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Introduction
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1.3 Operations of power systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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�e electricity transmission network is regarded as one of the greatest

engineering achievements of the 20th century [46], and is expected to power

day-to-day human activities in a reliable and seamless fashion. �e increase of

intermi�ent renewable generation such as wind and solar photovoltaics (PV)

in the �rst two decades of the 21st century [155] is making this expectation

challenging to live up to.

A well-managed power grid should meet the required power demand at all

times, while ensuring that reliability constraints are not violated. Such con-

straints specify admissible ranges for key quantities, such as transmission line

currents and temperatures. For instance, avoiding transmission line overheating

is crucial in order to prevent sag and loss of tensile strength, which could result

in the tripping of the line.

�e system operator traditionally achieves this by making periodic control

actions, such as power rescheduling or curtailment, that adapt the operating

point of the grid in response to changing conditions. �is paradigm relies on the

1



2 Chapter 1. Introduction

fundamental assumption that the grid remains roughly static between control

instants. Such an assumption, while reasonable in the previous century, is

hardly realistic for modern grids with ever-growing supply-side uncertainty.

1.1 General background

�e inherently uncertain nature of renewable energy sources like wind and

PV is responsible for signi�cant amounts of variability in power output in the

short term [123, 90], caused by changing meteorological conditions. Moreover,

the power outputs of individual renewable generators can exhibit considerable

correlations. For example, the diurnal cycle of solar power production can result

in ramps and shortages of power output from PV generators during di�erent

hours of the day [190]. Moreover, the power output from wind farms exhibits

correlations which are in�uenced by the geographical distance between the

farms [115], and wind energy follows diurnal cycles as well [108].

Power imbalances caused by generation intermi�ency may cause grid sta-

bility constraints to be violated. For example, 80% of the bo�lenecks in the

European high-voltage grid in 2015 were already caused by renewables [204]. In

order to ensure that stability constraints are not violated, grid operators might

reschedule power from �exible dispatchable controllable generators (such as

hydroelectric and natural gas power plants) in response to excesses or shortages

of renewable generation, and failing that they might resort to curtailing either

power demand or power production. Both measures are undesirable events: on

the one hand, modern societies have became used to a continuous and reliable

supply of energy; on the other hand, renewable energy is a clean and virtually

zero-cost energy source.

In order to meet the objective that 50% of the state’s production should come

from carbon-free sources by 2030 [36], the state of California has signi�cantly

increased its renewable generation capacity in recent years. Unfortunately,

curtailments are also on the rise: Fig. 1.1 shows the steady growth of renewable

curtailment in the California Independent System Operator (CAISO) in recent

years, with historical peak of more than 220,000 megawa�-hours of electricity

in May 2019. In the words of CAISO [34]: “�e ISO is seeking solutions to avoid

or reduce the amount of curtailment of renewable power to maximize the use

of clean energy sources.”

Furthermore, the increased supply-side uncertainty may result in higher risk

of grid components failures, such as transmission lines overloads, which may

trigger cascading failures and blackouts, resulting in tremendous economical

and societal costs. �e frequency of major blackouts increased substantially in

recent years [14], with two prominent examples being the Northeast blackout
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Figure 1.1: Wind and solar power curtailment in California in the period 2014-

2019 [34].

in 2003 [183] and the San Diego blackout in 2011 [63].

Energy markets are also a�ected by the increase in renewable energy pro-

duction [54, 141]. Energy prices can exhibit signi�cant volatility throughout

di�erent hours of the day, and while the exact mechanisms behind energy

pricing vary from market to market (see Section 1.3.2 for a description of the

Locational Marginal Pricing mechanism, a common market design in the US),

a recurrent feature is that prices are usually negatively correlated with the

amount of renewable generation in the grid mix [141], as illustrated in Fig. 1.2.

In some cases prices can even turn negative: Fig. 1.3 illustrates joint occurrences

between curtailments of wind generation in the Texas electric grid and real-time

negative electricity prices for the West Hub.
1

In markets adopting the Locational Marginal Pricing (LMP) mechanism,

such as the Californian one, prices are location-dependent, and variable supply

mix and grid congestion status may result in signi�cant spatial price variations,

as can be appreciated in Fig. 1.4. In view of the above discussion, it is clear that

there is an urgent need to take into account short-term variability in power grid

operations.

�oting the US national academic report [131]: “In short, the greatest

achievement of the 20th century needs to be reengineered to meet the needs

of the 21st century. Achieving this grid of the future will require e�ort on

1
Wind curtailments and corresponding negative prices have substantially dropped a�er 2011

thanks to Texas’s transmission expansions programs [60].
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Figure 1.2: Total daily CAISO renewable production and real-time prices, June

2014 [174].

Figure 1.3: Joint occurrences between curtailments of wind generation and real-time

negative electricity prices in the Texas electric grid [60].

several fronts. Certainly there is a need for continued shorter-term engineering

research and development, building on the existing analytic foundations for the

grid. But there is also a need for more fundamental research to expand these

analytic foundations.”

With this goal in mind, in this thesis we develop novel probabilistic tech-

niques to analyze power grid operations while taking uncertainty into account,

which allow us to:
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Figure 1.4: CAISO Day-Ahead Locational Marginal Prices on 14th October, 2019, ex-

hibiting signi�cant geographical variability [35].

• Derive probabilistic counterparts of reliability constraints which are ana-

lytic and computationally tractable (Chapters 2 and 3).

• Understand microscopic and macroscopic features of cascading failures

and blackouts in a probabilistic sense (Chapters 4 and 5).

• Unveil and exploit the relation between energy prices and generation mix

in order to forecast price �uctuations (Chapters 6 and 7).

�e probabilistic approaches adopted in this thesis include large deviations,

concentration inequalities and machine learning techniques, as described in

detail in Section 1.3. �ese techniques o�er a very �exible framework that

allows us to work with both static and dynamics se�ings, asymptotic and pre-

asymptotic regimes, and microscopic and macroscopic perspectives. Such

techniques have been successfully applied in many �elds of science and engi-

neering (e.g., communication networks, �nance, and queueing theory), but their

application to power grid analysis is novel and their potential in this area is

mostly unexplored.

�is introduction is organized as follows: �rst, we provide a description of

power transmission networks in Sections 1.2 and 1.3, with a particular focus

on the optimization paradigm that drives their actual operations, the so-called
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Optimal Power Flow problem, and on the corresponding reliability constraints

that are of interest to us. �e same section also describes the Locational Marginal

Pricing mechanism. A review of the existing literature on uncertainty-aware

analysis of power grids is provided in Section 1.4. Next, Section 1.5 provides

the necessary probabilistic background, while Section 1.6 presents the main

contributions of this thesis.

1.2 Power systems modeling

A power grid is an interconnected network for delivering power from produc-

ers, or generators, to consumers, or loads. . �e power is transferred over large

distances via the transmission grid, which delivers power from generators to

electrical substations at high voltages, in order to minimize losses. Electrical

substations reduce the voltage and inject the power into distribution systems,
which typically cover a smaller geographical area (such as a city or a neigh-

borhood) and deliver power to individual customers at a lower voltage. �is

dissertation focuses on the transmission grid, which will be referred to simply

as the power grid moving forward, for which we now provide a more detailed

description. A power grid can be seen as a connected graph G = (N , E), where

nodes i ∈ N = {1, . . . , n}, or buses, house (possibly multiple) generators and

load, and edges ` ∈ E , or lines, represent transmission lines that carry power

between buses. Let n = |N | and m = |E| denote the number of buses and lines,

respectively.

1.2.1 Power �ow equations

Power is generated and transmi�ed in alternating current (AC) form, for which

we now provide a description (for details, we refer to [14]). Since power can �ow

in any direction on an edge, the graph that models the power grid is naturally

undirected. In the following, (k,m) will denote a line joining bus k and m from

the perspective of bus k, and (m, k) denotes the same line from the perspective

of bus m. For example, the power �owing from bus k to bus m will be denoted

by Skm, while Smk refers to the power �owing form bus m to bus k. �e

relation k ∼ m means that there is a line between buses k and m, which we

denote by {k,m} when the orientation is not important.

Let j ∈ C denote the imaginary unit. At time t, let SGk(t) = PGk(t) +
jQGk(t) ∈ C be the complex power produced by bus k, and let SDk(t) =
PDk(t) + jQDk(t) ∈ C be the complex power consumed by bus k. �e net
complex power injected into the grid by bus k is denoted as Sk(t) = Pk(t) +
jQk(t) ∈ C, where Pk(t) = PGk(t) + PDk(t) ∈ R is known as the active
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power and Qk(t) = QGk(t) +QDk(t) ∈ R as the the reactive power. Similarly,

Skm(t) = Pkm(t) + jQkm(t) ∈ C, where Pkm(t) ∈ R is the active power �ow
and Qkm(t) ∈ R the reactive power �ow.

If bus k houses a generator but has no load, then Pk(t) > 0, whereas if it

k has a (positive) load and no generators, Pk(t) < 0. If a bus k houses both

generators and loads, then the sign of Pk(t) can change according to di�erent

demand and generation pro�les, with the convention that Pk(t) > 0 (Pk < 0)

means that power is being generated (consumed) at node k.

If bus k is connected to bus m, them bus k injects into transmission line

(k,m) a complex current ikm(t) ∈ C at voltage vk(t) ∈ C, where vk(t) =
|vk(t)|ejδk

, |vk(t)| ∈ R is the voltage magnitude and δk ∈ (−π, π] is the voltage
phase angle. For notational simplicity, in the following we suppress the depen-

dence of power, voltage and current on time when not essential. For a complex

number x, we denote by x∗ its complex conjugate.

�e power injected in line (k,m) by bus k satis�es the equation:

Skm = vki
∗
km. (1.1)

�e AC power �ow equations are governed by two physical laws: Ohm’s current

law and Kircho�’s current law.

Ohm’s current law states that the current �owing on line (k,m) is directly

proportional
2

to the voltage drop at these nodes:

ikm(t) = ykm(vk(t)− vm(t)), (1.2)

where ykm = ymk is the (series) admi�ance of line {k,m}, given by

ykm = gkm + jbkm =
1

zkm
=

1

rkm + jxkm
, (1.3)

where the real parameters gkm, bkm, zkm, rkm, xkm are the conductance, suscep-
tance, impedance, resistance and reactance of the transmission line, respectively.

We use line admi�ances to build up the bus admi�ance matrix Y = G + iB ∈
Cn×n as follows

Ykm =

{
−ykm , k 6= m∑n
l=1 ykl k = m

, Gkm =

{
−gkm , k 6= m∑n
l=1 gkl k = m

, Bkm =

{
−bkm , k 6= m∑n
l=1 bkl k = m.

In polar form, Ykm = |Ykm|ejαkm
. For {k,m} /∈ E , we set ykm = 0.

Kircho�’s current law states that the current injection at each bus is equal

to the sum of the currents �owing out of that bus

ik =
∑
m∼k

ikm (1.4)

2
Ignoring the e�ect of shunt components ( [14], Chapter 1, Section 1.2).
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Combining Kircho�’s law (1.4) and Ohm’s law (1.2), we get

ik =

n∑
m∼k

ykm(vk − vm) =

n∑
m=1

Ykmvm, (1.5)

or, in matrix form, i = Yv, where i = (i1, . . . , in)> ∈ Rn and v = (v1, . . . , vn)> ∈
Rn. Combining Eq. (1.1) and Eq. (1.5), we get the AC equations for complex

power:

Sk = vk

n∑
m=1

v∗mY
∗
km =

n∑
m=1

|vk||vm||Ykm|ej(δk−δm−αkm). (1.6)

In terms of net active and reactive power, the AC equations read

Pk =

n∑
m=1

|vk||vm|(Bkm sin(δk − δm) +Gkm cos(δk − δm)) (1.7)

Qk =

n∑
m=1

|vk||vm|(−Bkm cos(δk − δm) +Gkm sin(δk − δm)), (1.8)

and the corresponding power �ows are

Pkm = −|vk|2Gkm + |vk||vm|(Bkm sin(δk − δm) +Gkm cos(δk − δm)), (1.9)

Qkm = |vk|2Bkm + |vk||vm|(−Bkm cos(δk − δm) +Gkm sin(δk − δm)), (1.10)

where we see that Pk =
∑n
m=1 Pkm, Qk =

∑n
m=1Qkm. Note that, in general,

Pkm 6= −Pmk, since Pkm + Pmk = gkm|vk − vm|2 = rkm|ikm|2 ≥ 0. �e

right-hand side of this expression is the amount of active power lost on line

{k,m} due to resistance.

A classical problem in transmission system analysis consists in determining,

given a set of values for generation, demand and voltages, the line power �ows

that satisfy the the AC equations (1.9). However, the AC equations (1.9) are

nonlinear and o�en analytically intractable, and may not even be well-posed.

A solution may not exist for a given set of parameters or, on the other hand,

multiple solutions may arise, even for very simple networks [14].

AC equations are usually solved with numerical methods [14], but their

non-linearity can introduce signi�cant complexity, making it challenging to

routinely solve large-scale Optimal Power Flow problems (see Section 1.3.1) in

the normal operational time windows of 5-15 minutes. �e e�cient calculation

of energy prices faces similar challenges, with the additional caveat that the way

prices are calculated should be as interpretable and transparent as possible. For

this reason, several markets use linearized versions of the power �ow equations

in order to compute LMPs [33].
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1.2.2 DC approximation

In transmission system analysis, the AC power �ow equations (1.9) are com-

monly approximated by a set of simpler linear equations, known as DC approx-
imation [151, 150, 175]. Compared to the AC power �ow equations, the DC

power �ow equations are always feasible (provided that the grid is connected),

and as such do not su�er from feasibility or multiple solutions issues. �e

DC approximation stems from three practical observations about high-voltage

transmission systems:

• �e resistance of the transmission line {k,m} is signi�cantly less than the

reactance, i.e., rkm�xkm. Since gkm = rkm
r2km+x2

km
and bkm = −xkm

r2km+x2
km

,

this means that we can approximate gkm ≈ 0 and bkm ≈ − 1
xkm

. �ere-

fore, we assume Ykm = jBkm, and we de�ne the weight of an edge

{k,m} ∈ E as the inverse reactance

wkm = x−1
km. (1.11)

By convention, we set wkm = 0 if there is no transmission line between

k and m, and wkm = wmk > 0 otherwise.

• Under normal operating conditions, the voltage angle di�erences δk− δm
are small, so we approximate sin(δk− δm) with δk− δj and cos(δk− δm)
with 1.

• Under normal operating conditions, the voltage magnitudes at the buses

are very close to 1 in the per-unit system.
3

�e DC approximation

therefore assumes |vk| = 1 for all buses k.

Finally, the DC approximation only considers active power to describe power

�ow behavior, ignoring reactive power. Incorporating these simplifying assump-

tions, Eqs. (1.9) and (1.7) for active power reduce to

Pkm = Bkm(δk − δm) = −bkm(δk − δm) = wkm(δk − δm), (1.12)

Pk =
∑
m 6=k

Pkm (1.13)

for each bus k and each line (k,m).

In the following, to specify that we are considering active power �ows based

on the DC approximation, we use the notation f̂km rather than Pkm, and the

3
A measuring system that scales all physical quantities by appropriate constants [14], so that

resulting values are close to unity.
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m-dimensional vector of power �ows will be denoted by f̂ ∈ Rm. Furthermore,

since there is no possibility of confusion, we refer to f̂ simply as the vector

of power �ows, since reactive power �ows are not considered under the DC

approximation. �e DC power �ow problem consists in computing the power

�ows Pkm given the power injections Pk .

For mathematical convenience, we choose an arbitrary but �xed orientation

of the transmission lines, which allows us to denote an edge by the ordered pair

` = (i, j) ∈ E . �e active power �owing over line (i, j) is denoted by f̂ij , with

the convention that power is �owing from bus i to bus j if f̂ij > 0 and from

bus j to bus i if f̂ij < 0.

�e network topology is described by the edge-vertex incidence matrix A ∈
Rm×n de�ned as

A`,i =


1 if ` = (i, j),

−1 if ` = (j, i),

0 otherwise.

Denote by D ∈ Rm×m the diagonal matrix containing the edge weights in

Eq. (1.11), de�ned as D = diag(w1, . . . , wm). Finally, the network topology

and weights are simultaneously encoded in the weighted Laplacian matrix of

the graph G, de�ned as L = A>DA or entry-wise as

Li,j =

{
−wij if i 6= j,∑
k 6=j wkj if i = j.

(1.14)

�e matrix L is symmetric, and if the graph is connected its rows sum up to zero

and thus L is singular with rank n − 1. �e eigenvalue zero has multiplicity

one (thanks to the assumption that the graph G is connected) and the corre-

sponding eigenvector is 1 = (1, . . . , 1)>. Denote by v2, . . . ,vn the remaining

eigenvectors of L, which are orthogonal to 1 and thus have all zero sum.

Note that Eq. (1.12) reads

Pk =
∑
m6=k

wkm(δk − δm) = (
∑
m6=k

wkm)δk −
∑
m 6=k

wkmδm =
∑
m

Lkmδk,

and can thus be rewri�en in matrix form as

p = Lδ, (1.15)

where p, δ ∈ Rn are the vector of net (active) power injections and phase

voltage angles, respectively. By adding all the rows of Eq. (1.15) we �nd that∑n
k=1 pk = 0, implying that power balance between generation and demand

must hold at all times. In order to solve the DC power �ow problem we need to
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solve the linear system p = Lδ. �e matrix L is singular and p ∈ Im(L), the

column spaces of matrix L, therefore such a system has an in�nite number of

solution spanning a 1- dimensional linear space:

δ(w) = L+p + (I− L+L)w, w ∈ Rn, (1.16)

where L+
denotes the Moore-Penrose pseudo-inverse of the matrix L. �e

matrix L+
can be expressed in closed-form as

L+ =
(
L +

1

n
J
)−1

− 1

n
J,

where J ∈ Rn×n denotes the matrix with all entries equal to one.

In the literature, there are two common choices for solving Eq. (1.15). �e

�rst one reads

δ = L+p (1.17)

and corresponds to a choice of w = 0. �is choice implicitly picks an av-

erage value of zero for the nodal voltage phase angles, since

∑n
k=1 δk =∑n

k=1

∑n
m=1 L

+
kmpm =

∑n
m=1 pm

∑n
k=1 L

+
km = 0.

�e second commonly used option is to construct a matrix L̄, calculated

using the inverse of the (n − 1) × (n − 1) sub-matrix obtained from L by

deleting one row and the corresponding column, denoted by L̃:

L̄ =

[
0 0
0 L̃−1

]
.

�e standard choice is to delete the �rst row and the �rst column. In this case,

the �rst node is used as reference by se�ing is phase angle δ1 equal to zero.

We observe that these two procedures, like any other stemming from

Eq. (1.16), are equivalent if one is interested in the line power �ows, as these

la�er depend only on the phase angle di�erences, and it can readily be seen

from Eq. (1.16) that for every line (k,m) and every pair of w,w′ ∈ Rn,

δk(w) − δm(w) = δk(w′) − δm(w′). Choosing the �rst option, for exam-

ple, the line power �ows (1.12) can be wri�en as a linear transformation of the

power injection via

f̂ = V̂p, (1.18)

where

V̂ = DAL+ ∈ Rm×n (1.19)

is usually referred to as the power transfer distribution factor (PTDF) matrix.

Choosing the second option, one the other hand, yields the PTDF

V̂ = DAL̄ = [0 DÃL̃−1] ∈ Rm×n, (1.20)
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where Ã ∈ Rm×(n−1)
is the matrix obtained by deleting the �rst columns of

A, and L̃(n−1)×(n−1)
the one obtained by deleting the �rst row and column of

L. We remark that, while the matrices de�ned in Eqs. (1.19), (1.20) are di�erent,

they yield the exact same vector of power �ows f . In the rest of this thesis, we

will use either formulation, depending on the problem at hand.

�e (`, k)-th entry of the PTDF matrix quanti�es the change in �ow on edge

` corresponding to a change of power injection at bus k. With each transmission

line ` is associated the corresponding line limit f̄` > 0 (Section 1.3.1), which

constraints the amount of power that is allowed to �ow on it:

|f̂`| < f̄`.

It is o�en convenient to express line �ows in units of the line limit

f` = f̂`/f̄`, (1.21)

so that f is the vector of normalized power �ows, which can be expressed in

vector form as

f = Λf̂ ∈ Rm, (1.22)

where Λ is the diagonal matrix Λ := diag(1/f̄1, . . . , 1/f̄m). Correspondingly,

the normalized PTDF is given by

V = ΛV̂. (1.23)

1.3 Operations of power systems

Operating a power grid entails addressing multiple design, planning and opera-

tional problems, a detailed description of which can be found in the book [14]

and is beyond the scope of this thesis. In this section, we describe a simpli�ed

version of one of the most important mathematical problems arising in the

context of power grid operations.

1.3.1 Optimal Power Flow

�e Optimal Power Flow (OPF) problem [94] is an optimization problem that

is used to determine the generation schedule that minimize the total system

costs while meeting the power demand and satisfying operating constraints

of generators and transmission lines. �e OPF is run at di�erent time scales,

ranging from every 24 hours (for day-ahead planning operations) up to shorter

time windows of 5 minutes for real-time operations [16], and it sets generators’

output in order to meet the expected demand for the upcoming time window. In
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its full generality, the OPF is a nonlinear, nonconvex optimization problem, due

to the underlying AC power �ow equations, which is hard to solve in full gener-

ality. �ese di�culties motivated extensive interest from the power engineering

and optimization communities, and a non exhaustive list of solution methods

for the general AC OPF include Newton-Raphson methods [190], interior point

algorithms, convex relaxations and linearization techniques. For a thorough

review of solution techniques, the interested reader is referred to [29].

�e inherent di�culties in solving large-scale AC-OPF problems has moti-

vated researchers and practitioners alike to make use of the DC approximation,

described in Section 1.2.2. While a simpli�cation of the underlying AC equations,

DC-based models are simple and fast, and are commonly used in transmission

system analysis [151, 150, 175].

In what follows, we describe a simpli�ed version of the OPF problem based

on the DC-approximation, referred to as DC-OPF, which will be used throughout

this thesis to demonstrate the potential of the novel mathematical techniques

we propose. �e DC-OPF is formulated in terms of active power only, and

network losses are ignored. For a in-depth discussion on more general AC-OPF

formulations, the interested reader is referred to [14]

Let gk and dk , respectively, denote the active power produced and consumed

at bus k. In the notation of Section 1.2.1, gk = PGk and dk = PDk . We denote

the vectors of generation and load as g = (gi)
n
i=1 ∈ Rn,d = (di)

n
i=1 ∈ Rn,

with the convention that if there is no generator (respectively, no load) at node

k, we set gk = 0 (respectively, dk = 0). Solving a DC-OPF instance entails

determining the generation vector g (the decision variable) that minimizes a

convex separable objective function of the form J(g) =
∑n
i=1 Ji(gi), subject to

four types of constraints:

• Power balance: the generator output g must meet the expected demand d
for the current time window:

∑n
i=1 gi =

∑n
i=1 di.

• Power �ow: the DC power �ow equations (1.12) must be satis�ed at all

times.

• Generation: for each generator k, the amount of power that can be pro-

duced is constrained: g
k
≤ gk ≤ ḡk.

• �ermal limit of transmission lines: for each transmission line `, there are

constraints on the amount of power that is allowed to �ow on it: |f̂`| < f̄`.
�ese constraints are particularly important from a reliability perspective

because if a line overloads for a sustained period, then it may overheat,

sag and lose tensile strength, potentially resulting in the tripping of the

line (for instance, by touching the ground or trees). In order to avoid this,
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high-voltage transmission lines are endowed with security relays that

perform an emergency shutdown as soon as the current �owing in them

exceeds a dangerous level, and the limit f̄ is usually set to be lower than

the threshold used by the security relays.

Using the notation described in Section 1.2, the DC-OPF problem can be formu-

lated as the following optimization problem:

min
g∈Rn

n∑
i=1

Ji(gi) (1.24)

s.t.

n∑
i=1

(gi − di) = 0 : λen (1.25)

−f ≤ V̂(g − d) ≤ f̄ : µ−,µ+
(1.26)

g ≤ g ≤ ḡ : τ−, τ+
(1.27)

(1.28)

where Ji(·) : R→ R denotes the cost function of generation at bus i, which is

assumed to be an increasing quadratic function; g, ḡ ∈ Rn are the vectors of

nodal minimum and maximum generation capacities, respectively; f , f̄ ∈ Rm

denote the vectors of transmission line limits; V̂ is the PTDF matrix introduced

in Eq. (1.18), and the symbol ≤ denotes component-wise inequality. We also

denote by J(g) :=
∑n
i=1 Ji(gi) the aggregated cost function.

�e variables λen ∈ R, µ−,µ+ ∈ Rm+ and τ−, τ+ ∈ Rn+ denote the

dual variables of the energy balance constraint (1.25), transmission line con-

straints (1.26), and generation constraints (1.27), respectively.

�e DC-OPF sets an operating point (or base level) which instructs generators

on how much power to produce in the upcoming time window, based on the

forecasted load d, which acts as a parameter of the problem. We point out that

generation and line limits, power grid topology and line reactances are also

parameters of the problem, but for our purposes they will be considered �xed

over the time scale of interest.
4

On the other hand, the demand d does vary on shorter time scales and

is thus seen as a �exible parameter: it is o�en of interest to investigate the

sensitivity of the optimization problem to a change in the demand parameter,

as we do in Chapter 6. �e DC-OPF is a strictly convex optimization problem,

and, as such, for every demand vector d, there exists a unique optimal solution,

which we denote by g∗ = g∗(d).

4
We remark that the grid topology can in-fact be altered by means of transmission line switch-

ing [79], which are not considered in this thesis.
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In practice, real-time loads can deviate from the expected levels, and these

deviations are usually handled by Automatic Generation Control (AGC) mecha-

nisms (or, more precisely, by a combination of primary and secondary frequency

controls [14]), which operates at smaller time scales than the OPF (seconds to

minutes). As these �uctuations are typically small, the scheme based on com-

bining the risk-unaware OPF with automatic real-time adjustments has worked

quite well for traditional power grids with low penetration of renewables [16],

but as supply-side uncertainty increases a paradigm shi� becomes necessary, as

we discuss in Section 1.3.3.

1.3.2 Locational Marginal Pricing

Electricity markets designs can exhibit important di�erences across di�erent

parts of the world, re�ecting diverse economic and political se�ings [47]. Loca-

tional Marginal Pricing (LMP) is a market architecture adopted by several US

markets following the 2003 FERC white paper [64]. Under this architecture, the

prices of energy are nodal and their calculation is deeply connected with the

OPF. Speci�cally, the LMP at a speci�c bus is de�ned as the least cost to service

the next increment of demand at that location consistent with all power system

operating constraints [140, 112].

Recall that g∗ = g∗(d) and J∗ = J∗(d) denote, respectively, the optimal

solution and the value function of the DC-OPF in Eqs. (1.24) - (1.27), corre-

sponding to the demand vector d. Denote by L the Lagrangian function of the

DC-OPF, given by

L =

n∑
i=1

Ji(gi)− λen

n∑
i=1

(gi − di) (1.29)

− (µ+)>
(
f̄ − V̂(g − d)

)
− (µ−)>

(
V̂(g − d)− f

)
(1.30)

− (τ+)>(ḡ − g)− (τ−)>(g − g). (1.31)

In what follows, we give a mathematical de�nition of LMP based on the simpli-

�ed DC-OPF formulation described in Section 1.3.1.

De�nition 1.1 (LMP [112]). Let g∗ be the unique optimal solution of the DC-
OPF in Eqs. (1.24) - (1.27), denote by J∗ the corresponding value of the objective
function, and let L be the corresponding Lagrangian function. �e LMP at bus i
is the partial derivative of the optimal objective function J∗ with respect to the
demand di, and is equal to the partial derivative of the Lagrangian L with respect
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to demand di evaluated at the optimal solution: 5

LMPi =
∂J∗

∂di
=
∂L
∂di

∣∣∣
g∗
. (1.32)

A straightforward calculation (see also [101]) shows that the LMP vector LMP =
(LMPi)

n
i=1 ∈ Rn can be represented as

LMP = λen1 + V̂>µ ∈ Rn, (1.33)

where µ = µ− − µ+ ∈ Rm, and 1 ∈ Rn denotes a vector of ones.

De�nition 1.1 and Eq. (1.33) are based on the DC-OPF formulation, and as

such they do not include the e�ect of active power losses. Most LMP-based

markets calculate the LMPs according to De�nition 1.1, but they also add a

correction accounting for power losses [74]. �e loss component is typically

negligible [172, 101], and its inclusion goes beyond the scope of this thesis. For

a more general discussion of LMPs, which includes a derivation in the case of

AC power �ow equations, we refer the reader to [112].

We remark that the LMPs, like the dispatched generation g, are an output

of the DC-OPF. As every optimization problem, the DC-OPF depends on the pa-

rameters that de�ne it. As already discussed, while grid topology and line limits

can for most purposes be considered �xed parameters, it is of interest to study

the impact of variable parameters, such as the demand d and uncontrollable

renewable generation, on the DC-OPF outputs. In particular, the LMPs depend

on changing conditions of nodal demand and uncontrollable generation, and,

more in general, on the changing generation mix in the grid. �is observation is

the basis of the work in Chapters 6 and 7.

1.3.3 �e role of uncertainty

Modern-day power grids are undergoing a massive transformation, both in terms

of decentralization and the introduction of large-scale renewables. Existing

transmission grids have been built, for the most part, assuming that generation of

electricity is predictable and controllable, and are not designed to accommodate

risks caused by large variability.

As mentioned above, the OPF problem computes the most economic dispatch

of generation g that satis�es reliability constraints while meeting the expected
demand d for the speci�c time window. Real-time demand variations are

generally small in the time scale of interest of 5-15 minutes [16], and are usually

5
Eq. (1.32) holds true in the DC-OPF case and, for more general formulations of the OPF,

whenever the value function J∗(d) is well-de�ned and di�erentiable with respect to d (cf. envelop

theorem [117]).
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taken care of by automatic control mechanisms that operate at smaller time

scales [14] which do not signi�cantly change the grid operating point. More

precisely, the real-time adjustments calculate a modi�ed power output grt
that

meets the variable real-time demand drt
. If the load forecasting error |d− drt|

is small, as it is usually the case, the corresponding power injections grt
and

power �ows f̂ rt = V̂grt
will be close to the forecast-based OPF outputs g, f̂ ,

and constraints such as the ones on transmission lines |f̂km| ≤ f̄km would

be rarely violated [16]. In other words, the frequency control adjustment

and load changes are on well-separated time scales. �e situation changes

when large supply-side uncertainty enters the picture. In the case of real-time

signi�cant �uctuations in uncontrollable power output, such as wind and PV

generation, the adjusted power output from controllable generators grt
may

be large, resulting in steep changes in real-time power �ows that can violate

transmission line constraints.

Even if demand is assumed to be constant, power injections and power �ows

are e�ectively random variables, and e�ective reliability analysis of power grids

must thus adopt techniques from probability theory and stochastic optimization.

When a transmission constraint is violated, the corresponding line will be

removed form the network (see discussion on thermal limits of transmission

lines in Section 1.3.1), causing a global redistribution of power �ows which

can in turn create stress on the remaining lines. In some cases, this can trigger

further outages and result in a cascading failures process propagating through

the network. �e role of supply-side uncertainty is at least two-fold here, one

straightforward and the second more subtle. First, the increased risk of initial
contingencies a�ects the likelihood of subsequent failures. Second, cascading

failures and blackouts in the presence of uncertainty show peculiar features

that are observed to a lesser extent (or not at all) in a deterministic se�ing, as

described in Chapter 4 of this thesis. For example, a line failure might occur

endogenously in the grid as a result of many small correlated �uctuation at

individual nodes, and the way failures propagate in the network is o�en of

a non-local nature [99, 103]. Moreover, the complex interaction between the

physical structure of the power grid and spatio-temporally correlated random

injections results in speci�c lines having a much higher contingency risk than

the majority of the other ones. �e traditional deterministic N-1 reliability

criterion (Section 1.4.1), in this sense, is insu�cient to inform grid operators

on the true vulnerabilities of the network: a probabilistic analysis rooted in

complex network theory is crucial to understand such phenomena.

Volatile renewable generation is also responsible for considerable �uctua-

tions in electricity prices. As wind and PV energy is signi�cantly cheaper than

traditional sources, prices tend to be lower when large amounts of these sources
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are available, and can even turn negative (Fig. 1.3). Moreover, steep changes

in demand and generation pro�les are responsible for di�erent congestion6
of

transmission lines. Under the LMP market architecture (Section 1.3.2), the pres-

ence of congested lines causes prices to vary wildly across di�erent locations

and contribute to their erratic behavior, as depicted in Fig. 1.5.

Figure 1.5: Real Time LMPs for randomly selected nodes in the Southern Power

Pool (SPP) market [154].

At the same time, understanding and predicting �uctuations in electricity

prices is highly relevant for wholesale energy market participants, as doing

so would allow them to design risk-averse trading strategies while meeting

�nancial and environmental goals.

1.4 Literature Overview

Accounting for short-term variability in power grid operations is of crucial

importance, both in terms of the analysis of single contingencies, multiple

(cascading) failures, and regarding the impact of supply-side variability on

prices. �is section presents the relevant literature on the topic.

1.4.1 Probabilistic guarantees on constraint satisfaction

In terms of power grids reliability, a naı̈ve idea would be to come up with

a planning that accounts for worst-case behavior of the underlying random

6
A status describing a line that, while still functioning, reached its operating capacity and no

more power is allowed to �ow on it.
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quantities. Clearly, such an approach is overly conservative and unsuitable

for actual operations. �is has motivated several recent works that a�empt to

consider power injection uncertainty by examining various forms of stochastic
guarantees on constraint violations [197, 191]. �is paradigm entails making a

planning admissible when the probability of a constraint violation is su�ciently

small:

P(constraint violation) ≤ q, (1.34)

where q ∈ [0, 1] is some appropriate threshold. �e major di�culty in dealing

with chance-constrained optimization is the fact that probabilistic constraints

are usually hard, or even impossible, to evaluate analytically. Techniques in-

vestigated in the literature include scenario-approach, (rare-event) simulation,

robust optimization and chance-constrained optimization. We now describe

these approaches in more detail.

�e scenario approach consists of sampling the relevant uncertain parameter

(i.e., wind power production) a certain number of times and use the samples

to substitute the chance constraints in Eq. (1.34) with a set of deterministic

constraints, resulting in a tractable optimization problem. In [31] the authors

provide a bound for the number of samples necessary for the transformed

problem to maintain the same level of probabilistic guarantees.

A widely used criterion in traditional deterministic power grid reliability

analysis is the so-called N-1 security criterion [14]. �is rule entails se�ing the

system operating point in such a way that the failure of any single component

does not lead to subsequent failures. In [189] the authors formulate a stochastic

optimization problem that integrates the (N-1)-based security constraints into

a DC-OPF program, and solve using a scenario approach. A similar approach

is used in [21] in the context of chance-constrained AC-OPF: the authors set

out to solve a chance-constrained AC-OPF via a scenario approach, and tackle

the AC power �ows’ nonlinearities by means of convex approximations. Such

methods can be e�ective but may require a large number of samples. Moreover,

modelling stochastic behavior at particular snapshots of time, they are di�cult

to implement in dynamical continuous-time se�ing, like the one investigated in

Chapter 2 of this thesis.

A related body of literature is based on the idea of handling a chance con-

straint using simulation techniques, namely (crude) Monte Carlo methods or

rare-event simulation. Crude Monte Carlo techniques are based on rewriting a

probability P(A) in the form E[1A], where 1A denotes the indicator function of

the eventA. Next, the expectation E[1A] is approximated by the empirical mean

taken over repeated independent samples of the underlying random variable.

�e scenario-based approach described above is related to this class of meth-

ods in that it provides theoretical results on the number of samples necessary
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to achieve a desired probabilistic guarantee [30]. Detailed simulations can

require a prohibitively large number of samples, especially for events with

small probabilities [190], and are thus impractical to be used for short-term

operations.

Rare-event simulation aims to handle the prohibitive computational cost of

crude Monte Carlo Simulations for estimating very small probabilities, and com-

monly used techniques are spli�ing [110, 167], and importance sampling [161].

Rare-event simulation can be faster than crude Monte Carlo methods, but are

still not fast enough to use as a subroutine in real-time chance constrained

optimization. Moreover, like Monte Carlo methods, they su�er from the lack of

analytic expressions that can be useful for gaining theoretical and operational in-

sights in what causes the constraint violations in the �rst place. Large-deviations

techniques o�er a solution as they provide a framework to describe the most
likely way a certain rare event happens.

A chance-constrained version of the OPF problem (CC-OPF) is studied in [16],

where the authors formulate an OPF with separate chance constraints for each

generator and transmission line, and obtain analytic reformulation of the con-

straints by assuming normally distributed �uctuations ω. For example, for each

line (i, j) a probabilistic constraint of the type

P(|fij(ω)| > f̄ij) < q

is introduced into a DC OPF, where q ∈ [0, 1] is a small, prescribed threshold,

and an a�ne control scheme is proposed to ensure that supply and demand

are matched at all times. �e paper [159] generalizes the approach in [16] by

considering weighted chance constraints (WCC-OPF) which can give di�erent

importance to violations of di�erent magnitudes. �is entails substituting a

constraint of the form

P(y(ω) > 0) < q,

where y(ω) denotes the magnitude of the overload (for example, y(ω) =
fij(ω)− f̄ij in the case of upper line limit violation), with∫

h(y(ω))ϕ(ω)dω ≤ q,

where ϕ(w) is the distribution function of ω, and the weighting function h(y),

which is non-zero only if y > 0, describes the risk related to the overload.

WCC-OPF can distinguish between small and large overloads as it assigns larger

weights to larger violations, and as such can be more e�ective in reducing the

probability of large overloads compared to CC-OPF, while being less restrictive

when it comes to small violations.
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Assuming that ω follows a multivariate Gaussian distribution, the chance-

constraints in [16, 158] can be approximated by closed-form expressions, which

are not based on large deviations techniques. �e large deviations approach

considered in this thesis, on the other hand, allows us to develop closed-form

approximations for a broader class of stochastic processes, and to deal with

more general events such as

P(∃ line (i, j) : |fij | > f̄ij) < q, (1.35)

as described further in Section 1.6.

In [176], the authors propose a computational approach to solve stochastic,

multiperiod optimal power �ow problems based on the convex relaxation of a

chance-constraints, introduced in [132]: a constraint of the form P(f(x, δ) ≤
0) ≥ 1− α is rewri�en as Eψ(t−1f(x, δ)) ≥ P(f(x, δ) > 0) ≥ 1− α, where

the generating function ψ : R → R is a nonnegative, convex function with

ψ(z) > ψ(0) = 1 ∀z > 0.

Most papers in this line of research use the DC power �ow equations, and

we will make the same assumption throughout this dissertation as well. Recent

works on chance-constrained AC-OPF include [21, 188, 157], which handle the

AC power �ow nonlinearities by means of convex approximations, relaxations

and local linearization around a forecasted operating point. A recent work on

the analysis of temperature constraints in a discrete-time se�ing is [102], which

focuses on instantons, or most-likely events.

1.4.2 Features of cascading failures

In the second part of this thesis, we study features of cascading failures from a

probabilistic perspective. To this end, we view the power grid as a complex net-
work, where power is produced and consumed at grid nodes, and is transported

across the network via transmission lines according to power �ow physics. �e

event of a line failure can cause a global redistribution of power �ows, which

can in turn create additional strain on the remaining transmission lines. In some

cases, this can trigger further outages and result in a cascading failure process

propagating through the network.

Cascading failure processes are not limited to power grids, and are of in-

terest for the study of many di�erent types of complex networks, including

communication networks [107], transport networks [37] and biophysical sys-

tems [85]. �e microscopic analysis of cascading failures is in general a di�cult

problem [58, 169, 164], and is particularly challenging in the context of power

grids. One of the main reasons is that power �ow physics are responsible for

a non-local propagation of failures across the network, making traditional epi-

demic models [196, 127, 85, 144] unsuitable for the task. �is challenge has
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created extensive interest from the engineering and physics communities in

the last two decades [1, 2, 3, 49, 50, 124, 129, 128, 80, 105, 162, 179, 206, 196, 201,

199, 200, 205, 48, 92].

Although many di�erent mechanisms for the cascade evolution have been

proposed, they all share a common property: the initial contingency triggering

the cascade is an external event that directly leads to the failure of the a�acked

network component [44, 45, 129]. In view of the discussion in Section 1.4.1

on the impact of supply-side uncertainty on line limits constraint violation, it

is important to consider the possibility that line failures can emerge indirectly
as a result of random, weather-correlated �uctuations of nodal inputs. Such

a con�guration of nodal inputs is not only the cause of the initial line failure,

but can also impact the way subsequent failures propagate in the network. �e

study of emergent line failures and cascades in power grids is carried out in

Chapter 4 of this thesis.

Despite the complexity on a microscopic level that we just discussed, there is

empirical evidence for one macroscopic characteristic of blackouts that follows

a simple probabilistic law: blackout sizes are scale-free [38, 57, 86, 39]. More

precisely, if one de�nes the total size S of a blackout as the number of customers

a�ected, the analysis of historical blackout data [42] reveals that S follows a

Pareto distribution, i.e., there exist constants α > 0, c > 0 such that, for large

x,

P (S > x) ≈ cx−α, (1.36)

where the symbol ≈ means that the ratio of both quantities converges to 1 as

x→∞.

Given the tremendous societal impact of large blackouts, understanding

the nature of Eq. (1.36) is of major signi�cance. Moreover, the study of power

laws is of interest for many other areas of science and engineering, and many

possible explanations for their occurrence have been proposed.

In many complex networks applications [10, 144, 73, 153], the scale-free

phenomena relate to the scale-free nature of the nodal degree distribution, due

to a mechanism known as preferential a�achment. However, as the topology

of power grids is not scale-free [195], this deduction is not valid in the case of

power systems [69].

Another explanation that has been put forward involves the concept of

self-organized criticality (SOC) [7], the notion that many systems operate in a

critical regime in which many events of interest exhibit power law behavior. In

the context of energy networks, it has been suggested that Eq. (1.36) may occur

as a consequence of self-organized criticality [38, 57, 14, 178]. �ese results,

which are based on simulations and indirect analogies between blackout models

and models known to exhibit SOC, fail to take into account the physics of power
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�ows and are thus unable to provide a causal explanation for the mechanism

behind Eq. (1.36) in power grids.

Other strands of literature models the cascading mechanism as a branch-

ing process with critical o�spring distribution [104], where each outage (the

“parent” in the current generation) triggers a random number of subsequent

outages (the “children”) with mean equal to one. Such models lead to blackout

sizes with in�nite mean, corresponding to an exponent α < 1 in Eq. (1.36),

while recent �ndings based on advanced statistical analysis of actual blackout

data [42] indicate a �nite mean blackout size [86, 39] with α > 1. For a more

complete overview of macroscopic cascading failures models, not limited to

power networks, we refer to [170].

Despite the widespread interest that the study of power laws received in

the literature, none of the proposed explanations seem adequate to explain the

emergence of scale-free blackout sizes in power grids, thus hindering our un-

derstanding of network vulnerabilities. In Chapter 5 of this thesis, we propose a

di�erent, yet simpler, causal mechanism behind the nature of scale-free blackout

sizes.

1.4.3 Electricity prices forecasting

As discussed in Section 1.3.3, electricity prices can be highly volatile (see Figs. 1.2

and 1.5). In order to fully understand the cause of such volatility, it is important

to realize that the wholesale energy market is di�erent from traditional �nancial

markets, due to the nature of the commodity being traded: electricity cannot

be stored in an economically feasible way [198, 100], and it has to be produced

and consumed instantly. As presented in Section 1.3.1, supply and demand

must be balanced at all times in order to ensure power system stability and,

as a consequence, the variable nature of renewable generation and real-time

demand is re�ected in the volatility of energy prices, in terms of both expected

intra-day price variations and sudden, momentary price spikes.

In this thesis, we focus on wholesale energy markets adopting the Locational

Marginal Pricing system described in Section 1.3.2. LMPs are used in many

US markets, as well as in Singapore, New Zealand and Argentina, while most

European markets utilize a zonal pricing mechanism [138] (we refer to [67]

for a global market overview). One of the main di�erences between the two

mechanism lies in the handling of network congestion. On the one hand, LMPs

account for the impact of network congestion in an organic and structured

fashion, through the Lagrange multipliers of the OPF. �is way, the LMP at a

speci�c node re�ects the marginal cost of supplying the next increment of load

at that node, consistent with all power grid operating constraints, including

transmission line capacities.
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Conversely, zonal pricing determines a single price for each zone in the

market (which is, in most cases, an entire country) ignoring intra-zonal trans-

mission congestions, which are then managed locally using a variety of di�erent

mechanisms. For an overview of the di�erent market structures around the

world, and relevant discussion regarding the merits of a potential transition

from zonal to nodal pricing in European markets, we refer to [138, 65].

�e topic of energy price forecasting has received a lot of a�ention in the

forecasting community in the last 20 years, since the restructuring of energy

markets from a government-controlled system to a competitive, deregulated

market [198]. In this thesis, we speci�cally focus on the impact of random

renewable generation and demand to prices in LMP-based market, with the goal

of developing novel algorithms and techniques to predict price �uctuations. For

a study of the impact of uncertainty on prices in European zonal markets, and

the development of forecasting techniques, we refer to [141] and references

therein, as well as to the review paper [198] for an extensive survey of energy

price forecasting techniques.

�anks to the rich mathematical structure of the LMP mechanism, prediction

models for LMPs are not limited to traditional statistical analysis and stochastic

models-based techniques, but include structural methods exploiting the mathe-

matical properties of the supply-demand matching process performed by grid

operators (namely, the OPF).

�e relevant literature on structural prediction models can be categorized

based on whether it takes an operator-centric [19, 111, 20, 97] or a participant-

centric [101, 209, 70, 18] point of view. In the former case, it is assumed that the

modeler has full knowledge of all the parameters de�ning the OPF formulation,

such as generation cost functions, grid topology, and physical properties of the

network. Clearly, this allows for the explicit computation of nodal LMPs as dual

variables of the corresponding OPF optimization.

In [19], the authors analyze the uncertainty in LMPs with respect to total

load in the grid, relying on the structural property that changes in LMPs occur

at the so-called critical load levels, under the DC approximation. �e calculation

of such levels is based on the algorithm proposed in [111]. In [20], the model is

extended to the AC power �ow framework. In [97] both load and renewable

generation uncertainty is considered, and a multiparametric programming

formulation that partition the uncertainty space into di�erent critical regions,

assuming the DC formulation, is proposed.

�e market participant-centric point of view, which relies only on publicly

available data without assuming knowledge of the network parameters and

operating conditions, has received less a�ention in the existing literature. �e

publicly available market data depend on the speci�c market, and are commonly

limited to historical grid-level generation mix (the percentage of total production
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from di�erent sources, such as wind or solar), grid-level system loads, and nodal

LMPs. On the other hand, OPF parameters such as generation cost functions,

generator capacities and transmission line limits are not available.

In [209] the authors utilize the structure of the OPF formulation to infer

the congestion status of transmission lines based only on zonal load levels,

without considering generation information. �rough the concept of System

Pa�ern Regions (SPR), which describe the marginal status
7

of generating units

and congestion status of transmission lines, and are based on the notion of

critical regions in multiparametric programming [11], zonal prices are obtained

by learning the map between zonal load and the corresponding zonal price.

In [70] a data-driven approach based on learning nodal prices as a function of

nodal loads using support vector machines (SVMs) is presented. �e approach

is not fully decentralized, since it assumes knowledge of nodal loads, and is

computationally unscalable, limiting its applicability to synthetically generated,

small grid examples. In [18], the authors assume knowledge of supply bids, nodal

generation and nodal prices, and propose an inverse optimization procedure to

estimate the remaining parameters of the OPF, which are then used to obtain

nodal price predictions. As a result of assuming nodal information on generation,

the approach is not fully decentralized and, hence, not suitable for performing

predictions from a market-participant perspective.

Finally, in [101] the authors present a methodology to recover grid topology

information based only on publicly available historical nodal prices, leveraging

results from convex optimization. Although [101] is not concerned with price

predictions, the methodology developed therein can play an important role in

developing a fully decentralized forecasting algorithm when combined with

advanced machine learning techniques and structural properties of the OPF

mechanism, as presented in Chapter 6 of this thesis.

�e algorithms described above have varying levels of performance, but

they all have limitations when predicting extreme price spike values. In the

case of price spikes corresponding to rare extreme �uctuations in renewable

generation, the worse performance of machine learning-based methodologies

can be a�ributed both to the scarcity of data covering such events, and to the

unavoidable errors introduced by a decentralized approach.

Even assuming a centralized perspective, forecasting price spikes is a noto-

riously di�cult problem [113], and is mostly undertaken within the framework

of zonal electricity markets. In [78], the authors use a logit model to predict

the occurrences of extreme price occurrences using wind power and demand

as explanatory variables in the German market. In [28, 143], the authors pro-

pose the use of extreme value theory to forecast the extreme tails of electricity

7
�e status of a generator k is marginal if g

k
< gk < ḡk .
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price distributions, with applications to the Nord Pool market and the German

energy markets. Regime switching models, which di�erentiate between a base

price regime and higher/lower spike regimes, have been applied to the problem

of forecasting extreme prices occurrences in the Australian market [83] and

the European Power Exchange EPEX [142, 187]. For a more extensive review

of techniques for spike prediction in zonal markets, including stochastic and

machine-learning based models, we refer to the literature review in [78].

In Chapter 7 of this thesis, we study the probability of nodal price spikes

occurrences in LMP-based markets, a problem that received less a�ention in

the literature compared to zonal markets, proposing an approach which com-

bines the multiparametric programming approach of [11] with large deviations

techniques.

1.5 Probabilistic methods

1.5.1 Large deviations results

�e theory of large deviations (LD) is concerned with calculating the proba-

bilities of large �uctuations (or rare events) that decay exponentially fast as a

function of some parameter, such as the magnitude of the noise ε. �e theory

has found applications in �elds such as queueing theory, telecommunication

engineering, and �nance [27], and its potential for power system applications

is investigated for a large part of this thesis. �is section provides a brief

introduction to the subject.

Consider a sequence of independent, identically distributed random variables

X1, X2, . . . with mean µ and variance σ2 <∞, and consider the sequence of

sample averages Sn = 1
n

∑n
i=1Xi, n ≥ 1. Large deviations theory can be seen

as a re�nement of the Law of Large Numbers and the Central Limit �eorem,

as we now show. From the Law of Large Numbers we know that Sn converges

in probability and almost surely to the mean µ as n → ∞. In particular, the

tail probabilities P(|Sn − µ| ≥ δ), for δ > 0, converge to zero as n→∞. �e

Central Limit �eorem gives more detailed information about the distribution of

Sn, stating that for large enough n the distribution of Sn is close to the normal

distribution N (µ, σ2/n). In particular, for δ > 0, it holds

P(|Sn − µ| ≥ δ/
√
n) →

n→∞

2√
2πσ2

∫ ∞
δ

e−
x2

2σ2 dx. (1.37)

�e central limit theorem thus deals with deviations ofSn fromµ of the order

1/
√
n, which are “typical” in the sense that the probability of such a deviation,

according to (1.37), isO(1). �e theory of large deviations, as the name suggests,

deals with larger �uctuations. As an illustration, for the particular case of i.i.d.
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Gaussian random variables Xi ∼ N (µ, σ2), the sample average Sn is itself

Gaussian with mean µ and variance σ2/n, so that

P(|Sn − µ| ≥ δ) =
2√

2πσ2

∫ ∞
δ
√
n

e−
x2

2σ2 dx (1.38)

and therefore

1

n
log(P(|Sn − µ| ≥ δ)) →

n→∞
− δ2

2σ2
. (1.39)

Eq. (1.39) states that the probability that Sn deviates from µ more than δ

decays exponentially fast as e−nδ
2/(2σ2)

, and is an example of a large deviation
principle, for which we now give a general de�nition.

De�nition 1.2. A family of probability measures {Pε}ε>0 on a Polish space X
is said to satisfy a large deviation principle (LDP) [55] with rate function I if, for
all Borel measurable set E ⊂ X ,

− inf
x∈E◦

I(x) ≤ lim inf
ε→0

ε log
(
Pε(E)

)
(1.40)

≤ lim sup
ε→0

ε log
(
Pε(E)

)
≤ − inf

x∈Ē
I(x), (1.41)

where the rate function I : X → [0,∞] is a lower semicontinuous functional on
X , and E◦, Ē denote, respectively, the interior and the closure of E.

�e reason to work with a lim inf and lim sup is mainly technical, and o�en

we can interpret Eq. (1.40) simply as

Pε(E) ≈ exp(− inf
x∈E

I(x)/ε).

�e quantity infx∈E I(x) is referred to as the decay rate of the rare event E,

while the term arg infx∈E I(x) is known as its most likely realization. �e

reason for such a name is that every realization x of the rare event E has a

certain cost (quanti�ed by the rate function I(x)), and the LDP states that the

realization with the smallest cost is what dominates in Pε(E) as ε→ 0. More

precisely, it can be shown (cf. Lemma 4.2 in [68]) that for any neighbourhood

B of arg infx∈E I(x), the conditional probability Pε(X \B |E) converges to 0
as ε→ 0.

A very useful tool in the LD arsenal is the contraction principle, which allows

to map large deviation principles from one space to another [55]. In the context

of this thesis, we will o�en start from a random model of power injections

pε, and then use the contraction principle to derive large deviation principles

for quantities such as line temperatures and line power �ows. For further

background, and other engineering applications of LD we refer to [27]; for an

introduction of large-deviations theory aimed at physicists, see [182].
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1.5.2 Concentration inequalities

Concentration inequalities provide non-asymptotic bounds on the likelihood of a

function of many random variables to deviate from its expected value. In contrast

to large deviations results, which hold true in the limit as ε→ 0, concentration

inequalities are non-asymptotic and are thus valid also in the prelimit. Many

concentration bounds have been proved, see [193] for an overview. In our

context, we make use of the following result ( [193], �eorem 2.26).

�eorem 1.1. Let X = (X1, . . . , Xn) be a vector of i.i.d. Gaussian variables
distributed as N (0, σ2) and let f : Rn → R be L-Lipschitz. �en,

P (|f(X)− E(f(X))| ≥ t) ≤ 2 exp
(
− t2

2L2σ2

)
for all t ≥ 0. (1.42)

1.6 Contribution of this thesis

�is dissertation consists of three main parts. In the �rst part (Chapters 2 and

3) we focus on deriving chance constrained versions of reliability constraints

for single line failures, which are analytic enough to provide insights into

strengths and vulnerabilities of the network, and computationally tractable

enough to be used for the purposes of short term planning and control. �e

second part (Chapters 4 and 5) is devoted to understanding the prominent

features of multiple line failures and blackouts, both from the microscopic and

macroscopic perspective. Finally, the third part (Chapters 6 and 7) focuses on

understanding the impact of uncertainty on electricity prices, with the goal

of forecasting price �uctuations, uncovering and exploiting the relationship

between electricity prices and uncertain renewable production and demand.

Part 1: Uncertainty-aware reliability analysis

In Chapters 2 and 3, we propose techniques based on large deviations theory to

handle chance constraints such as in Eq. (1.34). �e main idea is to approximate

the probability of the constraint violation event E with

Pε(E) ≈ exp
(
−I
∗(E)

ε

)
, (1.43)

where ε is “small” and I∗(E) is a particular function of the (rare) event E. Such

an approximation is an informal description of a rigorous result known as large
deviation principle. �e parameter ε quanti�es the magnitude of the noise in the

system. For instance, in the context of stochastic di�erential equations (SDE)

models (Chapter 2),

√
ε is a multiplicative constant in front of the Brownian
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motion component of the equation, while in the case of static models (Chapters

4 and 7), ε multiplies the covariance matrix of the random vector of interest. In

particular, for ε = 0 the system becomes completely deterministic.

�e appeal of such a result partially resides in the fact that the term I∗(E),

known as decay rate of the event E, can o�en be expressed analytically and in

closed form, with obvious bene�ts from the point of view of scalability of the

approach and interpretability of the results. Moreover, large deviation principles

can be derived for both random variables and random processes, which allows

us to study both static and dynamical frameworks. Finally, the derivation of

I∗(x) gives as a byproduct the most likely way, or most likely path, for the rare

event E to happen, which has important consequences for uncertainty-averse

planning. For a rigorous de�nition of concepts such as large deviation principle,

decay rate and most likely path, we refer to Section 1.5.

In Chapter 2, we study the probability of overloading of any transmission line

over a given time interval [0, T ], and we analytically characterize the capacity
regions of the grid, i.e., the set of controllable parameters α (such as power

injections at time 0) such that this probability stays below a �xed threshold

throughout the time window [0, T ]. �at is, we study probabilistic constraints

of the form

p(α) := P
(

sup
t∈[0,T ]

max
(i,j)∈E

|Θi,j(t,α)| > Θmax

ij

)
< q, (1.44)

where Θij(t, α) is the temperature of line (i, j) at time t corresponding to the

parameter vector α, and we describe capacity regions in the α space of the

form

R(q) = {α : p(α) < q}. (1.45)

�e approach models the stochastic behavior at the process-level by using

stochastic di�erential equations models for random power injections, taking into

account the transient relationship between line current and line temperatures.

Since line temperature responds gradually to current, a short-lived current

overload does not necessarily lead to a temperature overload and as such does

not constitute a reliability risk. With this in mind, we develop capacity regions

for both current and temperature overloads, and investigate the capacity gains

achieved by a less conservative approach.

�e derivation is based on Freidlin-Wentzell theory for large deviations,

and the regions enjoy convexity properties that make them amenable to be

used within OPF in the 5-15 minutes time frame, in contrast with approaches

based on long Monte-Carlo simulations. In some particular cases closed-form

expression are available, resulting in a chance-constrained OPF version with the

same computational complexity as the deterministic counterpart. Even when
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closed-form expressions are not available, the existence of e�cient algorithms

for decay rates calculations [82] makes our approach computationally feasible.

Finally, compared to many papers discussed before, which model stochastic

behavior at particular snapshots of time, we employ a process-level model that

allows to exploit the transient relationships between current and temperature,

leading to a less conservative approach. Chapter 2 is based on [133].

�e large deviations methods in Chapter 2, while powerful, rely on a scaling

procedure and produce results which are theoretically valid in the asymptotic

regime ε → 0. A natural-follow up question is how to develop chance con-

straints that are valid in the prelimit as well, without any restriction on the

magnitude of the noise ε. We set out to this task in Chapter 3, where be derive

strict upper bounds for the probability of a line failure E = {max`∈E |f`| ≥ 1}.
Assuming a multivariate Gaussian model for power injections with mean µ and

covariance matrix Σ, we develop bounds of the form

P(E) ≤ φ(µ,Σ),

whereφ is a deterministic function ofµ and Σ. Such bounds can be used to derive

approximation of chance constraints that are guaranteed to be conservative, and

that are explicit enough to be used for optimization purpose on short time scales.

�is leads to convex polyhedral capacity regions that share similarities with

those of Chapter 2, without any assumptions on the magnitude of the noise ε.
�e mathematical tools behind the derivation of such bounds are concentration

inequalities, for which we have provided a short introduction in Section 1.5.

Chapter 3 is based on [136].

�e methods used in the �rst part of the thesis, namely large deviations

results and concentration inequalities, can be seen as complementary e�orts

towards the goal of deriving novel chance constrained versions of reliability

constraints that can be e�ortlessly embedded in existing power grid optimization

routines.

Compared to [16], a crucial element of the approach taken in this thesis is

that we work with chance constraints of the form

P(∃ line (i, j) : |fij | > f̄ij) < q, (1.46)

while in [16] the m constraints

P(|fij | > f̄ij) < qij ∀ line (i, j), (1.47)

are used. �e constraint in Eq. (1.46) requires that the probability of any line

overload be smaller than a reliability target q, and thus correctly controls the

probability of the actual event that we seek to avoid. Reaching the same relia-

bility level using the approach in Eq. (1.47) would require to use the thresholds
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qij ≤ q/m, resulting in a much more conservative approach. On the other

hand, the constraint in Eq. (1.46) is harder to evaluate analytically than that in

Eq. (1.47) but, as it turns out, large deviations and concentration inequalities

techniques are powerful enough to handle this di�culty.

Part 2: Features of cascading failures and blackouts

While the �rst part of this thesis studies the event of single line failures and

tries to prevent constraint violations by deriving probabilistic counterparts

of reliability constraints to be used in stochastic versions of OPF, the second

part (Chapters 4 and 5) focuses on how the world looks like in the case of a

line failure. Moreover, it seeks to understand what happens a�er a failure, in

an e�ort to move beyond the classic N-1 deterministic criterion (described in

Section 1.4.1) using a probabilistic framework.

Chapters 4 retains the microscopic perspective adopted in Chapters 2 and 3,

and models power grids as complex networks with random, possibly correlated

power injections at the nodes, modeling variable renewable production. In

contrast to traditional studies on cascading failures, where the initiating event is

a deliberate a�ack (either targeted or random) to the grid stability that triggers

subsequent failures (which is also the se�ing of the N-1 criterion), we study

failures that can emerge endogenously from the network as a result of random

power injections at the nodes, coupled by the network structure and power

�ow physics. �is is a natural follow up study to the research of Chapters 2 and

3, which focused on estimating the probability of line failures and, as it turns

out, provides the most likely way for such failures to happen as a byproduct.

Here, we deliberately focus on this aspect and use large deviations techniques

to explicitly determine the most likely con�guration of power inputs leading to

line failures, and rank transmission lines according to their failure probability.

Moreover, we are able to predict how subsequent failures will propagate

in the network a�er the �rst endogenous failure and compare this cascading

process to that induced by a purely exogenous disturbance, �nding out that

cascades can propagate quicker under the novel framework than classical vul-

nerability analysis. �e results are mathematically exact in a small-noise regime,

and their accuracy has been validated in a case study using realistic data for the

German transmission grid.

Compared to previous studies on cascading failures, which are for the most

part based on epidemic models [85, 196], the research presented in Chapter

4 clearly illustrates the potential of using large deviations theory to analyze

the novel concept of emergent failures, and its widespread implications for

understanding blackouts in complex transport networks under uncertainty.

Chapter 4 is based on [137]
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�e topic of cascading failures in power grids is investigated once more in

Chapter 5, from a di�erent perspective. Here, we devote our a�ention to one

well-known macroscopic feature of blackouts: the scale-free nature of blackout

sizes. �at is, if S denotes the number of customers a�ected by a blackout, the

distribution of S follows a Pareto law, namely there exist constants C,α > 0
such that, for large x,

P (S > x) ≈ Cx−α. (1.48)

As discussed in Section 1.4.2, many explanations have been proposed to explain

why such a scaling law should emerge, none of which entirely satisfactory.

�e main contribution of Chapter 5 is to propose a novel, causal and simpler

explanation: we argue that the scale-free nature of blackout sizes connects to

the scale-free nature of city sizes. It is well-documented that city sizes exhibit a

Pareto distribution [38, 57, 86, 39], with a tail index α which is remarkably close

to that of blackout sizes. Motivated by this simple observation, we model power

grids as graphs with heavy-tailed Pareto-distributed sinks, which represent

demand from cities, and study cascading failures on such graphs initiated by

an initial disturbance. As power �ows get redistributed, more lines can be-

come overloaded and, a�er a su�cient number of failures, the power grid will

eventually disconnect in islanded components. A power shortage (blackout)

happens when the generators present in a component are not su�cient to meet

the demand, and we show that the distribution of the size of such shortages is

determined by that of the cities in the island.

Our approach di�ers from traditional explanations in that it does not relate

scale-free phenomena to the scale-free nature of the network topology, and

suggest new ways of approaching such phenomena in other transport networks.

Moreover, our analysis shows that in order to make the grid more resilient to

large blackouts the focus should be on making the individual cities more resilient,

as opposed to the commonly suggested approach in the power engineering

literature to perform network upgrades. We illustrate how such upgrades do

not a�ect the tail index of the blackout distribution, which is what ultimately

determines the likelihood of large blackouts. On the other hand, short-term

emergency responses aimed at surviving blackouts of predetermined duration,

such as local storage, may prove vital in drastically reducing the economic and

societal consequence of large outages, since the distribution of blackout duration

has a lighter tail than that of blackout sizes. Chapter 5 is based on [134].

Part 3: Impact of uncertainty on energy prices

�e third and �nal part of this thesis deals with the topic of electricity prices

�uctuations. In Chapter 6, we develop a machine learning methodology to

predict Locational Marginal Prices (LMP) from a decentralized perspective, i.e.,
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by using only publicly available data. �e topic is particularly important as

electricity market price predictions can enable market participants to shape

their consumption and supply while meeting their environmental objectives.

�e decentralized viewpoint if unavoidable when developing market predictions

that could be used by market participants, which usually do not have proprietary

information on power grid parameters (such as line and generator limits) that

are needed to solve the OPF, which is deeply connected to the calculation of

LMPs (Section 1.3.2). However, the decentralized perspective makes the analysis

much more challenging due to the scarcity of publicly available data, which

amounts to aggregated grid-wide demand and generation mix (i.e., the fraction of

supply coming from various sources such as wind, solar, coal etc), and historical

nodal prices. On the other hand, ISOs compute LMPs on the basis of complete

information on nodal demands, individual generators bounds, transmission

line limits, grid topology and physical parameters of the lines, which are all

unknown from the market participant perspective.

In order to predict prices in such an under-determined se�ing, we develop

a structured machine learning methodology to recover the salient features of

the energy market that copes with scarce, public and high-dimensional market

data. Speci�cally, our methodology is based on (i) exploiting the mathematical

properties of the supply-demand matching process to characterize LMPs as

deterministic (although unknown) piece-wise a�ne functions of renewable

supply and nodal demand; (ii) using advanced machine learning and convex

optimization techniques to infer grid topology and congestion status, and ulti-

mately learning the piece-wise a�ne function; (iii) predicting prices based on

grid-wide load and generation type mix forecasts, which acts as surrogate of the

corresponding unknown nodal information. Chapter 6 is based on [154].

It turns out that the methodology developed in Chapter 6 performs re-

markably well in forecasting intra-day price variations given the restricting

assumptions and limited availability of public data, but in some cases fails to

correctly predict price spikes, which is a notoriously di�cult problem as dis-

cussed in Section 1.4.3. For this reason, in Chapter 7 we take the centralized

perspective of the grid operator and focus on predicting extreme �uctuations

in LMPs. By assuming full knowledge of the power grid parameters, we are

able to explicitly derive the deterministic piecewise a�ne function linking the

stochastic input process, modeling renewable generation, which allows us to

use large deviations theory to identify the most likely ways for extreme price

spikes to happen as a result of unusual volatile renewable generation pro�les.

�is line of work can be seen as a �rst contribution to the goal of develop-

ing a “economically-constrained” stochastic OPF, an augmented version of the

OPF which incorporates probabilistic guarantees on the event of extreme price

�uctuations. Chapter 7 is based on [135].
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In this chapter we consider the problem of developing tractable probabilistic

counterparts for key reliability constraints introduced in Section 1.4.1, such as

allowed ranges for current and temperature of a transmission line. In particular,

we use large deviations techniques to study the probability of current and

temperature overloads in power grids with stochastic power injections, and

we characterize the set of admissible nominal power injections (referred to as

capacity regions) such that the probability of overloading of any line over a

given time interval stays below a �xed target.

It was noted in [191] that a transient current overload does not necessarily

lead to a temperature overload, due to the fact that line temperature responds

gradually to current. In order to investigate this phenomenon, we model power

injections at the process-level using stochastic di�erential equations (SDE),

and apply Freidlin-Wentzell theory to derive capacity regions for current and

35
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temperature overloads events. We show how enforcing stochastic constraints

on temperature, rather than on current, results in larger capacity regions, and

thus in a less conservative approach.

Due to the nonlinear relationship between current and temperature, the

decay rate (Section 1.5) for the temperature process is hard to compute explicitly.

To address this issue, we derive two tractable approximations: the �rst is an

inner bound, and the second is based on a Taylor series expansion of the decay

rate of the temperature overload probability. Both of the two regions coming

out of these approximations capture the bene�ts of incorporating the transient

relationship between temperature and current, and they both have the same

computational complexity as the current-based capacity region.

Moreover, we prove important convexity properties of the capacity regions,

which enable their e�cient application for planning and control purposes, such

as in OPF formulations. Finally, in the particular case where the random power

injections are modeled by an Ornstein-Uhlenbeck (OU) process, we express the

capacity regions in closed form.

Chapter outline. �e chapter is structured as follows. In Section 2.1, we

describe our model for power injections, line currents and line temperatures,

based on stochastic di�erential equations. Sections 2.2 and 2.3 constitute the

core of the chapter: using Freidlin-Wentzell theory, we develop and characterize

large deviations-based capacity regions for line currents and line temperatures,

respectively, and we provide explicit expressions in the particular case that

the power injections follow a multivariate OU process. Moreover, we prove

important convexity properties of the di�erent regions. In Section 2.4, numerics

for the OU case are presented. We summarize and discuss connections to the

remaining chapters of this thesis in Section 2.5. Finally, extended proofs are

reported in Appendix 2.A.

2.1 System model

2.1.1 Model for the power grid and DC approximation

�e network is speci�ed by a connected graph G = (N , E), where N =
{0, 1, 2, · · · , N} is the set of |N | = N + 1 nodes, modelling buses, and E is

the set of |E| = m edges, representing the transmission lines. A�er choos-

ing an arbitrary but �xed orientation of the transmission lines, we denote by

` = (i, j) ∈ E the transmission line between buses i and j, and by x−1
` > 0

the weight of edge ` = (i, j), corresponding to the inverse reactance of that

transmission line. By convention, if there is no line between i and j we set the

weight to be zero.
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Let p(t) = (pi(t))i∈N denote the vector of active net power injections at

time t, with the convention that pi(t) ≥ 0 (pi(t) ≤ 0) means that power is

generated (consumed, respectively) at bus i. Node 0 models the slack bus, which

ensures that there are no active power imbalances in the network.

Let I(t) = (I`(t))`∈E be the vector of line currents, andK(t) = (K`(t))`∈E
be the vector of line temperatures. Each transmission line ` is associated with a

thermal limit K`,max, which is the maximum permissible temperature of the

line [194]. We de�ne I`,max > 0 such that if |I`(t)| = I`,max at all times, then

limt→∞K`(t) = K`,max. �roughout this chapter, we work with normalized
currents Y(t) = (Y`(t))`∈E , de�ned as Y`(t) = I`(t)/I`,max. In order to

model the relation between power injections and line currents, we make use

of the DC approximation, described in Section 1.2.2, which leads to a linear

relationship between power injections and active power �ows f̂ = V̂p, where

f̂ = (f̂1, . . . , f̂m) ∈ Rm and f̂` is the active power �ow on line `. Under the DC

approximation, one can approximate the line currents with the (active) power

�ow on the line

I` ≈ f̂`, (2.1)

as noted in [119, 43], so that, in the notation of Section 1.3.1, we have I`,max =
f̄`.

Recall that the normalized currents are de�ned as Y`(t) = I`(t)/I`,max, and

let Λ = diag(1/I1,max, . . . , 1/Im,max) . In view of Eq. (1.18) and Eq. (2.1), the

active normalized line currents Y can be wri�en as a linear transformation of

the power injections X

Y(t) = Vp(t), (2.2)

where V := ΛV̂ and V̂ = DAL is the PTDF matrix de�ned in Section 1.2.2.

2.1.2 Stochastic and deterministic power injections

We assume that power injections at nodes 1, . . . , nw ≤ N are stochastic, mod-

elling buses housing intermi�ent renewable power generation. On the other

hand, power injections at nodes nw + 1, . . . , N are assumed to be deterministic

and constant, modeling conventional loads/generators.

We will be interested in capturing the probability of current/temperature

overloads over a �nite horizon [0, T ], which corresponds to the interval between

periodic control actions by the grid operator. �us, the buses in {nw+1, . . . , N}
are those that may be assumed to have a steady power injection over this time

scale, denoted by µD . Note that the power injection at the slack node 0 is also

stochastic, since p0(t) = −
∑n
i=1 pi(t). �e power injection vector is of the

form p(t) = (p0(t),X(t),µD), where X(t) ∈ Rnw is the vector of stochastic



38 Chapter 2. Large Deviations Analysis of Temperature Overloads

injections, and µD = (µD,i)
N
i=nw+1 ∈ RN−nw . We denote the initial condition

for the stochastic power injections by µ := X(0), and let µ̄ := (µ,µD).

In order to make the dependency of the normalized current on stochastic

and deterministic power injections more explicit, we note that

Y(t) = Vp(t) =

0 V VD

p0(t)
X(t)
µD

 , (2.3)

where 0 = [0, . . . , 0]> ∈ Rm, V ∈ Rm×nw ,VD ∈ Rm×(n−nw)
are the subma-

trices of V corresponding to stochastic and deterministic injections, respectively.

More compactly,

Y(t) = VX(t) + y, (2.4)

where y := VDµD . We will refer to Eq. (2.4) as the DC power �ow equations.

�e following lemma shows that matrix V has rank nw , i.e., the number of

stochastic power injections.

Lemma 2.1. If the network graph is connected, rank (V) = N and rank (V) =
nw . In particular, the matrix V has linearly independent columns.

We may interpret µ̄ = (µ,µD) as the vector of power injections set by the

grid operator at time 0 (for example, µ̄ could be the result of an OPF planning

based on a forecast for renewable production). Recall that the initial condition for

the normalized currents is Y(0) = ν,where ν := Vµ+y. We are interested in

scenarios where power grids operate safely, by assuming that the nominal power

injections µ̄ are such that the corresponding expected line currents at time t = 0
do not exceed the critical level, i.e., ‖ν‖∞ = max`=1,...,m |ν`| < 1 (possibly,

several |ν`| could be close to their threshold, modeling a high-stress situation).

Subsequently, some of the power injections �uctuate randomly because of the

variability of the renewable generators. Our focus is to characterize the set

of power injection vectors µ̄ such that the probability of current/temperature

overload over a �nite horizon [0, T ] is below a prescribed target p.

2.1.3 Mapping between line current and line temperature

In this section, we describe how line temperature depends on line current.

Recall that K`(t) denotes the temperature of line `. We work with normal-
ized line temperatures, de�ned as follows. Let Kenv,` be the ambient tem-

perature around line `. We de�ne the normalized line temperatures Θ(t) =

(Θ`(t))`∈E as Θ`(t) =
K`(t)−Kenv,`

Kmax,`−Kenv,`
. Note that the reliability constraint on

line temperatures reads ‖Θ`‖∞ < 1, where ‖f‖∞ := maxt∈[0,T ] ‖f(t)‖∞ =
maxt∈[0,T ] maxi=1,...,m |fi(t)| for a continuous function f : [0, T ]→ Rm.
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In this spirit, in Section 2.3 we characterize the capacity region of the power

grid based on bounding the temperature overload probability. In other words,

we describe the set of initial power injection vectors µ̄ such that P(‖Θ‖∞ ≥
1) ≤ p, where p is a prescribed reliability target.

�e transient relationship between the normalized temperature Θ` and the

normalized current is given by the ordinary di�erential equation [147]

τ`
dΘ`

dt
+ Θ` = (Y`)

2, (2.5)

where τ` > 0 denotes the thermal constant of the transmission line l. �us, we

have

Θ`(t) = Θ`(0)e−t/τ` +
1

τ`

∫ t

0

e−(t−s)/τ`(Y`(s))
2ds. (2.6)

Note that the instantaneous line temperature depends on the history of the line

current process, with an exponentially decaying weight on past values. �e

parameter τ` determines the dependence of the instantaneous temperature on

past values of current. If τ` is small, the dependence on past current values

becomes weaker, i.e., the line temperature responds more quickly to changes

in current. In the limit as τ` ↓ 0,the response is instantaneous, i.e., Θ`(t) =
(Y`(t))

2.
For the sake of simplicity, we assume the initial condition Θ`(0) = (Y`(0))2 =

ν2
` ∀` ∈ E for line temperatures. Note that ν2

` is the steady-state temperature

corresponding to a constant line current ν`.
1

With the above initial condition,

let us denote the mapping (2.6) from the current process Y to the temperature

process Θ as

Θ = ξτ (Y), (2.7)

where we emphasize the dependence on the thermal time constants τ = (τ`)`∈E .

2.1.4 Stochastic model for power injections

We now describe our stochastic model for the power injections X(t). Recall

that in order to characterize the capacity region of the power grid, we have to

estimate the following overload probabilities:

P(‖Y‖∞ ≥ 1), P(‖Θ‖∞ ≥ 1).

1
�is assumption, which ignores the history of the temperature process prior to time t = 0, is a

natural engineering assumption if the past line temperatures are unavailable. If such measurements

are available, it is possible to incorporate these into our capacity region based on temperature

overload (Section 2.3.1) as well as its inner bound (Section 2.3.2), although the analysis gets more

complicated (see [192, Section 4.3]).
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We model the random power input sources as small-noise stochastic dif-

ferential equations (SDE), for which a comprehensive and su�ciently explicit

theory of large deviations is available. SDEs are a �exible modeling tool for

continuously varying processes, and their use for wind speed modeling has

been adopted recently by several authors [192, 95, 125, 96]. Formally, we model

the vector of random power injections Xε(t) = (Xε
1(t), . . . , Xε

nw(t)) as the

strong solution of the nw-dimensional stochastic di�erential equation (SDE)

dXε(t) = b(Xε(t))dt+
√
εΓ(Xε(t))dW(t), t ≥ 0, (2.8)

where Xε(0) = µ, b(x) = (b1(x1), . . . , bnw(xnw)), Γ(x) = diag({γi(xi)}nwi=1)
and W(t) = (Wi(t))i=1,...nw . �e function b is referred to as the dri� function,

and captures the evolution of the process in the absence of noise. �e noise in the

evolution of the process is introduced by the second term in Eq. (2.8): Wi(t) is

a standard Brownian motion in R. �is noise is modulated in a state-dependent

fashion by the di�usion function Γ, and the scaling parameter ε > 0 captures

the amount of randomness in the power injections. As ε→ 0, the magnitude of

the noise injected into the evolution of the process Xε(t) diminishes, making

large deviations from the “noise-less” behavior exponentially (in 1/ε) unlikely.

It is in this regime that LD theory gives us tractable approximations of

the probabilities of the rare events corresponding to current and temperature

overloads. In practice, ε can be chosen so that the variance of the process Xε(t)
matches the estimation error for renewable production over a speci�c time unit

(Section 2.4.2). We make the following regularity assumptions: ∀i = 1, . . . ,m,
bi : R → R is Lipschitz continuous and di�erentiable with bi(µi) = 0; γi :
R→ (0,∞) is Lipschitz continuous, bounded and di�erentiable.

�e ε−scaled current process Yε(t) = (Yε(t))`∈E is de�ned as per the

DC power �ow equations: Yε(t) = VXε(t) + y. Similarly, the ε−scaled

temperature process Θε
τ (t) = (Θε

τ (t))`∈E , with thermal constant τ , is de�ned

as Θε
τ = ξτ (Yε),where the map ξτ is given in Eqs. (2.6) - (2.7). In the following

sections, we apply the theory of large deviations to estimate the probabilities

P(‖]Yε‖∞ ≥ 1) and P(‖Θε‖∞ ≥ 1), in the limit as ε ↓ 0.

2.2 Capacity regions based on current overload

�e traditional approach for ensuring line reliability is to impose the condition

‖Y(t)‖∞ := max`∈E |Y`(t)| < 1 at all times. In this spirit, in this section we

characterize the capacity region of the power grid obtained by bounding the

probability of current overload over [0, T ] by a prescribed target q

P(‖Y‖∞ ≥ 1) ≤ q.
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Our focus is to characterize the space of initial power injections that can be ‘set’

at time 0, such that the probability that the inherent variability in the stochastic

sources leads to a current overload before the next control instant is small.
2

�e above approach is in line with the conventional technique of enforcing

the thermal limits of transmission lines by capping the peak current on each

line. In Section 2.3.1 a more re�ned approach, taking into account the transient

relationship between line current and line temperature, is presented.

In the following, we �rst provide a large deviation principle for the current

over�ow event {‖Yε‖∞ ≥ 1} in the limit as ε ↓ 0. Next, we use this char-

acterization to de�ne the current-overload based capacity region, and prove

a convexity result which facilitates its application as a constraint in OPF. We

then provide two lemmas that are useful for computing the capacity region in

practice and we give a closed-form characterization of the capacity region when

the stochastic injections follow an OU process.

2.2.1 Large deviations results

As described in Section 1.5.1, the theory of large deviations (LD) is concerned

with calculating the exponential decay of rare events probabilities, by means of

the so-called rate functions. �is subsection is based on the Freidlin-Wentzell

theory [55], which is concerned with large deviation principles for the paths of a

stochastic process. �anks to �eorem 5.6.7 in [55], the power injections process

Xε
satis�es a sample path large deviation principle (SPLDP) over the function

space Cµ([0, T ]) = {g : [0, T ]→ Rnw : g is continuous and g(0) = µ}, with

good rate function

Ipow(g) =

nw∑
i=1

Ipow,i(gi). (2.9)

Here, g = (g1, . . . , gnw) and Ipow,i is the good rate function for the SPLDP

associated with the process Xε
i (t), i = 1, . . . , nw , and it is given by

Ipow,i(gi) =

 1
2

∫ T
0

(
g′i−bi(gi)
γi(gi)

)2

dt if gi ∈ H1
µi(R),

∞ if gi /∈ H1
µi(R).

Here, H1
µ(Rnw) := {g : [0, T ] → Rnw : g(t) = µ +

∫ t
0
φ(`)(s)ds,φ(`) ∈

L2([0, T ])} is the space of absolutely continuous functions with value µ at

time t = 0 and which possess a square integrable derivative. Next, we apply a

2
Given the equivalence between line currents and power �ows under the DC approximation,

the results in this section can also be interpreted in terms of the probability of exceeding line power

�ow limits.
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very useful tool in LD theory, known as the Contraction Principle, which allows

to map large deviations principles from one space to another. �anks to the

Contraction Principle, �eorem 4.2.1 in [55] and Eq. (2.4), the current process

Yε
satis�es a SPLDP with good rate function

Icur(f) = inf
g∈H1

µ:

y+Vg=f

Ipow(g).

�anks to Lemma 2.1, the matrix V has linear independent columns. �erefore,

its Moore-Penrose inverse has an explicit formula V+ = (V>V)−1V> and it

is a le� inverse of V. �us, for f ∈ y + V(H1
µ(Rnw)) ⊂ H1

ν(Rm) the equation

y + Vg = f has unique solution g = V+(f − y), yielding

Icur(f) =

{
Ipow(V+(f − y)) if f ∈ y + V(H1

µ(Rnw )),

∞ otherwise.
(2.10)

For the current overload event we then have that

lim sup
ε→0

ε logP(‖Yε‖∞ ≥ 1) = −I∗
cur
, (2.11)

I∗
cur

= inf
f∈y+VH1

µ:

‖f‖∞≥1

Icur(f) = inf
g∈H1

µ:

‖y+Vg‖∞≥1

Ipow(g), (2.12)

with I∗
cur

the decay rate for the current overload event.
3

2.2.2 Derivation of capacity region

Eq. (2.11) yields the following approximation for the current overload probability

for small ε:
P(‖Yε‖∞ ≥ 1) ≈ e−I

∗
cur

(µ)/ε. (2.13)

We use the above approximation to de�ne the capacity region for the power

grid, based on the constraint that the probability of current over�ow must not

exceed p, where p > 0 is a small pre-de�ned threshold:

R̃(cur)
ε,p := {µ ∈ RN : I∗

cur
(µ) ≥ −ε log(p)}. (2.14)

In the remainder of this section, we shed light on structural properties and

computational aspects of this capacity region. Our �rst result shows that the

capacity region is convex with respect to the deterministic power injections.

3
Note that f ∈ H1

ν \ (y + VH1
µ) implies Icur(f) = ∞, thus I∗

cur
=

inff∈y+VH1
µ: ‖f‖∞≥1 Icur(f) = inff∈H1

ν : ‖f‖∞≥1 Icur(f).



2.2. Capacity regions based on current overload 43

Lemma 2.2. R̃(cur)
ε,p is convex in the deterministic power injections vector µD .

Lemma 2.2 is important as convexity enables the set of allowable determin-

istic injections to be incorporated as a constraint in OPF problems (see, for

example, [16]). For the special case where power injections are modeled as an

OU process, we show in Section 2.2.3 that the capacity region R̃(cur)
ε,p itself is

convex. Le�ing

ψ` = inf
f∈H1

ν :
‖f`‖∞≥1

Icur(f) = inf
g∈H1

µ:

‖y`+V`g‖∞≥1

Ipow(g),

with V` being the `-th row of matrix V, we note that I∗
cur

= min`∈E′ ψ`, where

E ′ := {` ∈ E : V` 6= 0}. 4

In other words, the decay rate for a current overload in the network is the

minimum of the decay rates corresponding to the overload of each line. Decay

rates, together with Eq. (2.13), provide an analytical tool to rank transmission

lines in terms of their vulnerability. �e next lemma shows that the current

overload on any line most likely occurs at the end time.

Lemma 2.3. ∀ ` ∈ E ′, ψ` = inf
g∈H1

µ: |y`+V`g(T )|=1
Ipow(g).

For a 6= ν`, de�ne

ψ
(a)
` = inf

f∈y+VH1
µ: f`(T )=a

Ipow(f), (2.15)

so that ψ` = ψ
(1)
` ∧ ψ

(−1)
` = minψ

(1)
` , ψ

(−1)
` and

I∗
cur

= min
`∈E′

ψ
(1)
` ∧ ψ

(−1)
` . (2.16)

Eq. (2.16) allows us to rewrite the capacity region as

R̃(cur)
ε,p =

⋂
`∈E′, a∈{−1,1}

{µ ∈ RN : ψ
(a)
` ≥ −ε log(p)}. (2.17)

�us, obtaining the capacity region R̃(cur)
ε,p hinges on computing ψ

(a)
` , which

by de�nition is the solution of Eq. (2.15). To solve this variational problem with

boundary constraints, one can for instance use the Euler - Lagrange equations

(see also our discussion in Section 2.4). For simple di�usion models, this ap-

proach can be used to obtain the optimal path and ψ
(a)
` in closed form, leading

to an explicit characterization of the capacity region R̃(cur)
ε,p . Next, we illustrate

this for the case where the power injections are modeled as an OU process.

4
Note that if V` = 0, then Y ε` (t) = Y ε` (0) = y` is constant and |y`| = |ν`| < 1, yielding

ψ` = inf
g∈H1

µ: ‖y`‖∞≥1
Ipow(g) =∞.
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2.2.3 Explicit computations for Ornstein-Uhlenbeck process

In this section we suppose that the power injections Xε(t) follow a multivariate

Ornstein-Uhlenbeck (OU) process, which is the most tractable example of an

SDE and is, in particular, a Gaussian process.
5

Such a process is of the form

dXε(t) = B(µ−Xε(t))dt+
√
εΓdW(t) (2.18)

i.e., the functions b(·) and Γ(·) in the SDE (2.8) are b(x) = B(µ − x) and

Γ(x) = Γ, where B = diag({bi}),Γ = diag({γi}), and bi, γi > 0 for all

i = 1, . . . ,m. For this model, the capacity region can be expressed in closed

form, as shown in the next Proposition.
6

Proposition 2.1. If Xε(t) is de�ned by Eq. (2.18), then

R̃(cur)
ε,p =

⋂
`∈E′

{
µ ∈ RN : |ν`| ≤ 1−

√
ε log(1/p)V`MTV >`

}
.

In the particular case B = bI, Eq. (2.1) simpli�es to

R̃(cur)
ε,p =

⋂
`∈E′

{
µ ∈ RN : |ν`| ≤ 1− β`

}
. (2.19)

Here, Mt = Γ2B−1(I− e−2Bt)eB(t−T ) and

β` :=

√
(1− e−2bT )ε log(1/p)σ2

`

b
, σ2

` := V`Γ
2V >` .

We make the following remarks regarding Proposition 2.1: (i) R̃(cur)
ε,p is a

closed convex set; in particular, it is a polyhedron in RN . We note that this

property enables us to incorporate the capacity region in OPF problems; (ii) β`
is a strictly decreasing function of b, implying that R̃(cur)

ε,p shrinks as b becomes

smaller. �is is intuitive, since for small values of b, the OU process will revert

to its long-term mean µ with less force; (iii) the longer the time T between two

control instants, the greater the probability that the �uctuations in the power

injections will result in an overload, yielding a smaller R̃(cur)
ε,p ; (iv) the expression

for R̃(cur)
ε,p encloses in a single formula the dependency on the initial condition

ν , on the window length T , and on the topology of the network, the physical

properties of the transmission lines and the evolution of the stochastic power

injections, encoded in the matrices V,Γ,B.

5
�e Gaussianity assumption for wind power is debatable. While consistent with atmospheric

physics [16] and recent wind park statistics [106, 12], di�erent models are preferred for di�erent

timescales [121].

6
Note that our framework allows to extend Proposition 2.1 to mixtures of OUs, providing

�exibility to the modeler while keeping the bene�ts of closed-form expressions.
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2.3 Capacity regions based on temperature overload

Since temperature responds gradually to current, a current overload of short

duration does not necessarily imply an overload in temperature. By explicitly

capturing the transient relationship between temperature and current, we can

enlarge the conservative capacity region obtained in Section 2.2. In the follow-

ing, we �rst provide a large deviation principle for the temperature overload

event P(‖Θε,τ‖∞ ≥ 1). A�er that, we de�ne the temperature-overload based

capacity region and prove a convexity result for it, analogous to the result in

Section 2.2.

However, due to the non-local in time relationship between current and

temperature, the decay rate for the temperature process is hard to compute

explicitly. As a result, the capacity region cannot be expressed in closed form

for even the simplest di�usion models. To address this issue, we develop two

approximations of the capacity region: the �rst is an inner bound, while the

second is based on a �rst-order Taylor expansion of the decay rate around τ = 0.

�ese approximations have the following appealing properties, which make

them amenable to application in OPF formulations. Firstly, both approximations

are supersets of the current-based capacity region R̃(cur)
ε,p . Secondly, they have

the same computational complexity as R̃(cur)
ε,p .�irdly, for the special case where

the stochastic power injections are modeled by an OU process, both regions can

be expressed in closed form (Sections 2.3.4, 2.3.5). Finally, both approximations

are convex over the deterministic power injections.

2.3.1 Derivation of the capacity region

�anks to the relationship in Eq. (2.5), the contraction principle yields that Θε,τ

satis�es a SPLDP with good rate function

Itmp,τ (h) = inf
f∈H1

ν :
ξτ (f)=h

Icur(f) = inf
f∈y+VH1

µ:

ξτ (f)=h

Icur(f). (2.20)

For the temperature overload event we thus have

lim sup
ε→0

ε logP(‖Θε,τ‖∞) ≥ 1) ≤ −I∗
tmp,τ , (2.21)

I∗
tmp,τ = inf

h∈ξτ (H1
ν)

‖h‖∞≥1

Itmp,τ (h), (2.22)

where I∗
tmp,τ is the temperature decay rate. Le�ing, for ` ∈ E ′,

ω` = inf
h∈ξτ (H1

ν):
‖h`‖∞≥1

Itmp,τ (h) = inf
g∈H1

µ:

‖ξτ` (y`+V`g)‖∞≥1

Ipow(g), (2.23)
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we see that the decay rate for the temperature is I∗
tmp,τ = min`∈E′ ω`. Note that

ω` and I∗
tmp,τ depend on µ, τ and T . As before, Eq. (2.21) yields the following

approximation for the rare event probability, for small ε:

P(‖Θε,τ‖∞ ≥ 1) ≈ e−I
∗
tmp,τ (µ)/ε. (2.24)

�is leads to the following de�nition of the capacity region

R̃(tmp,τ )
ε,p := {µ ∈ RN : I∗

tmp,τ (µ) ≥ −ε log(p)}

=
⋂
`∈E′
{µ ∈ RN : ω`(µ) ≥ −ε log(p)}. (2.25)

We have the following convexity result:

Lemma 2.4. R̃(tmp,τ )
ε,p is convex in the deterministic power injections vector µD .

�e variational problem for the temperature overload (2.22) is di�cult to

solve in general, and numerics can also prove to be challenging. Motivated

by this di�culty, in the next subsection we develop approximations for the

temperature decay rate, and the corresponding capacity regions, by reducing

the problem (2.22) to the easier problem (2.15).

2.3.2 Inner bound for the capacity region

In this section, we develop an inner bound for the capacity region R̃(tmp,τ )
ε,p

which is larger than the capacity region R̃(cur)
ε,p based on current overload, and

thus captures some of the bene�t of incorporating temperature dynamics. De�ne

I(LB)
tmp,τ := min

`∈E′
ψ

(α`)
` ∧ ψ(−α`)

` .

�e next lemma shows that I(LB)
tmp,τ is a lower bound for the temperature decay

rate, i.e., I∗
tmp,τ ≥ I

(LB)
tmp,τ .

Lemma 2.5. For all ` ∈ E ′, we have ω` ≥ ψ
(α`)
` ∧ ψ(−α`)

` , where α` =√
1−ν2

` e
−T/τ`

1−e−T/τ` .

�e capacity region based on the lower bound I(LB)
tmp,τ is

R̃(tmp,τ ,LB)
ε,p := {µ ∈ RN : I(LB)

tmp,τ (τ ,µ) ≥ −ε log(p)}.

�e following proposition states that the capacity region based on the lower

bound, while being an inner approximation of the actual temperature-based

region, is less conservative than the current-based capacity constraint.
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Proposition 2.2. I∗cur ≤ I
(LB)
tmp,τ ≤ I∗tmp,τ and R̃(cur)

ε,p ⊆ R̃(tmp,τ ,LB)
ε,p ⊆ R̃(tmp,τ )

ε,p

for all τ ≥ 0.

As a consequence, using R̃(tmp,τ ,LB)
ε,p over R̃(cur)

ε,p allows for larger power

injections values (i.e., less curtailment), while still bounding the probability of

a temperature overload and without additional computational burden. Finally,

we note that the inner bound satis�es the following convexity property.

Lemma 2.6. R̃(tmp,τ ,LB)
ε,p is convex in the deterministic power injections vector

µD .

�e proof goes along the same lines of the proofs of Lemmas 2.2 and 2.4 and

is therefore omi�ed.

2.3.3 Taylor approximation of the decay rate and
corresponding capacity region

In this section we derive a heuristic approximation for the temperature decay

rate

I∗
tmp,τ = inf

h∈ξτ (y+VH1
µ), ‖h‖∞≥1

Itmp,τ (h), (2.26)

based on a Taylor expansion around τ = 0. First, write the temperature rate

function in Eq. (2.20) as

Itmp,τ (h) =

{
G(τ ,h) if h ∈ ξτ (y + VH1

µ),

∞ otherwise,

where G(τ ,h) is de�ned explicitly in Eq. (2.46) in Appendix 2.A.

Taylor approximation 1. Let f∗ be the optimal current path to over�ow. For
small τ , we will use the approximation

I∗tmp,τ ≈ I
(TL)
tmp,τ := I∗cur + τ · ∇τG(τ , f2

∗ )|τ=0, (2.27)

where G is de�ned in Eq. (2.46) in Appendix 2.A.
If τ is of the form τ = τ0(1, . . . , 1)>, τ0 > 0, we obtain the closed-form expression

I(TL)
tmp,τ = I∗cur + τ0Φf∗ , (2.28)

where

Φf∗ :=

nw∑
i=1

[
Ki(f∗(T ), f ′∗(T ))−Ki(f∗(0), f ′∗(0))

]
, (2.29)

Ki(f∗(t), f
′
∗(t)) :=

1

2

(V +
i f ′∗(t)− bi(V +

i (f∗(t)− y))

γi(V
+
i (f∗(t)− y))

)2

, (2.30)
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with bi(·) and γi(·) the dri� and di�usion terms for the i-th stochastic power
injection Xε

i in Eq. (2.8). In particular the approximation I(TL)
tmp,τ depends only on

the current decay rate I∗cur and on the values f∗(0), (f∗)
′(0), f∗(T ), (f∗)

′(T ).

�e heuristic is motivated by the formal Taylor expansion of I∗t,τ around

τ = 0, i.e., I∗t,0 + τ · ∇τ I
∗
t,τ |τ=0 + o(τ ). If τ = 0, the optimal temperature

path to over�ow is h∗ = (f∗)
2
, so I∗

tmp,τ = I
cur

2(h∗) = Icur(f∗) = I∗
cur
,

and the substitution of ∇τG(τ , f2
∗ )|τ=0 for ∇τI∗tmp,τ |τ=0 is motivated by an

in�nite-dimensional version of Danskin‘s �eorem [22], Proposition 4.13. �e

explicit calculations for the case τ = τ0(1, . . . , 1)>, τ0 > 0, are reported in

Appendix 2.A.

Eq. (2.28) provides an approximation of the temperature decay rate which

depends only on the current decay rate and the corresponding optimal path,

which are generally easier to obtain. �e capacity region corresponding to the

Taylor approximation is

R̃(tmp,τ ,TL)
ε,p := {µ ∈ RN : I∗

cur
(µ̄) + τ0Φf∗ ≥ −ε log(p)}.

In Section 2.3.5 we show that the inequalities I(TL)
tmp,τ ≥ I∗cur

and R̃(t,τ ,TL)
ε,p ⊇

R̃(cur)
ε,p hold in the OU case, con�rming the intuition that the temperature-based

approach is less conservative than the current-based one.

2.3.4 Explicit computations for OU: lower bound

In this section we assume that the power injection process Xε(t) follows the

OU process in Eq. (2.18), and we explicitly compute the lower bound I(LB)
tmp,τ and

the corresponding capacity region R̃(tmp,τ ,LB)
ε,p .

Proposition 2.3. If Xε(t) is de�ned by Eq. (2.18), then

I(LB)
tmp,τ = min

`∈E′
(α` − |ν`|)2

V`MTV >`
,

R̃(tmp,τ ,LB)
ε,p =

⋂
`∈E′
{µ ∈ RN :

(α` − |ν`|)2

V`MTV >`
≥ −ε log(p)},

where

α` =

√
1− ν2` e−T/τ`
1− e−T/τ`

, MT = Γ2B−1(I− e−2Bt)eB(t−T ).

In the particular case B = bI, we have

R̃(tmp,τ ,LB)
ε,p :=

⋂
`∈E′
{µ ∈ RN : |ν`| ≤ δ`}, (2.31)
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δ` =
√

1− η2
` e
−T/τ`(1− e−T/τ`)− η`(1− e−T/τ`), (2.32)

η` :=

√
ε log(1/p)σ2

` (1− e−2bT )

b
< 1, σ2

` = V`Γ
2V >` . (2.33)

If B = bI, we see from Prop. 2.3 that R̃(tmp,τ ,LB)
ε,p is a convex polyhedron in

RN , as in the case of the current region, and is in particular a scaled version of

the polyhedron R̃(cur)
ε,p . Moreover, δ` ∈ (1− η`, 1), δ`

τ→∞−−−−→ 1 and δ`
τ→0−−−→ η`.

�is means that, as τ increases, the capacity region (2.31) gets closer to the

larger region {µ ∈ RN : ‖ν‖∞ < 1}, which is the stability region for a

deterministic system. On the other hand, as τ → 0, the region in Eq. (2.31) boils

down to the smaller current-based capacity region given in Eq. (2.1).

2.3.5 Explicit computations for OU: Taylor approximation

In this section we consider again the OU process X(ε)
in Eq. (2.18) in the

particular case B = bI, and we develop the capacity regions based on the Taylor

approximation 1.

Proposition 2.4. For τ = τ0(1, . . . , 1)> we have

I(TL)
tmp,τ = (1 + 2τ0b) I∗cur(µ̄) = (1 + 2τ0b) min

`∈E′
(1− |ν`|)2

V`MTV >`
, (2.34)

R̃(tmp,τ ,TL)
ε,p =

⋂
`∈E′

{
µ ∈ RN : |ν`| ≤ 1− η`/

√
1 + 2τ0b

}
,

It is clear that R̃(tmp,τ ,TL)
ε,p is a convex polyhedron, as it was the case for the

current region R̃(cur)
ε,p and the lower bound region R̃(t,τ0,LB)

ε,p . Moreover, since

1 + 2τ0b > 0, we see that R̃(tmp,τ ,TL)
ε,p ⊇ R̃(cur)

ε,p and in particular R̃(tmp,τ ,TL)
ε,p is

a scaled version of R̃(cur)
ε,p . Recall that this was also the case for the lower bound

capacity region: the di�erence is that, while the lower bound holds for every

τ > 0, the approximation I(TL)
tmp,τ is meaningful only for small τ0. In general,

R̃(tmp,τ ,TL)
ε,p and R̃(tmp,τ ,LB)

ε,p are not subsets of each other.

2.4 Numerics

In order to compute the temperature decay rate I∗
tmp,τ , one has to solve the

variational problem in Eq. (2.23), which is computationally harder than the one

for the current in Eq. (2.15), due to the integral mapping in Eq. (2.6).
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On the other hand, the theory we presented enables us to reduce the com-

putation of the decay rates I(LB)
tmp,τ , I

(TL)
tmp,τ to the easier variational problem for

I∗
cur
, capturing the bene�ts of incorporating the temporal dynamics between

current and temperature without additional cost. Variational problems like

Eq. (2.15), which are based on Freidlin-Wentzell theory, are well studied in the

literature, and when closed-form expression are not available e�cient numerical

algorithms have been developed [82].

In the next subsections we apply our theory to derive the capacity regions

for two IEEE test cases in MATPOWER [210], and we quantify the capacity

gains achieved by R̃(tmp,τ ,LB)
ε,p , R̃(tmp,τ ,TL)

ε,p over R̃(cur)
ε,p assuming an OU model

for power injections.

�anks to the analytic characterization of capacity regions for the OU model,

our approach is fully scalable and can e�ortlessly be applied to larger power

networks, as there is virtually no computational burden in computing R̃(cur)
ε,p and,

therefore, all the other capacity regions. For a detailed analysis on computational

costs for solving Eq. (2.15) for a general SDE, the interested reader is referred

to [82], Section 3.3.

2.4.1 IEEE 14-bus test network

In this section we develop capacity regions for the IEEE 14-bus test network,

corresponding to the test case case14 in [210]. �e grid consists of 14 nodes and

20 lines, and the original test case has constant deterministic power injections

PD ∈ R14
. We replace two of the deterministic injections (nodes 2 and 13) by

OU processes with long term mean equal to the original deterministic power

injection, and we assume we control the injections at nodes 6 and 9. �e test

case reports the parameters PD , xij and C̃ , but does not include line limits,

which we de�ne as follows. For each line ` we set the maximum permissible

current I`,max = K|I`,nom|, I`,nom being the nominal current in line ` obtained

from PD via the DC power �ow equation, and K = 1.5. We set T = 1, bi =
1, γ2

i = 10, ε = 0.25 and τ0 = 0.5.

We compute two-dimensional capacity regions, which correspond to the

amount of power that can be injected at the controllable sources so that the

probability of overload in [0, T ] is su�ciently small. �e current-based capacity

region is

R̃(cur)
ε,p = {(µ6, µ9) ∈ R2 |, µ = (PD,2, . . . , PD,5, µ6, PD,7,

PD,8, µ9, PD,10, . . . , PD,14), Icur(µ) ≥ −ε log(p)},

and the other regions are de�ned similarly. In Figs. 2.1a, 2.1b the 2-dimensional

capacity regions R̃(cur)
ε,p , R̃(tmp,τ ,LB)

ε,p and R̃(tmp,τ ,TL)
ε,p (denoted as R̃(cur), R̃(LB)
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and R̃(TL)
in the legend) are shown for two di�erent target probabilities p,

together with the region corresponding to a deterministic system

Rdet = {(µ1, µ2) ∈ R2 | |ν`| ≤ 1 ∀` = 1, 2, 3} (2.35)

In particular, Fig. 2.1b shows that for p = 10−7
the lower bound region

R̃(tmp,τ ,LB)
ε,p is more than two times bigger than R̃(cur)

ε,p , and the Taylor region

R̃(tmp,τ ,TL)
ε,p is approximately two times bigger than R̃(tmp,τ ,LB)

ε,p . �is result

suggests that for small target probabilities, the temperature-based approach

yields a signi�cative capacity gain.

Another application of the proposed methodology is the identi�cation of

the most vulnerable parts of the grid. For a given value of µ, let `∗(µ) :=

argmin`∈E′ψ
(1)
` (µ)∧ψ(−1)

` (µ) denote the line with the highest chance of over-

loading in Eq. (2.16), and, for a line k ∈ E ′, de�ne

Sk := {(µ6, µ9) ∈ R2 | ‖ν‖∞ ≤ 1, `∗(µ) = k} ⊂ Rdet. (2.36)

�e region Sk ⊂ Rdet characterizes the controllable power injections such

that, in the event of large �uctuations of stochastic power injections, line k is

the most likely line to overload. �e Sk-s partitionRdet in several subregions, as

shown in Fig. 2.1c. Such characterization can help detecting the most vulnerable

components of the grid: in this case, line (12, 13), corresponding to the biggest

sub-region in Fig. 2.1c. Finally, Fig. 2.1d shows the topology of the network.

2.4.2 IEEE 118-bus test network

In this section we perform a case study on a larger system, corresponding to

the test case c118swf.m [130]. �e system has 118 nodes, 210 lines and 52
generators, 11 of which are modeled as wind units (indexed by j1, . . . , j11). In

order to simulate a more heavily loaded system, we de�ne Imax to be equal to

50% of the line limits provided in the test case.

For our study, we �rst solve a DC OPF [177], which is an optimization

problem determining the generation schedule that minimizes the total system

generation cost, while satisfying demand/supply balance and network physical

constraints, under the assumptions of the DC approximations (see Section 1.3.1).

Let µ̄ ∈ R118
be the resulting optimal net power injections vector.

Next, we model the 11 wind generators as OU processes, using the hour as

the unit for temporal quantities. �e parameter µk of generator jk is set to be

equal to µ̄jk , which is interpreted as the nominal power injection of generator

jk .

�e parameters ε, B = bI,Γ = diag({γI}) and T are calibrated in such a

way that the standard deviation of each OU process at the end time T matches
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(a) Target probability p = 10−4
. (b) Target probability p = 10−7

.

(c) Partition ofR
det

. (d) Network topology.

Figure 2.1: a,b) Capacity regions for the IEEE 14-bus network, depicted using di�erent mesh

styles, for two di�erent target probabilities; c) Subdivision ofR
det

according to which lines are the

most vulnerable, as in Eq. (2.36); d) IEEE-14 topology. Stochastic and (deterministic) controllable

nodes are represented with square and triangular vertexes, respectively. �e six solid lines are the

most vulnerable ones.

realistic values for wind power forecasting error (expressed as a fraction of the

wind plant installed capacity) over di�erent control periods:

stdjk(T ) =

√
εl2k
2b

(1− e−2Tb) = q(T ) · µ(installed)

jk
. (2.37)

Given T , we set q = q(T ), b = 1, ε = 1 and solve Eq. (2.37) for γk . �e values

for q(T ), shown in Fig. 2.2a,2.2b, are taken from [89], and correspond to the

Root Mean Squared Forecast Error obtained applying a persistence forecast to

ERCOT wind data. Note that this se�ing can capture renewable generators with
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di�erent installed capacities. �e overload probabilities are chosen in the range

[10−7, 10−1], and τ = 0.5.

To quantify the capacity gain achieved by the di�erent regions, for each

choice of the parameters we solve three distinct DC OPFs, each incorporating

a di�erent capacity region R in the constraints. Note that since the capacity

regions are convex polytopes, solving these OPFs has the same computational

cost as solving the deterministic one.

Next, we compare the total system costs, which is the value of the objective

function at optimality, to the cost obtained by solving the deterministic OPF

(that is, the one incorporatingRdet in the constraints), by means of the Cost of
Uncertainty (CoU) metric

CoU
(R)(q, p) =

cost
R(q, p)− cost

det

cost
det

≥ 0, (2.38)

de�ned as the relative increase in system costs when uncertainty-aware relia-

bility constraints are considered. Fig. 2.2 reports CoU(q, p) for various values

of q and p.

(a) T = 1/4 (15 minutes), q(T ) = 0.018. (b) T = 1 (60 minutes), q(T ) = 0.04.

Figure 2.2: CoU
(R)

for di�erent overload probabilities p and time intervals T , R ∈
{R̃(cur)

ε,p , R̃(tmp,τ ,LB)
ε,p , R̃(tmp,τ ,TL)

ε,p }.

We see that enforcing constraints on line currents results in higher system

costs than the ones achieved by using temperature-based constraints, consis-

tently across di�erent probability levels and time intervals. �e gain is more

pronounced over shorter intervals, capturing the intuition that current over-

loads are permissible for short periods, and for smaller probabilities: for in-

stance, CoU drops from 8% to 3% when R̃(tmp,τ ,LB)
ε,p is used over R̃(cur)

ε,p , for

T = 1/4, p = 10−7
.
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2.5 Concluding remarks

We employed large deviations theory to develop tractable capacity regions for

power grids with variable power injections, modeled as small-noise di�usion

processes, assuming currents behave according to the DC power �ow equations.

�ese capacity regions de�ne the set of initial power injections such that the

probability of a current/temperature overload in a given interval is very small,

and can be used as computationally tractable chance-constraints in OPF formu-

lations. Incorporating the transient relationship between line temperature and

line current leads to enlarged capacity regions, due to the fact that a temporary

current overload does not necessarily lead to a temperature overload. While this

enlarged region is di�cult to compute, we develop tractable approximations

that improve upon the capacity region de�ned by the conservative current

overload constraint. Moreover, we note that potential of our large-deviations

approach goes beyond the development of capacity regions. For example, our

results can be used to speed up more detailed simulations, as in [192].

�e results presented in this chapter are valid in the asymptotic small-noise

regime ε→ 0. Analytic chance constraints that are valid in the prelimit as well

are developed in Chapter 3. Finally, the ranking of transmission lines according

to their overload probability makes our techniques applicable to identify the

most vulnerable parts of the network (as in Fig. 2.1d). �is topic is further

pursued in Chapter 4, with applications to a large-scale realistic network.

Appendix

2.A Extended proofs

Proof of Lemma 2.1. Recall that V = ΛDAL, where

Λ = diag(1/I1,max, . . . , 1/Im,max),

and D,A and L have been de�ned in Section 1.2.2. Since x` 6= 0, I`,max 6= 0
for all ` ∈ E , the matrices Λ and D are nonsingular. Following [15] we see

that rank L = N , and Lemma 2.2 in [9] guarantees that rank (A) = N and

Ker (A) = Span((1, . . . , 1)T ). Since D is nonsingular,

rank (DAL) = rank (AL) ≤ min(rank (A), rank (L)) = N.

On the other hand, if x ∈ Ker (AL) then ALx = 0 ⇐⇒ Lx ∈ Ker (A) =
Span((1, . . . , 1)T ) ⇐⇒ Lx = 0 ⇐⇒ x ∈ Ker (L), where in the

second implication we used that the �rst component of Lx is 0. �erefore
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dim Ker (AL) = dim Ker (L) = 1, yielding

rank (AL) = N + 1− dim Ker (AL) = N.

Since Λ is nonsingular, the matrix V hasN linear independent columns. But its

�rst column is zero (since the �rst column of L is zero), therefore the columns

from 2 to nw ≤ N of V are linearly independent, hence V has full rank nw .

Proof of Lemma 2.2. First notice that a vector (µ,µD) such that

‖ν‖∞ = ‖Vµ + VDµD‖∞ < 1

belongs to the capacity region R̃(cur)
ε,p , i.e.,

I∗
cur

(µ,µD) = inf
g∈H1

µ:

‖Vg+VDµD‖∞=1

Ipow(g) ≥ ε log(1/p),

if and only if the following implication holds:

∃g ∈ H1
µ s.t. Ipow(g) < ε log(1/p) =⇒ ‖V + VDµDg‖∞ < 1. (2.39)

Consider two admissible vectors (µ,µD), (µ, µ̃D) ∈ R̃(cur)
ε,p , and let λ ∈ [0, 1].

We want to show that (µ, λµD + (1 − λ))µ̃D ∈ R̃(cur)
ε,p . To this end, take

g ∈ H1
µ to be such that Ipow(g) < ε log(1/p), and let us write

‖λVDµD + (1− λ)VDµ̃D + Vg‖∞
= ‖λ(VDµD + Vg) + (1− λ)(VDµ̃D + Vg)‖∞
≤λ‖(VDµD + Vg)‖∞ + (1− λ)‖(VDµ̃D + Vg)‖∞
<λ+ (1− λ) = 1,

where we used property (2.39) and the fact that (µ,µD), (µ, µ̃D) are admissible.

�erefore, λµD + (1− λ)µ̃D is admissible (notice that the above calculation

implies in particular that ‖Vµ + VD(λµD + (1− λ)µ̃D)‖∞ < 1).

Proof of Lemma 2.3. De�ne

S1 = {g ∈ H1
µ : ‖V`g(T )+y`‖∞ ≥ 1}, S2 = {g ∈ H1

µ : ‖V`g(T )+y`‖∞ = 1}.

We need to prove that infg∈S1
Ipow(g) = infg∈S2

Ipow(g). Since S2 ⊆ S1, it

follows that infg∈S1 Ipow(g) ≤ infg∈S2 Ipow(g).To prove the reverse inequality,

we show that for any g ∈ S1, there exists g̃ ∈ S2 such that Ipow(g̃) ≤ Ipow(g).
Pick g ∈ S1, and let t′ ∈ [0, T ] be the �rst time such that |y` + V`g(t′)| = 1.
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Clearly t′ > 0, since |y` + V`g(0)| = |ν`| < 1. If t′ = T, we may take

g̃(t) = g(t). If t′ < T, de�ne g̃(t) by time-shi�ing g(T ) to the right as follows:

g̃(t) =

{
µ for 0 ≤ t < T − t′,

g(t− T + t′) for T − t′ ≤ t ≤ T.

It is easy to check that g̃ ∈ S2, and that Ipow(g̃) ≤ Ipow(g), because the path

g̃ incurs no cost up to time T − t′. Indeed, g̃ is equal to the constant µ in the

interval [0, T − t′], so we have b(g̃(t)) = b(µ) = 0 and g̃′(t) = 0, yielding∫ T−t′
0

(
g′i−bi(gi)
γi(gi)

)2

dt = 0 and thus

Ipow(g̃) =

∫ T

T−t′

( g̃′i − bi(g̃i)
γi(g̃i)

)2
dt =

∫ t′

0

(g′i − bi(gi)
γi(gi)

)2
dt ≤ Ipow(g).

Lemma 2.7. �e function a → ψ
(a)
` is non-decreasing for a > ν` and non-

increasing for a < ν`.

Proof. First suppose a ≥ ã > ν` ≥ 0. �e case a ≤ ã < ν` ≤ 0 is analogous.

We want to show that for all f ∈ y + VH1
µ such that f`(T ) = a, there exist a

f̃ ∈ y+VH1
µ with f̃`(T ) = ã and Icur(f̃) ≤ Icur(f). Since f`(0) = ν` < ã ≤ a

and f is continuous, there exist a t′ ∈ (0, T ) such that f(t′) = ã. De�ne f̃(t)
as follows:

f̃(t) =

{
ν for 0 ≤ t < T − t′

f(t− T + t′) for T − t′ ≤ t ≤ T

It is easy to check that f̃ ∈ y + VH1
µ, f̃`(T ) = ã and Icur(f̃) ≤ Icur(f). �e

proof that ψ
(a)
` is non-increasing for a < ν` goes along the same lines.

Proof of Proposition 2.1. Following the methods in [192], for ` ∈ E ′ = {` ∈ E :
V` 6= 0} it can be shown that

ψ
(a)
` =

(a− ν`)2

V`MTV >`
, (2.40)

where Mt = Γ2B−1(I− e−2Bt)eB(t−T )
. �e corresponding optimal paths for

power injections and currents leading to the overload of line ` are

X(`)(t) = (a− ν`)
MtV

>
`

V`MTV >`
+ µ ∈ Rnw ,

Y(`)(t) = VX(`)(t) + y ∈ Rm.
(2.41)
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It follows easily that

I∗
cur

(µ) = min
`∈E′

(1− |ν`|)2

V`MTV >`
. (2.42)

A straightforward calculation yields the desired result.

Proof of Lemma 2.4. First notice that a vector (µ,µD) such that ‖ν‖∞ = ‖Vµ+
VDµD‖∞ < 1 is admissible if and only if the following implication holds:

∃g ∈ H1
µ s.t. Ipow(g) < ε log(1/p) =⇒ ‖hg,µ,µD‖∞ < 1, (2.43)

where

hg,µ,µD` (t) := ξτ (y + Vg) = (y` + V`µ)2e−t/τ+

1

τ

∫ t

0

e−(t−s)/τ (y` + V`g(s))2ds, y = VDµD.

For all ` ∈ E and for all t ∈ [0, T ], hg,µ,µD` (t) is non-negative and convex in

µD . Using the property in Eq.(2.43), the rest of the proof goes along the lines of

the proof of Lemma 2.2.

Proof of Lemma 2.5. �e proof follows easily from the observation that the event

‖Θε,τ
` ‖∞ ≥ 1 implies the event ‖Y ε` ‖∞ ≥ α`. Indeed, it is easy to check that

if |Y ε` (t)| < α` for all t ∈ [0, T ], then it follow from Eq. (2.5) that Θε,τ
` (t) < 1

for all t ∈ [0, 1]. �us, we have

ω` = lim
ε↓0
−ε log P(‖Θε,τ

` ‖∞ ≥ 1) ≥ lim
ε↓0
−ε log P‖Y ε` ‖∞ ≥ α`

= inf
g: ‖y`+V`g‖∞≥α`

Ipow(g) = inf
g: |y`+V`g(T )|=α`

Ipow(g)

= ψ
(α`)
` ∧ ψ(−α`)

` .

Proof of Proposition 2.2. �anks to Lemma 2.5 we see that I(LB)
tmp,τ is a lower

bound for the temperature decay rate, i.e., I∗
tmp,τ ≥ I

(LB)
tmp,τ . Since α` > 1 > |ν`|

∀`, Lemma 2.7 implies ψ
(α`)
` ∧ ψ(−α`)

` ≥ ψ
(1)
` ∧ ψ(−1)

` , yielding I(LB)
tmp,τ ≥

I∗
cur

.

Proof of Proposition 2.3. �anks to Lemma 2.5 we have I(LB)
tmp,τ = min`∈E′ ψ

(α`)
` ∧

ψ
(−α`)
` . From Eq. (2.40) we get ψ

(α`)
` = (α`−ν`)2

V`MTV T`
and thus ψ

(α`)
` ∧ ψ(−α`)

` =

ψ
(sign(ν`)α`)
` = (α`−|ν`|)2

V`MTV T`
, where sign(a) = 1 if a ≥ 0 and sign(a) = −1
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otherwise, yielding the expression for R̃(tmp,τ ,LB)
ε,p . In the case B = bI a

straightforward calculation yields the result.

Proof of Proposition 2.4. In the case B = bI, according to equation Eq. (2.41),

the optimal current paths to over�ow in line ` and the corresponding decay

rate are

Y(`)(t) = (sign(ν`)− ν`)
(1− e−2bt)eb(t−T )

1− e2bT
R` + ν,

ψ` =
b

1− e−2bT

(1− |ν`|)2

σ2
`

,

(2.44)

whereR` :=
VΓ2V T`
V`Γ2V T`

∈ Rm and σ2
` = V`Γ

2V T` . Take any `∗ ∈ arg min`∈E′ ψ`.

Recall that `∗ depends on the initial condition µ, i.e. `∗ = `∗(µ). Le�ing

S∗ = sign(ν`∗)− ν`∗ ∈ R and R∗ = R`
∗
, the optimal current path to over�ow

is f∗(t) = Y(`∗)(t) and in particular f∗(0) = ν, f∗(T ) = S∗R∗ + ν, (f∗)
′(0) =

2bebT

1−e−2bT S
∗R∗, (f∗)

′(T ) = b(1+e−2bT )
1−e−2bT S∗R∗. A�er a lengthy but straightfor-

ward calculation, which is reported below, the formula for the Taylor approxi-

mation reads

I(TL)
tmp,τ (µ̄) = (1 + 2τ0b)I∗cur

(µ̄). (2.45)

�e capacity region de�ned by the Taylor approximation is

R̃(tmp,τ ,TL)
ε,p =

=
⋂
`∈E′
{µ ∈ RN :

b(1− |ν`|)2

(1− e−2bT )σ2
`

(1 + 2τ0b) > −ε log(p)},

which can be rewri�en as

R̃(tmp,τ ,TL)
ε,p =

⋂
`∈E′

{
µ ∈ RN : |ν`| < 1− η`/

√
1 + 2τ0b

}
.

Proof of equation (2.29). Since ξτ (f) = h if and only if τh′ + h = f2
, the

temperature rate function reads

Itmp,τ (h) =

{
G(τ ,h) if h ∈ ξτ (y + VH1

µ),

∞ otherwise,

G(τ ,h) = I
cur

2(τh′ + h) = Icur(fτh′+h) = Ipow(V+(fτh′+h − y)), (2.46)
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where I
cur

2(F) = inf
f∈H1

ν
: f2=F Icur(f) is the rate function for the current

squared process (Yε(t))2
and fF := arg minf∈H1

ν
:

f2=F

Icur(f). Note that I
cur

2(F)

can be wri�en as

I
cur

2(F) =

nw∑
i=1

∫ T

0

Ki(F(t),F′(t))dt,

Ki(F(t),F′(t)) =
1

2

[V +
i f ′F(t)− bi(V +

i (fF(t)− y))

γi(V
+
i (fF(t)− y))

]2
.

�e partial derivatives of the function

τ → Ki((τh′ + h), (τh′′ + h′))

in τ = 0 read

∂

∂τ`
Ki

(
τh′ + h, τh′′ + h′

)∣∣∣
τ=0

= K
(`)
i (h,h′)h′` +K

(m+`)
i (h,h′)h′′` ,

yielding

m∑
`=1

∂

∂τ`
Ki

(
τh′ + h, τh′′ + h′

)∣∣∣
τ=0

=
d

dt
Ki(h,h

′),

m∑
`=1

∂

∂τ`
G(τ ,h)|τ=0 =

m∑
`=1

∂

∂τ`
I

cur
2

(
τh′ + h

)∣∣∣
τ=0

=

m∑
`=1

nw∑
i=1

∫ T

0

∂

∂τ`
Ki

(
τh′ + h, τh′′ + h′

)∣∣∣
τ=0

=

nw∑
i=1

∫ T

0

m∑
`=1

∂

∂τ`
Ki

(
τh′ + h, τh′′ + h′

)∣∣∣
τ=0

=

nw∑
i=1

∫ T

0

d

dt
Ki(h,h

′)dt =

nw∑
i=1

[
Ki(h(T ),h′(T ))−

Ki(h(0),h′(0))
]

=: Φ(fh(0), fh(T ), fh′(0), fh′(T )) =: Φfh .

If τ = τ0(1, . . . , 1)T , τ0 > 0, we get τ · ∇G(τ ,h)|τ=0 = τ0Φfh . Finally,

Eq. (2.28) follows by noticing that if f∗ is the optimal current path and h∗ = (f∗)
2

then fh∗ = f∗.

Proof of Eqs. (2.34), (2.45). We have

Ki(h∗(T ), (h∗)
′(T )) =
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=
1

2γ2
i

(
V +
i f ′∗(T ) + bV +

i (f∗(T )− y)− bµi
)2

=
1

2γ2
i

( b(1 + e−2bT )

1− e−2bT
S∗V +

i R+ b(V +
i S
∗R∗ + V +

i (ν − y))− bµi
)2

=

(
b(1 + e−2bT )S∗V +

i R
∗ + (1− e−2bT )b(V +

i S
∗R∗)

)2
2γ2
i (1− e−2bT )2

=
2b2(1− |ν`∗ |)2

γ2
i (1− e−2bT )2

(
V +
i R

∗
)2

;

Ki(h∗(0), (h∗)
′(0)) =

=
1

2γ2
i

(
V +
i f ′∗(0) + bV +

i (f∗(0)− y)− bµi
)2

=
1

2γ2
i

( 2be−bT

1− e−2bT
S∗V +

i R
∗ + bV +

i (ν − y)− bµi
)2

=
2b2e−2bT (1− |ν`∗ |)2

γ2
i (1− e−2bT )2

(
V +
i R

∗
)2

;

Φf∗ =

nw∑
i=1

[
Ki(h∗(T ), (h∗)

′(T ))−Ki(h∗(0), (f2
∗ )′(0))

]
=

2b2(1− |ν`∗ |)2

1− e−2bt

nw∑
i=1

(V +
i R

∗

γI

)2

.

�e Taylor approximation thus reads

I(TL)
tmp,τ (τ0,µ) := I∗

cur
(µ) + τ0Φh =

b

1− e−2bT

(1− |ν`∗ |)2

σ2
`∗

+
2τ0b

2(1− |ν`∗ |)2

1− e−2bt

nw∑
i=1

(V +
i R

∗

γI

)2
=

b(1− |ν`∗ |)2

1− e−2bT

( 1

σ2
`∗

+ 2τ0b

nw∑
i=1

(V +
i R

∗

γI

)2)
=

b(1− |ν`∗ |)2

(1− e−2bT )σ2
`∗

(
1 + 2τ0b

nw∑
i=1

γ2
i C

2
`∗i

σ2
`∗

)
=

b(1− |ν`∗ |)2

(1− e−2bT )σ2
`∗

(
1 + 2τ0b

)
= (1 + 2τ0b)I∗cur

(µ).
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In this chapter, we develop upper bounds for line failure probabilities in

power grids, under the DC approximation and assuming Gaussian noise for the

power injections. Compared to Chapter 2, the results presented in this chapter

are not approximations of failure probabilities based on a small-noise asymp-

totics, but are rigorous upper bounds for the actual failure probability regardless

of the magnitude of the noise, and are thus guaranteed to be conservative. �e

bounds are derived using concentration inequalities techniques, and lead to

the characterization of safe operational capacity regions that are conservative,

convex and polyhedral, making our tools compatible with existing planning

methods.

Chapter outline: �e chapter is organized as follows. In Section 3.1 we

provide a detailed problem formulation, de�ning the failure probabilities of

63
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interest. Our main results are two di�erent upper bounds on the failure proba-

bility that we present in Section 3.2. �e �rst upper bound is explicit, while the

second one is sharper and explicit up to a �nite-step minimization procedure.

�ese bounds are compared numerically with the exact safe capacity regions

in Section 3.3. Proofs are reported in Section 3.4, and concluding remarks are

provided in Section 3.5.

3.1 Problem formulation

3.1.1 System model

We model the power grid network as a connected graph G = G(N , E), whereN
denotes the set of buses and E the set of directed edges modeling the transmission
lines. Let n = |N | be the number of buses and m = |E| the number of lines.

�e rest of the model is the same as in Section 1.2, and will not be repeated here.

Let p ∈ Rn denote the vector of power injections and f̂ ∈ Rm the vector of

power �ows over the lines. As usual, we use the convention that pi ≥ 0 (pi < 0)

means that power is generated (consumed, respectively) at bus i.

We make use of the DC approximation described in Section 1.2.2, which

states that the line power �ows f̂ can be wri�en as a linear transformation of

the power injections p, i.e.

f̂ = V̂p, (3.1)

where V̂ = DAL+ ∈ Rm×n is the PTDF matrix introduced in (1.19) (see

Section 1.2.2 for the de�nition of the matrices D,A and L).

Transmission lines can fail due to overload. We say that a line overload
occurs in transmission line ` if |f̂`| > f̄`, where f̄` is the line capacity. If this

happens, the line may trip, causing a global redistribution of the line power

�ows which could trigger cascading failures and blackouts (Section 1.3.1). It is

convenient to look at the normalized line power �ow vector f ∈ Rm, de�ned

component-wise as f` := f̂`/f̄` for every ` = 1, . . . ,m. �e relation between

line power �ows and normalized power �ows can be rewri�en as f = Λf̂ , where

Λ ∈ Rm×m is the diagonal matrix Λ := diag(f̄−1
1 , . . . , f̄−1

m ). In view of (3.1),

we have

f = Vp, (3.2)

where V := ΛV̂ ∈ Rm×n. Henceforth, we refer to the normalized power �ows

simply as power �ows, unless speci�ed otherwise.
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3.1.2 Stochastic power injections and line power �ows

In this section we describe our model for the bus power injections. As our focus

is on network reliability under uncertainty, we assume that each bus houses

a stochastic power injection or load. �is choice allows to model, for example,

intermi�ent power generation by renewable sources or highly variable load.

In order to guarantee that the network balance condition

1Tp = 0, (3.3)

is satis�ed even with stochastic inputs, we assume that bus n is a slack bus,
which means that its power injection is chosen in such a way that the vector of

actual power injections is a zero-sum vector as required in (3.3).

More speci�cally, we assume that the the vector of the �rst n − 1 power

injections (p1, . . . , pn−1) follows a multivariate Gaussian distribution, with

expected value µ ∈ Rn−1
and covariance matrix Σ ∈ R(n−1)×(n−1)

. Since the

covariance matrix Σ is positive semi-de�nite, the matrix

√
Σ ∈ R(n−1)×(n−1)

is

well de�ned via the Cholesky decomposition of Σ. We are now able to formally

de�ne the vector p of power injections as the n-dimensional random vector

p = S(
√

ΣX + µ), (3.4)

where X ∼ Nn−1(0, In−1) is a (n − 1)-dimensional standard multivariate

Gaussian random variable and S is the matrix

S :=

(
In−1

−1

)
∈ Rn×(n−1).

By construction we have p = (p1, . . . , pn−1,−
∑n−1
i=1 pi), so that (3.3) is satis-

�ed. Note that this formulation allows us to model deterministic power injections
as well, by means of choosing the corresponding variances and covariances

equal to zero (or, from a practical standpoint, equal to very small positive

numbers, so that the rank of Σ is not a�ected).

It is well known that an a�ne transformation of a multivariate Gaussian

random variable is again a multivariate Gaussian random variable. �us, iden-

tity (3.4) tells us that the power injections p are indeed Gaussian, and hence, in

view of (3.2), so are the line power �ows f . As it is convenient to look at the

line power �ows f as an a�ne transformation of standard independent Gaussian

random variables, combining (3.2) and (3.4), we can write

f = WX + W(nom)µ, (3.5)

where W := VS
√

Σ ∈ Rm×(n−1)
and W(nom) := VS ∈ Rm×(n−1)

. We

denote by ν := W(nom)µ the vector of expected, or nominal, line power �ows.
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To summarize, the line power �ows f follow a multivariate Gaussian distri-

bution f ∼ Nm(ν,WWT ), where the network topology and the correlation

of the power injections are both encoded in the matrix W. Note in particular

that f` ∼ N (ν`, σ
2
` ), where the variance can be calculated as

σ2
` :=

n∑
j=1

W 2
`,j . (3.6)

�e main assumption behind our stochastic model is that the power in-

jections are Gaussian. In [16, Section 1.5] it is argued how this assumption,

although simplifying, is reasonable in order to model buses that house wind

farms. Note that, compared to the power injections model in [16], our formula-

tion allows for general correlations between stochastic injections, as we do not

impose any restrictions on the covariance matrix Σ.

3.1.3 Line failure probabilities

�e main goal of this chapter is to understand how the probability of an overload

violation depends on the parameters of the systems and characterize which

average power injection vectors µ will make such a probability smaller than a

desired target tolerance.

In view of the de�nition of line overload given in Section 3.1.1, we de�ne

the line failure event L as

L :=
{
∃ ` = 1, . . . ,m : |f̂`| ≥ f̄`

}
=

m⋃
`=1

{|f̂`| ≥ f̄`}.

Leveraging the normalized line power �ows introduced earlier, we can

equivalently rewrite L as

L =

{
max

`=1,...,m
|f`| ≥ 1

}
.

Given a power injection covariance matrix Σ, de�ne the risk level r(µ) associ-

ated with a power injection pro�le µ as

r(µ) := E
[

max
`=1,...,m

|f`|
]
,

which is a well-de�ned function r : Rn−1 → R of the average injection vector

µ. Indeed, in view of (3.5) we can rewrite r(µ) = E
[
max`=1,...,m |W`X +

W
(D)
` µ|

]
, where W` and W

(D)
` denote the `-th row of the matrices W and

W(nom)
, respectively, and X ∼ Nn−1(0, In−1).
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We aim to characterize, for a given covariance matrix Σ, the average power

injection vectors µ that make line failures rare events, say P(L) ≤ q for some

very small threshold q ∈ (0, 1) to be set by the network operator. In other

words, given q ∈ (0, 1), we aim to determine the regionRtrue
q ⊂ Rn−1

de�ned

by

Rtrue
q := {µ ∈ Rn−1 : P(L) ≤ q}.

Computing the regionRtrue
q entails calculating, for every given µ ∈ Rn−1

,

the probability Pµ(L). �is, in turn, means solving many high-dimensional

integrals containing a multivariate Gaussian density, which is a non-trivial and

computationally expensive task (see also the remark in Section 3.3).

To overcome these di�culties, in this chapter we develop analytic tools

which are explicit enough to be useful for planning and control of power grids

in the short-term. More speci�cally, in the next section we propose capacity
regions that can be calculated much faster and that can be used to approximate

Rtrue
q .

3.2 Main results

�is section is entirely devoted to the derivation of three new capacity regions

Rup
q ,R?q , andRc.i.

q that we introduce to approximateRtrue
q . We �rst introduce

the probabilistic upper bounds on which our method is based in Section 3.2.1,

then formally de�ne the regionsRup
q ,R?q , andRc.i.

q in Section 3.2.2, and lastly

discuss the trade-o�s between these di�erent regions in Section 3.2.3.

3.2.1 Concentration inequalities

Our methodology relies on a well-known concentration bound for a function

of Gaussian random variables. Concentration bounds describe the likelihood

of a function of many random variables to deviate from its expected value. In

our context, we are interested in understanding how likely the random variable

max`=1,...,m |f`| is to deviate from its expected value r(µ) = E [max`=1,...,m |f`|].
Many concentration bounds have been proved in the literature, see [193,

Chapter 2] for an overview. �e relevant results for our se�ing are presented and

proved later in Section 3.4. �e next theorem presents an explicit upper bound for

the line failure probability that can be derived using the aforementioned concen-

tration bounds, and which is expressed in terms of r(µ) = E [max`=1,...,m |f`|]
and the variances σ2

1 , . . . , σ
2
m of the line power �ows.
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�eorem 3.1 (Upper bound for line failure probability).
If r(µ) < 1, then

P(L) ≤ exp
(
− (1− r(µ))2

2 max`=1,...,m σ2
`

)
. (3.7)

Note that E [max`=1,...,m |f`|] = r(µ) < 1 is a natural assumption, since

the case where r(µ) ≥ 1 is de�nitely not a desirable operational regime for the

power grid, since line failures would not be rare events anymore.

3.2.2 Capacity regions

Given q ∈ (0, 1), regionRc.i.
q is de�ned as the region that consists of all average

power injection vectors µ such that the upper bound for P(L) given by the

concentration inequality (3.7) is smaller than or equal to q, i.e.

Rc.i.
q :=

{
µ ∈ Rn−1 : exp

(
− (1− r(µ))2

2 max`=1,...,m σ2
`

)
≤ q
}
,

which can be rewri�en as

Rc.i.
q =

{
µ ∈ Rn−1 : r(µ) ≤ 1− max

`=1,...,m
σ`
√

2 log q−1

}
.

Unfortunately, the exact calculation of r(µ) is computationally expensive, for

the same reasons as outlined at the end of Section 3.1. Furthermore, we want

to have a be�er analytic understanding of the dependency of r(µ) on the

power injection averages µ, on the network topology and on the variances σ`,
something that is hard to obtain from purely numerical procedures. Aiming to

overcome these issues, we propose an explicit upper bound for r(µ), namely

r(µ) ≤ rup(µ) := max
`=1,...,m

|ν`|+ max
`=1,...,m

σ`
√

2 log(2m), (3.8)

where we recall that ν = W(nom)µ is the vector of average line power �ows.

�e bound in (3.8) is proven in Lemma 3.1 and can be used to obtain the following

sub-region ofRc.i.
q

Rup
q :=

{
µ ∈ Rn−1 : rup(µ) ≤ 1− max

`=1,...,m
σ`
√

2 log q−1

}
,

which can be rewri�en explicitly as

Rup
q =

{
µ ∈ Rn−1 : max

`=1,...,m
|ν`| ≤ 1− max

`=1,...,m
σ`(
√

2 log q−1 +
√

2 log(2m)
}
.
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In terms of µ, we see thatRup
q is the intersection of half-spaces, and soRup

q is

convex and polyhedral. A re�nement of our analysis (see Lemma 3.1) shows

that it is possible to obtain a sharper upper bound r?(µ) for r(µ),

r(µ) ≤ r?(µ) ≤ rup(µ),

which results in the following region

R?q :=

{
µ ∈ Rn−1 : r?(µ) ≤ 1− max

`=1,...,m
σ`
√

2 log q−1

}
.

While there is no analytic expression for r?(µ), we show in Section 3.4 that

calculating r?(µ) requires only the evaluation of a function in a �nite number

of points, making it a numerically viable approach, and the resulting capacity

region remains convex and polyhedral. Summarizing, we have:

�eorem 3.2 (Inclusions among capacity regions). Given q ∈ (0, 1), if r(µ) <
1, then the following inclusions hold:

Rup
q ⊆ R?q ⊆ Rc.i.

q ⊆ Rtrue
q . (3.9)

3.2.3 Discussion

We can guarantee that a line overload is a su�ciently rare event by enforcing

that the risk level r(µ) is at most 1−max`=1 ...,m σ`
√

2 log(1/q). �is approach

has the merit to provide a capacity regionRc.i.
q that can be expressed as a simple

linear condition on the risk level r(µ), but has the drawback that it requires

the computation of r(µ), a non-trivial task.

�e smaller regionRup
q , although more conservative, is expressed in closed-

form and, moreover, its dependency on the parameters ν, σ and m is made

explicit. In particular, the maximum standard deviation of the power �ows,

i.e. max`=1 ...,m σ` plays a big role in de�ning the capacity regions. Indeed, to

larger values of max`=1 ...,m σ` correspond smaller regions, which is intuitive

since a bigger variance results in a higher probability of overload.

In between the two regions Rup
q and Rc.i.

q lies the intermediate region

R?q , which is less conservative thanRup
q and can be computed very e�ciently,

even if it cannot be expressed in closed-form (see Section 3.4 for more details).

Both regions Rup
q and R?q are su�ciently explicit to be used as probabilistic

constraints into chance-constrained versions of OPF problems, as studied in [16,

176].
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3.3 Numerics

To illustrate how the three new regions compare toRtrue
q , we consider �rst a

very simple network with a circuit topology, consisting of 3 buses, all connected

with each other by 3 identical lines of unit reactance and capacity M = 5. We

take the power injections in the non-slack nodes to be independent, zero-mean

Gaussian random variables with variance ε = 0.5, which corresponds to taking

µ = (0, 0) and Σ = εI2. �e corresponding four safe capacity regions with

q = 10−3
are plo�ed in Fig. 3.1a.

We then plot in Fig. 3.1b the two-dimensional capacity regionsRup
q andR?q

for the IEEE 14-bus test network, where we replace the deterministic power

injections at nodes 6 and 9 with Gaussian random variables with average µ
equal to the original deterministic values and variance ε = 2 · 10−2

. �e line

capacities have been chosen to be equal to 1.5 times the average line power

�ow ν = W(nom)µ, and we used q = 10−4
. �e data for µ, line reactances and

network topology have been extracted from the MATPOWER package [210]. �e

regionsRc.i.
q andRtrue

q have been omi�ed since the calculation of multivariate

Gaussian probabilities such as Pµ(L) and r(µ) is a non-trivial problem and the

subject of active research [51] that goes beyond the scope of this chapter.

(a) 3-bus cycle network (b) IEEE 14-bus network. �e round corners

are an artifact of the visualization.

Figure 3.1: Capacity regions comparison for di�erent power grid topologies.
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3.4 Mathematical tools

Proposition 3.1 (Unilateral concentration inequality for the maximum of mul-

tivariate Gaussian random variables). Let X = (X1, . . . , Xk) ∼ Nk(µ,Σ) be
a multivariate Gaussian random variable, and let δi :=

√
Σi,i be the standard

deviation of Xi, i = 1, . . . , k. �e following concentration inequality holds for
every s ≥ 0:

P
(

max
i=1,...,k

|Xi| − E [ max
i=1,...,k

|Xi|] ≥ s
)
≤ exp

(
− s2

2 maxi δ2
i

)
.

Proof. �e multivariate Gaussian vector X can be seen as an a�ne transfor-

mation X =
√

ΣZ + µ of a standard Gaussian vector Z ∼ Nk(0, Ik). �en

we apply[193, �eorem 2.26] to the random vector Z choosing the function

h : Rk → R that maps Z into h(Z) := maxi=1,...,k |(
√

Σ)iZ + µi|. A straight-

forward computation shows that h is a Lipschitz function with Lipschitz con-

stant equal to maxi=1,...,k δi.

Proof of �eorem 3.1. Write

P(L) = P
(

max
`=1,...,m

|f`| − E [ max
`=1,...,m

|f`|] ≥ 1− E [ max
i=1,...,m

|f`|]
)
.

Set s := 1 − E [max`=1,...,m |f`|] > 0 and apply Proposition 3.1 to f . In-

equality (3.7) follows as the standard deviation of f` is equal to σ`, in view of

de�nition (3.6).

Lemma 3.1 (Upper bounds for the risk level). Let r(µ) := E [max`=1,...,m |f`|],
and de�ne

r?(µ) := inf
s∈(0,+∞)

{
log(2m)

s
+ max
`=1,...,m

(
σ2
`

2
s+ |ν`|

)}
.

�en
r(µ) ≤ r?(µ) ≤ max

`=1,...,m
|ν`|+ max

`=1,...,m
σ`
√

2 log(2m). (3.10)

Proof. Take 2m random variables Y1, . . . , Y2m de�ned as

Yj :=

{
fj if j = 1, . . . ,m,

−fj−m if j = m+ 1, . . . , 2m.
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From the de�nition of these random variables it immediately follows that

max`=1,...,m |f`| = maxj=1,...,2m Yj and thereforeE [max`=1,...,m |f`|] = E [maxj=1,...,2m Yj ].
Note that

λj := E [Yj ] =

{
νj if j = 1, . . . ,m,

−νj−m if j = m+ 1, . . . , 2m,
(3.11)

and Var [Yj ] = Var [Yj+m] = σ2
j for every j = 1, . . . ,m. For every j =

1, . . . , 2m, let mj(s) := E [esYj ] = eσ
2
j s

2/2+λjs
be the moment generating

function of the random variable Yj . Following [52], for any s ≥ 0 we have

esE [maxj=1,...,2m Yj ] ≤ E [esmaxj=1,...,2m Yj ] =

2m∑
j=1

mj(s) ≤ 2m max
j=1,...,2m

E [esYj ].

Taking the log on both sides and rearranging we obtain

E [ max
j=1,...,2m

Yj ] ≤ inf
s∈(0,∞)

1

s
log

(
2m max

j=1,...,2m
E [esYj ]

)
= inf
s∈(0,∞)

{
log(2m)

s
+

1

s
log

[
max

j=1,...,2m

(
eσ

2
j s

2/2+λjs
)]}

,

yielding the �rst bound, since the RHS is equal to r?(µ). If we now de�ne

ν̂ := max`=1,...,2m λ` = max`=1,...,m |ν`| and σ̂2 = max`=1,...,m σ
2
` , we have

maxj=1,...,2mmj(s) ≤ e
σ̂2

2 s
2+ν̂s

for all s ≥ 0. �us

E [ max
j=1,...,2m

Yj ] ≤
log(2m)

s
+
σ̂2

2
s+ ν̂

for all s ∈ (0,+∞). Optimizing over s in (0,+∞) yieldsE [maxj=1,...,2m Yj ] ≤
ν̂ + σ̂

√
2 log(2m), corresponding to s = σ̂−1

√
2 log(2m), thus proving the

other inequality in (3.10).

Lastly, we make some �nal remarks on how to calculate r?(µ) which is the

in�mum over (0,∞) of

g(s) :=
log(2m)

s
+ max
`=1,...,m

(
σ2
`

2
s+ |ν`|

)
. (3.12)

�is can be seen as the point-wise maximum of m functions g`(s) := log(2m)
s +

σ2
`

2 s+ |ν`|, ` = 1, . . . ,m. Note that r?(µ) can be computed by evaluating the

function g in at mostm+m(m−1)/2 points and then take the minimum value:
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the candidate points are the m local minima of the functions g1(s), . . . , gm(s)
(which are given by s?` :=

√
2 log(2m)/σ`, ` = 1, . . . ,m), and the points

si,j := 2(|νi| − |νj |)/(σ2
j − σ2

i ), i, j = 1, . . . ,m, i 6= j, (if they exist and

are positive) which are at most m(m − 1)/2. �is analysis implies that the

resulting capacity region is convex and polyhedral.

3.5 Concluding remarks

Probabilistic techniques, in particular powerful upper bounds for Gaussian

random vectors, can be applied to generate explicit upper bounds for failure

probabilities and corresponding safe capacity regions. �e resulting regions

are convex, polyhedral, and can be e�ciently incorporated in optimization

routines such as OPF, due to the fact that they can be expressed in closed-form

(modulo taking the minimum of a �nite set of values as in (3.12)). A limitation

of this approach is that it does not scale well with the size of the network.

In particular, the upper bounds r?(µ), rup(µ) are not very tight for larger

networks, resulting in over-conservative regions. In order to study a realistic

network for the German power grid with approximately 104
lines in Chapter 4,

we use large deviations theory instead.

�e results presented in Chapters 2 and 3 have been focusing on the event a

single line failure, from the di�erent perspectives of asymptotic approximations

(Chapter 2) and non-asymptotic upper bounds (Chapter 3). A natural extension

of this line of research is the study of multiple line failures, which is carried out

in Chapters 4 and 5.
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In this chapter, we study in detail the concept of emergent failures in power

grids, which has been introduced in Section 1.6, and start our analysis of cas-

cading failures. We model power grids as complex networks in which line

failures can emerge indirectly, or endogenously, as a consequence of stochastic

�uctuations of the node inputs (modeling renewable energy production), going

beyond traditional models assuming that failures are triggered by deterministic,

external events (see Section 1.4.2).

In general, line failures can arise when the network is driven from a stable

state to a critically loaded state by external factors. �en, intermi�ent power

generation at the renewable nodes causes random �uctuations in the line power

�ows, possibly triggering outages and cascading failures. �us, line failures can

emerge indirectly due to the interplay between noisy, correlated power input

75
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at the nodes, the network topology, and power �ow physics. We analyze this

interplay using large deviations theory. In particular, we can identify the most

vulnerable lines, rank them according to their likelihood of failing, and establish

the most likely con�guration of power inputs leading to failures and subsequent

cascades. We �nd that, when weather correlations are taken into account, an

emergent line failure does not occur due to large �uctuations in neighboring

nodes only, but as a cumulative e�ect of small unusual �uctuations in the entire

network “summed up” by power �ow physics.

Moreover, we show that the most likely con�guration of nodal noise re-

sponsible for the initial failure impacts the way subsequent failures propagate

in the network, leading to a higher number of subsequent failures than one

would obtain from traditional failure models, which assume that the initial

contingency triggering the cascade is an external event. Finally, our approach

sheds insights on why the propagation is o�en of non-local nature, which is a

well-known characteristics of cascading failures in power grids.

Finally, we validate the adequacy of our large deviations framework by

showing that both the ranking of lines, the most likely con�guration of noise,

and the most likely propagation of failures obtained via the large deviations

approximation are remarkably close to the exact ones (based on numerical

evaluations of pre-limit probabilities). Our analysis is mathematically rigorous

and explicit in the small-noise limit ε→ 0, where ε > 0 is related to the forecast

error for wind and solar power generation on a selected time window, and, as

such, quanti�es the magnitude of noise in the system. Our results are validated

with data from the German transmission network and several IEEE test cases.

Chapter outline: In the rest of this chapter, we �rst provide a model

description in Section 4.1. Next, we identify and rank the most vulnerable

lines in Section 4.2, and we analyze the most likely way for failures to occur in

Section 4.3. We extend the analysis to subsequent failures in Section 4.4, and we

summarize our results in Section 4.5. Finally, Appendices 4.A, 4.A.4 and 4.B

provide details on the mathematical derivation, proofs and data analysis.

4.1 System model

�e system model is based on the description in Section 1.2.2, which we brie�y

recall here. We model a transmission network by a connected graph G with

n nodes representing the buses, and m directed edges modeling transmission
lines. �e nominal values of net power injections at the nodes are given by µ =
{µi}i=1,...,n. We model the stochastic �uctuation of the power injections around

µ, due to variability in renewable generation, by means of the random vector
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p = {pi}i=1,...,n, which is assumed to follow a nondegenerate multivariate

Gaussian distribution

p ∼ Nn(µ, εΣp), (4.1)

with density

ϕ(x) =
exp(− 1

2 (x− µ)T (εΣp)
−1(x− µ))

(2π)
n
2 det(εΣp)

1
2

, (4.2)

with εΣp ∈ Rn×n being the nonsingular covariance matrix of p. We interpret

the mean µ as the nominal, or expected, power generation for the next opera-

tional window. In our case study for the German transmission grid, we obtain

µ by solving an OPF problem (see Appendix 1.3.1) based on realistic data for

wind and solar generation.

Regarding the terms ε and Σp in Eq. (4.1), we observe that the distinction

between the noise parameter ε and the covariance matrix Σp is relevant only

for the theoretical analysis, where we take the limit ε→ 0 while keeping the

matrix Σp �xed. Indeed, as far as the numerical case study is concerned, all

the results are obtained by using the product εΣp, which is directly estimated

from the SciGRID data. For this reason, without loss of generality, in the case

study we normalize ε = 1 and estimate Σp using ARMA models; for details

see Section 4.B.1, which also describes an extension of the model covering both

stochastic renewable generators and deterministic conventional power plants

(see Section 4.A.1).

�e Gaussian assumption is debatable, both for solar and wind power.

While such an assumption is consistent with atmospheric physics [16] and

recent wind park statistics [106, 12], di�erent models are preferred for di�erent

timescales [23, 166, 146, 121]. An extension of our framework to the dynamic

model in [121] looks promising, using Freidlin-Wentzell theory as in Chapter 2

of this thesis. For a static non-Gaussian extension, see Appendix 4.A.1.

Assuming the vector µ has zero sum and using the DC approximation

described in Section 1.2.2, which is commonly used in transmission system

analysis [151, 175, 202], we can express the line power �ows f = {fi}i=1,...,m

as

f = Vp, (4.3)

where V ∈ Rm×n is the PTDF matrix (see Section 1.2.2), which encodes the grid

topology and parameters. �e total net power injected in the network

∑n
i=1 pi is

non-zero as p is random. Automated a�ne response and redispatch mechanisms

take care of this issue in power grids. Mathematically, this corresponds to a

“distributed slack” in our model: the total power injection mismatch is distributed

uniformly among all nodes (the matrix V accounts for this; see Appendix 4.A.1).
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A line overloads if the absolute amount of power �owing in it exceeds a given

line limit. We consider a static se�ing, and in particular we assume that such

overloads immediately lead to the outage of the corresponding line, to which we

will henceforth refer simply as line failure. �e rationale behind this assumption

is that there usually are security relays on high-voltage transmission lines

performing an emergency shutdown as soon as the current exceeds a dangerous

level. Without such mechanisms, lines may overheat, sag, and eventually trip

a�er a variable amount of time.

We can express the line �ows in units of the line capacity by incorporating

the la�er in the de�nition of V (see Appendix 4.A.1, as well as Eq. (1.23) in

Section 1.2.2), so that f is the vector of normalized line power �ows and the

failure of line ` corresponds to |f`| ≥ 1. In view of Eqs. (4.2) - (4.3), the line

power �ows f also follow a multivariate Gaussian distribution with mean ν and

covariance matrix εΣf .

�e vector ν = Vµ ∈ Rm describes the nominal line �ows, while the co-

variance matrix εΣf = εVΣpV
T

describes the correlations between line �ows

�uctuations, taking into account both the correlations of the power injections

(encoded by Σp) and correlations created by the network topology due to power

�ow physics (Kirchho�’s laws) via V.

We let the power grid operate on average safely by assuming that

max`=1,...,m |ν`| < 1, and we consider the small-noise regime ε → 0, so that

only unlikely �uctuations of line �ows lead to failures. We are most interested

in scenarios where power grids are highly stressed, meaning that the nominal

power injections {µi}i=1,...,n are such that the corresponding nominal line

power �ows {ν`}`=1,...,m are close to their thresholds. Such a stress could be

caused by very high wind generation [148].

An illustrative scenario is reported in Fig. 4.1, which depicts a snapshot

of nominal line �ows on the SciGRID German network [118]. SciGRID is a

simpli�ed model of the actual German transmission network with n = 585
buses and m = 852 lines that we use as main illustration. �e dataset includes

load/generation time series, line limits, grid topology and generation costs. In

our case study of the German transmission network, we obtain the nominal

vector µ by solving an OPF problem (see Section 1.3.1). In order to model a

heavily-loaded but not overloaded system, in the OPF we scale the line limits

by a factor of λ = 0.7 (see Appendix 4.B.1 for more details).

�e �uctuations around the nominal schedule µ are modeled as a zero-mean

Gaussian random vector with covariance matrix εΣp, which is estimated using

statistical models as explained in Appendix 4.B.1.
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Figure 4.1: Heatmap visualizing the nominal power �ows values |ν`| in the SciGRID model for

the snapshot 11am of 01/01/2011.

4.2 Identi�cation and ranking of vulnerable lines

We now turn to the analysis of emergent failures and their propagation using

large deviations theory [182]. We begin by deriving the exponential decay of

probabilities of single line failure events |f`| ≥ 1 for ` = 1, . . . ,m. As line

power �ows are Gaussian, we obtain (see Proposition 4.1)

I` = − lim
ε→0

ε logPε(|f`| ≥ 1) =
(1− |ν`|)2

2σ2
`

, (4.4)

where σ2
` = (Σf )``. We call I` the decay rate of the failure probability of line `.

�us, for small ε, we approximate the probability of the emergent failure of line

` as

P(|f`| ≥ 1) ≈ exp(−I`/ε) = exp
(
− (1− |ν`|)2

2εσ2
`

)
, (4.5)

and that of the �rst emergent failure as

P(max
`
|f`| ≥ 1) ≈ exp(−min

`
I`/ε). (4.6)

�ese approximations for failure probabilities may not be sharp in general,

even when ε is small, since all terms that are decaying subexponentially in

1/ε are ignored. Nevertheless, Eq. (4.5) is quite useful for ranking purposes,

allowing to explicitly identify the lines that are most likely to fail. To verify this

empirically, we note that the expression in Eq. (4.5) only depends on the product
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εσ2
` = ε(VΣpV

T )``, and thus, ultimately, only on the product εΣp, which in

our case study we estimate directly from the SciGRID data, see Section 4.B.1.

Fig. 4.2 shows the heatmap for the line failure probabilities P(|f`| ≥ 1)
(calculated numerically), for the same snapshot as in Fig. 4.1. �e most likely

line to fail is line 361, which connects two buses housing wind farms (EON Netz
and Umspannwerk Kra�werk Emden). �is line is at capacity (|ν361| = 0.7) and

has the highest standard deviation (σ361 = 0.142). However, we observe that

a larger |ν`| does not necessarily imply a higher chance of failure, suggesting

that decay rates are a be�er indicator of system vulnerabilities.

Figure 4.2: Heatmap visualizing the logarithm of the exact overload probabilities log10 P(|f`| ≥
1) in the SciGRID model, for the snapshot 11am, 01/01/2011.

For instance, several lines in the south of Germany have a moderate to high

value |ν`|, see Fig. 4.1. In particular, line 310, which connects buses Vöhringen
Amprion and Umspannwerk Dellmensingen, is at capacity (|ν310| = 0.7), but

ranks only 66-th out of 852 lines, with a power �ow standard deviation almost

one order of magnitude lower than the standard deviation of the most likely

line to fail.

Fig. 4.3 depicts the 5% most likely lines to fail, ranked according to the large

deviations decay rates I` = (1−|ν`|)2
2σ2
`

, where σ` = (Σf )`` = (VΣpV
>)``. �e

ranking based on the large deviations approximation successfully recovers the

most likely lines to fail, and, in fact, yields the same ordering as the one based

on exact probabilities. As an illustration, in Table 4.1 are reported the indexes,

the exact failure probabilities and the decay rates for the 20 most likely lines to

fail.

Fig. 4.3 also illustrates the nominal renewable generation mix: the buses

housing stochastic power injections have di�erent colors (blue/light blue for
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Figure 4.3: Top 5% most likely lines to fail according to Eq. (4.4) for the snapshot 11am, 01/01/2011.

�e buses housing stochastic power injections have di�erent colors depending on the type of

renewable sources (blue for wind o�shore, light blue for wind onshore and yellow for solar) and

sizes proportional to the absolute values of the corresponding nominal injections.

wind o�shore/onshore, yellow for solar) and sizes proportional to the absolute

values of the corresponding nominal injections. Many vulnerable lines are

located where the most renewable energy production occurs. However, the

interplay between network topology, power �ows physics and correlation in

power injections caused by weather �uctuations, results in a spread-out ar-

rangement of vulnerable lines, which is hard to infer by looking at nominal

values only. �e large-deviations-based ranking provides a parsimonious way

to detect vulnerable lines, and can be used to appreciate qualitative di�erences

among di�erent hours of the day. Table 4.2 lists values for total generation (G),

and generation mix for di�erent hours of the day (pw.o� for wind o�shore, pw.on

for wind onshore and ps for solar). For example, in the morning there is more

solar generation and moderate demand, while in the a�ernoon there is zero

solar generation and higher demand.

In Fig. 4.4 the top 5% most likely lines to fail are depicted (in red) for four

di�erent hours of the day, together with the nominal values outpu�ed by the

OPF for renewable generation. By comparing Figs. 4.4a-4.4b and Figs. 4.4c-4.4d,

for example, we see how solar generation is responsible for an increased number

of vulnerable lines in the south of Germany.
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` P(|f`| ≥ 1) I`
361 1.743e-02 2.225

803 8.228e-04 4.954

19 6.783e-04 5.132

27 6.033e-04 5.240

389 4.503e-04 5.511

390 4.460e-04 5.520

670 3.527e-04 5.737

809 7.575e-05 7.177

586 5.574e-05 7.466

587 5.454e-05 7.486

810 2.496e-05 8.225

712 6.440e-06 9.514

682 5.337e-06 9.693

683 5.318e-06 9.697

714 3.876e-06 9.999

715 1.052e-06 11.249

554 4.267e-07 12.117

488 4.209e-07 12.130

707 1.199e-07 13.341

818 1.199e-07 13.341

Table 4.1: Line indexes, exact failure probabilities and decay rates of the 20 top

most vulnerable lines in the SciGRID model, for the snapshot 11am, 01/01/2011.

hour G pw.o� pw.on psol

0 am 51.75 GW 1.7 % 35.6 % 0.0%

4 am 44.71 GW 2.0 % 45.6 % 0.0%

8 am 44.83 GW 4.5 % 44.7 % 8.1%

11 am 52.52 GW 4.4 % 32.4 % 17.3%

4 pm 57.56 GW 4.1 % 23.9 % 0.0%

8 pm 54.74 GW 4.1 % 22.9 % 0.0%

Table 4.2: Total generation and renewable percentages for di�erent hours of the day.

4.3 Most likely con�guration of power inputs leading to
failures

We proceed with an analysis of how emergent failures occur, using again large

deviations theory. In particular, we provide an explicit estimate of the most

likely power injection that caused a speci�c emergent failure. To this end, we

�x a line ` and consider the conditional distribution of p, given |f`| ≥ 1. �e
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(a) 8 am. (b) 11 am.

(c) 4 pm. (d) 8 pm.

Figure 4.4: Top 5% most likely lines to fail (in red), together with nominal stochastic generation

values, for di�erent hours of the day 01/01/2011. �e buses housing stochastic power injections

have di�erent colors depending on the type of renewable sources (blue for wind o�shore, light

blue for wind onshore and yellow for solar) and sizes proportional to the absolute values of the

corresponding nominal injections.

mean of this distribution greatly simpli�es as ε→ 0 to

p(`) = arg inf
p∈Rn : |êT` Vp|≥1

1

2
(p− µ)TΣ−1

p (p− µ). (4.7)

If ν` 6= 0, the solution is unique and reads

p(`) =µ +
(sign(ν`)− ν`)

σ2
`

ΣpV
T ê`, (4.8)
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where sign(a) = 1 if a ≥ 0 and −1 otherwise, and ê` ∈ Rm is the `-th unit

vector. As ε → 0, the conditional variance of p given |f`| ≥ 1 decreases

to 0 exponentially fast in 1/ε, yielding that the conditional distribution of

p given |f`| ≥ 1 gets sharply concentrated around p(`)
(Proposition 4.1 in

Appendix 4.A.2). We interpret p(`)
as the most likely power injection pro�le,

conditional on the failure of line `. �e corresponding line power �ow pro�le

f (`) = Vp(`)
is (see Proposition 4.1)

f
(`)
k = νk +

(sign(ν`)− ν`)
σ2
`

Cov(f`, fk), ∀ k 6= `. (4.9)

As such, our framework provides more explicit information than the approach

in [41], which approximates the most likely way events happen using the mode,

without leveraging large deviations. In our validation experiments, we found

that the error between p(`)
and E[ p | |f`| ≥ 1] is typically less than 1% of the

nominal values (see Appendix 4.B.2 for more details).

(a) Non-diagonal Σp (b) Diagonal Σp

Figure 4.5: Representation of the most likely power injection p(`)
causing the isolated failure of

line 720 (red), and subsequent failures (orange). �e bus sizes re�ect how much p(`)
deviates from

µ (red positive deviations, blue negative). Le�, with correlation in noise); Right, without correlation

in noise (se�ing to 0 all the o�-diagonals of Σp). �e illustration corresponds to the snapshot 11am,

01/01/2011.

A numerical illustration is given in Fig. 4.5. A key �nding is that an emergent

line failure does not occur due to large �uctuations only in neighboring nodes,

but as a cumulative e�ect of small unusual �uctuations in the entire network

“summed up” by power �ow physics, and correlations in renewable energy. Such

an emergent failure requires every line �ow to be driven to an unusual state

f
(`)
k , which deviates from the nominal value νk by an amount proportional to

the covariance Cov(f`, fk), in view of Eq. (4.8).
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A non-diagonal noise matrix Σp exacerbates these e�ects. Experiments

with our SciGRID case study suggest that, if there is a correlation in noise, for

example due to �uctuations in weather pa�erns, the number of subsequent

failures can become higher. Furthermore, it is easier for a failure to be triggered

by many small disturbances across the network (Fig. 4.5a), compared to the case

where these correlations are not taken into account (Fig. 4.5b). In the la�er case,

we see a more local e�ect with relatively larger disturbances.

4.4 Most likely subsequent failures

We continue by investigating the propagation of failures, combining our results

describing the most likely power injections con�guration leading to the �rst

failure, and the power �ow redistribution in the network a�erwards. To this

end, we �rst di�erentiate between di�erent types of line failures, by assessing

whether the most likely way for failure of line ` to occur is as (i) an isolated
failure, if |f (`)

k | < 1 for all line k 6= `, or (ii) a joint failure, if there exists some

other line k 6= ` such that |f (`)
k | ≥ 1.

Any type of line failure(s) cause(s) a global redistribution of the line power

�ows according to Kirchho�’s laws, which could trigger further outages and

cascades. In our se�ing, the power injections con�guration p(`)
redistributes

across an altered network G̃(`)
(a subgraph of the original graph G) in which line

` (and possible other lines, in case of a joint failure) has been removed, increasing

stress on the remaining lines. �e way this redistribution happens on G̃(`)
is

governed by power �ow physics and we assume that it occurs instantaneously.

Extending this to dynamic models [168, 163] is a natural future topic, as transient

e�ects may make the impact of line failures more severe.

�e power �ow redistribution amounts to compute a new matrix Ṽ linking

the power injections and the new power �ows, which can be constructed analo-

gously to V (see Appendix 4.A.4). �e most likely power �ow con�guration on

G̃(`)
a�er redistribution is f̃ (`) = Ṽp(`).

In the special case of an isolated failure (say of line `) it is enough to calculate

the vector φ(`) ∈ Rm−1
of (normalized) redistribution coe�cients, known as

line outage distribution factors (LODF) [77]. �e quantity φ
(`)
j takes values in

[−1, 1], and |φ(`)
j | represents the percentage of power �owing in line ` that

is redirected to line j a�er the failure of the former. �e most likely power

�ow con�guration on G̃(`)
a�er redistribution then equals f̃ (`) = {f (`)

k }k 6=` +

f
(`)
` φ(`), where f

(`)
` = ±1 depending on the way the power �ow is most likely

to exceed the threshold 1. �e power �ow con�guration f̃ (`)
can be e�ciently

used to determine which lines subsequently fail, by checking for which k we
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have |f̃ (`)
k | ≥ 1, see Proposition 4.3 and Appendix 4.B.2.

�ere is much evidence that failures propagate non-locally in power grids [99,

103, 109, 160, 116]. To analyze this in our framework we �rst consider a ring

network with µ = 0 and Σp = I . In this network there are two paths along

which power can �ow between any two nodes, using the convention that a pos-

itive �ow corresponds to a counter-clockwise direction. If line ` fails, the power

originally �owing on line `must now �ow on the remaining path in the opposite

direction. To make this rigorous we show in Lemma 4.1, Appendix 4.A.5 that

φ
(`)
k = −1 for every k 6= `. As power �ows must sum to zero by Kirchho�’s law,

neighboring lines tend to have positively correlated power �ows, while �ows

on distant lines exhibit negative correlations. Hence, the power injections that

make the power �ows in line ` exceed the line capacity (say by becoming larger

than 1) also make the power �ows in the antipodal half of the network negative.

�ese will go beyond the line capacity −1 a�er the power �ow redistributes,

see Fig. 4.6.

1

1/7

-13/35

-19/35

-13/35

1/7

failed

1/7-1

-13/35-1

-19/35-1

-13/35-1

1/7-1

Figure 4.6: Le�: most likely power injections p(`)
leading to the failure of line ` (orange),

visualized using the color and size of the nodes (red positive deviations, blue negative), together

with power �ows f
(`)
k . Right: situation a�er the power �ow redistribution with three subsequent

failures and the values f̃
(`)
k = f

(`)
k − 1, k 6= `.

Fig. 4.7 shows how the emergent isolated failure of line ` = 27 (in red)

causes the failure of six more lines k1, . . . , k6 (in orange). �is example shows

how the failure spreads non-locally: in particular, lines 316 and line 602 in the

south of Germany are 394 Km and 517 Km far from the original failure. For

validation purposes, we found numerically that

P(line kj fails ∀j = 1, . . . , 6 | |f27| ≥ 1) ≥ 0.9987.

Conversely, the failure of line 27 under the nominal power injection pro�le

leads to only two subsequent failures. �e atypical input caused other lines

to be more loaded than expected, and these lines get more vulnerable as the

cascades progresses, resulting in more subsequent failures.
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Figure 4.7: �e most likely con�guration p(27) that leads to the failure of line ` = 27 (in red)

in the SciGRID model, for the snapshot 4pm, 01/01/2011. �e sizes of the buses re�ect how much

p(27) deviates from µ (red for positive deviations, blue for negative ones). �e failure of such a line

causes, a�er power redistribution, also the six lines (in orange) to fail.

To validate this insight, we have looked at the �rst two stages of emergent

cascading failures for several IEEE test networks provided in MATPOWER [210],

and compare them with those of classical cascading failures, obtained using

nominal power injection values rather than the most likely ones and determinis-

tic removal of the initial failing line; see Appendix 4.B.4 for a precise description

of the experiment. As before, emergent cascades tend to lead to a higher number

of subsequent failures in each stage.

4.5 Concluding remarks

In conclusion, we illustrated the potential of large deviations theory to analyze

emergent failures and their propagation in complex networks. Exogenous noise

disturbances at the nodes, potentially ampli�ed by correlations, push a complex

network into a critical state in which edge failure may emerge. Large deviations

theory provides a tool to rank such failures according to their likelihood and

predicts how such failures most likely occur and propagate. When an emergent

edge failure occurs, its impact on the network can be more signi�cant than a

purely exogenous failure, possibly resulting in cascades that propagate quicker

than in classical vulnerability analysis.

�e accuracy of the small noise limit has been validated in our case study,

making the case for applying large deviations techniques to more realistic
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models. Finally, in Appendix 4.B.3 we propose an economic application of our

approach, showing how our framework can shed light on the trade-o� between

network reliability and societal costs, expressed in term of energy prices. �e

impact of uncertainty on energy prices will be investigated further in Chapters

6 and 7 of this thesis. Finally, we note that the analysis carried out in this

chapter uses large deviations techniques to study failures and cascades from a

microscopic perspective. However, there are phenomena, such as the scale-free

nature of blackout sizes (see Section 1.4.2), that are best investigated assuming

a macroscopic viewpoint, as we describe in Chapter 5 of this thesis.

Appendix

4.A Model extensions and mathematical results

4.A.1 Detailed model

�e model is the one described in Section 1.2.2. For this chapter, we choose to

use L+
rather than L̄ to describe the relationship between the vector net power

injections p ∈ Rn and the phase angles δ ∈ Rn they induce in the network

nodes:

δ = L+p. (4.10)

�is la�er identity is particularly useful in our context, since it holds for any

vector of power injections p ∈ Rn, even if it has no zero sum. Indeed, decom-

posing the vector p using the basis of eigenvectors 1,v2, . . . ,vn of L+
one

notices that the only component of p with non-zero sum belongs to the null

space of L+
(generated by the eigenvector 1).

�is mathematical fact corresponds to the assumption that the power grid

has automatic redispatch/balancing mechanisms, in which the total power

injection mismatch is distributed uniformly among all the nodes, thus ensuring

that the total net power injection is always zero. Conversely, the matrix L̄
does not account for the distributed slack, which needs to be added by post-

multiplying by the matrix S = I− 1
nJ ∈ Rn×n, where J ∈ Rn×n is the matrix

with all entries equal to one.

�e real line power �ows f̂ are related with the net power injections p via

the linear relationship

f̂ = V̂p.

As usual, it is convenient to look at the normalized line power �ow vector f ∈ Rm,

de�ned component-wise as f` = f̂`/M` for every ` = 1, . . . ,m, where f̄` is

the line capacity of line `, which is assumed to be given. Line thresholds are in

place because a protracted current overload would heat up the line, causing sag,
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loss of tensile strength and eventually mechanical failure. If this happens, the

failure may cause a global redistribution of the line power �ows which could

trigger cascading failures and blackouts.

�e relation between line power �ows and normalized power �ows can be

rewri�en as f = Λf̂ , where Λ is the m×m diagonal matrix

Λ = diag(M−1
1 , . . . ,M−1

m ). In view of Eq. (3.1), the normalized power �ows

f can be expressed in terms of the power injections p as f = Vp, where

V = ΛDAL+ ∈ Rm×n (see Section 1.2.2). We now brie�y outline how the

model presented above can be extended to a se�ing where only a subset of

nodes houses stochastic power injections (modeling wind and solar parks), while

the other nodes house deterministic injections (corresponding to conventional

controllable power plants).

First, we introduce the following notation: if z is a n-dimensional multivari-

ate Gaussian random vector with mean λ and covariance matrix Λ, it will be

denoted by z ∼ Nn(λ,Λ). De�ne the following:

ns number of stochastic buses,

nd number of deterministic buses,

Is ⊆ {1, . . . , n} indices of stochastic buses,

Id ⊆ {1, . . . , n} indices of deterministic buses,

ps = (pi)i∈Is ∈ Rns stochastic power injection,

pd = (pi)i∈Id ∈ Rnd deterministic power injection,

Vs ∈ Rm×ns matrix consisting of the

columns of V indexed by Is,

Vd ∈ Rm×nd matrix consisting of the

columns of V indexed by Id,
fs = Vsps ∈ Rm stochastic component of f,

fd = Vdpd ∈ Rm deterministic component of f.

If a bus hosts both stochastic and deterministic generators, it is considered

a stochastic bus. Stochastic power injections are modelled by means of a ns-
dimensional multivariate Gaussian random vector with mean µs ∈ Rns and

covariance matrix Σp ∈ Rns×ns , which we denote by

ps ∼ Nns(µs, εΣp),

With the previous notation, the normalized power �ows can be decomposed as
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f = fs + fd = Vsps + fd, where

fs ∼ Nm(νs, εΣf ),

νs = Vsµs,

Σf = VsΣpV
>
s . (4.11)

�e nominal power �ows values are thus equal to ν = νs + fd. �e decay rate

for an overload in line `, analogously to Eq. (4.8), is given by

I` = inf
ps∈Rns : |ê>` (Vsps+fd)|≥1

1

2
(ps − µs)

>Σ−1
p (ps − µs).

Provided that ν` 6= 0, the solution is unique and reads

p(`)
s =

(sign(ν`)− ν`)
σ2
`

ΣpV
>
s ê` + µs ∈ Rns , (4.12)

where σ2
` = (Σf )`,`. �e corresponding most likely realization for power �ows

reads

f (`) = Vsp
(`)
s + fd

=
(sign(ν`)− ν`)

σ2
`

VsΣpV
>
s ê` + νs + fd ∈ Rm. (4.13)

In the next section we prove these claims for the particular case of ns = n.

4.A.2 Large deviation principle in the Gaussian case

In this section we provide proofs for Eqs. (4.4) - (4.9). For the sake of clarity we

present here only the proofs for the case n = ns, and we remark that Eqs. (4.12)

- (4.13) can be proved along similar lines. In the following, we write pε and fε
to stress the dependence of the power injections and of the line power �ows on

the noise parameter ε.

Proposition 4.1. Assume that maxj=1,...,m |νj | < 1. �en, for every ` =
1, . . . ,m, the sequence of line power �ows (fε)ε>0 satis�es the large deviation
principle

lim
ε→0

ε logP(|(fε)`| ≥ 1) = − (1− |ν`|)2

2σ2
`

= −I`. (4.14)

�emost likely power injection con�gurationp(`) ∈ Rn given the event |(fε)`| ≥ 1
is the solution of the variational problem

p(`) = arg inf
p∈Rn : |ê>` Vp|≥1

1

2
(p− µ)>Σ−1

p (p− µ), (4.15)
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which, when ν` 6= 0, can be explicitly computed as

p(`) = µ +
(sign(ν`)− ν`)

σ2
`

ΣpV
>ê`.

�e next proposition shows that the conditional distribution of pε, given

|(fε)`| ≥ 1, gets concentrated around p(`)
exponentially fast as ε→ 0, motivat-

ing the interpretation of p(`)
as the most likely power injection con�guration

given the failure of line `.

Proposition 4.2. Assume that maxk=1,...,m |νk| < 1, and that ν` 6= 0. �en,
for all nodes i = 1, . . . , n, and for all δ > 0,

lim
ε→0

ε logP((pε)i /∈ (p
(`)
i − δ, p

(`)
i + δ)

∣∣ |(fε)`| ≥ 1) < 0.

�e line power �ows corresponding to the power injection con�guration

p(`)
can be calculated as

f (`) = Vp(`) = ν +
(sign(ν`)− ν`)

σ2
`

VΣpV
>ê` ∈ Rm.

We observe that the vectors p(`)
and f (`)

are equal to the conditional expectation

of the power injections pε and power �ows fε, respectively, conditional on the

failure event f` = sign(ν`), namely

p(`) =E[ pε | (fε)` = sign(ν`)], (4.16)

f (`) =E[ fε | (fε)` = sign(ν`)].

In particular, for every k = 1, . . . ,m,

f
(`)
k = νk + (sign(ν`)− ν`)

Cov(f`, fk)

Var(f`)
.

Note that the case ν` = 0 has been excluded only for compactness. Indeed, in

this special case the variational problem (4.15) has two solutions, p(`,+)
and

p(`,−)
. �is can be easily explained by observing that if the power �ow on line

` has mean ν` = 0, then it is equally likely for the overload event {|f`| ≥ 1}
to occur as {f` ≥ 1} or as {f` ≤ −1} and the most likely power injection

con�gurations that trigger them can be di�erent.

�e previous proposition immediately yields the large deviation principle

also for the �rst line failure event ‖fε‖∞ ≥ 1, which reads

lim
ε→0

ε logP(||fε||∞ ≥ 1) = − min
`=1,...,m

(1− |ν`|)2

2σ2
`

.
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Indeed, the decay rate for the event that at least one line fails is equal to

the minimum of the decay rates for the failure of each line. �e most likely

power injections con�guration that leads to the event ‖fε‖∞ ≥ 1 is p(`∗)
with

`∗ = arg min`=1,...,m
(1−|ν`|)2

2σ2
`

.

Proof of Proposition 4.1. Let (Z(i))i∈N be a sequence of i.i.d. m-dimensional

multivariate normal vectors Z(i) ∼ Nm(ν,Σf ), and let Sk = 1
k

∑k
i=1 Z

(i)
be

the sequence of the partial sums. By se�ing ε = 1
k , it immediately follows

that that fε
d
= Sk, where

d
= denotes equality in distribution. Denote g(p) =

1
2 (p− µ)>Σ−1

p (p− µ). Following [182, Section 3.D], we get

lim
ε→0

ε logP((fε)` ≥ 1) = lim
k→∞

1

k
logP((Sk)` ≥ 1) =

= − inf
p∈Rn : ê>` Vp≥1

g(p) = − (1− ν`)2

2σ2
`

, (4.17)

lim
ε→0

ε logP((fε)` ≤ −1) = lim
k→∞

1

k
logP((Sk)` ≤ −1) =

= − inf
p∈Rn : ê>` Vp≤−1

g(p) = − (−1− ν`)2

2σ2
`

. (4.18)

�e optimizers of problems (4.17) and (4.18) are easily computed respectively as

p(`,+) = µ +
1− ν`
σ2
`

ΣpV
>ê`,

p(`,−) = µ +
−1− ν`
σ2
`

ΣpV
>ê`.

Note that trivially

inf
p∈Rn : |ê>` Vp|≥1

g(p) = min
{

inf
p∈Rn : ê>` Vp≥1

g(p), inf
p∈Rn : ê>` Vp≤−1

g(p)
}
,

and thus identities (4.14) and (4.15) immediately follow.

Proof of Proposition 4.2. We have

log P((pε)i /∈ (p
(`)
i − δ, p

(`)
i + δ)

∣∣ |(fε)`| ≥ 1)

= log P((pε)i /∈ (p
(`)
i − δ, p

(`)
i + δ), |(fε)`| ≥ 1)− logP(|(fε)`| ≥ 1).
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Denote g(p) = 1
2 (p− µ)>Σ−1

p (p− µ). From large deviations theory, it holds

that that

lim
ε→0

ε logP(|(fε)`| ≥ 1) = − inf
p∈Rn : |ê>` Vp|≥1

g(p) (4.19)

lim
ε→0

ε logP((pε)i /∈ (p
(`)
i − δ, p

(`)
i + δ), |(fε)`| ≥ 1)

= − inf
p∈Rn : |ê>` Vp|≥1,

|pi−p(`)i |≥δ

g(p). (4.20)

De�ne the corresponding decay rates as

I` = inf
p∈Rn : |ê>` Vp|≥1

g(p), J` = inf
p∈Rn : |ê>` Vp|≥1,

|pi−p(`)i |≥δ

g(p).

�en we can rewrite

lim
ε→0

ε logP((pε)k /∈ (p
(`)
i − δ, p

(`)
i + δ)

∣∣ |(fε)`| ≥ 1) = −J` + I`,

and, therefore, the claim is equivalent to proving that J` > I`. Notice that the

feasible set of the minimization problem (4.20) is strictly contained in that of

the problem (4.19), implying that J` ≥ I`.
Recall that p(`)

is the unique optimal solution of (4.19), and let p̂(`)
be an

optimal solution of (4.20). Clearly p̂(`)
is feasible also for problem (4.19). If it

was the case that J` = I`, then p̂(`)
would be an optimal solution for (4.19),

and thus by uniqueness (g(p) is strictly convex) p̂(`) = p(`)
. But this leads to

a contradiction, since p̂(`)
is by construction such that |p̂i − p̂(`)

i | ≥ δ. Hence

J` > I` and we conclude that

lim
ε→0

ε logP((pε)i /∈ (p
(`)
i − δ, p

(`)
i + δ)

∣∣ |(fε)`| ≥ 1) < 0.

4.A.3 Extension to non-Gaussian case

In this section we brie�y describe how to extend the analyis to the non-Gaussian

scenario. Consider a model for the power injection vector given by

pε = µ +
√
εX,

where µ ∈ Rn and X = (X1, . . . , Xn) is a random vector with mean 0 and

log-moment generating function

logM(s) = logE[e〈s,X〉].



94 Chapter 4. Emergent Failures and Cascades in Power Grids

�e power �ows vector is thus given by fε = V pε. De�ne the Fenchel-Legendre

(also known as the convex conjugate) transform of logM(s), i.e.

Λ∗(x) = sup
s∈Rn

(〈s,x〉 − logM(s)).

�en, for every ` = 1, . . . ,m, the sequence (fε)ε>0 satis�es the large deviation

principle (see [55])

lim
ε→0

ε logP(|(fε)`| ≥ 1) = − inf
x∈Rn : |ê>` V(µ+x)|≥1

Λ∗(x),

and the most likely power injection con�guration p(`) ∈ Rn given the event

|(fε)`| ≥ 1 is

p(`) = µ + arg inf
x∈Rn : |ê>` V(µ+x)|≥1

Λ∗(x).

�e rest of the analysis can then be carried out along similar lines as we did for

the Gaussian case.

4.A.4 Power �ow redistribution

For every line ` de�ne J (`) to be the collection of lines that fail jointly with `
as

J (`) = {k : |f (`)
k | ≥ 1}.

Let j(`) = |J (`)| be its cardinality and note that j(`) ≥ 1 as trivially ` always

belongs to J (`). Denote by G̃(`)
the graph obtained from G by removing all the

lines in J (`).

Let us focus �rst on the case of the isolated failure of line `, that is when

J (`) = {`}. In this case G̃(`) = G(N , E \ {`}) is the graph obtained from G
a�er removing the line ` = (i, j). Provided that the power injections remain

unchanged, the power �ows redistribute among the remaining lines. Using the

concept of e�ective resistance matrix R ∈ Rn×n and under the DC approxima-

tion, in [40, 165, 171] it is proven that alternative paths for the power to �ow

from node i to j exist (i.e., G̃(`)
is still connected) if and only if x−1

i,jRi,j 6= 1. In

other words, x−1
i,jRi,j = 1 can only occur in the scenario where line ` = (i, j)

is a bridge, i.e., its removal results in the disconnection of the original graph

G in two components. If G̃(`)
is still a connected graph, the power �ows a�er

redistribution f̄ (`) ∈ Rm−1
are related with the original line �ows f ∈ Rm in

the network G by the relation

f̄
(`)
k = fk + f

(`)
` φ

(`)
k , for every k 6= `,
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where f
(`)
` = ±1 depending on the way the power �ow on line ` exceeded

the threshold 1. If ` = (i, j) and k = (a, b) the coe�cient φ
(`)
k ∈ R can be

computed as

φ
(`)
k = φ(i,j),(a,b) = x−1

k ·
f̄`
f̄k
· Ra,j −Ra,i +Rb,i −Rb,j

2(1− x−1
` Ri,j)

, (4.21)

�e ratio f̄`/f̄k appears in the la�er formula since we work with normalized

line power �ows and we correspondingly de�ned φ(`) = {φ(`)
k }k 6=` to be the

normalized version of the classical line outage distribution factors (LODF, [77]).

Moreover, we de�ne the most likely power �ows con�guration f̃ (`) ∈ Rm−1

a�er redistribution as

f̃
(`)
k = f

(`)
k + f

(`)
` φ

(`)
k , for every k 6= `. (4.22)

4.A.5 Ring topology

We now focus on a particular topology, namely the ring on n nodes, which

we use as an illustrative example to show the non-locality of cascades. In this

topology, nodes are placed on a ring and each node is connected to its previous

and subsequent neighbor. Denote the set of nodes as N = {1, . . . ,m} and the

set of lines E = {l1, . . . , ln}, where l1 = (n, 1), l2 = (1, 2), . . . , ln = (n−1, n).

It is easy to prove that, in a ring network with homogeneous line capacities and

unitary reactances, φ`,k = −1 for every ` 6= k.

Lemma 4.1. Consider a ring network with homogeneous line capacities (f̄` = M
for every line `) and homogeneous unitary reactances (x` = 1 for every line `, see
Section 1.2.2). �en

i) �e e�ective resistance between a pair of nodes i, j is given by

Ri,j =
|j − i|(n− |j − i|)

n
. (4.23)

ii) For every pair of lines lk = (k − 1, k), l` = (` − 1, `), with k 6= `, the
LODF is constant and equal to φ(k−1,k),(`−1,`) = −1.

Proof. i) See identity (4) in [8]. ii) First, observe that the e�ective resistance

between two adjacent nodes i and j = i + 1 in a circuit graph is equal to

Ri,j = n−1
n , thanks to Eq. (4.23). A�er a straightforward calculation, and using

that x−1
` = 1, f̄` = M for all lines `, Eq. (4.21) becomes

φ(k−1,k),(`−1,`) = − 2

2n
(

1− n−1
n

) = −1.
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4.A.6 General topology

Going back to the case of a general network topology and any type of failures,

isolated or joint, the power �ows a�er redistribution f̄ (`) ∈ Rm−j(`) are related

with the power injections p ∈ Rn by the relation

f̄ (`) = Ṽ(`)p,

where the (m − j(`)) × n matrix Ṽ(`)
can be constructed analogously to V,

but considering the altered graph G̃(`)
instead of G. We de�ne the most likely

power �ow con�guration f̃ (`)
a�er redistribution as

f̃ (`) = Ṽ(`)p(`),

which generalizes Eq. (4.22) to any kind of failure, isolated or joint. �e next

proposition shows that it is enough to look at the vector f̃ (`)
to determine

whether a line that survived at the �rst cascade stage (i.e., that did not fail jointly

with `) will fail with high probability or not a�er the power redistribution (i.e.,

at the second cascade stage).

Proposition 4.3. Assume that maxk=1,...,m |νk| < 1, and that ν` 6= 0. �en,
for all lines k ∈ E \ J (`), and for all δ > 0,

lim
ε→0

ε logP((f̄ (`)
ε )k /∈ (f̃

(`)
k − δ, f̃

(`)
k + δ)

∣∣ |(fε)`| ≥ 1) < 0.

In particular, if |f̃ (`)
k | ≥ 1, then

P(|(f̄ (`)
ε )k| ≥ 1

∣∣ |(fε)`| ≥ 1)→ 1 as ε→ 0,

exponentially fast in 1/ε.

Proof. Let Aε,k denote the event Aε,k = {(f̄ (`)
ε )k /∈ (f̃

(`)
k − δ, f̃

(`)
k + δ)},

and de�ne Q = limε→0 ε logP(Aε,k
∣∣ |(fε)`| ≥ 1). �e proof that Q < 0 is

analogous to the proof of Proposition 4.2. For the second part, it follows from

limε→0 ε logP(Aε,k
∣∣ |(fε)`| ≥ 1) = Q that for every η > 0 there exists a ε̄

such that, for every ε < ε̄,

Q− η ≤ ε logP(Aε,k
∣∣ |(fε)`| ≥ 1) ≤ Q+ η,

and thus

exp
(Q− η

ε

)
≤ P(Aε,k

∣∣ |(fε)`| ≥ 1) ≤ exp
(Q+ η

ε

)
.
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Let Acε,k denote the complementary event of Aε,k. Since |f̃ (`)
k | ≥ 1, for δ

su�ciently small we have

Acε,k = {|(f̄ (`)
ε )k − f̃ (`)

k | < δ} ⊆ {|(f̄ (`)
ε )k| ≥ 1},

yielding

P(|(f̄ (`)
ε )k| ≥ 1

∣∣ |(fε)`| ≥ 1) ≥P(Acε,k
∣∣ |(fε)`| ≥ 1) ≥ 1− exp

(Q+ η

ε

)
.

Since Q < 0, the result follows.

4.B Numerical case study

4.B.1 SciGRID German network

We now demonstrate our methodology in the case of a real-world power grid

and a realistic system state.

Dataset Description

We perform our experiments using PyPSA, a free so�ware toolbox for power

system analysis [26]. We use the dataset described in [24, 25], which pro-

vides a model of the German electricity system based on SciGRID and Open-

StreetMap [118, 139]. �e dataset includes load/generation time series and

geographical locations of the nodes, di�erentiating between renewable and

conventional generation. It also provides data for transmission lines limits,

transformers, generation capacity and marginal costs, allowing us to couple our

theoretical analysis with realistic OPF computations. �e time-series provide

hourly data for the entire year 2011. For more technical information on the

dataset, we refer to [24, 25].

�e SciGRID German network consists of 585 buses, 1423 generators in-

cluding conventional power plants and wind and solar parks, 38 pump storage

units, 852 lines and 96 transformers. For the analysis carried out in this chap-

ter, storage units are not included and we exclude transformer failures. �e

renewable generators are divided in three classes, solar, wind onshore and wind

o�shore. Each bus can house multiple generators, both renewable and conven-

tional, but it is limited to at most one renewable generator for each class. Let

Nw.o�,Nw.on,Nsol denote the set of buses housing, respectively, wind o�shore,

wind onshore and solar generators, with |Nw.o�| = 5, |Nw.on| = 488, |Nsol| =
489, andNw.o� ⊆ Nw.on ⊆ Nsol. �e remaining 96 buses house 441 conventional

generators.
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Let ns = 489 denote the total number of buses housing renewable gen-

erators. If a bus houses both renewable and conventional generators, it will

be considered a stochastic bus for our decomposition formulation. We model

stochastic net power injections by means of a multivariate Gaussian random

vector ps ∼ Nns(µs, εΣp).

As explained above, the distinction between the noise parameter ε and

the covariance matrix Σp is relevant only for the theoretical analysis. As a

consequence, in the following we will take ε = 1 and refer to the covariance

matrix of ps simply as Σp.

Data-based model for µs

In order to get a realistic nominal line �ows value ν , we perform a linear OPF

relative to the day 01/01/2011, for di�erent hours of the day. A linear OPF

consists of minimizing the total cost of generation, subject to energy balance,

generation and transmission lines constraints, under the assumptions of the DC

approximations. In order to model a heavily-loaded but not overloaded system,

in the OPF we scale the true line limits f̄` by a contingency factor of λ = 0.7.

�is is a common practice in power engineering that allows room for reactive

power �ows and stability reserve.

More precisely, let g(i) be the generation at bus i as outpu�ed by the OPF

for a given hour, and let us write it as g(i) = gr(i)+gd(i), with gr(i) the power

produced by renewable generators a�ached to the bus, and gd(i) the power

supplied by conventional generators. If the demand at bus i is given by d(i),

then the average stochastic power injection vector µs ∈ Rns is modeled as

(µs)i = gr(i) + gd(i)− d(i), i = 1, . . . , ns,

while the deterministic power injection reads pi = gd(i)− d(i) for i ∈ Id.

Data-based model for Σp

In order to model the �uctuations of renewable generation around the nominal

values, and thus estimate Σp, we use realistic hourly values of wind and solar

energy production to �t a stochastic model. We then use the steady-state

covariance of the model residuals as an estimate for Σp. Following [122], we

choose to use AutoRegressive-Moving-Average (ARMA) models, which we

describe in detail below. Note that we do not aim to �nd the best possible

stochastic model for renewable generation, which is beyond the scope of this

chapter, but instead to provide an estimate for the covariance matrix Σp in

order to validate our theoretical results, which are asymptotically valid in a

small-noise regime. We speculate that more sophisticated models, and/or data
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on smaller time-scales, may lead to smaller values for the correlations in Σp,

thus ge�ing closer to the small noise limit.

We now describe the estimation procedure for Σp (as mentioned before we

normalize ε = 1 in our empirical study). �e SciGRID dataset contains time

series

yw.o� ∈ RM×5,yw.on ∈ RM×488,ysol ∈ RM×489,

for the available power output of wind o�shore, wind onshore and solar gen-

erators, for each hour of the year 2011, accounting for a total of M = 8760
measurements for each generator [24]. For each time series, y(·)(t, j) denote

the available power output at time t for the j-th generator of a given type, in

MW units.

Wind power model

As a pre-processing step, we merge together the two time series yw.o�,yw.on by

summing up the onshore and o�shore wind power at the buses Nw.o� ⊆ Nw.on.

�is yields the time series of wind power production

yw(t, j) = yw.on(t, j) + 1j∈Nw.o�
yw.o�(t, j),

where 1{} is the indicator function of the event in the bracket, taking value 1 if

the event is satis�ed, and 0, otherwise.

We select one portion of the data {1, . . . , T} ⊆ {1, . . . ,M}, corresponding

to the month of January, to be used to �t the model. For each windpark j,
following [122] we consider an ARMA(1,24) model of the form

x(t, j) =a1,jx(t− 1, j) + e(t, j)

+m1,je(t− 1, j) + . . .+m24,je(t− 24, j),

where x(t− 1, j) is the auto-regressive term, and e(t− k, j), k = 1, . . . , 24, are

the white-noise error terms. For each windpark j, we �t the above model to the

wind power data {yw(t, j)}t=1:T in R using the function arima, and consider

the time series of the residuals ew(1, j), . . . , ew(T, j).

�e empirical variance of the residuals is used as proxy for the variance of

the output of windpark j, namely

(Σw)jj = V̂ar(ew(1, j), . . . , ew(T, j)),

where V̂ar denotes the empirical variance. In a similar way, the empirical

covariance of the residuals is used to model the covariance between the output

of windparks i and j, i 6= j, namely

(Σw)ij = Ĉov
(
{ew(t, i)}t=1:T , {ew(t, j)}t=1:T

)
,
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where Ĉov denotes the empirical covariance.

Solar power model

State-of-the-art models for solar irradiance o�en combine statistical techniques

with cloud motion analysis and numerical weather prediction (NWP) models,

see [4] for a review. Since the available data in our case study are limited to

historical records for power production of solar generators, and do not include

any weather data, we used the purely statistical model ARMA(p,q), which has

been used succesfully in [93].

Regarding the orders p, q of the ARMA model, a�er some exploratory anal-

ysis we decided to use an ARMA(24,24) model with all parameters �xed to

0, except for the ones corresponding to the seven hours before, and the one

corresponding to twenty-four hours before. �e rationale behind this choice is

that by using the value corresponding to twenty-four hours before, we capture

the dependency on the hour of the day, while the values from 7 hours before

capture the shape of the current day.

More precisely, the model reads

x(t, j) = a1,jx(t− 1, j) + . . .+ a7,jx(t− 7, j)

+ a24,jx(t− 24, j)

+ e(t, j) +m1,je(t− 1, j) + . . .+m7,je(t− 7, j)

+m24,je(t− 24, j).

For each solar park j, we �t the above model to the solar power data (ysol(t, j))t=1:T ,

using again the R function arima, and consider the time series of the residuals

(e
sol(t,j))t∈D, where D ⊆ {1, . . . , T} denotes the set of daylight hours of Jan-

uary 2011. �e covariance matrix for the solar power generation is obtained

as

(Σsol)ij = Ĉov
(

(esol(t, i))t∈D, (esol(t, j))t∈D

)
.

Since we perform numerical experiments for di�erent hours of the day

01/01/2011, we need to model renewable �uctuations taking into account

whether or not we consider a daylight hour, as there is no solar energy pro-

duction before sunrise and a�er sunset. In view of this, and assuming that the

residuals for the wind and solar models are independent (see [208]), we model

the covariance matrix relative to an hour h as

Σp(h) = Σw + 1h∈D1
Σsol,

where D1 ⊆ {1, . . . , 24} denotes the set of daylight hours of 01/01/2011.
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�e magnitude of power injections noise at bus i is quanti�ed by the standard

deviation

√
(Σp)ii, expressed as a percentage of the combined installed capacity

of wind and solar generators located at bus i.1 In our numerical study, we �nd

that for daylight hours the mean of these standard deviations across all buses is

8.5%, while during nigh�ime the mean reduces to 5%.

Data-based model for Σf

In view of Eq. (4.11), the covariance matrix for the line power �ows fs is calcu-

lated as Σf = VsΣpV
>
s . �e magnitude of power �ows noise is quanti�ed by

the standard deviations σ` =
√

(Σf )``. Since the nominal values for the power

�ows ν` have been standardized as fractions of line capacities, and thus range

within the interval [−1, 1], the values of σ` describe the magnitude of the power

�ows noise as a percentage of the corresponding line capacity. In our numerical

study, we �nd that for daylight hours the power �ow standard deviations lie

within the range [0.00007, 0.14219], with mean 0.0228, while during nigh�ime

the range is [0.00001, 0.14203], with mean 0.0131.

4.B.2 German network: Most likely power injections

In order to keep the notation light, in the following two subsections we omit

the subscript s (which refers to stochastic power injections) from the vectors

µ, p(`), pε, p̄
(`)
ε .

�e small-noise regime theoretical power injections con�guration responsi-

ble for the failure of line `, as given by Eq. (4.16), reads p(`) = E [ pε | (fε)` =
sign(ν`)]. As an illustration, Fig. 4.5 depicts p(`)

leading to the isolated fail-

ure of line 720. �e bus sizes re�ect how much p(`)
deviates from µ, and the

color-coding uses red for positive deviations, blue for negative ones.

In order to validate the accuracy of the large-deviations approach, we com-

pare p(`)
to the pre-limit conditional expectation of power injections given the

failure of line `, namely

p̄(`)
ε = E [ pε | |(fε)`| ≥ 1],

which according to Proposition 4.2 converges to p(`)
in the limit as ε→ 0. As a

measure of error, we consider, for each line `,

err(`) =
1

ns

ns∑
i=1

∣∣∣ (p(`))i − (p̄
(`)
ε )i

µi

∣∣∣,
1

We note that normalizing the error using the installed capacity of a generator is standard in

the literature [89].
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which quanti�es the di�erence between p(`)
and p̄

(`)
ε , expressed as a percentage

of the nominal values µ, averaged across all stochastic nodes. We found that,

for the same hour as in Fig. 4.5, the average error across all lines is êrr =
1
m

∑m
`=1 err(`) = 0.2%, with a maximum value of 2.6%, see Fig. 4.8. Table 4.3

shows that the errors are uniformly small across di�erent hours.

Figure 4.8: Relative error err(`) at 11 am, for ` = 1, . . . , 852.

hour êrr max err(`)
4 am 0.1% 1.5%

8 am 0.4% 4.6%

11 am 0.2% 2.6%

4 pm 0.1% 2.3%

Table 4.3: Average and maximum err(`) for di�erent hours.

Failure propagation

In view of Proposition 4.3, the subsequent six failures have been determined by

looking at the vector f̃ (`) = Ṽ(`)p(`)
, and checking whether |f̃ (`)

k | ≥ 1 for each

line k 6= `. According to Proposition 4.3, the pre-limit conditional probabilities

P(|(f̄ (`)
ε )kj | ≥ 1 | |(fε)`| ≥ 1)
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converge exponentially fast to 1 as ε → 0, and in particular the cumulative

distribution functions

P((f̄ (`)
ε )kj ≤ x | |(fε)`| ≥ 1)

converge to the deterministic distribution f̃
(`)
kj

. In order to validate our method-

ology, we numerically evaluate

P(|(f̄ (`)
ε )kj | < 1 | |(fε)`| ≥ 1),

for j = 1, . . . , 6, and found that the probability that all the six lines identi�ed

by the large deviations approach actually fail in the pre-limit is equal to

P(|(f̄ (`)
ε )kj | ≥ 1 ∀j = 1, . . . , 6 | |(fε)`| ≥ 1)

≥ 1−
6∑
j=1

P(|(f̄ (`)
ε )kj | < 1 | |(fε)`| ≥ 1) = 0.9987.

4.B.3 German network: System security vs. system cost

In order to model a heavily-loaded but not overloaded system, in the OPF we

scale the true line limits f̄` by a contingency factor of λ ∈ (0, 1). �is is a

common practice in power engineering that allows room for reactive power

�ows and stability reserve.

We explore the trade-o� between system security and system cost, by vary-

ing the contingency factor λ in the range λ ∈ [0.7, 1]. We evaluate system

security by means of the large deviations approximation for the failure proba-

bility of a given line `,

pr
(λ)(`) = exp(−I`(λ)), (4.24)

where we emphasize the dependency on λ, and we use the average Locational

Marginal Price (LMP, Section 1.3.2) and the maximum LMP at the grid nodes as

metrics of system costs.

Fig. 4.9 reports the results corresponding to the same se�ing as in Fig. 4.7.

From this graph one can, for instance, immediately infer that making line 27
ten times as safe will roughly cost 1 €/MWh on average, while the increase in

cost in terms of maximum price can be much more signi�cant. �is example

shows how our large deviations theoretical framework can be a valuable tool to

help designing a safe and reliable network at minimal cost.

Reducing the security margin does not only in�uence the average LMPs and

system costs, but also their geographical distribution. Fig. 4.10 shows the LMPs
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Figure 4.9: Average LMP (scale on le�) and Maximum LMP (right) vs. log10(pr
(λ)(27)) =

log10(exp(−I27)), for the German network at 4pm.

for two values of λ, one corresponding to a low e�ective limit/large security

margin system (λ = 0.7) and the other to a large e�ective limit/low security

margin system (λ = 0.95). We can see how a more conservative system results

in higher LMPs, especially in the south and south-west part of Germany, while

in northern Germany the di�erence is less pronounced. �oting [26], this

phenomenon can be explained by the fact that “transmission bo�lenecks in the

middle of Germany prevent the transportation of this cheap electricity to the

South, where more expensive conventional generators set the price”.

Figure 4.10: Geographical distribution of LMPs for λ = 0.7 (le�) and λ = 0.95 (right), at 4pm.

Furthermore, Fig. 4.11 shows that reducing the system security margin does

not only increase the likelihood of an overload, but it also increases the number

of lines with a large enough overload probability.
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Figure 4.11: Number of lines ` with overload probability pr
(λ)(`) ≥ q.

4.B.4 IEEE test cases: analysis of classical vs. emergent failures

As illustrated earlier, the most likely power injections con�guration leading to

the emergent failure of a given line can be used in combination with the power

�ow redistribution rules to generate the failures triggered by that initial scenario.

By repeating this procedure for all lines, one can obtain insightful statistics

of the �rst two stages of emergent cascading failures (ec) and compare them

with those of classical cascading failures (cc), obtained using nominal power

injection values rather than the most likely ones and deterministic removal

of the initial failing line. We perform numerical experiments using IEEE test

grids. Since several IEEE test-cases do not report realistic transmission limits,

line capacities are taken to be proportional to the average absolute power �ow

on the corresponding lines, i.e., f̄` = (1 + α)|ν`|, where ν` is a nominal value

provided in the dataset, α = 0.25 and Σp is the identity matrix.

Graph % joint failures E(F ec

1 ) E(F ec

2 ) E(F cc

2 )
IEEE 14 65.0% 4.40 8.40 4.95

IEEE 30 97.6% 3.73 9.88 4.95

IEEE 39 80.4% 4.78 11.39 4.85

IEEE 57 88.5% 8.00 19.00 10.44

IEEE 96 72.2% 6.70 21.47 7.31

IEEE 118 91.6% 10.40 24.53 7.56

IEEE 300 87.0% 18.13 39.19 7.42

Table 4.4: Percentage of joint failures in emergent cascades and average number of failed lines F1

up to stage 1 and F2 up to stage 2 for emergent cascades (ec) and classical cascades (cc) for some

IEEE test systems.

As shown in Table 4.4, emergent cascades have a very high percentage
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of joint failures and an average number of failures in the �rst cascade stage

much larger than one (in classical cascades only one line is removed in the �rst

cascade stage). Furthermore, the expected total number of failed lines up to

the second cascade stage is signi�cantly larger for emergent cascades than for

classical cascades. Lastly, failures propagate in emergent cascades on average a

bit less far than in classical cascades, as illustrated by the statistics of the failure

jumping distance in Table 4.5.

Graph E(Dec) E(Dcc) cv(Dec) cv(Dcc)
IEEE 14 0.388 0.987 0.600 1.050

IEEE 30 0.754 1.198 0.879 1.115

IEEE 39 0.898 1.633 0.891 1.149

IEEE 57 1.210 2.507 0.863 1.415

IEEE 96 1.450 1.781 0.879 0.946

IEEE 118 0.679 1.638 0.745 1.169

IEEE 300 1.408 2.580 0.806 1.081

Table 4.5: Average and coe�cient of variation of the failure jumping distance D in stage 2 both

for emergent cascades (ec) and classical cascades (cc). �e distance between two lines is measured

as the shortest path between any of their endpoints.

Our approach also gives a constructive way to build the so-called “in�uence

graph” [87, 88, 152], in which a directed edge connects lines ` and `′ if the

failure of the line ` triggers (simultaneously or a�er redistribution) that of line

`′. Fig. 4.12 shows an example of in�uence graph built using our large deviations

approach. �e cliques of the in�uence graph (i.e., its maximal fully connected

subgraphs) can then be used to identify clusters of cosusceptable lines [207],

which are the lines that statistically fail o�en in the same cascade event.

Figure 4.12: �e in�uence graph of the IEEE 118-bus test system (in black) built using the �rst

two stages of all cascade realizations has a di�erent structure than the original network (in blue).
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In this chapter, we focus on an important macroscopic feature of blackouts

in power grids, namely that the total size of a blackout is scale-free, i.e., its

probability distribution has a Pareto law, and propose a novel explanation for

this phenomenon.

We model power grids as graphs with heavy-tailed sinks, which represent

demand from cities, and study cascading failures on such graphs. Our analysis

links the scale-free nature of blackout size to the scale-free nature of city sizes,

contrasting previous studies suggesting self-organized criticality (Section 1.4.2)

as a possible explanation. In particular, we show that the tail behavior of the

blackout size distribution is completely determined by the city size distribution.

109
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Our results are based on a new mathematical framework that combines a

structural model of the power grid with rare event analysis for heavy-tailed

distributions, and are validated on the German transmission grid, as well as

various synthetic networks.

An implication of these results is that, as we elaborate more extensively in

Section 5.5, the classical approach of enhancing power grids’ resilience (e.g. by

investing in network upgrades [57, 206]) would only lead to a modest decrease

in the likelihood of big blackouts. Conversely, our insights suggest that it

would be more e�ective to strengthen the resilience of cities by investing in

responsive measure, such as energy storage, that enable consumers to mitigate

the consequences of large blackouts.

Finally, our insights are not limited to power grids, and o�er new ways of

approaching scale-free phenomena in other transportation networks as well.

Chapter outline: �e rest of the chapter is organized as follows. In Sec-

tion 5.1 we describe our model for the power grid, formulate our research

question, and present results from the statistical analysis of historical blackouts.

In Section 5.2 we present the mathematical framework that we use to model

the cascading failure process, and state a property of Pareto distributions that

is a crucial ingredient of our analysis. Next, we provide the rigorous math-

ematical derivation of our results in Section 5.3, and present the simulation

experiments in Section 5.4. Finally, we conclude in Section 5.5. Details on the

statistical analysis and modeling, as well as extended proofs, are reported in

Appendices 5.A, 5.B and 5.C.

5.1 System model and problem formulation

Following the model description of Section 1.2.2, we view the power grid as

a connected graph G = G(N , E) with |N | = n, |E| = m, where nodes N
represent buses, which are connected by edges E modeling transmission lines.

Moreover, we let g,d ∈ Rn and p = g − d ∈ Rn represent the nodal (active)

generation, demand, and net power injection vectors, respectively. We assume

that every node i ∈ N represents a city with sizeXi, where we de�ne the size of

a city as the number of inhabitants, and we denote by X = (X1, . . . , Xn) ∈ Rn
the vector of city sizes.

We consider a static framework where each inhabitant demands one unit of

energy, therefore identifying the energy demand of a city with its size, i.e.

di = Xi for every i = 1, ..., n. (5.1)
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In view of Eq. (5.1), we will use the notations X and d interchangeably.

Under the DC approximation, the power �ows f ∈ Rm are given by f = V̂p,

where the PTDF matrix V̂ was de�ned in Eq. (1.19). In this context, the DC

power �ow model has been shown to be accurate in describing the evolution of

the cascade that led to the 2011 San Diego blackout [13]. Some useful properties

of matrix V̂, that will be used later, are reported in Appendix 5.B.

Under normal conditions, the power grid is a single fully functioning net-

work with balanced supply and demand, i.e., e>(g − d) = 0, where e =
(1, . . . , 1)> ∈ Rn. Following [14], a typical way for a large blackout to occur is

as follows: a�er several line failures, the network breaks into disconnected sub-

networks, referred to as islands in the rest of the chapter. In particular, suppose

that a�er several line failures the network disconnects in two islands, I1 and

I2 = N \I1. In general, the balance between supply and demand is not guaran-

teed to hold in the individual islands, i.e.

∑
i∈I1(gi−di) = −

∑
i∈I2(gi−di) 6=

0. Without loss of generality, assume that

∑
i∈I1(gi − di) < 0, so that I1 faces

a power shortage. We de�ne the size of the blackout, up to the �rst disconnection,

in terms of the amount of load that needs to be shed in I1 in order to restore

balance, i.e.

S =

∣∣∣∣∣∑
i∈I1

(gi − di)

∣∣∣∣∣ =
∑
i∈I1

(di − gi) > 0, (5.2)

which is equivalent to the number of customers a�ected, in view of Eq. (5.1).

A�er this �rst disconnection, the cascade may progress leading to a network

having several disconnected islands. �e total blackout size is de�ned as the

cumulative load shed in each island facing a shortage until the cascading failure

process ends or, equivalently, as the total number of customers a�ected by the

blackout in view of Eq. (5.1). A rigorous description of our model for blackouts

is given in Section 5.2.

Research question: It is well-documented [38, 57, 86, 39] that blackout sizes,

expressed in terms of number of customers a�ected, are scale-free, i.e., their

distribution is consistent with that of a Pareto random variable. A Pareto-

distributed random variableX with minimum value xmin > 0 and tail exponent

α > 0 is described by its complementary cumulative distribution function

(CCDF)

F̄ (x) = P(X > x) =
( x

xmin

)−α
, x ≥ xmin. (5.3)

�e expected value ofX is equal to (αxmin)/(α−1) if α > 1, and∞ otherwise.

Whenever we are only interested in the tail index α, we will use the notation
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P(X > x) ≈ Cx−α, where≈means that the ratio of both quantities approaches

1 as x → ∞, and C > 0 is a constant. �e results of the statistical analysis

for historical blackouts in the US are reported in Table 5.1. In particular, we

observe that the estimated tail index is greater than 1, implying a �nite mean.

�e statistical analysis is based on the PLFIT method in [42], and details are

reported in Appendix 5.A.

Dataset N n
tail

α̂(x̂min) x̂min KS p-value

US city sizes (×103) 19447 580 1.37± 0.08 52.5± 11.6 0.76
US blackout sizes (×103) 1341 448 1.31± 0.08 140± 31.3 0.32

Table 5.1: PLFIT statistics for US city [42] (based on the 2000 Census) and blackout sizes [184].

n
tail

is the number of data points xi greater or equal than x̂min. Standard deviations obtained

via nonparametric bootstrap with 1000 repetitions, and KS p-value denotes the result of the

Kolmogorov-Smirnov goodness-of-�t test (Section 5.A.1).

�e central thesis of this chapter is that the scale-free nature of city sizes

in the network is what drives the scale-free nature of blackout sizes. In par-

ticular, we will show that city sizes X and blackout sizes S both have Pareto

distributions with similar tail behavior, i.e.

P(S > x) ≈ C1x
−α, P(X > x) ≈ C2x

−α, (5.4)

for C1, C2 > 0. For the case of the US blackout sizes and city sizes, we

corroborate this with historical data as summarized in Fig. 5.1 and Table 5.1,

which shows that the distribution of city sizes is also scale-free [42], and that

the tail parameters α for blackout and city sizes distributions are remarkably

similar (blackout sizes: α = 1.31± 0.08; city sizes: α = 1.37± 0.06). We refer

to Appendix 5.A for details on the historical data analysis and the statistical

procedure.

5.2 Cascading failures model

In what follows, we formally state our results by introducing a new mathematical

framework that captures the salient characteristics of actual power system

dynamics [14] and sheds light on the connection between blackout and city

sizes.

In accordance with data analysis (see Table 5.1), we model the size of a city

with a Pareto distribution with tail index α, i.e.

P(X > x) ≈ C2x
−α, (5.5)

for a constant C2 > 0, and we assume that city sizes are independent and

identically distributed. For convenience, we relabel the nodes such that X1

represents the largest city.
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Figure 5.1: a) Pareto tail behavior of US city [42] and blackout sizes [184] in the region x ≥
xmin. Estimates for α and xmin, along with standard deviations, are based on PLFIT [42], and are

statistically signi�cant based on the Kolmogorov-Smirnov goodness-of-�t test (see Appendix 5.A.1).

Points depict the empirical complementary cumulative distribution function (CCDF); Solid line

depicts the CCDF of a Pareto distribution with parameters α, xmin. b) Visualization of the estimated

α obtained by only considering values in the region x ≥ xmin, as a function of xmin. �e PLFIT-

estimated xmin for city sizes (blue dot) and blackout sizes (red dot) lie within a region where the

values of α are relatively stable, corroborating the results of the PLFIT procedure.

For the operations of our network, we employ the Direct Current Optimal

Power Flow (DC-OPF) formulation, which plays a central role in the daily

operations of actual power systems [14, 33]. As described in Section 1.3.1, the

OPF is a cost-minimization procedure that determines the optimal generation

schedule satisfying demand/supply balance and network operating constraints,

such as generator and transmission lines limits, under the assumptions of the

DC approximation.

5.2.1 Planning, operational and emergency problems.

In order to obtain a fundamental, causal understanding of the correlation be-

tween blackout sizes and city sizes using the DC approximation model, we

require a framework that adequately sets the transmission lines limits by taking

into account the topology of the network and the distribution of city sizes. In

addition, we need to specify a mechanism that causes the initial line failure, as

well as which lines possibly fail next a�er the power �ow redistribution. For this

purpose, we consider a framework that consists of three problems: the planning
problem, the operational problem, and the emergency problem. Next, we explain

our framework in more detail, followed by listing some vital properties.
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�e planning problem. �e planning problem refers to the design of the

power network, and in particular, how the line limits f̄ for the next phase, the

operational problem, are set.

Recall that, in our static framework, each inhabitant demands one unit of

energy, i.e. di = Xi for every i = 1, ..., n, and that city sizes Xi’s are i.i.d. and

have a Pareto tail, as given by Eq. 5.5. We assume that the generation cost

function at node i is a strictly convex and quadratic function of gi, and that

generator limits do not pose an e�ective constraint in the DC-OPF. Speci�cally,

we assume that Ji(gi) = g2
i /2, i = 1, ..., n, and g

i
= −∞, ḡi =∞, i = 1, ..., n.

Moreover, we assume that line limits do not pose an e�ective constraint.
1

�ese assumptions ensure that the generation is spread among the cities

as equally as possible, and that the resulting line power �ows, as well as the

operational line limits (de�ned later in Eq. (5.6)), are also Pareto-tailed with the

same exponent as the city sizes.

�e solution of the DC-OPF in the absence of any generator and transmission

line limits is

g(planning) =
( 1

n

n∑
i=1

Xi

)
e.

�e associated �ow vector is given by

f (planning) = V̂(g(planning) −X) = −V̂X,

where we used that V̂g∗ = 0 (Lemma 5.4). Next, in the operational problem,

we set operational line limits as a fraction λ of the planning problem power

�ows

f̄` = λ|f (planning)| = λ|(V̂X)`|, ` = 1, ...,m, (5.6)

where λ ∈ (0, 1] is a safety tuning parameter.

�e operational problem. �e operational problem consists in solving the

DC-OPF with respect to the operational line limits Eq. (5.6) to obtain the gener-

ation vector g. �at is, we solve

min
g∈Rn

n∑
i=1

g2
i /2 (5.7)

s.t.

n∑
i=1

gi =

n∑
i=1

Xi, (5.8)

− f̄ ≤ V̂(g −X) ≤ f̄ (5.9)

1
We remark that the design phase’s purpose is to set line limits for the operational phase.
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Observe that the line limit constraints −f̄ ≤ V̂(g −X) ≤ f̄ can be rewri�en,

in view of Eq. (5.6), as

V̂X− λ
∣∣∣V̂X

∣∣∣ ≤ V̂g ≤ V̂X + λ
∣∣∣V̂X

∣∣∣ (5.10)

where |V̂X| denotes the vector with elements (|V̂X|)j = |(V̂X)j |, j =
1, ...,m.

�e emergency problem. Finally, the emergency problem concerns how an

initial disturbance propagates through the network. We assume that the initial

disturbance is caused by a single line failure, chosen uniformly at random over

all lines. We point out that our framework can be extended to multiple initial

line failures, or adapted to deal with generator failures. �e initial line failure

changes the topology of the grid and causes a global redistribution of network

�ows according to power �ow physics (see Appendix 5.B).

A subsequent line failure occurs whenever there is at least one line such

that its emergency line limit is exceeded. �e emergency line limit is de�ned as

F` = λ∗f̄`, (5.11)

with f̄` being the (conservatively chosen) operational line limits, and λ∗ > 1 is

a constant. A canonical choice is λ∗ = 1/λ.

We assume that line failures occur subsequently, and occur �rst at the line

where the relative exceedance is largest. Whenever line failures cause the

network to disconnect in multiple islands, we assume that the energy balance

is restored by proportionally lowering either generation or demand at all nodes,

as described in more details in Section 5.3.2.

�is change in power injections alters the power �ows as well, and the

process can continue resulting in a cascading e�ect. More speci�cally, before

the initial disturbance occurs, the network �ows are given by V̂(g− d), where

g is the solution of the DC-OPF in the operational problem, and d = X. A�er

any line failure, we check whether this causes the network to disconnect, and if

so, we proportionally lower the generation in one component and the demand in

the other component such that demand and generation are balanced in the two

disconnected components. �e network �ows are updated according to the laws

of physics in every component. �at is, the removal of one or more lines yields

a modi�ed matrix
˜̂
V (see Appendix 5.B), and possibly modi�ed generation g̃

and demand d̃. �e line �ows are given by
˜̂
V(g̃ − d̃). �is cascading failure

process continues until the emergency line limits F` of all surviving lines are

su�cient to carry the power �ows.
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�is iterative process may lead to the disconnection of the network in mul-

tiple disconnected sets, or islands. Within each island, we alter the generation

and demand to restore the power balance. Observe that there is at least one

island that experiences a power shortage and needs to shed load. Our object of

interest is the total amount of load that is shed during the process.

In particular, de�ne A1 ⊆ N to be the island that contains the city with

the largest demand a�er the cascade has taken place. We point out that the set

A1 is random, and in particular, A1 = {1, ..., n} if the cascade stops without

causing network disconnections.

�e mismatch between generation and demand in the componentA1, which

contains the city with highest power demand, is given by

S =

∣∣∣∣∣∑
i∈A1

(Xi − gi)

∣∣∣∣∣ =
∑
i∈A1

(Xi − gi) > 0. (5.12)

In general, the total size of the blackout can be greater than S, as there may

be additional islands experiencing power shortages. �anks to properties of the

Pareto distribution, however, it turns out that S is a good approximation for

the total size of the blackout, as it yields exactly the same limiting behavior. We

study this notion in more details in the next sections.

5.2.2 Principle of a single city with large demand

A key property in our framework is that the tail of the blackout distribution is

dominated by the scenario where there is a single city that has a large power

demand, while the demand of the other cities is negligible. To formalize this

notion, write d1 = max{d1, ..., dn} with di, i = 1, ..., n, independent and

identically Pareto distributed power demands. Note that for every ε > 0,

P (S > x) = P

(
S > x;

n∑
i=2

di < εd1

)
+ P

(
S > x;

n∑
i=2

di ≥ εd1

)
.

�e next lemma shows that the second term in the right-hand side is negligible.

Lemma 5.1. Suppose di, i = 1, ..., n are independent and identically Pareto
distributed with tail exponent α > 0, and write d1 = max{d1, ..., dn}. For every
ε > 0, as x→∞,

P

(
S > x;

n∑
i=2

di ≥ εd1

)
= O

(
x−2α

)
. (5.13)
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In other words, Lemma 5.1 implies that if for some ε > 0 su�ciently small,

the approximation

P

(
S > x;

n∑
i=2

di < εd1

)
≈ Cx−α

holds for some constant C ∈ (0,∞), then the only likely way to have a large

blackout is when there is a single city that has a large demand.

As a result of Lemma 5.1, in order to understand how large blackouts occur, it

su�ces to grasp the behavior in the special case where there is a single city with

a large demand d1, while all other demands are negligible, i.e.,

∑n
i=2 di < εd1.

To this end, in the next section we �rst focus on the very special case where

d = ye1, i.e., d1 = y > 0 and dj = 0 for j > 1, for which the blackout size S
has a particularly simple expression. In view of Lemma 5.1, this special case

describes some form of limiting behavior for the general case, which will be

analyzed extensively in Section 5.3.

5.2.3 Blackout size in the case d = ye1.

In this section, we show that in the special case d = ye1, y > 0, the operational

problem and has a closed-form solution, given by

g1 = y
(

1− λn− 1

n

)
, gj(λ) = λ

y

n
for j ≥ 2. (5.14)

In turn, this allows us to get a simple expression for the blackout size S.

First, we consider the planning problem. In the absence of any generator

and transmission line limits, the solution of the planning OPF is g∗ = y
ne,

with associated �ow vector f∗ = V̂(g∗ − ye1) = −yV̂e1, where we used that

V̂g∗ = 0 (see Lemma 5.4).

�erefore, the operational problem reduces to

min
g∈Rn

n∑
i=1

g2
i /2 (5.15)

s.t. e>g = e>e1 = y, (5.16)

−λy|V̂e1| ≤ V̂(g − d) ≤ λy|V̂e1|, (5.17)

which we will denote by P (λ, y). Lemma 5.2 shows that the solution of P (λ, y)
is of closed form.
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Lemma 5.2. Let λ ∈ (0, 1). Let G be assigned the orientation such that V̂e1 ≥ 0.
�en, the solution of P (λ, y) is given by

g(λ) = λ
y

n
e + y(1− λ)e1,

i.e., g1(λ) = y(1−λn−1
n ) and gi(λ) = λ yn for all i = 2, . . . , n. �e corresponding

line �ows are at capacity and are given by f(λ) = −yλV̂e1.

�e proof is reported in Appendix 5.C.

Finally, we solve the emergency problem, which leads to a simple expression

for the blackout size. Note that whenever there is a network disconnection, the

component that does not contain node 1 has zero power demand, and hence the

generation at every node in that component must be lowered to zero in order

to restore balance. Evidently, no consecutive failures occur in this component,

implying that the total amount of load that is shed equals the power imbalance

in just the component containing the biggest city, A1, and reads

S =
∑
i∈A1

(Xi − gi) =
∑
j 6∈A1

(gj −Xj) =
∑
i 6∈A1

λ

n
= λ

n− |A1|
n

y. (5.18)

Indeed, the demand at node 1 is reduced by the number of nodes that

disconnect from this component times yλ/n, since gj = yλ/n for every j ≥ 2.

Next, we will see how this special case can be used to derive the distribution of

the tail of blackout sizes in the general case.

5.3 Blackout size in the general case

5.3.1 Intuitive argument

Before proceeding with the rigorous mathematical analysis, it is helpful to get

an intuitive understanding of the main idea underlying our results. For this

reason, we now provide a sketch of our argument, referring to Sections 5.3.2

and 5.3.3 for the full derivation. First, observe that in view of Lemma 5.1, the

case where

∑n
i=2 di ≤ εd1 (for arbitrarily small ε > 0) is, in certain se�ings,

the only likely way to have a large blackout.

�erefore, in the following derivation, we will consider the limiting regime

d→ ye1, where we recall that d1 = max{d1, . . . , dn} is the city with largest

demand. By conditioning on the size of the island A1 containing the biggest

city at the end of the cascade, we have
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P(S > x) =

n∑
j=1

P
(
S > x

∣∣ |A1| = j
)
P (|A1| = j)

≈
n−1∑
j=1

P
(
λ
n− j
n

d1 > x
∣∣ |A1| = j

)
P (|A1| = j)

≈ C1x
−α,

where

C1 = nK

n−1∑
j=1

P (|A1| = j)λα(1− j/n)α ∈ [0,∞). (5.19)

Intuitively, the second approximation in the above derivation follows by

considering the limiting regime d → ye1, recalling that in the case d = ye1

the blackout size is equal to λn−|A1|
n y, and invoking an important continuity

property described in Lemma 5.1. Finally, in the last step we used the property

P(max{X1, ..., Xn} > x) ≈ nP(X > x) ≈ nKx−α,

that holds for Pareto tails [156]. �erefore, if there is a strictly positive probabil-

ity P(|A1| ≤ n−1) =
∑n−1
j=1 P(|A1| = j) > 0 that a cascade creates additional

islands, then C1 > 0 and the total amount of load shed has a Pareto tail with

the same exponent as the city size distribution Eq. (5.4). �e next subsections

are devoted to the rigorous derivation of this result.

5.3.2 Convergence of cascade sequence and continuity
properties

First, note that without loss of generality, we can always normalize our frame-

work by dividing all parameters (generation, line limits, etc.) by the sum of all

power demands. �is yields an equivalent se�ing where the total power demand

equals one, i.e., d = e1. �erefore, we will normalize y = 1 in the derivation

below. In the rest of this section, we �rst rigorously de�ne our framework for

the cascade evolution, and then we show how, under some assumptions, for all

demand vectors d for which d→ e1 as ε ↓ 0, the sequence of subsequent line

failures (i.e., the cascade evolution) converges to the sequence of line failures as
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if the demand vector would have been d = e1. �e operational DC-OPF

min
g∈Rn

1

2
g>g (5.20)

s.t. e>g = e>d, (5.21)

|V̂(g − d)| ≤ λ
∣∣∣V̂d

∣∣∣ , (5.22)

is a strictly convex optimization problem, and since g = λd̄e + (1 − λ)d
is a feasible point, the feasible set of this optimization problem is nonempty.

�erefore, for each demand vector d, there exists a unique optimal solution

g∗(d).

If we view d as a parameter of the problem, then the optimization prob-

lem de�ned by Eqs. (5.20)-(5.22) is an instance of a multi-parametric quadratic
programming (mp-QP) problem with a strictly convex objective function, for

which it is known that the optimal solution g∗(d) is a continuous function of

the parameter vector d (�eorem 1, [181]). �is continuity property will be

used extensively in the rest of the section.

We assume in our framework that line failures occur subsequently, i.e., a

next line failure occurs at the line where the line limit is relatively most exceeded.

Recall that Fj denotes the emergency line limit of line j ∈ E , and is given by

(taking λ∗ = 1
λ )

Fj = λ∗λ|(V̂d)j | = |(V̂d)j |.

We write f
(m)
j as the �ow on line j a�er the failure of the �rst m− 1 lines and

a�er the load/generation shedding took place, where we use the convention

that f
(1)
j denotes the �ow on line j when no initial disturbance has occurred yet,

and f
(m)
j = 0 if line j has already failed before the m-th step of the cascading

failure process. �e cascade is initiated by the random failure of line ` = `(1)
.

For m ≥ 2, the m-th line to fail is given by

`(m) = arg max
j∈A(m)

{ |f (m)
j | − Fj
Fj

}
= arg max

j∈A(m)

{ |f (m)
j |
Fj

}
, (5.23)

where A(m) = {j : |f (m)
j | ≥ Fj} is the set of lines that exceed the limit.

Remark 5.1. Note that the line limits and line �ows depend on d and λ through
the operational OPF, so that the sequence of subsequent failure depends on d, λ,
and on the initial failure ` = `(1). �at is,

Fj = Fj(d), f
(m)
j = f

(m)
j (d, λ), A(m) = A(m)(`, λ,d), `(m) = `(m)(`, λ,d).
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For notational compactness, we do not write the dependency on d, λ and `.

We remark that if |A(m)| = 0, no more line failures occur. Technically, it is

also possible that |A(m)| > 1 and, hence, the subsequent line failure next needs

to be chosen from a set of multiple lines. We exclude the cases that do not yield

unique maximizers from our framework.

Assumption 5.1. For all lines j, the ratios between redistributed �ows and line
limits

|f (m)
j (e1)|
Fj(e1)

=
λ|(V̂(m)e1)j |
|(V̂e1)j |

are all di�erent for all m ≥ 2, where V̂(m) denotes the PTDF matrix for the
remaining network a�erm− 1 failures have taken place.

Assumption 5.1 is needed to ensure the uniqueness of the maximizer in

Eq. (5.23), and guarantees that whenever the �rst line failure ` and the parameter

λ are known, the cascade sequence for the demand vector d = e1 is unique

and deterministic. �is assumption is added for technical convenience, and

we stress that our results hold more generally. In particular, this assumption

rules out certain network topologies with some form of symmetry, but we can

slightly adapt the framework to deal with these cases as well.

�at is, suppose that |A(m)| > 1 for some m ∈ N and the set A(m)
consists

only of lines that are indistinguishable from one another (lines that are ‘sym-

metric’). Since nodal demands are independent and identically distributed, this

implies that each of these lines has an equal probability of being the line that

fails next. By the symmetry of the network topology, regardless of which line is

chosen to fail next, the resulting networks a�er the cascade are indistinguish-

able.

Let C = {`(1), . . . , `(T )} be a cascade sequence, where `(T )
is the last failure

before the cascade stops. In view of Assumption 5.1, such a sequence is uniquely

determined by the �rst failure `(1)
and by the demand vector d and by λ, i.e.,

C = C(d, λ, `). In view of Lemma 5.1 and the normalization property, the goal

of this section is to show that if d→ e1, then the cascade sequence does not

depend on d anymore, i.e.

C(d, λ, `) = C(e1, λ, `).

To analyze the power imbalance in this framework, we �rst introduce some

notation as well as formally de�ne the shedding rule and the redistribution of

power �ows.
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De�nition 5.1 (Uniform shedding rule). Let g(1) = g∗,d(1) = d be the initial
generation and demand vectors. Assume that the removal of lines `(1), . . . , `(m),
m ≥ 1, disconnects the network in components G(m)

i = (N (m)
i , E(m)

i ), i =

1, . . . , hm. De�ne the power imbalance in component G(m)
i as

YG(m)
i

=
∑

k∈N (m)
i

(g
(m)
k − d(m)

k ).

In order to restore power balance, generation and demand in each component
are modi�ed iteratively according to the following uniform shedding rule, for
k ∈ N (m)

i :

d
(m+1)
k =


(

1−
|Y
G(m)
i

|∑
l∈N(m)

i

d
(m)
l

)
d

(m)
k if YG(m)

i
< 0

d
(m)
k if YG(m)

i
≥ 0

,

g
(m+1)
k =


g

(m)
k if YG(m)

i
< 0(

1−
|Y
G(m)
i

|∑
l∈N(m)

i

g
(m)
l

)
g

(m)
k if YG(m)

i
≥ 0.

De�nition 5.2 (Power �ow redistribution). Assume that the removal of lines
`(1), . . . , `(m),m ≥ 1, disconnects the network in componentsG(m)

i = (N (m)
i , E(m)

i ),
i = 1, . . . , hm. �en, the line �ows in component G(m)

i are given by

f
(m+1)
Ei = V̂(m+1,Gi)(g

(m+1)
Ni − d

(m+1)
Ni ),

where V̂(m+1,Gi) is the PTDF matrix for the subgraph G(m)
i , and g(m+1)

Ni , d
(m+1)
Ni

are de�ned as in De�nition 5.1.

In order to show the convergence of the cascade sequence, we require a

second assumption.

Assumption 5.2. For all lines j andm ≥ 2,

|f (m)
j (e1)| − Fj(e1) 6= 0.

�at is, for d = e1 it is not possible for a line �ow |f (m)
j | to be exactly equal to its

limit. In terms of PTDF matrices and λ, this assumption reads

λ|(V̂(m,Gi)e1)j | 6= |(V̂e1)j |, m ≥ 2.
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Assumption 5.2 states that none of the line �ows equal its emergency line

limit in the cascade sequence if d = e1. In practice, this assumption involves

excluding �nitely many λ’s from our analysis, which correspond to phase-

transitions.

In order to prove the convergence of the cascade sequence, we also need a

continuity property of the line �ows at every stage with respect to the demand

vector.

Lemma 5.3 (Continuity of f
(m)
j with respect to d). At each stage m of the

cascade, the redistributed power �ows f (m)
j are continuous in the initial demand

vector d for all j = 1, ...,m.

Proof. Assume that the removal of lines `(1), . . . , `(m)
, m ≥ 1, disconnects the

network in components G(m)
i = (N (m)

i , E(m)
i ), i = 1, . . . , hm. According to

De�nition 5.2,

f
(m+1)
Ei = V̂(m+1,Gi)(g

(m+1)
Ni − d

(m+1)
Ni ),

for each connected componentG(m)
i , so f (m+1)

is continuous in g(m+1),d(m+1)
.

Moreover, according to De�nition 5.1, g(m+1),d(m+1)
are continuous functions

of g(m),d(m)
. By unfolding the recursion, and using that g∗(d) is continuous

in d, we see that f (m+1)
is continuous in d.

Finally, we can show the main result of this section.

Proposition 5.1. Assume that Assumptions 5.1 and 5.2 hold, and let

C(d, λ, `) = {`(1), . . . , `(T )}

be a cascade sequence initiated by ` = `(1). �en, there exists ε > 0 such that

d1 = 1, dj < ε, ∀j ≥ 2 =⇒ C(d, λ, `) = C(e1, λ, `).

�e proof is reported in Appendix 5.C. For an illustration on how one can

easily derive the �nite number of phase-transition values, we refer to [134, 170].

5.3.3 Asymptotic behavior of power imbalance

In Section 5.2.2, we showed that the only likely way to have a large blackout is

when there is a single city that has a signi�cantly larger demand than all other

cities. Under certain assumptions, given the position of this city (i.e., labeling

this as city 1) and the �rst line failure, the cascade sequence is deterministic

and the same to the one as if the demand vector would have been d = e1



124 Chapter 5. Emergence of Scale-Free Blackout Sizes

(Section 5.2.3). In this section, we exploit these properties to derive the tail

behavior of S, or equivalently, the amount of load that is shed/the number of

a�ected customers.

We point out that the demands are independent and identically distributed,

so the probability that a city has the largest demand equals 1/n. To obtain the

tail behavior of S, we need Assumptions 5.1 and 5.2 to hold regardless of which

city has the largest power demand.

Assumption 5.3. Assumptions 5.1 and 5.2 hold for any relabeling of the vertices.

Note that since the number of cities n is �nite, and inherently also the

number of the possible lines where the �rst failure occurs, Assumption 5.3

excludes only a �nite number of possible values of λ from our framework. �e

main theorem follows.

�eorem 5.1. Suppose there is a �xed topology G = (N , E) and a �xed λ ∈
(0, 1), for which Assumption 5.3 holds. Write Z(i, `), i = 1, ..., n, ` = 1, ...,m
as the number of cities that are not in the same component as city i a�er the
cascade under demand vector d = ei and �rst line failure `. If Z(i, `) = 0 for all
i = 1, ..., n and ` = 1, ...,m, then as x→∞,

P(S > x) = O(x−2α). (5.24)

Otherwise, as x→∞, there exists a C1 ∈ (0,∞) such that

P(S > x) ≈ C1x
−α. (5.25)

�e proof is reported in Appendix 5.C. See also [170].

5.3.4 Blackout build-up by multiple jumps

As the cascade progresses, the size of the blackout S can gradually build up

by multiple big shocks, or jumps, as the island containing the biggest city is

shrinking in size. Large deviations theory for heavy tails can be applied to show

that each of these jumps is a �xed fraction of the city size, proportional to the

number of generators that are being cut o�.

We illustrate this in Fig. 5.2 on a simple network of six nodes, as well as on

the SciGRID simulation in Section 5.4.1, referring to [134, 170] for details. �is

example shows how λ acts as a tuning parameter: if λ > 3/4 the total blackout

size is realized by means of either one or two big shocks (the two scenarios

being equally likely) while smaller values of λ only lead to one shock. When

λ < 1/4 (an overly conservative value), a single line failure does not lead to a

blackout.
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(a) Initial disturbance occurs at one of the upper lines.

(b) Initial disturbance occurs at one of the lower lines.

Figure 5.2: Schematic illustration of a cascade in a six-node network with λ > 3/4. �e

operational �ows for the four lower and upper lines are λ/24 and 5λ/24, respectively, with

corresponding emergency line limits of 1/24 and 5/24. (a) �e failure of one of the upper lines

causes the load on the adjacent lower line to surge to λ/6, exceeding the line limit and causing this

line to trip (Stage 2). �is cuts o� node 2 and results in a load shed of λ/6. In addition, this causes

the load on the three remaining lower lines to surge to λ/18, resulting in these lines tripping as

well (Stage 3). �is isolates node 6 and yields a further load shed of λ/6 (Stage 4), at which point

the cascade ends. �us, the setA1 consists of four nodes, and a total load shed of λ/3 occurs as a

result of ‘two big jumps’. (b) �e failure of one of the lower lines produces a load surge λ/18 on

the three remaining lower lines (Stage 2), causing them to trip and cu�ing node 6 o�. �e upper

lines see a reduction in load and survive, so that the setA1 consists of �ve nodes, and a total load

shed of λ/6 occurs as a ‘single big jump’ (Stage 3).

5.4 Simulation experiments

5.4.1 SciGRID network

To support our claims further, we present experimental results using the German

SciGRID network. We perform our experiments using PyPSA, a free so�ware

toolbox for power system analysis [26]. We use the dataset described in [24],

which provides a model of the German electricity system based on SciGRID [118].

Data for German city sizes are obtained from [203], while the population of

German districts, together with the corresponding administrative borders, are

taken from [61] and [62, 53].

Since the aforementioned datasets do not include nodal demand data, we

generate relative nodal demands by using population sizes and administrative

borders of German NUTS3 districts, which are then rescaled with hourly nation-

wide demand statistics. �is procedure, based on [25], is explained in detail
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below.

Nodal demand

�e SciGRID model of the German power grid contains 1423 generators, 585
nodes, 489 demand nodes, and m = 852 transmission lines. Geographical

coordinates of the demand nodes are denoted by P1, . . . , P489 ∈ R2
. Moreover,

Germany is partitioned into 402 NUTS3 administrative districts: we denote

by pop
distr(j) ∈ R and Pj ⊆ R2

, respectively, the population and the polygon

describing the administrative borders of district j.
In order to a�ach the loads to the 489 demand nodes, we proceed as follows.

First, we partition Germany using the Voronoi tessellation associated with the

demand nodes. Since some of the nodes lie outside the border of Germany, we

consider a bounding square X that contains Germany and all the Pi-s, and we

de�ne the Voronoi cells:

V (Pi) = {x ∈ X : ||x− Pi|| ≤ ||x− Pj || ∀j 6= i}.

�en, the population of a node Pi, denoted by pop
node(i), is taken to be

proportional to the overlapping area between V (Pi) and all the NUTS3 districts

that intersect V (Pi). Rigorously, if we de�ne the transfer matrix T ∈ R489×402

as

Ti,j =

402∑
j=1

Area (V (Pi) ∩ Pj)
Area(Pj)

, (5.26)

the nodal population can be calculated as the matrix-vector product pop
node =

T pop
distr

.

Table 5.2 and Fig. 5.4 summarizes the key statistics for the power law �ts

of city, district and nodal population. Fig. 5.3 shows the di�erent partitions of

Germany in NUTS3 districts and Voronoi cells associated with SciGRID demand

nodes. Finally, the demand at node i at time t, denoted by di(t), is calculated by

rescaling the country-wide demand dgermany(t) by a factor proportional to the

nodal population, i.e.,

di(t) = dgermany(t) · pop
node

i∑
i pop

node

i

(5.27)

Simulation setup

�e dataset described in [24] includes hourly nodal generation time series for

the entire year 2011, together with data for grid topology, lines limits, generation
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�antity N n
tail

α xmin · 104 KS p-value

Cities pop. 400 271 1.29± 0.08 4.4± 1 0.35
Districts pop. 402 107 2.35± 0.34 22.9± 3.8 0.65

Nodal pop. 498 51 3.77± 1.07 35.7± 7.8 0.76

Table 5.2: PLFIT statistics for German cities, district and nodal population. �e KS p-value is

de�ned in Appendix 5.A.1.

Figure 5.3: Subdivision of Germany according to NUTS3 districts and to Voronoi tessellation

corresponding to demand SciGRID nodes.

capacities and marginal costs. A�er augmenting it with the nodal demands

generated as described in Subsection 5.4.1, we can run Optimal Power Flow

(OPF) instances.

We simulate blackout data by considering one year’s worth of hourly de-

mand data. For each snapshot, we solve the operational OPF and remove one

line uniformly at random, initiating a cascade. �e details are reported in Al-

gorithm 1. First, for each of the 24 · 365 = 8760 hourly snapshots of the year

2011, we solve the corresponding OPF using a safety factor λ ∈ (0, 1) (line 2 in

Algorithm 1). �is corresponds to the operational phase in our mathematical

model. Note that there is no planning phase in this simulation since we are

using a model of a real-world grid.



128 Chapter 5. Emergence of Scale-Free Blackout Sizes

Out of the 8760 snapshots available, only a subset results in a feasible OPF,

due to the introduction on the conservative parameter λ. Such snapshots are

called feasible OPF snapshots. Next, for each feasible snapshot, we remove one

line uniformly at random (line 4), and let the cascade evolve as explained in

Section 5.2 (lines 5-11). One stage of the cascade is comprised of lines 7-10.

Note that a load shedding event (line 7) may or may not occur during a cascade

stage, according to whether the previous stage line failures caused a network

disconnection or not.

Finally, we store the resulting blackout realization (line 12) expressed in

terms of the total number of customers a�ected, obtained from the total amount

of load shed via the relationship in Eq. (5.27). In general, only a subset of the

feasible snapshots resulted in non-zero blackout realization, i.e., a realization

with a strictly positive blackout size, the others stopping without disconnecting

the network, and thus without any load shedding.

Algorithm 1 Monte Carlo simulation - SciGRID German Network

1: Inputs:
T = {hourly snapshots for the year 2011}
λ = line limits scaling factor

2: Initialize:
Solve OPF ∀t ∈ T with scaling factor λ ∈ (0, 1)
Set T (λ) = {feasible OPF snapshots}
For all t ∈ T (λ), let G(t) be the corresponding network

3: for t ∈ T (λ) do
4: Remove 1 line uniformly at random from G(t)
5: Set G(t).changed =True

6: while G(t).changed =True do
7: Shed load/generation within each component of G (load shedding event)
8: Recompute normalized power �ows f`
9: Remove from G all lines exceeding the original line limit

10: If at least one line was removed, let G(t).changed =True; otherwise, set

G(t).changed =False

11: end while
12: Store blackout realization

13: end for
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(a) PLFIT, German cities. (b) PLFIT, German districts. (c) PLFIT, SciGRID nodes.

(d) Hill plot, German cities. (e) Hill plot, German districts. (f) Hill plot, SciGRID nodes.

Figure 5.4: PLFIT results for German cities, districts and nodes population.

(a) PLFIT, λ = 0.7. (b) PLFIT, λ = 0.8. (c) PLFIT, λ = 0.9.

(d) Hill plot, λ = 0.7. (e) Hill plot, λ = 0.8. (f) Hill plot, λ = 0.9.

Figure 5.5: Results for SciGRID blackout simulation for di�erent values of λ. (a), (b), (c): PLFIT

results and log-log plot of the ccdf of the number of customers a�ected; (d), (e), (f) Hill plots.
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scaling factor # feasible OPF snaps. nnon-zero

0.7 3718 614
0.8 4988 858
0.9 6127 1220

Table 5.3: Key statistics for OPF feasibility and blackout realizations for the SciGRID case study.

nnon-zero denotes the number of snapshots associated to a non-zero blackout size.

5.4.2 Results and analysis

Given a cascade realization with n stages, let

Li = cumulative load shed up to stage i, i = 0, . . . , n,

denote the cumulative amount of load shed at stage i, with the convention

L0 = 0, and let Li − Li−1 denote the amount of load shed at stage i. �e

number of load shedding events, or jumps, in a blackout realization with n stages

is

J = |{i = 1, . . . , n : Li − Li−1 > 0}|

Fig. 5.6 reports the histogram and the ccdf of the total number of load shedding

events in the SciGRID network, for di�erent values of λ. Uniformly across dif-

ferent loading factors λ, we found that the preponderance of blackouts involves

just a single big load shedding event. For a moderate loading factor λ = 0.7,

nearly 98% of the blackouts only involve a single jump, and even for a high

loading factor λ = 0.9, 90% of the blackouts involve just a single jump, and the

fraction of blackouts with four or more jumps remains below 4% in all cases, as

can be appreciated from Fig. 5.6b.

Fig. 5.7 depicts the largest observed blackout across the 8760 snapshots and

initial line failures, for di�erent values of λ. Even in this massive blackout, there

are only a few load shedding events, and the bulk of the load shed is the result

of a single big jump. �ese observations sharply contrast with the branching

process approximations, in which many small jumps take place.

While the single big shock jump is responsible for a large blackout, the

power law behavior is not recovered (see Fig. 5.5). �is is due to the small

dimension of the network and the fact that German city sizes are essentially

�xed, as opposed to our mathematical model where X1, . . . , Xn are random

variables. For a su�ciently large network, however, a frozen version of our

model still leads to the correct power law behavior, as we show in Section 5.4.3.
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(a) Histogram. (b) CCDF; a log scale is used for the y-axis.

Figure 5.6: Statistics for the total number of shedding events J in the SciGRID simulation.
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Figure 5.7: Dissection of a massive blackout in the SciGRID network for loading factors λ = 0.7
(le�) and λ = 0.9 (right) in terms of the cumulative number of a�ected customers at each stage,

as displayed in the top charts with the selected jump colored red. �e islanded components

corresponding to the selected jump are visualized with di�erent colors in the bo�om pictures.
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5.4.3 Simulations on random graphs with frozen city sizes

Our mathematical framework described in Section 5.2 models city sizesX1, . . . , Xn

as Pareto distributed random variables, while in the real world the sizes of cities

served by a given power grid are essentially �xed. In this section, we show

that our results still hold for a version of our model where the city sizes are

kept �xed. In order to show this, we synthetically generate blackout data us-

ing a simulation based on the three-stage mathematical model described in

Section 5.2. In particular, we generate a single instance of a Wa�s-Strogatz

random graph with n = 10000 nodes, m = 20000 lines, rewiring probabilities

p ∈ {0.3, 0.5, 0.7} and mean degree K = 4, and set unitary line reactances.

Each node corresponds to a city, and the city sizes are sampled from a Pareto

distribution with parameters α(d) = 1.37 and x
(d)
min

= 5 · 104
, according to the

results in Table 5.1. �e line limit scaling factor is set to λ = 0.7. Each iteration

of the simulation stops when there are no more overloaded lines, or the graph

got disconnected in two islands. We remark that the graph topology and city

sizes are sampled only once, so that the only source of randomness during the

simulation is the �rst outage event. �e simulation setup is summarized in

Algorithm 2, and the results are reported in Table 5.4 and in Fig. 5.8.

p Niter nnon-zero ntail α xmin · 104
KS p-value

0.3 2000 1046 109 1.29± 0.11 43.9± 8.0 0.5
0.5 2000 1061 277 1.45± 0.10 22.73± 5.0 0.77
0.7 2000 1111 84 1.29± 0.19 39.97± 9.0 0.57

Table 5.4: PLFIT statistics for synthetically generated blackout data, using a Wa�s-Strogatz

random graph model for the power grid topology and keeping city sizes �xed, for di�erent rewiring

probabilities p. nnon-zero is the number of nonzero blackout realizations. n
tail

is the number of

(nonzero) realizations xi greater or equal than x̂min.

We observe that the tail index estimates α are within one standard deviation

apart from the city sizes index α(d) = 1.37, with p-value ≥ 0.1, consistently

across di�erent values of the rewiring probability p. �e result is corroborated

by the analysis of the Hill plots in Fig. 5.8, where we observe that the �at region

of the graph xmin → α(xmin) is close to α(d) = 1.37. We conclude that, if the

network is large enough, the Pareto law of blackout sizes is inherited from that

of city sizes as predicted by our model, even in the realistic case where city sizes

are �xed. �is is consistent with the data for the (even larger) North American

grid.
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Algorithm 2 Monte Carlo simulation - Synthetic datasets

1: Inputs:
Parameters for sampling network and city sizes:

n,m, p,K, α(d), x
(d)
min

Line limit scaling parameter λ ∈ (0, 1)
Number of blackout realizations Niter

2: Initialize:
Sample network topology G and city sizes

Solve OPF without line limits; let f∗ be the resulting power �ows

Solve OPF with line limits f̄ = λ|f∗|
Choose a random subset E ′ of lines, with cardinalityNiter

3: for ` in E ′: do
4: Set G.connected = True

5: Remove line ` from G
6: Set G.changed =True

7: while G.changed =True and G.connected = True do
8: Shed load/generation within each component of G to achieve balance

9: Recompute power �ows

10: Remove from G the line with the largest relative overload wrt. |f∗|
11: If a line was removed, let G.changed = True; otherwise, set G.changed =

False.

12: If G is still connected, let G.connected = True; otherwise, set G.connected =
False.

13: end while
14: Store blackout realization

15: end for
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(a) p = 0.3. (b) p = 0.3.

(c) p = 0.5. (d) p = 0.5.

(e) p = 0.7. (f) p = 0.7.

Figure 5.8: Results for synthetically generated blackout data, using a Wa�s-Strogatz random

graph for the power grid topology and keeping city sizes �xed, for di�erent rewiring probabilities

p. a,b,c): PLFIT results and log-log plot of CCDF; d,e,f) Hill plot: red line corresponds to the city

sizes tail index α(d) = 1.37.
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5.5 Concluding remarks

Using data analysis, probabilistic analysis, and a simulation study, we have

illustrated how extreme variations in city sizes can cause the scale-free nature

of blackouts. Our explanation and re�nement Eq. (5.19) of the scaling law

Eq. (1.36) show that the network characteristics only appear in the pre-factor

Eq. (5.19). �e main parameter α, which determines how fast the probability

of a big blackout vanishes as its size grows, is completely determined by the

city size distribution. Decreasing the constant Eq. (5.19) by performing network

upgrades (which in our framework is equivalent to decreasing λ) would only

lead to a modest decrease in the likelihood of big blackouts. As a consequence,

it is questionable as to whether network upgrades, as considered in [57, 206],

are the most e�ective way to mitigate the consequences of big blackouts.

Instead, our insights suggest that it may be more e�ective to invest in

responsive measures that enable consumers to react to big blackouts. It is

shown in [86] that durations of blackouts have a tail which is decreasing much

faster than (1.36). �erefore, if the goal is to minimize the negative e�ects

of a big blackout, it may be far more e�ective to invest in solutions (such as

local generation and storage) that aim at surviving a blackout of a speci�c

duration. �is is consistent with recent studies on the importance of resilient

city design [6].

Finally, our framework and insights suggest new ways of approaching

scale-free phenomena in other transportation networks: while such network

topologies are not scale-free, they can still exhibit scale-free behavior, caused

by the scale-free nature of nodal sizes.

Appendix

5.A Historical data analysis

5.A.1 Statistical procedure

In order to analyze the power law behavior of city and blackout sizes, we use

the PLFIT method introduced in [42] to �t a Pareto distribution to a given

empirical dataset {xi}Ni=1. �e PLFIT method is based on a combination of

the Hill estimator to �nd the tail exponent α, and on the Kolmogorov-Smirnov

statistic to �nd xmin, as outlined below. For each possible choice of xmin, the

best-��ing tail index α is found via the Hill estimator [84]

α̂(xmin) = n
( ∑
xi≥xmin

ln
xi
xmin

)−1

.
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�en, the KS goodness-of-�t statistic D(xmin) = maxx≥xmin
|S(x) − P (x)| is

calculated, where S(x) is the empirical Cumulative Distribution Function (CDF)

of the data and P (x) is the CDF of the Pareto distribution with parameters xmin

and α̂(xmin). Finally, the estimated x̂min is the one that minimizes D over all

possible choices of xmin. Uncertainty in the estimated tail exponent α̂(x̂min)
and lower bound x̂min is quanti�ed via the nonparametric bootstrap method

described in [42]. Finally, a goodness-of-�t test based on the KS statistic is

used to generate a p-value that quanti�es the plausibility of the power law

hypothesis. �e authors in [42] suggest to use the following (conservative)

choice: the power law is ruled out if p ≤ 0.1.

We remark that any automatic procedure for the estimation of the parameter

xmin is imperfect and should be paired with additional, case-by-case analysis.

For instance, it is not known whether the PLFIT estimator is consistent. In this

chapter, we always couple the PLFIT procedure with the manual observations of

the Hill plot, i.e., the graph of the mapping xmin → α̂(xmin), and report whether

the PLFIT results are consistent with the visual analysis of this plot, i.e., whether

x̂min lies within a region where the values of α are relatively stable.

5.A.2 Data pre-processing and results

In this section, we analyze the scale-free behavior of US city and blackout sizes.

�e data for US city sizes, as per the 2000 US census, are available in [42]. �e

data for US blackouts are extracted from the Electric Disturbance Events Annual

Summaries, Form OE-417 [184] of the US Department of Energy, which covers

the period 2002-2018. Each record of the OE-417 dataset contains information

on the date, area of interest and number of customers a�ected in a single outage

event. Here, the size of a blackout is de�ned as the number of customers a�ected

by it.

�e presence of missing or noisy records in the dataset requires the following

pre-processing actions: i) records for which the “Number of customers a�ected”

entry is unknown are removed; ii) records for which the “Number of customers

a�ected” consists of two or more values, corresponding to di�erent US states, are

modi�ed by replacing the multiple values with their sum; iii) records for which

the “Number of customers a�ected” entry is not purely numeric are removed.

�e only two exceptions to iii) are when both the “cumulative” and “peak”

number of customers a�ected are reported (in which case only the “cumulative”

values is retained), and when the number of customers a�ected is described by

a range of values (in which case the midpoint value is retained).

Fig. 5.1 reports the PLFIT results and the corresponding Hill plots. We

observe that the estimated parameters lie in the �at portion of the Hill plots.



5.B. Properties of V̂ and power �ow redistribution 137

5.B Properties of V̂ and power �ow redistribution

�e following lemma is based on a well-known result in graph theory (see, for

example, [185]).

Lemma 5.4. If G is a connected graph, rk (V̂) = rk (A) = rk (L) = rk (L+) =

n − 1, and the null space of V̂ is the one-dimensional subspace generated by
e = (1, . . . , 1) ∈ Rn, i.e.

Ker (V̂) = Ker (A) = Ker (L) = Ker (L+) =< e > .

Recall that the matrix V̂ depends on the speci�c orientation that has been

chosen for the edges E (Section 1.2.2). �e following lemmas describe the

dependency of V̂ on the chosen orientation in more detail.

Lemma 5.5. Changing the orientation of a subset of lines E ′ ⊂ E has the e�ect of
swapping the sign of the corresponding rows of the PTDF matrix V̂. In particular,
it is always possible to choose the orientation such that V̂e1 ≥ 0.

Proof. Changing the orientation of a line from lk = (i, j) to l̃k = (j, i), by

de�nition, amounts to swapping the sign of the k-th row of matrix A, yielding

a modi�ed matrix A = I(k)A, where I(k)
is a diagonal matrix with I

(k)
ii = 1

if i 6= k and I
(k)
kk = −1. Since L̃ = A

>
A = A>I(k)I(k)A = A>A = L,

the matrices L and L+
are not a�ected by the change. As a consequence,

the modi�ed PTDF matrix V̂ = DAL+ = I(k)V̂ di�ers from V̂ only by the

swapped signs on the k-th row.

Lemma 5.6. Let G be assigned the orientation such that the set of edges incident
to node 1 is E1 = {(1, j) | j is adjacent to 1}, i.e. A`,1 = 1 = −A`,j for all
` = (1, j) ∈ E1. �en, V`,1 ≥ 0 for every ` ∈ E1. �e converse is also true.

Proof. First, note that largest element in each row of L+
is its diagonal entry

(Corollary 1 in [186]), i.e. L+
1,1 − L

+
1,j ≥ 0 for every ` = (1, j) ∈ E1. For any

line ` = (1, j) ∈ E1, we have V`,1 = (AL+)`,1 = A`,1L
+
1,1 + A`,jL

+
1,j , where

A`,1 = −A`,j = ±1 depending on the orientation of line `. �us, V`,1 ≥ 0 if

and only if A`,1 = 1 = −A`,j .

In the event of the failure of a subset of transmission lines E ′ ⊂ E , and

provided that the power injections remain unchanged, the power �ows will

redistribute among the remaining lines according to power �ow physics, pro-

vided that the altered graph G̃ = (N , E \ E ′) remained connected. �e way the
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power �ows redistribute is governed by the new PTDF matrix
˜̂
V, which can be

constructed analogously to V̂, mapping the (unchanged) power injections to

the new power �ows. We assume that the redistribution occurs instantaneously,

without any transient e�ects.

As an illustration, we show how the redistributed power �ows can be calcu-

lated in the special case of an isolated failure E ′ = {`}. In this case, it is enough

to calculate the vector φ(`) ∈ Rm−1
of redistribution coe�cients, known as line

outage distribution factors. �e quantity φ
(`)
j takes values in [−1, 1], and |φ(`)

j |
represents the percentage of power �owing in line ` that is redirected to line j
a�er the failure of the former. In particular, the new power �ow con�guration

a�er the failure of line ` = (i, j), denoted by f (`) ∈ Rm−1
, is given by

f
(`)
k = fk + f

(`)
` φ

(`)
k , ∀` 6= k, (5.28)

where, for k = (a, b) and ` = (i, j), the coe�cient φk,` ∈ R can be computed

as

φk,` = φ(a,b),(i,j) = x−1
a,b ·

Ra,j −Ra,i +Rb,i −Rb,j
2(1− x−1

i,jRi,j)
, (5.29)

where Ri,j is the e�ective resistance between nodes i and j, given by

Ri,j = (ei − ej)
TL+(ei − ej) = (L+)i,i + (L+)j,j − 2(L+)i,j .

.

5.C Extended proofs

Proof of Lemma 5.1. We observe that the total mismatch can never exceed the

sum of all demands, and hence

S ≤
n∑
i=1

di ≤ nd1.

�erefore,

P

(
S > x; di >

n∑
i=2

di ≥ εd1

)

≤P
(
d1 >

x

n
; di > ε

d1

n
for some i = 2, ..., n

)
≤P
(
di > ε

x

n2
for some i = 2, ..., n

)
.
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Write I(y) = |{i : di > y}|. Since for every η > 0,

P (I(ηx) ≥ 2) = O
(
x−2α

)
as x→∞, the result follows.

Proof of Lemma 5.2. First, note that without loss of generality, we can always

normalize our framework by dividing all parameters (e.g. generation, line limits,

etc.) by the sum of all power demands. �is yields an equivalent se�ing where

the total power demand equals one, i.e., d = e1. �erefore, we will normalize

y = 1 in the derivation below.

First, we note that the selected orientation on G implies that the set of

edges incident to node 1 is E1 = {(1, j) | j is adjacent to 1} (i.e., the edges

in E1 exit node 1), or, in terms of the edge-node incidence matrix A, that

A`,1 = 1 = −A`,j for all ` = (1, j) ∈ E1. �is is proved in Lemma 5.6 in

Appendix 5.B. Due to the chosen orientation, f̄(λ) = λ |V̂e1| = λV̂e1 and the

line limit constraints in P (λ) can be rewri�en as

(1− λ)V̂e1 ≤ V̂g ≤ (1 + λ)V̂e1.

�e problem P (λ) is a strictly convex optimization problem with linear equality

and inequality constraints. �erefore, in order to show that g(λ) is the unique

optimal solution, it is su�cient to show that it satis�es the KKT conditions for

P (λ), which read

g + V̂>(µ+ − µ−) + γe = 0, (5.30)

µ+ ≥ 0,µ− ≥ 0, , (5.31)

µ+
l (V̂g − (1 + λ)V̂e1)` = 0∀` ∈ E , (5.32)

µ−l (−V̂g + (1− λ)V̂e1)` = 0∀` ∈ E , (5.33)

e>g = 1, (5.34)

(1− λ)V̂e1 ≤ V̂g ≤ (1 + λ)V̂e1, (5.35)

where γ is the Lagrange multipliers for the equality constraint and µ+,µ− ∈
Rm are the Lagrange multipliers for the inequality constraints.

Since V̂g(λ) = (1 − λ)Ve1 and e>g(λ) = e>e1 = 1, the candidate

solution g(λ) clearly satis�es the feasibility conditions (5.34) - (5.35) and the

complementary slackness condition (5.33). Moreover, condition (5.32) is satis�ed

if we choose µ+ = 0.

Using the facts that V̂g(λ) = (1 − λ)V̂e1 and Ker(V̂) =< e >, pre-

multiplying Eq. (5.30) by V̂ yields (1−λ)e1+V̂>µ ∈ Ker(V̂). �is is equivalent
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to

(1− λ)e1 + V̂>µ =
(1− λ)

n
e,

where in the last equality we used again the property that V̂e = 0. To conclude

the proof, it remains to be shown that that there exist a nonnegative solution

µ− ≥ 0 of the matrix equation

V̂>(−µ−) = (1− λ)(e/n− e1). (5.36)

We construct a non-negative solution µ− as follows:

µ−` := (1− λ)eE1 =

{
(1− λ) l ∈ E1
0 l /∈ E1,

where eE1 is a m- dimensional vector containing ones in positions given by

E1, and 0 elsewhere. Invoking Lemma 5.6 we see that Ae1 = eE1 , yielding

µ− = (1 − λ)Ae1. Using the de�nition of V̂ = AL+,L = A>A, and the

property L+L = (I − J/n) (see [186]), we observe that Eq. (5.36) is indeed

satis�ed:

V̂>µ− = −(1− λ)V̂>µ− = −(1− λ)V̂>Ae1

= −(1− λ)(L+L)e1 = (1− λ)(e/n− e1).

Se�ing γ = −1/n completes the proof.

Proof of Proposition 5.1. Let `(1)
be the �rst failure, and consider

`(2) = arg max
j∈A(2)

{ |f (2)
j |
Fj

}
,

where A(2) = A(2)(d, λ) = {j : |f (2)
j | ≥ Fj}. Lemma 5.3 shows that

f
(2)
j (d)→ f

(2)
j (e1) as d→ e1, so by continuity and Assumption 5.2

|f (2)
j (d)| − Fj(d)→ |f (2)

j (e1)| − Fj(e1) 6= 0.

Consequently, there exist ε > 0 such that, if dj < ε for all j ≥ 2, then

|f (2)
j (d)| > Fj(d) ⇐⇒ |f (2)

j (e1)| > Fj(e1).

In other words, a line limits is exceeded for d = e1 (which, due to our assump-

tion, implies that it is strictly exceeded) if and only if it is also (strictly) exceeded

when d is close enough to e1, implying that A(2)(d) = A(2)(e1) .
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Moreover, there exists ε(1) ≤ ε such that, if dk < ε for k ≥ 2, then

max
j∈A(2)(d1,λ)

|f (2)
j (d, λ)|
Fj(d)

= max
j∈A(2)(e1,λ)

|f (2)
j (d, λ)|
Fj(d)

= max
j∈A(2)(e1,λ)

|f (2)
j (e1, λ)|
Fj(e1)

,

where in the �rst equality we used that A(2)(d) = A(2)(e1), and in the second

the continuity property. Finally, Assumption 5.1 allows us to conclude that the

max is unique and that the (unique) second failure `(2)(d, λ) = `(2)(e1, λ) does

not depend on d if dk < ε(1)
, k ≥ 2.

As Lemma 5.3 holds for every stage of the cascade, we can repeat the steps

above to construct a sequence ε(T ) ≤ . . . , ε(2) ≤ ε(1)
such that the cascade

sequence C is well de�ned and does not depend on d if dj < ε(T )
for all

j ≥ 2.

Proof of �eorem 5.1. First, since the demands are independent and identically

distributed, we observe that each city has an equal probability of being the

city with the largest demand. �at is, if B denotes the city that has the largest

demand, then

P(B = i) = 1/n, i = 1, ..., n.

By the law of total probability,

P (S > x) =

n∑
i=1

1

n
P
(
S > x

∣∣∣B = i
)
.

Fix some ε > 0 (su�ciently small), and note that for all i = 1, ...n,

P
(
S > x

∣∣B = i
)

=P

S > x;

n∑
j 6=i

dj < εdi

∣∣∣B = i


+P

S > x;

n∑
j 6=i

dj ≥ εdi
∣∣∣B = i

 .

Due to Lemma 5.1, we observe that the second term is of order O(x−2α) for all

i = 1, ..., n, and, hence,

n∑
i=1

1

n
P

S > x;

n∑
j 6=i

dj ≥ εdi
∣∣∣B = i

 = O(x−2α).
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For the �rst term, note that Assumption 5.3 ensures that Z(i, `) is well-de�ned

for all i = 1, ..., n and ` = 1, ...,m. Since we choose our �rst failure uniformly

at random among all lines, we observe that by law of total probability, for all

i = 1, ..., n,

P

S > x;

n∑
j 6=i

dj < εdi

∣∣∣B = i


=

m∑
l=1

1

m
P

S > x;

n∑
j 6=i

dj < εdi

∣∣∣ `(1) = l, B = i

 .

In case that Z(i, `) = 0 for all i = 1, ..., n and ` = 1, ...,m, it follows from

Proposition 5.1 that for all ε > 0 su�ciently small, the cascade sequence causes

no disconnections for every city with largest demand and �rst line failure `(1)
.

�at is, for all i = 1, ..., n, l = 1, ...,m, x > 0 and ε > 0 su�ciently small,

P

S > x;

n∑
j 6=i

dj < εdi

∣∣∣ `(1) = l, B = i

 = 0.

�erefore, if Z(i, `) = 0 for all i = 1, ..., n and ` = 1, ...,m, then for all ε > 0
su�ciently small,

n∑
i=1

1

n
P

S > x;

n∑
j 6=i

dj < εdi

∣∣∣B = i

 = 0,

and we conclude that (5.24) holds.

Next, suppose that Z(i, `) 6= 0 for at least some i ∈ {1, ..., n} and ` ∈
{1, ...,m}. It follows from Proposition 5.1 that for all i ∈ {1, ..., n} and ` ∈
{1, ...,m} for which Z(i, `) 6= 0, it holds for all ε > 0 su�ciently small that

the cascade sequence is the same as the one when the demand vector would

have been d = ei. In particular, whenever

∑n
j 6=i dj < εdi, it holds for all ε > 0

su�ciently small that the set A1 is deterministic and is the same set of nodes

as if demand would have been d = ei, and the number of cities disconnected

from city i equals Z(i, `). Recall Lemma 5.2 and the property that the generator

vector g is a continuous function of d. Consequently, for all i ∈ {1, ..., n} and

` ∈ {1, ...,m} for which it holds that Z(i, `) 6= 0, and for all ε > 0 su�ciently
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small,

P

S > x,

n∑
j 6=i

dj < εdi

∣∣∣ `(1) = `, B = i


=P

∑
i 6∈A1

(gi − di) > x,

n∑
j 6=i

dj < εdi

∣∣∣ `(1) = `, B = i


≤P

Z(i, `)

(
λ

n
+ c1(ε)

)
di > x,

n∑
j 6=i

dj < εdi

∣∣∣ `(1) = `, B = i

 ,

where c1(ε) is a strictly positive function with c1(ε) → 0 as ε ↓ 0. For

independent identically Pareto-distributed random variablesX1, ..., Xn, it holds

that as x→∞,

P (max{X1, ..., Xn} ≥ x) ≈ nP(Xi > x) = nKx−α.

�erefore, for all i ∈ {1, ..., n} and ` ∈ {1, ...,m} for which Z(i, `) 6= 0,

lim
ε↓0

lim
x→∞

xαP

S > x,

n∑
j 6=i

dj < εdi

∣∣∣ `(1) = `, B = i


≤ lim

ε↓0
n

(
Z(i, `)

(
λ

n
+ c1(ε)

))α
=nK

(
Z(i, `)

λ

n

)α
.

Similarly, we can obtain the same lower bound, i.e.

lim
ε↓0

lim
x→∞

xαP

S > x,

n∑
j 6=i

dj < εdi

∣∣∣ `(1) = `, B = i


≥nK

(
Z(i, `)

λ

n

)α
.

We conclude that, as x→∞,

P (S > x) =
n∑
i=1

m∑
l=1

K

m

(
Z(i, `)

λ

n

)α
x−α.

Note that term in front of x−α is a double sum of �nitely many terms, and hence

we can also conclude that (5.25) holds.
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As discussed in Section 1.3.2, �uctuations in renewable energy production

and demand introduce variability in electricity prices. In this chapter, we develop

a machine learning methodology to predict electricity prices in wholesale energy

markets adopting the Locational Marginal Pricing (LMP) architecture described

in Section 1.3.2. Our approach takes a decentralized perspective and uses only

publicly available data, which are limited to historical aggregated grid-wide

demand and supply, and historical nodal prices. Conversely, they do not include

information such as grid topology, line limits, and nodal information about

demand and supply.

145



146

Chapter 6. A Structured Learning Approach to Predicting Locational Marginal
Prices

�e decentralized perspective makes this problem particularly challenging,

since the lack of information on power grids parameters precludes the possi-

bility of directly solving OPF problems, which are used to calculate LMPs as

functions of demand and available supply. Our methodology overcomes this

challenge by learning such functions using techniques from machine learning,

convex optimization, and multiparametric programming theory. In particular,

we exploit structural characteristics of the OPF mechanism to characterize LMPs

as piecewise a�ne functions of nodal demand and renewable supply, which

are learned using convex optimization and machine learning techniques that

leverage sparsity properties of power grids. Finally, LMPs are predicted based

on forecasted grid-wide demand and renewable supply.

In spite of the limitations inherent to the decentralized perspective, our

methodology performs remarkably well in forecasting price �uctuations, and

is validated using the IEEE 30-bus test network. �is chapter is based on the

paper [154], which includes an extension of this work that includes a validation

on real market data from the Southwest Power Pool market.

Chapter outline: �e chapter is organized as follows. In Section 6.1 we

describe the system model and present our main contributions, while Section 6.2

contains the necessary background on multiparametric programming theory.

Next, Section 6.3 provides an overview of the forecasting methodology and

describe its main components, which are then illustrated in more detail in

Sections 6.4 and 6.5. Numerical results on the IEEE 30-bus test case are presented

in Section 6.6, while Section 6.7 provides some concluding remarks.

6.1 Model and problem formulation

6.1.1 Power system model

�e power grid model is based on the description in Section 1.2.2, which we

brie�y recall below. �e transmission network is modeled as a connected graph

G = G(N , E), where the set of nodesN = {1, . . . , n} represents the n buses in

the system, and the set of edges E model the m transmission lines. We assume

that N = Ng t Nw , with |Ng| = ng, |Nw| = nw , ng + nw = n, and where

t denotes a disjoint union. Each node in Ng houses a traditional controllable

generator, while each node in Nw houses a renewable generator, like a wind or

a solar farm. Without loss of generality, we assume that Ng = {1, . . . , ng} and

Nw = {ng + 1, . . . , n}. Furthermore, we let a subset of nodes Nd ⊆ N house

loads, with |Nd| = nd.

We denote the vectors of generations and demand, respectively, by g ∈ RNg+
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and d ∈ RNd+ , where the notation x ∈ RA indicates that the entries in the |A|-
dimensional vector x are indexed by the set A. To simplify notation, we extend

the vector d to a n-dimensional vector d̃ ∈ Rn by se�ing d̃i = 0 whenever

i /∈ Nd, and d̃i = di otherwise.

�e starting point of our methodology is the Optimal Power Flow (OPF)

problem, which has been introduced in Section 1.3.1. To optimally match power

demand and supply, while satisfying the power grid operating constraints, the

Independent System Operator (ISO) solves an OPF problem and calculates the

optimal energy dispatch vector g∗ ∈ Rn, as well as the vector of nodal prices

LMP ∈ Rn (see Section 6.1.2).

In its full generality, the OPF is a nonlinear and nonconvex optimization

problem, which is di�cult to solve [126, 17]. For the purpose of this chapter, we

focus on the widely used approximation of the OPF problem known as DC-OPF

(see Section 1.3.1). Following standard practice[72, 177], for every i ∈ N the

generation cost function Ji(·) at node i is modeled as an increasing quadratic

function, resulting in the following quadratic optimization problem:

min
g∈Rn

n∑
i=1

Ji(gi) =
1

2
g>Hg + h>g (6.1)

s.t. 1>(g − d̃) = 0 : λen (6.2)

f ≤ V̂(g − d̃) ≤ f̄ : µ−,µ+
(6.3)

g ≤ g ≤ ḡ : τ−, τ+, (6.4)

where the variables are de�ned as follows:

H ∈ Rn×n diagonal positive de�nite matrix de�ning the quadratic part of

the objective function;

h ∈ Rn n-dimensional vector de�ning the linear part of the objective

function;

V̂ ∈ Rm×n PTDF matrix (see Section 1.2.2, Eq. (1.20));

f , f̄ ∈ Rm vector of lower/upper transmission line limits;

g, ḡ ∈ Rn vector of lower/upper generation constraints;

λen ∈ R dual variable of the energy balance constraint;

µ−,µ+ ∈ Rm+ dual variables of the transmission line constraints (6.3),

τ−, τ+ ∈ Rn+ dual variables of the generation constraints (6.4);

1 ∈ Rn is a n-dimensional vector of ones.

In what follows, we denote by J(g) :=
∑n
i=1 Ji(gi) the objective function,

and we assume that g
i

= 0 for all renewable generators i ∈ Nw . �e matrix

V̂ describes the linear mapping from nodal power injections to active power
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�ows over transmission lines under the assumption of the DC-approximation,

and reads

V̂ = [0 DÃL̃−1], (6.5)

where the matrices D, Ã, L̃ describe topological and physical properties of the

grid, and have been de�ned in Section 1.2.2. For this chapter, we have chosen the

formulation in Eq. (1.20) in order to be consistent with the framework of [101],

as some of the results obtained therein will be used in the remainder of this

chapter.

6.1.2 Locational marginal prices

In this chapter and in the next Chapter 7, we focus on wholesale energy markets

adopting the concept of Locational Marginal Prices (LMPs) as electricity prices

at the grid nodes. Under this market architecture, which is widely used in the

U.S. (see the relevant discussion in Section 1.4.3), the energy price at a speci�c

node is de�ned as the marginal cost of supplying the next increment of load at

that node, consistent with all power grid operating constraints. LMP-markets

are usually divided into day-ahead (DA) and real-time (RT) markets. In the DA

market, participants submit bids/o�ers to buy/sell energy. �e ISO then runs the

OPF to derive day-ahead LMPs for each grid’s node, together with the optimal

scheduled generation dispatch g∗. Since day-ahead scheduled supply may not

meet real-time demand, ISOs also calculate real-time LMPs as o�en as every

�ve minutes [33].

Recall that the LMP at a speci�c bus is de�ned as the least cost to service

the next increment of demand at that location consistent with all power system

operating constraints, and in the case of the DC-OPF in Eqs. (6.1) - (6.4) the

LMP vector LMP = (LMPi)
n
i=1 ∈ Rn can be expressed as (see Section 1.3.2,

De�nition 1.1 and Eq. (1.33))

LMP = λen1 + V̂>µ ∈ Rn, (6.6)

where µ = µ− −µ+ ∈ Rm. Eq. (6.6) allows us to make the following remarks.

First, note that µ` = 0 if and only if line ` is not congested, that is, if and only

if f
`
< f` < f̄`. In particular, µ+

` > 0 if f` = f̄`, and µ−` < 0 if f` = f
`
.
1

As a

consequence, if there are no congested lines, the LMPs at all nodes are equal,

i.e.,

LMPi = λen ∀i = 1 . . . , n,

1
Note that µ−, µ+ cannot be both strictly positive, since lower and upper line �ow constraints

cannot be simultaneously binding.
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and the common value λen in (6.6) is known as the marginal energy component.
�e energy component λen re�ects the marginal cost of energy at the reference

bus [101]. On the other hand, if some lines are congested, the LMPs will in

general be di�erent at di�erent nodes (see Fig. 6.1), and the term π̃ := V̂>µ in

Eq. (6.6) is called the marginal congestion component.
When ISOs calculate LMPs, they also include a loss component, which is

related to the heat dissipated on transmission lines and is not accounted for by

the DC-OPF model. �e loss component is typically negligible compared to the

other price components [172], and its inclusion goes beyond the scope of this

chapter.

Figure 6.1: RT LMPs for 10 randomly selected nodes in the Southern Power Pool market [154].

�e LMP vector also implicitly depends on the dual variables τ−, τ+
for

generation constraints, which determine the marginal status of generators. A

generator i is called marginal if g
i
< gi < ḡi, in which case τ−i = τ+

i = 0,

and saturated otherwise. �e reason for this terminology is that the marginal

cost of a marginal generator determines the LMP at its node. Indeed, denoting

by L the Lagrangian function of the DC-OPF de�ned in (1.29), the stationarity

condition for the optimal solution of the OPF reads

∂L
∂g

∣∣∣
g∗

=
∂J

∂g

∣∣∣
g∗
− λen − V̂>µ− τ− + τ+ = 0, (6.7)

showing that LMPi = λen + (V̂)>i µ = J ′i(g
∗
i ) is equal to the marginal cost of

generation at node i if τ−i = τ+
i = 0n.
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6.1.3 Problem statement

�e goal of this chapter is to derive a structured machine learning methodology

to predict LMPs by using only publicly available data. In other words, we assume

we have no knowledge of the power system parameters that appear in the OPF

formulation in Eqs. (6.1) - (6.4), such as grid topology, objective functions, line

limits etc. �e rationale for this choice lies in the observation that market

participants usually do not have access to such proprietary data. However, the

topic of decentralized price forecasts from a market participant perspective

is becoming increasingly relevant due the development of Distributed Energy

Resource technologies, which enable the owners of controllable energy assets

to shape their wholesale market participation responsively and in a coordinated

manner [59, 145]. To address the environmental and operational challenges, an

important question concerns whether wholesale market prices could be inferred

from the supply/demand mix on the grid and, then, used to create a feedback

for “shaping” energy asset’s production or consumption.

We take a functional viewpoint, i.e., we view the demand and renewable

generation supply as variable parameters θ, or input, of the OPF. In particular,

we consider a se�ing where the objective function, PTDF matrix, line limits and

generation constraints are assumed to be �xed, although unknown, parameters of

the OPF. Conversely, the demand and renewable generation supply correspond

to a variable parameter θ, upon which the solution of the OPF and the LMP
vector depend. �e structure of our parametric approach is described in more

details in Section 6.2.

�e collection {θ(t),LMP(t)}t∈T , where T is a �nite discrete set T =
{1, . . . , T}, constitutes the historical dataset that we use to train and validate

the machine learning methodology. In the rest of this chapter we focus on

hourly LMPs prediction, therefore interpreting each time index t as a 60-minute

interval. In particular, we assume T = 24 × ndays, ndays ∈ N. We observe,

however, that the methodology developed in this chapter can be applied to

di�erent time windows as well, since the supply-demand matching process used

to calculate the prices has the same structure across di�erent time granularities.

For the same reason, the approach is valid both for DA and RT price prediction.

6.1.4 Contribution of this chapter

In Section 1.4.3 we have reviewed the relevant literature on LMP forecasting,

with a focus on the di�erence between the centralized and the decentralized

perspectives. With that discussion in mind, we now summarize the main contri-

butions of this chapter:
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• By taking the market participants’ point of view, we propose a decentral-

ized price forecasting methodology that utilizes only publicly available

data.

• By combining the theoretical insights on how system operators derive

LMPs, and the latest developments in machine learning and convex opti-

mization literature, we develop a novel algorithm that can predict market

prices with high accuracy.

• �e new approach reveals interesting and potentially very useful insights

about di�erent grid state regimes (both in terms of the grid wide gener-

ation/load mix, as well as line congestions) and their impact on prices

across all nodes in the network. However, we observe in the extended

paper [154] that the methodology has some limitations when it comes to

predicting price spikes.

6.2 Multiparametric programming background

As discussed in Section 6.1.3, locational marginal prices can be thought of as

deterministic functions of certain parameters θ, such as nodal demand and

renewable generation supply. In this section we formalize this notion using the

language of Multiparametric Programming �eory (MPT) [11], which, together

with an additional assumption (see Section 6.3, and Assumption 6.1 in particular),

allows us to parametrize LMPs by a vector of publicly available grid-level

renewable supply and load.

Multiparametric Programming �eory is concerned with the study of op-

timization problems which depend on a vector of parameters, and aims at

analyzing the impact of such parameters on the outcome of the problem, both

in terms of primal and dual solutions. In our se�ing, the vector of parame-

ters reads θ = [d>,w>]> ∈ Rnd+nw
, where d ∈ Rnd is the demand vector,

and w ∈ Rnw is the vector of renewable generation available supply, i.e.,

w = (ḡi)i∈Nw for i ∈ Nw .

In this se�ing, the OPF problem in Eqs. (6.1) - (6.4), henceforth referred to as

OPF(θ), can be formulated as a standard Multiparametric �adratic Program

(MPQ) as follows:

min
g∈Rn

1

2
g>H>g + g>h (6.8)

s.t. Ag ≤ b + Eθ, (6.9)
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where A ∈ R(2+2m+2n)×n,E ∈ R(2+2m+2n)×(nd+nw),b ∈ R2+2m+2n
,

are suitably de�ned matrices and vectors, given below:

A =



1>

−1>

V̂

−V̂
Ing 0
0 Inw

−Ing 0
0 −Inw


, b =



0
0
f̄
−f
ḡNg
0
−gNg
0


, E =



−1> 0
1> 0

−V̂Nd 0
V̂Nd 0
0 0
0 Inw
0 0
0 0


, θ =

[
d
w

]
.

(6.10)

Here, we denote by Ik ∈ Rk×k the identity matrix of dimension k, by 0 a

zero matrix of appropriate dimension, and we de�ne ḡNg = (ḡ)i∈Ng ,gNg
=

(g)i∈Ng . Moreover, V̂Nd ∈ Rm×nd denotes the submatrix of V̂ obtained by

selecting only the columns corresponding to nodes in Nd.

A key result in MPT [181] is that the feasible parameter space Θ ⊆ Rnd+nw

of the problem Eqs. (6.8) - (6.9) can be partitioned into a �nite number of convex

polytopes, each corresponding to a di�erent system pa�ern [209]. A system

pa�ern consists of a grid-wide state vector that indicate the saturated status

of generators and congestion status of transmission lines. In order to state the

result, we �rst introduce some de�nitions. System pa�erns can be formalized

using the MPT concept of optimal partitions.

De�nition 6.1 (Optimal Partition). Given a parameter vector θ ∈ Θ, let g∗ =
g∗(θ) denote the optimal generation vector obtained by solving the problem de�ned
by Eqs. (6.8) - (6.9). Let J denote the index set of constraints in Eq. (6.9), with
|J | = 2 + 2m+ 2n. �e optimal partition of J associated with θ is the partition
J = B(θ) t B{(θ), with

B(θ) = {1}{i ∈ J |Aig
∗ = b + Eiθ}, (6.11)

B{(θ) = {i ∈ J |Aig
∗ < b + Eiθ}. (6.12)

�e sets B and B{, respectively, correspond to binding and non-binding

constraints of the OPF. With a minor abuse of notation, we identify the optimal

partition (B,B{) with the corresponding set of binding constraints B. Given an

optimal partition B, let AB,EB denote the submatrices of A and E containing

the rows Ai,Ei indexed by i ∈ B, respectively.

Remark 6.1. �e energy balance equality constraint (6.2) in the original OPF
formulation is rewri�en as two inequalities indexed by i = 1, 2 in (6.9), which are
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always binding, i.e., they readAig
∗ = bi+Eiθ, i = 1, 2. Looking at Eq. (6.10), we

see that the two equations Aig
∗ = bi+Eiθ, i = 1, 2, are identical, and thus one

of them is redundant. In the rest of this chapter, we eliminate one of the redundant
constraints from the set B, namely the one corresponding to i = 2. �erefore, we
write B = {1} t B(cong) t B(sat), where B(cong) ⊆ {3, . . . , 2 + 2m} describes the
congestion status of transmission lines, and B(sat) ⊆ {2 + 2m+ 1, 2 + 2m+ 2n}
describe the saturated status of generators.

De�nition 6.2. Given an optimal partition B, we say that the linear independent
constraint quali�cation (LICQ) holds if the set of active constraints gradient are
linearly independent, i.e., if AB ∈ R|B|×n has full row rank.

�e following result, originally established within the multiparametric pro-

gramming literature (see [181], �eorem 1), and subsequently stated in [209] in

the context of LMP forecasting, constitutes the theoretical foundation of the

methodology presented in this chapter.

�eorem 6.1. Assume thatH is positive de�nite, Θ is a full dimensional compact
set, and that the LICQ regularity condition is satis�ed for every θ in Θ. �en,
Θ can be covered by a union of a �nite numberM of full-dimensional compact
convex polytopes Θ1, . . . ,ΘM , referred to as critical regions, such that:

• their interiors are pairwise disjoint

Θ̊k ∩ Θ̊h = ∅ ,∀k 6= h,

and each interior Θ̊k corresponds to the largest set of parameters yielding
the same optimal partition.

• within the interior of each critical region Θ̊k, the optimal generation g∗

and the associated LMP vector are a�ne functions of θ.

• the map Θ 3 θ → LMP(θ) de�ned over the entire parameter space is
piecewise a�ne and continuous.

6.3 Overview of the prediction methodology

�e theoretical framework described in Section 6.2 implicitly assumes a cen-

tralized viewpoint, since the calculation of the critical regions Θk and of the

corresponding a�ne functions Θk 3 θ → LMP requires the knowledge of

all the �xed parameters of the OPF, such as the grid topology (encoded in the

matrix V̂), generators’ bids (encoded in H,h, ḡ,g), and line limits f̄ , f , as well
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as access to historical data for θ, which consists of nodal demand and available

renewable supply.

From a decentralized perspective, however, the aforementioned system

parameters are not available. Even if they were, and thus one could characterize

the maps Θk 3 θ → LMP analytically, it would not be clear how to use them,

since accurate historical data for nodal demand and nodal renewable supply

(which constitute the vector θ) are also unavailable.

Our novel prediction methodology deals with both of the aforementioned

problems by assuming no information on system parameters, and only rely-

ing on aggregated grid-level data that are publicly accessible. �e publicly

available market data depends on the speci�c market and commonly includes

historical aggregated grid-level load, aggregated grid-level supply from vari-

ous energy sources (i.e., wind, solar, coal etc.), and nodal LMPs. Speci�cally,

in the rest of this chapter, we assume that the available data are the grid-

wide demand D(t) =
∑
i∈Nd di(t), grid-wide available renewable supply

W (t) =
∑
i=1...,nw

wi(t), and historical LMPs. �e developed methodology

requires at least the aforementioned components. More granular data (e.g. nodal

load and generation) would improve the accuracy of the algorithm, but are not

essential.

In order to use the MPT framework described in Section 6.2, we need to

relate the nodal demand and renewable supply described by the parameter

θ(t) ∈ Rnd+nw
, for t = 1, . . . , T , to the corresponding grid-level quantities

M(t) := [D(t),W (t)]> ∈ R2
, which will be referred to asM vectors from now

on. We do that by (i) introducing the concept ofM-regime, and (ii) assuming a

speci�c relationship between nodal and global quantities.

AM-regime consists of the set of input parameters corresponding to the

same hour of the day, namely R(mix)
h = {θ(t)}t∈T (h), and T (h) = {h, 24 +

h, . . . , 24(ndays−1)+h}, for h = 1, . . . , 24. �e rationale behind this de�nition

is that demand and renewable supply for the same hour of the day exhibit

signi�cant correlation across di�erent days. For example, solar generation is

always zero during night hours, while total load usually peaks in the evening

around the same time.

�e concept ofM-regime, in its essence, tries to capture the fact that histor-

ical demand and supply that share similarities can be grouped in clusters, and

doing so can improve the performance of the algorithm. For ease of exposition,

in this chapter we present a very simple clustering rule based on the hour of the

day, and refer to the extended paper [154] for possible generalizations. Next,

we introduce the following assumption.

Assumption 6.1. Within eachM-regime R(mix)
h , all nodal loads preserve the

same consumption ratio with respect to the total load, namely di(t) = α
(d)
i D(t), ∀i ∈
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Nd, ∀t ∈ T (h), with 0 ≤ α(d)
i ≤ 1,

∑
i∈Nd α

(d)
i = 1. Similarly, we assume that

wi(t) = α
(w)
i W (t), ∀j = 1, . . . , nw,with 0 ≤ α(w)

j ≤ 1,
∑
j=1,...,nw

α
(w)
j , ∀t ∈

T (h).

Intuitively, Assumption 6.1 states that, within the same intra-dayM-regime,

each renewable generator preserves constant production fraction in relation to

the total renewable supply, and similarly for demand. For example, when wind

generation increases during a speci�c hour, we assume that all wind generators

produce proportionally more power.

�is simplifying assumption enables us to extend the piecewise a�nity

established in �eorem 6.1 to our decentralized framework and parametrize

LMPs usingM vectors. More speci�cally, �eorem 6.1 establishes that nodal

LMPs are piecewise a�ne functions of the nodal quantity θ = [d>,w>]>,

while Assumption 6.1 allows to de�ne a one-to-one mapping between θ and

the grid-level quantityM = [D,W ]>, yielding that the LMP vector is also

a piecewise a�ne function of the M vectors within each M-regime. We

observe that, by requiring Assumption 6.1 to hold in each individualM-regime

separately, rather than globally, we make it less restrictive. �is is indeed one

of the reasons to de�neM-regimes in the �rst place, together with the other

advantages discussed later in Section 6.4.

In order to learn the functionM→ LMP(M) we conveniently utilize a

statistical procedure for ��ing adaptive regression splines, called Multivariate

Adaptive Regression Splines (MARS) [66]. Relying on the piecewise a�nity of

the LMP functions, MARS identi�es a linear combination of truncated spline

functions of the form max{xj − q, 0} and max{q − xj , 0}, where xj ∈ R are

the relevant covariates (in our case, grid-level demand and renewable supply),

while the q’s are knot locations (critical region switching points) identi�ed by

the algorithm.

Provided with enough “uniform” data, and under Assumption 6.1, the

MARS algorithm would accurately recover the piecewise a�ne functionM→
LMP(M). In this context, by “uniform” data we mean that samples ofM
vectors from each critical region are available in approximately equal propor-

tions. One factor that can negatively a�ect the performance of MARS is indeed

the scarcity of data corresponding to speci�c regions. If a critical region is

“rare”, there will not be enough historical datapoints to correctly learn the a�ne

function within that region.

Moreover, the higher the number of pieces de�ning the overall mapM→
LMP(M), the harder it is for the algorithm to achieve good performance

without increasing the size of the dataset. Conversely, MARS usually performs

be�er when learning a smaller number of pieces. For example, if one would

know beforehand that a certain subset of data corresponds to a given critical
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region Θi, then on this speci�c subset the problem reduces to the much easier

task of learning a single a�ne function Θi 3M→ LMP(M).

Unfortunately, the exact computation of critical regions requires full infor-

mation on system parameters, thus preventing us from clusteringM vectors

based on the critical region they belong to. However, it turns out that we can

use historical nodal prices to infer the set of congested lines, henceforth referred

to as congestion regimes, corresponding to speci�c subsets of data. More specif-

ically, given a set of congested lines B(cong,∗)
(see Remark 6.1), we de�ne the

associated congestion regime as the collection of corresponding time instances,

namely

R(cong) := {t ∈ T : B(cong)(θ(t)) = B(cong,∗)}. (6.13)

In Section 6.4 we describe how we can recover the congestion regimesR(cong)

by only looking at historical prices. As a result, a�er grouping the data in

M-regimes, we are able to further cluster them according to the corresponding

congestion regime. �is, in turn, allows us to signi�cantly reduce the number of

pieces that MARS has to learn, since within a �xed congestion regime the only

remaining pieces are those describing the status of saturated generator B(sat)
.

To summarize, the congestion recovery and the MARS algorithm constitute

the two main components of our methodology. In the next two sections, we

examine each component in more detail.

6.4 Congestion regimes recovery

Based on the de�nition of the PTDF matrix in Eq. (1.18) and of the LMP vector

in (6.6), the marginal congestion price vector (excluding the reference bus, for

which the congestion component is always equal to 0) at a given time t can be

represented as

π(t) = L̃−1Ã>Dµ(t) = L̃−1s(t) ∈ Rn−1, (6.14)

with s(t) = ÃTDµ(t) and µ(t) = µ−(t) − µ+(t). �e vector s(t) ∈ Rn−1

contains the information on the congested lines, since

s(t) =

m∑
`=1

µ`(t)x
−1
` ã`, (6.15)

where ã` ∈ Rn−1
is the `-th column of ÃT

. �e non-zero entries of s(t) repre-

sent nodes corresponding to congested transmission lines. �us, by stacking

historical π(t), s(t) for T di�erent time intervals as columns of the matrices

Π,S ∈ R(n−1)×T
, we can rewrite ((6.14)) in matrix form as

Π = L̃−1S. (6.16)
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In the following, we use the previous relationship and the properties of matri-

ces L̃ and S, henceforth referred to as topology matrix and congestion matrix,

respectively, to recover diverse congestion regimes that occur in the grid.

�e rest of this section is based on the work in [101], where the authors

derive a methodology to recover matrices L̃ and S via the price matrix Π and the

relation (6.16). We point out that in [101] the goal is to infer an unknown power

grid topology by leveraging only publicly available data, and thus the authors

focus speci�cally on the topology matrix L̃. On the other hand, in our se�ing,

we are mostly interested in inferring the congestion status of transmission

lines, rather than the entire grid topology, hence we shi� the a�ention to the

congestion matrix S. �e underlying methodology is the same for both tasks,

and is summarized below for the sake of completeness of this chapter.

Note that the problem of recovering matrices L̃ and S by only knowing the

price matrix Π in Eq. (6.16), is clearly under-determined. �e way to approach

this challenge is to exploit structural properties of the matrices, which we

now describe. First, observe that matrix Ã ∈ Rm×(n−1)
is a full column-rank

matrix, and L̃ ∈ R(n−1)×(n−1)
is strictly positive de�nite with non-positive

o�-diagonal entries.

Second, note that matrices L̃ and S satisfy the following structural properties:

(i) L̃ is a positive de�nite M-matrix
2

and is sparse, and (ii) S is sparse and low-

rank. �e sparsity of L̃ follows from the fact that the graph underlying a power

grid is usually sparingly connected, especially for US power grids [5]. �e fact

that S is sparse and low-rank follows from Eq. (6.15) and the fact that usually

only a very small subset of transmission lines get congested [101], implying that

most of the terms in the sum in (6.15) are zero. In [101], the authors suggest to

recover matrices L̃ and S by solving the optimization problem:

min
L̃,S

‖S‖0 + κ0‖L̃‖0

s.t. L̃Π = S, L̃ � 0, L̃ ≤ I,

(6.17)

where ‖X‖0 is the `0 pseudo-norm counting the non-zero entries of matrix X,

and κ0 ≥ 0. In words, the optimization problem (6.17) tries to �nd the sparsest
pair (L̃,S) that satis�es the structural properties mentioned before. Since this

problem is in general NP-hard, it is suggested in [101] that the following convex

relaxation be used:

2
See Section 1 in [149] for the de�nition of M-matrix.
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min
L̃,S

‖S‖1 + κ1tr(PL̃)− κ2 log |L̃|

s.t. L̃Π = S, L̃ ∈ C,
(6.18)

with ‖X‖1 =
∑
i,j |Xi,j | denoting the `1 norm of matrix X, P = I−11T , C :=

{L̃ : L̃ � 0, L̃ ≤ I}, κ1, κ2 ≥ 0, and L̃ � 0 denoting a positive semide�nite

matrix. For small grids, such as the IEEE 30-bus test case in Section 6.6, the

previous semide�nite program can be solved quite e�ciently using standard

so�ware libraries. In particular, we used CVX, a Matlab package for specifying

and solving convex programs [76].

6.4.1 Recovery of matrix S in a givenM-regime

Besides the topology matrix L̃, the algorithm discussed in Section 6.4 allows us

to recover the congestion matrix S as well. It turns out that it is bene�cial to

solve the optimization problem (6.18) within eachM-regime separately, due to

the fact thatM vectors corresponding to the same hour h are usually associated

with a few di�erent congestion regimes (see Fig. 6.2), implying that the matrix

S(h), obtained from S by selecting columns corresponding to time indices in

T (h), is particularly sparse.

Figure 6.2: A segment of the congestion matrix S, visualizing the congestion regimes during two

weeks of simulated data for the IEEE 30-bus test case. �e x-axis spans time instances at hourly

granularity, while the y-axis corresponds to node indices. �e non-zero entries (depicted in yellow)

represent nodes connected to congested transmission lines, in view of Eq. (6.15). Zero entries are

depicted in blue.

Fig. 6.3a depicts an example of a segment of the normalized version of matrix

S(h), which is obtained by dividing each column j of S(h) by maxi∈N Si,j(h).

�e x-axis spans time instances, while the y-axis corresponds to node indices.
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Most of the entries of the matrix S are equal to zero, with a few entries having

relatively large absolute values. �ose entries represent nodes connected to

the congested transmission lines, in view of Eq. (6.15). As a consequence,

the j-th column of S(h) uniquely identi�es the set of congested lines at time

24 · (j − 1) + h ∈ T (h).

(a) Segment of (normalized) congestion ma-

trix S(h).

(b) Segment of (normalized) recovered con-

gestion matrix S̃(h) .

Figure 6.3: Comparison between actual and recovered congestion matrices.

�e focus of this section is on recovering the congestion matrix S̃(h) within

eachM-regime by solving the optimization problem in Eq. (6.18). For eachM-

regime, we obtain the corresponding matrix S̃(h) by solving the optimization

problem in Eq. (6.18). An example of a segment of the recovered congestion

matrix S̃(h) is shown in Fig. 6.3b. We can see how S̃(h) correctly identi�es

the non-zero entries of the actual congestion matrix S(h), but introduces some

noise that masks zero entries.

�e congestion matrix encodes information that can be used to improve the

accuracy of the MARS algorithm, as discussed in Section 6.3. More speci�cally,

in view of (6.14), we recover congestion regimes by clustering the columns of

S̃(h) using a combination of Principal Component Analysis [98] and k-means

clustering [114]. �e red boxes marked by the arrows in Fig. 6.3 highlight the

three di�erent congestion regimes occurring during a subset of T (h), showing

that the algorithm is able to correctly recover them.

6.5 Learning the mapping betweenM vectors and LMP
vectors

�e next component of the methodology relies on Assumption 6.1 and �e-

orem 6.1, and focuses on learning the piecewise a�ne function between the
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vectorsM(t) = [D(T ),W (t)]> and the LMP vector, as outlined in Section 6.3.

Mapping M vectors to LMP vectors within each congestion regime.
First, we apply the MARS algorithm within eachM-regime and congestion

regime separately. More speci�cally, given anM-regimeR(mix)
i , let

F(i) :=
{
R(cong)
i,1 , . . . ,R(cong)

i,n
(cong)
i

}
,

be the set of associated congestion regimes, n
(cong)
i ≥ 1. For each pair (i, j)

such that R(cong)
i,j ∈ F(i), we use the MARS algorithm to learn the piecewise

a�ne maps

φ
(lmp)
i,j : R2 3M→ LMP ∈ Rn, (6.19)

where each piece is determined by a di�erent saturation regime (see Section 6.3).

MappingM vectors to congestion regimes within eachM-regime. Dur-

ing the prediction stage, we will use the learned functions φ
(lmp)
i,j to map fore-

castedM vectors for hour i to the associated LMP vectors. In order to do that,

we need to be able to assign the never-seenM vectors to the corresponding

congestion regimesR(cong)
. To this end, given anM-regimeR(mix)

i , we relate

the correspondingM-vectors to one of the congestion regimes in

F(i) =
{
R(cong)
i,1 , . . . ,R(cong)

i,n
(cong)
i

}
by training a classi�cation algorithm. �anks to the geometrical structure

prescribed by �eorem 6.1 and the proportionality Assumption 6.1, the sets of

M vectors corresponding to di�erent congestion regimes can be accurately

classi�ed using, for example, the Support Vector Machine (SVM) algorithm,

leading to the classi�cation rule

φ
(cong)
i : R(mix)

i 3M→ R(cong)
i,j ∈ F(i).

6.5.1 Summary of the methodology pipeline

Finally, we summarize the �nalized methodology by spli�ing it into the training

and prediction stages.

Training stage:

Step T.0: Collect historical M vectors M(t) = [D(t),W (t)]>, t ∈ T , as

well as historical nodal LMP vectors, and cluster the M vectors in

M-regimes (see Section 6.3).
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Step T1: Using historical price data, perform recovery of topology matrix L̃
and congestion matrix S(i) within eachM-regime i (see Section 6.4).

Step T2: For eachM-regime i, perform k-means clustering of the columns of

the recovered congestion matrix S̃(i) to obtain the congestion regimes

F(i) =
{
R(cong)
i,1 , . . . ,R(cong)

i,n
(cong)
i

}
(see Section 6.4.1).

Step T3: For eachM-regime i, learn the classi�cation rule φ
(cong)
i that maps

M-vectors to the associated congestion regimeR(cong)
i,j ∈ F(i) using the

SVM algorithm (see Section 6.5).

Step T4: For each (i, j) such that R(cong)
i,j ∈ F(i), use MARS to learn the

piecewise a�ne function φ
(lmp)
i,j mappingM vectors to LMP vectors

(see Section 6.5).

Prediction stage:

Step P0: Obtain M-vectors forecasts, and map them to the matching M-

regime i.

Step P1: Within each M-regime i, use the trained classi�cation model in

step T3 to assignM forecasts to the corresponding congestion regime

R(cong)
i,j ∈ F(i).

Step P2: For each (i, j) such thatR(cong)
i,j ∈ F(i), use the trained MARS models

in step T4 to map theM forecast to the resulting LMP vector forecast.

6.6 Numerical case study and validation

In this section we report validation results for the IEEE 30-bus test system of

MATPOWER [210]. �e test case includes all parameters needed to run DC-

OPF, but it does not include renewable generators. For this reason, we modify a

subset of the original generators (speci�cally, the generators located at nodes 2
and 27) as follows: (i) we set the corresponding cost functions equal to a very

small positive number,
3

and ii) we let the corresponding generation limit ḡ vary

according to a distribution learned from CAISO data [32], as explained below.

Moreover, we uniformly multiply the transmission line limits by a small

factor, set at 1.2, to ensure that we have few congestion events, in line with

the empirical observation that congestion events are sparse [101]. Finally, we

3
In order to model the fact that renewable generators are usually much cheaper than

conventional ones.
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scale up the generation limits for the other generators uniformly by a factor 3
to avoid scenarios where there is not enough total supply to match demand,

which would lead to an unfeasible OPF.

6.6.1 Generation of historicalM vectors

For demand pro�les, we download 3 months of historical total demand pro-

�les from S&P Global [173], collected at hourly granularity. We then �t a

multivariate Gaussian distribution to the historical data and obtain a model

d(tot) ∼ N24(µdem,Σdem), from which we can sample daily total load pro�les.

Next, each daily total load realization is scaled down so that its hourly average

value matches the base-level demand of the test case. Finally, for each load node

i, we set its demand to be equal to a �xed fraction α
(d)
i of the total demand,

where

∑
i α

(d)
i = 1, 0 ≤ α(d)

i ≤ 1.

To simulate renewable generation pro�les, we download a daily pro�le for

solar generation in the California ISO [32], which we denote as w(tot,0) ∈ R24
.

A daily realization is then obtained by sampling from normal distribution

w(tot) ∼ N24(w(tot,0),diag(w(tot,0))σ2
w),

where we set σ2
w = 0.1. Next, the generated pro�les are scaled down to be

consistent with the base level of the other generators. Finally, the renewable

generation capacity ḡj for a speci�c renewable node j is set to be equal to a �xed

fraction α
(w)
j of the corresponding grid-level quantity, where

∑
j α

(w)
j = 1 and

0 ≤ α(w)
j ≤ 1. �e values of the fractions α(d),α(w)

are based on the base-level

data of the test case.

6.6.2 Generation of historical LMP vectors

In order to generate synthetic LMP vectors, which are needed for training

and testing of our methodology, we run the DC-OPF in MATPOWER using

theM vectors generated in the previous step. We recover the nodal quantities

necessary to run the DC-OPF by using the proportionality Assumption 6.1

and the fractions α(d),α(w)
. �e nodal quantities are only used to generate a

synthetic historical dataset of LMP vectors,
4

and they play no further role in

our validation.

4
Which are publicly available in the case of actual wholesale energy market data.
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6.6.3 Training and prediction stages

�e training phase consists of steps T1-T4 and we perform it using 3 months

worth of syntheticM and LMP vectors. To evaluate the predictive perfor-

mance of our approach, described in steps P1-P3, we generate synthetic day-

ahead forecasts forM vectors as follows. First, we generate 100 samples from

the multivariate Gaussian distributions for total demand and renewable supplies

de�ned in Section 6.6.1, Next, in the prediction phase, we generate daily total

demand d(tot)(i) ∈ R24
and renewable supply w(tot)(i) ∈ R24

over a testing

period of 50 days, which we interpret as the actual realizations, and match

each daily realization to the closest (in terms of the L2 norm) typical pro�le

among the ones identi�ed in the previous stage to obtain the synthetic day-ahead
forecasts d̂(tot)(i) and ŵ(tot)(i) for each day i = 1, . . . , 50.

6.6.4 Performance evaluation

By stacking the 24-dimensional vectors d(tot)(i), d̂(tot)(i),w(tot)(i), ŵ(tot)(i) for

the di�erent days in the testing period as columns of the matrices D(tot), D̂(tot),W(tot),Ŵ(tot) ∈
R24,50

, the forecasting relative errors are de�ned by

err
(dem) =

‖D(tot) − D̂(tot)‖F
‖D(tot)‖F

, err
(ren) =

‖W(tot) − Ŵ(tot)‖F
‖W(tot)‖F

,

where ‖A‖F =
√∑

i,j |aij |2 denotes the Frobenius norm of matrix A, which is

equivalent to the `2 norm of the vector obtained by stacking the columns of the

matrix A one under the other. Similarly, for each node k = 1, . . . , n, we stack

the actual and predicted LMPs as columns of the matrices M
lmp

k , M̂
lmp

k ∈ R24,50
,

and we evaluate the predictive performance of our methodology using the mean

relative error across all nodes,de�ned as

err
(lmp) :=

1

n

n∑
k=1

err
(lmp)
k , err

(lmp)
k =

‖Mlmp

k − M̂
lmp

k ‖F
‖Mlmp

k ‖F
.

Figs. 6.4a and 6.4b capture the sensitivity of the predictive performance

as a function of the forecasting errors in total load and renewable generation,

showing that the algorithm is able to forecast future LMPs with reasonable

accuracy.
5

5
For a comparison of the presented methodology with competing algorithms across a wider

range of accuracy criteria, we refer to the paper [154], on which this chapter is based on. In

particular, the paper [154] includes a validation on real market data from the Southwest Power Pool

market.
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More speci�cally, Fig. 6.4a (respectively, Fig. 6.4b (b)) shows how the pre-

diction error changes as a function of the forecasting error in the total load

(respectively, total renewable generation) where the generation (respectively,

load) forecasting error is kept �xed.

(a) LMP prediction error err
(lmp)

as a function

of err
(dem)

, with err
(ren)

�xed at 1.5%.

(b) LMP prediction error err
(lmp)

as a function

of err
(ren)

, with err
(dem)

�xed at 1%.

6.7 Concluding remarks

In this chapter, we show that the wholesale energy prices can be inferred us-

ing limited, publicly available, historical market data. By utilizing the basic

underlying physical model that captures generation-load matching on the grid,

we develop a methodology for predicting locational marginal prices from a

decentralized perspective, which also sheds light on the connection between

market data and power grid congestion status. �e methodology is validated

on the IEEE 30-bus test case. While performing well in predicting intra-day

variations, the proposed methodology may fail to predict rare occurrences of

price spikes [154]. �is is imputable to the scarcity of historical data correspond-

ing to such rare events, which impacts the accuracy of the machine learning

algorithms described in this chapter, and to the limitations of the simplifying As-

sumption 6.1. �e issue of rare price spikes in LMPs is studied from a centralized

perspective in Chapter 7.
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�e problem of predicting energy price spikes, as opposed to expected intra-

day variations, is a particularly di�cult one, as discussed in Section 1.4.3. In this

chapter, we investigate large �uctuations of Locational Marginal Prices (LMPs,

see De�nition 1.1) in wholesale energy markets caused by volatile renewable

generation pro�les. Speci�cally, we take the centralized perspective of the grid

operator to study the probability of events of the form

P
(
LMP /∈

n∏
i=1

[α−i , α
+
i ]
)
, (7.1)

where LMP is the vector of of LMPs at the n power grid nodes, and α−,α+ ∈
Rn are vectors of price thresholds specifying undesirable price occurrences.
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We propose a novel approach combining multiparametric programming [181]

with large deviations theory [55]. By exploiting the structure of the OPF prob-

lem, and assuming a centralized perspective, we �rst derive the deterministic

piecewise a�ne, possibly discontinuous function linking the stochastic input

process, modeling uncontrollable renewable generation, to the LMPs. �is, in

turn, allows us to utilize large deviations theory to identify the most likely

ways for extreme price spikes to happen as a result of �uctuations of renewable

generation.

�e large deviations approach o�ers a powerful and �exible framework

that holistically combines the network structure and operation paradigm with

a stochastic model for renewable generation. �is approach enables us to: i)

approximate the probability of price spikes by means of solving a deterministic

convex optimization problem, ii) rank the nodes of the power grids according

to their likelihood of experiencing price spike events, iii) handle the multi-
modal nature of the LMP’s probability distribution, and iv) relax the LICQ

regularity condition, an assumption that is usually required in the relevant

literature [209, 19, 111, 20]. Our results are derived in the case of Gaussian

�uctuations, and are validated numerically on the IEEE 14-bus test case.

Chapter outline: �e chapter is structured as follows. A rigorous formu-

lation of the problem under consideration is provided in Section 7.1, while a

connection to the �eld of multiparametric programming is established in Sec-

tion 7.2. Next, in Section 7.3, we derive our main large deviations result linking

the event of a rare price spike to the solution of a deterministic optimization

problem, which is analyzed in Section 7.4. We illustrate the potential of the

proposed methodology in Section 7.5 with a case study on the IEEE 14-bus test

case.

7.1 System model and problem formulation

�e power grid model shares many similarities to the one described in Chapter

6, and for this reason full details are not repeated here. In particular, we refer

to Section 6.1.1 for the de�nition of the sets Ng,Nw,Nd, where |Ng| = ng ,

|Nw| = nw , |Nd| = nd and ng + nw = n is the total number of nodes in the

grid.

We denote the vectors of conventional generation, renewable generation,

and demand, as the vectors g ∈ RNg+ ,w ∈ RNw+ , and d ∈ RNd+ , respectively.
1

To simplify notation, we extend the vectors g,w,d to n-dimensional vectors

1
�e notation x ∈ RA indicates that the entries in the |A|-dimensional vector x are indexed

by the set A.
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g̃, w̃, d̃ ∈ Rn by se�ing g̃i = 0 whenever i /∈ Ng and g̃i = gi otherwise, and

similarly for w̃ and d̃. �e vectors of net power injections and power �ows are

denoted by p := g̃ + w̃ − d̃ ∈ Rn and f ∈ Rm, respectively.

As in Chapter 6, the vector of nodal prices LMP ∈ Rn (see Section 1.3.2) is

calculated by solving a DC-OPF (see Section 1.3.1), which can be formulated as

the following quadratic optimization problem:

min
g∈Rng

ng∑
i=1

Ji(gi) =
1

2
g>Hg + h>g (7.2)

s.t. 1>(g̃ + w̃ − d̃) = 0 : λen (7.3)

f ≤ V̂(g̃ + w̃ − d̃) ≤ f̄ : µ−,µ+
(7.4)

g ≤ g̃ ≤ ḡ : τ−, τ+
(7.5)

where the variables are de�ned as follows:

H ∈ Rng×ng diagonal positive de�nite matrix, de�ning the quadratic part

of the objective function;

h ∈ Rng ng-dimensional vector, de�ning the linear part of the objective

function;

V̂ ∈ Rm×n PTDF matrix (see Section 1.2.2, Eq. (1.20));

f , f̄ ∈ Rm vector of lower/upper transmission line limits;

g, ḡ ∈ Rng vector of lower/upper generation constraints;

λen ∈ R dual variable of the energy balance constraint;

µ−,µ+ ∈ Rm+ dual variables of the transmission line constraints (1.26),

τ−, τ+ ∈ Rng+ dual variables of the generation constraints (1.27);

1 ∈ Rn is a n-dimensional vector of ones.

We also denote by J(g) :=
∑n
i=1 Ji(gi) the aggregated generation cost.

�e OPF problem in Eqs. (7.2) - (7.5), besides providing the unique
2 optimal

dispatch g∗, gives as a byproduct the vector of nodal prices LMP ∈ Rn, which

is related to the dual solution of the DC-OPF as described in Section 1.3.2. In

terms of the parameters in Eqs. (7.2) - (7.5), the LMP vector can be expressed as

(see Section 6.1.2)

LMP = λen1 + V̂>µ ∈ Rn, (7.6)

where µ = µ− − µ+
.

2
�e optimal generation dispatch g∗, when it exists, is unique because H is de�nite positive,

and thus the OPF is a strictly convex optimization problem.
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7.1.1 Problem statement

In the same spirit as of Chapter 6, we adopt a functional perspective, i.e., we

view the uncontrollable generator as a random parameter, or input, of the OPF.

In particular, we are interested in a se�ing where the objective function, PTDF

matrix, nodal demand d, line limits and generation constraints are assumed to

be known and �xed. Conversely, the uncontrollable generation w corresponds

to a variable parameter

θ = w ∈ Rnw , (7.7)

of the problem, upon which the solution of the OPF problem in Eqs. (7.2) - (7.5)

(henceforth referred to as OPF(θ)), and thus the LMP vector, depend.
3

In other words, the LMP vector is a deterministic function of θ

Rnw ⊇ Θ 3 θ → LMP(θ) ∈ Rn, (7.8)

where Θ ⊆ Rnw is the feasible parameter space of the OPF, i.e., the set of

parameters θ such that OPF(θ) is feasible. In particular, we model θ as a non-

degenerate multivariate Gaussian random vector
4

θε ∼ Nnw(µθ, εΣθ), (7.9)

where ε > 0 quanti�es the magnitude of the noise. �e mean µθ of the random

vector θ is interpreted as the expected, or nominal, realization of renewable

generation for the considered time interval, and we assume that it lies inside

the interior of the feasible parameter set, i.e. µθ ∈ Θ̊. Furthermore, we assume

that Σθ is a known positive de�nite matrix, and consider the regime where

ε→ 0. In view of the mapping (7.8), LMP is a n-dimensional random vector

whose distribution depends on that of θ, and on the deterministic mapping

θ → LMP(θ). We assume that the LMP vector corresponding to the expected

renewable generation µθ is such that

LMP(µθ) ∈ Π̊, (7.10)

where Π :=
∏n
i=1[α−i , α

+
i ], α−,α+ ∈ Rn are vectors of price thresholds. Here

and in the following, the notation Å denotes the interior of the set A.

3
We introduce the notation with θ in order to describe a more general framework. For example,

the parameter θ may model additional quantities, such as variable demand, as in Chapter 6.

4
Technically, θε is truncated by the feasibility set Θ. From the viewpoint of the large deviations

approach, however, non-feasible realizations of θε do not constitute a problem, since the large

deviations result in Eq. (7.19) involves solving an optimization problem de�ned on the set Y ⊆ Θ.
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We are interested in the event of anomalous price �uctuations (or spikes),
de�ned as

Y =Y (α−,α+) =
{
θ ∈ Θ : LMP(θ) /∈

n∏
i=1

[α−i , α
+
i ]
}

(7.11)

=

n⋃
i=1

{θ ∈ Θ : LMPi(θ) < α−i or LMPi(θ) > α+
i }, (7.12)

which, in view of Eq. (7.10) and the regime ε→ 0, is a rare event. Without loss of

generality, we only consider thresholds α−,α+
such that the event Y (α−,α+)

has a non-empty interior in Rnw . Otherwise, the fact that µθ is non degenerate

would imply P
(
Y (α−,α+)

)
= 0.

We observe that the above formulation of a spike event is quite general, and

can cover di�erent application scenarios, as we now describe. For example, if

α = α+
i = −α−i > 0 for all i, then the spike event reads

Y (α) = {θ ∈ Θ : ‖LMP‖∞ = max
i=1,...,n

|LMPi| > α},

modeling the occurrence of a price spike with magnitude greater than a pre-

scribed value. On the other hand, if we de�ne α− = LMP(µθ) − β and

α+ = LMP(µθ) + β, for β ∈ Rn+, the spike event

Y (β) =

n⋃
i=1

{θ ∈ Θ : |LMPi − LMPi(µθ)| > βi},

models the event of any LMPi deviating from its nominal value LMPi(µθ)
more than βi > 0. Moreover, by se�ing α− = LMP(µθ) − β− and α+ =
LMP(µθ) + β+

, β−,β+ ∈ Rm,+ and β− 6= β+
, we can weigh di�erently

negative and positive deviations from the nominal values.

We remark that negative price spikes are also of interest [71, 75] and can be

covered in our framework, by choosing the threshold vectors α−,α+
accord-

ingly. Finally, note that we can study price spikes at a more granular level by

restricting the union in Eq. (7.12) to a particular subset of nodes Ñ ⊆ N .

7.2 Multiparametric programming

As already observed multiple times throughout this thesis (see Section 1.1

and Section 6.1.3, for instance), the LMPs can be thought as deterministic

function of the parameter θ. �erefore, in order to study the distribution of
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the random vector LMP, we need to investigate the structure of the mapping

θ → LMP(θ).

In the same way as in Chapter 6, we �rst rewrite the problem OPF(θ)
in Eqs. (7.2) - (7.5) as a standard Multiparametric �adratic Program (MPQ),

yielding the equivalent formulation

min
g∈Rng

1

2
g>H>g + g>h (7.13)

s.t. Ag ≤ b + Eθ, (7.14)

where A ∈ R(2+2m+2ng)×ng ,E ∈ R(2+2m+2ng)×nw ,b ∈ R(2+2m+2ng)
are

suitably de�ned matrices and vectors, given below:

A =



1>ng
−1>ng
V̂Ng
−V̂Ng

Ing
−Ing

 , b =



1>d
−1>d

V̂Ndd + f̄

−V̂Ndd− f
ḡ
−g

 , E =



−1>nw
1>nw

−V̂Nw
V̂Nw
0nw
0nw

 . (7.15)

Here, for k ∈ N, we denote by 1k, 0k ∈ Rk and Ik ∈ Rk×k the vector of

ones, zeros, and the identity matrix of dimension k, respectively. Moreover,

V̂Ng ∈ Rm×ng and V̂Nw ∈ Rm×nw denote the submatrices of V̂ obtained by

selecting only the columns corresponding to nodes in Ng and Nw , respectively.

In the remainder of this chapter, we make use of the concepts of optimal

partition and LICQ condition, which have already been introduced in De�-

nitions 6.1 and 6.2. We recall that, for a given parameter θ, the associated

optimal partition B(θ) consists of the indices of binding constraints of OPF(θ)
in Eqs. (7.13) - (7.14).

Since there is always at least one binding constraint, namely i = 1, cor-

responding to the power balance constraint (see also Remark 6.1 in Chapter

6), we can write |B| = 1 + |B′|, where B′ ⊆ {3, . . . , 2 + 2ng + 2m} contains

the indexes of binding constraints corresponding to line and generator limits.

Let ñg, m̃ denote, respectively, the number of binding generator and line limit

constraints, so that B′ = ñg + m̃. Since line and generation limits cannot be

binding both on the positive and negative sides, we have that |B′| ≤ ng +m.

Moreover, it is observed in [209] that the row rank of AB is equal to min(1+
ñg + m̃, ng). �erefore, the LICQ condition is equivalent to

1 + ñg + m̃ ≤ ng. (7.16)
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A standard result in Multiparametric Programming �eory (presented earlier

as �eorem 6.1 in Section 6.2, and proved in [181]) states that the feasible

parameter space Θ can be covered by the union of a �nite number of convex

polytopes Θk (called critical regions) k = 1, . . . ,M , and that there exist M
a�ne maps de�ned in the interiors of the critical regions

Θ̊k 3 θ → LMP∣∣Θ̊k
(θ) = C̃(k)θ + c̃(k), k = 1 . . . ,M,

where C̃(k), c̃(k)
are suitably de�ned matrices and vectors. Moreover, if LICQ

holds for every θ ∈ Θ, then the maps agree on the intersections between the

regions Θk’s, resulting in an overall continuous map

Θ 3 θ → LMP(θ) ∈ Rn. (7.17)

7.2.1 Relaxing the LICQ assumption

One of the assumptions of �eorem 6.1, which is standard in the �eld [209, 19,

111, 20], is that the LICQ condition holds for every θ ∈ Θ. In particular, this

means that LICQ holds in the interior of two neighboring regions, which we

denote as Θ̊i and Θ̊j . LetH be the hyperplance separating Θ̊i and Θ̊j . �e fact

that LICQ holds at Θ̊i implies that, if {i1, . . . , iq} are the binding constraints at

optimality in the OPF for θ ∈ Θ̊i, then in view of Eq. (7.16) we have q ≤ ng ,

where ng is the number of decision variables in the OPF (i.e., the number of

generators).

Requiring LICQ to hold everywhere means that, in particular, it must hold

in the common facet between regions. As we move from Θ̊k on to the common

facet F = Θi ∩H between regions Θi and Θj , which has dimension nw − 1,

there could be an additional constraint becoming active (coming from the

neighboring region Θj ), and therefore the LICQ condition implies q + 1 ≤ ng .

In general, critical regions can intersect in faces of dimensions 1, . . . , nw−1,

and enforcing LICQ to hold on all these faces could imply the overly-conservative

assumption q + nw − 1 ≤ ng .

In what follows, we relax the assumptions of �eorem 6.1 by allowing LICQ

to be violated on the union of these lower-dimensional faces

Θ◦ := Θ \
M⋃
k=1

Θ̊k.

Since this union has zero nw-dimensional Lebesgue measure, the event θ ∈ Θ◦
rarely happens in practice, and thus is usually ignored in the literature, but it

does cause technical issues that we now address.
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If LICQ is violated on θ ∈ Θ◦, the Lagrange multipliers of the OPF, and

thus the LMP, need not be unique. �erefore, the map θ → LMP(θ) is not

properly de�ned on Θ◦. In order to extend the map from

⋃M
k=1 Θ̊k to the full

feasible parameter space Θ, we incorporate a tie-breaking rule to consistently

choose between the possible LMPs.

Following [180], we break ties by using the lexicographic order. �at

is, if {LMP1(θ), . . . ,LMPd(θ)} denotes the set of LMPs corresponding to

a parameter θ ∈ F , we �rst choose those with maximum �rst coordinate

{LMPj(θ)}j∈K1 , with K1 = arg maxh=1,...,d LMPh
1 (θ). �en, from this

subset, we choose the LMP vectors with maximum second coordinate, and so

forth.

�is choice de�nes the LMP function over the whole feasible parameter

space Θ, but may introduce jump discontinuities on the zero-measure set Θ◦.
In the next section, we address this technicality and formally derive our main

large deviations result.

7.3 Large deviations results

Proposition 7.1. Let θε ∼ Nnθ (µθ, εΣθ) be a family of nondegenerate nθ-
dimensional Gaussian r.v.’s indexed by ε > 0. Assume that the LICQ condition is
satis�ed for all θ ∈ Θ \Θ◦. Consider the event

Y = Y (α−,α+) =

n⋃
i=1

{θ ∈ Θ : LMPi(θ) /∈ [α−i , α
+
i ]},

de�ned in Eq. (7.11), assume that the interior of Y is not empty, 5 and that

LMP(µθ) ∈ Π̊, Π :=

n∏
i=1

[α−i , α
+
i ]. (7.18)

�en, the family of random vectors {θε}ε>0 satis�es

lim
ε→0

ε logP(θε ∈ Y ) = − inf
θ∈Y

I(θ), (7.19)

where I(θ) = 1
2 (θ − µθ)>Σ−1

θ (θ − µθ)..

Proof. For notational compactness, in the rest of the proof we will write Y
without making explicit its dependence on (α−,α+). De�ningZ :=

⋃n
i=1{θ ∈

5
If Y̊ = ∅, then trivially P(θε ∈ Y ) = 0.
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Rnθ : LMPi(θ) /∈ [α−i , α
+
i ]}, the event Y can be decomposed as the disjoint

union Y = Y∗ ∪ Y◦, where

Y∗ =

M⋃
k=1

Θ̊k ∩ Z, Y◦ = Θ◦ ∩ Z, (7.20)

and Y◦ ⊆ Θ◦ = Θ \
⋃M
k=1 Θ̊k is a zero-measure set.

As θε is nondegenerate, it has a density f with respect to thenw-dimensional

Lebesgue measure in Rnw . Since the nw-dimensional Lebesgue measure of Y◦ is

zero, we have

P(θε ∈ Y◦) =

∫
x∈Y◦

f(x)dx = 0

and P(θε ∈ Y ) = P(θε ∈ Y∗). As a consequence, we can restrict our analysis

to the event Y∗. �anks to Cramer’s theorem in Rnw [55], we have

− inf
θ∈Y̊∗

I(θ) ≤ lim inf
ε→0

ε log
(
P(θε ∈ Y∗)

)
(7.21)

≤ lim sup
ε→0

ε log
(
P(θε ∈ Y∗)

)
≤ − inf

θ∈Y∗
I(θ), (7.22)

where I(θ) is the Legendre transform of the log-moment generating function

of θε. It is well-known (see, for example, [182]) that when θε is Gaussian then

I(θ) = (θ − µθ)>Σ−1
θ (θ − µθ). In order to prove (7.19), it remains to be

shown that

inf
θ∈Y̊∗

I(θ) = inf
θ∈Y∗

I(θ). (7.23)

�anks to the continuity of the maps LMP|Θ̊k
, the set Y∗ is open, since

Y∗ =
M⋃
k=1

Θ̊k ∩ Z (7.24)

=

M⋃
k=1

(
Θ̊k ∩

n⋃
i=1

{ LMPi|Θ̊k
(θ) /∈ [α−i , α

+
i ]}
)

(7.25)

=

M⋃
k=1

(
Θ̊k ∩

n⋃
i=1

{C̃(k)
i θ + c̃

(k)
i /∈ [α−i , α

+
i ]}
)

(7.26)

=

M⋃
k=1

n⋃
i=1

(
Θ̊k ∩ ({C̃(k)

i θ + c̃
(k)
i < α−i } ∪ {C̃

(k)θ + c̃(k) > α+
i })
)
.

(7.27)
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�erefore, Y̊∗ = Y∗ and Y̊∗ = Y∗ ⊇ Y∗. Since the rate function I(θ) is

continuous, Eq. (7.23) follows.

Proposition 7.1 allows us approximate the probability of a price spike, for

small ε, as

P(θε ∈ Y ) ≈ exp
(− infθ∈Y I(θ)

ε

)
, (7.28)

as it was done in Chapters 2 and 4 in the context of studying the event of

transmission line failures. �e minimizer of the optimization problem (7.19)

corresponds to the most likely realization of uncontrollable generation that

leads to the rare event.

Furthermore, the structure of the problem (7.19) allows us to e�ciently rank

nodes in terms of their likelihood to experience a price spike, as we illustrate in

Section 7.5.

7.4 Solving the optimization problem

In view of Proposition 7.1, in order to study limε→0 ε logP(θε ∈ Y (α−,α+))
we need to solve the deterministic optimization problem infθ∈Y∗ I(θ). �e

la�er, in view of �eorem 6.1 and the de�nition of Y∗, is equivalent to

inf
θ∈Y∗

I(θ) = min
k=1,...,M

inf
θ∈Θ̊k∩Z

I(θ)

= min
i=1,...,n

min
k=1,...,M

inf
θ∈Θ̊k,C̃

(k)
i θ+c̃

(k)
i /∈[α−i ,α

+
i ]

I(θ).

�is amounts to solving at most nM quadratic optimization problems of the

form

inf
θ∈Ti,k

I(θ)

for i = 1, . . . , n, k = 1, . . . ,M , where, for i = 1, . . . , n, k = 1, . . . ,M ,

Ti,k = T−i,k t T
+
i,k,

T−i,k = Θ̊k ∩ {C̃(k)
i θ + c̃

(k)
i < α−i }, T+

i,k = Θ̊k ∩ {C̃(k)
i θ + c̃

(k)
i > α+

i }.

In the rest of this section, we show how we can signi�cantly reduce the

number of optimization problems that need to be solved by exploiting the

geometric structure of the problem. First, since

inf
θ∈Y∗

I(θ) = min
i=1,...,n

inf
θ∈

⋃M
k=1 Ti,k

I(θ),
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we �x i = 1 . . . , n and consider the sub-problems

inf
θ∈

⋃M
k=1 Ti,k

I(θ) = min
{

inf
θ∈

⋃M
k=1 T

−
i,k

I(θ), inf
θ∈

⋃M
k=1 T

+
i,k

I(θ)
}
. (7.29)

�e reason why we want to solve the problems in Eq. (7.29) individually for

every i is because we are not only interested in studying the overall event Y , but

also in the more granular events of node-speci�c price spikes. For example, this

would allow us to rank the nodes in terms of their likelihood of experiencing a

price spike (see Section 7.5). De�ne

L−(i,k) := Θk ∩ (T−i,k){ = Θk ∩ {C̃(k)
i θ + c̃

(k)
i ≥ α−i },

L+
(i,k) := Θk ∩ (T+

i,k){ = Θk ∩ {C̃(k)
i θ + c̃

(k)
i ≤ α+

i },

L−i :=

M⋃
k=1

L−i,k = Θ ∩ {LMPi ≥ α−i },

L+
i :=

M⋃
k=1

L+
i,k = Θ ∩ {LMPi ≤ α+

i }.

and consider the partition of the sets L+
i and L−i into disjoint closed connected

components, i.e.,

L−i =
⊔

`∈conn. comp. of L−i

W
(i,−)
` , L+

i =
⊔

`∈conn. comp. of L+
i

W
(i,+)
` , (7.30)

and let W
(i,−)
`−∗ ,W

(i,+)
`+∗ be the components containing µθ . Since ∂(A ∪B) =

∂A ∪ ∂B if A ∩B = A ∩B = ∅, the boundary ∂L+
i =

⊔
`∈F+

i
∂W

(i,+)
` is the

union of the set of parameters θ ∈ Θ such that LMP(θ) = α+
i with, possibly,

a subset of the boundary of Θ (and similarly for ∂L−i ).

As stated by Proposition 7.2, we show that, in order to solve the two problems

in the right hand side of Eq. (7.29) we need to look only at the boundaries

∂W
(i,−)
`∗ , ∂W

(i,+)
`∗ .

Proposition 7.2. Under the same assumptions of �eorem 6.1, we have

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ), inf
θ∈

⋃M
k=1 T

−
i,k

I(θ) = inf
θ∈∂

⋃M
k=1 T

−
i,k

I(θ).

(7.31)
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Moreover,

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂W (i,+)

`∗+

I(θ), inf
θ∈

⋃M
k=1 T

−
i,k

I(θ) = inf
θ∈∂W (i,−)

`∗−

I(θ).

(7.32)

Proof. First note that the rate function I(θ) is a (strictly) convex function,

since Σθ is positive de�nite. Since

⋃M
k=1 T

+
i,k is open and I(θ) is a continuous

function, it holds that

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈

⋃M
k=1 T

+
i,k

I(θ).

Moreover, since I(θ) is continuous and

⋃M
k=1 T

+
i,k compact, the in�mum is

a�ained. �e fact that

⋃M
k=1 T

+
i,k ⊇ ∂

⋃M
k=1 T

+
i,k immediately implies that

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) ≤ inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ).

On the other hand, assume by contradiction that

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) < inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ).

In particular, there exists a point θ0 in the interior of

⋃M
k=1 T

+
i,k such that

I(θ0) < I(θ) for all θ ∈
⋃M
k=1 T

+
i,k. De�ne, for t ∈ [0, 1], the line segment

joining µθ and θ0, i.e. θt = (1 − t)µθ + tθ0. Since θ0 lies in the interior

of

⋃M
k=1 T

+
i,k, and µθ /∈

⋃M
k=1 T

+
i,k, there exist a 0 < t∗ < 1 such that θt ∈⋃M

k=1 T
+
i,k for all t ∈ [t∗, 1]. Due to the convexity of I(θ), and the fact that

I(µθ) = 0, we have

I(θt∗) < (1− t∗)I(µθ) + t∗I(θ0) = t∗I(θ0) < I(θ0),

thus reaching a contradiction. Hence,

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ), (7.33)

and the minimum is achieved on ∂
⋃M
k=1 T

+
i,k , proving Eq. (7.31).

In view of Eq. (7.31), in order to prove Eq. (7.32) it is enough to show that

inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂W (i,+)

`∗+

I(θ).
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Given that the sets T+
i,k = Θ̊k ∪ {LMPi(θ) > α+

i }, for k = 1, . . . ,M , are

disjoint, the boundary of the union is equal to the union of the boundaries, i.e.,

∂
⋃M
k=1 T

+
i,k =

⋃M
k=1 ∂T

+
i,k. Each term ∂T+

i,k is the boundary of the polytope

T+
i,k = Θk ∩ {LMPi ≥ α+

i }, and thus consists of the union of a subset of⋃M
k=1 ∂Θk (a subset of the union of the facets of the polytope Θk) with the

segment Θk ∩{LMPi = α+
i }. As a result, ∂

⋃M
k=1 T

+
i,kI(θ) intersects ∂W

(i,+)
`∗+

in Θ ∩ {LMPi = α+
i }.

We now show that (i) the minimum is a�ained at a point θ0 such that

LMPi(θ0) = α+
i , so that θ0 ∈

⊔
`∈conn. comp. of L+

i
∂W

(i,+)
` , and (ii) θ0 ∈

∂W
(i,+)
`∗+ . Assume by contradiction that LMPi(θ0) > α+

i , and consider the line

segment joining µθ and θ0, θt = (1− t)µθ + tθ0, t ∈ [0, 1]. �e function

[0, 1] 3 t→ g(t) := LMPi(θt) = LMPi((1− t)µθ + tθ0) ∈ R,

is continuous and such that g(0) = LMP(µθ) < α and g(1) = LMP(θ0) >
α∗i . �anks to the intermediate value theorem, there exists a 0 < t∗ < 1 such

that g(t∗) = LMPi(θt∗) = α∗i , and

I(θt∗) < (1− t∗)I(µθ) + t∗I(θ0) = t∗I(θ0) < I(θ0),

which is a contradiction, since θ0 is the minimum. �e same argument, based

on the convexity of the rate function and the fact that I(µθ) = 0, shows that

θ ∈ ∂W (i,+)
`∗,+ . Lastly, Eq. (7.32) can be derived in the same way.

Proposition 7.2 shows that in order to solve the problem in Eq. (7.29) we only

need to look at the boundaries ∂W
(i,+)
`∗ , ∂W

(i,−)
`∗ . Determining such boundaries

is a non-trivial problem, for which dedicated algorithms exist. Such algorithms

are beyond the scope of this chapter, and we refer the interested reader to the

contour tracing literature and, in particular, to [56].

7.5 Numerics

In this section, we illustrate the potential of our large deviations approach using

IEEE 14-bus test case in MATPOWER [210]. �is network consists of 14 nodes

(each of which houses a load), 6 controllable generators, and 20 lines. As line

limits are not included in the test case, we set them as f̄ = λf̄ (planning)
, where

f̄ (planning) := γline|f |, f is the solution of a DC-OPF using the data in the test �le,

and γline ≥ 1. We interpret f̄ (planning)
as the maximum allowable power �ow

before the line trips, while the more conservative

f̄ = λf̄ (planning), (7.34)
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with 1/γline ≤ λ ≤ 1, is the operational line limit (see also Section 5.2.1 in

Chapter 5). In the rest of this section, we set γline = 2. �is is consistent with

the framework described in Chapter 5.
6

We add two uncontrollable renewable generators at nodes 4 and 5, so that

nd = 14, ng = 6 and nw = 2. �e feasible space Θ = Θ(λ) is a compact

polytope that depends on λ, as shown in Fig. 7.1. All the calculations related to

multiparametric programming are performed using the MPT3 toolbox [81].

We model the renewable generation as a 2-dimensional Gaussian random

vector θ ∼ N2(µθ,Σθ), where µθ is interpreted as the nominal, or forecast,

renewable generation, and Σθ is computed based on the normalized symmetric

graph Laplacian, following [91]:

C = τ2κ(Lsym + τ2I)−κ ∈ Rn×n, (7.35)

where Lsym is the normalized symmetric graph Laplacian

Lsym = ∆−1/2Lsym∆−1/2,

∆ ∈ Rn×n is the diagonal matrix with entries equal to the weighted nodal

degrees ∆i,i =
∑
j 6=i wi,j , and κ, τ2 > 0. �e de�nition of the covariance ma-

trix in Eq. (7.35) enables us to model positive correlations between neighboring

(thus geographically “close”) nodes.

In our experiments, we set κ = 2 and τ2 = 1. �en, we consider the

nw × nw submatrix Σ̃θ of C obtained by choosing rows and columns of C
indexed by Nnw = {4, 5}, and we de�ne Σθ as

Σθ := diag({δi}nwi=1) Σ̃θ diag({δi}nwi=1) ∈ Rnw×nw , (7.36)

where the parameters δi’s control the magnitudes of the standard deviations

σi :=
√

Σθ(i, i), i = 1, 2. In particular, the δi’s are chosen in such a way that

the standard deviations match realistic values for wind power forecasting error,

expressed as a fraction of the corresponding installed capacity, over di�erent

time windows T (see also Chapter 2, Section 2.4.2):

σi = q(T )× µ(installed)
i , i = 1, 2,

where q = [0.01, 0.018, 0.04], corresponding to time windows of 5, 15 and 60
minutes, respectively. Finally, the installed capacity of the renewable generators

6
�e only di�erence is that, in Chapter 5, we had γ

line
= 1, while here we may have to set

γ
line

> 1 in order to use a λ < 1. �e reason is that, contrary to Chapter 5, we enforce generator

limit constraints. As a consequence, it is possible that the OPF is not feasible if λ < 1.
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are chosen based on the boundary of the 2-dimensional feasible space Θ, namely

µ
(installed)
1 = max{x : (x, y) ∈ Θ}, µ(installed)

2 = max{y : (x, y) ∈ Θ}.
Although θ ∼ N2(µθ,Σθ) is in principle unbounded, we choose the rele-

vant parameters in such a way that, in practice, θ never exceeds the boundary

of the feasible space Θ. Note that the term ε is not present in the de�nition of

θ, for the same reasons as explained in Section 4.1. Since Σθ is obtained from

realistic values for wind power forecasting error, the question is whether the

matrix Σθ used in the numerics is close enough to the small-noise regime to

make the large deviations results meaningful. As we show, the answer to this

question is a�rmative, validating the use of the large deviations methodology.

Exploratory analysis

We set γline = 2 , and vary λ ∈ {0.6, 0.7, 0.8}. Fig. 7.1 shows the feasible space

Θ(λ), and its partition into critical regions, for di�erent values of λ. Given

(a) λ = 0.6, 14 regions. (b) λ = 0.7, 13 regions. (c) λ = 0.8 , 13 regions.

Figure 7.1: Partition of feasible space Θ(λ) into critical regions for various values of λ.

µθ ∈ Θ, we set the price thresholds de�ning the spike event as

α−i = LMPi(µθ)− err
rel
|LMPi(µθ)|, α+

i = LMPi(µθ) + err
rel
|LMPi(µθ)|, (7.37)

where errrel > 0. In other words, we are interested in studying the event of a

relative price deviation of magnitude greater than errrel > 0:

Y =

n⋃
i=1

Yi(p), Yi(p)

= {θ ∈ Θ : |LMPi(θ)− LMPi(µθ)| > errrel|LMPi(µθ)|}.

Multimodality and sensitivity with respect to µθ

Next, we analyze in more detail the particular se�ing λ = 0.6, and consider three

scenarios, corresponding to low, medium and high expected wind generation, i.e.
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µ
(low)
θ = 0.1×µ(installed)

,µ
(medium)
θ = 0.25×µ(medium)

,µ
(high)
θ = 0.5×µ(installed)

,

and q(medium) = 0.018. Fig. 7.2 shows the location of µθ , together with 106
sam-

ples from θ, and the corresponding empirical densities of the random variables

LMPi, i = 1, . . . , 14, obtained through Monte Carlo simulation. �e red and

blue vertical bars correspond to α−i and α+
i in (7.37) with a relative percentage

error of errrel = 0.25.

We observe that the results are extremely sensitive to the standard deviation

and location (more so than the magnitude) of the forecast renewable generation

µθ relative to the geometry of the critical regions, as this a�ects whether the

samples of θ will cross the boundary between adjacent regions or not. �is

con�rms the importance of a holistic approach that combines distributional

properties of the underlying random quantities with structural properties of

the power grid operations.

In turn, the crossing of a boundary can result in the distribution of the

LMPs being multimodal (see Figs. 7.2a and 7.2c), due to the piecewise a�ne

nature of the map θ → LMP. �is observation shows how the problem of

studying LMPs �uctuations is intrinsically harder than that of emergent line

failures, as in [136, 137]. �e phenomenon is more pronounced in the presence

of steep gradient changes at the boundary between regions (or in the case of

discontinuities), as can be observed in Fig. 7.3, whichs show the piecewise a�ne

map θ → LMP10(θ) for the three di�erent choices of µθ . In particular, the

expected LMP can di�er greatly from LMP(µθ).

7.5.1 Ranking of nodes based on their likelihood of having a
price spike

As illustrated by Eq. (7.29), large deviations theory predicts the most likely

node to be arg mini=1,...,n I
∗
i , where I∗i := infθ∈

⋃M
k=1 Ti,k

I(θ). Indirectly, this

approach produces also a ranking of nodes according to their likelihood of having

a price spike. �e use of large deviations theory to rank power grid components

according to their likelihood of experiencing anomalous deviations from a

nominal state has been validated in Chapter 4 in the context of transmission

line failures. In order to validate the accuracy of the LDP methodology also for

ranking nodes according to the likelihood of their price spikes, we compare

the LD-based ranking with the one obtained via crude Monte Carlo simulation,

as described in Table 7.1. We observe that the LD-based approach is able to

recover the exact ranking of nodes, for various levels of relative error errrel.

Table 7.1 reports the values of the probability P̂(Yi) of a price spike in node i,
calculated using Monte Carlo simulation, together with the corresponding decay

rates I∗i = infθ∈
⋃M
k=1 Ti,k

I(θ), showing that the LD-based approach correctly
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(a) µ
(low)
θ = 0.1× µ(installed)

.

(b) µ
(medium)
θ = 0.25× µ(installed)

.

(c) µ
(high)
θ = 0.5× µ(installed)

.

Figure 7.2: Visualization of µθ and empirical distribution of θ (le�), and corresponding empirical

densities of the random variables LMPi, i = 1, . . . , 14 (right), for di�erent choices of µθ , q =
0.018.
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(a) µ
(low)
θ = 0.1× µ(installed)

. (b) µ
(medium)
θ = 0.25 ×

µ(installed)
.

(c) µ
(high)
θ = 0.5× µ(installed)

.

Figure 7.3: Visualization of the piecewise a�ne map θ → LMP10(θ) for three di�erent

locations of µθ , together with the price thresholds α±10 = LMP10(µθ)± err
rel
|LMP10(µθ)|.

identi�es the ranking. �is property is validated more extensively in Fig. 7.4,

which depicts the values of P̂(Yi) against −mink I
∗
k/I
∗
i across a wider range

of price thresholds errrel.

i P̂(Yi) I∗i rank

9 8.6371e-01 8.1160e-04 1

8 6.8984e-01 8.5572e-04 2

7 6.8984e-01 8.5572e-04 3

10 4.8713e-01 1.0786e-03 4

11 4.8690e-01 1.1123e-03 5

6 4.8613e-01 1.2438e-03 6

12 4.8586e-01 1.2849e-03 7

13 4.8586e-01 1.3296e-03 8

14 4.7559e-01 1.6548e-03 9

4 2.1282e-02 4.0854e+00 10

5 0 6.8384e+01 11

1 0 1.1584e+02 12

2 0 1.2971e+02 13

3 0 2.6984e+03 14

Table 7.1: Ranking of nodes based on the likelihood of having a price spike, according to both

Monte Carlo simulation (in terms of probabilities P̂(Yi)) and large deviations results (in terms of

decay rates I∗i ), for the case µ
(high)
θ = 0.5 × µ(installed)

, err
rel

= 0.25, q = 0.018. �e values

P̂(Yi), for i = 1, 2, 3, 5, are not reported as the Monte Carlo simulation is not su�ciently accurate

for such small probabilities.
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(a) err
rel

= 0.25. (b) err
rel

= 0.5.

(c) err
rel

= 1. (d) err
rel

= 10.

Figure 7.4: Comparison between empirical probabilities P̂(Yi) based on Monte Carlo simulation

and normalized decay rates −mini I
∗
i /I
∗
i across a wider range of values for err

rel
.

7.6 Concluding remarks and future work

In this chapter, we illustrate the potential of concepts from large deviations

theory to study the events of rare price spikes caused by �uctuations of renew-

able generation. By assuming a centralized perspective, we use large deviations

theory to approximate the probabilities of such events, and to rank the nodes of

the power grids according to their likelihood of experiencing a price spike. Our

technical approach is able to handle the multimodality of LMP’s distributions, as

well as violations of the LICQ regularity condition. Future research directions in-

clude extending the present framework to non-Gaussian �uctuations. Moreover,

it would be of interest to study the sensitivity of the approximation in Eq. (7.28)

with respect to the tuning parameter λ, which quanti�es the conservatism in

the choice of the line limits. �is would allow us to establish a link with the

analysis in Section 4.B.3, Chapter 4, and to extend the notion of safe capacity

regions of Chapters 2 and 3 in the context of energy prices.
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[164] B. Schäfer, D. Wi�haut, M. Timme, and V. Latora. Dynamically induced

cascading failures in power grids. Nature communications, 9(1):1975, 2018.

[165] M. Schaub, J. Lehmann, S. Yaliraki, and M. Barahona. Structure of complex

networks: �antifying edge-to-edge relations by failure-induced �ow

redistribution. Network Science, 2(01):66–89, 2014.

[166] D. Schlachtberger, S. Becker, S. Schramm, and M. Greiner. Backup �exibil-

ity classes in emerging large-scale renewable electricity systems. Energy
Conversion and Management, 125(Supplement C):336 – 346, 2016.

[167] J. F. Shortle. E�cient simulation of blackout probabilities using spli�ing.

International Journal of Electrical Power & Energy Systems, 44(1):743 – 751,

2013.

[168] I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing. Transient

dynamics increasing network vulnerability to cascading failures. Phys.
Rev. Le�., 100:218701, 2008.

[169] J. W. Simpson-Porco, F. Dör�er, and F. Bullo. Voltage collapse in complex

power grids. Nature Communications, 7(10790), 2016.

[170] F. Sloothaak. Criticality in power networks: a probabilistic approach.

Accepted/In Press, 2020.

[171] S. Soltan, D. Mazauric, and G. Zussman. Analysis of Failures in Power

Grids. IEEE Transactions on Control of Network Systems, 4(2):288–300,

2017.

[172] Southwest Power Pool. 2016 annual state of the market report. h�ps:

//www.spp.org/documents/53549/spp mmu asom 2016.pdf.

[173] S&P Global. h�ps://www.spglobal.com/marketintelligence/en/

campaigns/energy.

[174] S&P Global. California’s renewable power saga is just beginning. h�ps:

//blogs.pla�s.com/2015/06/18/california-renewable-power-saga/.

https://www.spp.org/documents/53549/spp_mmu_asom_2016.pdf
https://www.spp.org/documents/53549/spp_mmu_asom_2016.pdf
https://www.spglobal.com/marketintelligence/en/campaigns/energy
https://www.spglobal.com/marketintelligence/en/campaigns/energy
https://blogs.platts.com/2015/06/18/california-renewable-power-saga/
https://blogs.platts.com/2015/06/18/california-renewable-power-saga/


Bibliography 201

[175] B. Sto�, J. Jardim, and O. Alsac. Dc power �ow revisited. IEEE Transactions
on Power Systems, 24(3):1290–1300, 2009.

[176] T. Summers, J. Warrington, M. Morari, and J. Lygeros. Stochastic optimal

power �ow based on convex approximations of chance constraints. In

2014 Power Systems Computation Conference, 1–7, 2014.

[177] J. Sun and L. Tesfatsion. DC optimal power �ow formulation and solution

using quadprogj. 2010.

[178] K. Sun, Y. Hou, W. Sun, and J. Qi. Power system control under cascading fail-
ures: understanding, mitigation, and system restoration. Wiley-Blackwell,

2018.

[179] S. Sun, Z. Liu, Z. Chen, and Z. Yuan. Error and a�ack tolerance of evolv-

ing networks with local preferential a�achment. Physica A: Statistical
Mechanics and its Applications, 373:851–860, 2007.

[180] W. Tang and R. Jain. A nash equilibrium need not exist in the locational

marginal pricing mechanism. ArXiv e-prints: 1310.4282, 2013.

[181] P. TøNdel, T. A. Johansen, and A. Bemporad. An algorithm for multi-

parametric quadratic programming and explicit mpc solutions. Automat-
ica, 39(3):489–497, 2003.

[182] H. Touche�e. �e large deviation approach to statistical mechanics.

Physics Reports, 478(1):1 – 69, 2009.

[183] U.S. - Canada Power System Outage Task Force. Final report on the

August 14, 2003 blackout in the United States and Canada: Causes and

recommendations. Technical report, 2004.

[184] US Department of Energy. Electric emergency incident and distur-

bance report (form OE-417). h�ps://www.oe.netl.doe.gov/OE417 annual

summary.aspx. [Accessed November 2018].

[185] P. Van Mieghem. Graph Spectra for Complex Networks. Cambridge Uni-

versity Press, 2010.

[186] P. Van Mieghem, K. Devriendt, and H. Cetinay. Pseudoinverse of the

laplacian and best spreader node in a network. Phys. Rev. E, 96:032311,

2017.

https://www.oe.netl.doe.gov/OE417_annual_summary.aspx
https://www.oe.netl.doe.gov/OE417_annual_summary.aspx


202 Bibliography

[187] A. E. D. Veraart. Modelling the impact of wind power production on

electricity prices by regime-switching lévy semistationary processes. In
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Summary

In this thesis, we develop probabilistic techniques for the analysis of energy

systems under uncertainty. �e research is motivated by the advent of renewable

energy sources, such as wind and solar photovoltaics, which brought about a

paradigm shi� for the design and control of power grids. To ensure that power

grids reliably and steadily deliver power to customers, stability constraints

such as admissible ranges on power �ows must be satis�ed at all times. �e

inherently uncertain nature of renewable energy sources is responsible for

considerable supply-side variability and may lead to unexpected violations

of stability constraints, which can cause the failure of grid components and

result in widespread blackouts with enormous societal costs. Electricity prices

are also a�ected by the increased uncertainty in power outputs, resulting in

highly variable prices that can even turn negative during periods of low demand

and high renewable production. �is thesis introduces powerful tools such

as large deviations theory, concentration inequalities, and statistical learning

techniques, that can guide the uncertainty-aware operations of power grids.

Chapter 1 provides an overview of the power grid operations landscape, presents

the relevant literature, and illustrates our main contributions to the �eld.

Chapters 2 and 3 focus on developing probabilistic counterparts of tradi-

tional deterministic reliability constraints. In Chapter 2 we use large deviations

techniques to study the probability of current and temperature overloads in

transmission lines assuming a stochastic di�erential equations model for ran-

dom power injections and a small-noise regime. We analytically characterize

the set of admissible power injections (referred to as capacity regions) such

that the probability of overloading of any line over a given time interval stays

below a �xed target, and prove convexity properties that make them amenable

to be used within existing planning methods like Optimal Power Flow (OPF).

�e approach models the stochastic behavior at the process-level and takes into

account the transient relationship between line current and line temperatures,
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leading to capacity gains compared to static approaches. In Chapter 3 we de-

velop explicit upper bounds for line failure probabilities based on concentration

inequalities techniques which, in contrast to large deviations methods, do not

assume a small-noise regime and are guaranteed to be conservative, leading to

safe operational capacity regions that are convex and polyhedral.

Chapters 4 and 5 are devoted to understanding microscopic and macroscopic

features of blackouts. Chapter 4 focuses on the microscopic viewpoint and mod-

els power grids as complex networks where failures can emerge endogenously

as a result of the interplay between noisy correlated power inputs at the nodes,

the network structure, and power �ow physics. Using large deviations tech-

niques we rank transmission lines according to their failure probability, we

explicitly determine the most likely con�guration of power inputs leading to

line failures and predict how subsequent failures will propagate in the network.

�e results are mathematically exact in a small-noise regime and are validated

in a realistic se�ing using data for the German transmission grid. In Chapter 5

we analyze cascading failures from a macroscopic perspective, and provide a

causal explanation for the well-known fact that the probability distribution of

blackout sizes is scale-free. We model power grids as graphs with heavy-tailed

sinks, which represent demand from cities, and study cascading failures on such

graphs. Combining the physics of power �ows with rare event analysis for

heavy-tailed distributions, our research links the scale-free nature of blackout

sizes to the scale-free nature of city sizes, and is validated using synthetic net-

works and the German grid. Our approach di�ers from traditional explanations

in that it does not relate scale-free phenomena to the scale-free nature of the

network topology, and suggest new ways of approaching such phenomena in

other transport networks.

Chapters 6 and 7 focus on understanding the impact of uncertainty on

energy prices. In Chapter 6 we develop a statistical learning methodology to

recover the energy market’s structure and predict Locational Marginal Prices

(LMP) from a decentralized perspective, i.e. by using only publicly available

data. In particular, we exploit the mathematical properties of the supply-demand

matching process to characterize LMPs as dual variables of the OPF and use

machine learning and convex optimization techniques to infer crucial informa-

tion about the congestion status of transmission lines, and predict prices based

on system load and grid-wide generation type mix forecasts. Finally, Chapter

7 focuses on predicting large spikes in LMPs, which are di�cult to forecast

under a decentralized perspective. By taking the viewpoint of the grid operator

(hence assuming full knowledge of the grid parameters), we look at LMPs as

deterministic functions of the input stochastic processes and use techniques

from large deviations theory to study the occurrences of extreme price spikes

caused by unusual renewable generation pro�les.
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