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1. Introduction 
One of the best known theorems in Theoretical Computer Science states that every while 
program is equivalent to a program with one loop only (see e.g. [Ha]). We prove here 
a similar result for CSP programs. CSP is the language for distributed programming 
introduced by Hoare in [Hol]. We exhibit two normal forms to which every CSP program 
can be brought. A CSP program is in a normal form (a normal program, in short) if 
each of its component processes contains only one I/ 0 repetitive command and all its I/ 0 
commands appear as guards in this command. There are various reasons why the study 
of normal programs can be of interest. 

1) Program construction - In the case of CSP programs, in opposition to the case 
of while programs, several algorithms can be naturally expressed as normal programs. For 
example, most solutions to the distributed termination problem of Francez [F] are normal 
programs (see e.g. Francez et al. [FRS] and Apt and Richier [AR]). For other algorithms 
written as normal programs, see e.g. Bouge [BJ. 

2) Verification - We found (see [A]) that there is a very simple proof system allowing 
us to prove correctness of normal programs. 
Moreover, Queille and Sifakis [QS] built a system allowing an automatic verification of 
finite state normal programs. Adding to their system a preprocessor implementing the 
transformations described in this paper allows us to extend the use of their system to 
arbitrary finite state CSP programs. 

3) Event-driven computing- In an event-driven concurrent system, local actions are 
triggered by the occurrence of external events. This type of computing is typical in the 
case of network protocols. It is often modeled by means of interacting automata (see e.g. 
Gouda [G]). Normal programs exhibit a structure which makes this view of distributed 
computing more explicit as each process alternates between communications and resulting 
local actions. 

Equivalence of concurrent programs is a delicate and difficult issue. In the last section 
of this paper we analyze the notion used in this paper and indicate its limitations. 
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2. Normal forms in CSP 
We assume from the reader knowledge of the language of Communicating Sequential Pro­
cesses (CSP for short) as defined by Hoare [Hol]. We consider here a variant of CSP 
without nested parallelism and where output guards are allowed. We do not consider the 
Distributed Termination Convention. For simplicity, we omit all kinds of declarations. 

A CSP program P is a parallel composition of named processes which operate on 
disjoint memories: 

c P1 : : s1 II ... II Pk : : sk J . 

Each process S is generated by the following grammar ( m ~ 1): 

S · · = skip I cmd I a S 1 ; S 2 
m m 

r,.gl G,. -> s,. ] I * r,.gl G,. -> s,. ] 
G : := b I b;a 

Here, cmd denotes an assignment, b a Boolean expression and a an I/ 0 command. If a 
guard G is of the form b then it is called a purely Boolean guard, and otherwise an I/O 
guard. Bool(G) denotes the Boolean part of a guard. A guard G is enabled when the 
control is in front of it if B ool ( G) evaluates to true. In the sequel, b1 ; b2 denotes the 
conjunction b1 /\ b2 of Boolean expressions. 

Definition 1. A process S is in first normal form if it is either of the form S0 or 

m 

So; * [ D a,. -> s,. ] 
i=l 

where m ~ 1 and none of the s,., j = 0, 1, ... , m contains an I/O command. 

Definition 2. A process Sis in second normal form if it is either of the form S0 or 

m 

So; * [ D a,. -> s,. ] 
:i= 1 

where m ~ 1, none of the 83 , j = O, 1, ... , m contains any I/O command, and moreover 
all of the G,-, j = 1, ... , mare I/O guards. 

Thus the only difference between the first and second normal form is in the condition 
imposed on the guards Gi. A CSP program is in first ( resp. second) normal form if 
all its component processes are. 

3. Th.e transformations 

3.1. First normal form 
We now describe a procedure N F1 which transforms each process S into a process S' = 
NF1 (S) in first normal form. We proceed by induction on the structure of S. We assume 
an infinite set Z of fresh Boolean variables z1 , z2 , ••• We omit indices when no confusion 
can arise. 

3 



Normal forms in CSP K.R. Apt, L. Bouge, Pb. Clermont 

Base case 

When S is skip or an atomic assignment command cmd, S is already in first normal form 
and we put NF1 (S) = S. 

I/O command 

Suppose S is an I/ 0 command a. We select a fresh variable z from Z. We define N F1 ( S) 
to be 

z:= true;*[ z;a -> z:= false]. 

Sequential composition 

Suppose S is of the form S1 ; S2 • By induction, each S;., i = 1, 2, has been transformed 
using a set z, of fresh variables into the process 

m; 

N F1 (S,) = !nit,; * [ 0 G'. -> S~ ] 
i= l 3 3 

in first normal form. We can assume that sets Z1 and Z2 are disjoint. Let z1 and ~ be 
two variables of Z \ Z1 U Z2 • Then we define N F1 ( S) as follows: 

Init1 ; Z1 := true; ~== false: 
m1 

*[ 0 Z1; G~ -> si. TEST 
i=l 3 i ' 

m2 

0 ~; G~ -> s~ ] 
i= l J 3 

where TEST stands for 

m1 

[ 0 Bool(G}) -> skip 
i=l 

m1 

0 A -iBool(G;) -> z1 := false; z2 := true; Init2 ] 

i= 1 

Intuitively, z1 is true when the control is still in S1 and z2 is true when the control is in 
S2. 
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Repetitive command 
m 

Suppose S is of the form * [ D Hi -> R;. ] . By induction, each R;., i = 1, ... , m, has 
i= l 

been transformed using a set Zi of fresh variables into the process 
m; 

N Fi(R;.) = Initi; * [ 0 Gi. -> S~ J 
j= l 1 1 

in first normal form. We can assume without loss of generality that sets Zi are pairwise 
disjoint. Let turni, i = 1, ... , m be fresh variables of Z\ U;:, 1 z .. Then we define NF1 (S) 
as follows: 

turn1 : = false; ... ; turnm : = false; 
m m 

* [ D A •turni ; H; -> turn,:= true; !nit.; TEST. 
i=l i=l 

D 
i= 1, ... ,m 

turni: G~ -> SJ; TEST. ] 
i= 1, ... ,m'i 

where TEST; stands for 
m; 

[ D Bool(G~) -> skip 
k=l 

m; 

D A •Bool(G~) -> turn,:= false ] . 
k=l 

Intuitively, turn, holds when the control is inside subprogram R;.. Then, TEST. tests 
whether R;. is terminated, and turn, is reset to false if it is the case. 

Alternative command 
m 

Suppose S is of the form [ D H, -> R;. ] . By induction, each R;., i = 1, ... , m, has 
i= l 

been transformed using a set z, of fresh variables into the process 
m; 

NFi(R;.) =!nit,;*[ 0 G'. -> S~ J 
j= l 1 1 

in first normal form. Using a new variable z from Z \ U: 1 Zi, we first transform S into 
the following process S': 

z:= true; 
m 

[ D Bool(H.) -> skip ] ; 
i= l 

m 

*[ D z; H, -> R;.; z:= false] 
•= l 

Those two processes are related as follows. Suppose first that S fails. This occurs when all 
conditions Bool(H.) evaluate to false initially. Then S' fails much in the same way. If now 
S does not fail then at least one of those conditions evaluates to true. In S', the alternative 
command boils down then to skip. In the repetitive command, the conditions are evaluated 
again, and yield the same results as before, because processes operate on disjoint memories. 
At least one of them is thus guaranteed to evaluate to true, S' does not fail either, and 
behaves subsequently like S. NF1 (S) is result of applying the transformation NF1 to 
process S'. 
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This concludes the presentation of the transformation N F1 

Property I. For each process S, N F1 ( S) is a process in first normal form. The only 
atomic commands in N F1 (S) in which variables from Z appear are of the form z: = true 
or z: = false. 

3.2. Second normal form 
We now describe a procedure N F2 which transforms each process S in first normal form 
into a process N F2 (S) in second normal form. A process S in first normal form whose all 
external guards contain an I/O command (or which contains no I/O command) is already 
in second normal form and we put N F2 (S) = S. Otherwise, it can be written as 

I nit; 
m 

*[ D Gi -> s. 
i= 1 

n 

D H· J 
-> Ti ] 

i= 1 

with m > 0 and n > 0, where all guards G; are purely Boolean, and all guards Hi do 
contain an I/O command. Let now CHOOSE be the following command: 

turn1 := false; ••• p turnn := false; 
m n 

* [ D /\ -.turnk; G, -> s, 
i= 1 k=l 

n n 

D /\ -.turnk; Bool(Hi) -> turni:= true ] . 
i=l k=l 

The execution of CH 00 SE consists of some iterations of the repetitive command 

m 

* [ D G; -> S; ] 
i= l 

which contains no I/O command followed by the selection of an I/O guard Hi, provided 
its Boolean part Bool(Hi) evaluates to true. We then define N F2 (S) to be the following 
process 

Init; CHOOSE; 
n 

*[ 0 turni; Hi ->Ti; CHOOSE J. 
i= 1 

Observe that Bool(Hi) is evaluated twice, once within CHOOSE and then again within 
Hi. Both evaluations return necessarily the same result because processes operate on 
disjoint memories. 

Property 2. For each process Sin first normal form, NF2 (S) is in second normal form. 
The only atomic commands in N F2 (S) in which variables from Z appear are of the form 
z:= true and z:= false. 
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3.3. Homogeneous processes 
For certain processes however, it is possible to describe a direct transformation which 
yields a process in second normal form. A process is homogeneous if in each repetitive 
or alternative command either all guards are purely Boolean or all of them contain an I/O 
command. Observe that a homogeneous process is in first normal form if and only if it is 
in second normal form. If we can modify procedure NF1 so as to preserve homogeneity, 
then it will transform homogeneous processes into processes in second normal form. It can 
be seen that the only part of N Fi which does not preserve homogeneity is that dealing 
with a repetitive command S 

m 

* [ D H;. -> Ri ] 
i= i 

whose all guards are purely Boolean. In this case, let SWITCH be 

m 

[ D Hi -> turn,:= true; !nit, 
i= i 

m 

0 A •H, -> skip l. 
•= i 

Then, assuming the notation used in N Fi ( S), the transformed process is 

turni: = false; ... ; turnm : = false; 

SWITCH; 

*[ D 
i=ii:l,. .. ,m 
j=l,, .. ,mi 

turn,; G~ -> s;; TEST,; 

[ turn, -> skip 0 •turn, -> SW ITCH ] ] . 

Denote this modified transformation by N Ft. Here, variables turn, are used for the same 
purpose as before. Setting a variable turn, to true can take place in the SWITCH 
command only. 

Property 3. For each homogeneous process S, N Ft (S) is in second normal form. The 
only atomic commands in N F{ in which variables from Z appear are of the form z: = true 
and z: = false. 

4. A ~otion of equivalence 
We now wish to make precise in what sense every process S is equivalent to the process S' 
generated in section 3 by the transformations N F1 , N F2 and N F{. To this purpose, we 
first associate to each process S a regular language L(S). Intuitively, L(S) is the set of all 
uninterpreted possible computations of process S according to Plotkin's semantics [P]. 

The language L(S) is over the alphabet consisting of atomic actions cmd, I/O com­
mands a, Boolean conditions b, plus two special tokens (skip) and (!ail) which denote 
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respectively termination and failure. L(S) is defined inductively as follows. 

L(skip) ={(skip)}, 
L(cmd) = { (cmd)}, 

L(a) ={(a)}, 

{ {(b)(a)} 
L(G) = {(b)(skip)} 

L(S1 ;S2) = L(S1).L(S2), 

L([ G1 -> 81 D ... 0 Gm-> Sm])= 

if G = b;a, 
if G = b, 

[(L(Gi).L(S1 )) u ... u (L(Gm).L(Sm))].{(Bool)(fail)}, 

L(*[ G1 -> S1 D ... 0 Gm-> Sm J)= 
[(L(G1 ).L(S1 )) U ... u (L(Gm ).L(Sm ))]* .{ (Bool)(skip) }, 

where Bool stands for 
-iBool(Gi) /\ ... /\ •Bool(Gm ). 

Observe how the appropriate exit conditions are reflected. 

To obtain the desired equivalence, we partially interpret the computations by evalu­
ating the commands and conditions associated with auxiliary variables. In the processes 
generated by the transformations of section 3, they can be of the following type exclu­
sively: 

z:= true, 

z:= false, 

B ( Z1 , ••• , Zm , b1 , • .. , bn ) 

where B is some Boolean combination of its arguments. When evaluating the condition, 
variables z. 's are substituted with their current value, true or false. The condition is 
said to be unsatisfiable if the resulting formula is equivalent to false as a formula of the 
predicate calculus with variables b; 's. The condition is satisfiable if it is not satisfiable. 
Then we exclude contradictory computations, i.e. those which violate the rule that the 
selected Boolean conditions are all satisfiable. Finally, we erase all skip's and assignments 
z: = true and z: = false to auxiliary variables. Also, we merge adjacent Boolean formulas 
into their Boolean conjunction, and reduce the resulting formula to some normal form (say, 
a conjunction of disjunctions for definiteness). Tautologies are then erased. Let L' ( S) be 
the resulting language. It is a language over the alphabet consisting of atomic actions 
cmd, I/ 0 commands a, Boolean formula B ( b1 , ••• , b,,.), and token (!ail). We say that two 
processes S1 and S2 are equivalent with respect to a set Z of auxiliary variables if 

This equivalence can be best understood with a example. Consider the processes 
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and 
82 = z:= true; *[ z;a -> z:= false]. 

Then 
L(Si) = L'(Si) ={(a)} 

On the other hand, 

L(S2 ) = (z:= true)((z)(a){z:= false))*(-iz)(skip). 

After the interpretation of actions related to the variable z we obtain the following set of 
words 

{ (z: = true)(true) (a)(z: = false) (-if alse)(skip), 

(z: = true)(true) (a)(z: = false) ((false) (a)(z: = false))* (-if alse) (skip)}. 

Here, only the computation 

(z:= true)(true)(a)(z:= false)(-.false)(skip) 

is not contradictory. Deleting from it all assignments to the variables of Z and skip's, re­
ducing sequences of adjacent Boolean formula to their normal form and erasing tautologies, 
we get (a) as desired. 

We have the following theorems whose tedious but straightforward proofs are omitted. 

Theorem 1. Both N F1 ( S) and N F; ( S) are equivalent to S with respect to set Z of 
auxiliary variables. 

Theorem 2. N F2 ( S) is equivalent to S with respect to set Z of auxiliary variables. 

These equivalences are on the level of processes considered in isolation. The following 
theorem states some of its semantic consequences. By a state we mean a function assigning 
values to each of the variables. We consider J_ as a special state indicating divergence. 
Given a CSP program P, we define its meaning .M[P] by putting 

.M[P](a) = 

{ r, r is the final state of a properly terminating computation starting in state u} 

U {_l_, there exists a diverging computation of P starting in state a }. 

For two sets E 1 and E 2 , and a set of variables Z we put 

E 1 = :E2 mod Ziff {u \ Z, u E Ei} = {u \ Z, u E E2} 

where a\ Z is the restriction of u to the variables not in Z. We now say that two programs 
CSP P1 and P2 are equivalent modulo Z if for all states a 

.M[P1](u) = .M[P2 ](u) mod Z. 

Note that this equivalence definition does not take into account possible deadlocks. We 
can finally state the appropriate theorem. 
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Theorem 3. Let S1 and S2 be two equivalent processes with respect to a set Z of auxiliary 
variables. Let 

C = [ Q1 : : Ti II • • .11 Qk: : [ ] II ••·II Qn:: Tn ] 
be a context, and let Pi = C[Si], i = 1, 2, be the CSP programs obtained by plugging 
process Si into the context C. Then P1 and P2 are equivalent modulo Z. 

Thus, up to deadlock, P 1 and P2 exhibit the same functional behaviors. 

5. Discussion 
The equivalence relation introduced in section 4 seems at first sight very strong as it is 
basically a syntactic equivalence. However, this equivalence is concerned only with some 
form of traces (in the sense of [Ho2]) of computations. Semantically, it assures only 
theorem 3. In particular, it does not capture all relevant semantic properties naturally 
associated with concurrent programs, like deadlock freedom. 

Indeed, consider two processes S and S' where 
S = [ true; Q?x -> skip 

D true; Q!x ->skip], 

S'= [ true -> Q?x; skip 
0 true-> Q!x; skip]. 

Then S and S' are equivalent in the sense of section 4. However, the program 

[ p: : s II Q: : P?y ] 

cannot deadlock whereas the program 

[ p: : S' II Q: : P?y ] 

can. Thus, plugging equivalent processes in the same context, here 

[ p: : [ ] II Q: : P?y ] • 

can yield two programs which behave differently. Currently, we look for a simple, stronger 
form of equivalence for which theorem 1 holds and moreover such that substituting in any 
context a process by a an equivalent one preserves at least deadlock freedom. 

We can however prove that theorem 2 cannot be strengthened so that deadlock free­
dom is preserved in the above sense. This follows from the following theorem. 

Theorem 4. Let 
[ P: :S II Q: :T ] 

be a program in second normal form. Suppose that it admits two properly terminating 
computations, C1 with some communication, and C2 without any communication. Then 
it admits a deadlocked computation: 

Proof Construct the deadlocked computation as follows. First take all steps carried out 
by P in C1 until the I/O command selected for its first communication is reached. Then 
append to it all step carried out by Q in 0 2 • In the resulting computation, Q properly 
terminates whereas Preaches an entry to a repetitive command with all guards containing 
an I/O guard. Thus a deadlock arises (observe that this would not necessarily hold if the 
Distributed Termination Convention of CSP were used). D 
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Indeed, take the program [ P: : S II Q: : T ] with 

S = [ Q!x -> skip D true -> skip ] 

and 
T = [ P?y -> skip 0 true -> skip ] . 

Consider now an arbitrary pair S', T' of processes in second normal form such that S' 
is equivalent to S and T' to T. Then the program [ P: : S' II Q: : T' ] satisfies the 
conditions of theorem 4. So it admits a deadlocked computation. But [ P: : S II Q: : T ] 
is deadlock free. 

This shows that first normal form cannot be reduced to second normal form when 
also deadlock freedom is to be preserved. This can be interpreted as a statement that use 
of non-homogeneous guards strictly increases the expressive power of CSP. 

Note 
First version of this paper appeared as Apt and Clermont ([AC]). After having written the 
present version, we learned of a related work by Zobel ([Z]). Zobel proposes transformations 
similar to ours, but does not elaborate on the underlying notion of equivalence. 
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