
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

K.R. Apt, L. Bouge, Ph. Clermont

Two normal form theorems for CSP programs

Computer Science/Department of Software Technology Report CS-R8735 July

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Two Normal Form Theorems for CSP Programs

K.R. Apt
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

L. Bouge
LIENS, 45, rue d'Ulm,F-75230 Paris Cedex 05, France

Ph. Clermont
ETCA, Service CTMEIOP, 16 bis av. Prieur de la COte d'Or,

F-94114 Arcueil, France

We define two normal forms for CSP programs. In the First Normal Form, each process
contains only one I/ 0 repetitive command and all its I/O commands appear as guards
of this command. In the Second Normal Form, it is moreover required that all guards of
this I/ 0 repetitive command are in fact I/ 0 guards. We describe an inductive method
which transforms any CSP program into an equivalent program in first or second normal
form. The involved equivalence notion is discussed. It is shown in particular that no
transformation into second normal form can preserve deadlock-freedom.

1980 Mathematics Subject Classification: 68055, 68025.
Note: Bouge is also affiliated with the Laboratoire d'lnformatique, Universite d'Orleans, BP.6759, F-45067

Orleans Cedex 02, France.
This work was partially supported by the CNRS project C3.

Report CS-R8735
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

1. Introduction
One of the best known theorems in Theoretical Computer Science states that every while
program is equivalent to a program with one loop only (see e.g. [Ha]). We prove here
a similar result for CSP programs. CSP is the language for distributed programming
introduced by Hoare in [Hol]. We exhibit two normal forms to which every CSP program
can be brought. A CSP program is in a normal form (a normal program, in short) if
each of its component processes contains only one I/ 0 repetitive command and all its I/ 0
commands appear as guards in this command. There are various reasons why the study
of normal programs can be of interest.

1) Program construction - In the case of CSP programs, in opposition to the case
of while programs, several algorithms can be naturally expressed as normal programs. For
example, most solutions to the distributed termination problem of Francez [F] are normal
programs (see e.g. Francez et al. [FRS] and Apt and Richier [AR]). For other algorithms
written as normal programs, see e.g. Bouge [BJ.

2) Verification - We found (see [A]) that there is a very simple proof system allowing
us to prove correctness of normal programs.
Moreover, Queille and Sifakis [QS] built a system allowing an automatic verification of
finite state normal programs. Adding to their system a preprocessor implementing the
transformations described in this paper allows us to extend the use of their system to
arbitrary finite state CSP programs.

3) Event-driven computing- In an event-driven concurrent system, local actions are
triggered by the occurrence of external events. This type of computing is typical in the
case of network protocols. It is often modeled by means of interacting automata (see e.g.
Gouda [G]). Normal programs exhibit a structure which makes this view of distributed
computing more explicit as each process alternates between communications and resulting
local actions.

Equivalence of concurrent programs is a delicate and difficult issue. In the last section
of this paper we analyze the notion used in this paper and indicate its limitations.

2

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

2. Normal forms in CSP
We assume from the reader knowledge of the language of Communicating Sequential Pro
cesses (CSP for short) as defined by Hoare [Hol]. We consider here a variant of CSP
without nested parallelism and where output guards are allowed. We do not consider the
Distributed Termination Convention. For simplicity, we omit all kinds of declarations.

A CSP program P is a parallel composition of named processes which operate on
disjoint memories:

c P1 : : s1 II ... II Pk : : sk J .

Each process S is generated by the following grammar (m ~ 1):

S · · = skip I cmd I a S 1 ; S 2
m m

r,.gl G,. -> s,.] I * r,.gl G,. -> s,.]
G : := b I b;a

Here, cmd denotes an assignment, b a Boolean expression and a an I/ 0 command. If a
guard G is of the form b then it is called a purely Boolean guard, and otherwise an I/O
guard. Bool(G) denotes the Boolean part of a guard. A guard G is enabled when the
control is in front of it if B ool (G) evaluates to true. In the sequel, b1 ; b2 denotes the
conjunction b1 /\ b2 of Boolean expressions.

Definition 1. A process S is in first normal form if it is either of the form S0 or

m

So; * [D a,. -> s,.]
i=l

where m ~ 1 and none of the s,., j = 0, 1, ... , m contains an I/O command.

Definition 2. A process Sis in second normal form if it is either of the form S0 or

m

So; * [D a,. -> s,.]
:i= 1

where m ~ 1, none of the 83 , j = O, 1, ... , m contains any I/O command, and moreover
all of the G,-, j = 1, ... , mare I/O guards.

Thus the only difference between the first and second normal form is in the condition
imposed on the guards Gi. A CSP program is in first (resp. second) normal form if
all its component processes are.

3. Th.e transformations

3.1. First normal form
We now describe a procedure N F1 which transforms each process S into a process S' =
NF1 (S) in first normal form. We proceed by induction on the structure of S. We assume
an infinite set Z of fresh Boolean variables z1 , z2 , ••• We omit indices when no confusion
can arise.

3

Normal forms in CSP K.R. Apt, L. Bouge, Pb. Clermont

Base case

When S is skip or an atomic assignment command cmd, S is already in first normal form
and we put NF1 (S) = S.

I/O command

Suppose S is an I/ 0 command a. We select a fresh variable z from Z. We define N F1 (S)
to be

z:= true;*[z;a -> z:= false].

Sequential composition

Suppose S is of the form S1 ; S2 • By induction, each S;., i = 1, 2, has been transformed
using a set z, of fresh variables into the process

m;

N F1 (S,) = !nit,; * [0 G'. -> S~]
i= l 3 3

in first normal form. We can assume that sets Z1 and Z2 are disjoint. Let z1 and ~ be
two variables of Z \ Z1 U Z2 • Then we define N F1 (S) as follows:

Init1 ; Z1 := true; ~== false:
m1

*[0 Z1; G~ -> si. TEST
i=l 3 i '

m2

0 ~; G~ -> s~]
i= l J 3

where TEST stands for

m1

[0 Bool(G}) -> skip
i=l

m1

0 A -iBool(G;) -> z1 := false; z2 := true; Init2]

i= 1

Intuitively, z1 is true when the control is still in S1 and z2 is true when the control is in
S2.

4

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

Repetitive command
m

Suppose S is of the form * [D Hi -> R;.] . By induction, each R;., i = 1, ... , m, has
i= l

been transformed using a set Zi of fresh variables into the process
m;

N Fi(R;.) = Initi; * [0 Gi. -> S~ J
j= l 1 1

in first normal form. We can assume without loss of generality that sets Zi are pairwise
disjoint. Let turni, i = 1, ... , m be fresh variables of Z\ U;:, 1 z .. Then we define NF1 (S)
as follows:

turn1 : = false; ... ; turnm : = false;
m m

* [D A •turni ; H; -> turn,:= true; !nit.; TEST.
i=l i=l

D
i= 1, ... ,m

turni: G~ -> SJ; TEST.]
i= 1, ... ,m'i

where TEST; stands for
m;

[D Bool(G~) -> skip
k=l

m;

D A •Bool(G~) -> turn,:= false] .
k=l

Intuitively, turn, holds when the control is inside subprogram R;.. Then, TEST. tests
whether R;. is terminated, and turn, is reset to false if it is the case.

Alternative command
m

Suppose S is of the form [D H, -> R;.] . By induction, each R;., i = 1, ... , m, has
i= l

been transformed using a set z, of fresh variables into the process
m;

NFi(R;.) =!nit,;*[0 G'. -> S~ J
j= l 1 1

in first normal form. Using a new variable z from Z \ U: 1 Zi, we first transform S into
the following process S':

z:= true;
m

[D Bool(H.) -> skip] ;
i= l

m

*[D z; H, -> R;.; z:= false]
•= l

Those two processes are related as follows. Suppose first that S fails. This occurs when all
conditions Bool(H.) evaluate to false initially. Then S' fails much in the same way. If now
S does not fail then at least one of those conditions evaluates to true. In S', the alternative
command boils down then to skip. In the repetitive command, the conditions are evaluated
again, and yield the same results as before, because processes operate on disjoint memories.
At least one of them is thus guaranteed to evaluate to true, S' does not fail either, and
behaves subsequently like S. NF1 (S) is result of applying the transformation NF1 to
process S'.

5

Normal forms in CSP K.R. Apt, L. Bouge, Pb. Clermont

This concludes the presentation of the transformation N F1

Property I. For each process S, N F1 (S) is a process in first normal form. The only
atomic commands in N F1 (S) in which variables from Z appear are of the form z: = true
or z: = false.

3.2. Second normal form
We now describe a procedure N F2 which transforms each process S in first normal form
into a process N F2 (S) in second normal form. A process S in first normal form whose all
external guards contain an I/O command (or which contains no I/O command) is already
in second normal form and we put N F2 (S) = S. Otherwise, it can be written as

I nit;
m

*[D Gi -> s.
i= 1

n

D H· J
-> Ti]

i= 1

with m > 0 and n > 0, where all guards G; are purely Boolean, and all guards Hi do
contain an I/O command. Let now CHOOSE be the following command:

turn1 := false; ••• p turnn := false;
m n

* [D /\ -.turnk; G, -> s,
i= 1 k=l

n n

D /\ -.turnk; Bool(Hi) -> turni:= true] .
i=l k=l

The execution of CH 00 SE consists of some iterations of the repetitive command

m

* [D G; -> S;]
i= l

which contains no I/O command followed by the selection of an I/O guard Hi, provided
its Boolean part Bool(Hi) evaluates to true. We then define N F2 (S) to be the following
process

Init; CHOOSE;
n

*[0 turni; Hi ->Ti; CHOOSE J.
i= 1

Observe that Bool(Hi) is evaluated twice, once within CHOOSE and then again within
Hi. Both evaluations return necessarily the same result because processes operate on
disjoint memories.

Property 2. For each process Sin first normal form, NF2 (S) is in second normal form.
The only atomic commands in N F2 (S) in which variables from Z appear are of the form
z:= true and z:= false.

6

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

3.3. Homogeneous processes
For certain processes however, it is possible to describe a direct transformation which
yields a process in second normal form. A process is homogeneous if in each repetitive
or alternative command either all guards are purely Boolean or all of them contain an I/O
command. Observe that a homogeneous process is in first normal form if and only if it is
in second normal form. If we can modify procedure NF1 so as to preserve homogeneity,
then it will transform homogeneous processes into processes in second normal form. It can
be seen that the only part of N Fi which does not preserve homogeneity is that dealing
with a repetitive command S

m

* [D H;. -> Ri]
i= i

whose all guards are purely Boolean. In this case, let SWITCH be

m

[D Hi -> turn,:= true; !nit,
i= i

m

0 A •H, -> skip l.
•= i

Then, assuming the notation used in N Fi (S), the transformed process is

turni: = false; ... ; turnm : = false;

SWITCH;

*[D
i=ii:l,. .. ,m
j=l,, .. ,mi

turn,; G~ -> s;; TEST,;

[turn, -> skip 0 •turn, -> SW ITCH]] .

Denote this modified transformation by N Ft. Here, variables turn, are used for the same
purpose as before. Setting a variable turn, to true can take place in the SWITCH
command only.

Property 3. For each homogeneous process S, N Ft (S) is in second normal form. The
only atomic commands in N F{ in which variables from Z appear are of the form z: = true
and z: = false.

4. A ~otion of equivalence
We now wish to make precise in what sense every process S is equivalent to the process S'
generated in section 3 by the transformations N F1 , N F2 and N F{. To this purpose, we
first associate to each process S a regular language L(S). Intuitively, L(S) is the set of all
uninterpreted possible computations of process S according to Plotkin's semantics [P].

The language L(S) is over the alphabet consisting of atomic actions cmd, I/O com
mands a, Boolean conditions b, plus two special tokens (skip) and (!ail) which denote

7

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

respectively termination and failure. L(S) is defined inductively as follows.

L(skip) ={(skip)},
L(cmd) = { (cmd)},

L(a) ={(a)},

{ {(b)(a)}
L(G) = {(b)(skip)}

L(S1 ;S2) = L(S1).L(S2),

L([G1 -> 81 D ... 0 Gm-> Sm])=

if G = b;a,
if G = b,

[(L(Gi).L(S1)) u ... u (L(Gm).L(Sm))].{(Bool)(fail)},

L(*[G1 -> S1 D ... 0 Gm-> Sm J)=
[(L(G1).L(S1)) U ... u (L(Gm).L(Sm))]* .{ (Bool)(skip) },

where Bool stands for
-iBool(Gi) /\ ... /\ •Bool(Gm).

Observe how the appropriate exit conditions are reflected.

To obtain the desired equivalence, we partially interpret the computations by evalu
ating the commands and conditions associated with auxiliary variables. In the processes
generated by the transformations of section 3, they can be of the following type exclu
sively:

z:= true,

z:= false,

B (Z1 , ••• , Zm , b1 , • .. , bn)

where B is some Boolean combination of its arguments. When evaluating the condition,
variables z. 's are substituted with their current value, true or false. The condition is
said to be unsatisfiable if the resulting formula is equivalent to false as a formula of the
predicate calculus with variables b; 's. The condition is satisfiable if it is not satisfiable.
Then we exclude contradictory computations, i.e. those which violate the rule that the
selected Boolean conditions are all satisfiable. Finally, we erase all skip's and assignments
z: = true and z: = false to auxiliary variables. Also, we merge adjacent Boolean formulas
into their Boolean conjunction, and reduce the resulting formula to some normal form (say,
a conjunction of disjunctions for definiteness). Tautologies are then erased. Let L' (S) be
the resulting language. It is a language over the alphabet consisting of atomic actions
cmd, I/ 0 commands a, Boolean formula B (b1 , ••• , b,,.), and token (!ail). We say that two
processes S1 and S2 are equivalent with respect to a set Z of auxiliary variables if

This equivalence can be best understood with a example. Consider the processes

8

Normal forms in CSP K.R. Apt, L. Rouge, Ph. Clermont

and
82 = z:= true; *[z;a -> z:= false].

Then
L(Si) = L'(Si) ={(a)}

On the other hand,

L(S2) = (z:= true)((z)(a){z:= false))*(-iz)(skip).

After the interpretation of actions related to the variable z we obtain the following set of
words

{ (z: = true)(true) (a)(z: = false) (-if alse)(skip),

(z: = true)(true) (a)(z: = false) ((false) (a)(z: = false))* (-if alse) (skip)}.

Here, only the computation

(z:= true)(true)(a)(z:= false)(-.false)(skip)

is not contradictory. Deleting from it all assignments to the variables of Z and skip's, re
ducing sequences of adjacent Boolean formula to their normal form and erasing tautologies,
we get (a) as desired.

We have the following theorems whose tedious but straightforward proofs are omitted.

Theorem 1. Both N F1 (S) and N F; (S) are equivalent to S with respect to set Z of
auxiliary variables.

Theorem 2. N F2 (S) is equivalent to S with respect to set Z of auxiliary variables.

These equivalences are on the level of processes considered in isolation. The following
theorem states some of its semantic consequences. By a state we mean a function assigning
values to each of the variables. We consider J_ as a special state indicating divergence.
Given a CSP program P, we define its meaning .M[P] by putting

.M[P](a) =

{ r, r is the final state of a properly terminating computation starting in state u}

U {_l_, there exists a diverging computation of P starting in state a }.

For two sets E 1 and E 2 , and a set of variables Z we put

E 1 = :E2 mod Ziff {u \ Z, u E Ei} = {u \ Z, u E E2}

where a\ Z is the restriction of u to the variables not in Z. We now say that two programs
CSP P1 and P2 are equivalent modulo Z if for all states a

.M[P1](u) = .M[P2](u) mod Z.

Note that this equivalence definition does not take into account possible deadlocks. We
can finally state the appropriate theorem.

9

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

Theorem 3. Let S1 and S2 be two equivalent processes with respect to a set Z of auxiliary
variables. Let

C = [Q1 : : Ti II • • .11 Qk: : [] II ••·II Qn:: Tn]
be a context, and let Pi = C[Si], i = 1, 2, be the CSP programs obtained by plugging
process Si into the context C. Then P1 and P2 are equivalent modulo Z.

Thus, up to deadlock, P 1 and P2 exhibit the same functional behaviors.

5. Discussion
The equivalence relation introduced in section 4 seems at first sight very strong as it is
basically a syntactic equivalence. However, this equivalence is concerned only with some
form of traces (in the sense of [Ho2]) of computations. Semantically, it assures only
theorem 3. In particular, it does not capture all relevant semantic properties naturally
associated with concurrent programs, like deadlock freedom.

Indeed, consider two processes S and S' where
S = [true; Q?x -> skip

D true; Q!x ->skip],

S'= [true -> Q?x; skip
0 true-> Q!x; skip].

Then S and S' are equivalent in the sense of section 4. However, the program

[p: : s II Q: : P?y]

cannot deadlock whereas the program

[p: : S' II Q: : P?y]

can. Thus, plugging equivalent processes in the same context, here

[p: : [] II Q: : P?y] •

can yield two programs which behave differently. Currently, we look for a simple, stronger
form of equivalence for which theorem 1 holds and moreover such that substituting in any
context a process by a an equivalent one preserves at least deadlock freedom.

We can however prove that theorem 2 cannot be strengthened so that deadlock free
dom is preserved in the above sense. This follows from the following theorem.

Theorem 4. Let
[P: :S II Q: :T]

be a program in second normal form. Suppose that it admits two properly terminating
computations, C1 with some communication, and C2 without any communication. Then
it admits a deadlocked computation:

Proof Construct the deadlocked computation as follows. First take all steps carried out
by P in C1 until the I/O command selected for its first communication is reached. Then
append to it all step carried out by Q in 0 2 • In the resulting computation, Q properly
terminates whereas Preaches an entry to a repetitive command with all guards containing
an I/O guard. Thus a deadlock arises (observe that this would not necessarily hold if the
Distributed Termination Convention of CSP were used). D

10

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

Indeed, take the program [P: : S II Q: : T] with

S = [Q!x -> skip D true -> skip]

and
T = [P?y -> skip 0 true -> skip] .

Consider now an arbitrary pair S', T' of processes in second normal form such that S'
is equivalent to S and T' to T. Then the program [P: : S' II Q: : T'] satisfies the
conditions of theorem 4. So it admits a deadlocked computation. But [P: : S II Q: : T]
is deadlock free.

This shows that first normal form cannot be reduced to second normal form when
also deadlock freedom is to be preserved. This can be interpreted as a statement that use
of non-homogeneous guards strictly increases the expressive power of CSP.

Note
First version of this paper appeared as Apt and Clermont ([AC]). After having written the
present version, we learned of a related work by Zobel ([Z]). Zobel proposes transformations
similar to ours, but does not elaborate on the underlying notion of equivalence.

References
[A] Apt, K.R., Correctness proofs of distributed termination algorithms, ACM Trans. on

Progr. Lang. and Syst. 8, 3 (1986) 388-405.

[AC] Apt, K.R., Clermont, Ph., Two normal form theorems for CSP programs, Rept.
No. RC 10975, IBM T.J. Watson Research Center, Yorktown Heights, N.Y. (1985).

[AR] Apt K.R., Richier J .-1., Real time clocks versus virtual clocks, in: Proc. Int. Summer
School on Control Flow and Data Flow: Concepts of Distributed Programming, NATO
ASI Series F14 (Springer, 1985).

[B] Bouge L., Genericity and symmetry for distributed systems: the case of CSP, These
d'etat, Univ. Paris 7 (1987). In French.

[F] Francez, N., Distributed termination, ACM Trans. Prog. Lang. and Syst. 2, 1 (1980)
42-55.

[FRS] Francez N.,Rodeh M.,Sintzoff M., Distributed termination with interval assertion,
Proc. Int. Coll. on Formalization of Programming Concepts, Peniscola, Spain, Leet.
Notes in Comp. Science 107 (1981).

[Ha] Hare!, D., On folk theorems, Comm. ACM 23, 7 (1980) 379-389.

[Hol] Hoare, C.A.R., Communicating Sequential Processes, Comm. ACM 21, 8 (1978)
666-677.

[Ho2] Hoare, C.A.R., Some properties of predicate transformers, Journ. ACM 25, 3 (1978)
461-480.

11

Normal forms in CSP K.R. Apt, L. Bouge, Ph. Clermont

[HBR] Hoare, C.A.R., Brookes, S.D., Roscoe A.W., A theory of communicating sequential
processes, Journ. ACM 31 (1984) 560-599.

[G] Gouda, M.G., Closed covers: to verify progress for communicating finite state ma
chines. IEEE Trans. on Softw. Eng. SE-10, 6 (1984) 846-855.

[P] Plotkin, G., An operational semantics for CSP, in: D. Bj~rner, ed., Formal Descrip
tion of Programming Concepts, IFIP TC-2 Working Conference, Garmish-Partenkir
chen, Germany, 1982, (North-Holland, 1983) 199-223.

[QS] Queille, J.-P., Sifakis, J., Specification and Verification of concurrent systems in
CESAR, in: Proc. of the 5th Int. Symp. in Programming, Paris, 1981.

[Z] Zobel, D., Normal form transformations for programs in CSP, EWH Rhld.-Pf.,
Abteilung Koblenz, Seminar fiir Informatik (1987).

12

