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a b s t r a c t 

This paper considers an unsignalized intersection used by two traffic streams. The first stream of cars is 

using a primary road, and has priority over the other stream. Cars belonging to the latter stream cross 

the primary road if the gaps between two subsequent cars on the primary road are larger than their 

critical headways. A question that naturally arises relates to the capacity of the secondary road: given 

the arrival pattern of cars on the primary road, what is the maximum arrival rate of low-priority cars 

that can be sustained? This paper addresses this issue by considering a compact model that sheds light 

on the dynamics of the considered unsignalized intersection. The model, which is of a queueing-theoretic 

nature, reveals interesting insights into the impact of the user behavior on the capacity. 

The contributions of this paper are threefold. First, we introduce a new way to analyze the capacity of the 

minor road. By representing the unsignalized intersection by an appropriately chosen Markovian model, 

the capacity can be expressed in terms of the solution of an elementary system of linear equations. 

The setup chosen is so flexible that it allows us to include a new form of bunching on the main road 

that allows for dependence between successive gaps, which we refer to as Markov platooning ; this is the 

second contribution. The tractability of this model facilitates studying the impact that driver impatience 

and various platoon formations on the main road have on the capacity of the minor road. Finally, in 

numerical experiments we observe various surprising features of the aforementioned model. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Unsignalized priority-controlled intersections are very common

n urban networks. In the first place there is a high-priority class

hat consists of cars that use a major (or primary) road. These cars

ass the intersection according to some inherently random process.

n the second place there is a low-priority stream, consisting of

ehicles on the minor (or secondary) road, trying to cross the ma-

or road, not affecting the high-priority stream. More specifically,

ehicles on the minor road are only allowed to cross the major

oad when there is a sufficiently large gap between two successive

ars on the major road. This critical headway T can be either de-

erministic or a (possibly car-specific) random variable. In practice,

 low-priority driver’s critical gap typically decreases over time, as

e becomes increasingly impatient while scanning for a sufficiently

arge gap. 
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Since the high-priority cars on the main road are not hindered

y the low-priority cars on the minor road, the capacity of the

ystem is fully determined by the traffic flow on the minor road.

e are interested in the capacity of this secondary road, which

s defined as the maximum possible number of departures (per

ime unit) of vehicles from this road. Heidemann and Wegmann

1997) show that this definition implies that the capacity can be

xpressed in terms of the stability of the corresponding queue:

hat is the maximum arrival rate of low-priority cars for which

t can be guaranteed that the queue (on the minor road) does not

ecome systematically congested? The answer to this question ev-

dently depends on the distribution of the gaps between subse-

uent cars on the primary road. In particular, the capacity of the

inor road is greatly influenced by the clustering of vehicles in

latoons on the main road. 

In addition to the above, specific features of the low-priority car

rivers play a crucial role, in terms of the way that individual car

rivers choose their critical headways. We distinguish three mech-

nisms, which we call (for consistency with Abhishek, Boon, Mand-

es, & Núñez Queija, 2016 ) B 1 , B 2 , and B 3 . The first model assumes

hat T is constant and the same for all drivers ( Guo & Lin, 2011 ). In
signalized intersections: The impact of impatience and Markov 
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Fig. 1. An example of a situation that can be analyzed using the model in this 

paper. 
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4  
the second model T is considered to be a random variable, where

the value of T is resampled for any new attempt to cross the main

road ( Guo, Wang, & Wang, 2014; Wu, 2012 ). The randomness cap-

tures the heterogeneity in the preferences (and driving styles) of

the low-priority car drivers. Due to the resampling, this model is

often referred to as inconsistent behavior : the same driver can have

different critical headways in different attempts. The third model

assumes that different drivers have different thresholds T , but each

driver persistently uses a single driver-specific value of T for all at-

tempts. This is called consistent behavior . 

The main objective of this paper is to set up and analyze a

model that includes all features mentioned above: (a) driver im-

patience and (b) platooning on the main road, (c) for the behavior

types B 1 , B 2 , and B 3 described above. Notably, previous studies did

not succeed in simultaneously incorporating this array of features.

The emphasis is on computing the capacity of the minor road. 

Various aspects of gap acceptance models have been studied

before. The main applications concern unsignalized intersections

(e.g. Catchpole & Plank, 1986; Cheng & Allam, 1992; Heidemann &

Wegmann, 1997; Tanner, 1962 ), pedestrian crossings (e.g. Mayne,

1954; Tanner, 1951; Wei, Kumfer, Wu, & Liu, 2016 ), and freeways

(e.g. Drew, Buhr, & Whitson, 1967; Drew, LaMotte, Buhr, & Wattle-

worth, 1967 ). Although the queueing aspects in these three appli-

cation areas might differ slightly, the gap acceptance process ex-

hibits similar features and one common procedure can be used to

determine the capacity of the system. In this paper, we focus on

the setting of an unsignalized intersection, or T-junction, as de-

picted in Fig. 1 , but all results regarding the capacity of the minor

road can be applied to pedestrian crossings or freeway merging,

possibly after making small application-specific adjustments as de-

scribed in the aforementioned papers. Heidemann and Wegmann

(1997) give an excellent overview of the existing results in gap ac-

ceptance theory, including the three types of user behavior that

were discussed above. 

As mentioned above, this paper aims at computing the capacity

of the minor road in our setting with impatience, platooning, and

three different behavior types. In more detail, our contributions are

the following. 

• We introduce a new method to analyze the capacity of an

unsignalized priority-controlled intersection by representing it
Please cite this article as: Abhishek et al., Congestion analysis of un

platooning, European Journal of Operational Research (2018), https://do
by a suitably chosen Markovian model. Evaluating the capacity

of the minor road thus reduces to solving an elementary system

of linear equations, for which we provide a computationally ef-

ficient implementation. For any instance considered in this pa-

per, we obtain the capacity nearly instantaneously, thus provid-

ing a substantial advantage over performing microsimulations. 
• Importantly, the tractability of this model allows us to incorpo-

rate simultaneously driver impatience and bunched arrivals on

the major road. To achieve the latter, we introduce a new model

for vehicle clustering, which we will refer to as Markov pla-

tooning throughout this paper. We study the impact of various

platoon formations ( Gaur & Mirchandani, 2001; Jia, Lu, Wang,

Zhang, & Shen, 2016; Li, 2017 ) on the main road on the capac-

ity of the minor road. We do so for the three different behavior

types introduced above. 
• Through numerical examples we present a sequence of sur-

prising insights regarding the capacity of the minor road. In

Abhishek et al. (2016) it was observed that for the model with-

out impatience and platooning the capacities that correspond

with the three different types of driver behavior that we intro-

duced above, are strictly ordered: B 2 has the largest capacity,

then B 1 , and the capacity of B 3 is the smallest (with the mean

critical headway of models B 2 and B 3 chosen equal to the de-

terministic critical headway of model B 1 ). In the present paper

we empirically observe that in the setting platooning the order-

ing still holds, whereas the ordering is lost when impatience is

added to the model. 

Another important insight is that one needs to be extremely

careful when determining the capacity of an unsignalized in-

tersection when the traffic flow on the major road switches

between multiple regimes. More specifically, for this situa-

tion with platoons we show that one should build one model

with various background states (corresponding to the different

regimes) to determine the overall capacity, rather than comput-

ing the capacities for the different regimes separately and then

taking an average. 

Platoon forming has also been studied in the existing litera-

ure on gap acceptance models before. The most common models

hat include clustering on the major road are so-called gap-block

odels. In these models, vehicles tend to form platoons, most

ommonly arriving according to Poisson processes. The lengths

f these platoons are i.i.d. random variables with general distri-

utions, which can be chosen carefully to mimic real-life clus-

ering behavior. Tanner (1962) considers a model where platoon

engths are distributed as the busy period of a single-server queue.

egmann (1991) and Wu (2001) analyze the capacity under even

ess restrictive assumptions. However, all of these models assume

o (or a very weak form of) dependence between successive block

izes and gap sizes. By introducing Markov platooning, an arrival

rocess based on Markov modulation, we allow for a more refined

ay of bunching on the major road that includes dependence be-

ween successive gap sizes. 

As mentioned above, our model also incorporates impatience of

he drivers that are waiting to cross the major road. Such behavior

as widely encountered in practice; see e.g. Abou-Henaidy, Teply,

nd Hund (1994) . The impact of impatience has been studied be-

ore in e.g. Drew, Buhr et al. (1967) , Drew, LaMotte et al. (1967) ,

nd Weiss and Maradudin (1962) , but (to the best of our knowl-

dge) not in a context with platooning and randomness in the crit-

cal headway T . 

This paper is structured as follows. In the next section, we de-

cribe in more detail the variations of the gap acceptance model,

ncluding the aforementioned types of gap acceptance behavior,

mpatience, and platooning on the major road. In Sections 3 and

 , we study the impact of Markov platooning and impatience on
signalized intersections: The impact of impatience and Markov 

i.org/10.1016/j.ejor.2018.09.049 

https://doi.org/10.1016/j.ejor.2018.09.049


Abhishek et al. / European Journal of Operational Research 0 0 0 (2018) 1–10 3 

ARTICLE IN PRESS 

JID: EOR [m5G; October 24, 2018;12:59 ] 

t  

a  

t

2

2

 

c  

w  

o  

h  

p  

t  

l

 

w  

r  

p  

t  

w  

o  

p  

t  

1  

t  

i  

w  

t

2

 

p  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

t  

j  

m  

f  

p  

t  

r

2

 

s  

i  

p  

a

f  

t  

u  

t  

r  

t

 

s  

b  

c  

h  

r  

a  

p  

(  

o  

a  

s  

c  

W

3

 

p  

(  

t  

i  

i  

f  

t  

a  

(  

w  

t  

s  

d

 

t  

n  

e  

e  

a  

b  

v  

c  

a  

s  

s  

o  

(  

i  

w  

g  

d

 

j  

(  

q  
he capacity of the minor road, respectively. In these sections we

lso present numerical results, exhibiting interesting features of

he model variations. Section 5 concludes the paper. 

. Preliminaries 

.1. Arrival process 

The situation analyzed in this paper is depicted in Fig. 1 . We

onsider an intersection used by two traffic streams, both of which

ishing to cross the intersection. There are two priorities: the cars

n the major road have priority over cars on the minor road (and

ence do not notice the presence of the minor road). The low-

riority cars on the minor road cross the intersection as soon as

he gap between two subsequent high-priority cars has a duration

arger than T , commonly referred to as the critical headway . 

Cars on the minor road arrive according to a Poisson process

ith rate λ. In this paper we distinguish between two types of ar-

ival processes on the major road. The arrival process for the high-

riority car drivers is a generalization of the Poisson process, viz.

he Markov modulated Poisson process (MMPP). The MMPP, which

ill be discussed in greater detail in Section 3 , is a well-studied

bject in applied probability which is generally used to model de-

endencies between inter-arrival times. In an MMPP, at time t the

ime till the next arrival is exponentially distributed with mean

/ q i if an independently evolving Markov process (usually referred

o as the background process ) is in state i at time t . The flexibil-

ty of the MMPP allows us to vary the inter-arrival times in such a

ay, that we can create platoons, single arrivals, or combinations

hereof. 

.2. Gap acceptance behavior 

We have not yet exactly defined the criterion by which the low-

riority cars decide to cross. In this paper, we distinguish three

ypes of ‘behavior’ when making this decision. 

B 1 : The first model is the most simplistic: the critical headway

T is deterministic, and uniform across all low-priority car

drivers. 

B 2 : Clearly B 1 lacks realism, in that there will be a substan-

tial level of heterogeneity in terms of driving behavior: one

could expect a broad range of ‘preferences’, ranging from

very defensive to very reckless drivers. In B 2 this is modeled

by the car driver at the front end of the queue resampling

T (from a given distribution) at any new attempt (where an

‘attempt’ amounts to comparing this sampled T to the gap

between the two subsequent cars that he is currently ob-

serving). 

B 3 : In the third model an alternative type of driver behavior is

assumed. More specifically, it reflects persistent differences

between drivers, in that each driver selects a random value

of T , but then sticks to that same value for all attempts,

rather than resampling these. 

Note that inconsistent and consistent behavior as defined in

 2 and B 3 , respectively, is a well-studied feature in queueing sys-

ems where low-priority jobs can be interrupted by high-priority

obs (cf. Takagi, 1991 ). When service is resumed, depending on the

odel, the remaining processing time might be a new (identical)

ull service time, a new random service time, or just the remaining

art of the original service time. In gap acceptance models the last

ype of model does not make sense, which is the reason why we

estrict ourselves to the first two variants. 
Please cite this article as: Abhishek et al., Congestion analysis of un

platooning, European Journal of Operational Research (2018), https://do
.3. Impatience 

For each of the aforementioned behavior types, we also con-

ider a variant that includes impatience. With impatience, the crit-

cal headway decreases after each failed attempt, reflecting the im-

atience of drivers, resulting in the willingness to accept smaller

nd smaller gaps. In more detail, we define a critical headway T m 

or the m th attempt to enter the main road ( m = 1 , 2 , . . . ). Note

hat, depending on the distributions of T 1 , T 2 , . . . , in model B 2 sit-

ations might occur where T m +1 > T m 

, despite T m +1 being stochas-

ically smaller than T m 

. This is a typical feature of the model with

esampling. Exact details regarding the manner in which impa-

ience is incorporated will be given in Section 4 . 

A few remarks are in place here. In the first place, above we po-

itioned this setup in the context of an unsignalized intersection,

ut various other applications could be envisioned. One of these

ould correspond to the situation in which the low-priority cars

ave to merge with the stream of high-priority cars (e.g. from a

amp or a roundabout). Also in the context of pedestrians crossing

 road, the model can be used. We also stress that in the case the

rimary road actually consists of two lanes that have to be crossed

without a central reservation), with cars arriving (potentially in

pposite directions) at Poisson rates (say) q ← and q → , our model

pplies as well, as an immediate consequence of the fact that the

uperposition of two Poisson processes is once again a Poisson pro-

ess with the parameter q := q ← + q → ; see also the discussion in

u (2001 , Section 5). 

. Markov platooning on the major road 

In this section we introduce a new method to compute the ca-

acity of the minor road, based on the principle of departure cycles

cf. Heidemann & Wegmann, 1997 , Section 5); we here consider

he impact of platooning, whereas in the next section impatience

s included as well. The main idea is to cast the traffic situation

nto a Markovian model. After introducing a novel way of platoon

orming, we analyze the three types of driver behavior B 1 –B 3 in-

roduced in the previous section. Since many results for the vari-

nts without impatience have been known in the existing literature

see, for example, Heidemann & Wegmann, 1997 for an overview),

e will mainly focus on the additional insights that can be ob-

ained for the capacity of the minor road under different circum-

tances, which turns out to lead to a few interesting new insights

epicted in the numerical examples at the end of this section. 

The assumption of Poisson arrivals on the major road is realis-

ic in periods of free traffic flow, where any individual vehicle does

ot affect vehicles behind it. In more congested situations, how-

ver, vehicles form platoons. As described in the introduction, sev-

ral papers have looked into the effect of platooning. Heidemann

nd Wegmann (1997) propose a general framework based on gap-

lock models, relying on results by Tanner (1962) . In such models,

ehicles form platoons which arrive according to a Poisson pro-

ess, where the lengths of these platoons are i.i.d. random vari-

bles with a general distribution, which can be suitably chosen

uch that it matches real-life clustering behavior. Wu (2001) ob-

erved that, in practice, the traffic flow in the major stream is in

ne of four different regimes: free space (no vehicles), free flow

single vehicles), bunched traffic (platoons of vehicles), and queue-

ng. By conditioning on the current regime, he applies the frame-

ork of Heidemann and Wegmann (1997) to set up a heuristic ar-

ument that provides a general capacity formula that is valid un-

er all four regimes; we return to this approach below. 

In this paper, we assume that the arrival process on the ma-

or road can be modeled by a Markov modulated Poisson process

MMPP). In an MMPP arrivals are generated at a Poisson rate

 when an exogenous, autonomously evolving continuous-time
i 

signalized intersections: The impact of impatience and Markov 
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Fig. 2. Simulated examples of two MMPP’s with two background states. On the horizontal axis we depict the time, while the squares (red or green) mark the arrivals. In 

(a), we have chosen μ1 = 1 / 20 , μ2 = 1 / 40 and arrival rates q 1 = 1 , q 2 = 1 / 15 vehicles per time unit. In (b) we use μ1 = 1 / 20 , μ2 = 1 / 20 and arrival rates q 1 = 1 , q 2 = 1 / 5 

vehicles per time unit. The red areas indicate that the background process is in state 1 (more platooning) and the green areas correspond to state 2 (less platooning). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Markov process (commonly referred to as the background process )

is in state i . We denote by d ∈ { 1 , 2 , . . . } the number of states

of the background process (where d = 1 corresponds to a non-

modulated, ordinary Poisson process). We assume the background

process to be irreducible; the corresponding stationary distribution

is given by the vector π . In the sequel we denote by M = (μi j ) 
d 
i, j=1 

the transition rate matrix of background process, and define μi :=
−μii . Therefore, an MMPP allows different traffic-flow regimes on

the major road. For example, in Fig. 2 , we show the arrival patterns

of two MMPP’s, each with two background states. The red squares

mark arrivals during the high traffic intensity ( q 1 ), while the green

squares mark arrivals during the low intensity ( q 2 ). It can be seen

that platoons are generally longer when the background process is

in state 1, corresponding to a high arrival rate. Additionally, we ob-

serve in Fig. 2 (a) that the background process stays longer in state

2 ( μ2 = 1 / 40 ) than in state 1 ( μ1 = 1 / 20 ). Another difference be-

tween the two sub-figures is that we choose q 2 = 1 / 15 in Fig. 2 (a)

and q 2 = 1 / 5 in Fig. 2 (b). This explains why, in state 2, we see no

platooning at all in Fig. 2 (a), but Fig. 2 (b) still shows some mild

platoon forming. 

The main objective of this section is to develop methods that

determine the capacity of the minor road under MMPP arrivals on

the major road, for the models B 1 up to B 3 ; here ‘capacity’ is de-

fined as the maximum arrival rate λ such that the corresponding

queue does not grow beyond any bound. Because of this focus on

the capacity, we can simplify the model by taking away the queue-

ing aspect on the minor road, assuming that this road is saturated :

there are always low-priority cars waiting for gaps. The reason un-

derlying this reduction is that capacity is a quantity that corre-

sponds to stability of the associated queue, and stability essentially

amounts to the queue being able to process all input in the long

run. 

The capacity, to be denoted by λ̄, is the ratio of the mean num-

ber of arrived cars in a cycle (which we define below) to the mean

duration of a cycle, which equals (due to renewal theory) the num-

ber of cars that can be served per unit time. The system is stable

when λ, the arrival intensity on the minor road, is less than λ̄.

Again, we distinguish between the three behavior types B 1 –B 3 in-

troduced in Section 2 , each with its own capacity λ̄i , for i = 1 , 2 , 3 .

Our objective is to assess the impact of the three types of the

driver’s behavior on stability of the underlying queueing model.

The capacity can be interpreted as the reciprocal of the time it

takes for an arbitrary car to cross the major road (the ‘service

time’). At first sight, the following procedure seems to provide us

with λ̄. Define S i as the time it takes for an arbitrary car to cross

a  

Please cite this article as: Abhishek et al., Congestion analysis of un

platooning, European Journal of Operational Research (2018), https://do
he major road, given the background process is in state i when the

ar (which has reached the head of the queue) starts his attempt.

ecalling that π i represents the long-run fraction of time that the

ackground process resides in state i , it is tempting to conclude

hat the capacity would equal 

d 
 

i =1 

πi 

E [ S i ] 
. (3.1)

lternatively, one might try to first take a weighted average of the

ean service times, and then take the reciprocal capacity: 

1 ∑ d 
i =1 πi E [ S i ] 

. (3.2)

here is, however, a conceptual mistake in these (naïve) ap-

roaches. The crucial point is that there is a difference between

he invariant distribution π of the background process (that under-

ies the platooning mechanism) and the distribution of the back-

round process seen by a car that has reached the head of the

ueue (which we denote by π (q) ). Put differently, the distribution

f the background process when a car arrives at the intersection

which is π due to the PASTA property) does not coincide with the

istribution of the background process when a car reaches the head

f the queue. To see this, think of a situation in which the arrival

ates (i.e., the rates q 1 and q 2 that pertain to the two states of the

ackground process) are chosen very differently. More specifically,

 1 has some moderate value q , whereas q 2 has some huge value Q

meaning that when the background process is in state 2, the cars

t the highway pass by at a high frequency). It implies that minor

oad cars that find the queue non-empty are, with high probability,

aced with the background process being in state 1 when reaching

he head of the queue (as the minor road cars in front of it can

nly leave the queue when the background state is 1); only cars

hat find the queue empty have a chance that the background pro-

ess is in state 2 when reaching the head of the queue. We thus

bserve that there is an evident difference between π and π (q) . 

This reasoning illustrates how careful one should be when

eighing capacities that belong to different regimes by the frac-

ions of time in which those regimes apply. A very similar decom-

osition approach was followed by Wu (2001) ; he distinguishes

our different regimes, as described above, each with an own ca-

acity, which are then combined into a single capacity. The formu-

as obtained by Wu (2001) likely provide a reasonable indication

f the capacity across a wide range of parameters, but there are

lso many cases in which the approach fails to do so. Later on, we
signalized intersections: The impact of impatience and Markov 
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rovide an example which illustrates that following such naïve ap-

roaches may lead to substantial errors. 

B 1 (constant gap): In this model, every driver on the minor

oad needs the same constant critical headway T to enter the major

oad. In our analysis we use the renewal reward theorem, which

ntails that the capacity can be written as the mean number of

ars arriving in a regenerative cycle divided by the mean duration

f that cycle, see also Heidemann & Wegmann, 1997 , Section 5.1.

or our purposes, an appropriate definition of a cycle is: the time

lapsed between two consecutive epochs such that (i) the back-

round process is in a reference state (say state 1, but the choice

f the reference state is arbitrary), and (ii) a service is completed

i.e., a low-priority car is served). 

To make our model Markovian, we approximate this determin-

stic T by an Erlang random variable with k phases of average

ength T / k . It is well known that a deterministic T can be approxi-

ated by the sum of k independent exponential random variables,

ach with parameter κ := k / T , with k large; to see this, observe that

his Erlang random variable has mean T (as desired), and variance

/ κ2 = T 2 /k, which goes to 0 as k grows large. Define h ij as the

ean number of cars that is served till the cycle ends, given that

he current state of the background process is i ∈ { 1 , . . . , d} and the

ar in service has finished j ∈ { 0 , . . . , k − 1 } phases of the Erlang

istribution. To find the mean number of arrived cars in a cycle,

e need to find h 10 . This can be done as follows. Exploiting the

emorylessness of the exponential distribution, we distinguish be-

ween all the possible jumps that can take place. Jumps may occur

ue to the background process changing state (with rate μi � from

tate i to � ), an arrival on the major road (with rate q i ), or the com-

letion of a phase of the Erlang critical gap distribution (with rate

). In the sequel we write � i := μi + q i + κ . Relying on ‘standard

arkovian reasoning’, by conditioning on the first jump, 

 i j = 

∑ 

� � = i 

μi� 

� i 

h � j + 

q i 
� i 

h i 0 + 

κ

� i 

·
{ 

h i, j+1 if j < k − 1 , 

1 if j = k − 1 , i = 1 , 

1 + h i 0 if j = k − 1 , i > 1 . 

(3.3) 

This can be written as a linear system of dk equations with

k unknowns of the form A 

�
 h = 

�
 b , where entries of the matrix

 = [ a mn ] , � h and 

�
 b = [ b m 

] are given as follows, with i = � m/k � , 

 mn = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

− κ

� i 
, if n = m + 1 and m � = k , 2 k , . . . , dk ; 

− q i 
� i 

, if n = (i − 1) k + 1 and m � = 1 , k + 1 , 2 k, 2 k + 1 , 3 k, . . . , (d − 1) k + 1 , dk ;

− κ + q i 
� i 

, if n = (i − 1) k + 1 and m = 2 k, . . . , dk ; 

− μi,� +1 

� i 
, if n = (� − i + 1) k + m and � ∈ { 0 , 1 , . . . , d − 1 } \ { i − 1 } ; 

1 − q i 
� i 

, if n = m and m = 1 , k + 1 , . . . , (d − 1) k + 1 ; 
1 , if n = m and m � = 1 , k + 1 , . . . , (d − 1) k + 1 ; 
0 , else, 

�
 h = [ h 10 , h 11 , . . . , h 1 ,k −1 , h 20 , h 21 , . . . , h 2 ,k −1 , . . . , h d0 , h d1 , . . . , h d,k −1 ] 

T

nd 

 m 

= 

{ 

κ

� � 

, if m = �k, � = 1 , 2 , . . . , d 

0 , else. 

It is noted that | a mm 

| = 

∑ 

n � = m 

| a mn | for all m � = k and for m =
, | a kk | > �n � = k | a kn |. Therefore, the matrix A is weakly diagonally

ominant with one row being strictly dominant. Moreover, A is

lso irreducible and, hence, invertible ( Horn & Johnson, 1986 ).

herefore, the solution of the system of equations A 

�
 h = 

�
 b is � h =

 

−1 �
 b . We thus find the desired quantity h 10 . 

To determine the capacity we need, in addition to the mean

umber of arrived cars in a cycle, also the mean duration of a

ycle. To this end we define τ ij as the mean time till the end
Please cite this article as: Abhishek et al., Congestion analysis of un

platooning, European Journal of Operational Research (2018), https://do
f the current cycle, given that the current state of the back-

round process is i ∈ { 1 , . . . , d} and the car in service has finished

j ∈ { 0 , . . . , k − 1 } phases of the Erlang distribution. The objective is

ow to find the mean duration of a cycle, which is given by τ 10 . 

Similarly to the procedure we set up above, 

i j = 

1 

� i 

+ 

∑ 

� � = i 

μi� 

� i 

τ� j + 

q i 
� i 

τi 0 + 

κ

� i 

·
{ 

τi, j+1 if j < k − 1 , 

0 if j = k − 1 , i = 1 , 

τi 0 if j = k − 1 , i > 1 . 

. 

(3.4) 

Also this system can be written as dk linear equa-

ions with dk unknowns. More precisely, with 

�
 τ =

 τ10 , τ11 , . . . , τ1 ,k −1 , τ20 , τ21 , . . . , τ2 ,k −1 , . . . , τd0 , τd1 , . . . , τd,k −1 ] 
T , 

e have A 

�
 τ = 

�
 c with A as defined before and 

 m 

= 

1 

� � 

for (� − 1) k + 1 ≤ m ≤ �k, and � = 1 , 2 , . . . , d. 

e already proved that A is invertible, and therefore the unique

olution of the system of equations A 

�
 τ = 

�
 c is �

 τ = A 

−1 �
 c . We thus

nd τ 10 . 

The capacity of this system can now be evaluated as λ̄1 :=
 10 /τ10 , meaning that the stability condition of the low-priority

ueue is λ < λ̄1 . In the numerical procedure, the value of k should

e chosen large, to ensure that the Erlang distribution is suffi-

iently ‘close-to-deterministic’. 

B 2 (sampling per attempt): As pointed out before, in this be-

avior type every driver samples a ‘fresh’ random T for every

ttempt to enter the major road. Let us assume that the gap

ize T equals some deterministic T n with probability p n , for n ∈
 1 , 2 , . . . , N} . Analogously to what we did in the procedure to eval-

ate the capacity for B 1 , we approximate T n by an Erlang random

ariable with k n phases; each of the phases is exponentially dis-

ributed with parameter κn = k n /T n . Let K := 

∑ N 
n =1 k n . 

We write � 

(n ) 
i 

:= μi + q i + κn . Let h (n ) 
i j 

be the mean number of

ars that is served till the cycle ends, given that the current state

f the background process is i ∈ { 1 , . . . , d} , the car in service has

ap size T n and the car in service has finished j ∈ { 0 , . . . , k n − 1 }
hases. We wish to find h 10 where 

 i 0 = 

N ∑ 

n =1 

p n h 

(n ) 
i 0 

, for i = 1 , 2 , . . . , d. (3.5)

hen 

 

(n ) 
i j 

= 

∑ 

� � = i 

μi� 

� 

(n ) 
i 

h (n ) 
� j 

+ 

q i 

� 

(n ) 
i 

h i 0 + 

κn 

� 

(n ) 
i 

·
{ 

h (n ) 
i, j+1 

if j < k n − 1 , 

1 if j = k n − 1 , i = 1 , 
1 + h i 0 if j = k n − 1 , i > 1 . 

(3.6) 

Observe how the resampling is incorporated in this system: when

n attempt has failed a ‘fresh’ new gap size is sampled, explaining

he h i 0 (rather than h (n ) 
i 0 

) in the right hand side. The last occur-

ence of h i 0 in (3.6) , when i > 1 , j = k − 1 , corresponds with the

vent that an attempt has succeeded, after which a new gap size

s sampled. 

The above equations can be written as a linear system of the

ype A 

�
 h = 

�
 b for a matrix A and vector � b (which evidently differ

rom the matrix A and vector � b that were used in the model B 1 )

onsisting of dK equations with dK unknowns. With the same ar-

ument as we have used for B 1 , it follows that the coefficient

atrix A is invertible. Using (3.5) , this facilitates the computa-

ion of � h and in particular the desired quantity h 10 (from h 10 =
p 1 h 

(1) 
10 

+ p 2 h 
(2) 
10 

+ · · · + p N h 
(N) 
10 

). 

We then define τ (n ) 
i j 

as the mean time till the current cycle

nds, given that the current state of the background process is
 ∈ { 1 , . . . , d} , the car in service has gap size T n , and has finished
signalized intersections: The impact of impatience and Markov 
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Fig. 3. The capacities (vehicles per hour) in Example 1 . The solid lines correspond 

to the exact expressions, the dashed lines to the approximations with k = 100 . (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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j ∈ { 0 , . . . , k n − 1 } phases. The objective is to set up a numerical

procedure to evaluate τ 10 where τi 0 := 

∑ N 
n =1 p n τ

(n ) 
i 0 

for i = 1 , . . . , d.

Using the same argumentation as above, 

τ (n ) 
i j 

= 

1 

� 

(n ) 
i 

+ 

∑ 

� � = i 

μi� 

� 

(n ) 
i 

τ (n ) 
� j 

+ 

q i 

� 

(n ) 
i 

τi 0 + 

κn 

� 

(n ) 
i 

·

⎧ ⎨ 

⎩ 

τ (n ) 
i, j+1 

if j < k n − 1 , 

0 if j = k n − 1 , i = 1 , 

τi 0 if j = k n − 1 , i > 1 . 

.

(3.7)

Again, this system can be written as a linear system of dK

equations with dK unknowns, say A 

�
 τ = 

�
 c , with A as above (and

hence invertible). Therefore, the solution of the system of equa-

tions A 

�
 τ = 

�
 c is � τ = A 

−1 �
 c , and we can compute τ 10 . The capacity of

the low-priority queue under B 2 is therefore λ̄2 = h 10 / τ10 . 

B 3 (sampling per driver): We finally consider the model with

consistent behavior, i.e., each driver sticks to the gap size he or

she initially sampled. The procedure is similar to the ones we de-

veloped for B 1 and B 2 , and therefore we restrict ourselves to the

main steps. 

Define, as before, h i 0 = 

∑ N 
n =1 p n h 

(n ) 
i 0 

for i = 1 , 2 , . . . , d. The mean
number of cars served during the cycle follows from 

h (n ) 
i j 

= 

∑ 

� � = i 

μi� 

� 

(n ) 
i 

h (n ) 
� j 

+ 

q i 

� 

(n ) 
i 

h (n ) 
i 0 

+ 

κn 

� 

(n ) 
i 

·

⎧ ⎨ 

⎩ 

h (n ) 
i, j+1 

if j < k n − 1 , 

1 if j = k n − 1 , i = 1 , 

1 + h i 0 if j = k n − 1 , i > 1 ;
it is instructive to compare this equation with the corresponding

one for B 2 : when the attempt has failed the gap size is not resam-

pled. Resampling is only done when an attempt has been success-

fully completed. 
Similarly, the system of equations for the mean cycle length is 

τ (n ) 
i j 

= 

1 

� (n ) 
i 

+ 

∑ 

� � = i 

μi� 

� (n ) 
i 

τ (n ) 
� j 

+ 

q i 

� (n ) 
i 

τ (n ) 
i 0 

+ 

κn 

� (n ) 
i 

·

⎧ ⎨ 

⎩ 

τ (n ) 
i, j+1 

if j < k n − 1 , 

0 if j = k n − 1 , i = 1 , 

τi 0 if j = k n − 1 , i > 1 ;

with τi 0 := 

∑ N 
n =1 p n τ

(n ) 
i 0 

for i = 1 , . . . , d. The linear system can be solved

as before, yielding h 10 and τ 10 . Therefore, the capacity of the system can

be evaluated as λ̄3 = h 10 / τ10 . 

Example 1 (Convergence to deterministic critical caps) . In our model,

we approximate deterministic critical gaps by an Erlang distribution

with a number of phases that we increase until the variance becomes

practically zero. In this example we suggest how many phases to take.

To this end, we try to reproduce the results from Example 1 in Abhishek

et al. (2016) , which studies the impact of driver behavior on the capac-

ity of the system and on the queue lengths. We introduce the following

three scenarios, with the parameters chosen such that the system ex-

hibits interesting features: 

(1) All drivers search for a gap between consecutive cars on the ma-

jor road, that is at least 7 seconds long. 

(2) A driver on the minor street, waiting for a suitable gap on the

major street, will sample a new (random) critical headway ev-

ery time a car passes on the major street. With probability 9/10

this critical headway is 6.22 seconds, and with probability 1/10 it

is exactly 14 seconds. Note that the expected critical headway is

0 . 9 × 6 . 22 + 0 . 1 × 14 = 7 seconds, ensuring a fair comparison be-

tween this scenario and the previous scenario. 

(3) In this scenario we distinguish between slow and fast traffic. We

assume that 90% of all drivers on the minor road need a gap of

(at least) 6.22 seconds. The other 10% need at least 14 seconds.

Again, the mean critical gap is 7 seconds. 

Note that these three scenarios correspond to, respectively, B 1 , B 2 ,

and B 3 . In this simple example, where d = 1 , closed-form expressions

are available (cf. Abhishek et al., 2016 ): 

λ̄1 := 

q 

e qT − 1 
, λ̄2 = 

q 

(E [ e −qT ]) −1 − 1 
, λ̄3 = 

q 

E [ e qT ] − 1 
. (3.8)

Fig. 3 depicts the capacity (vehicles per hour) of the minor street as a

function of q , the flow rate on the main road (vehicles per hour). As

a sanity check, we vary q between 0 and 3600 so we can validate our
Please cite this article as: Abhishek et al., Congestion analysis of un

platooning, European Journal of Operational Research (2018), https://do
odel. When q ↓ 0 the limiting capacity is 1/ T (because every arriving

ehicle can immediately cross the major road), while the capacity drops

o zero when q becomes large. We stress that we included large values

f q for reasons of validation; values in the top end of the range [0,3600]

re evidently not realistic. 

The solid lines are obtained using the exact results given by (3.8) ;

he dashed lines are the approximations based on an Erlang distribu-

ion with k = 100 phases. It can be seen that for k = 100 the capacities

etermined by our approximations are very close to the exact values.

here is still a small difference visible, which is probably acceptable for

ll practical purposes. If a higher accuracy is desired, it is straightfor-

ard to increase k which results in more accurate approximations. Ev-

ry data point can be computed nearly instantaneously; this remains the

ase when performing similar calculations for more complex variants of

he model considered in this example. This is obviously a great advan-

age of our analysis compared to microsimulations. 

Finally, note that the relation λ̄2 � ̄λ1 � ̄λ3 is clearly visible in Fig. 3 .

n Abhishek et al. (2016) a rigorous proof is given for this ordering, for

odels with Poisson arrivals and no impatience. The interpretation is

hat consistent random gap acceptance behavior always decreases the

apacity compared to non-random behavior, while the inconsistent ran-

om model leads to an increase in capacity. Unfortunately, it is quite

nlikely that this type of behavior is frequently encountered in practice.

n Abhishek et al. (2016 , Example 2) it was already observed that this

rdering of capacities is not preserved in situations with driver impa-

ience. In the next example we will assess the impact of platooning on

he validity of this ordering. 

xample 2 (The impact of Markov platooning) . The purpose of this col-

ection of numerical examples is to exhibit specific, interesting features

f gap acceptance models that relate to the impact of Markov platoon-

ng. In the literature it has already been observed that platoon forming

n the major road may have a positive impact on the capacity of the

inor road. For the first example, which is similar to Example 1 but

ow with Markov platooning, we compare the capacity of the minor

oad for the three behavior types B 1 –B 3 . For the last two behavior types,

e assume that a driver requires either a short gap of T 1 = 4 seconds,

r an extremely long gap of T 2 = 60 seconds. Obviously these values are

ot chosen with the intention to mimic realistic behavior, but to point

ut extreme situations that might occur. For behavior type B 1 , we take

 = p 1 T 1 + p 2 T 2 seconds long, where p 2 := 1 − p 1 . 

For these settings, we compare the model with and with-

ut Markov platooning. With platooning, we take μ1 = 1 / 60 and

2 = 1 / 240 , resulting in exponential periods of, on average, one minute

here the arrival rate on the major road is q 1 , followed by exponential

eriods of, on average, four minutes, with arrival rate q 2 . We assume a

xed ratio of q 1 and q 2 , namely q 1 = 3 q 2 . The long-term average arrival

ate equals 

¯ := 

q 1 /μ1 + q 2 /μ2 

1 /μ1 + 1 /μ2 

= 

q 1 μ2 + q 2 μ1 

μ1 + μ2 

. 

e compare the capacities with those obtained from the model without

latooning, where we assume Poisson arrivals with rate q̄ . 
signalized intersections: The impact of impatience and Markov 
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Fig. 4. Capacity of the minor street (vehicles per hour) as a function of the average flow rate on the main road (vehicles per hour) in Example 2 . The solid lines correspond 

to the model with Markov platooning; the dashed lines correspond to the model without platooning. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 5. Capacity of the minor street (vehicles per hour) as a function of the mean platoon length (seconds) in Example 3 . The dashed lines in (a) indicate the limiting 

capacities for μ2 ↓ 0 while keeping the ratio μ1 / μ2 fixed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Figure 4 depicts the capacity (vehicles per hour) of the minor street

s a function of q̄ , the average flow rate on the main road (vehicles per

our), for p 1 = 0 . 9 and p 1 = 0 . 1 , respectively. As in the non-modulated

ase, we observe the relation λ̄2 � ̄λ1 � ̄λ3 . Due to the lack of explicit

xpressions for λ̄1 , ̄λ2 , and λ̄3 , we cannot prove the strict ordering now.

e did, however, observe it in all numerical examples that we con-

ucted, and conjecture the ordering to hold true in general. 

Based on the results of this example (and many other examples that

re not discussed in the present paper) we are inclined to believe that

latooning has a positive effect on the capacity of the minor road, but

nly for models B 1 and B 3 . In a model with inconsistent behavior, it re-

lly depends on the model parameters whether platooning increases or

ecreases the capacity. This is nicely illustrated in Fig. 4 (a) and even

etter in Fig. 4 (b). 

xample 3 (Platoon lengths) . In this example we fix the overall arrival

ate on the major road, but we vary the platoon sizes. In more detail,

e assume that q 1 = 600 vehicles per hour and q 2 = 2400 vehicles per

our. This means that phase 1 can be considered as a situation of mod-

rate traffic (every 6 seconds a car passes), whereas phase 2 can be con-

idered as one big platoon (on average every 1.5 seconds a car passes).

he overall arrival rate q̄ is fixed at 900 vehicles per hour, which im-

lies that μ1 /μ2 = 1 / 5 . By varying the mean platoon length 1/ μ2 (in

econds) between 0 and 10, we will get better insight in the relation

etween platoon lengths and the capacity. Wegmann (1991 , Section 5)

onducted a very similar experiment, varying the mean number of vehi-

les per bunch. He observed that the capacity increases with increasing

ariance of gaps. 

We consider two different distributions for the critical headways.

irst, we consider the situation with T 1 = 6 . 22 , T 2 = 14 , and p 1 = 0 . 9 ,
Please cite this article as: Abhishek et al., Congestion analysis of un

platooning, European Journal of Operational Research (2018), https://do
hich can be considered as a quite realistic situation that we have used

efore. In Fig. 5 (a) we show the results for behavior types B 1 –B 3 . The re-

ation between the capacity and the mean platoon length is in line with

egmann (1991 , Fig. 3). Our numerical experiments confirm that this is

ndeed typical behavior for B 1 –B 3 . Nevertheless, we want to show that

t is possible to create a situation where model B 2 exhibits completely

ifferent behavior. When changing the distribution of the critical head-

ay such that T 1 = 3 and T 2 = 60 , we no longer see a monotonous re-

ation between the capacity and the mean platoon length; see Fig. 5 (b).

onsidering the fact that this inconsistent behavior type in combination

ith the extreme values for T 1 and T 2 might not be all too realistic, we

o not find it likely that this type of behavior occurs in practical situa-

ions, but the model shows that it is not entirely impossible. For com-

leteness, we want to mention that under extreme circumstances such

s mean platoon lengths of 10 0 0 seconds, the capacity with consistent

ehavior B 3 will also exhibit a drop, but not as drastically as in Fig. 5 (b).

The final conclusion that can be drawn from this example, is that

ne should be cautious when developing capacity estimates based on

qs. (3.1) and (3.2) . This type of reasoning may create a substantial bias,

ue to the fact that the vehicle at the head of the queue typically does

ot see the background process in equilibrium. It is noted that such ar-

umentation underlies the capacity formulae in e.g. Wu (2001) , where

he capacity is calculated by conditioning on the state of the background

rocess, i.e., the state of the traffic on the major road (free space, free

ow, bunching, or queueing). This example, and also Wegmann’s exam-

le, clearly show that there is a clear dependency between the mean

latoon size and the capacity. The parameters in these examples are

arefully chosen, such that the steady-state distribution of the back-

round process (the vector π ) remains unchanged. In our case, the ma-

or road is in state ‘free flow’ for a fraction π1 = 5 / 6 of the time, and in
signalized intersections: The impact of impatience and Markov 
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state ‘bunched’ for a fraction π2 = 1 / 6 of the time. If one would use the

naïve approach and determine E [ S 1 ] and E [ S 2 ] by considering two sep-

arate models with regular Poisson arrivals, with intensities respectively

q 1 and q 2 , and use Eq. (3.1) , the capacities for models B 1 , B 2 , and B 3 ,

respectively, would be 

λ̄1 = 229 . 91 , ̄λ2 = 250 . 65 , ̄λ3 = 194 . 89 , 

independent of μ1 and μ2 . From Figs. 5(a) and 3 in Wegmann (1991) ,

it is clearly visible that these values (indicated by the dashed lines in

Fig. 5 (a)) may differ substantially from the actual capacities. In fact, the

capacities calculated from (3.1) can be interpreted as the limiting capac-

ities from our MMPP model when μ2 ↓ 0 while keeping the ratio μ1 / μ2 

fixed. When using (3.2) to compute the capacities, one would obtain 

λ̄1 = 96 . 28 , ̄λ2 = 130 . 74 , ̄λ3 = 11 . 63 , 

leading to even more substantial errors. 

4. Impatience 

The goal of this section is to add more realism to the model

by also incorporating driver’s impatience. As evidenced by Abou-

Henaidy et al. (1994) , drivers tend to grow more impatient as the

number of rejected gaps increases. This impatience may result in

an increased willingness to accept smaller gaps. To the best of our

knowledge, Abhishek et al. (2016) was the first to present new re-

sults for gap acceptance models that include impatience and ran-

domness in the critical headways. 

As discussed in Section 2 , we incorporate impatience by let-

ting the critical headway depend on the number of failed attempts.

Denote by T m 

the critical headway for the m th attempt to en-

ter the main road ( m = 1 , 2 , . . . ). For models B 1 and B 3 , we as-

sume that T 1 ≥ T 2 ≥ ��� ≥ T min (more details below). Due to the re-

sampling in model B 2 , we cannot make this assumption for this

model, but we can assume that T i � st T i +1 , where ≥ st is used to

denote that T i is stochastically greater than T i +1 . We impose the

(reasonable) assumption that after a certain attempt number, say

the M th attempt, the critical gap does not decrease any further, i.e.,

T M 

= T M+1 = T M+2 = · · · . For reasons of compactness, we mainly fo-

cus on the differences with Section 3 . 

B 1 (constant gap): Every driver on the minor road needs the

same constant critical headway T m 

for the m th attempt to en-

ter the main road ( m = 1 , 2 , . . . , M). We follow the same approach

as before, defining a cycle as the time between two consecutive

epochs such that the background process is in state 1 and the ser-

vice of a low-priority car is completed. Compared to Section 3 ,

we now need to make several variables dependent on the at-

tempt number m . First, to make our model Markovian, we approx-

imate each (deterministic) T m 

by an Erlang random variable with

k m 

phases and rate κm 

:= k m 

/ T m 

. Define � 

(m ) 
i 

:= μi + q i + κm 

and

let h (m ) 
i j 

be the mean number of cars that is served till the cy-

cle ends, given that the current state of the background process

is i ∈ { 1 , . . . , d} and the car in service is in its m th attempt, having

finished j ∈ { 0 , . . . , k m 

− 1 } phases of the Erlang distribution. The

equivalent of Eq. (3.3) , for the model with impatience, becomes 

h 

(m ) 
i j 

= 

∑ 

� � = i 

μi� 

� 

(m ) 
i 

h 

(m ) 
� j 

+ 

q i 

� 

(m ) 
i 

h 

(m +1) 
i 0 

+ 

κm 

� 

(m ) 
i 

×

⎧ ⎪ ⎨ 

⎪ ⎩ 

h 

(m ) 
i, j+1 

if j < k m 

− 1 , 

1 if j = k n − 1 , i = 1 , 

1 + h 

(1) 
i 0 

if j = k m 

− 1 , i > 1 . 
(4.1)

It is clearly seen that the arrival of a new car on the major road

(with rate q i in background state i ) increases the attempt number,

while a service completion (with rate κm 

when i > 1 and j = k m 

−
1 ) resets the attempt number to one. 
Please cite this article as: Abhishek et al., Congestion analysis of un
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To determine the mean cycle duration, we make similar adap-

ations, defining τ (m ) 
i j 

as the mean time till the end of the cur-

ent cycle, given that the current state of the background process

s i ∈ { 1 , . . . , d} and the car in service is in its m th attempt, having

nished j ∈ { 0 , . . . , k m 

− 1 } phases of the Erlang distribution. The

quivalent of (3.4) is 

(m ) 
i j 

= 

1 

� 

(m ) 
i 

+ 

∑ 

� � = i 

μi� 

� 

(m ) 
i 

τ (m ) 
� j 

+ 

q i 

� 

(m ) 
i 

τ (m +1) 
i 0 

+ 

κm 

� 

(m ) 
i 

×

⎧ ⎪ ⎨ 

⎪ ⎩ 

τ (m ) 
i, j+1 

if j < k m 

− 1 , 

0 if j = k n − 1 , i = 1 , 

τ (1) 
i 0 

if j = k m 

− 1 , i > 1 . 
(4.2)

o solve the sets of Eqs. (4.1) and (4.2) , we now use that T M 

=
 M+1 = T M+2 = · · · , which also implies that 

 

(M) 
i j 

= h 

(M+1) 
i j 

= h 

(M+2) 
i j 

= · · ·
nd 

(M) 
i j 

= τ (M+1) 
i j 

= τ (M+2) 
i j 

= · · · . 

f we replace h (m +1) 
i 0 

by h (M) 
i 0 

and τ (m +1) 
i 0 

by τ (M) 
i 0 

, for m = M, we

ave two sets of dKM equations each. After solving these, we can

valuate the capacity of the system as 

¯
1 := h 

(1) 
10 

/τ (1) 
10 

. 

 2 (sampling per attempt): Now the driver samples a ‘fresh’ ran-

om T m 

for the m th attempt. We model this randomness by as-

uming that the critical headway equals some deterministic T n , m 

ith probability p n , m 

, for n ∈ { 1 , . . . , N} and m = 1 , 2 , . . . . As be-

ore, we approximate T n , m 

by an Erlang random variable with

 n , m 

phases; each of the phases is exponentially distributed with

arameter κn,m 

= k n,m 

/T n,m 

. Define � 

(n,m ) 
i 

:= μi + q i + κn,m 

and let

 

(n,m ) 
i j 

be the mean number of cars that is served till the cycle

nds, given that the current state of the background process is

 ∈ { 1 , . . . , d} and the car in service is in its m th attempt with gap

ize T n , m 

, having finished j ∈ { 0 , . . . , k n,m 

− 1 } phases of the Erlang

istribution. We wish to find h i 0 := h (1) 
i 0 

, defined as 

 

(m ) 
i 0 

= 

N ∑ 

n =1 

p n,m 

h 

(n,m ) 
i 0 

, for i = 1 , 2 , . . . , d; m = 1 , 2 , . . . . (4.3)

hen 

 

(n,m ) 
i j 

= 

∑ 

� � = i 

μi� 

� 

(n,m ) 
i 

h 

(n,m ) 
� j 

+ 

q i 

� 

(n,m ) 
i 

h 

(m +1) 
i 0 

+ 

κn,m 

� 

(n,m ) 
i 

×

⎧ ⎪ ⎨ 

⎪ ⎩ 

h 

(n,m ) 
i, j+1 

if j < k n,m 

− 1 , 

1 if j = k n,m 

− 1 , i = 1 , 

1 + h 

(1) 
i 0 

if j = k n,m 

− 1 , i > 1 . 
(4.4)

The required changes to determine the expected cycle length

re similar. The modification of Eq. (3.7) that incorporates impa-

ience is given below, where we have used τ (n,m ) 
i j 

to denote the

ean time till the current cycle ends, given that the current state

f the background process is i ∈ { 1 , . . . , d} , the car in the service

as critical gap size T n , m 

, and the number of completed service

ime phases is j ∈ { 0 , . . . , k n,m 

− 1 } . 
(n,m ) 
i j 

= 

1 

� 

(n,m ) 
i 

+ 

∑ 

� � = i 

μi� 

� 

(n,m ) 
i 

τ (n,m ) 
� j 

+ 

q i 

� 

(n,m ) 
i 

τ (m +1) 
i 0 

+ 

κn 

� 

(n,m ) 
i 

×

⎧ ⎪ ⎨ 

⎪ ⎩ 

τ (n,m ) 
i, j+1 

if j < k n,m 

− 1 , 

0 if j = k n,m 

− 1 , i = 1 , 

τ (1) 
i 0 

if j = k n,m 

− 1 , i > 1 , 
(4.5)
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Fig. 6. Capacity of the minor street (vehicles per hour) as a function of the aver- 

age flow rate on the main road (vehicles per hour) in Example 4 . The solid lines 

correspond to the model with platooning and impatience. The dashed lines corre- 

spond to only platooning. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 1 

Critical gaps T m (in seconds) for different values of α and m . 

m 1 2 3 4 5 10 

α = 0 . 2 7.0 0 0 4.600 4.120 4.024 4.005 4.0 0 0 

α = 0 . 5 7.0 0 0 5.500 4.750 4.375 4.188 4.006 

α = 0 . 8 7.0 0 0 6.400 5.920 5.536 5.229 4.403 
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o  
ith τ (m ) 
i 0 

= 

∑ N 
n =1 p n,m 

τ (n,m ) 
i 0 

. The capacity of the low-priority

ueue is 

¯
2 = h 

(1) 
10 

/ τ (1) 
10 

. 

 3 (sampling per driver): In this variant, every car driver sam-

les a random T 1 at his first attempt. We model this random-

ess analogously to model B 2 , assuming that the first critical head-

ay T 1 equals some deterministic T n , 1 with probability p n , 1 , for

 ∈ { 1 , . . . , N} . The difference with B 2 is that this (random) value

etermines the complete sequence of critical headways at subse-

uent attempts. We denote these critical headways by T n , m 

, for

 ∈ { 1 , . . . , N} and m = 1 , 2 , . . . . The definitions of κn , m 

, k n , m 

, � 

(n,m )
i 

nd even h (m ) 
i 0 

, h (n,m ) 
i j 

and τ (n,m ) 
i j 

remain unchanged compared to

he previous model. The latter should be computed differently,

hough. The capacity of the low-priority queue is 

¯
3 = h 

(1) 
10 

/ τ (1) 
10 

. 

he unknowns in the right-hand side follow from the following

wo systems of equations. 

 

(n,m ) 
i j 

= 

∑ 

� � = i 
μi� 

� (n,m ) 
i 

h 

(n,m ) 
� j 

+ 

q i 

� (n,m ) 
i 

h 

(n,m +1) 
i 0 

+ 

κn,m 

� (n,m ) 
i 

×

⎧ ⎪ ⎨ 

⎪ ⎩ 

h 

(n,m ) 
i, j+1 

if j < k n,m 

− 1 , 

1 if j = k n,m 

− 1 , i = 1 , 

1 + h 

(1) 
i 0 

if j = k n,m 

− 1 , i > 1 , 
(4.6) 

(n,m ) 
i j 

= 

1 

� 

(n,m ) 
i 

+ 

∑ 

� � = i 

μi� 

� 

(n,m ) 
i 

τ (n,m ) 
� j 

+ 

q i 

� 

(n,m ) 
i 

τ (n,m +1) 
i 0 

+ 

κn 

� 

(n,m ) 
i 

×

⎧ ⎪ ⎨ 

⎪ ⎩ 

τ (n,m ) 
i, j+1 

if j < k n,m 

− 1 , 

0 if j = k n,m 

− 1 , i = 1 , 

τ (1) 
i 0 

if j = k n,m 

− 1 , i > 1 . 
(4.7) 

gain, the only differences with Eqs. (4.4) and (4.5) , for model B 2 ,

re the terms corresponding to the arrival of a new vehicle on the

ajor road (with rate q i in background state i ) which does not lead

o resampling. 

xample 4 (Impatience and platooning) . We now revisit the model

rom Example 1 , but we add driver impatience and Markov pla-

ooning. Impatience is added in the following specific form: 

 m +1 = α(T m 

− 
) + 
, m = 1 , 2 , . . . ; 0 < α < 1 , (4.8)

hich means that the critical headway decreases after each failed

ttempt. Eventually, it will approach the limiting value of 
. The

arameter α determines the speed at which the patience de-

reases. In Scenario 1 all T k are fixed, with T 1 = 7 seconds. In Sce-

arios 2 and 3, each of the T k is a random variable, but with a

lightly different distribution than in Example 1 : T 1 equal to 4

r 14 seconds, with probability 7/10 and 3 / 10 , respectively. The

istribution of T m 

for m > 1 can be determined from Eq. (4.8) . In

cenario 2, the impatience is a new random sample at each at-

empt, independent of the value of T m −1 . In Scenario 3, as before,

ach driver samples a random impatience T 1 exactly once. The

alue of T 1 (which is again either 4 or 14 seconds) determines the

hole sequence of critical gap times at the subsequent attempts

ccording to (4.8) . In the numerical algorithm we take k = 200 and

 = 10 , meaning that the effect of impatience stops after the tenth

ttempt (when T 1 has dropped from 7 to 4.006 seconds). 

Besides impatience we also include platooning, which we do in

 similar way as in Example 2 , taking μ1 = 1 / 60 and μ2 = 1 / 240 ,

hile varying arrival rates q 1 and q 2 . Fig. 6 shows the capacity as

 function of the average flow rate q̄ , when α = 9 / 10 and 
 = 4

econds. The solid lines correspond to the model with impatience
Please cite this article as: Abhishek et al., Congestion analysis of un
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nd platooning; the dashed lines correspond to a model with only

latooning. In this example it can be seen that the capacity in-

reases significantly due to the impatience. Although we have cho-

en not to include it in this figure, it turns out that platooning

ad a much smaller impact on the capacities. Note that, compared

o Example 1 , we have drastically increased the variability of the

andom variable representing a critical gap, while keeping the ex-

ected value equal. We have done this to show that an interesting

henomenon can occur. Strikingly, Model B 1 now performs worst

n terms of capacity. It was already observed in other experiments

cf. Abhishek et al., 2016 ) that impatience might destroy the re-

ation λ̄2 � λ̄1 � λ̄3 for some values of q , but in this example we

bserve that λ̄1 is smaller than the other two for all arrival rates

n the major road. If we would have taken the same critical gap

istributions as in Example 1 (with T 1 equal to 6.22 or 14 seconds,

ith probability 9/10 and 1 / 10 , respectively), λ̄1 would still be the

mallest of the three capacities, but the difference would then be

lmost negligible. In fact, it is the value of α that affects the order-

ng most significantly. If α = 0 . 9 , model B 1 is only worse than B 3 

or very high flow rates on the major road. We refer to Abhishek

t al. (2016 , Fig. 3) for more details. 

To conclude this example, we discuss the impact of the parame-

ers α and M on the capacity. The parameter α represents the rate

t which the critical gap decreases towards its limiting value 
,

hile M is the attempt number after which the critical gap does

ot decrease any further. Table 1 presents T m 

for m ∈ {1, 2, 3, 4, 5,

0} for α ∈ {0.2, 0.5, 0.8}, computed using (4.8) . 

To get more insight in the impact of these parameters on the

apacities, we take the aforementioned values for α and compute

he capacities for model B 1 without Markov platooning, for various

alues of M . The results for models B 2 and B 3 , and for models with

arkov platooning are omitted because their behavior is very sim-

lar. Table 2 shows the results, for q = 300 and q = 1200 . Clearly

he capacity is decreasing in α (because larger values of α cor-

espond to larger critical gaps) and increasing in M (because the

ritical gaps decrease further when M is larger). It makes sense

hat the impact of α and M on the capacities is heavily depen-

ent on the arrival rate on the major road. If q is small, vehicles

n the minor road will quickly find an acceptable gap and M will
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Table 2 

Capacities (vehicles per hour) for different values of α and 

M . 

q = 300 vehicles per hour 

M 2 3 4 5 10 

α = 0 . 2 463.3 469.2 469.5 469.5 469.5 

α = 0 . 5 429.9 439.7 441.2 441.5 441.5 

α = 0 . 8 398.9 405.5 407.5 408.1 408.3 

q = 1200 vehicles per hour 

M 2 3 4 5 10 

α = 0 . 2 288.9 326.4 332.3 333.1 333.3 

α = 0 . 5 214.6 263.0 284.1 292.3 297.1 

α = 0 . 8 159.4 183.0 200.7 213.1 233.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

N  

T  

o  

d

R

A  

 

A  

 

C  

C  

D  

 

D  

G  

G  

 

 

H  

H  

J  

 

L  

 

T  

T  

 

W  

 

W  

W  

W  

W  

 

have hardly any influence on the capacity. The influence of α is

also much smaller than when q = 1200 . For large values of q , vehi-

cles on the minor road will need more attempts before succeeding

in finding a suitable gap. In this case, the capacity can be greatly

improved by having smaller values of α, or larger values of M . We

want to emphasize, though, that α is a parameter that should be

obtained from the empirical data, whereas M can be considered

as a model parameter that one can choose, depending on the ob-

served value of α. 

5. Concluding remarks 

In this paper we have developed tools to evaluate the ca-

pacity of an unsignalized, priority-controlled intersection. Impor-

tantly, the model developed incorporates impatience and platoon-

ing, whereas various types of driver behavior (related to the low-

priority drivers) are covered. The underlying Markov model facili-

tates the evaluation of the capacity by solving an elementary sys-

tem of linear equations (which is a standard numerical operation

that can be done highly efficiently). 

Through a sequence of numerical examples we have been able

to validate various theoretical results. It is confirmed that in the

setting without platooning and impatience inconsistent behavior

always leads to a higher capacity than strictly deterministic behav-

ior, while consistent behavior performs worst in terms of capaci-

ties. Empirically we observe the same ordering when platooning is

added. When impatience is added, however, this ordering is lost;

cf. also the preliminary findings in Abhishek et al. (2016) . 

In a platooning model in which the arrival rate at the major

road alternates between two values, it is tempting to compute the

capacity as an average of the two capacities pertaining to the two

individual arrival rates. An important insight from this paper, is

that one needs to be extremely careful with this naïve procedure,

as it may lead to significant errors. It stresses that our approach,

featuring one model with various arrival rates, produces more reli-

able estimates of the capacity of the minor road. 
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