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On generating random variables 

by 

C. van Putten & I. van der Tweel 

ABSTRACT 

Methods and algorithms are presented to generate random variables and 

(ordered) random samples by means of a random number generator. The random 

variables may be distributed according to several discrete and continuous 

probability distributions, including some multivariate distributions. 

This report tries to give an easy accessible survey of procedures, 

many of which can be found in the literature. It also contains some proce­

dures which do not seem to have been published before. 

KEY WORDS & PHRASES: Random numbers, Monte Carlo methods 





CONTENTS 

1. INTRODUCTION 

2. MATHEMATICAL PRELIMINARIES. 

3. DISCRETE DISTRIBUTIONS. . . ••••. 

3. 1. THE DISCRETE UNIFORM DISTRIBUTION. 

3.2. THE ALTERNATIVE DISTRIBUTION •.•• 

3.3. 

3.4. 

3.5. 

3.6. 

3.7. 

3.8. 

THE LOGARITHMIC SERIES DISTRIBUTION •••..•. 

THE GEOMETRIC DISTRIBUTION ••.••••••• 

THE NEGATIVE BINOMIAL DISTRIBUTION. 

THE BINOMIAL DISTRIBUTION. 

THE POISSON DISTRIBUTION. 

THE HYPERGEOMETRIC DISTRIBUTION ••• 

1 

4 

6 

6 

7 

7 

8 

9 

10 

11 

13 

3.9. A RANDOM PERMUTATION . • • • • . . • • • • • • • 14 

3.10. A RANDOM SAMPLE WITHOUT REPLACEMENT FROM A FINITE POPULATION. 15 

3.11. AN ORDERED RANDOM SAMPLE WITHOUT REPLACEMENT FROM A FINITE 

POPULATION 

3.12. AN ORDERED RANDOM SAMPLE WITH REPLACEMENT FROM A FINITE 

POPULATION . • • . • . . • . • . • • • . 

3.13. THE MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION 

3.14. THE MULTINOMIAL DISTRIBUTION ...• 

3.15. THE INFINITE DIMENSIONAL MULTINOMIAL DISTRIBUTION •• 

3.16. AN ORDERED RANDOM SAMPLE FROM A POISSON DISTRIBUTION. 

4. CONTINUOUS DISTRIBUTIONS •.•. 

4.1. THE UNIFORM DISTRIBUTION. 

4.2. THE EXPONENTIAL DISTRIBUTION 

4.3. THE GUMBEL DISTRIBUTION •• 

4.4. 

4.5. 

4.6. 

THE WEIBULL DISTRIBUTION. 

THE CAUCHY DISTRIBUTION •• 

THE LAPLACE DISTRIBUTION. 

4.7. THE LOGISTIC DISTRIBUTION. 

4.8. THE NORMAL DISTRIBUTION •• 

4.9. THE BETA DISTRIBUTION •• 

4.10. THE GAMMA DISTRIBUTION. 

4.11. THE CHI-SQUARE DISTRIBUTION. 

16 

17 

18 

19 

20 

21 

23 

23 

24 

24 

25 

26 

26 

27 

28 

29 

31 

33 



4.12. THE MULTIVARIATE NORMAL DISTRIBUTION •••••••• 

4.13. AN ORDERED RANDOM SAMPLE FROM A UNIFORM DISTRIBUTION. 

5. DISCUSSION ON POSSIBLE LIMITATIONS WHEN USING A PSEUDO RANDOM 

NUMBER GENERATOR • . • 

REFERENCES 

33 

34 

36 

39 



1. INTRODUCTION 

A random variable can be used to represent, in a mathematical model, 

an experiment rendering, each time it is performed, a (numerical) value, 

which cannot be predicated perfectly. Mathematically the simplest and most 

fundamental situation is a completely unpredictable experiment, the result 

of which belongs to a known finite set, A say, represented by a random 

variable having equal probability to obtain any of the elements of A, a 

1 

so called discrete uniform random variable. If A= {k/2n I k = 1,2, .•. ,2n} 

and n is large, this experiment may be used to approximate the one corre­

sponding to a continuous uniform random variable with density equal to 1 on 

the interval (0,1]. 

When generating realizations of random variables this situation is 

basic, for any random variable (with a known distribution function) can be 

obtained by a suitable transformation of such a uniform random variable. 

Thus to obtain a realization of any random variable it suffices to generate 

a realization of a uniform random variable and to apply the proper trans­

formation to it. 

In applications on a binary digital computer using an approximation of 

the kind just mentioned is the best one can do to generate (realizations of) 

random variables. In this case n might be chosen equal to the number of bits 

used to represent an integer number in the computer. 

For the solution of the first part of the problem of generating random 

variables, i.e. the construction of a device producing realizations of a 

uniformly distributed random variable, a so called random number generator, 

the reader is referred to Statal Report 1 or any other description of such 

generators in the literature. 

This report will only deal with the second part of the problem, i.e. 

the determination of suitable transformations. Theoretically a solution to 

this problem is provided by the following. Let x be a random variable 

having cumulative distribution function F. If u is uniformly distributed 

over the interval (0,1], then F- 1 (u) and x have the same probability dis-
-1 

tribution, where F may be defined as 

_ 1 {inf {x I 
F (u) = 

00 

X E JR, F(x) :2:: u} when O < u::::; 1 

when the set above is empty. 
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-1 
Note, however, that the event {F (u) = 00 } has probability zero. This 

proposition is proved in Subsection 2.1. 
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Illustration of F 

x ➔ 

Thus if u is a realization of~, obtained by a random number generator, 
-1 -1 

then F (u) is a realization of x. In cases where the computation of F is 

simple, this may be a very useful and effective method, as for example when 

~ has an exponential distribution. In other cases sometimes other methods 

may be more effective in the sense that.they require less computing time. 

The underlying principles of two methods might be outlined as follows. 

1. Let (~ 1 , ••. ,~n) be a random sample of~, i.e. ~ 1 , ... ,~n are independent 

random variables, each having the same distribution as u. Define a func­

tion¢, easy to compute, such that ¢(~1 , .•. ,~n) and x have the same dis­

tribution. 

2. Look for a random variable X with cumulative distribution function G 

with the properties that G resembles Fin a way to be made more precise 
-1 2 

and that G can be computed easily. Define a subset S of IR, depending 



_on G and F, such that X and~ have the same distribution if <x,~> ES, 

where~ is uniformly distributed and independent of X· 

3 

The second method is called the rejection method (cf. CHENG [4]), 

because a realization y of Xis rejected if not (y,u) ES, in which case 

one has to produce new realizations of <x,~> until this condition is satis­

fied. All methods described so far are exact in that they generate exactly 

the distribution wanted. Apart from these there are methods that only 

approximate the right distribution. As an example a normally distributed 

random variable could be approximated by using the central limit theorem. 

However, since for every distribution considered in this report a satis­

factory exact method is available no such method is used. 

A random sample can be obtained by successively generating its elements 

independently of each other. A realization of a random sample without re­

placement from a finite population*) can also be generated stepwise but now 

each step consists of producing a realization of the conditional probabil­

ity distribution given the results of the previous steps. If the ordering 

of the observations of a random sample is irrelevant, sometimes it is more 

efficient to create an ordered random sample*). An example of this is given 

at the end of Section 3. 

Section 2 contains some mathematical prerequisites for the algorithms 

presented in the succeeding sections. In Section 3 discrete distributions 

are considered, the description of how to generate random variables having 

continuous distributions is given in Section 4. In Section 5 some restric­

tions are discussed that might be desirable when using the algorithms driven 

by a pseudo random number generator. 

Primary the algorithms are meant for use on large computers, using high 

level programming languages, or on small programmable calculators, on which 

the natural logarithm, in the sequel denoted by log, the exponential func­

tion, sine, cosine, tangent, entier, square root, etc., are standard func-

tions. 

*) Strictly speaking this is no random sample, since a random sample of 
some random variable xis defined to be a random vector with independent 
components each having the same probability distribution as~-
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Some general references are: BURY [3] and JOHNSON & KOTZ [7,8] on the 

theory of probability distributions; HAMMERSLEY & HANDSCOMB [6], KNUTH [10] 

and, more recently, YAKOWITZ [12] on Monte Carlo methods. 

2. MATHEMATICAL PRELIMINARIES 

In this section we collect some theorems which will be useful in the 

following sections. 

2.1. THE PROBABILITY DISTRIBUTION OF F-l(~) 

Let F be the cumulative distribution function of a random variable~, 
-1 

let its inverse F be defined on the unit interval by 

F-l (u) = inf{x I x E JR, F(x) 2::: u} 

-1 
and let~ be uniformly distributed over the unit interval. Then F (~) and 

x have the same probability distribution. 

PROOF . By the 

tonicity of F 

definition of F-l we have F(x) z u => F- 1 (u) ~ x, by the mono­

F-1(u) < x => F(x) z u and by the right continuity of F 

F- 1 (u) = x => F(x} z u. Thus 
-1 

P{F (~) ~ x} = P{~ ~ F(x)} = F(x). 0 

REMARK. There are other ways of defining F-l such that this proposition is 

true. 

2.2. THE PROBABILITY DISTRIBUTION OF A TRANSFORMED CONTINUOUS RANDOM 

VARIABLE 

Let~ be a p-dimensional random variable with density f and let A be 

an open subset of :n:f such that P{x EA}= 1. If¢= (~ 1 , ... ,¢) is a one-
- p 

:::::ei:r;:n:::::::n~::.:o::::fw~:e~!!~)u:::5 f:::tv::::•:nd::i:::n 
J 

the density g of X =¢(~)is given by 

g(y) 
-1 = f(¢ (y) )abs(J _ 1 (y)) 

¢ 
for every y E ¢(A). 



PROOF. See BICKEL & DOKSUM [1]. □ 

2.3. THE REJECTION METHOD 

Suppose the cumulative distribution function F has a density f and 

G is a cumulative distribution function with density g such that 

f(x) I sup-(-) SM< 00 , where A= {x x E JR, f(x) > O}. Let X be a random 
XEA g X 

variable with distribution function G and let u be a random variable uni-

formly distributed over (0,1] and independent of X· Then we have 

and { 1 f(y) } 
p y s y I - --- ~ u = F(y) 

- M g(X) -

for every y E IR. 

PROOF. We notice that M ~ 1, for 

1 = IA f(x)dx =IA:~:~ • g(x)dx SM IA g(x)dx s M. 

Since X and~ are independent we have 

p{! f(y) ~ 
M g(y) ~}=I (J 1 !ill du)dG(y) = 

JR (O,Mg(y)J 

= I l !.iY.L g(y)dy = M!. 
JR M g(y) 

For every y 0 E IR we derive in the same way 

and hence the result follows. D 

REMARK. This theorem is a special case of the following result. 

5 

Let µF be the probability measure on (IR,B) induced by a distribution 

function F, where B are the Borel sets of JR, and suppose µF << µG for some 

distribution function G with a bounded Radon-Nikodym derivative¢, say 
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0 =s: <I> (x) =s: M < 00 for all x e: JR. If X and u are as above, we have 

and P{x =s: YI ! <1><x> ~ ~} = F<y> 

for every y e: lR. 

PROOF. A trivial modification of the previous proof. D 

3. DISCRETE DISTRIBUTIONS 

In this section procedures are given to generate discretely distrib­

uted random variables and samples from finite populations. Throughout the 

rest of this report it is assumed that a random number generator simulating 

a random variable~' uniformly distributed over the (real) interval (0,1], 

is available. We also assume that it is possible to produce a sequence of 

independent random variables ~ 1, .•• ,~n each having the same distribution as 

~, where n is an integer that may be chosen sufficiently large for our pur­

poses. u 1, ••• ,un will always denote realizations of ~1, ••• ,~n· 

The samples from finite populations in 3. 9 - 3 .13 are generated by a 

recursive procedure. If a sample of size k is wanted, the first element is 

generated by some method and the remaining problem is to generate a sample 

of size k-1, etc. To generate large samples from discretely distributed 

random variables, the Subsections 3.14 and 3.15 may be useful. As an 

e.xample the latter is applied in Subsection 3.16 to generate an ordered 

sample from a Poisson distribution. 

3.1. THE DISCRETE UNIFORM DISTRIBUTION 

Let x be uniformly distributed over the set of integers {a,a+l, ••• ,b} 

(a =s: b), i.e. the probability distribution of~ is given by 

P{,! = x} = { 
1 

b-a+l 
if x e: {a,a+l, .•• ,b} 

0 otherwise. 



3.1.1. The method 

A random variable¥ with the same distribution as xis generated 

according to 

¥ = [(b-a+l) (1-g)] + a 

where [y] denotes the entier of y, i.e. the greatest integer less than or 

equal toy. 

3.1.2. Remark 

When applying this method on a digital computer, sometimes not every 

value of b-a+l will give satisfactory results because of the approximating 

nature of the device implemented to generate u; for a discussion on this, 

the reader is referred to Section 5. 

3.2. THE ALTERNATIVE DISTRIBUTION 

Let x have an alternative distribution with parameter p, 0 s p s 1, 

i.e. the probability distribution of xis given by 

P{x = O} = 1 - p and P{x = l} = p. 

3.2.1. The method 

A random variable ¥ with the same distribution as X is generated -
according to 

{: 
if 0 < u s p 

¥ = 
if p < u s 1. 

3.3. THE LOGARITHMIC SERIES DISTRIBUTION 

Let x have a logarithmic series distribution with parameter 8, 

0 < 8 < 1, i.e. the probability distribution of xis given by 

7 
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P{x = x} - r X 

log(l-0) 
if XE {1,2, ... } 

0 otherwise. 

3.3.1. The method 

A random variable X with the same distribution as xis generated 

according to 

if (~-l)log(l-0) < e 
i 8i 

if \y-l ~ ~ (u_-1)1og(1-8) < \y - and y 2 2 
li=1 i li=1 i • 

3.3.2. The algorithm 

To compute a realization y of¥ we may proceed as follows. 

1. Introduce auxiliary variables p,s and initialize p := s := -8/log(l-8).*) 

2. For each i = 1,2, ••. while 1-u 2 s do (p := p8/(1+1/i); s := s+p). 

3. y := i. D 

Note that the value assigned toy is the value of i for which 1-u < s 

is satisfied for the first time. This algorithm uses only one realization 

u of u. 

3.3.3. Remark. 

1- u has a uniform distribution over the interval [0,1), so it is 

impossible for X to be infinite. 

3.4. THE GEOMETRIC DISTRIBUTION 

Let~ have a geometric distribution with parameter p, 0 < p ~ 1, 

i.e. the probability distribution of xis given by 

{

p (1-p)x-1 

P{~ = x} = ~ 

--------

if XE {1,2, •.. } and O < p < 1 

if x = 1 and p = 1 

otherwise. 
*) The symbol:= means that the value of the right side is assigned to the 

variable on the left side. 



3.4.1. The method 

A random variable X with the same distribution as xis generated 

according to 

¥. 
f [ log u ] 

log ( 1-p) 

l 
+ 1 if O < p < 1 

1 if p = 1. 

PROOF. Suppose O < p < 1. Then we have for every y E {1,2, ... } 
log u y y-1 

P{y = y} = P{y- 1 ::;: --~- < y} = P{ (1-p) < u ::;: (1-p) } = 
- log(l-p) 

= (1-p)y-l(l - (1-p)). 0 

3.4.2. Remark. 

The previous proof employs the fact that the geometric distribution is 

related to the exponential distribution. 

3.5. THE NEGATIVE BINOMIAL DISTRIBUTION 

Let x have a negative binomial distribution with parameters k and p, 

9 

k E {1,2, ... }, 0 < p ~ 1, i.e. the probability distribution of xis given by 

if x E {k,k+l, ... } and O < p < 1 

if x = k and p = 1 

otherwise. 

3.5.1. The method 

A random variable X with the same distribution as xis generated 

according to 

k 
y I y., 

i=1 -1. 

where x1 , .•• ,xk are independent random variables each having a geometric 

distribution with parameter p, e.g. generated by 3.4. 

3.5.2. The algorithm 

To compute a realization y of X we may proceed as follows if O < p < 1. 
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1. Define 

2. y := k 

a : = log ( 1-p) • 

lk [log Ui] + . 1 • i= a D 

u 1 , ••• ,~ are realizations of k independent, uniformly distributed 

random variables ~ 1, ••• ,~. 

3.6. THE BINOMIAL DISTRIBUTION 

Let x have a binomial distribution with parameters n and p, nE {1,2, ... }, 

0 s p s 1, i.e. the probability distribution of~ is given by 

r(n)xo- )n-x if X E {0,1, •.. ,n} and 0 < p < 1 J X p p 
P{x x} 

l ~ 
if (x=0 and p=0) or (x=n and p=l) 

otherwise. 

3.6.1. The method 

A random variable¥ with the same distribution as xis generated 

according to 

0 if p=0 or (0<ps½ and Y > n) 
-1 

max{i I l~=l y, s n} if O<ps½ and i 1 s n 
"i... = -;-J 

n - max{i I I~=l y. s n} if ½ < p < 1 and :¥1 :s; n -J 
n if p == 1 or d<p<l and ¥ 1 > n) ' 

where i 1,i2 , ..• are independent random variables each having a geometric 

distribution with parameter p if O < p :S: ½ and 1 - p if½ < p < 1. 

PROOF. a) Suppose 

P{ y ~ y} = P{ P'.' 
- J=l 

with parameters y 

0 < p :s: ½, then we have for every y E {1,2, ... ,n} 

y. s n}. \~ 1 y. has a negative binomial distribution 
-J lJ= -J 
and p. Thus the result is obtained by using a well known 

relation of the negative binomial and the binomial distribution (see 

JOHNSON & KOTZ [7]). 

b) suppose½ < p < 1. Arguing as above we see that n - ¥ has a binomial 

distribution with parameters n and 1 - p, thus¥ has a binomial distribu­

tion with parameters n and p. D 
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3.6.2. The algorithm 

To compute a realization y of y we may proceed as follows if O < p < 1. 

1. Define a by if p ~½then a:= log(1-p) else a:= log p. 

2. Introduce the auxiliary variables and initializes := n. 

3 . For each i = -1 , 0, 1 , 2, • • . while s 2: 0 do s : = s-1 - [ loga ui] • 

4. If p ~½then y := i else y := n - i. 0 

u_ 1 ,u0 , .•. are realizations of independent, uniformly distributed 

random variables ~-l'~o•··· . After the third step i is supposed to have 

the value for which s < 0 for the first time. 

3.6.3. Remarks 

The distribution of x could also be obtained as the distribution of 

a sum of n independent random variables each having an alternative distrib­

ution with parameter p. This would involve no computations of the logarithm 

but more random numbers would have to be produced, especially when pis 

small. Which method is to be preferred depends on the properties of the 

computer used. On pocket calculators the method presented here might be 

favourable. 

An other alternative is presented by the following algorithm, using 
-1 

the F method. 

1. Define a by if p ~½then a:= p/(1-p) else a:= 1/p - 1. 

2. Introduce the auxiliary variables s .and t and initialize if p ~½then 
n n 

t := (1-p) else t := p; s := u - t. 

3-. For each i = 0,1,2, ••. ,n whiles> 0 do (t:=ta(n-i)/(i+1);s:=s-t). 

4. If p ~½then y := i else y := n - i. D 

3.7. THE POISSON DISTRIBUTION 

Let x have a Poisson distribution with parameterµ,µ> 0, i.e. the 

probability distribution of xis given by 

if XE {0,1, •.. } 

otherwise. 

3.7.1. The method 

A random variable y with the same distribution as x can be generated by 

the F-l method according to 

X = min{x I P{~ ~ x} 2: u}. 
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3.7.2. The algorithm 

To compute a realization y of¥ we may proceed as follows. 

1. Introduce auxiliary variables s, t and wand initializes:= 0, t := 1, 

w := ueµ. 

2. For each i = 1,2, .•. whiles< w do (t:=tµ/i;s:=s+t). 

3. y := i - 1. □ 

u is a realization of a uniform distributed random variable u. After 

the second step i is supposed to have the value for which s ~ w for the 

first time. 

3.7.3. Remarks 

If more realizations are wanted, i.e. one wants to generate a realiza­

tion of a random sample, and if enough memory is available, one can use a 

more efficient method, a so called table search method, which is a multiple 

F-l method. The method is based on the property that the sum of independent 

random variables having a Poisson distribution with possibly different 

parameters, is again Poisson distributed with parameter equal to the sum of 

those parameters. 

In principle, the table used, T say, ha$ two entries, a line number i 

and an argument j, such that T[i,j] = P{v. ~ j}, where v. has a Poisson 
-i -i 

distribution with parameter 2i. One can considerably reduce the size of T 

by removing the tails of the distributions of the v .• Then, of course, one 
-i 

has to create an emergency procedure to restore them when they are needed. 

The method assumes that this table is computed in advance. 

To generate a realization from a Poisson distribution with parameter 
\ i µ,firstµ is decomposed according toµ= li di2 + µ0 , where di E {0,1} 

and O ~ µ0 < 2. Then for each i such that di= 1 a realization from a 

Poisson distribution with parameter 2i is generated, using the i-th line 

of T. If µ0 > 0, then some other method, e.g. 3.7.1, is used for a realiza­

tion from a Poisson distribution with parameter µ0 • Finally all realizations 

are added. 

The following algorithm uses this method. 

1. Compute d 1 , ••. ,dm and µ0 satisfyingµ= I:=l di2i + µ0 , such that 
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d 1 , .•• ,dm E {0,1} and 0 $ µ 0 < 2. 

2. For each i = 1,2, .•• ,m do step 3. 

3. If d, = 1 then (perform a line search to find y., the smallest integer v 
]. ]. 

such that P{v.· 
-]. 

::;; v} z U,) 
]. 

else Yi := 0. 

4. If µo > 0 then (generate a realization, Yo say, from a Poisson distribu-

tion with parameter µo, for instance by applying algorithm 3.7.2) else 

Yo := D. 

5 • Y == l:=1 yidi + Yo· □ 

u 1 , ... ,um are realizations of independent, uniformly distributed random 

variables ~ 1 , .•. ,~m· To do the line search in step 4, several methods can 

be used, such as a search from the left to the right or a search starting 

from the mode, III, say, which has to be marked in advance in this case, and 
]. 

then going either to the left, if P{v. $ i.} > ui'' or the right, if 
-]. ]. 

< u .• mis the number of lines of T. T can be used ifµ< 2m+l, 
]. 

P{v. ::;; III.} 
-]. ]. 

otherwise T has to be extended or an other method has to be used. 

3.8. THE HYPERGEOMETRIC DISTRIBUTION 

Let~ have a hypergeometric distribution with parameters n, rand N, 

NE {1,2, .. a}, n,r E {0,1,a~@,N}, i~e. the probability distribution of x 

is given by 

P{x = x} = (:)(:=:)/(:) for every integer x. 

3.8.1. The method 

Suppose a population IT of N elements is divided into two subsets, i.e. 

A, consisting of r elements and its complement B, thus consisting of N-r 

elements. Then the number of elements which belong to A, say x, in a random 

sample without replacement of size n has the same distribution as x. This 

sample may be obtained by successively selecting n elements of IT at random. 

When in this procedure i ( 0 $ i $ n-1) elements of II have been selected and 

a (depending on i) of them have turned out to be an element of A, then the 

next element to be sampled will be one of A with probability~=:. Thus¥ 

is obtained as the sum of n dependent random variables with an alternative 
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distribution which in their turn may be considered to be functions of 

independent uniform random variables. 

3.8.2. The algorithm 

To compute a realization y of X we may proceed as follows if 

1 s n s rs N-r s N-n. 

1. Introduce the auxiliary variable a and initialize a:= 0. 

2. For each i = N,N-1, ... ,N-n+l perform the steps 3 and 4. 

3. If i = r then (y:=a+n-N+i-1; goto step 6). 

4. If iu. s r then (a:=a+l; if r=l then (y:=a; goto step 6) else r:=r-1}. 
]. 

5. y := a. 

6. Stop. 0 

By a:= a+l we mean that the value of a is increased by 1, etc .. 

u 1 , ..• ,un are realizations of independent uniform random variables as 

defined at the beginning of Section 3. 

3.8.3. Remark 

The condition 1 s n s rs N-r s N-n doesn't cause a loss of generality, 

because it can always be satisfied by interchanging the roles of n, r, 

N-r and N-n if necessary. It is imposed to increase the efficiency of the 

algorithm. 

3,. 9. A RANDOM PERMUTATION 

Let (~1 , .•. ,~n) be a random permutati9n of the set {1,2, ••. ,n}, i.e. 

the values of (x,, ... ,x) are the permutations of {1,2, .•. ,n} and every 
-1 -n 1 

permutation has the same probability -, . 
n. 

3.9.1. The method 

A random sample (i1 , .•. ,Xn) with the same distribution as (~ 1 , ... ,~n) 

is generated in the following way. First the value of y is generated. To -n 
do this let i be uniformly distributed over {1,2, ... ,n}, then Yn is set 

-n 
equal to i and i is deleted from {1,2, .•. ,n}, the remaining set is denot-

-n -n 
ed by IT 1 . Thus the problem is reduced to generating a random permutation 

n-



{¥1 , ... ,¥n_ 1 ) from rrn_ 1 . Proceeding as above In-l is generated (equal to 

the i -th element of IT ), etc .• 
-n-1 n-1 

3.9.2. The algorithm 

To compute a realization (y1 , ... ,y) of (y 1 , .•. ,y) we may proceed as 
n - -n 

follows. 

1. Introduce auxiliary variables a 1 , ... ,an and initialize for every 

i E {1,2, .•. ,n} a. := i. 
]_ 

2. For each k = n,n-1, ••. ,2 perform the steps 3 and 4. 
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3. Generate a realization ik of ~k' uniformly distributed over {1,2, .•. ,k}, 

e.g. by 3.1. 

4. If ik < k then exchange the values of aik and ak. 

5. Finally the random permutation is given by (y1 , ••• ,yn) = (a1 , •.. ,an). D 

3.9.3. Remark 

Obviously the random permutation can also be generated in the reversed 

order, first i 1 , next i 2 ,etc.; the way it is presented here gives a slight­

ly more efficient algorithm. 

3.10. A RANDOM SAMPLE WITHOUT REPLACEMENT FROM A FINITE POPULATION 

Let {~1 , .•. ,~n} be a random sampie without replacement from the set 

{1,2, ... ,n}, k ~ n, i.e. the values of 

size k of { 1, 2, ... ,n} and every subset 

3.10.1. The method 

{~1 , ... ,~k} are the subsets ~f 
has the same probability(~) 

A random sample {11 , ... ,ik} with the same distribution as {~1 , ... ,~} 

is generated in a way which is essentially the same as the one of 3.9; in­

stead of n now only k elements are drawn from {1,2, ••• ,n}, thus the proce­

dure of 3.9 is terminated after k steps. 

3.10.2. The algorithm 

To compute a realization {y1 , •.. ,yk} of {11 , ••. ,ik} we may proceed as 

follows. 
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1. Introduce auxiliary variables a 1 , ..• ,an and initialize for every 

i E {1,2, .•. ,n} a. := i. 
l 

2. For each m = 1,2, ..• ,k perform the steps 3, 4 and 5. 

3. Generate a realization i of i , uniformly distributed over m -m 
{ 1 , 2 , ... , n-m+ 1 } . 

4. ym := aim· 

5 . If i < n-m+ 1 then a • : = n - m + 1 • D 
m 1 m 

3.11. AN ORDERED RANDOM SAMPLE WITHOUT REPLACEMENT FROM A FINITE POPULATION 

Let (~1 , ... ,¾) be an ordered random sample without replacement from 

the set {1,2, ... ,n}, ks n, i.e. the values of (~ 1, ... ,~k) are the vectors 

(x 1, .•. ,x) satisfying 1 s x 1 < x 2 < •.• < ¾ s n and every vector has the 

same prob:bility (~)- 1 . 

3.11.1. The method 

A random sample <x1 , •.. ,xk) with the same distribution as (~ 1 , ... ,~k) is 

generated in the following way. First generate a random variable a with 
-n 

an alternative distribution with parameter k/n to decide whether or not n 

has to be included in the sample. If so, assign the value n to Xk and the 

problem left is to generate the same kind of sample of size k-1 from the 

set {1,2, ..• ,n-1}; if not, a sample of size k from the set {1,2, ... ,n-1} 

has to be generated. Thus a procedure is obtained, consisting of n steps 

or less if the contents of the rest of the sample is already known before 

then-th step, rendering an ordered sample (x1 , •.. ,¥k). 

PROOF. See KAAS [9]. 0 

3.11.2. The algorithm 

To compute a realization (y1 , .•. ,yk) of (y1 , •.. ,yk) we may proceed as fol­

lows. 

1. For each m = n,n-1, ... ,1 while k ~ 1 perform the step 2. 

2. If um s k/m then (yk:=m;k:=k-1). D 
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3.12. AN ORDERED RANDOM SAMPLE WITH REPLACEMENT FROM A FINITE POPULATION 

Let (~1 , ••• ,~k) be a random sample with replacement from the set 

{1,2, ••• ,n}, i.e. (~1 , •.• ,~k) has a discrete uniform distribution over the 
k 

set {1,2, ••• ,n} • If! is a permutation of {1,2, .•. ,k} such that 

~!(l) ~ ~~( 2 ) ~ • •· ~ ~!(k)' then (~TI(l)'"""'~TI(k)) is called an ordered 
sample with replacement from {1,2, .. :,n}. -

3.12.1. The method 

To generate a sample (r1, ... ,xk> with the same distribution as 

(~TI(l)'""''~TI(k)) we observe its close relation to a random vector 
- -

(~ 1, •.• ,~n) with a multinomial distribution. Indeed the correspondence is 

established by defining ~i to be the number of i's in (~1, .•• ,~). From 

(~ 1 , •.• '~n) the x1, ... ,Xk may be defined by Xi = m if ~O + .•• + ~m-l < i ~ 

~ z 0 + ... + z 1 + z, for every i E {1,2, .•. ,k}, where _z 0 = 0, introduced - -m- -m 
for convenience. Thus it suffices to generate z 1 , ••• ,z .• The probability 

- -n 
distribution of z 

-n is binomial with parameters k and 1/n and (~ 1, ••• ,~n-l) 

given z again has a multinomial distribution. So after having generated 
-n 

z, e.g. by 3.6, the problem is reduced to the same one with k and n replac­
-n 
ed by k-z and n-1, respectively. 

-n 

PROOF. See KAAS [9]. 0 

3.12.2. The algorithm 

To compute a realization (y1, ••• ,yk) of (x1, •.. ,yk) we may proceed as 

follows. 

1. For each m = n,n-1, ••. ,1 while k ~ 1 perform the steps 2, 3 and 4. 

2. Generate a realization z of z having a binomial distribution with m -m 
parameters k and 1/m. 

3. For each j satisfying k-z +1 ~ j ~ k do yj := m. m 
4. k := k-z . D m 
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3.13. THE MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION 

Let (~ 1, •.. ,~k) have a multivariate hypergeometric distribution with 

parameters n, r 1 ,· ••• ,rk and N, Ne: {k,k+l, ••• }, n,r 1 , ••• ,rk e: {1,2, ••• ,N-1}, 

l~ 1 r. = N, i.e. the probability distribution of (x1 , ... ,x) is given by 
1= 1 -n 

k 
if x. e: { 0, 1 , ••• } for 1 $ i $ k and l x. = n 

1 i=l 1 

otherwise. 

3.13.1. The method 

Suppose a population IT of N elements is divided into k disjoint sub­

sets A1 , ... ,¾ consisting of r 1 , ••• ,rk elements respectively, l:=l ri = N. 

If in a random .sample without replacement y, is the number of elements 
-1 

belonging to A., for every i E {1,2, ••• ,k}, then the random vector 
1 

(i1 , ••• ,ik) has the same distribution as (~1, •.• ,~). This sample may be 

obtained by successively selecting n elements of IT at random. When in this 

procedure j (0 $ j $ n-1) elements of IT have been selected and a 1 , ••• ,¾, 
depending on j, (L:=l ai = j), belong to A1 , .•. ,Ak respectively, then the 

next element to be sampled will be one of A. with probability 
1 

(r.-a.)/(N-j), i E {1,2, •.. ,k}. 
1 1 

The following algorithm is an immediate generalization of that of 

Subsection 3.8. 

3.13.2. The algorithm 

To compute a realization ( y 1 , ••• ,yk) of ( y 1 , ••• , Xk) we may proceed 

as follows. 

1. Introduce auxiliary variables a 1 , ••• ,ak, sand t and initialize for 

every i e: {1,2, ••• ,k} ai := 0. 

2. For each j = N,N-1, ••• ,N-n+1 perform the steps 3, 4 and 5. 

3. s := 0, t := j uj. 

4. For each i = l,2, ... whiles< t dos:= s+r .• 
1 



5. i := i-1; r. := r.-1; a. := a.+1. 
1 1 1 1 

6. For each i, 1 ~ i ~ k, assign the value of a. toy .. D 
1 1 

We remark that after the execution of step 4 i-1 is supposed to be 

equal to the smallest integer m such that l~=l rt~ t. 

3.14. THE MULTINOMIAL DISTRIBUTION 

Let (~1 , ••. ,~k) have a multinomial distribution with parameters 

n, p 1 , .•• ,pk, n E {1,2, ... }, pi> 0 for 1 ~ i ~ k, l:=l pi= 1, i.e. the 

probability distribution of (~1 , ... ,~k) is given by 

xi 

r 
k pi 

irJ1 x. ! 
1 

= 

0 

3 . 14 . 1 . The method 

if x. E {0,1, ... } for 1 ~ i ~ k and 
1 

otherwise. 

k 

I 
i=1 

x. = n 
1 

To generate a random vector (x1 , •.. ,xk) with the same distribution as 

(~ 1 , ... ,~k), we use an ordered sample from a uniform distribution 

(~ 1, ... ,~n)' generated, e.g., by the method of subsection 4.13. If 

si = l~=l pj for every (integer) i, 1 ~ i ~ k, we define yi to be the 

number of observations v in the interval (s. 1 ,s.], with s O = O, i.e. 

for every i satisfying 1 ~ i ~ k we have 

s.}. 
1 

1- 1 

An ordered sample is used to obtain a more efficient algorithm. 

3.14.2. The algorithm 

To compute a realization (y1 , ..• ,yk) of (y1 , ... ,yk) we may proceed 

as follows. 

19 

1. Introduce auxiliary variables t, s, r, i and initialize t := O, s := 1-pk' 
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r :=logs, i := k. 

2. Initialize for every j, 2 $ j $ k, y. = 0. 
J 

3. For each m = n,n-1, ..• ,1 perform the steps 4 and 5 as long as step 6 is 

not performed. 

4. t := t + (log u )/m. 
m 

5. If t $ r then [if i=2 then (y1=m-1;goto step 6) else (i:=i-1;s:=s-pi; 

r:=log s; goto step 5)] else y. : = y. + 1. 
l l 

6. Stop. □ 

3.15. THE INFINITE DIMENSIONAL MULTINOMIAL DISTRIBUTION 

Let (~ 1 ,~2 , ... ) have an infinite dimensional multinomial distribution 

with parameters n, p 1 ,p2 , •.. , n E {1,2, ..• }, pi> 0 for i ~ 1, I;=l pi= 1, 

i.e. the probability distribution of (~1 ,~2 , ••. ) is given by 

P{(~1 1 ?.!2, ... ) = (x1,x2, ... )} = 
X· p.l 
l 

3.15.1. The method 

x. ! 
l 

if x. E {0,1, •.. } for i ~ 1 and 
l 

otherwise. 

co 

I 
i=1 

X. 
l 

n 

To generate a random sequence <i 1 ~y2 , .•. ) with the same distribution 

~s (~1 ,~2 , ... ), we use the method of Subsection 3.14. Like in that section 

an ordered sample from a uniform distribution, (v 1 , ... ,v), is generated. 
- -n 

~n determines the random integer~ such_ that yk > 0 and yi = 0 if i > k. 

Using~' the algorithm 3.14.2 can be applied. 

3.15.2. The algorithm 

To compute a realization (y1 ,y2 , ••• ) of (y1 ,y2 , •.. ) we may proceed as 

follows. 

1. Introduce auxiliary variables r 2 ,r 3 , •.. , s, t and v and initialize 
t 

s := p 1 , t := (log un)/n, v := e . 

2. If s ~ v then (y 1 :=n;k:=1; goto step 9). 

3. For each i = 2,3, ••• whiles< v do (r. :=logs; s:=s+p.). 
l l 



4. i := i-1; y. := 1; k := i. 
1. 

5. Initialize for every j, 1 s j s k-1, y. := 0. 
J 

6. For each m = n-1,n-2, .•• ,1 perform the steps 7 and 8. 

7 • t : = t + ( log u ) /m. 
m 

8. If t > r. then y. := y.+1 else[if i=2 then (y1 :=m; goto step 9) 
1. 1. 1. 

else (i:=i-1; goto step 8)]. 

9. Stop. 0 

3.15.3. Remarks 

Let {w1 ,w2 , ... } be the set of values taken by a random variable~, 

then the previous procedure may be used to generate the numbers of occur-

rences of w1 ,w2 , ... in 

ing pi. = P{w = w.} for 
- 1. 

a random sample of w with sample 

i=l,2, ..•. 

size n, by defin-

In step 3 the number of variables r. needed is unknown, a priori. If 
1. 

this should cause any difficulties when implementing the algorithm, one 

might use the following modification of it. 

* 1 . Introduce auxiliary variables r, s, t and v and initializes:= 
t 

t := {log u )/n, v := e . 
n 

2. Ifs~ v then (y1 :=n;k:=1; goto step 9). 

* 3 0 For each i = 2,3,~~0 whiles< v dos:= 

* 4 • i := i-1; yi := 1; k := i; s := s-pi; r 

5. Initialize for every j, 1 s j s k-1, y. := 0. 
J 

6. For each m = n-1,n-2, .•• ,1 perform the steps 7 

7_. t := t + (log u )/m. 
m 

and 8. 

* 8. If t > r then y. := Y.+1 else[if i=2 then (y1 :=m; goto step 9) else 
1. 1. 

(i:=i-1;s:=s-p.;r:=log s; goto step 8)]. 
1. 

9. Stop. 0 

3.16. AN ORDERED SAMPLE FROM A POISSON DISTRIBUTION 

21 

Let ~ 1 , ... ,~k be independent random variables, each having a Poisson 

distribution with parameterµ,µ> 0. If~ is a permutation of {1,2, •.. ,k} 

such that ~TT ( 1 ) s ~7T( 2 ) s ... s ~7T(k)' then (~7T(l) , ..• ,~TT(k)) is called an 
- -

ordered sample from a Poisson distribution. 
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3.16.1. The method 

To generate a sample (x1 , ••• ,xk> with the same distribution as 

(~'!! ( 1), ••• '~'!! (k) ), we use the modified algorithm of 3 .15. 

3.16.2. The algorithm 

To compute a realization (y1, •.• ,yk) of <x1, •.• ,xk) we may proceed as 

follows. 

1. Introduce auxiliary variables r, s, t, v, and wand initializes := 1, 
t 

t := (log ~)/k, v := e, w := 0. 

2. For each i = 1,2, •.• while s/eµ < v do (w:=w+ log i; s::::;:s + exp(i log µ-w)). 

3. If i = 1 then (y1:=0, •.• ,yk:=0); goto step 8). 

4. i := i-1; yk := i; s := s-exp(ilogµ-w); w := w-logi; r :=logs-µ. 

5. For each m = k-1,k-2, ••• ,1 perform the steps 6 and 7. 

6. t := t + (log u )/m. 
m 

7. If t > r then ym := i else[if i=l then (y1:=0, ••• ,ym:=0; goto step 8) 

else (i:=i-l;s:=s-exp(i log µ-w);w:=w-logi; r:=log s-µ; goto step 7)]. 

8. Stop. 0 

3 .16. 3. Remark 

The algorithm can be stated also in the following form, which might. 

be slightly faster if k is large, compared to v'µ. 

1. Introduce auxiliary variables m, r, s, t, v, and wand initialize 

m := k, s 
t 

:= 1, t := (log uk)/k, v := e , w := 0. 

2. For each i = 1,2, ••• while s/eµ < v do (w:=w+log i;s:=s+exp(i log µ-w)). 

3. For each i = i-1,i-2, .. a,1 perform the steps 4 and 5. 

4. s := s - exp(i log µ-w); w := w - log i; r :=logs-µ. 

5. If t > r then (y :=i; if m=1 then goto step 7; m:=m-l;t:=t+(log u )/m; 
m m 

goto step 5) •· 

6. Y1 := 0, ••• ,ym := 0. 

7. Stop. 0 

Step 3 is supposed to be a dummy statement if i = 1. 
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4. CONTINUOUS DISTRIBUTIONS 

In this section procedures are given to generate random variables with 
• 

continuous probability distributions and ordered samples of some of them. 

If an inverse F-l of the cumulative distribution function F can be computed 

easily, the corresponding random variable is generated by F-1 (u). This is 

done in the Subsections 4.1- 4.7. Sometimes a simple real valued function 

~ exists such that ~(~1 , ..• ,~n) has the probability distribution wanted. An 

example of this can be found in 4.8. If both methods fail or are not satis­

factory, one may try to find an auxiliary probability distribution slightly 

differing from the original one and such that one of the methods just men­

tioned can be applied to it. A random variable generated to have this dis­

tribution is transformed by only accepting it if it satisfies a certain 

condition, under which its conditional probability distribution is equal to 

the one wanted. Informally one might say that one chooses an "easy" dis­

tribution in the "neighbourhood" and then makes a correction to it by con­

ditioning. In order to be an efficient procedure the probability that the 

condition of this rejection method is satisfied has to be close to 1. This 

is the reason why one should stay in the "neighbourhood". The rejection 

method is applied in 4.9 - 4.11. For mathematical details the reader is 

referred to Subsection 2.3. 

To generate ordered samples from continuous distributions we use the 

fact that an ordered sample from an exponential distribution has spacings, 

i.e. distances between successive elements, which are independent and 

exponentially distributed with known parameters. 

4.1. THE UNIFORM DISTRIBUTION 

Let~ have a uniform distribution with parameters a and b, a< b, 

i.e. the probability density of X is given by 

~ {: Ha < X :::;; b 
f (x) 

otherwise. 
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4.1.1. The method 

A random variable l with the same distribution as xis generated 

according to 

y = (b-a)u + a. 

4.2. THE EXPONENTIAL DISTRIBUTION 

Let x have an exponential distribution with parameter A, A> 0, i.e. 

the probability density of xis given by 

-- {Ae -0)-.x 
f(x) 

4.2.1. The method 

if X 2 Q 

otherwise. 

A random variable¥ with the same distribution as xis generated 

according to 

1 
¥ = - \ log u. 

PROOF. P{¥ $ y} = P{u 2 e-Ay} -Ay 
1 - e for every y 2 0. 0 

4.2.2. Remark 

-AX 
The cumulative distribution function Fis given by F(x) = 1 - e 

if x 2 0, so its inverse is F- 1 (u) = - i log(l-u) if O $ u < 1. By observ­

ing that~ and 1 - u have the same probability distribution, we see that 
-1 

a minor modification of the F method leads to¥ defined above. 

4.3. THE GUMBEL DISTRIBUTION 

Let x have a Gumbel distribution with parametersµ and cr, a> 0, i.e. 

the probability density of X is given by 

X - µ 

f(x) 
1 

exp{-
X - µ -°l for every x E ]R. - - e a CJ 



4.3.1. The method 

A random variable l with the same distribution as xis generated 

according to 

µ - 0 log(- log u) if u < 1, 

by which we mean that from a sequence ~ 1 ,~2 , ..• of independent uniform 

random variables the first u. is satisfying u. < 1 is used to compute y_. 
-i -i 

PROOF. The cumulative distribution function F of x_ is given by F(x) 
x-µ 

= exp{- e - ~} for every real x and hence its inverse is F-1 (u) = 

= µ - 0 log(- log u) if O < u < 1. The result follows by observing that 

the first u. satisfying u. < 1 has a uniform distribution over the inter-
-i -i 

val (0,1). D 

4.4. THE WEIBULL DISTRIBUTION 

Let x have a Weibull distribution with parametersµ, cr and a, cr > 0, 

a> 0, i.e. the probability density of xis given by 

f(x) 

a {~(x:µ)"-l :xp{-(x~µ)"} if X > µ 

otherwise. 

4.4.1. The method 

A random variable l with the same distribution as xis generated 

according to 

1/a l = µ + 0(- log~) . 

PROOF. Imitate the proof of 4.2. 0 

25 
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4.5. THE CAUCHY DISTRIBUTION 

Let x have a Cauchy distribution with parametersµ and cr, cr > O, i.e. 

the probability density of xis given by 

1 
f(x) = 

(J'JT 1 + 

4.5.1. The method 

1 
for every x E lR. 

A random variable X with the same distribution as xis generated 

according to 

if u < 1. 

An explanation of how to handle this condition is given in 4.3.1. 

PROOF. For every real x we have F(x) = i artan(x~µ) +½and hence 

F - l ( u) = µ + cr tan ( ( u-½ ) 'IT) if O < u < 1. D 

4.6. THE LAPLACE DISTRIBUTION 

Let x have a Laplace distribution with parametersµ and cr, cr > O, i.e. 

the probability density of~ is given by 

f(x) = __!_ exp{- Ix-µ I} 
2a a 

for every x E lR. 

4.6.1. The method 

A random variable X with the same distribution as xis generated 

according to 

x={"+o 
µ - cr 

PROOF. The cumulative 

F(x) =½exp{- lx-µJ} 

log(2~) if u $ ½ 

log(2(1-'!::)) if ½ < u < 1. 

distribution function of xis given by 

if x :s; µ and F(x) = 1 - ½-exp{- lx-µl} if x >µand cr. 
-1 cr 

hence F (u) = µ + cr log(2u) if u :s; ½ and F-1 (u) = µ - cr log(2(1-u)) if 

½<u<l. D 



4.6.2. Remarks 

Two alternative procedures are the following. 

1. Generate x 1 according to 

27 

where, as stated at the beginning of Section 3, ~land ~ 2 are independent 

random variables, both having a uniform distribution over the interval 

(0,1] and the function¢ is defined by ¢(a) = 1 if a$ 0 and ¢(a)= -1 

if a> 0. 

PROOF. For every y 1 $µwe have P{x1 $ y 1} = P{~1 ~ ½,~2 ~ exp{(y1-µ)io} = 

= ½ exp{-ly1-µl/o}; for every Y1 >.µwe have P{x1 $ yl} = P{x1 $ µ} + 

+ P{µ < X1 $ yl} = P{~l ~ ½} + P{~l > ½, ~2 ~ exp{-(yl-µ)/o} = 

= ½ + ½(1 - exp{-Jy1-µl/o}). D 

2. Generate x2 according to 

X2 =µ+a log(~l/~2). 

PROOF. For every y 2 $µwe have P{x2 $ y 2 } = P{~ 1 $ ~2 exp{- Jy~-µf}} = 
=½exp{- IY2~µJ}. The last equality is easily obtained by using 2.3. For 

every Y2 > µ we have P{x2 $ Y2} = 1 - P{x2 > Y2} = 1- P{~2 < ~1 exp{- IY~-µ-I} = 

= 1 - ½ exp{-ly2-µl/o}. D 

4.7. THE LOGISTIC DISTRIBUTION 

Let x have a logistic distribution with parametersµ and a, a> 0, i.e. 

the probability density of~ is given by 

for every x € IR. 

4.7.1. The method 

A random variable X with the same distribution as xis generated 

according to 
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X = µ - cr log(l/~- 1) if u < 1. 

x-µ -1 
PROOF. For every real x we have F(x) = [1 +exp(---)] • Thus Xis obtain-

-1 (1 
ed by computing F. (~) if u < 1. An explanation of the condition u < 1 is 

given in 4.3.1. D 

4.8. THE NORMAL DISTRIBUTION 

Let x have a normal distribution with parametersµ and a, C1 > 0, i.e. 

the probability density of~ is given by 

f(xl = 
0

~ e:xp{- i(x~µ)2
} for every x e m. 

4.8.1. The method 

Two independent random variables x1 and x2 each having the same dis­

tribution as x are simultaneously generated according to 

{
YY_· l = __ µ + o/-2 log ~I cos ( 211!!2 ) 

_ 2 µ + a✓-2 log ~ 1 sin(2,r~2). 

PROOF. From the defining relations of x1 and x2 it follows that 

and 

where e is defined by 0(a,b) = 0 if a> 0 and b > 0, 0(a,b) =½if a< O, 

0(a,b) = 1 if a> 0 and b < 0. Hence the simultaneous probability density g 

of x1 and x2 can be computed by 2.2. For every O < u 1 < 1, 0 < u 2 ~ 1 and 

corresponding values of y 1, y 2 we have 

and 



la(y1,Y2)1 = 
a(u1,u2) 

2 
(J 21T 

4.8.2. Remark 

cr cos(21ru2 ) 

u/-2 log u 1 

D 

cr sin(21ru2 ) 

u 1 /-2 log u 1 
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✓-2log~1 , 21r~ 2 can be considered to be the polar coordinates of the 

rectangular coordinates (y1-µ)lcr, (y2-µ)lcr. This may be used in an algorithm 

if a transformation from polar to rectangular coordinates is available on 

the computer or calculator to be used. 

4.9. THE BETA DISTRIBUTION 

Let~ have a beta distribution with parameters a and S, a> 0, S > 0, 

i.e. the probability density of~ is given by 

f(x) = 
I f(a+S) xa-l(l-x)S-1 

r(a)f(S) 

l 0 

if O < X < 1 

otherwise, 

where r is the gamma function, r(a) Joo a-1 -v = v e dv. 
.0 

4.9.1. The method 

A random variable y with the same distribution as~ is generated by 

applying a rejection method in the following way. Reject~= ~~/a+ ~;IS as 

1 1 f 1 h . d . db _ llal( lla 1IB) Th" ong as~> . I ~ ~ ten y is etermine y y - ~1 ~ 1 +~2 • is 

means that from a sequence ~ 1 ,~2 , ... , the first pair (~ 2i_ 1 ,~2i) of which 

the corresponding w satisfies w ~ 1 is used to generate y. 

{ lla < } _ a lla PROOF. For every O < w1 ~ 1 we have P ~ 1 - w1 - w1 • Define ~ 1 = ~l and 

~ 2 = ~;IS, then the cumulative distribution function G of y is, if O < y < 1 

G(y) = P{~1l(~1+~2) ~ y ~1 + ~2 ~ l} = P{~l (l-y) ~ y ~2' ~1 + ~2 ~ l}I 

IP{~1 + ~ 2 ~ 1} = CP{~1 ~ min(~ ~ 2 ,1- ~2 )}, where C is a constant, i.e. 
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independent of y. Therefore 

1 

G(y} = C I . J_ S-1 { }a Illl.n(l-y w2 ,1-w2 ) Sw2 dw2 , * w2 :S 1-w2 ~ w2 :S 1-y, 

0 
~ 

1-y 1 

G(y) C I y a S-1 + C I a S-1 = ( 1_y w2) Sw2 dw2 ( 1-w2 ) Sw2 dw2 • 

0 1-y 

From this we see that G is differentiable at y, so the density of G may be 

computed as follows. 

g(y) 
dG ( y) CS d a S a S-1 

= dy = a+S dy (y ( 1-y) ) + CSy ( 1-y) 

= ..£rL c a-1 ( 1_ ) S-1. 
a+S y y 

Thus x and 1 have the same probability density. D 

4.9.2. Remarks 

When using a rejection method, like above, the natural thing to ask is 

how many pairs (~2i_ 1 ,~2i) have to be generated to generate X· The number of 

pairs has a geometric distribution with parameter p equal to 

J1 a S-1 
p = P{~1+~2 :S 1} = 0 (1-w) Sw dw = f(a+1)f(S+1)/f(a+S+1). Thus the expected 

number is 1/p = f(a+S+1)/f(a+1)/f(S+1); if e.g. a= S = 1 then 1/p = 2. 

1/p may become very large as a and S increase. As a consequence this method 

will become less efficient. An alternative can be given by using gamma dis­

tributed random variables (see 4.10). Let ~l have a gamma distribution with 

parameters 1 and a, a> 1 and let ! 2 be independent of !land let it have 

a gamma distribution with parameters 1 and S, S > 1, then ~ 1/(!1+~2 ) has a 

beta distribution with parameters a and S. 

PROOF. Let ~land ~2 be defined by ~l = ~1/(!1+~2 ) and ~2 = ~l + ~ 2 . The 

transformation from (!1 ,~2 ) to (~1 ,~2 ) corresponds to a bijective map from 
+ + + + . 

JR x JR to ( 0, 1) x lR ( JR 1.s the set of positive real numbers) . The 

inverse transformation is ! 1 = ~ 1~2 , ~ 2 = ~2 (1-~1 ), thus the density h of 

~ 1 and ~2 , computed by 2.2, is 



where C is a constant, i.e. independent of 2 1 and 2 2 • Hence 

for every ( 2 1 , 2 2 ) E (0, 1) x lR + From this we conclude that ~1 has a beta 

distribution with parameters a and S. D 
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Note that this proof does not require a> 1 and S > 1, it is just that 

otherwise the beta distribution is used to generate gamma distributed random 

variables, as will be seen in the next subsection. 

4.10. THE GAMMA DISTRIBUTION 

Let~ have a gamma distribution with parameters cr and a, cr > 0, a> O, 

i.e. the probability density of 

f(x) 

a-1 
(~) 

cr 

0 

xis given by 

X exp{--} 
cr 

if X > 0 

otherwise, 

Joo a-1 -v 
where f(a) = 0 v e dv is the gamma function. 

4.10.1. The method 

A random variable X with the same distribution as xis generated by 

applying a rejection method in the following way. 

If O <a< 1 then first a random variable w is generated (e.g. by 

using 4.9) with a beta distribution with parameters a and 1-a, next Xis 

computed according to 

X = - cr ! log u. 

(Writing~ implicity implies that u is independent of all other random 

variables, especially~' unless stated otherwise.) 

If a 2 1 then first a sequence of random variables ~1 ,~2 , .•• is 

generated from an auxiliary distribution with cumulative distribution 
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function H with H (z) = zT/(a T+zT) if z ~ 0, T = ✓20.-1, as proposed by 

[4 J H-1 ( l ) 1/T CHENG • This is done according to z. = - u 2 . 1 ) = a(1/u2 . 1-1 
-1 - 1- - 1-

if ~2i-l < 1. Next i is defined to be the smallest i satisfying 

't T-1 . T T 2 . where his the density of H, h(z) = Ta z /(a +z) if z > O, and 
f(z) a -a [ ~ 

M = ~~6 h(z) = 4a e / v2a-1 f(a)]. Finally Xis computed, 

PROOF. a. suppose O <a< 1. Define random variables~' x1 and x2 by 

~ = - log~• x1 = v wand x2 = v - ~!·By using 2.2 we can compute the 

simultaneous probability density g of x1 and x2 • For y 1 > 0 and y 2 > 0 we 

have, since v has an exponential distribution with parameter 1 

1 

1 

where C is a constant, i.e. independent of y 1 and y2 • Hence 

-a -y2 
y 2 e for all y1 > 0, y 2 > 0. 

From this we see that Xi has a gamma distribution with parameters 1 and a. 

b. Suppose a~ 1. See 2.3 and CHENG [4]~ 0 

4.10.2. The algorithm 

If a~ 1 we may proceed as follows to compute a realization y of X· 
1. Define constants b = 1- (log 4)/a and c = ha-1. 

2. Let i be an integer variable with initial value 0. 

3. i := i+L 

4. If u2i-l = 1 then go to step 3. 

5. Introduce the auxiliary variables rand t and assign r := log(1/u2i_1-1)/c, 

t;=exp(r). 



6. If r-t+b-log(u2iu2i_ 1(1-u2i_1))/a < 0 then goto step 3 else 

y := oat. D 

4.10.3. Remark 
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If a has an integer value, a random variable, having a gamma distribu­

tion with parameters o and a, also can be obtained as the sum of a indepen­

dent random variables, each having an exponential distribution with param­

eter 1/o. 

4.11. THE CHI-SQUARE DISTRIBUTION 

Let x have a chi-square distribution with parameter v, v E :IN, i.e. 

the probability density of xis given by 

{ 
1 X V/2-1 { ~} 

__ 2f(v/2) (2)
0 

exp - 2 
f(x) 

if X > 0 

otherwise, 

Joo a-1 -v 
where f(a) = 0 v e dv is the gamma function. 

4.11.1. The method 

A random variable¥ with the same distribution as xis generated 

according to 4.10.1 with parameters o=2 and a=v/2. 

4.11.2. Remark 

If vis even, a chi-square distributed random variable can be obtained 

as the sum of independent, exponentially distributed random variables, 

see 4.10.3. 

4.12. THE MULTIVARIATE NORMAL DISTRIBUTION 

Let x have a p-dimensional multivariate normal distribution with 

parameters µ E lRP and I E JRpxp, I positive definite, i.e. the probability 

density of xis given by 
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where JEI is the determinant of the matrix E and (x-µ)' is the transpose of 

the vector x - µ. 

4.12.1. The method 

Let E = LL' be a decomposition of the covariance matrix E and suppose 

z 1 , .•. ,z are independent random variables, which are normally distributed 
- -p 
with parameters 0 and 1, possibly generated according to Subsection 4.8, 

then a random vector y having the same distribution as xis generated 

according to 

¥ = L~ + µ, 

where z = (z 1 , ...... ,z ) 1 .. 
- -p 

4.12.2. Remark 

The matrix L of the decomposition E = LL' can be chosen to be lower 

triangular by using the Choleski decomposition method. A proof of this can 

be found in many books, e.g. BROYDEN [2]. 

4.13. AN ORDERED SAMPLE FROM A UNIFORM DISTRIBUTION 

Let ~ 1 , •.. ,~ be independent random variables, each uniformly distrib­

uted over the interval (0,1]. If~ is a permutation of {1,2, ••• ,k} such that 

x < x < < x then (x x ) is called an ordered 
-TT (1) - -TT ( 2) - • • • - -TT ( k) ' -TT (1) ' ••• '-TT (k) - - - - -
sample from a (standard) uniform distribution. 

4.13.1. The method 

To generate a sample (z1 , •.• ,yk) with the same distribution as 

(~!(l)'"""'~~(k)), we use the property that the spacings, i.e. the differ­

rences of successive observations, of an ordered sample from an exponen­

tial distribution are independently and again exponentially distributed, 

however with different parameter values. 



For every integer i satisfying 1 sis k lets. be a random variable 
-J. 

with an exponential distribution with parameter k-i+1 such that 

~1 , ••• ,~k are. independent. These vari~les might be generated by using 

Subsection 4.2. Next we define z. = l~ 1 s. for every i, 1 sis k, then 
-J. J= -J 

(~ 1, ••• ,~k) is an ordered sample from an exponential distribution with 

parameter 1. Finally <x1 , ••• ,Xk) is defined by Xi= exp{-~k-i+l} for 

1 s i s k. 

PROOF. See DAVID [5]. 0 

4.13.2. The algorithm 
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To compute a realization (y1 , ••• ,yk) of <x1 , ••• ,xk) we may proceed as 

follows. 

1. Introduce the auxiliary variables and initializes := 0. 

2. For each m = k,k-1, ••• ,1 perform the steps 3 and 4. 

3. s := s + (log u )/m. 
m 

s 
4. y := e • D 

m 

4 • 13. 3 • Remarks 

A realization {y1, ••• ,yk) of an ordered sample from an exponential 

distribution with parameter A can be generated by the following algorithm. 

1. Introduce the auxiliary variables and initializes := 0. 

2. For each m = k,k-1, ••. ,1 perform the steps 3 and 4. 

3. s := s - (log u )/m. 
m 

4. Ym-k+1 := s/A. D 

One can generate an ordered sample from an arbitrary probability 

distribution, with cumulative distribution function F, by using the algo­

rithm 4.3.12 with the fourth step replaced by 
* s 4 • y := cj> (e ) • 

m 
Here cj> is a monotonous function, defined on the unit interval, such that 

Fis the cumulative distribution function of cj>(u), if u is uniformly 

distributed over the interval (0,1]. Thus F-1 i; an ex~ple of a function 

cj> like that. 
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5. DISCUSSION ON POSSIBLE LIMITATIONS WHEN USING A PSEUDO RANDOM 

NUMBER GENERATOR 

A device to simulate a uniformly distributed random variable only 

approximately can have the property of complete unpredictability. There 

are rather good approximations, like a good lottery with a very large 

number of tickets. curiously, devices exist which can be implemented in a 

digital computer and which give satisfactory results in a simulation. Some 

properties of such so called pseudo random number generators are: 

1. Each time they are activated they render a number, called a realization, 

belonging to some fixed set, N = 
m 

{0,1, ••. ,m-1} say, where mis a param-

eter of the generator, in general closely connected to the way an inte-

ger number is represented in the computer. 

2. successive realizations are successive elements of a finite cyclic 

sequence, r 1,r2 , •.. ,rn-l'rn,r1, ••• say, where n may be very large. 

Two examples of such generators are the linear congruential generator, 

e.g. see KNUTH [10], and the generator of POHL [11]. Thus a pseudo random 

number generator is perfectly predictable! An advantage of this is, e.g., 

the possibility of tracing errors in a simulation computer program. From 

the properties stated above it will be clear that certain precautions are 

necessary for the pseudo random number generator to look like a (genuine) 

random number generator. "To look like'' in this context may be interpreted 

in the way that one can not discriminate between simulation results based 

on realizations of the real generator and the pseudo generator, if the only 

information available consists of those simulation results. As an example 

to illustrate this, consider the following two sequences, one produced by 

tossing a coin and one produced by a pseudo random number generator and 

method 3.1.1. 

o,1,1,o,1,1,o,1,o,o, ••• 

Q I 1 f 1 I Q I 1 f 0 I 1 f 1 f 1 f 1 f • • • 

The question is whether one can recognize the producing devices by such 

sequences. 

The precautions to be taken will depend on the kind of simulation 

experiment in which the pseudo random number generator is to be used. In 
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the following we shall consider two situations in which a linear congruent­

ial generator is used. 

If the generator has been constructed carefully, n = m and the best one 

can say is that ri of its successive realizations "look like" a realization 

of a random permutation of N, since every number in N occurs exactly once 
m m 

in each cycle. This implies that we accept a random permutation of N to be 
m 

a mathematical model for the linear congruential generator. The problem is 

whether or not a sequence of independent, uniformly distributed random 

variables can be a reasonable model for this generator. The limitations we 

are about to introduce, will reduce the differences between realizations 

of the two models in a particular situation. 

CASE 1. One has to simulate a sample of size k from a random variable x, 

uniformly distributed over {1, ... ,N}, (~1 , ... ,~) say. Apply the algo-

rithm of 3.1. This induces a partition {c1 , ... ,CN} of the set of m possible 

realizations such that each C. contains about m/N elements and the event 
1 

{~ = i} corresponds to the generator producing a result in C .• Assume that 
1 

the sample is generated stepwise and let the condition be imposed that in 

each step the ratio of the probabilities of obtaining a result in C. in 
1 

both models does not differ more than some small constant, n say, 0 < n < 1, 

from 1, uniformly in i. This implies 

which is the same as (N-1+n) (k-1) ~ mn. For the inverse ratio we obtain 

(N-1+Nn)(k-1) ~ mn. Both relations are implied by Nk ~ mn/(1+n). Since n is 

supposed to be small, in this situation· 

Nk ~ mn 

could be a useful condition. Let all numbers be represented w.r.t. some 

base, b say, b > 1, then from this condition the following rule of thumb 
b 

can be derived by applying log to both sides. 
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(no. of digits necessary to represent the no. of categories) 

+ (no. of digits necessary to represent the sample size) 

~ (no. of digits given by the pseudo random number generator) 

- (no. of digits necessary to represent 1/n). □ 

CASE 2. Consider the same situation as before and define n. =no.of sample 
l 

observations in C .. In the first model, in which the pseudo random number 
l 

generator is represented by a random permutation, the variance of n. will 
-i 

be smaller than in the second model, in which the generator is represented 

by a sequence of independent, uniformly distributed random variables. A 

condition that one might want to impose is that the ratio of the variances 

in the first and second model does not differ more than some small amount, 

E say, 0 < E < 1, from 1. 

In the first model n. has a hypergeometric probability distribution 
-l 

with variance 

var 1 n. RJ 
-i 

x m(N-l) x k x (m-k) x [m2 (m-1)]-l = 
N N 

(N-1 )k (m-k) 

N2 (m-1) 

n. in the second model is binomially distributed with variance 
-i 

m/N m(N-1)/N 
var 2 n. Pd k x -- x = 

-i m m 
k(N-1) 

N2 

The ratio is var 1 ~i/var 2 ~i RJ (m-k)/(m-1). The condition (m-k)/(m-1) ~ 1-E 

is equivalent to k ~ m - (m-1)(1-E); it is implied by 

k $ IDE. 0 

These are just two special cases to indicate what kind of limitations 

might be introduced. In general, before doing a simulation experiment one 

has to analyse the specific situation at hand and one has to introduce con­

ditions under which the differences between the simulation and the ideal, 

theoretical situation will not be "too obvious". Finally these conditions 

have to be reformulated in terms of the parameters of the simulation 

experiment. 

*) 
"RJ" because the no. of elements of C. is only approximately equal to m/N. 

l 
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