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ABSTRACT
Model fitting is at the core of many scientific and indus-
trial applications. These models encode a wealth of domain
knowledge, something a database decidedly lacks. Except for
simple cases, databases could not hope to achieve a deeper
understanding of the hidden relationships in the data yet.
We propose to harvest the statistical models that users fit
to the stored data as part of their analysis and use them to
advance physical data storage and approximate query an-
swering to unprecedented levels of performance. We motivate
our approach with an astronomical use case and discuss its
potential.

1. MOTIVATION
“Essentially, all models are wrong, but some

are useful.” – George E. P. Box

The realities of analytical data management have shown that
the various bottlenecks in hardware architecture often forbid
reading all formally relevant data, especially if a result is
to be available in reasonable time. But exact answers are
not always required, in particular for interactive data explo-
ration applications. Two approaches for approximate query
answering come to mind, sampling and synopses. In sam-
pling, only a subset of data is used to answer a time-critical
query [16, 2]. Doing so will introduce errors in the result, but
predicting the extent of these errors is well understood. Syn-
opses are compressed lossy approximations of the data, much
like a JPEG approximation of an exact bitmap. Approxi-
mate queries can use these synopses instead of the actual
data [8, 1]. At the same time, the query workload is used to
make efficiency-relevant storage decisions such as whether to
store data in row-major or column-major representations [4].
These methods suffer from a common flaw: They cannot
hope to achieve a higher-level understanding of the data, and
we need to go further than generic lossy compression, mining
of functional dependencies, or query log harvesting.
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Figure 1: Raw data vs. Model: LOFAR

In our opinion, we have been overlooking one of the most
common uses of raw data, in particular for scientific and
statistical data management: The comparison of collected
observations with statistical models (“fitting”).

It is this comparison between nature and our understanding
of it that forms the core of natural sciences [21, 18]. If the
data fits the model, and the model is even able to predict
future observations, we can assume to have understood the
phenomenon in question [13, 12]. Once a model is found,
observations where nature significantly deviates from predic-
tions often become the focus of interest. For example, the
search for exoplanets relies on analyzing a minute amount of
wobbling in a star’s position or a tiny dip in its intensity.

Currently, data management and model fitting are decoupled,
the fitting process reads the data once and later discards it.
Data management is unaware of the user-supplied model that
is compared with the stored observations. This is unfortu-
nate, as we believe that these models are invaluable for data
management itself. In particular, they may hold the key for
unprecedented performance in approximate query answering.
User models can provide approximations in a similar way to
the data synopses discussed before, but with higher accuracy.
The user model encodes much of the domain knowledge and
experience required to understand the data at hand. Also, a
deeper insight into the relationships within the stored data
allows more informed decisions regarding storage operations
such as compression.
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Source Wavelength ν Intensity I
1 0.1559555 0.2315911
1 0.1239243 0.3478159
1 0.1489243 0.1592717

[1,452,821 more rows]

⇒

Source Spectral Index α Constant p Residual SE
1 -0.7183309 0.06257838 0.006559710
2 -0.8932245 0.07195620 0.008007786
3 -0.7880774 0.56190180 0.016778232

[35,681 more rows]

Table 1: Example LOFAR observations and approximation

Our vision is a database system which is able to gain un-
precedented understanding by autonomous and proactive
harvesting of statistical models as they are fitted to the
stored data. Rather than forcing users to provide detailed
specification of the relationships within the data, we provide
means for model fitting inside the database. This gives the
system access to the statistical model provided by the user,
which can be transparently stored, re-executed, and generally
employed for approximate query answering and data storage
optimization.

In the remainder of this paper, we motivate our approach with
an example and discuss the general process of model fitting
and their capture. Then, we present general opportunities
and challenges for a database system which harvests user
models autonomously. Finally, we conclude with related and
future work.

2. REAL-WORLD EXAMPLE:
LOFAR TRANSIENTS

The Low-Frequency Array (LOFAR) is a large-scale tele-
scope for radio astronomy. It consists of 48 antenna stations
distributed across several countries in Europe [20]. By com-
bining signals from all stations, the telescope generates ra-
dioastronomical “images” of the sky. The LOFAR Transients
Key Science project tries to find the astronomical phenomena
(“sources”) that show fluctuations in their signals, for exam-
ple pulsars, quasars, black holes and afterglows of gamma-ray
bursts. To achieve this, observations from sources are cor-
related over multiple images and their intensities recorded.
In general, all observations are subject to a large amount of
interference.

We have obtained a small sample of 1,452,824 measurements
from 35,692 sources to serve as example data set. The data set
contains a source identifier, the frequency of the observation
and the observed source intensity (“flux”). Table 1 shows
some example values. To a database, this is a three-column
relational table, where the source identifier is an integer
and the others are floating-point numbers. From a model
perspective, the source identifier and the frequency are input
variables, and the flux is the observed output. Furthermore,
our understanding of astronomical radio sources predicts that
within radio frequencies, the intensity I of any individual
source is proportional to on the observation frequency ν and
a source-specific “spectral index” α: I ∝ να [6].

Now imagine that an astronomer fits this model to the obser-
vational data. Even though we assume most sources follow
the predictions, their parameters will still vary widely. The
result of the fitting process is the α constant for each source
and another constant p to express the proportionality. We
thus obtain another table that contains these constants for
each of the 35,692 sources. In terms of bytes, we were able

to replace ca. 11MB of observations with 640KB of model
parameters, ca. 5% of the original dataset size.

Figure 1 shows the result of the model fitting for a single
LOFAR source: We can see the widely varying observations
for the four different observed frequency bands in the dataset.
The blue line indicates the result of the model fitting process.
We predict a spectral index of -0.69 for this source, which
indicates that these observations are the result of thermal
emissions (e.g. from a star). There are, of course, other
sources that are known to not adhere to the model, e.g., have
turn-overs in their spectral index. However, these are not
only rare, but can now be spotted much easier by observing
the goodness-of-fit for the model.

As can be seen in Table 1, the model parameter table also
contains a measure of the goodness of fit of the model to the
data as the residual standard error. This measure serves two
purposes. One, it allows us to annotate data approximated
through the model with an indication of the error that is to be
expected. Second, the user will be interested in these values
to determine whether the chosen model fits the data well.
In this particular application, it is unlikely that the number
of sources increases without changes to the telescope. It is
however to be expected that the amount of measurements
will grow linearly over time. Therefore, in this approximation,
if ten times more observations per source are collected, the
model will only get more precise, not larger in terms of
storage or processing requirements.

Given the model and the parameters table, we can now
reconstruct tuples and thus approximately answer queries on
the original table. For example, consider the two following
SQL queries:

SELECT intensity FROM measurements
WHERE source = 42
AND wavelength = 0.14;

SELECT source, intensity FROM measurements
WHERE wavelength = 0.14
AND intensity > 3.0;

The first query requires us to look up the two parameters
to the model function I = p ∗ να and evaluate the function
with those parameters. Then, the result can be calculated.
A method to approximately answer the second query would
be to calculate the intensity as an intermediate step by calcu-
lating all intensity values with the stored set of parameters
for all sources and the given wavelength. Regardless, we can
approximately answer both query answers solely from the
model data. For some classes of models, an analytical solu-
tion would also be feasible. We will discuss these challenges
in the following section.



3. MODEL FITTING AND CAPTURE
As could be seen from our example, models encode a hypoth-
esis about the relationship of various parameters. As such,
they consist of two parts, an arbitrary function of the input
variables and various constant but unknown parameters. The
task of the fitting process is to approximate those parameters.
This is performed using a set of observed (sampled) input
and output values. We can calculate a set of predicted out-
put values, and compare them to the observed output values.
In general, we need more observed input/output pairs than
model parameters to find a set of fitted parameters. We do
not make any restrictions on the type of model to be fitted,
but there are two major classes from the viewpoint of the
algorithm used to fit the parameters to the observations:

In the simpler case of linear models (y = Xβ + ε), we can
use the ordinary least squares method to find an analytical
solution for the unknown parameters β by minimizing the
sum of squared residuals. This can be done by solving the
linear equation system β̂ = (XTX)−1XTy. Since solving
linear equations is a well-understood algorithmic problem,
we can calculate the model parameters in this case [21].

Contrary, in the general (non-linear) case, we have to fall
back to optimization algorithms. For example, the Gauss-
Newton algorithm is an iterative method to find the set of
parameters for which the predicted output values that have
the least squared distance from the observed output values.
Formally the parameters β are approximated as follows:

β(s+1) = β(s) −
(
Jr
>Jr

)−1
Jr
>r(β(s)) with Jr = ∂ri(β

(s))
∂βj

and r being a set of arbitrary functions of the parameters β.
It is far from certain that this or related algorithms will find
the perfect set of parameters, and their convergence can be
highly dependent on the choice of starting parameters. Also,
it is possible that the optimization algorithm gets trapped
in local extrema.

However, since it is the user who supplies the models, we
can ignore the computational complexity and convergence
issues of the fitting process here. It is their responsibility to
design a model, choose the appropriate optimization method,
and choose a set of starting parameters that will lead to
convergence.

A practical issue concerns the expression of the models and
the fitting process itself: Statistical environments have facili-
ties to let users express and fit arbitrary models by program-
ming, but not relational databases. But in order to achieve
our goal of interleaving model fitting and querying, it would
be practical to use the same representation. Fortunately, a
recent trend moved statistical processing closer to the data.
Major commercial databases now embed the R statistical
environment within the database itself [11, 14]. This also
helps to solve a major performance issue: Transferring all
data from the database to the statistical environment is not
necessary any more. At the same time, we can store the
models in their source code form inside the database, since
the execution environment for the code is also available.

Model fittings takes place in statistical environments and not
in data management systems. It is unrealistic to assume this
to change. However, in previous work, we have demonstrated

I ≈ p · να ? S ν I S ν I

R2 = 0.92 !

I ≈ p · να ?

R2 = 0.92 !

S p α

I ≈ p · να

S = 42, ν = 0.14, I =?

I = 3.0± 0.05 !

(1) (2)

(3)

(4)

(5)

Figure 2: Model Interception

how complex statistical calculations in R can be transparently
shipped off to analytical databases without changing the user
experience [10]. This is achieved by constructing a so-called
“strawman object”in the statistical environment, which wraps
a database table or query result, but is indistinguishable from
a local dataset. Any command the user performs on this
object is forwarded to the data management system. We
propose to leverage this method for model fitting as well.
Together with the aforementioned integration of statistical
environments into data management systems, this can create
a win-win situation, where the user benefits from faster
analysis, and the data management system benefits from the
user models.

Figure 2 illustrates this approach: A user wishes to fit a model
against a dataset in a statistical environment (1). The data
there is however a strawman for a database table. Therefore,
the fitting process gets offloaded there (2). The database
dutifully fits the model and returns the goodness of fit (3).
At the same time, the database stores the model as well as
its parameters for later use. In the next interaction, the user
queries the database for a value that can be approximately
reconstructed using the stored models (4). This value is
calculated using the model and the small parameter dataset
and returned with error bounds (5).

Since the entire process runs inside the database, we can
intercept fitting, determine the accessed data, and judge the
quality of the fitted model. For example, we could use the
R2 coefficient of determination or the results of an F-test
against a model with fewer parameters [21].

Overall, we therefore assume that we have the means to

1. Fit a user-supplied model to data stored in a relational
database.

2. Judge the quality of the model.

3. Store the model itself and the trained parameters.

4. Evaluate the model on different input values using the
trained parameters.



Physical Storage Approximate Queries

Opportunities
“True” semantic compression Analytic solutions for linear models
Zero-IO scans Model exploration

Data anomalies

Challenges
Data or model changes Parameter space enumeration
Multiple, partial or grouped models Legal parameter combinations

Table 2: Opportunities and Challenges from User Models

4. OPPORTUNITIES AND CHALLENGES
Now that we have captured a user model and have judged
its quality to be satisfactory, we can use the model in the
two main areas of improving physical storage and approxi-
mate query processing. There are many opportunities and
challenges that arise from using these user models, and the
following discussion is by no means complete. Table 2 con-
tains a short overview of the points discussed in this section.

4.1 Physical Storage
⊕ “True” semantic compression Semantic compression
relies on a necessarily small number of models hard-coded
into a system [5]. Compression algorithms perform best if
the underlying mathematical model closely approximates the
data to be compressed. If we use the user-supplied model
as a compression model, we can expect high compression
rates, which in turn allows more data to be stored and faster
access. A straightforward compression method would be to
store only the differences between the predicted and observed
values. Using the model and trained parameters, we can then
recompute the original dataset without loss of information.

⊕ Zero-IO Scans In the case of approximate queries,
we do not even need to access the stored data at all, since
we can use the model instead of the stored data to provide
values. This allows us to transform an IO-bound problem
(scanning a large table on disk) into a CPU-bound problem
(recalculating all the values from the model). At the same
time, we expect improved accuracy compared to database
synopses.

	 Data or model changes While we expect to be able
to retain models forever, the user might supply us with
even better models in quick succession. If we base our data
compression on a model, we can choose to recompress the
data, which is an IO-intensive process. Changing or added
observations can change fit of the model dramatically. This
could also make a model with a previously poor fit relevant
again. A possible solution could be to check these measures
for all previous models and switch when appropriate.

	 Multiple, partial or grouped models First, there
might be multiple such models that are of high quality and
that involve equivalent or overlapping sets of parameters
and output values. It is not obvious how to select the best
model. Second, it is far from certain that a model covers
complete columns in a table. For example, if the model
has been fit on a query result that restricted the tuples, the
model and its fitting parameters are only applicable to this
subset. For selections that overlap both the modeled and
the “unmodeled” area, it is not obvious whether the model
should be involved at all. Third, models might be fitted to
results of aggregation queries. For example, in our LOFAR

example, we have seen how a model may be only applicable
to a single group. Even if a single model is used, we would
get a set of model parameters for each aggregation group.
How this multi-parameter model is to be mapped back to a
source table is an open issue to say the least.

4.2 Approximate Queries
⊕ Analytic solutions for linear models One of the
greatest opportunities in capturing user models is their pos-
sible use for quick approximate query answering. Previous
work has already discussed how histograms can be used for
approximation of query answers [9]. For the common class of
linear models, we can even go one step further and calculate
analytic solutions for aggregation queries. For example, given
a well-fitting linear model we can calculate the minimum and
maximum value for a column.

⊕ Model exploration We can facilitate the exploration
of the model’s domain by the user. For example, we can
find interesting subsets of the data by analyzing the first
derivative of the model function for regions in the parameter
space with high gradients.

⊕ Data anomalies Often, the observations that do not
fit the model are of supreme interest. These will stand out
in the fitting process by for example showing large residual
errors. This information could be used for data exploration,
in particular when calculating the “interestingness” of subsets
of the data [15]. In our LOFAR example, there is a small
number of radio sources where the intensity is seemingly
unrelated to the frequency. Obviously, these are of interest
to further study.

	 Parameter space enumeration Recall our astronomy
example, we know that the model approximates I given ν
and a source identifier S with associated p and α constants.
But what if one or both of these parameters are not specified
in the query? We could load the missing parameters from
the measurement data, but the cost for this could quickly
overwhelm the savings. In the case of missing S, while we
could regenerate p and α using the raw data, we might as well
use the raw data directly. However, if a parameter column is
enumerable, we can use it without actually loading its values.
Straightforward examples for enumerable columns could be
continuous integer timestamps, as they appear for exam-
ple in tables containing time series. Similarly, categorical
variables can be replaced by a small set with all the values
they assume. To stay in the example, our telescope only
creates observations at a small set of frequencies, so ν would
only assume values in {0.12, 0.15, 0.16, 0.18}. It is therefore
possible that we can enumerate all possible combinations.
Then, we can apply the model to each combination.



The main problem here is to coerce a continuous model
that can generate an infinite amount of data points into the
relational schema. In previous work, this is referred to as
griding [7, 19]. However, in our concept, the model merely
acts as an auxiliary data structure to speed up approximate
queries or improve storage. Hence, the dimensions and values
of the inputs are known.

	 Legal parameter combinations An interesting ques-
tion also concerns point queries for which no data is present
in the original dataset. It is far from certain that all possible
combinations of input parameters were part of the original
table. In this case we would violate relational semantics due
to additional results that were not in the original data set.
There are two possible solutions to the issue: First, we could
require the model implementation to restrict the legal values
of the parameter space, for example by supplying a filter
function. Second, we could generate a compressed lookup
structure (e.g. Bloom filters) to encode all legal parameter
combinations.

5. RELATED WORK
With regards to related work, there are three very relevant
previous approaches. Deshpande and Madden presented
MauveDB [7], which proposes an abstraction called “model-
based views”. These views are able to abstract from the un-
derlying measurement data based on a user-specified model.
The system was developed to support distributed data col-
lection from sensor networks. The parameter space enumer-
ation issue is avoided by projecting the raw data onto a
grid with fixed boundaries. This way, the number of data
points generated from the model is fixed, which fits well with
the relational model. However, the models that underlie
these views have to be explicitly implemented in MauveDB,
and users have to make a conscious and explicit decision to
use this feature for their data. The paper merely discusses
regression and interpolation as possible models. What we
propose here is a far more flexible approach, where models
appear as a by-product from in-database statistical analyses.
Subsequent work by Thiagarajan and Madden (FunctionDB)
extends the concept with an algebraic query processor [19].
The functions that are fitted to the data are piecewise polyno-
mial functions. The system also contains an optimizer which
avoids grid materialization as long as possible for improved
performance.

On the storage optimization side, Babu et al. proposed the
SPARTAN system, which uses model-based compression to
reduce storage costs and increase access speed [5]. The
system uses Bayesian networks to detect possible data de-
pendencies and then trains a decision tree to predict the
dependent variables. This tree is then used to replace the
dependent variables in compressed tables. However, even
though the compression is lossy, the system is only barely
able to outperform standard gzip compression.

Akdere et al. [3] argue that data management should also
encompass model management. There, models are used
both for self-management such as query optimization as well
as predictive data analysis. They describe the Longview
database system design and architecture, where a model
management component constantly trains models (based on
a fixed set of model templates) for predictive purposes.

Zimmer et al. [22] investigate the use of continuous models
in the data management context. They focus particularly on
inverse prediction. Given a model and desired output, they
search for the input values that are likely to create this output.
They use two distinct approaches: First, Inverse Regression,
where the roles of the input and output variables are swapped
and a new regression model is trained. Second, Restraint
Optimization, which follows a geometric intuition where the
input space is restricted to only allow the space that describes
the possible values for the input variables. They also show
how complex relational-style queries can be formulated and
answered on these models. Range and point queries are
easily translated into geometric restrictions for both output
and input variables. This also addresses MauveDB’s and
FunctionDB’s issue of limiting the parameter space through
gridded input for linear regression models. However, there is
no free choice of model and their optimizations are not easily
translated to the non-linear case.

6. CONCLUDING REMARKS
In this paper, we have argued that statistical models should
no longer be ignored by data management. These models are
highly valuable for both storage organization as well as for
the computation of fast approximate answers to analytical
queries. We propose to intercept the model fitting process
by using the existing integrations of statistical facilities into
relational databases [14, 11]. To the best of our knowledge,
such a system has neither been proposed nor implemented
yet. However, considerable future work is needed to make
user models an integral part of data management systems.
There are numerous conceptional and practical issues to
overcome, some of which we have discussed here.

For the next steps, we propose to create a proof-of-principle
implementation of the first step in the process, that captures
the user model as it is being fitted. A straightforward way
of evaluating this system would be to create models that
describe the considerable regularity in the generated datasets
for popular database benchmarks such as TPC-DS. Then, the
complex benchmark queries serve as tasks for approximate
query answering, while the data itself provides a playing
field for model-based storage optimizations such as semantic
compression.

We also suspect that focusing on a single class of models
as previous work has [7, 19, 22] is unlikely to cover enough
ground. Another area of future work would thus be to survey
scientific fields and their models, in order to gain a better un-
derstanding of the complexity involved. However, databases
face a challenging task in executing arbitrary user code as
part of the query. Optimizer decisions are usually based on
a precise understanding for example of the dimensionality
of operator results. This cannot be assumed to be present
for user models, and forcing users to annotate their models
accordingly is unlikely to become popular. A learning query
processor might be the only sensible choice here [17].

We hope to have conveyed our enthusiasm for moving the
scientific process closer to the data. This would allow data
management systems to benefit from the experience and
domain knowledge of their users, which describe the “laws of
data nature”.
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