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a b s t r a c t 

This paper studies a setting in emergency logistics where emergency responders must also perform a set 

of known, non-emergency jobs in the network when there are no active emergencies going on. These 

jobs typically have a preventive function, and allow the responders to use their idle time much more 

productively than in the current standard. When an emergency occurs, the nearest responder must aban- 

don whatever job he or she is doing and go to the emergency. This leads to the optimisation problem 

of timetabling jobs and moving responders over a discrete network such that the expected emergency 

response time remains minimal. Our model, the Median Routing Problem, addresses this complex prob- 

lem by minimising the expected response time to the next emergency and allowing for re-solving after 

this. We describe a mixed-integer linear program and a number of increasingly refined heuristics for this 

problem. We created a large set of benchmark instances, both from real-life case study data and from 

a generator. On the real-life case study instances, the best performing heuristic finds on average a solu- 

tion only 3.4% away from optimal in a few seconds. We propose an explanation for the success of this 

heuristic, with the most pivotal conclusion being the importance of solving the underlying p -Medians 

Problem. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Optimal positioning, in applications such as firefighting and am-

ulance management, is an important part of emergency logistics

esearch ( Caunhye, Nie, & Pokharel, 2012 ). In classical models and

ettings, emergency responders are expected to remain at a base

tation until an emergency occurs, and an optimal or near-optimal

et of waiting positions is determined ( Brotcorne, Laporte, & Semet,

003; Owen & Daskin, 1998; Plane & Hendrick, 1977 ). 

However, in some real-world applications, it may be interest-

ng to assign incident-preventing activities or other scheduled ac-

ivities to responders when there are no active emergencies to re-

olve. For instance, one could want to assign routine railway in-

pections to idle railway emergency responders, or to combine

cheduled ambulance transport with emergency response, or to

lan routine patrols of the police force such that good emergency
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emergency response and non-emergency jobs, European Journal of Ope
overage is guaranteed. This would allow the emergency respon-

ers to spend their idle time much more effectively, namely by

roactively preventing emergencies, rather than by waiting at a

ase station. 

Combining an ‘emergency response fleet’ with a ‘maintenance

eet’ is challenging, but worthwhile ( Kiechle, Doerner, Gendreau,

 Hartl, 2009 ): this would yield more manpower for the sched-

led work, as well as a larger pool of emergency responders. When

n emergency happens, however, the nearest agent should abort

hatever task he or she is doing and hurry towards the emer-

ency. It would be undesirable if an emergency occurs, but due to

oor planning, all responders are performing a task at some far-off

ocation. 

This gives rise to an interesting Operations Research challenge:

ow can we schedule these preventive tasks in the network, such

hat we can guarantee a good spread of emergency responders

ver the day and minimise the average response time to poten-

ial emergencies? Answering this question should provide a worth-

hile contribution to the field of emergency logistics. 

If one were to only care about minimising response time to

mergencies, one could find an optimal distribution of agents over
et al., The median routing problem for simultaneous planning of 
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the network by solving a p-Medians Problem (P-MED) ( Daskin &

Maass, 2015 ). In P-MED, we have a finite set of nodes, each with

some non-negative weight, and a symmetric distance matrix be-

tween these nodes. The goal is to select exactly p of these nodes

which will act as ‘facilities’. Each other node is then connected to

its nearest facility, and contributes a cost equal to the distance to

that facility times the node’s weight. P-MED is the problem of find-

ing the p nodes for which this total weighted distance is minimal.

In this context, it would give the emergency responders optimal

locations from which to anticipate emergencies. 

If one were to only care about processing many preventive

tasks in the network in the span of one work shift, one could

find the fastest routing of agents over jobs by solving a Distance-

Constrained Vehicle Routing Problem (DVRP) ( Laporte, Desrochers,

& Nobert, 1984 ). DVRP is almost identical to the classical Vehicle

Routing Problem (VRP), except route lengths may not exceed some

parameter T . More specifically, suppose we have again a finite set

of nodes with a symmetric distance matrix. One node is called the

‘depot’; the others are called the ‘customers’. Each customer has a

non-negative amount of processing time. Given a fixed number of

vehicles p , a feasible solution to DVRP consists of exactly p tours

that start and end at the depot, such that every client is visited

exactly once, and such that every tour has a sum of traversed dis-

tances and processing times that does not exceed T . DVRP is the

problem of finding the p feasible tours with the smallest total dis-

tance travelled. In this context, it would give the fastest routing of

the agents over the preventive tasks such that everyone is back by

the end of the shift. 

The optimal solutions to these two problems would by defi-

nition be conflicting: the former would have the agents standing

still, while the latter would have them move around with no ex-

plicit regard to emergency response times. In this context, how-

ever, one cares about both minimal response time and efficient

task processing: one seeks to route agents over all given jobs,

as in DVRP, but with the objective to minimise emergency re-

sponse time, as in P-MED. This problem is therefore also inter-

esting in that it lies on an unexpected boundary between two

well-studied Operations Research problems, namely P-MED and

DVRP. 

Despite these motivations from academia and industry, the

literature review in Section 2 suggests that this combined plan-

ning problem has received little attention. Therefore, this arti-

cle proposes the Median Routing Problem (MRP) as a mathemati-

cal model for scheduling preventive tasks while minimising emer-

gency response time, and proposes methods to find optimal or

near-optimal solutions to this problem quickly. 

The contribution of this paper is twofold. Firstly, we propose

a mathematical model for this planning problem. This model al-

lows for discretisation of continuous response time, is suited to

deal with online re-planning when emergencies occur, and can

be solved with mixed-integer linear programming. Secondly, we

propose a heuristic for this model, that for real-life benchmark

instances needs only 4.5 seconds to find solutions that are on av-

erage 3.4% away from optimal. This heuristic has an unusual ap-

proach, in that it decomposes the decisions into several NP-hard

subproblems, but these NP-hard decisions are so much compressed

that they can be solved within seconds in the benchmark in-

stances. We propose an explanation for the success of this heuristic

by comparing it with related heuristics under variation of instance

parameters. 

The remainder of this paper is structured as follows. In

Section 2 , we review literature concerning related problems. In

Section 3 , we give a rigorous problem definition, including its

complexity. In Section 4 , we describe a solution method and sev-

eral heuristics. In Section 5 , we detail the experimental setup in

which these methods are compared. In Section 6 , we present the
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 

emergency response and non-emergency jobs, European Journal of Ope
esults of computational experiments with some observations. In

ection 7 , we present our conclusions. 

. Related literature 

Vast literature exists on solving and approximating P-MED, go-

ng back at least as early as the work of ReVelle and Swain (1970) .

askin and Maass (2015) have provided a recent overview of

olution methods, construction and improvement algorithms and

etaheuristics for P-MED. Among these, they provide a mixed-

nteger linear program. They remark that the variables describing

edian selection must be binary, but that the variables describ-

ng the assignment of nodes to medians may be left continuous.

e will exploit a similar result in Section 4.1 . If the distance ma-

rix satisfies the triangle inequality, P-MED can be approximated

o within a factor of 6 2 3 due to an LP-rounding result by Charikar,

uha, Tardos, and Shmoys (2002) . This approximation factor has

ince been improved by Arya et al. Arya et al. (2004) using a lo-

al search method with swaps. They approximate P-MED to a fac-

or 3 + 2 /k, where k is the number of swaps allowed to be made

imultaneously. 

Laporte reviewed a number of exact and approximate algo-

ithms for DVRP ( Laporte, 1992 ). Almoustafa, Hanafi, and Mlade-

ovi ́c (2013) solved large instances of the variant with asym-

etric travel costs using a modified branch-and-bound proce-

ure with random tie-breaking. If we wish to minimise the num-

er of vehicles needed rather than the travel costs, Nagarajan

nd Ravi (2012) provide a 2-approximation on tree metrics and

n (O( log 1 ε ) , 1 + ε) -bicriteria approximation algorithm on general

etrics. 

Broader surveys of VRP variants were done by Eksioglu, Vu-

al, and Reisman (2009) , Toth and Vigo (2014) and Joubert (2007) .

n particular, in the Dynamic Vehicle Routing Problem ( Pillac,

endreau, Guéret, & Medaglia, 2013 ), the customers to be visited

ay appear during execution of the routes, and the decision maker

s tasked with making a route over the known customers and to

djust them whenever new customers appear. This is similar, in

ome sense, to emergencies occurring and requiring a reschedul-

ng. A key difference is that new Dynamic VRP customers can be

ncorporated into existing routes at any point, whereas emergen-

ies demand immediate response. The inherent uncertainty in Dy-

amic VRP is dealt with in several ways, including Multiple Sce-

ario Approaches ( Pillac, Guéret, & Medaglia, 2012 ), a-priori routes

 van Ee & Sitters, 2014; Zhang, Ohlmann, & Thomas, 2014 ), rolling

orizon approaches ( Jaillet, Bard, Huang, & Dror, 2002; Palma-

ehnke et al., 2013 ) and rollout policies ( Goodson, Ohlmann, &

homas, 2013 ). 

Ichoua, Gendreau, and Potvin (20 0 0) use Tabu Search to min-

mise a weighted sum of travelled distance and lateness to both

nown and dynamically revealed jobs. One could adapt this to the

roblem at hand by seeing the revealed jobs as ’emergencies’, and

ssigning zero weight to travelled distance and lateness to known

obs. However, their model would then prescribe that any feasi-

le solution is optimal, as long as it responds to revealed jobs as

uickly as possible. 

Our research also considers situations where agents must be

outed over jobs, but their start and end locations are not the

ame, despite this being a typical assumption in VRP variants.

herefore, our research makes use of the (s,t)-path Travelling Sales-

an Problem (path-TSP) ( Hoogeveen, 1991 ). In path-TSP, we again

bserve a finite node set with a symmetric distance matrix. One

ode is called the ‘start node’ s ; one other node is called the

end node’ t . Path-TSP is the problem of finding the shortest path

hat starts at s , ends at t , and visits each node exactly once. It

an be solved by means of the mixed-integer linear program in

ppendix C , or approximated by the method of Zenklusen (2019) . 
et al., The median routing problem for simultaneous planning of 
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Table 1 

Notation for the median routing problem. 

Set Description 

A The set of agents 

J The set of jobs 

V The set of nodes 

T The set of time-steps, T = { 0 , 1 , . . . , T } 
V P The set of nodes where incidents may occur 

( V P ⊆ V) 

V v The neighbourhood of v ∈ V
Parameter Domain Description 

S a V The start location of agent a ∈ A 

E a V The end location of agent a ∈ A 

L j V The node where job j ∈ J is located 

Q j Z ≥0 The number of time-steps job j ∈ J takes 

P v (0,1] The probability that the next emergency 

happens at node v ∈ V P 
C u v Q ≥0 The undiscretised emergency response time 

from u ∈ V to v ∈ V P 
G v Z 2 The coordinates of node v ∈ V
Variable Domain Description 

x a v t {0, 1} Whether or not agent a ∈ A is at v ∈ V at time 

t ∈ T 
y u v t {0, 1} Whether or not a potential emergency at 

v ∈ V P , time t ∈ T will be responded to 

from u ∈ V
z ajt {0, 1} Whether or not agent a ∈ A starts job j ∈ J at 

time t ∈ T 
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The problem at hand bears a strong resemblance to the k -Server

roblem ( Koutsoupias, 2009 ). In the k -Server Problem, requests ap-

ear dynamically in a metric space, and whenever this happens,

 decision-maker must immediately decide which of k servers to

end towards the request and how to reposition the rest. The goal

s to minimise the total amount of distance travelled. Typically,

robabilities for where requests may appear are not known, and

esearchers have focused on finding algorithms with small com-

etitive ratio against someone who knows completely when and

here the requests will appear. 

Farahani and Hekmatfar (2009) describe a number of dif-

erent facility location problems and concepts. In the Dynamic

 -Median problems reviewed by Owen and Daskin (1998) , loca-

ions may close and reopen in different time periods to satisfy

eriod-dependent demands. In the Capacitated Mobile Facility Lo-

ation Problem ( Raghavan, Sahin, & Salman, 2019 ), initial facility

ocations have already been chosen, but one may relocate facili-

ies against distance-dependent costs. The goal is to minimise a

eighted sum of these facility relocation costs and the subsequent

ost to serve all clients. The Location-Routing Problem, reviewed

lso by Drexl and Schneider (2015) , is concerned with simultane-

usly deciding delivery routes and the facility locations from which

hey spring: the goal is to minimise the distance travelled between

obs. 

Bertsimas and Van Ryzin (1993) study a dynamic Travelling Re-

airman Problem, where multiple agents may move freely over the

uclidean plane and must respond to dynamically revealed service

equests as soon as possible. They describe policies with costs that

re provably within a constant factor of the optimal policy costs. 

For ambulances, the combined planning of emergency response

nd non-emergency patient transportation has received some at-

ention. Kergosien, Gendreau, Ruiz, and Soriano (2014) study when

nd from which hospital to temporarily expend emergency am-

ulances on non-emergency transportation, as do van den Berg

nd Van Essen (2019) . They seek to minimise the temporary loss

n emergency response coverage when performing non-emergency

ransportation. In contrast, Kiechle et al. (2009) study a problem

here emergencies are responded to by the nearest empty am-

ulance, including the ones performing non-emergency transporta-

ion. Their analysis is mostly focused on comparing whether it is

etter to arrive at the next job as early as possible or as late as

ossible. 

In other fields, research has been done into combined

aintenance-routing, which studies how to jointly determine

hen to perform maintenance and how to route between mainte-

ance jobs. The maintenance schedule affects the routes, but the

outes may also affect the maintenance schedule, depending on

he piece of research. Most of the maintenance-routing literature in

ir transportation ( Ba ̧s dere & Bilge, 2014; Gopalan & Talluri, 1998;

aouari, Shao, & Sherali, 2012; Sarac, Batta, & Rump, 2006; Talluri,

998 ) and train transportation ( Maróti & Kroon, 2005; Penicka,

trupchanska, & Bjørner, 2003 ) seems to focus on how to execute

 required transportation schedule with a set of vehicles, while

nsuring that these vehicles are routed over maintenance stations

egularly. Cohn and Barnhart (2003) include the subsequent crew

cheduling into the optimisation as well. 

López-Santana, Akhavan-Tabatabaei, Dieulle, Labadie, and 

edaglia (2016) study a combined maintenance-routing problem

n the oil and gas industry where the goal is to determine the

xpected optimal times and frequencies at which to perform

aintenance, balancing the fixed cost of performing maintenance

gainst the expected cost incurred when a machine breaks down

nd remains unrepaired until its next maintenance moment.

side from determining the optimal times and frequencies in

 maintenance planning phase (by optimising over continuous,

on-linear functions numerically), they also try to fit feasible
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 

emergency response and non-emergency jobs, European Journal of Ope
epairmen routes on this (using mixed-integer linear programming

n a space-time network) in a routing phase, and iterate between

he two until some stopping criterion is reached. Fontecha et al.

2020) improve upon this work in two notable ways. Firstly, they

xpand the model to allow for re-planning after breakdowns. Sec-

ndly, they replace the computation method with a more scalable

ersion: that is, they remove the need to iterate between the two

hases and they replace the mixed-integer linear program by a

atheuristic. They then apply this to case studies in a large-scale

ewage cleaning application. Irawan, Ouelhadj, Jones, Stålhane,

nd Sperstad (2017) study a maintenance-routing problem for off-

hore wind farms, that more closely resembles a Vehicle Routing

roblem with Pick-up and Delivery. Inspired by this similarity,

hey solve it using a Dantzig-Wolfe decomposition method. 

Some work has been done in coordinating several unmanned

ehicles to provide joint ’coverage’ over a region ( Agarwal, Hiot,

oo, & Nghia, 2007; Doitsidis et al., 2012; Shu, Wang, Lin, Liu, &

hou, 2013; Wang & Hussein, 2007 ). They focus on mapping out

he entire area once with mobile camera’s, rather than providing

emergency coverage’ whilst performing jobs in the region. 

We conclude that many similar problems have been studied,

ut that each differs fundamentally from the problem at hand, and

hat a new model is required. 

. Problem definition 

In this section, we formally introduce MRP as a mathematical

ptimisation problem. For an example instance that explains the

ntuitive ideas, we refer the reader to Appendix A . We also de-

cribe the problem by means of a mixed-integer linear program

n Section 4.1 . In order to give a formal definition of the MRP, we

mploy the notation listed in Table 1 . 

In MRP, we observe a connected, undirected graph with node

et V . The neighbourhood of v ∈ V is denoted V v ⊆ V . We demand

hat each node is in its own neighbourhood. Each node v has

nown coordinates G v ∈ Z 

2 . We discretise time into a finite time

orizon T = { 0 , 1 , . . . , T } . 
There is a set of agents A that can move over the network. That

s: if agent a is at node u at time t � = T , it can only be at v ∈ V
et al., The median routing problem for simultaneous planning of 

rational Research, https://doi.org/10.1016/j.ejor.2020.02.002 
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at time t + 1 if v ∈ V u . At time 0, each agent a is at some start

location S a ∈ V . At time T , each agent must be at a specific end

location E a ∈ V . 

There also exists a set of jobs J , distributed over the graph.

Each job j ∈ J has a location L j ∈ V and a processing time Q j ∈
Z ≥0 . Each job must be processed and the jobs must be processed

non-preemptively to succeed: that is, whenever an agent starts

processing a job, that agent must stay at that location to process

the job for its full duration, unless an emergency occurs. If a job

is aborted halfway due to an emergency, the job fails and must be

processed entirely anew. 

Note that we allow for distinct jobs to be at the same node:

for example, the depot may host several equipment maintenance

and administrative jobs. Though we could combine all jobs at a

given location into one superjob, there exist instances where do-

ing so destroys feasibility. The only exception we make is that if a

job has length 0 and there is another job at the same location, we

will merge them into one. An alternative could be to place each

job on its own virtual node, but we believe having to distinguish

between real and virtual nodes that describe the same location is

less elegant than simply allowing one node to host multiple jobs. 

Finally, emergencies may occur in any node v ∈ V P ⊆ V . An

emergency may occur at any time-step t ∈ T against a time-

independent probability. The probability that the next emergency

occurs in v ∈ V P is P v > 0 , with 

∑ 

v ∈V P P v = 1 . If an emergency at

v ∈ V P is responded to from an agent at u ∈ V, the emergency re-

sponse time is C u v ∈ Q ≥0 . This distance matrix C does not need

to be symmetric, and the methods presented in Section 4 do not

require C to be symmetric, though the benchmark instances dis-

cussed in Section 5 do all have a symmetric C . Note that, outside

of emergency logistics, P v can be more broadly interpreted as node

weights, and C u v can be more broadly interpreted as service costs. 

A feasible solution of MRP must tell the agents where to be at

each time-step and which jobs to start processing when, respecting

the above constraints. Moreover, for each v ∈ V P and each t ∈ T , a
node u ∈ V must be appointed to ‘cover’ v in case of an emergency;

in any optimal solution, u is always the node with lowest response

time C u v that has at least one agent present at time t . We encode

any solution to MRP with binary variables x a v t indicating whether

agent a ∈ A is at node v ∈ V at time t ∈ T , binary variables y u v t in-

dicating whether v ∈ V P is covered from u ∈ V at time t ∈ T , and

binary variables z ajt indicating whether agent a ∈ A starts process-

ing job j ∈ J at time t ∈ T . 
Using this notation, we remark that if exactly one emer-

gency occurs at some time t and node v ∈ V P , the response time

equals C u ∗v for some u ∗ ∈ V, which has y u ∗v t = 1 , while the other

u ∈ V have y u v t = 0 . In other words, the response time equals∑ 

u ∈V C u v y u v t . If indeed an emergency happens at time t , it happens

at node v ∈ V P with probability P v , meaning the overall expected

response time to an emergency at time t equals 

∑ 

v ∈V P 
P v 

(∑ 

u ∈V 
C u v y u v t 

)

In MRP, the goal is to find a feasible ( x , y , z ) with minimal∑ 

t∈T 
∑ 

v ∈V P P v ( 
∑ 

u ∈V C u v y u v t ) , where by the above discussion, the

summed expression equals the expected response time to an emer-

gency if exactly one emergency happens at time t ∈ T and none

have happened earlier. Summing this expression over T and divid-

ing by |T | yields the expected response time to the next emer-

gency, given that at most one emergency can happen per time-

step. Note that dividing by |T | makes no difference to the optimal

solution, and we leave out the scalar 1 / |T | for legibility. Therefore,

the objective in MRP is to minimise the expected response time

to the next emergency, under the condition that all jobs are pro-
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 
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essed and that all agents are at their end location at the end of

he time horizon. 

Two non-trivial modelling choices have been made here. 

emark 1. Discretising space-time allows us to use linear optimi-

ation on an approximation of continuous movement. Furthermore,

t facilitates legible day plans as output, and we can always re-

uce the lost accuracy to acceptable levels by discretising more

nely, at the cost of more computational effort. One may interpret

his discretisation as having agents move around over the set of

otential facility locations in an instance of P-MED. Though one

ould also take the DVRP perspective of directing agents over jobs,

ather than over discretised nodes, we believe this would create

oo much inaccuracy in expected response times when agents tra-

erse long roads from one job to another. As a consequence of a

iscrete space-time model, it is possible for agents to choose non-

hortest roads between jobs if these give better response times,

nd to roam the network freely for the sake of coverage in their re-

aining time: these things would also not be possible when sim-

ly routing over jobs. 

emark 2. MRP seeks to minimise the expected response time to

he next emergency, but in no way captures the actual processing

f emergency events. Instead, when an emergency actually occurs

nd agents are deployed, it is advised to make a new planning for

he rest of the shift and the remaining jobs by observing a new

RP instance, in which the remaining agents have their current

ocation as their start location. In this model, we thus only pre-

are for the next emergency with optimal expected response time

nd re-optimise whenever it actually occurs. This ‘single coverage’-

pproach is in a sense similar to a rolling horizon approach, where

e keep the uncertainty tractable by only looking so far ahead,

xcept we look towards the next emergency rather than towards

ome rolling horizon. 

.1. Complexity 

We discuss two complexity results in this section that guide the

esign of our solution approaches. Firstly, we remark that MRP on

 complete graph without jobs is equivalent to P-MED, implying

hat MRP is NP-hard. In practice, one could view MRP as much

arder than P-MED, because it involves solving (T − 1) instances

f P-MED, where the decision in any one instance influences the

ecision space of all other instances. 

More importantly, we have the following stronger complexity

esult. 

heorem 1. Deciding whether an instance of MRP admits a feasible

olution is NP-complete in general, even for the case with one agent. 

roof. First, note that the problem of deciding whether a feasible

olution exists for an MRP instance is in NP, because any feasible

olution can be stored and checked in polynomial time and size

ith respect to the input. Next, take any instance of the Hamilto-

ian Path problem: that is, observe some connected graph with N

odes, some start node S and some end node E ; without loss of

enerality, assume S � = E . It is NP-complete to decide whether this

raph admits a Hamiltonian ( S , E )-path ( Garey & Johnson, 1979 ):

hat is, an ( S , E )-path that visits all nodes exactly once. Transform

his into an instance of MRP by observing the same graph, placing

 job of length 0 on each node, setting T = N and having |A| = 1

gent start at S and end at E . Because T = N = |V| , the only way

he agent can reach node E at time T and process all jobs is if the

gent visits all nodes at least once and never twice. Therefore, ev-

ry feasible solution of this MRP instance corresponds to a Hamil-

onian Path, meaning it is NP-complete to decide whether this MRP

nstance admits a feasible solution. �
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orollary 1. Unless P = NP, there exists no polynomial-time algorithm

hat is guaranteed to return a feasible solution if one exists. In partic-

lar, no polynomial-time approximation algorithms exist for MRP. 

These results validate the following design choices: that heuris-

ics are needed for MRP, and that these heuristics must contain

P-hard problems themselves if they are to always return a feasi-

le solution. 

. Methods 

In this section, we describe a solution method and several

euristics for MRP. 

.1. Mixed-integer linear programming 

In the notation already presented, the MRP can be formulated

s the following mixed-integer linear program (MIP): 

in 

∑ 

t∈T 
∑ 

v ∈V P P v 
∑ 

u ∈V C u v y u v t 
s.t. x aS a 0 = 1 (∀ a ∈ A ) (1) 

 aE a T = 1 (∀ a ∈ A ) (2)

 

v ∈V 
x a v t = 1 (∀ a ∈ A )(∀ t ∈ T ) (3) 

 a v (t+1) ≤
∑ 

u ∈V v 
x aut (∀ a ∈ A )(∀ v ∈ V)(t = 0 , . . . , T − 1) (4) 

 

u ∈V 
y u v t = 1 (∀ v ∈ V P )(∀ t ∈ T ) (5) 

 u v t ≤
∑ 

a ∈A 
x aut (∀ u ∈ V)(∀ v ∈ V P )(∀ t ∈ T ) (6) 

 

 ∈A 

∑ 

t∈T 
z a jt = 1 (∀ j ∈ J ) (7) 

+ Q j ∑ 

τ= t 
x aL j τ ≥ (Q j + 1) z a jt (∀ a ∈ A )(∀ j ∈ J )(∀ t ∈ T ) (8) 

 a jt + 

t+ Q j −1 ∑ 

τ= t 
z akτ ≤ 1 (∀ j, k ∈ J : j � = k, L j = L k )(∀ a ∈ A )(∀ t ∈ T ) (9) 

 a v t , z a jt ∈ { 0 , 1 } , y u v t ∈ [0 , 1] 

Here, the objective equals the expected response time to the

ext emergency (up to a scalar |T | , as explained in Section 3 ). 

Constraints (1) state that all agents must start at their start

ocation, and (2) that they must end at their end location. Con-

traints (3) state that an agent can only be in one place at a time. 

Constraints (4) state that an agent can only be at node v at time

 + 1 if he or she was at some adjacent node u at time t , where the

djacency is indicated by whether or not u ∈ V v . 
Constraints (5) state that each emergency node, at each time-

tep, must receive coverage from somewhere. Constraints (6) add,

owever, that coverage at time t can only be given from some node

 ∈ V if there is someone actually present at node u at time t . 

Constraints (7) state that each job must be initiated by some-

ne at some point in time. Constraints (8) add that when an agent

tarts a job j , that agent must stay at location L j for the duration of

he job. The formulation also ensures that the job is started early

nough to be finished before the end of the time horizon. For jobs

hat are in different places, this implies that they cannot be pro-

essed at the same time by the same agent. 
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Recall, however, that we allow for multiple jobs to be hosted at

he same node. Suppose some pair of jobs j � = k exists at the same

ocation L j = L k . Constraints (8) do not forbid one agent to process

hem simultaneously. We thus need constraints (9) to address this

ringe case. Suppose some agent a wishes to process j at some time

 . The constraint 

 a jt + 

t+ Q j −1 ∑ 

τ= t 
z akτ ≤ 1 

hen states that a cannot also start processing k at any time be-

ween t and t + Q j − 1 : k can only be processed after j is done

r before j is started. If k is started very briefly before t , say at

 

′ := t − 1 , then the constraint 

 akt ′ + 

t ′ + Q k −1 ∑ 

τ= t ′ 
z a jτ ≤ 1 

nsures that j is not started at t anymore. Due to this symmetry,

onstraints (9) ensure that if two jobs are at the same location, an

gent cannot process them simultaneously. 

Though the variables x a v t and z ajt are explicitly constrained to

e binary, this is not necessary for the variables y u v t . The reason is

s follows. Any feasible solution has x binary. Therefore, any opti-

al solution obviously has y u v t = 1 for the closest u ∈ V to a given

 ∈ V that has someone present at t ∈ T . If several nodes are tied

or closest, then dividing the coverage fractionally over these nodes

ould still give a feasible solution with optimal solution value, but

reaking the tie arbitrarily would result in a feasible solution with

trictly less basic variables, meaning the original fractional solution

annot be a vertex of the solution polytope. We conclude that the

ariables y u v t can be formulated as continuous between 0 and 1

ithout fear of non-integral optimal solutions. This is fortunate, as

he variables y u v t comprise the vast majority of the variables. On

 random sample of benchmark instances (which are further de-

cribed in Section 5 ), this indeed yields an average reduction of

9.1% in computation time. 

Though simply plugging this mixed-integer linear program into

 Mixed-integer linear programming solver (MIP solver) will eventu-

lly yield the optimal solution, this approach can come with long

nd unpredictable computation times as the instance size grows.

his is indeed observed in Section 6 for the more difficult instance

lasses. 

.2. WAIT-AT-MEDIANS -heuristic 

In practical applications, solving the MIP proposed in

ection 4.1 may take excessively long. As an alternative, we discuss

ome heuristics here, starting with the following simple one. 

If there is a large gap of time in which agents do not process

obs, for example when the instance has almost no jobs at all, then

he optimal place for the agents to be is at those places given by

he solution of P-MED. It may sometimes be costly or infeasible to

each those places within the time window. If the amount of re-

aining time goes to infinity, however, it will be feasible to reach

hat steady state, and any costs incurred while getting there are

utweighed by the saved cost of being optimally distributed over

 long period of time. 

One heuristic strategy could be to identify these medians, and

pend as much time as possible at these medians. This, indeed,

s proposed by the WAIT-AT-MEDIANS -heuristic ( WAM ), described

y Algorithm 1 and illustrated in Fig. 1 . WAM requires solving

-MED and a special variant of DVRP, which are NP-hard prob-

ems in their own right; these subroutines themselves may be

pproached with heuristics, though the results in Section 6 sug-

est that the subroutines are easy enough to solve to optimality

or the studied benchmark instances. Note that, in practice, step
et al., The median routing problem for simultaneous planning of 
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Algorithm 1 WAIT-AT-MEDIANS , high-level overview 

1: Solve induced P-MED, with p = |A| 
2: Obtain shortest paths between jobs, medians, starts and ends 

3: Solve DVRP with one median per route and agent-specific 

start/end locations 

4: Infer x , y and z , with waiting done only at medians 

Fig. 1. The idea behind the WAIT-AT-MEDIANS -heuristic, applied to the example 

in Fig. A.3 . First, solve P-MED, which results in identifying the large red triangles as 

the best places from which to offer emergency response. Then, solve a variant of 

DVRP to minimise the total time spent travelling, so as to maximise the total time 

spent waiting at the medians. The sequences thus obtained are shown here; they 

must still be translated back to a feasible solution in the discretised setting, but this 

can be done with ease. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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1 and part of step 2 can be done as preprocessing, assuming the

network is known beforehand but the daily tasks are not. Though

step 2 seems trivial, we remark that computing a distance matrix

is not necessary for the MIP in Section 4.1 , and we include this

step in the description of WAM for the sake of fair computational

comparison. 

More in-depth, WAM consists of the following: 

1. Solve induced P-MED, with p = |A| . This can be done by

solving the MIP formulated by Charikar et al. (2002) , where

the distances are given by C u v and the nodes have weight

P v if they are in V P and 0 otherwise. Denote the obtained

medians M ⊆ V . 

2. Obtain shortest paths between jobs, medians, starts and

ends. This can be done in polynomial time using Dijkstra’s

algorithm ( Dijkstra, 1959 ) or the Floyd-Warshall algorithm

( Cormen, Leiserson, Rivest, & Stein, 2009 ). Denote D i j = D ji 

the minimum number of steps needed to get from any job,

median or start location i to any job, median or end loca-

tion j . 

3. Solve DVRP with one median per route and agent-specific

start/end locations. This can be done by solving the MIP in

Appendix B . The result is a sequence for each a ∈ A , start-

ing at S a and ending at E a , such that the sequences together

visit all jobs, each median is visited by exactly one agent,

each sequence admits a feasible execution with respect to

the finite time horizon, and the total time spent travelling is

minimised. This allows us to spend as much time as possible

on waiting at medians. Note that, if there is enough time to

visit all jobs but not enough time to also visit all medians,

this subroutine fails. 

4. Infer x , y and z , with waiting done only at medians. The

sequences from the previous step can be translated to a

feasible MRP solution easily. For each agent, observe the

sequence from step 3, and demand that movement between

any two goals follows the shortest path from step 2. If this

requires strictly less time than T , allocate all remaining time
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 
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to waiting at the median. This directly implies the values of

x a v t and z ajt . After thus fixing x and z completely, set y u v t 
as follows: for any v ∈ V, t ∈ T , find the closest u ∈ V with

respect to C u v which has someone present, so which has∑ 

a ∈A x aut > 0 , then set y u v t = 1 . 

Though this heuristic seems intuitive, it comes with some im-

ediately apparent downsides: 

• It does not explicitly take coverage into account while rout-

ing over jobs, aside from creating as much median-waiting

time as possible. 
• It does not explicitly take coverage into account when trans-

lating routes back to the discrete network; it instead follows

arbitrary shortest paths. 
• Agents do not take into account where the other agents are.
• There exist feasible MRP instances where this heuristic does

not produce a feasible solution, namely when there is not

enough time to actually visit all medians. 

.3. MEDIATE-DIVIDE-SEQUENCE-AGREE -heuristic 

Observing the shortcomings of WAM , a heuristic is presented

ere which attempts to overcome the shortcomings. It will be re-

erred to as MEDIATE-DIVIDE-SEQUENCE-AGREE ( MDSA ) and is

resented as Algorithm 2 and illustrated in Fig. 2 . 

lgorithm 2 MEDIATE-DIVIDE-SEQUENCE-AGREE , high-level

verview 

1: Solve induced P-MED with p = |A| , obtain coverage regions

( MEDIATE ) 
2: Obtain shortest paths between jobs, medians, starts and ends 

3: Assign medians optimally to nearest agents 

4: Solve ‘job division’ ( DIVIDE ) 
5: For each agent, solve path-TSP, take clockwise solution

( SEQUENCE ) 
6: For each agent, given the sequence and region, find cheapest

space-time path 

7: Forget medians, refine to time-dependent regions ( AGREE ) 
8: For each agent, given the sequence and time-dependent region,

find cheapest space-time path 

9: Infer x , y and z 

In more detail, MDSA consists of the following steps: 

1. Solve induced P-MED with p = |A| , obtain coverage re-

gions ( MEDIATE ). This step is identical to the one in WAM ,
resulting in a set M of medians. For any m ∈ M , denote cov-

erage region V m 

⊆ V P the nodes for which m is the nearest

median, breaking ties arbitrarily. 

2. Obtain shortest paths between jobs, medians, starts and

ends. This step is again identical to the one in WAM . Denote

again D i j = D ji the minimum number of steps needed to get

from any job, median or start location i to any job, median

or end location j . 

3. Assign medians optimally to nearest agents. If all agents

start and end at one location, like a classical depot, then me-

dians can be assigned arbitrarily to agents. Otherwise, each

median m has an average distance (D S a m 

+ D mE a ) / 2 to the

start and end point of a given agent a ∈ A , and we can find

the optimal assignment of medians to agents in polynomial

time using the Hungarian algorithm ( Kuhn, 1955 ). Denote by

m ( a ) the median assigned to a , and abbreviate V a = V m (a ) . 

4. Solve ‘job division’ ( DIVIDE ). In this step, each job is as-

signed to its nearest median and the corresponding agent,

as well as possible. That is, for any a ∈ A , j ∈ J , denote the

proxy cost of assigning j to a as F a j = (Q j + 1) · ∑ 

v ∈V a P v C L j v ;
et al., The median routing problem for simultaneous planning of 
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Fig. 2. An illustration of the MEDIATE-DIVIDE-SEQUENCE-AGREE -heuristic. 
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this quantity represents the cost incurred as a processes j ,

under the assumption that the nodes covered by a are al-

ways exactly V a . Blindly assigning jobs to their nearest me-

dian may result in an agent getting more jobs than feasi-

bly executable. Instead, we find the feasible division of jobs

over agents with minimal sum F aj as follows: we again solve

the MIP in Appendix B , except that we treat M as being

empty, and we replace the objective with 

∑ 

a ∈A 
∑ 

j∈J F a j z 
′ 
a j 

.

Note that, in contrast to WAM , this subroutine does not fail

when there is not enough time to visit all medians. Denote

J a ⊆ J the jobs assigned to agent a ∈ A . 

5. For each agent, solve path-TSP, take clockwise solution

( SEQUENCE ). Each agent a ∈ A now has a set of jobs J a as-

signed to him or her. In this step, we decide in which se-

quence these jobs are visited. We do so by solving the ( S a ,

E a )-path Travelling Salesman Problem over J a , as described

in Appendix C , for each a ∈ A . 

If S a = E a , then the found sequence in reverse is also opti-

mal. Of these two optimal sequences, we choose the clock-

wise one, which we define as follows. Denote ( X s , Y s ) the

2D-coordinates of S a . For any j ∈ J a , denote ( X j , Y j ) the 2D-

coordinates of the job location L j , and define the angle of j as

atan2 (Y j − Y s , X j − X s ) , where atan2( y , x ) is a commonly used

function to compute the geometric angle between the vec-

tor ( x , y ) and the vector (1,0) ( De Dinechin & Istoan, 2015 ).

When i is followed up by j , we define this move to be clock-

wise if i has a greater angle than j . Of the two optimal se-

quences, we choose the one that has the largest number of

clockwise moves. 

6. For each agent, given the region and sequence, find

cheapest space-time path. If an agent a ∈ A is assumed

to give coverage to a specific set of nodes V a , then each

u ∈ V has a cost of a being there for one time-step, namely,∑ 

v ∈V a P v C u v . Based on these node costs, we compute for each

a ∈ A the cheapest path starting at the space-time point

( S a , 0) and ending at the space-time point ( E a , T ), such

that the jobs J a are visited in the predetermined sequence.
 r  
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This can be done using a dynamic program, Algorithm 3 in

Appendix D , which is essentially a modification of Dijkstra’s

algorithm ( Dijkstra, 1959 ). This results in temporary values

˜ x a v t describing the movement of the agents as they visit 

the jobs, while trying to keep optimal coverage over V a . In

particular, if J a = ∅ for some a ∈ A and T is large enough,

then this step results in a moving to median m ( a ) and stay-

ing until it is time to go to end point E a . 

7. Forget medians, refine to time-dependent regions 

( AGREE ). Up until this point, we assumed that a ∈ A
would always cover a fixed area V a , so that a starting

solution ˜ x a v t could be constructed. In this step, we define

more finely tuned, time-dependent coverage regions V at , by

observing for each v ∈ V P and t ∈ T which a ∈ A is ‘nearest’;

that is, which a ∈ A has minimal C u v , where u is the location

of a at time t according to the movement ˜ x . This leads to

the sets V at , which at each time-step partition V P over the

nearest agents. 

8. For each agent, given the sequence and time-dependent

region, find cheapest space-time path. We repeat step 6,

but with the node cost of a ∈ A being at u ∈ V at time t ∈ T 
equal to 

∑ 

v ∈V at 
P v C u v , rather than 

∑ 

v ∈V a P v C u v . This results in

final movement values x a v t . 

9. Infer x , y and z. The previous step has produced final val-

ues for movement x a v t . The corresponding values for z ajt can

be easily inferred from Algorithm 3 . The values for y u v t can

again be determined by checking for each v ∈ V P and t ∈ T 
which u ∈ V with someone present has lowest C u v . 

The intuition of MDSA is less transparent from the algorithm. It

s illustrated in Fig. 2 and described here. 

As in WAM , we observe that as T → ∞ , it is optimal to have the

gents spend their remaining time at the medians. Therefore, in

tep 1, we determine where the medians are. In step 2, we ob-

ain the distances between the points of interest. In step 3, we use

his to assign the |A| medians to their most suitable agent, with

espect to start and end locations S a and E a . For the majority of
et al., The median routing problem for simultaneous planning of 

rational Research, https://doi.org/10.1016/j.ejor.2020.02.002 

https://doi.org/10.1016/j.ejor.2020.02.002


8 D. Huizing, G. Schäfer and R.D. van der Mei et al. / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; February 25, 2020;16:38 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

a  

t  

o  

D  

S  

t

 

 

 

 

 

 

 

 

 

 

 

j  

s  

b  

p  

q  

m  

t

5

 

h  

i  

l  

t  

o  

b  

n  

m  

e

 

a

5

 

s

 

w  

s  

n  

d  

f  

p  

T

 

i  

a  

c  

c  

e  
the algorithm, this not only assigns each agent a median, but also

the region covered by that median: all agents now have a region

V a ⊆ V P that they are ‘responsible’ for. 

In step 4, each job is assigned to its nearest median and han-

dled by that median’s agent if possible, so that all agents can try

and stay in ‘their’ region; if this leads to too many jobs for one

agent, the MIP in step 4 instead tries to divide jobs such that

agents can stay as close to ‘their’ region as possible. 

As soon as jobs are divided over the agents, each agent then

determines in step 5 in which sequence the jobs will be visited.

This is done by solving path-TSP, following again the logic that any

time-step saved can be used to improve coverage. We synchronise

all agents to move ‘clockwise’ if possible, so that whenever one

agent moves away from a node, another will hopefully already be

approaching to take over coverage. 

In this discretised setting, there may exist many shortest paths

between any two nodes. By taking the cheapest space-time path

in step 6 with respect to coverage over V a , the ties between these

shortest paths are broken sensibly rather than arbitrarily. In fact,

this also allows non-shortest paths with better coverage to be cho-

sen. Moreover, following the cheapest coverage paths is a more

robust way of ‘visiting the medians’, rather than explicitly demand-

ing they be visited: if there is not enough time, the cheapest cov-

erage path will likely only approach the median the best it can. 

However, assuming that some a ∈ A will always be the most

appropriate agent to cover every node in V a , is a somewhat crude

assumption. As agents visit jobs in a clockwise fashion, it may well

be that nodes have one agent closest at one point and another at

another point. Now that an initial movement profile ˜ x has been

created, this can be used to determine time-dependent coverage

regions in step 7 that are more fine and realistic than the cov-

erage regions based on the medians. Finding the cheapest space-

time paths based on these finer regions in step 8 produces a fi-

nal movement profile in which agents actually observe where the

other agents are at a given time, albeit that they look at ˜ x and

hope that the other agents do not deviate too much from 

˜ x . 

We remark that, if the MRP instance admits a feasible solution,

then MDSA finds a feasible solution as well. The argument is as

follows. If a feasible solution exists, then the MIP in step 4 will

succeed in finding a feasible way to divide jobs over agents. By

construction of step 4, every instance of path-TSP in step 5 admits

a feasible solution, which will be found by the MIP. By the feasi-

bility of step 5, the dynamic programs in the remaining steps will

terminate successfully. 

This guaranteed feasibility is one of the ways in which MDSA
improves over WAM . Furthermore, MDSA prioritises coverage over

travel time when dividing jobs, it breaks ties between fastest (and

even non-fastest) paths by taking the cheapest ones with respect

to a coverage profile, and it allows agents to respond to what the

other agents have done in the final steps. 

We acknowledge that this heuristic involves solving some NP-

hard problems, as well as pseudo-polynomial dynamic programs

with a running time that depends on T . However, we observe in

Section 6 that MDSA needs mere seconds to run for the studied

instances. An explanation for this speed is that, aside from step 1,

the NP-hard subproblems involve routing over a relatively tiny set

of jobs, rather than over a network with many nodes. In fact, one

could say that the point of MDSA is that it first takes the most

restricting decisions on a very small decision space with proxy

costs, and then makes the best out of those decisions in pseudo-

polynomial time. If one still chooses to replace the complex sub-

routines by heuristics, the guaranteed feasibility may be lost. As

long as the bottleneck in studying heuristics for larger instances of

MRP lies in finding the optimal solutions to compare against, de-

veloping a fully polynomial version of MDSA is left as a point for

future research. 
c  
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.4. Partial versions of MDSA 

The MDSA -heuristic involves a number of complex steps, the

dded value of which may not be immediately clear. To investigate

his, the heuristic was modified slightly to allow switching steps

n and off. This resulted in the heuristics MDS , MDA , DSA , MD , DS ,
A and D , where for example MDA performs all steps except the

EQUENCE -step. That is to say, these seven heuristics are identical

o MDSA , except: 

• If ‘ M ’ is not in the name, the MEDIATE -step is skipped, or in

particular step 1 and step 3 are skipped. It also implies that in

step 4, a normal DVRP is solved, so simply the travelled dis-

tances are minimised; that step 5 can be skipped because of

this; and that in step 6, translation back to the discrete graph

is done by means of shortest paths, rather than paths that give

the best coverage to a predetermined region. 
• If ‘ S ’ is not in the name, the SEQUENCE -step is skipped. The se-

quences in which agents visit their jobs are then taken directly

from step 4. 
• If ‘ A ’ is not in the name, the AGREE -step is skipped. No re-

optimisation to observed coverage regions is done, or put sim-

ply, steps 7 and 8 are skipped. 

Note that the DIVIDE -step is never skipped, as the division of

obs over agents cannot be arbitrary. This procedure of skipping

teps produces heuristics that are faster and conceptually easier,

ut on average perform worse, as can be observed in Section 6 . In

articular, D simply performs the jobs and returns to the depot as

uickly as possible. We view this as a benchmark heuristic, that

odels how agents would move if they only cared about getting

heir jobs done as quickly as possible. 

. Experimental setup 

In Section 4 , we discussed a solution method and several

euristics for MRP. To compare how well these work in practice,

t would be insightful to apply them to a set of benchmark prob-

ems. Furthermore, it would be of interest to see what typical solu-

ions look like. In Section 2 , however, we concluded that the MRP

r similar problems have received little academic attention. To the

est of our knowledge, benchmark instances for this problem did

ot yet exist prior to this research. Therefore, we created bench-

ark instances from both a case study and from an instance gen-

rator and compared the methods on these. 

The code used to generate the benchmark instances is publicly

vailable, as is the code to perform the experiments. 

.1. Used instances 

We compared the methods on benchmark instances from two

ources. 

Firstly, we obtained six benchmark instances from a case study

ith a European railway infrastructure manager. These six in-

tances, denoted I R , are defined on the same piece of the railway

etwork, with emergency probabilities based on historical incident

ata. The jobs have been sampled from a database of typical jobs

or this area. The six instances differ in which jobs have been sam-

led and how many. The instances have 143 nodes, 4 agents and

 = 16 . They have 3, 4, 5, 7, 8 and 9 jobs respectively. 

Secondly, Algorithm 4 was developed to generate benchmark

nstances, in order to also study algorithmic behaviour under vari-

tion of problem features. The idea is simple: randomly draw node

oordinates on the Euclidean plane, connect them if their Eu-

lidean distance is under a given threshold, let all agents start and

nd at a central depot, scatter jobs randomly over the network and

heck if the result admits a feasible solution. Because these ideas
et al., The median routing problem for simultaneous planning of 
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Table 2 

Brief description of the benchmark instance classes used. 

Class Amount Type Size Productivity Sparseness 

I 1 50 random small productive sparse 

I 2 50 I 1 -derived small unproductive sparse 

I 3 50 I 1 -derived small productive dense 

I 4 50 I 1 -derived small unproductive dense 

I 5 50 random medium productive sparse 

I 6 50 I 5 -derived medium unproductive sparse 

I 7 50 I 5 -derived medium productive dense 

I 8 50 I 5 -derived medium unproductive dense 

I R 6 real-life ± medium both ± dense 
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c  
re simple and the created instances are publicly available, further

etails on how the benchmark instances were generated have been

oved to Appendix E . 

The classes we created are described in Table 2 . The details of

heir parameters are described in Appendix E , but their features

oughly represent the following: 

• ‘Small’ problems have 3 agents and 20 nodes, where ‘medium’

problems have 4 agents and 100 nodes; 
• ‘Productive’ problems have more than two jobs per agent,

where ‘unproductive’ problems have less than one; 
• ‘Sparse’ problems have smaller node neighbourhoods than

‘dense’ problems, meaning it will typically take more time-

steps to get from any one node to another. 

Note that the medium size problems are of a comparable size

o the real-life instances in class I R . 
In order to purely observe the differences in performance under

ariation of features, only classes I 1 and I 5 were randomly gener-

ted: the unproductive problems were created from the productive

roblems by deleting jobs, and the dense problems were created

rom the sparse problems by updating adjacency for a higher ad-

acency threshold. By construction, these operations preserve fea-

ibility of the instances. 

.2. Metrics and methods for solution structure 

For each instance and method, we computed the expected re-

ponse time and the computation time. On a selection of methods

nd a random sample of the instances, we also computed three

etrics that give more insight into the structure of solutions. 

Firstly, we compare the response time to how much it would

ave been if there had been no jobs at all. This indicates how much

response power’ we have sacrificed to do jobs. Secondly, the so-

utions from the different methods are compared by total travel

istance, measured in the total number of ‘hops’. Thirdly, mak-

ng many tiny steps back and forth to continually compensate the

ovement of others can yield a marginal cost improvement, but

ay be irritating for the agent. To measure how ‘jittery’ a solution

s, we also counted the total number of shortcuts , where a shortcut

s defined as any occurrence of an agent visiting the distinct loca-

ions u , v and w at times t , t + 1 and t + 2 respectively, while the

gent could also have gone from u to w directly. If the agent did

o to process a job of length 0 at location v , this is not counted as

 shortcut. This definition of a shortcut also accounts for an agent

oving towards a destination at an irritatingly slow pace. 

To make a more meaningful comparison of these metrics,

e applied two additional solution methods to these instances.

ptimal jobless means we delete the jobs and run the MIP:

his does not give a feasible solution, but does provide a lower

ound, and illustrates what solutions would have looked like if

e did not care about jobs. Recall that D illustrates what solu-

ions would have looked like if we did not care about coverage and

imply solved VRP. Split fleet means we cut the fleet in half,
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 
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here the larger half is only concerned with jobs, and the smaller

alf is only concerned with coverage. We apply D to the larger half

nd Optimal jobless to the smaller half, with the two halves

gnoring each other’s existence. In the case of an emergency, how-

ver, the nearest agent is still called upon, regardless of what half

hey are in. This illustrates what solutions would look like if, with

he same resources, we decided for simplicity not to coordinate

mergency response and non-urgent job processing jointly. Note

hat this method may also fail to find a feasible solution. It is also

ossible, of course, to split the fleet into portions of unequal size,

ut we believe examining this fifty-fifty split should suffice for our

oal of better understanding solution structures. 

.3. Hardware specifications 

All experiments were conducted on the Lisa Cluster, a com-

uting cluster hosted by Surfsara. Each benchmark instance was

olved on its own 16-core 2.60 GHz node with 64 GB QPI 8.00 GT/s

emory. In particular, experiments were queued until they could

et a node of their own, meaning all processing power of the node

as dedicated to the experiment, and that clock times correspond

o CPU times. Here, an ‘experiment’ means either solving a bench-

ark instance with a MIP solver, or applying all heuristics on it.

urobi 8.0.1 was used as a MIP solver, using all 16 cores. 

. Results 

The ten methods were applied to the nine classes of bench-

ark instances. The running time of these methods was recorded,

s well as how large the gap was between the produced solution

alue and the optimal solution value, as a percentage of the op-

imal solution value. The full results are presented in Tables F.5 ,

.6 and F.7 in Appendix F . A summarised version is presented in

able 3 . Table 4 presents comparisons of the other metrics. From

he results in these tables, we make several observations. 

In almost every class, MDSA is the best scoring heuristic in

oth average optimality gap and worst optimality gap. Class I 5 is

he most difficult class to solve for Gurobi, at an average of 140

inutes. Here, MDSA supplies a solution that is on average 3.5%

way from optimal in an average 4.1 seconds. Taken over all 406

nstances, Gurobi needs an average of 39 minutes to solve MRP,

hile MDSA needs 2.4 seconds to find a solution that is 3.2% away

rom optimal. It appears that simultaneously timetabling jobs and

anaging coverage is difficult, but that decomposing these deci-

ions into different decision stages makes for an effective heuristic.

Averaged over all instances, the benchmark algorithm D is

27.4% away from optimal. The average optimality gap increases as

he problem becomes denser and less productive. This is easily ex-

lained: in D , all agents go to their end point as fast as possible

nd stay there. In the benchmark instances, this end point is the

ame for all agents, meaning that near the end of the time hori-

on, everyone is in the same place, which is bad for coverage. The

ore unproductive the problem is and the denser the network, the

ooner in the time horizon this occurs. 

There is a large difference between the average optimality gap

f heuristics D and MDSA . Of this difference, examining marginal

ontributions shows that 70.0% is due to step M , 29.95% is due to

tep A and 0.05% is due to step S . For the difficult class I 5 , the

bsence of M , S and A explain 71.8%, 0.4% and 27.8% of the differ-

nce respectively. In the case study instances I R , these marginal

ontributions are on average 65.6%, −0 . 7% , and 35.1%, respectively.

The added value of step S is apparently small in the observed

nstances. Unfortunately, the average added value of S is even neg-

tive in the case study instances, though this is caused largely by

ne outlier. In particular, on a random sample of the instances, the

lockwising feature gives a strict improvement in only 13.3% of the
et al., The median routing problem for simultaneous planning of 

rational Research, https://doi.org/10.1016/j.ejor.2020.02.002 

https://doi.org/10.1016/j.ejor.2020.02.002


10 D. Huizing, G. Schäfer and R.D. van der Mei et al. / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; February 25, 2020;16:38 ] 

Table 3 

Summarised results of applying the ten solution methods on the 200 small instances, 200 medium 

instances and 6 real-life instances. 

Method Average gap (%) Average time (s) Worst gap (%) Worst time (s) 

opt 0 2334.5 0 132750.0 

WAM 11.7 56.8 140.5 4749.7 

D 127.4 0.3 520.5 6.0 

MD 4.2 1.8 45.9 7.1 

DS 127.4 0.4 520.5 6.1 

DA 53.7 0.6 281.9 7.0 

MDS 4.0 1.9 43.2 7.3 

MDA 3.4 2.3 56.6 8.3 

DSA 54.0 0.7 284.5 7.2 

MDSA 3.2 2.4 43.0 8.1 

Table 4 

Differences in solution structure when applying different methods on a sample of instances. 

Method Average Average Average Average cost Average hop 

gap to number number decrease versus increase versus 

jobless (%) of hops of shortcuts split fleet (%) split fleet (%) 

opt 11.5 20.8 1.7 28.3 69.9 

Optimal jobless 0 11.3 0 – –

D 158.0 9.8 0 -53.2 -33.0 

WAM 23.0 16.5 0.7 21.7 34.3 

MDSA 13.0 19.1 1.2 27.3 52.5 

Split fleet 69.1 13.5 0.5 0 0 
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4  
cases, and the average objective improvement is less than 0.01%.

On the studied instances, clockwising may not be worth its imple-

mentational effort. The ineffectiveness of S is understandable for

unproductive problems, where by construction agents are unlikely

to get more than one job in the first place, so there is not much

to re-sequence. In general, we expect the added value of S to in-

crease with the average number of jobs per agent. We note, more-

over, that the added value of step S is at its largest in productive,

sparse problems, which are the most difficult to solve in terms of

Gurobi time. 

The added value of step A is more immediately apparent. Com-

paring heuristic D to DA or DS to DSA indicates that in step A , tak-

ing routes that are good for coverage rather than generic shortest

routes has a significant amount of added value. However, because

step M is skipped, the coverage profiles are based on earlier move-

ment, and the earlier movement still sends everyone back to the

depot as quickly as possible, meaning that near the end of the time

horizon, only one of the agents bunched up at the depot is given

a coverage instruction in step A . Indeed, we see that the difference

between DSA and MDSA becomes larger as the problem becomes

denser and less productive, meaning agents bunch up at the depot

earlier. Therefore, the difference between MDS and MDSA is much

smaller: because of step M , agents have prioritised staying as well

positioned in a sub-region as possible over being back at the depot

as quickly as possible. 

This may well explain the large added value of step M : it gives

agents a way to use their remaining time more fruitfully than

bunching up at the depot, and this way of spending remaining

time is clearly optimal as the amount of remaining time goes to

infinity. However, this alone is not a sufficient explanation for the

success of MDSA , as WAM operates by the same logic but does not

perform as well. Firstly, it must be reiterated that WAM does not

always succeed at finding a feasible solution because it may not

always be possible to actually visit a median in the length of a

shift; in such cases, MDSA is capable of merely approaching the

median as best as it can, among other options. More importantly,

it appears that agents in WAM have less ‘restraint’ in selecting jobs;

job selection in MDSA seeks to keep agents as close as possible to
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 
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heir respective medians, where agents in WAM are encouraged to

ake on jobs anywhere if they can reduce the total amount of dis-

ance travelled this way, even if this means taking on jobs that are

loser to the median of someone else. This can create unbalanced

ituations where some agents move around a lot while others get

o jobs; the agents without jobs can cover their neighbourhood

ell, but other parts of the network can become deserted because

their’ agent is out doing jobs everywhere. This argument is sup-

orted by the fact that WAM performs worst for productive, dense

roblems, where there exists most opportunity for agents to take

n many jobs and spend time away from ‘their’ median, thus cre-

ting poorly covered parts of the network. 

We conclude that MDSA is likely a successful heuristic for two

easons: step M allows agents to spend their remaining time in

 way that is asymptotically optimal, as opposed to spending it

unched up at the depot; and dividing jobs by distance to medians

ather than by total amount of distance travelled better ensures

hat no part of the network is completely deserted for the sake of

obs, unless absolutely necessary. 

As a point for improvement, it deserves noting that while MDSA
nds solutions with near-optimal values, it only succeeds in find-

ng a completely optimal solution in 49 out of 406 instances, 22 of

hich are in the ‘easiest’ class I 4 . In fact, the partitioning of jobs

ver agents found by MDSA only corresponds with the partition-

ng in the optimal solution in 125 out of 406 instances. Further

mprovements to the heuristic may be achieved by better under-

tanding the logic by which jobs should be divided over agents. 

The success of MDSA prompted us to see if the produced so-

utions are useful for warm-starting: that is, to see if the MIP

unning time could be significantly reduced by offering a good

easible solution to start from. For the easier problem instances,

his is not the case: apparently, the overhead of running MDSA
nd feeding this solution into Gurobi is hardly worth the saved

urobi run time, which is often already in the order of a few

econds. For the difficult classes I 5 , I 7 and I R , however, the av-

rage computation time reduction is quite significant. The aver-

ge computation time in I 5 goes down from 8739.1 seconds to

 94 9.7 seconds, which is a reduction of 43.4%. I 7 drops 81.8% from
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390.3 seconds to 1523.1 seconds, and I R drops 18.7% from 1202.7

econds to 977.5 seconds. These average savings are largely in-

urred by the hardest instances suddenly being much easier to

olve. There exist instances, however, where warm-starting in-

reases the total run time by more than twenty minutes, and

t is hard to predict whether warm-starting will be helpful for

ny given instance. This could be dealt with by solving instances

n parallel, where one thread uses a warm start and the other

oes not, and terminating when either finish. On average, though,

arm-starting seems very useful for difficult instance classes. 

Looking at Table 4 , we can see that the solutions produced by

he different methods have structural differences. Com paring the

ops between D and opt , we could observe that ‘caring about cov-

rage’ more than doubles the number of hops. Similarly, compar-

ng Optimal jobless and opt , we could observe that ‘caring

bout jobs’ increases emergency response time by 11.5%. However,

n making such comparisons, we implicitly assume that there are

A| agents available solely for jobs or for coverage, while in the

pt -solutions, we only have |A| agents available in total for both

obs and coverage. It is more fair, therefore, to compare these met-

ics against the Split fleet -solutions. Then, we can observe

hat joining the coverage fleet and the job fleet into one increases

he number of hops by 69.9%, but we also cut our primary objec-

ive of expected response time by 28.3%. The increase in hops is

xplained as follows: in a split fleet, we would run D on half the

gents and Optimal jobless on the other, which are both very

fficient methods with respect to hops, as Optimal jobless -
olutions mainly go to medians and back. The improvement in re-

ponse time is due to having twice as many agents available to

e spread for effective emer gency response. We remark that this

rade-off between increased travel costs and decreased emergency

esponse costs is less extreme when running MDSA instead of opt ,
nd least extreme when running WAM instead of opt . Following

he same trend, opt -solutions are most ‘jittery’ with respect to

he average number of shortcuts, MDSA -solutions are less jittery

nd WAM -solutions are least jittery among these three. D is most

fficient with respect to hops and shortcuts, but offers even poorer

mergency response than splitting the fleet does. 

As a final observation, we acknowledge that the average run-

ing time of WAM sees a remarkable spike in class I 7 . Class I 7 has

he largest decision space for WAM , as medium, productive prob-

ems have most variables, while dense problems have more fea-

ible solutions than sparse ones. This, apparently, is reflected in

urobi needing much more time to verify optimality of found rout-

ngs. We presume that this difficulty is not observed in step D be-

ause D does not demand that each route has exactly one median,

nd because step M makes routes more distinct in solution value.

s WAM is typically outperformed by MDSA , resolving this issue was

ot further considered in this research. 

. Conclusions 

The problem of scheduling non-urgent jobs in a way that pro-

ides optimal emergency response time has received little aca-

emic attention, although it is an interesting problem from both

cademic and applied viewpoints. 

We proposed the Median Routing Problem as a mathematical

odel for this problem. An optimal solution method using mixed-

nteger linear programming was presented, as well as several

euristics. Of these, MDSA typically worked best: on the bench-

ark instances, it found solutions that were on average 3.2% away

rom optimal in 2.4 seconds, where solving them with a MIP solver

akes 39 minutes. Using the MDSA solution to warm-start the MIP

s especially useful for the most difficult problem instances. 

By studying partial versions of MDSA under parametric variation

n the benchmark instances, and comparing it with the simpler
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 

emergency response and non-emergency jobs, European Journal of Ope
AM -algorithm, our experiments suggest that the success MDSA
s due to two factors, both of which rely on the MEDIATE -step.

irstly, the MEDIATE -step allows agents to spend their remaining

ime in a way that is asymptotically optimal as the amount of free

ime goes to infinity. Secondly, creating coverage subregions and

rying to divide jobs as well as possible into these subregions helps

uarantee that no subregion is ever completely abandoned for the

ake of jobs, unless absolutely necessary. The speed of MDSA was

ue to first taking the most restrictive decisions in a very com-

ressed decision space, then making the best out of those deci-

ions in pseudo-polynomial time. Though MDSA contains NP-hard

ubroutines, this was not yet found to be a bottleneck, even for

he practical case study instances. Studying marginal contributions

howed that the MEDIATE -step contributed most; it is essential to

oth success factors of MDSA . 
Finally, we observed that combining an emergency response

eet and a job processing fleet into one joint fleet produced a re-

uction in expected emergency response time of 28.3%. This comes

t the cost, however, of an increase in total travelled distance, as

he optimal solutions for the separated problems are typically very

fficient in travelled distance. This trade-off is strongest in optimal

olutions, then in MDSA -solutions, and mildest in WAM -solutions. 

As venues for future research, we propose the following. Our

odel discretises space and time so that joint coverage can be

easured tractably, but other strategies than discretisation may

xist. MDSA contains NP-hard subroutines, and for (much) larger

nstances, a fully polynomial version may be needed. As mentioned

arlier, better understanding the logic by which optimal solutions

luster jobs may lead to even stronger heuristics. The single-agent

ase of MRP is much easier to analyse, as its coverage profile is

lways known, and interesting solution properties may be discov-

red. Many flavours of heuristics have not yet been explored, in-

luding meta-heuristics. Many natural model extensions can be

ade to the MRP, including time windows, multi-agent jobs and

ime-varying emergency probabilities. We have studied a ‘single

overage’ problem, and it merits research how to well prepare for

ore emergencies than just the next one. Perhaps most impor-

antly, the set of jobs to be processed was given as a hard con-

traint: it is an interesting and non-trivial question to decide which

obs will be selected as input for a series of shifts, and what role

ulti-objective optimisation can play in weighing responsiveness

gainst productivity. 
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ppendix A. Example instance 

An example of MRP is illustrated in Fig. A.3 . In this example, we

ay move two agents discretely over a network. They both start

nd end their work shift at a central node, which acts as a classi-

al ‘depot’. At some of the nodes, an emergency may occur; each of

hese nodes has a probability P v of being the site of the next emer-

ency. There are also two jobs to be processed at specific locations

n the ‘right half’ of the network, each with a processing time of

. A feasible solution tells all agents where to be at each time-step

nd when to start processing which jobs. The goal is to move the

gents such that the weighted distance of all nodes to their near-

st agent is minimised, where weights may represent emergency

robabilities and distances may represent response times, while

nsuring that all jobs get done. In the optimal solution, presented

n Fig. A.4 , agent 1 processes both jobs, thus giving ‘coverage’ to
et al., The median routing problem for simultaneous planning of 
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Fig. A.3. An example instance of MRP. Two agents, starting at a depot at t = 0 , must process all jobs and be back at t = 16 , whilst minimising average expected emergency 

response time. The optimal solution is presented in Fig. A.4 . 

Fig. A.4. The optimal solution to the instance in Fig. A.3 . It is optimal to let agent 1 (purple, dotted) process both jobs and be responsible for the ‘right half’ of the network, 

and to put agent 2 (orange, solid) in a good position to respond to emergencies in the ‘left half’. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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he right half of the network; meanwhile, agent 2 processes no

obs but moves to a good position to give coverage to the ‘left half’

f the network. Both agents make sure to be back at the depot just

t the end of the shift. 

In the optimal solution, at t = 3 , there is one agent at (1,1) and

ne agent at (4,4). This means that the expected response time (as-

uming Manhattan distances) for an emergency at t = 3 equals 

 . 3 · 0 + 0 . 3 · 2 + 0 . 2 · 1 + 0 . 2 · 2 = 1 . 2 

s this is, summed over the four possible emergency locations, the

robability of the emergency occurring there times the distance of

he nearest agent. 

The solution in Fig. A.4 is feasible because it visits all jobs and

veryone is back in time; it is optimal because it has minimal av-

rage expected response time among feasible solutions. 

Note that it is by no means necessary in MRP that the start

nd end location for all agents are the same: this is simply the

ase for this example. In fact, allowing any node to be an agent’s

tart location is necessary to allow for dynamic re-solving after

n emergency occurs. Also, in this example, the response time be-

ween nodes is equal to the number of steps needed to get there

ia the graph; in general, response times may follow a different

etric. 

ppendix B. MIP for routing subroutine of WAM 

In step 1 of WAM , as described in Algorithm 1 , several medi-

ns are identified as points of interest. In step 2, a distance ma-

rix D is obtained. In step 3, the agents are routed over the jobs

nd these medians in such a way that the amount of total travel-

ing time is minimised, so that the total amount of time that can

e spent at these medians is maximised. Aside from the standard

ondition that all jobs and medians must be visited exactly once,

ach agent must visit exactly one median. If there were one loca-

ion where all agents start and end, and the number of medians

isited per agent were allowed to be arbitrary, then this would

imply be an instance of DVRP. However, these two side con-

traints merit the explicit description of the MIP used to solve this

ubroutine. 

Define a set S = { s 1 , . . . , s |A| } of virtual nodes, representing the

tart ‘locations’ of the agents. Similarly, define E = { e 1 , . . . , e |A| } the

irtual end locations of the agents. For any distinct pair i ∈ S ∪ M ∪
 , j ∈ M ∪ E ∪ J , let variable w i j ∈ { 0 , 1 } indicate whether or not

omeone goes directly to j after visiting i . For each j ∈ M ∪ E ∪ J ,

efine a variable f j ∈ [0, T ] describing the arrival time at j ; for each

j ∈ S, denote f j = 0 . For j ∈ S ∪ M ∪ E, denote ‘processing time’

 j = 0 . Finally, for each a ∈ A and each j ∈ M ∪ J , define a vari-

ble z ′ 
a j 

∈ { 0 , 1 } indicating whether or not j is visited by a . For

 i ∈ A , s ∈ S and e ∈ E, denote z ′ a i s = 1 if s = s i and 0 otherwise,

nd z ′ a i e = 1 if e = e i and 0 otherwise: in other words, encode that

tart point s i and end point e i are always assigned to agent a i . Then

he following MIP produces the optimal sequences: 

in 

∑ 

i ∈S∪M∪J 
∑ 

j∈M∪E∪J D i j w i j 

s.t. 
∑ 

j∈M∪E∪J w i j = 1 (∀ i ∈ S ∪ M ∪ J ) (B.1) 

∑ 

i ∈S∪M∪J w i j = 1 (∀ j ∈ M ∪ E ∪ J ) (B.2) 

f j ≥ f i + Q i + D i j − T · (1 − w i j ) (∀ i ∈ S ∪ M ∪ J )(∀ j ∈ M ∪ E ∪ J ) (B.3) 

∑ 

m ∈M 

z ′ am 

= 1 (∀ a ∈ A ) (B.4) 
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∑ 

a ∈A z 
′ 
a j 

= 1 (∀ j ∈ S ∪ M ∪ E ∪ J ) (B.5) 

z ′ 
a j 

≥ z ′ 
ai 

+ w i j − 1 (∀ a ∈ A )(∀ i ∈ S ∪ M ∪ J )(∀ j ∈ M ∪ E ∪ J ) (B.6) 

w i j , z 
′ 
a j 

∈ { 0 , 1 } , f j ∈ [0 , T ] 

Here, the objective value equals the total number of time-

teps spent travelling. Constraints (B.1) state that, aside from end

oints, each node must be departed from exactly once. Constraints

B.2) state that, aside from start points, each node must be visited

xactly once. Constraints (B.3) have two functions: they recursively

nsure that agents are at their end points no later than T , and act

s subtour elimination constraints. Constraints (B.4) state that each

gent must be assigned exactly one median. Constraints (B.5) state

hat each node must be assigned to exactly one agent. Constraints

B.6) state that if i ∈ S ∪ M ∪ J is assigned to some agent a ∈ A ,

nd i is followed up by some j ∈ M ∪ E ∪ J , then j is assigned to

 as well. These last three rules, combined with the fact that each

tarting point is assigned to exactly one agent, ensure that each

edian is assigned to exactly one agent. Furthermore, constraints

B.4) and constraints (B.5) ensure that the route that starts at s a 
lso ends in the right e a . 

When this MIP is solved with a MIP solver, the values of w i j de-

cribe the sequences that minimise the time spent travelling, thus

reating a maximal amount of time that can be spent waiting at

edians. 

ppendix C. Solving path-TSP 

Observe a node set J a , a start node S a , an end node E a and

 symmetric distance matrix D ij . For brevity, denote J 

+ = { S a } ∪
 a ∪ { E a } . For each distinct i ∈ J 

+ , i � = E a and j ∈ J 

+ , j � = S a , define

 variable w i j ∈ { 0 , 1 } describing whether or not j is the next node

isited after i . Also define a variable u j ∈ [1 , |J 

+ | − 1] , indicating

ow many nodes have been visited before j . Denote u S a = 0 . The

ath-TSP, to find the shortest path that starts at S a , ends at E a and

isits all nodes exactly once, can be solved by the following MIP. 

in 

∑ 

i ∈J + ,i � = E a 
∑ 

j ∈J + , j � = S a D i j w i j 

s.t. 
∑ 

j ∈J + , j � = S a w i j = 1 (∀ i ∈ J 

+ , i � = E a ) (C.1) 

∑ 

i ∈J + ,i � = E a w i j = 1 (∀ j ∈ J 

+ , j � = S a ) (C.2) 

u j ≥ u i + w i j − 1 (∀ i ∈ J 

+ , i � = E a )(∀ j ∈ J 

+ , j � = S a ) (C.3) 

w i j ∈ { 0 , 1 } , u j ∈ [1 , |J 

+ | − 1] 

Here, the objective value describes the total amount of distance

ravelled. Constraints (C.1) state that each node, except the end

ode, must be departed from exactly once. Constraints (C.2) state

hat each node, except the start node, must be visited exactly once.

onstraints (C.3) act as subtour elimination constraints. 

After solving this MIP with a MIP solver, reading out w i j pro-

uces a sequence with minimal time spent travelling. 

ppendix D. Cheapest space-time path for sequence and node 

osts 

The dynamic program Algorithm 3 takes as input some start

oint S a , some end point E a , some sequence over job set J a and

ome cost function on the nodes that may depend on the time-

tep. It returns the cheapest feasible space-time path with respect

o these node costs. 
et al., The median routing problem for simultaneous planning of 
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Algorithm 3 Optimal execution of job sequence against given 

node costs 

1: Initialise the set of active nodes N := { (depot, 0 , j 0 ) } , with j 0 
the first job that has to be visited, or j 0 = E a if the sequence 

has no jobs; 

2: Initialise the reach cost reach : N → R ≥0 as reach (S a , 0 , j 0 ) = 0 ; 

3: Initialise the explored nodes E := ∅ ; 
4: Take (u, t, state ) := arg min N reach (u, t, state ) , remove this from 

N and add it to E; 

5: Observe each ‘neighbour’ (v , t + 1 , state ′ ) of (u, t, state ) . (v , t + 

1 , state ′ ) is a neighbour of (u, t, state ) if v ∈ V u , and either: 

• state = j ∈ { E a } ∪ J a and state ′ = j (the goal does not 

change); 
• state = j ∈ J , L j = v and state ′ = ( j, Q j ) (the next job is 

started); 
• state = ( j, q ) , q > 1 , u = v and state ′ = ( j, q − 1) (the job is 

processed further); 
• state = ( j, 1) , u = v , j ′ is the next job if there is one and E a 

otherwise, and state ′ = j ′ (the job is finished, the next goal 

retrieved); 
• state = ( j, 1) , u = v , j ′ is the next job to be visited, L j ′ = v 

and state ′ = ( j ′ , Q j ′ ) (the job is finished, and the next job 

happens to be in the same location). 

6: For each neighbour (v , t + 1 , state ′ ) , if it is not already 

in N or E , add it to N and set reach (v , t + 1 , state ′ ) = 

reach (u, t, state ) + nodecost a (v , t + 1) ; 

7: If the end node (E a , T , E a ) �∈ N , go to step 4; 

8: Using reach , backtrack the cheapest path to (E a , T , E a ) from 

(S a , 0 , j 0 ) . 

 

 

 

 

 

 

 

 

Algorithm 4 Generate an instance of MRP 

1: Set attempt = 0 ; 

2: Set at tempt := at tempt + 1 . If attempt > AT T EMP T S, QUIT; 

3: Create |V| − |J | nodes with uniformly random integer X and Y 

coordinates between 0 and SCALE; 

4: Create the other |J | nodes with uniformly random integer 

X and Y coordinates between 0 and SCALE. At each of these 

nodes, place one job, thus setting L : J → V . For each job, pick 

its processing time uniformly randomly from Q _ RANGE; 

5: Check if none of the nodes are closer than MI N _ DI ST to each 

other in Euclidean norm (truncated to two decimals). If there 

exist nodes that are too close together, go to Step 2; 

6: Determine neighbour sets V v by checking, for each pair of 

nodes (u, v ) , whether or not their Euclidean distance (trun- 

cated to two decimals) is under G _ CHOP ; 

7: Check if the graph implied by V v is connected, by picking an 

arbitrary node and checking neighbours in a width-first search. 

This width-first search terminates before finding all nodes if 

and only if the graph is not connected. If the graph is not con- 

nected, go to Step 2; 

8: Check if the triangle inequality still holds after truncating Eu- 

clidean distances to two decimals, by checking for each u, w ∈ 

V whether or not C uw 

≤ min v ∈V { C u v + C v w 

} . If there exists a pair 

where this inequality does not hold, go to Step 2; 

9: Denote depot the centermost non-job node, that is, the non- 

job node with smallest Euclidean distance to (0 . 5 · SCALE, 0 . 5 ·
SCALE) ; 

10: Determine the distance matrix between the job nodes and 

depot using the Floyd-Warshall algorithm (Cormen, Leiserson, 

Rivest, & Stein, 2009); 

11: Check whether this instance of MRP admits a feasible solution, 

by checking whether the DVRP over the jobs and depot has a 

feasible solution, for example by solving the MIP describing the 

DVRP but with objective function 0. If the DVRP is infeasible, go 

to Step 2; 

12: Set C u v equal to the Euclidean distance between each pair of 

nodes (u, v ) ; 
13: For each non-job, non-depot node v , first determine whether v 

has a large, medium or small emergency demand against prob- 

abilities P ROB _ LARGE, P ROB _ MEDIUM and P ROB _ SMALL . Then, 

uniformly randomly draw a number of ‘emergency points’ 

from P _ P OINT S _ RANGE _ LARGE or P _ P OI NT S _ RANGE _ MEDI UM 

or P _ P OINT S _ RANGE _ SMALL . 

14: Set P v for all v ∈ V P by normalising until 
∑ 

v ∈V P P v = 1 ; 

15: Create A = { a 1 , . . . , a |A| } , set S a = depot and E a = depot and RE- 

TURN this instance. 
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Appendix E. Instance generator 

To create an instance of the MRP, the following parameters

should be provided: 

• The desired number of agents, |A| ; 
• The desired number of jobs, |J | ; 
• The desired number of nodes, |V| ; 
• The desired number of time-steps, T ; 
• The width of a large square, SCALE ; 
• The threshold for adjacency, G _ CHOP ; 
• The minimal distance between nodes (for visualisation and

realism purposes), MI N _ DI ST ; 
• The range of potential processing times for jobs, Q _ RANGE; 
• The probabilities that a given node has large, medium or

small emergency demand, 

P ROB _ LARGE and P ROB _ M EDIUM and P ROB _ SMALL ; 
• The range of how many ‘emergency points’ nodes with large

demand can have, 

P _ P OINT S _ RANGE _ LARGE; 
• The range of how many ‘emergency points’ nodes with

medium demand can have, 

P _ P OI NT S _ RANGE _ MEDI UM; 
• The range of how many ‘emergency points’ nodes with small

demand can have, 

P _ P OINT S _ RANGE _ SMALL ; 
• The allowed number of attempts to generate a feasible in-

stance, ATTEMPTS . 

Given these parameters, an instance of MRP is generated using

Algorithm 4 . 
Please cite this article as: D. Huizing, G. Schäfer and R.D. van der Mei 
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The instances of class I 1 were generated with the following

arameters: 

|A| = 3 , |J | = 2 |A| + 1 , |V| = 20 , G _ CHOP = 300 , 

T = 16 , AT T EMPT S = 100 , SCALE = 10 0 0 , 

MI N _ DI ST = 1 , Q _ RANGE = { 0 , 1 , 2 } , 
P _ POINT S _ RANGE _ LARGE = { 10 0 , . . . , 30 0 } , PROB _ LARGE = 0 . 15 , 

P _ POI NT S _ RANGE _ MEDI UM = { 10 , . . . , 50 } , PROB _ MEDIUM = 0 . 30 , 

P _ POINT S _ RANGE _ SMALL = { 0 , . . . , 5 } , PROB _ SMALL = 0 . 55 

The class I 5 instances were generated with identical parame-

ers, except |A| = 4 and |V| = 100 . 

As mentioned in Table 2 , the classes I 1 and I 5 contain instances

hat are ‘productive’ and ‘sparse’. The ‘dense’ instances were cre-

ted from the ‘sparse’ instances by recomputing the node adja-

encies for G _ CHOP = 600 . The ‘unproductive’ classes were created

rom the ‘productive’ classes by deleting jobs until |J | = |A| − 1 .

e chose to set |J | equal to either 2 |A| + 1 or |A| − 1 , rather than
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Table F.7 

Results of applying the ten solution methods on the 200 medium-sized prob- 

lems. 

Number of Average Average Worst Worst 

Method feasible solutions gap (%) time (s) gap (%) time (s) 

I 5 (medium, productive, sparse) 

opt 50 0 8739.1 0 132750 
 |A| or |A| , to break symmetry and introduce the additional chal-

enge of assigning unequal amounts of jobs to agents. 

ppendix F. Numerical results 

This section presents the full result of testing the various MRP

ethods on the various MRP benchmark instance classes. For ease
Table F.5 

Results of applying the ten solution methods on the 6 real-life instances. 

Number of Average Average Worst Worst 

Method feasible solutions gap (%) time (s) gap (%) time (s) 

I R (real-life instances) 

opt 6 0 1202.7 0 2871 

WAM 6 5.9 14.0 9.3 62.9 

D 6 27.0 0.4 40.2 0.9 

MD 6 4.4 3.7 8.0 4.3 

DS 6 27.4 0.7 40.2 2.0 

DA 6 13.6 0.8 24.6 1.3 

MDS 6 4.4 3.9 7.4 4.4 

MDA 6 3.1 4.4 4.9 5.3 

DSA 6 12.3 0.9 24.6 1.4 

MDSA 6 3.4 4.5 7.4 5.5 

Table F.6 

Results of applying the ten solution methods on the 200 small problems. 

Number of Average Average Worst Worst 

Method feasible solutions gap (%) time (s) gap (%) time (s) 

I 1 (small, productive, sparse) 

opt 50 0 29.1 0 353 

WAM 50 20.7 1.2 106.0 12.8 

D 50 102.0 0.3 241.6 0.4 

MD 50 9.3 0.4 35.3 0.8 

DS 50 101.7 0.4 238.0 0.6 

DA 50 30.0 0.3 85.3 0.5 

MDS 50 8.4 0.6 34.2 0.9 

MDA 50 8.0 0.5 35.3 0.8 

DSA 50 32.9 0.4 85.3 0.6 

MDSA 50 7.0 0.6 34.2 0.9 

I 2 (small, unproductive, sparse) 

opt 50 0 2.7 0 9 

WAM 50 10.5 0.3 80.8 0.5 

D 50 167.2 0.1 314.6 0.1 

MD 50 4.4 0.2 25.7 0.3 

DS 50 167.2 0.1 314.6 0.2 

DA 50 53.8 0.1 162.5 0.2 

MDS 50 4.4 0.3 25.7 0.4 

MDA 50 3.5 0.2 25.7 0.3 

DSA 50 55.0 0.1 162.5 0.2 

MDSA 50 3.5 0.3 25.7 0.5 

I 3 (small, productive, dense) 

opt 50 0 5.7 0 48 

WAM 50 29.4 3.2 140.5 16.6 

D 50 180.7 0.2 314.5 0.4 

MD 50 5.4 0.4 45.9 0.6 

DS 50 180.6 0.3 314.5 0.5 

DA 50 63.4 0.3 160.7 0.5 

MDS 50 5.3 0.5 43.2 0.7 

MDA 50 5.0 0.5 45.9 0.7 

DSA 50 64.4 0.4 158.8 0.6 

MDSA 50 4.3 0.6 43.0 0.8 

I 4 (small, unproductive, dense) 

opt 50 0 0.7 0 5 

WAM 50 8.0 0.3 56.6 0.6 

D 50 258.9 0.1 520.5 0.1 

MD 50 2.4 0.3 24.5 0.4 

DS 50 258.9 0.1 520.5 0.2 

DA 50 107.9 0.2 281.9 0.2 

MDS 50 2.4 0.3 24.5 0.5 

MDA 50 2.0 0.3 24.2 0.4 

DSA 50 106.5 0.2 284.5 0.3 

MDSA 50 2.0 0.4 24.2 0.5 

WAM 50 7.7 11.4 24.0 101.8 

D 50 60.5 0.5 82.3 0.8 

MD 50 4.7 3.2 14.5 7.1 

DS 50 60.4 0.7 83.0 1.1 

DA 50 30.3 0.9 49.8 1.6 

MDS 50 4.5 3.4 14.6 7.3 

MDA 50 3.7 3.9 14.4 8.3 

DSA 50 29.4 1.0 54.0 1.6 

MDSA 50 3.5 4.1 14.3 8.1 

I 6 (medium, unproductive, sparse) 

opt 50 0 1476.1 0 12839 

WAM 50 4.6 2.4 21.7 3.6 

D 50 88.0 0.1 115.6 0.3 

MD 50 2.3 2.7 18.7 3.3 

DS 50 88.1 0.2 115.6 0.3 

DA 50 51.1 0.5 80.8 0.8 

MDS 50 2.0 2.7 12.1 3.3 

MDA 50 1.4 3.2 11.9 4.1 

DSA 50 51.1 0.5 80.8 0.8 

MDSA 50 1.5 3.3 11.9 3.9 

I 7 (medium, productive, dense) 

opt 50 0 8390.3 0 72703 

WAM 50 11.3 438.5 35.1 4749.7 

D 50 73.9 1.1 101.9 6.0 

MD 50 3.9 3.6 14.3 5.0 

DS 50 74.0 1.2 101.9 6.1 

DA 50 39.1 1.8 63.4 7.0 

MDS 50 4.0 3.9 14.1 5.2 

MDA 50 2.8 5.1 13.8 7.8 

DSA 50 38.4 1.9 63.4 7.2 

MDSA 50 2.8 5.4 13.3 7.8 

I 8 (medium, unproductive, dense) 

opt 50 0 168.3 0 2963 

WAM 50 4.1 2.6 12.6 3.5 

D 50 100.1 0.2 128.1 0.6 

MD 50 1.3 3.5 6.1 3.8 

DS 50 100.0 0.2 128.1 0.4 

DA 50 58.8 1.0 103.4 1.2 

MDS 50 1.3 3.5 6.1 4.0 

MDA 50 0.9 4.5 5.1 6.6 

DSA 50 59.0 1.0 112.6 1.3 

MDSA 50 0.9 4.6 5.1 5.2 

o  

d  

w  

a

R

A  

 

A  

 

A  

 

B  

 

v  

 

B  

 

B  
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