBORQ ESSENTIALS
The key to multi-layer query processing is to extract samples

from the database, theimpressions, such that bounded query pro-
cessing functionality is precisely controlled. Impressions are of
different size, ranging from a few kilobytes to many gigabytes. De-
pending on their size, an impression fits either in the CPU cache, or
the main memory of a workstation, or resides on the disk of a lap-
top or even a cluster. Therefore, this flexibility has a direct impact
on the execution time of a query, the number of results produced,
and the answer quality. Impressions bear commonalities with data
synopsis and histograms but their purpose, functionality, and appli-
cability go beyond that. In this section we sketch the landscape of
the SciBORQ system.

3.1 System Parameters
Size. Impressions have different sizes with different degrees of

detail. The memory footprint of an impression is directly pro-
portional to the error bounds and the processing time that can be
promised. The larger the impression, the longer the processing
time and the smaller the error bounds. The user is able to define
the desired size of an impression to serve her needs.

Focal point. An impression gathers data according to a sam-
pling strategy. However, the sampling need not be from the entire
database, but can be from specific areas of interest. The focal point
of an impression is defined to be exactly this area of interest. The

297



predicates and the join conditions of the queries in a workload de-
termine what is important for the scientist and what not. For exam-
ple, in the SkyServer paradigm, by requesting objects of the galaxy
with thefGetNearbyObjEq function, effectively the scientist is
defining one of the focal points for an impression.

Layers. SciBORQ is a multi-layer hierarchical and parallel col-
lection of impressions. Impressions are defined to serve different
purposes and needs of the application user. In traditional systems,
there is one (typically small) synopsis of the data (i.e., sample, cat-
alogue statistics) used by the query optimiser or for approximate
query answering. However, in SciBORQ multiple impressions of
different sizes and focal points are constructed. Each less detailed
impression is derived from a previous more detailed one. In such
a derivation, the focal point of the larger impression is inherited
by the smaller, but many such hierarchies of impressions exist. If
the error bounds during query execution are not met, the process
continues on a larger impression of the same hierarchy. Moreover,
smaller impressions on higher layers are more efficient to maintain
since they only touch the data of the impression one layer below,
and not the entire base. This is important, since small impressions
need fast reflexes to efficiently adapt to query workload shifts.

Correlations. Impressions do not contain just a single attribute
or relation, but may span the entire database logical schema. Each
one of them may reflect the total of the base tables, or since Sci-
BORQ is designed for read optimised column stores, may contain
a subset of the attributes of a table. If the need rises, more columns
can be added. Past work [3, 4, 18, 21] demonstrates how join at-
tributes across relations are achieved with uniform sampling, and
it can be adjusted to our case, too. This way, the correlations be-
tween join attributes are maintained, leading to more precise query
results.

Adaptive. An impression constantly adapts to the focal point of
the scientist’s exploration, such that it contains more data from the
areas of interest. To achieve this objective, there are two phases
where an impression has the opportunity to re-adjust its focus: as a
side-effect of query processing and, alternatively, by triggering im-
pression maintenance on subsequent incremental loads. SciBORQ
recognises tuples that are potentially interesting for the workload
that has been observed up until now, thus increasing their chance
of being part of the corresponding impression. This strategy en-
sures better resolution around the focal points.

3.2 Bounded Query Processing
Quality of results. An important feature of the SciBORQ design

is the quality guarantees given for the query results. Any scien-
tific exploration, no matter how generic, is useful only if strong er-
ror bounds are provided. Although traditional sampling techniques
provide confidence levels on the results, error bounds will deterio-
rate due to correlations and complicated query plans. If a scientist
is prepared to accept only a specific upper limit on the error, he will
be left unsatisfied. A new query execution engine is needed that can
dynamically keep the error bounds under control. In SciBORQ, if
the error bound requested is not met during execution, the query
evaluation moves to an impression on a lower level, with a higher
level of detail, to confine the error margin. Ultimately, this can lead
to the base columns for a zero error margin. The implementation of
such functionality is feasible because of the special runtime optimi-
sation capabilities of a system such as MonetDB that materialises
intermediate results and provides the hooks to dynamically change
the query plans [15]. In addition, since query processing is column
oriented, some operators with low statistical confidence can run on
a larger impression of the same hierarchy, while other operators can
ran on a smaller one.

populate the sample smp with the first n tuples;
cnt := n;
while (tpl := block until next tuple())

cnt++;
rnd := floor(cnt∗random());
if (rnd < n)

smp[rnd] := tpl;
end

end

Figure 2: Reservoir algorithm R

Execution time. In today’s systems, the amount of results that a
query produces can only be limited by a count barrier, i.e.,LIMIT

clause in SQL. Indirectly, the query execution time can be con-
trolled likewise. Its implementation relies on “cutting” the execu-
tion pipeline when enough tuples have been produced or the prede-
fined timeout is triggered. The main problem with this approach is
that thefirstN results are returned, wherefirst is defined arbitrarily
by the order in which the data is processed. This order can be ei-
ther user defined (e.g., an ascending numerical order), or the order
in which the data was appended to the relation, or, finally, defined
by an index for fast retrieval. In all cases, such a cut does not neces-
sarily produce representative results for the entire data population,
but merely the luckyN first tuples. Moreover, in the presence of
blocking operators, such as‘sort’, ‘group by’, etc., all data has to
be read to produce the correct answer, and thus the pipeline cannot
be cut. Query processing in SciBORQ is much different in that re-
spect. The parameters of impressions are defined and maintained
during updates, such that SciBORQ always guarantees an upper
limit on time execution while producing results that are sampled
from the entire database. In such an architecture the equivalent
query with aLIMIT 100 clause will not return the first 100 re-
sults, but the 100 results satisfying the impression. In the SkyServer
example, instead of finding all objects near an area of the galaxy
by evaluating the functionfGetNearbyObjEq against the entire
PhotoObjAll fact table, and then returning only a few results,
the function is evaluated against an impression. If the number of
results cannot be obtained from that impression, query processing
may continue to a lower level that contains more sampled tuples
from PhotoObjAll.

3.3 Impressions Construction
Impressions are deployed either as part of a database loading

step or extracted from an existing database. In the first case, they
are constructed with little overhead during the load phase, without
the need to visit the base tables after the data is stored. The con-
struction algorithms reside in the load process, considering each
tuple as it is being loaded, much like a stream, and deciding if it
should be part of an impression or not. Because daily ingests of
new data are common in scientific data warehouses, the algorithms
for creating an impression also support incremental updates.

The incremental construction of impressions follow thereservoir
algorithmsparadigm [24]. Reservoir algorithms havea) a fixed
capacity of tuples that can fit in the sample,b) process the data se-
quentially, andc) each tuple has the same probability of being part
of the sample. The size of the sample is kept constant by throwing
out a random tuple to make room for a newly arrived one. Figure 2
outlines the general reservoir algorithm for maintaining a sample of
sizen. The decision to include or not a tuple in the sample is equal
to flipping a coin with probability of acceptancen

cnt+1
, wherecnt

is the number of tuples seen so far. Our algorithms stress the def-
inition of reservoir algorithms, since in SciBORQ tuples are not
chosen uniformly.

298



populate the sample smp with the first n tuples;
while (tpl := block until next tuple())

rnd := random();
if ((D∗rnd) < k)

smp[floor(n∗rnd)] := tpl;
end

end

Figure 3: Last Seen Impression construction

Scientific observations have a strong temporal component. It is
often more important to retain recent tuples than ones that have
been investigated several times already. This leads to aLast Seen
focused impression, where tuples that were recently added have a
greater probability of being retained. To achieve this, instead of
picking a tuple with probability n

cnt+1
, we use the fixed probability

k

D
, whereD can be tuned to be close to the expected daily ingest

of new tuples, andk = n if only new tuples are desired, ork <
n for a ratio of k

n
new tuples in the sample. In such a strategy,

older tuples have a bigger chance of being thrown out from the
reservoir. Figure 3 outlines this algorithm. TheLast Seenapproach
is useful in cases where observations have a timestamp which is
used in query predicates.

The second strategy for determining the scientist’s interest is
based on a more complex infrastructure of query logging. Every
query ran against the complete database touches a subset of the
base tables that are relevant to the data exploration. An approach
would be to keep this set as an impression. The MonetDBrecycler
component already facilitates this functionality [13]. Here we seek
an algorithm such that the probability of keeping a tuple is propor-
tional to thedistanceof the values of that tuple from the values
requested by the query workload. For each predicate of a query,
the requested values are logged in histograms. These histograms
do not contain the entire value space of an attribute, but only a
portion. Given the workload knowledge, for each ingested tuple a
weight is calculated and used tobiasthe sample towards the tuples
with higher weight. In the next section we present the essentials of
biased samplingand how the weight is calculated.

Finally, we can incorporate biased sample construction across
many-to-many joins and foreign key joins by following each join
path [3], or by using weighted sampling [4]. However, due to the
special nature of impressions (i.e., incremental and adaptive biased
sampling), these traditional sampling techniques have to be adapted
to wait for the joining tuples to arrive during subsequent loads.

4. BIASED SAMPLING
Biased sampling is achieved by assigning weights to tuples such

that those that belong to areas of past interest have a higher prob-
ability to be part of an impression than other, irrelevant ones. In-
tuitively, the upside is that queries that target the area of interest
have tighter error bounds. The downside is that the confidence of
queries that span widely outside of these areas is lower. Assigning
weights to the probability of picking an item leads to anon-central
hypergeometric distribution. Specifically, our setting is described
by theFisher’s non-central hypergeometric distribution[6]. These
mathematical tools provide the theory to calculate the variance, the
mean, and the support function of the biased sample.

Biased sampling is steered by the observed interest in the data.
This is achieved by first identifying the attributes of the data that
contain relevant scientific observation values rather than annota-
tions or metadata. In the SkyServer setting of Figure 1, these at-
tributes, for the main fact tablePhotoObjAll, are for example
ra anddec, which give the position of the observed objects in the

struct histo stats{int c=0;
float m=0;

} hs[β];
N = 0;
while (v := block until next value())

N++;
i := floor((v-min)/w);
hs[i].c++;
hs[i].m=(hs[i].m×(hs[i].c-1)+v)/hs[i].c;

end

Figure 5: Histogram maintenance over the predicate set

sky. They appear as parameters of thefGetNearbyObjEq func-
tion. For many of the queries in the workload, these attributes are
part of theWHERE clause. Given a query workload – which is de-
fined over a period of time or over a predefined number of queries –
thepredicate setis the set of all values of the interesting attributes
that are requested by the queries. During incremental load of data
into thePhotoObjAll fact table, tuples are sampled with a bias
to the areas of the sky that previously appeared in the predicate set.

The values in the predicate set are regarded as points thatsug-
gestthe entire distribution of values of interest. Akernel density
estimator (kde)is used to estimate this interest. Kernel density es-
timators have been used to approximate the distribution of a sam-
pled space [20]. They are smoother than histograms because they
avoid rounding errors, and there is no dependency on the endpoints
or the width of the bins of a histogram. Moreover, since they are
continuous, and not discrete, they give a better view of the neigh-
bour area of the observed values. Assume a set ofN data points
x1, . . . , xN as they appear in the predicate set of a query workload.
The kernel density estimator estimates the expected total workload
and is given by the function:

f̂(x) = N−1

N
∑

i=1

Kh(x− xi)

whereKh(·) = h−1K(·/h) whereK is a kernel function andh the
bandwidth. A common choice ofK is the standard normal (Gaus-
sian) distributionφ(u) = 1

√

2π
e−

1

2
u2

. Functionf̂ is an estimator
of the density functionf of requested values, givenN data points.

Figure 4 depicts two equi-width histograms that correspond to
the distribution of 400 values as observed in the predicate set for
attributesra anddec. An important parameter is the choice ofh,
called thebandwidthof the kde. The red lines of Figure 4 show the
density function estimation of the values in the histograms, as ap-
proximated by function̂f with a carefully chosen bandwidth. No-
tice that a largeh will oversmooththe distribution (green lines in
Figure 4), while a smallh will undersmooth(blue lines in Fig-
ure 4). Choosing the correct approximation for the bandwidthh is
hard and has been an area of intense research [14]. Moreover, com-
puting f̂ for a new valuex involves re-iterating over all observed
valuesx1, . . . , xN . This implies that for every newly ingested tuple
tnew the computation of̂f(tnew) involves reading allN previously
observed values of the predicate set. We adjust the kde to our set-
ting to overcome these shortcomings as follows.

The first step is to maintain statistical information of equi-width
histograms for the attributes of interest to the scientific exploration.
These values are exactly the ones requested by the queries of the
workload and not the entire value domain. For the previous exam-
ple of SkyServer and attributesra anddec, we maintain statis-
tics for two histograms3. These histograms are different from the

3multi-dimensional histograms are more attractive, but for simplic-
ity of the example we use two distinct histograms. Alternative ap-

299



120 140 160 180 200 220 240

50

100

150

200

250

120 140 160 180 200 220 240

0.01

0.02

0.03

0.04

0.05

0.06

120 140 160 180 200 220 240

0.005

0.010

0.015

0.020

120 140 160 180 200 220 240

0.05

0.10

0.15

0.20

0.25

0.30

120 140 160 180 200 220 240

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60

50

100

150

200

250

300

20 40 60

0.02

0.04

0.06

0.08

0.10

0.12

20 40 60

0.005

0.010

0.015

0.020

0.025

0.030

0.035

20 40 60

0.05

0.10

0.15

0.20

0.25

0.30

20 40 60

0.02

0.04

0.06

0.08

0.10

0.12

histogram f̂ oversmoothed undersmoothed f̆

Figure 4: 1st row is for predicate ‘ra’ and 2nd row for ‘dec’

ones shown in Figure 4, since they are not fully materialised as the
figure suggests. Only the statistical aspects of the histograms are
needed: the number of values that fall in a specific bin and their
mean value. More specifically, the domain of each attribute is di-
vided intoβ equal-width bins. The width is denoted byw. For
each binbi, i ∈ {1, . . . , β} two values are maintained: the count
ci that corresponds to the number of values that fall in binbi, and
the meanmi that is defined to be the mean of all values belonging
to the same binbi. Figure 5 outlines the code of maintaining the
statistics of the bins of a histogram build over the requested values
of one attribute, i.e., its predicate set. Themin value of the domain,
the widthw, and number of binsβ are considered to be known be-
forehand. The variableN contains the total number of values that
have been observed in the predicate set.

The statistics of the histograms provide the means to determine
the distribution of the interest, and based on them, a weight is as-
signed to each newly appended tuple. We adjust the kde function
to consider only the mean valuesmi of theβ bins multiplied by the
countci instead of iterating over all observed valuesx1, . . . , xN .
The resulting estimator function is now defined as:

f̆(x) =
1

N × w

β
∑

i=1

ci × φ
(x−mi

w

)

whereβ is the total number of bins,w the width of the bins, andci
the count andmi the mean of thei-th bin. Sinceβ ≪ N , andβ is
fixed, f̆(x) can be computed in constant time. Also

∫

Kw(u) = 1 and
∑β

i=1
ci = N ⇒

∫
∑β

i=1
ciKw(u) = N ×

∫

Kw(u) = N ⇒
∫

f̆(x) = N−1
∫
∑β

i=1
ciKw(u) = N−1 ×N = 1.

Thus, functionf̆ is an estimation of the probability density func-
tion that describes the relative likelihood for valuex to occur in the
predicate set. The purple line of Figure 4 shows the density func-
tion computed withf̆ . It is almost identical with the estimation
from f̂ , while it only iterates over a few constant number of bins,
and the bandwidth is always equal to the width of the bins.

Assume a newly ingested tupletnew during incremental load.
For simplicity, assume also thattnew has only one attribute of in-
terest4. A weight is assigned to tupletnew equal tof̆(tnew). We
bias the sample by making the probability of choosing this tuple for

proaches are part of future research.
4multiple attributes in the same tuple are dealt either with multi
dimensional histograms or with a combine functionc(tnew) =

f̆(tnew.att1) ◦ · · · ◦ f̆(tnew.attm).

populate the sample smp with the first n tuples;
cnt := n;
while (tpl := block until next tuple())

cnt++;
rnd := random();
if ((cnt∗rnd) < (n∗N∗f̆(tpl)))

smp[floor(rnd∗n] := tpl;
end

end

Figure 6: Biased Sampling reservoir algorithm

an impression proportional tŏf(tnew)×N . Functionf̆ estimates
the frequency of appearance of valuex in the predicate set. Thus,
the more frequent the value, the larger the productf̆(tnew) × N ,
and the higher the probability of choosingtnew.

Functionf̆(x) can be used in the reservoir setting. An impres-
sion has always a predefined sizen, thus for a uniform sampling a
tuple is accepted with probabilityn/cnt, wherecnt is the number
of tuples in the database. For biased sampling the probability of
accepting a tuplet is f̆(t) × N , and by normalising this with the
desired size of the impression leads to the following probability

P (acceptt) = f̆(t)×N ×
n

cnt

whereN is the size of the observed predicate set,n the size of the
desired impression, andcnt the number of tuples in the database.
Figure 6 details the biased sampling reservoir algorithm. After a
tuple is accepted, another randomly chosen one is thrown out from
the sample to make room for the new.

The leftmost histograms of Figure 7 show the distributions of the
values of the base data of SkyServer answering the queries used in
Figure 4 (more than 600.000 tuples). We create two impressions
of 10.000 tuples for each attribute: one based on uniform sampling
(red histograms of Figure 7), and one based on biased sampling
(purple histograms of Figure 7) steered by the interest shown in
Figure 4. The impression created with bias contains many more
tuples from the areas of interest, achieving a better representation
of data around the focal points.

5. RELATED WORK
Various techniques on how to construct data synopses, keep sum-

mary statistics, and obtain data samples have been proposed in the
past [5, 8, 10, 19, 23]. A topic of intense research is how samples
can be adjusted to support correlations between join attributes [3,
4, 18, 21]. SciBORQ is also aiming towards efficient inter-column
and inter-table sampling. Self-tuning samples were proposed by
ICICLES [7]. The results of a query are regarded as newly ingested

300



140 160 180 200 220 240

50 000

100 000

150 000

200 000

140 160 180 200 220 240

500
1000
1500
2000
2500
3000
3500

140 160 180 200 220 240

1000

2000

3000

4000

5000

10 20 30 40 50 60

50 000

100 000

150 000

200 000

10 20 30 40 50 60

500
1000
1500
2000
2500
3000
3500

10 20 30 40 50 60

1000
2000
3000
4000
5000
6000
7000

Base data Uniform Sample Biased Sample

Figure 7: 1st row is for predicate ‘ra’ and 2nd row for ‘dec’

data, and the sample is updated accordingly. We intend to investi-
gate this technique for SciBORQ also: a side-effect of a query eval-
uation is to update an impression using query results. Another tun-
ing approach for histograms was proposed in [1], where the feed-
back of a query is used to refine histograms to better resemble the
base data. Gibbons and Matias envisioned a system similar to ours
in their motivation for concise samples [9]. This led to Aqua [2],
a system for providing approximate answers to aggregate queries.
Both of those are close to our vision, however, they lack the multi-
layer design and adaptive biased sampling of SciBORQ that allows
the system to adjust the quality guarantees during query execution.

6. SUMMARY AND FUTURE WORK
In this paper we described a new data exploration architecture

for science data warehouses. The key observation is that in most
situations a fraction of the data would be a good starting point,
provided that the error and processing time bounds are within the
requested range.

Biased sampling is a valuable alternative to the predominant uni-
form sampling techniques, since more data from the areas of in-
terest are sampled. The architecture of SciBORQ is unique in its
multi-layer approach, providing the means for runtime execution
and (re-)optimisation that will guarantee the desired error bounds,
even if they are thrown off track due to correlations. We intend to
investigate the theoretical error margins for biased sampling based
on known mathematical tools [6] and their propagation through the
fundamental query processing operators, and to incorporate multi-
dimensional histograms for sampling over relations. Finally, we
will explore the connection between query processing time, the size
of an impression, and the consumption of resources.

7. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: building

histograms without looking at data. InProc. of the ACM SIGMOD,
1999.

[2] S. Acharya, P. Gibbons, and V. Poosala. Aqua: A Fast Decision
Support System Using Approximate Query Answers. InProc. of the
25th VLDB, 1999.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join
Synopses for Approximate Query Answering. InProc. of the ACM
SIGMOD, 1999.

[4] S. Chaudhuri, R. Motwani, and V. Narasayya. On Random Sampling
over Joins.ACM SIGMOD Record, 28(2), 1999.

[5] Daniel Barbara et al. The New Jersey Data Reduction Report.IEEE
Data Eng. Bull, 20(4), 1997.

[6] A. Fog. Sampling Methods for Wallenius’ and Fisher’s Noncentral
Hypergeometric Distributions.Communications in statistics,
Simulation and Computation, 37(2), 2008.

[7] V. Ganti, M. L. Lee, and R. Ramakrishnan. ICICLES: Self-Tuning
Samples for Approximate Query Answering. InProc. of the 26th
VLDB, 2000.

[8] M. Garofalakis and P. B. Gibbons. Probabilistic wavelet synopses.
ACM-TODS, 29(1), 2004.

[9] P. B. Gibbons and Y. Matias. New sampling-based summary statistics
for improving approximate query answers. InProc. of the ACM
SIGMOD, 1998.

[10] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms.ACM-TODS, 27(3), 2002.

[11] T. Hey, S. Tansley, and K. Tolle.The Fourth Paradigm:
Data-Intensive Scientific Discovery. Microsoft Research, 2009.

[12] S. Idreos, M. Kersten, and S. Manegold. Database Cracking. InProc.
of the 3rd CIDR, 2007.

[13] M. Ivanova, M. Kersten, N. Nes, and R. Goncalves. An Architecture
for Recycling Intermediates in a Column-store. InProc. of the ACM
SIGMOD, 2009.

[14] M. C. Jones, J. S. Marron, and S. J. Sheather. A Brief Survey of
Bandwidth Selection for Density Estimation.Journal of the
American Statistical Association, 91(433), 1996.

[15] R. A. Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX:
run-time optimization of XQueries. InProc. of the ACM SIGMOD,
2009.

[16] S. Manegold, M. Kersten, and P. Boncz. Database Architecture
Evolution: Mammals Flourished long before Dinosaurs became
Extinct. InProc. of the 35th VLDB, 2009.

[17] MonetDB. http://monetdb.cwi.nl.
[18] M. Muralikrishna and D. J. DeWitt. Equi-Depth Histograms for

Estimating Selectivity Factors for Multi-Dimensional Queries. In
Proc. of the ACM SIGMOD, 1988.

[19] F. Olken and D. Rotem. Simple Random Sampling from Relational
Databases. InProc. of the 12th VLDB, 1986.

[20] E. Parzen. On Estimation of a Probability Density Function and
Mode.Annals of Mathematical Statistics, 33(3), 1962.

[21] V. Poosala and Y. Ioannidis. Selectivity Estimation Without the
Attribute Value Independence Assumption. InProc. of the 23rd
VLDB, 1997.

[22] A. Szalay and R. Brunner. Exploring Terabyte Archives in
Astronomy. Invited talk at the IAU Symposium in Baltimore, 1996.

[23] Viswanath Poosala and Venkatesh Ganti and Yannis E. Ioannidis.
Approximate Query Answering using Histograms.IEEE Data Eng.
Bull, 22(4), 1999.

[24] J. S. Vitter. Random Sampling with a Reservoir.ACM Transactions
on Mathematical Software, 11(1), 1985.

301




