
White-box Compression:
Learning and Exploiting Compact Table Representations

Bogdan Ghit,ă
CWI Amsterdam, NL

Diego Tomé
CWI Amsterdam, NL

Peter Boncz
CWI Amsterdam, NL

ABSTRACT
We formulate a conceptual model for white-box compression,
which represents the logical columns in tabular data as an
openly defined function over some actually stored physical
columns. Each block of data should thus go accompanied by
a header that describes this functional mapping. Because
these compression functions are openly defined, database
systems can exploit them using query optimization and dur-
ing execution, enabling e.g. better filter predicate push-
down. In addition, we show that white-box compression
is able to identify a broad variety of new opportunities for
compression, leading to much better compression factors.
These opportunities are identified using an automatic learn-
ing process that learns the functions from the data. We pro-
vide a recursive pattern-driven algorithm for such learning.
Finally, we demonstrate the effectiveness of white-box com-
pression on a new benchmark we contribute hereby: the Pub-
lic BI benchmark provides a rich set of real-world datasets.

We believe our basic prototype for white-box compres-
sion opens the way for future research into transparent com-
pressed data representations on the one hand and database
system architectures that can efficiently exploit these on the
other, and should be seen as another step into the direc-
tion of data management systems that are self-learning and
optimize themselves for the data they are deployed on.

1. INTRODUCTION
Data compression is an important technique for analytical

data management. Apart from reducing data storage cost, it
reduces data transfer sizes and this can also speed up query
execution, because smaller memory-, disk - and/or network-
accesses take less time. Compression is especially effective in
columnar storage, that stores data pertaining to the same
distribution (i.e. column) together, and is widely used in
popular columnar file formats such as ORC and Parquet.
On the one hand, there are general-purpose compression
schemes such as Huffman [10], or arithmetic coding [23],
and a number of Lempel Ziv [24] variants. Even though

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ‘20)
January 12-15, 2020 , Amsterdam, Netherlands.

D
ec

om
pr

es
si

on

101110

101001
101010101010

100010
111000
100011 100011

100110
Blocks of data

... σ

⋈

Γ

Q
ue

ry
 E

xe
cu

tio
n

/ D
ec

om
pr

es
si

on

Sc
an

SELECT t2.B, t1.C FROM t1, t2 WHERE t2.B = t1.C AND A LIKE ’TREAS%’

LZ4 DICT

101010
100110

Block of data

Expression
 tree

⋈

Γ

LIKE 'TREAS%'

map format

concat map

Correlation

...

...

Pr
ed

ica
te

pu

sh
-d

ow
n

Ex
ce

pt
io

n
co

lu
m

n

Physical
columns

Logical
columns

C A B C A B

P Q

Black-box White-box

B,CB,C

σ
FOR

LZ4 FOR FOR

header

P=2

Sc
an

Q
ue

ry
 E

xe
cu

tio
n

LIKE 'TREAS%'

101010
100110

Block of data

⋈

Γ

map

...

...

C B

P

Optimized

B,C

LZ4 FOR

header

P=2σ

σ σ
LIKE
'TREAS%'

XX

Figure 1: In white-box compression, compressed blocks in
their header contain expressions that define how the logical
columns of a table are computed as a function of the stored
physical columns. Please skip to Table 2 to see the
example data and compression functions. In tradi-
tional – “black-box” – compression methods, decompression
is opaque to the query engine. White-box compression un-
locks query optimizations such as predicate push-down, and
physical column pruning, and achieves better compression,
e.g. by exploiting a correlation between columns A and B.
The compression functions are learned from the data.

some of these trade compression ratio for higher speed, such
as LZ4 and Snappy, we call these “heavy-weight” methods,
because encoding/decoding speeds are relatively low, typ-
ically impacting query performance. On the other hand,
there are much faster “light-weight” compression schemes
that need knowledge of the data-type and -distribution, such
as Frame-of-Reference, RLE and Dictionary compression [3,
25].

We call all these existing techniques black-box compres-
sion, because their decompression logic is hard-coded and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301630553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the query operators in the database system cannot directly
operate on the their compressed bit representations. In
this paper, we propose white-box compression that not only
makes (de-)compression transparent and optimizable, but
also is able to strongly reduce the size of real-world data.

Real world datasets tend to present characteristics that
do not occur in synthetic benchmarks like TPC-H [4] and
TPC-DS [17]. Not only is data often skewed in terms of
value and frequency distribution, but it is also correlated
across columns. Columns, or parts of columns, are often
not stored in the most appropriate data type (e.g. some-
times almost numeric columns end up as strings). The “Get
Real..” DBtest paper [22] highlighted the lack of realism
in the datasets generated for existing benchmarks, but did
not release the data it described. As part of this project, we
first created a new benchmark: the Public BI benchmark [1],
based on 46 of the largest Tableau Public workbooks. We
hope to have contributed a useful resource for database re-
search with it. In our case, we used its rich collection of
real-world data for inspiration and evaluation, to identify
and characterize new methods for compression and provid-
ing better data representations.

In recent years, there have been advances that try to unify
the design space of e.g. index structures, so a specific data
structure can be generated, that is optimal for a particular
workload [11]. Even more broadly, there are initiatives for
so-called instance-optimized data management systems [13],
that optimize the full system architecture for the workload,
often using machine learning (ML) techniques. Our work on
white-box compression envisions future data formats that
are also instance-optimized. We propose to see compression
as a transparently described function over the data. Thus,
in a white-box compressed data format, the block header in
a data file does not only contain basic information about the
columns of data in it (data types, offsets, etc), but also con-
tains the description of the compression function that the
decompressor needs to instantiate and execute for decom-
pressing the data.

In the following, we quickly walk through the main re-
search questions this raises. We investigate the first three
in resp. Section 2, 3 and 4. The latter two we did not
investigate yet, but all of them provide future research op-
portunities for the data management community.

What could these functions look like? The function
should have the appropriate expressive power to handle pat-
terns that occur in real-world data. Also, the speed of (de)
compression should remain high, such that compressed data
can be accessed fast. While one can even think of using
ML models as functions, the white-box compression model
we define in Section 2 starts with functions that are stan-
dard column expressions (trees of operations on columns or
constants) that query engines already support.

How does the system learn these functions during
compression? What is the best function to represent a col-
umn, depends foremost on the data, but also the workload
could be taken into account. In Section 3, we define find-
ing a good function as an optimization problem and provide
a rule-based algorithm that splits logical columns to store
the data in physical columns that are more (black-box) com-
pressible; and subsequently tries to find correlations between
physical columns to reduce duplicated storage.

How much can compression rate be improved? In
Section 4, we evaluate our implementation of white-box com-
pression on our Public BI Benchmark. We find that a factor
2 of storage space can be saved already, even though the
methods we use are still rather simple. We speculate that
compression rates in the future could be boosted even fur-
ther, by more advanced techniques or even machine learning.

How can these functions be exploited in query op-
timization and execution? Since (de)compression is a
transparent first phase of query execution, compression op-
erators could be fused with query operators at runtime or
might even cancel out. For instance, if a date column was
stored as string and most queries start by casting it to date,
this expensive operation can be skipped. Figure 1 high-
lights another prolific opportunity: white-box compression
enabling selection push-down (e.g., by storing the column as
a proper date, rather than as a string, a date-range condition
on the casted string, can now be pushed).

How can data management systems quickly parse
and execute such functions? Each block of data may
come with its own functions. One could for instance use
JIT-compilation, but would have to take counter-measures
in order to contain compilation latency, which might be in-
curred for each block of data. Alternatively, a vectorized
engine could be used, which does not have the latency prob-
lem. In this paper we use VectorWise as our experimental
platform, but we defer research into efficient execution of
white-box compression to future work.

2. WHITEBOX COMPRESSION MODEL
The white-box compression model represents logical co-

lumns as composite functions of physical columns. Logical
columns are the columns as defined by the database schema,
containing the tabular structure that the user expects to see.
Physical columns are what we actually store on disk. There
may be fewer (or more) physical columns than logical co-
lumns, and their data types may be different. In this initial
approach to white-box compression, these functions are ex-
pressions that consist of simple, scalar, operators. While in
our current work we use the same mapping between log-
ical and physical columns for the whole table, white-box
compression could in principle use a different mapping for
different horizontal pieces (data blocks) of the table.

Formally, we define an operator as a function o that takes
as input zero or more columns and optional metadata infor-
mation and outputs a column: o : [C × C × ...]× [M]→ C.
The domain of o is composed of columns and metadata and
the codomain is a set of columns. A column is defined by
its data type and the values that it contains. The metadata
is structured information of any type. Table 1 shows as a
small set of operators we defined based on specific compres-
sion opportunities.

We can for instance represent a logical string column ca
as a physical integer column cb using a formatting opera-
tor mformat . E.g. "-12000" = format(-12000, "%d"), where

Detector Operator
Different Alphabet Zones concat : C × C × [...]→ C c = concat(ca, cb, [...])
Numerics in String format : C ×M → C c = format(ca,mformat)
Few Unique Values map : C ×M → C c = map(ca,mmap)
Mostly Constant const : M → C c = const(mconst)

Table 1: A few typical operators used in column expressions.

vb = -12000 and mformat = "%d". The direct mapping rep-
resentation of a column ca as an integer column cb through
the mapping mmap is a key-value lookup in an array-like
dictionary. E.g. "TREAS" = dictAP [2], where dictAP is an
array of size 3 with values ["GSA", "HHS", "TREAS"]. The
constant representation of a column indicates that all its
values are equal to the constant value mconst . These op-
erators can be composed, resulting in operator expressions
or expression trees—tree structures with logical columns as
root nodes, operators as internal nodes and physical columns
as leaf nodes. Table 2 illustrates white-box compression on
a small data sample from the Public BI benchmark. The
logical columns A and B can be represented as composite
functions of the physical columns P and Q, through the fol-
lowing expressions:

A = concat(map(P, dictAP), const("_"), format(Q, "%d"))
B = map(P, dictBP)

A B

"GSA_8350" "GENERAL SERVICES ADMINISTRATION"
"GSA_8351" "GENERAL SERVICES ADMINISTRATION"
"HHS_2072" "HEALTH AND HUMAN SERVICES"
"TREAS_4791" "TREASURY"
"TREAS_4792" "TREASURY"
"HHS_2073" "HEALTH AND HUMAN SERVICES"
"GSA_8352" "GENERAL SERVICES ADMINISTRATION"

Logical

P Q

0 8350
0 8351
1 2072
2 4791
2 4792
1 2073
0 8352

Physical

Table 2: Logical vs. physical data

We observe that column A has the following structure: a
dictionary compressible prefix and a numeric suffix, sepa-
rated by a the ’_’ character. If we store these logical parts
separated into 3 columns Cprefix , Cdelim , Csuffix , we can rep-
resent column A as their concatenation. Since Cprefix has
repeated values, we can represent it more compactly as a
mapping of column P—containing dictionary keys—and the
dictionary dictAP . We can represent Cdelim through the
const operator since all its values are equal to ’_’. Csuffix

contains numbers stored in strings. We can store these val-
ues more compactly as numbers, by changing the column
data type. Therefore, we represent C(suffix) based on the
numeric column Q, through the format operator, with the
format string "%d". We move our attention to column B
and observe that it is correlated with column Cprefix —and
implicitly also to column P . We can therefore represent B as
the mapping of column P and the dictionary dictBP , with-
out explicitly storing its values. In the end, we store only
the physical columns P and Q and the metadata: dictAP ,
dictBP and the constant string "_".

Through these expressions we are able to store the data
on columns A and B more compactly, by removing redun-
dancy and using optimal data types, allowing further com-
pression of columns P and Q with existing black-box nu-
meric compression schemes (e.g. FOR). Note that a sys-
tem with traditional black-box compression can only com-
press the high-cardinality string column A with slow LZ4,
whereas the low-cardinality string column B could be stored
with DICT. With white-box compression, logical column A
now gets stored as two small integer columns P and Q, both
highly compressible with the fast FOR scheme. Column B
does not even require any storage anymore, as it is correlated

with A and can be reconstructed from P .
Additionally, the same expressions create opportunities

for faster query execution. Recall the example query from
Figure 1: select B,C from T1,T2 where B=C and A like

’TREAS%’. A query execution engine that is aware of the
data representation will filter the results by only fully read-
ing the physical column P from T1, pushing down condition
P = 2, and then generate both logical columns A and B
based on P and Q, only for the qualifying tuples (i.e. po-
tentially skipping many rows). However, given that com-
pression and query execution are now fused, an optimizer
could also perform physical column pruning and remove the
whole calculation of A, since it is no longer needed (see Fig-
ure 1, rightmost side).

An additional and important part of white-box compres-
sion is exception handling. Exceptions are outlier values that
do not fit the data representation (e.g. a value on column
A that does not have the prefix-delim-suffix structure). We
designed the model such that these values are stored sep-
arately in physical exception columns. These exception co-
lumns can then be recursively white-box compressed, thanks
to the generic nature of the model. In our example query, we
saw that predicate push-down gets rid of most of the string
matching effort. However, we still need to do this more ex-
pensive check on the (few) rows where the compression func-
tion does not fit the data (in that case P holds NULL), and
the original string is stored in exception column X (which
holds NULL for data that fits). We simplified the optimized
query on the right of Figure 1 a bit: the full pushed-down
condition is P IS NULL or P=2 and the top-level filter con-
dition is P IS NOT NULL or X LIKE ’TREAS%’.

We have seen how the four operators described above can
be used to represent data more compactly and how full
decompression can be postponed during query execution.
However, the white-box compression model does not limit
itself to these four operators. It is a generic model and sup-
ports any type of column operators (e.g. mathematical op-
erators like addition or multiplication). Given the multitude
of different possible representations of the same logical co-
lumns, a major challenge is exploring them and choosing the
most suitable one. We approach the challenge of automati-
cally learning patterns in the data and its representation in
the next section.

3. LEARNING COMPRESSION
This section introduces the general problem of automat-

ically learning white-box functions from a sample of data
and generating expression trees. We further propose a learn-
ing algorithm and describe our proof-of-concept implemen-
tation.

3.1 Optimization problem
We define the compression learning process as an opti-

mization problem: given a sample (Ds) of a dataset (D), its
schema (S), a set of operators (O) and a cost model (C), out-
put a combination of operators in the form of an expression
tree (T) that, when applied to the full dataset, produces a
minimum cost representation of it. The sample Ds is a rep-
resentative subset of rows from D. The schema S describes
the structure of D in terms of columns and their data types.
The operators O are functions that apply elementary trans-
formations on columns, as described in the previous section.
The cost model C provides a score which measures the effect

of representing D through the expression tree T in terms
of two main metrics: 1) compressed size of D and 2) query
execution time.

3.2 Learning algorithm

Algorithm 1 Exhaustive recursive learning

1: global Olist, Mcost . operator list and cost model
2: function buildtree(cin, Tin)
3: Slist ← empty solution list
4: cost←Mcost.evaluate(cin, Tin)
5: append solution (cost, Tin) to Slist

6: for each o ∈ Olist do
7: (cost, Tout) ← applyoperator(o, cin, Tin)
8: append (cost, Tout) to Slist

9: return min(Slist) . solution with minimum cost

10: function applyoperator(o, cin, Tin)
11: Tout ← copy(Tin)
12: add operator o to Tout

13: Slist ← empty solution list
14: for each cout ∈ output columns of o do
15: (cost, Tc) ← buildtree(cout, Tout)
16: append (cost, Tc) to Slist

17: (cost, Tout) ← merge(Tout, Slist) . sum costs and
merge trees

18: return (cost, Tout)

We propose a recursive exhaustive algorithm for solving
the compression learning optimization problem (described in
pseudocode in Algorithm 1). It uses a predefined list of oper-
ators (Olist) and a cost model (Mcost). The algorithm takes
as input a column (cin) and an initially empty expression
tree (Tin)—the partial solution built so far—and outputs
the best representation of cin in the form of an expression
tree (Tout) and its corresponding cost.

The algorithm uses the cost model to evaluate the cost of
the current (partial) solution (i.e. not further representing
the column through any operator). Then it compares it with
the cost of the solutions resulted from applying each opera-
tor to the input column in a recursive process and chooses
the solution with minimum cost. The algorithm terminates
implicitly when no operator can be applied to the input col-
umn or when all operators that can be applied give no out-
put columns. In practice, the dimension of the problem and
algorithm termination can be controlled by imposing a max-
imum height for the expression tree. The complexity of the
algorithm is O((o × cout)

hmax), where o is the number of
operators, cout is the average number of columns that an
operator outputs and hmax is the maximum height of the
expression tree that we allow.

3.3 Proof-of-concept implementation
We created a proof-of-concept implementation of the learn-

ing algorithm described above, in order to evaluate its feasi-
bility in practice and to validate the white-box compression
model. We briefly present the cost model and operators that
we used, as well as the general architecture of the learning
process, omitting implementation details due to space con-
straints. An in-depth description of our approach is pre-
sented in [6].

Cost model. We used a simple cost model based on a sin-
gle metric: size of the physical data. We wanted to measure

the impact of the white-box representation in terms of com-
pression ratio, as well as its potential to create opportunities
for better compression with existing methods. Therefore, we
designed a cost model that estimates the size of a column
as if it were compressed with existing lightweight compres-
sion schemes (RLE, FOR, DICT) or not compressed. Out of
those estimated sizes, it outputs the smallest one, which is
further used to compare solutions in the learning algorithm.

Operators and pattern detection. We used the oper-
ators listed in Table 1. These operators, however, are not
applicable to every column, raising an additional challenge:
matching columns with suitable operators based on their
data type and properties. We addressed this challenge by
implementing an automated pattern detection engine, which
searches for patterns in each column and evaluates its com-
patibility with each operator. We created four pattern detec-
tors which identify suitable columns for: 1) concatenation—
by searching for columns that can be split based on their
character set sequences; 2) data type change (formatting)—
by identifying columns with suboptimal data types; 3) direct
mapping—by finding pairs of columns that are correlated to
each other and can be represented through a mapping; 4)
constant representation—by identifying columns that have
(mostly) a single value.

Column correlations. An interesting additional aspect
of our work is related to correlated columns. We focused on
finding dependencies between nominal categorical columns,
with the purpose of reducing redundancy by representing
them as functions of each other. We do this by building cor-
relation mappings (dictionaries) between every two columns,
which store the dependencies between their values. The val-
ues that do not match the correlation map are marked as
exceptions. We identify highly correlated columns based on
our own correlation coefficient: 1 − exception ratio—which
gives similar results to existing statistical metrics for correla-
tion between categorical variables: Cramer’s V and Theil’s
U [6]. In our proof-of-concept implementation we applied
this technique later in the learning process on the leaves of
the expression tree (i.e. the physical columns), enabling us
to remove physical columns if they correlate with another
physical column. This turns our the compression functions
from a set of n expression trees into a proper directed graphs
with n roots.

Updates on the white-box representation. When
dealing with updates on compressed data,there are multiple
approaches to minimize the modification of previous com-
pressed blocks. Microsoft SQL Server treats small point up-
dates as a combination of a delete followed by an insert [5].
While Vectorwise relies on a positional delta tree (PDT)
structure [9] that handles update by keeping a delta with
the differential data in memory. On White-box compres-
sion, we envision two options regarding where the updates
should be performed, one can either operate on the logical
level or on the physical level. On the logical level, one can
keep a PDT for updates and during a scan we first check the
delta and merge the differences. On the Physical level, how-
ever, the update would be inserted on the exception column
and marked as a modified tuple.

4. EVALUATION
We evaluated the proof-of-concept implementation against

a real system with enhanced compression capabilities: Vec-
torWise [26]. We aim at showing the improvement brought

by white-box compression as an enhancement of existing sys-
tems: an intermediate representation layer that remodels
the data to create better compression opportunities for ex-
isting lightweight methods. For this reason, we first white-
box compress the data offline using the algorithm described
in Section 2. Then, we load the resulting physical columns
into VectorWise, such that it uses its black-box compres-
sion methods—patched versions of well known lightweight
compression methods: PDICT, PFOR, PFOR-DELTA [26].
This allows us to measure how much compression ratio im-
proves thanks to white-box compression.

We performed our evaluation on the Public BI bench-
mark [1]. As this is a new and unknown benchmark, we
shortly present some of its characteristics, followed by the
preliminary results we obtained.

4.1 Public BI benchmark
The data used in our experiments is part of the Public

BI benchmark, the first fully user-generated benchmark for
database systems. The data and queries were generated by
downloading the 46 biggest Tableau Public workbooks men-
tioned in [22], collecting the SQL queries that the workbook
triggers on them, and then exporting the data (usually one
or a few similar tables per workbooks) and curating data
and queries to make them portable to relational database
systems beyond Tableau/Hyper. The Public BI benchmark
consists of 386GB of real data and 646 analytical queries [1].
We developed this benchmark and chose it for our evalua-
tion because of its data distributions, diversity in content
and the extended character set, which make it suitable for
evaluating compression solutions. In order to better under-
stand the properties of real data and to gain more insight
about it, we manually searched for patterns—common ways
that users represent the data—in order to find opportunities
for more compact representations. In summary:
– Empty/missing values that are not nulls—e.g. empty
quotes, whitespace characters;
– Dirty Data: even though most columns contain homo-
geneously distributed data, many columns have some values
that do not conform to the norm, or consist of multiple kinds
of data that conform to different norms.
– Leading/trailing whitespace, some with the purpose of
ensuring a common length of the values on VARCHAR columns;
– Numbers and dates stored in VARCHAR columns;
– Strings with fixed structure composed of substrings
from different distributions—e.g. emails, urls, strings
starting with a constant and ending in a number;
– Correlations between columns—mostly as categorical
variables, but also numeric correlations.

The patterns mentioned above are very frequent in the
benchmark data. One could conclude that database end-
users often make sub-optimal data representation choices,
in terms of database performance – this is both because
they are not database performance experts, and are more
interested in their business problem than in performance.
We expect this situation to become even more frequent as
databases move to the cloud and DBAs are no longer avail-
able. These sub-optimal data representations typically lead
to extra query processing effort [2] and larger-than-necessary
storage. With white-box compression, we can automatically
optimize physical database storage and execution on user
data, despite its logical sub-optimal form.

Logical

varchar (80.2%)
smallint (13.7%)
double (2.3%)
decimal (2.1%)
integer (0.9%)
boolean (0.7%)

Physical

smallint (60.4%)
tinyint (31.7%)
decimal (4.6%)
varchar (3.0%)
double (0.3%)

Figure 2: String
volume in the
new Public BI
Benchmark re-
duces from over
80% to just 3%
thanks to white-
box compression.

100 101 102

compression ratio

SalariesFrance_1
YaleLanguages_1
YaleLanguages_3

Bimbo_1
Euro2016_1

Food_1
MLB_7
NYC_1

Arade_1
MLB_1

Telco_1
TrainsUK1_2

CMSprovider_1
CommonGov..._1

Motos_1
Generico_1

Redfin1_1
Redfin2_1
Redfin3_1

Generico_2
Redfin4_1

Medicare1_1
RealEstate1_1

PanCreactomy1_1
Medicare3_1

PanCreactomy2_1
Rentabilidad_1

Uberlandia_1
Eixo_1

MulheresMil_1
SalariesFrance_2

Rentabilidad_2
MedPayment1_1

Physicians_1
MedPayment2_1

Provider_1
Medicare2_1
Taxpayer_1

Wins_1
Corporations_1
RealEstate2_1
IGlocations1_1
IGlocations2_1

MLB_5
MLB_2

Hatred_1
CityMaxCapita_1

HashTags_1
Romance_1

3.35
6.45

blackbox
whitebox

Figure 3: The overall compres-
sion factor achieved doubles to 6.19
thanks to white-box compression.

4.2 Experimental Results
We present some of the results of our evaluation on 49

tables from the Public BI benchmark, which we selected
based on the observation that tables with the same schema
have very similar data and sometimes are almost identical.
We only kept one table for each unique schema and also
removed very small tables (e.g. <1MB).

In Figure 3 we show the main results of our evaluation:
the compression ratios of each table, considering the columns
selected for white-box representation by the learning algo-
rithm (which make up 68% of the size of the full tables). For
most of the tables, the ratio achieved by white-box compres-
sion is significantly higher than the one of black-box meth-
ods. The rest of the tables, which have similar compression
ratios, either contain less white-box compression opportuni-
ties or part of their data is already compressible with ex-
isting techniques. Overall, white-box compression brings an
improvement of 1.92× over black-box compression in terms
of the aggregated compression ratio on all tables (6.45 vs.
3.35). A major role in these results is played by column
correlation, which makes up 28% of the operators in the

expression trees, leading to a smaller number of physical co-
lumns than logical columns (excluding exception columns).
Moreover, the distribution of data types across these co-
lumns is also different: the majority of logical columns are
VARCHAR, while the physical columns are mostly numeric—
making data more compact and suitable for compression
with existing black-box techniques (Figure 2). In terms
of size, the 77.2GB of logical data is represented through
only 3.7GB of compressed physical data and, interestingly,
11.3GB exceptions (0.16 average exception ratio). We are,
therefore, able to compactly store 65.9GB (the non-exceptions)
with a compression ratio of 17.8. The high share of volume
for exception columns suggests future work towards reducing
the number of exceptions or better compressing them.

We conclude that our learning algorithm effectively iden-
tifies opportunities for more compact data representations,
significantly improving compression ratios.

5. RELATED WORK
Existing work [3, 25, 14, 18, 8] on database compression

covers a wide range of topics: compression algorithms, ef-
ficient hardware-conscious implementations, compressed ex-
ecution [12, 26, 19]. The goal of improving query perfor-
mance using compression led to the development of light-
weight compression schemes: dictionary compression, run-
length encoding, frame-of-reference, delta coding, null sup-
pression [3, 7, 16, 21, 25]. Zukowski et al. [25] proposed
improved versions of these techniques that make compres-
sion more robust to outliers by separating these out as ex-
ceptions. DataBlocks [14] is a compressed storage format
that reduces memory footprint through hot-cold data clas-
sification. Raman et al. [19] optimized query execution
time through in-memory query processing on dictionary-
compressed data in DB2 BLU.

All this work focuses on low level optimizations to either
speed up query execution or improve the compression ratios.
In contrast, we approach the problem of compression from
a different angle. Our focus is on expressing compression
as an open function to the database system, here as expres-
sion trees. Automatic learning of these expressions is based
on finding patterns in data samples, as well as correlations
among columns. Lee et al. [15] mentioned the possibility of
exploiting columns correlations at query time. The purpose
was performing join operations on columns with different
encoding. In our case, we want to exploit these correlations
during compression, to obtain better compression ratios.

The closest work to our research is [20]. They concate-
nate on correlated columns and encode them together using
a variation of Huffman trees. We see this approach as heavy-
weight black-box compression as it is hard-coded and relies
on multiple rounds of Huffman encoding. Moreover, all the
patterns in the data need to be manually supplied by the
user. Our work differs in multiple ways: 1) we exploit corre-
lated columns by sharing the same physical columns between
related logical columns; 2) we apply a wide range of domain
specific operators tailored to the data 3) our process is fully
automated, from determining patterns and correlations be-
tween columns, to generating expressions trees.

While most compression solutions proposed so far were
mainly evaluated and compared to each other on synthetic
benchmarks [3, 25, 15, 14, 19], we are the first to use a com-
prehensive user generated dataset as the Public BI bench-
mark [1]. Two examples of benchmarks used for evaluating

database compression and compressed execution are TPC-H
[4] and its successor TPC-DS [17]. Both are synthetic, us-
ing uniform or step-wise uniform column value distributions;
with fully independent columns in and between tables.

6. CONCLUSIONS
In this paper, we introduced white-box compression, an

innovative compression model for databases. Our model
automatically learns expressions from data and represents
decompression in a transparent manner. It also creates op-
portunities for query optimization, by fusing decompression
and query execution, as well as through better filter push-
down and column pruning. We think white-box invites many
research questions. Our next action item is to try and fur-
ther compress exception columns. Another is to experi-
ment with more adventurous column functions, such as ML
models. Unexplored in this paper are also performance as-
pects: physical methods to quickly execute decompression
expressions, rewrite techniques to make expression graphs
shallower and faster; as well as more adventurous and ad-
vanced learning algorithms. Finally, the idea to make data
formats contain self-descriptive compression headers raises
design challenges but also systems challenges for the efficient
execution of highly variate decompression sub-plans.

7. REFERENCES
[1] Public BI Benchmark.

https://github.com/cwida/public bi benchmark.

[2] Tableau public. https://public.tableau.com.

[3] D. Abadi, S. Madden, and M. Ferreira. Integrating
Compression and Execution in Column-oriented
Database Systems. In SIGMOD, pages 671–682, 2006.

[4] P. Boncz, T. Neumann, and O. Erling. TPC-H
Analyzed: Hidden Messages and Lessons Learned from
an Influential Benchmark. In TPCTC@VLDB, pages
61–76, 2013.

[5] A. Dziedzic, J. Wang, S. Das, B. Ding, V. R.
Narasayya, and M. Syamala. Columnstore and b+
tree - are hybrid physical designs important? In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pages 177–190,
New York, NY, USA, 2018. ACM.

[6] B. Ghit, ă. ”Self-learning Whitebox Compression”.
Master’s thesis, ”Centrum Wiskunde &
Informatica(CWI)”,
www.cwi.nl/˜boncz/msc/2019-BogdanGhita.pdf,
2019.

[7] J. Goldstein, R. Ramakrishnan, and U. Shaft.
Compressing Relations and Indexes. In ICDE, pages
370–379, 1998.

[8] G. Graefe and L. D. Shapiro. Data Compression and
Database Performance. In SAC, pages 22–27, 1991.

[9] S. Héman. ”Updating Compressed Column-Stores”.
PhD thesis, Centrum Wiskunde & Informatica(CWI),
2015.

[10] D. A. Huffman. A Method for the Construction of
Minimum-Redundancy Codes. IRE, pages 1098–1101,
1952.

[11] S. Idreos, K. Zoumpatianos, B. Hentschel, M. S.
Kester, and D. Guo. The Data Calculator: Data
Structure Design and Cost Synthesis from First

https://github.com/cwida/public_bi_benchmark
https://public.tableau.com
www.cwi.nl/~boncz/msc/2019-BogdanGhita.pdf

Principles and Learned Cost Models. In SIGMOD,
pages 535–550, 2018.

[12] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP
& OLAP Main Memory Database System Based on
Virtual Memory Snapshots. In ICDE, pages 195–206,
2011.

[13] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and
V. Nathan. Sagedb: A learned database system. In
CIDR, 2019.

[14] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid
OLTP and OLAP on Compressed Storage Using both
Vectorization and Compilation. In SIGMOD, pages
311–326, 2016.

[15] J.-G. Lee, G. Attaluri, R. Barber, S. Idreos, M.-S.
Kim, S. Lightstone, G. Lohman, et al. Joins on
Encoded and Partitioned Data. PVLDB, pages
1355–1366, 2014.

[16] D. Lemire and L. Boytsov. Decoding Billions of
Integers Per Second Through Vectorization. Softw.
Pract. Exper., pages 1–29, 2015.

[17] R. O. Nambiar and M. Poess. The Making of
TPC-DS. In PVLDB, pages 1049–1058, 2006.

[18] O. Polychroniou and K. A. Ross. Efficient Lightweight
Compression Alongside Fast Scans. In DaMoN, pages
9:1–9:6, 2015.

[19] V. Raman, G. Attaluri, R. Barber, G. M. Lohman,
et al. DB2 with BLU Acceleration: So Much More
Than Just a Column Store. PVLDB, pages 1080–1091,
2013.

[20] V. Raman and G. Swart. How to Wring a Table Dry:
Entropy Compression of Relations and Querying of
Compressed Relations. In PVLDB, pages 858–869,
2006.

[21] M. A. Roth and S. J. Van Horn. Database
Compression. ACM Sigmod Record, pages 31–39, 1993.

[22] A. Vogelsgesang, M. Haubenschild, J. Finis,
A. Kemper, V. Leis, T. Muehlbauer, et al. Get Real:
How Benchmarks Fail to Represent the Real World. In
DBTEST, pages 1–6, 2018.

[23] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
Coding for Data Compression. Commun. ACM, pages
520–540, 1987.

[24] J. Ziv and A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory, pages 337–343, 1977.

[25] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU Cache Compression. In
ICDE, pages 59–, 2006.

[26] M. Zukowski, M. Van de Wiel, and P. Boncz.
Vectorwise: A Vectorized Analytical DBMS. In ICDE,
pages 1349–1350, 2012.

	Introduction
	Whitebox compression model
	Learning Compression
	Optimization problem
	Learning algorithm
	Proof-of-concept implementation

	Evaluation
	Public BI benchmark
	Experimental Results

	Related Work
	Conclusions
	References

