
Reowolf: Synchronous Multi-Party
Communication over the Internet?

Christopher Esterhuyse, Hans-Dieter A. Hiep??

Centrum Wiskunde & Informatica
Amsterdam, the Netherlands

1 Introduction

Programming Internet applications has essentially remained unchanged since the
1980s. The Berkeley Software Distribution (BSD) implementation allows appli-
cations to create sockets for communication over the Internet, e.g. Transmission
Control Protocol over Internet Protocol (TCP/IP), that either listen for incom-
ing connections or are connected outward, resulting in a bi-directional, reliable
channel between two peers on the outer edges of the network. Applications con-
sequently control the stream of data into the sending side of a channel, to be
received in order by the other side of the channel. Although applications of the
1980s were process-driven, performing send and receive operations by cooperat-
ing with an operating system responsible for scheduling application processes.
More recently, applications have become event-driven [11], allowing for more fine-
grained scheduling decisions by applications themselves. However, the essence of
programming Internet applications remains based on controlling a channel be-
tween two peers in a network.

In turn, this programming discipline seems to naturally support application
architectures that favor centralization. With sockets, each channel between two
peers requires a program controlling the stream of data on both sides of the
socket connection. In a fully connected graph, where each peer maintains a con-
nection to each other peer, one controls a quadratic number of data streams.
However, a graph with a single central peer that connects to all other peers,
requires controlling only a linear number of data streams at the central peer! In
practice, clients use sockets to connect to a single centralized server and that
server provides a shared service to its clients. Keeping the client simple solves
half of the problem: only the server-side controls most of the data streams.

Recently, a drawback to centralized architecture became apparent by the in-
creasing tension between central service providers (e.g. video streaming, search
engines, content delivery) and network operators (providing Internet connectiv-
ity). The Workshop on Internet Economy (WIE2017) has discussed that service
providers, “deliberately obfuscate both content and signaling information from
network operators providing transit for the traffic.” This leads to difficulties “to

? Received support from NLnet: NGI Zero PET fund from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 825310.

?? Corresponding author: hdh@cwi.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301629999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


improve traffic engineering, police (or secure) usage, and improve their own ser-
vices. Increasingly, the access and transit network operators have less insight as
to the nature of the traffic, and fewer effective traffic management tools.” [4]

That service providers “deliberately obfuscate” their data seems reasonable:
they namely employ data encryption to increase user privacy, and this is even
required by EU regulation [13]. It also seems reasonable that more traffic will
be sent encrypted in the future, as this and other similar regulations are imple-
mented over time. Moreover, service providers may use non-standard protocols,
for example, to gain a competitive edge against competitors.

Network operators typically deploy middleware to increase the quality of
their service: to optimize Internet traffic to improve latency and throughput,
and to monitor traffic to detect intrusions and abuse such as Denial of Service
(DOS). Middleware uses, among other techniques, deep packet inspection: scan-
ning further down the packet than the (TCP/)IP headers to take action. On
high bandwidth networks, middleware can be implemented close to the metal to
keep throughput high, for example, using field programmable gate arrays [5, 14].

A drawback of deep packet inspection is that it is non-standardized: mid-
dleware tries to guess an application’s intent by scanning its traffic. As a sim-
plified example, consider middleware that caches HTTP resources. As more In-
ternet traffic is sent encrypted, deep packet inspection becomes less effective,
e.g. HTTPS prohibits caching by a man-in-the-middle. Currently deployed mid-
dleware may therefore be wasting effort and may be hard to adapt due to its
closeness to the hardware level. Moreover, the opportunity to optimize and mon-
itor may not apply to certain traffic, e.g. obscure or innovative protocols.

In summary, we identify the following three issues:

1. Programming of decentralized Internet applications is more complicated
than centralized applications (quadratic versus linear).

2. There is a tension between requirements of service providers and network
operators (privacy versus openness).

3. Traffic monitoring and optimization techniques are non-standard, poten-
tially leading to deprecation of existing middleware and impeding innovation.

In this paper we introduce Reowolf: a project that aims to replace the
decades-old application programming interface, BSD sockets, for communication
on the Internet. A novel programming interface is being implemented at the sys-
tems level that is inter-operable with existing Internet applications. It should
provide support for middleware to further improve quality of service without
having to give up on privacy, and makes programming of decentralized Internet
applications simpler: we give arguments as to why we hold this position.

The main idea in Reowolf is to offer a high-level abstraction for communica-
tion, called connectors. Connectors are complexes of synchronization primitives
among multiple data streams, generalizing end-to-end sockets. Programmers cre-
ate a connector and configure it using a protocol description language (PDL),
that allows for the declarative specification of what synchronization and data
exchange primitives applications require to communicate on an abstract level.



These connectors are to sockets what high-level programming languages are to
machine code: we compile high-level application-defined protocols to low-level
operational code that realizes the actual communication.

As an analogy for understanding Reowolf, it is useful to draw parallels be-
tween GPU programming and network programming. In GPU programming, one
writes a high-level program (i.e., GLSL) that describes graphical manipulations
that take place on dedicated hardware (i.e., graphics cards). This alleviates pro-
grammers from having to write hardware-specific programs that use low-level,
device-specific assembly instructions. Each vendor of graphics hardware supports
the high-level programming language and compiles it down to their own target.
The novelty of Reowolf is to approach Internet application programming in the
same way: one writes a high-level ‘program’ that configures the possible commu-
nications between multiple parties on a network, compiled into code that targets
peer communication by performing synchronization and exchanging data.

The main benefits of programming Internet applications in this way are:

1. Raising the level of abstraction relieves the programmer from controlling
a quadratic number of data streams, while still being able to communicate
in a decentralized manner. In realizing the abstraction there is ample room
for optimization and innovation for the implementer: different optimization
techniques apply to different networking circumstances1, and applications
are agnostic to the underlying network protocols.

2. A clean separation of application-defined protocols from pure computations
results in application programs that are more isolated, making them simpler
to reason about, validate, and verify. Moreover, separation of application
content from its signaling information allows encryption of content only,
while granting middleware the insight in the nature of traffic.

3. Working with application-defined protocols as explicit objects allows them
to be collected in a standard library, that facilitates protocol reuse. More-
over, application-defined protocols are publicly visible within the network,
allowing middleware to perform informed traffic monitoring such as devia-
tion detection without having to guess application’s intent.

These main benefits do not fall out of the sky: in the Reowolf project, we
turn theoretical and prototypical results of the past two decades [3] into prac-
tical, low-level systems work. The protocol description language of Reowolf is
largely based on Reo, an exogenous coordination language for synchronous com-
munication [2]. Although Reo has seen recent practical applications, such as the
distributed implementation Dreams [12], and compilers for shared-memory syn-
chronization [10], never before was Reo integrated deeper into operating systems.

Reowolf is an ongoing project with the ultimate goal of replacing the socket
with the connector for programming internet applications. In the rest of this
paper, we discuss the main ideas underpinning Reowolf, and highlight some of
the interesting challenges of implementing Reowolf that remain to be solved.

1 E.g. local host (virtualized) networking, wireless sensor networks, Beowulf class clus-
ter computing, high-speed local area networks in datacenters, wide-area networks
spanning the globe, and satellite networks.



2 Comparing Reo and Reowolf

From the perspective of history of computing, Reowolf is the logical next step
for programming Internet applications. Compare this to computing before the
Internet age, where early programming languages such as Algol or Fortran lacked
the ability to deal with data abstractions. A data structure was treated implic-
itly, and search and manipulation algorithms were littered all over the program.
With abstract data types (ADTs), programs can be written against an abstract
interface that describes the possible operations. ADTs can be explicitly speci-
fied, for example, by algebraic data structures of a given signature and a (e.g.,
equational or first-order) specification.

A similar case can be made for today’s programs, that lack the ability to deal
with concurrency and communication abstractions. A program implicitly deals
with protocols, and low-level concurrency code for synchronization is all over the
place. Similar to ADTs is the idea of abstract behavior types [1, 8]; programs
can be written against an abstract interface that describes all possible behaviors
a program could expect. Abstract behavior types are explicitly specified by the
protocol description language that is based on Reo.

Reo is a language for specifying exogenous communication protocols by con-
straining the possible interactions available to participating components: a pro-
tocol coordinates its components. Reo structurally separates computation from
coordination, unlike other exogenous coordination languages [6]. A component
is treated as an indivisible black-box with an identity that publicly exposes a
number of named ports. Components are linked together by complex connectors:
connectors are graph-like structures of nodes and primitive channels between
nodes. A set of primitive channels is provided: e.g. synchronous channels, lossy
channels, and asynchronously buffered channels. Multiple connectors (between
possibly the same set or different sets of components) can be composed into
larger connectors: Reo’s compositional semantics ensures that properties of a
composite connector preserve the properties of its constituent connectors.

Where Reo remains abstract, Reowolf becomes concrete. We implement Reo
components as follows: each component is identified by an IP address, or by a
domain name that resolves to an IP address. Components do not correspond 1-
to-1 to (physical) machines, as one component can be implemented by multiple
machines behind a router with network address translation, and a single machine
can host multiple components. Components have several ports, each identified
by a number. Later, port name systems may be used to resolve ports by name.

Components are responsible for setting up connectors. Each component pro-
vides a local view of the connector, by configuring it with a protocol descrip-
tion as it sees fit. The protocol description includes references to the ports of
other components to connect to, and it includes which local ports are left open.
Multiple components can provide different local views of a connector, and the
established connector is the composition of all local views of the connector of its
connected components. Components that dynamically allocate new ports over
time, and dynamically change their view of the connector by reconfiguring with
a new protocol description, are interesting research challenges.



3 Programming with Connectors

Among existing environments for Internet applications are UNIX-like operating
systems, where applications are implemented by one or more processes that per-
form system calls. There are system calls to create sockets, sending and receiving
payloads, and handling exceptional network conditions such as timeouts. The im-
plementation of those socket system calls is provided as part of the operating
system. Reowolf connectors have a programming interface similar to sockets:
creating connectors, configuring the expected behavior of a connector, putting
and getting payloads, and handling exceptions such as non-conformance.

Sockets establish a channel between two peers and communication is funda-
mentally asynchronous, connectors establish a protocol between multiple peers
and communication is fundamentally synchronous:

Multi-party Communication
Two socket connections are assumed to be unrelated, unless a program con-
trolling their streams intentionally relates them. The expected behavior of such
control program is implicit, and unknown to the network. Complex relations
between multiple socket connections require complex controlling programs to
run at both end-points. Connectors generalize sockets to an arbitrary number
of peers, and uses a declarative protocol description language to describe the
expected interactions among those peers. The explicit protocol description is
provided as part of configuring a connector. A control program that handles
the data stream control is generated on-the-fly by the implementation of Re-
owolf, and is no longer the responsibility of the application. Applications thus
interact with a connector, by getting and putting data, abstracting away the
communication with multiple peers.

Synchronicity
Synchronous communication means there is not an a priori requirement on the
order of the events that realize the communication (e.g., sending and receiving
happen concurrently). Connectors can still describe asynchronous communica-
tion, by imposing a requirement on the order of its realizing events using logical
buffers (e.g., send happens first, receive happens later).

Implementation Architecture
From the OSI layering perspective, sockets directly expose applications to (an
implementation of) the Transport layer; applications are themselves responsi-
ble for session management and representation formats of transmitted data.
Reowolf connectors instead expose an abstraction above the Transport layer,
including the Session and Representation layers. A Reowolf implementation is
free to choose how to realize the communication protocol that the programmer
has specified: it can use multiple TCP connections or UDP (or other protocols).

Modular Validation and Verification
A program that makes use of connectors can be validated and verified with re-
spect to the local protocol it configures. All established properties of the program
also hold in the case where communication takes place with unknown peers. This
ensures that modular development of applications is fruitful. An implementation
is correct if all local properties of programs are preserved under all compositions.



4 Leveraging Explicit Protocol Descriptions

We will consider four scenarios by which we exemplify how the explicit protocol
descriptions of Reowolf can improve performance and detect abuse.

Shared Memory Optimization
An implementation of Reowolf that recognizes multiple peers on the same phys-
ical machine can use a different implementation to realize communication: it is
not necessary to send and receive packets over the wire to communicate, as the
protocol can be implemented under this circumstance by means of shared mem-
ory, possibly even without copying data [7]. Synchronization of peers can then
use concurrency primitives such as mutexes and thread barriers. Research has
shown that the run-time performance of compiled shared memory protocols is on
par with, and sometimes even outperforms, hand-crafted concurrency code [9,
10]. Connectors that involve a mix of local and remote peers can leverage both
optimization strategies; local communication takes place via shared memory,
while remote communication is performed by exchanging IP packets.

Informed Route Optimization
The protocol description and state of connectors are publicly visible by the
network. Intermediary nodes along the routing path can use this information for
route optimization. Consider three participants in a protocol: a node in Helsinki
repeatedly sends the same payload to two nodes in Tokyo. With sockets there
are two channels, both from Helsinki to Tokyo. Each payload has to travel twice
the distance. In Reowolf, a single connector is established between the three
parties. Implementations can recognize by the protocol description that data is
duplicated. Instead of sending the same payload twice over the long distance, it
could be sent once and forwarded in Tokyo to the other recipient. The traffic on
the long distance path of the network is then halved.

Local Deviation Detection
Reowolf will inspect traffic and checks it with protocol conformity. Within a
peer, conformity to the local protocol is checked before passing data to an appli-
cation. Since each connector is configured with an explicit protocol description,
implementations of Reowolf can locally intercept incoming network traffic that
violates the configured protocol, possibly raising an exceptional network condi-
tion for the application to handle. Outgoing traffic that violates the local protocol
can be dropped immediately.

From Eavesdropping to Eager Dropping
During the configuration phase of connectors, peers distribute their local pro-
tocols over the network to reach a consensus on the composed protocol. Con-
sequently, outgoing traffic that violates the composed protocol can be dropped
immediately: otherwise, it would be dropped locally at the receiving peer. More-
over, intermediate network nodes are able to snoop on the composed protocol,
and use it to check packets it forwards with protocol conformity, too. Thus, all
nodes cooperate in checking conformity to the protocol. Since dropping reduces
superfluous network traffic, it is in the best interest of the intermediary nodes
to do so. Similar to TCP session hijacking, it is a challenge when considering
malicious peers too: a näıve implementation may unintentionally allow a DOS.



References

1. Farhad Arbab. Abstract behavior types: A foundation model for components and
their composition. In International Symposium on Formal Methods for Components
and Objects, pages 33–70. Springer, 2002.

2. Farhad Arbab. Proper protocol. In Theory and Practice of Formal Methods, pages
65–87. Springer, 2016.

3. Giovanni Ciatto, Stefano Mariani, Maxime Louvel, Andrea Omicini, and Franco
Zambonelli. Twenty years of coordination technologies: state-of-the-art and per-
spectives. In Proceedings of the 20th International Conference COORDINATION,
pages 51–80. IFIP, 2018.

4. Kimberly C. Claffy, Geoff Huston, and David Clark. Workshop on Internet Eco-
nomics (WIE2017) Final Report. SIGCOMM Computer Communication Review,
48(3):42–45, September 2018.

5. Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lock-
wood. Deep packet inspection using parallel bloom filters. In Proceedings of the
11th Symposium on High Performance Interconnects, pages 44–51. IEEE, 2003.

6. Kasper Dokter, Sung-Shik Jongmans, Farhad Arbab, and Simon Bliudze. Relating
BIP and Reo. arXiv preprint arXiv:1508.04848, 2015.

7. Micha Hergarden and Sung-Shik Jongmans. Shared memory implementations of
protocol programming languages, data-race-free. In Proceedings of the 13th Work-
shop on Implementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems, pages 36–40. ACM, 2018.

8. Marián Jenčik and Daniel Mihályi. Program components & abstract behavioral
types. Acta Electrotechnica et Informatica, 12(1):38–43, 2012.

9. Sung-Shik Jongmans. Automata-theoretic protocol programming. PhD thesis, Cen-
trum Wiskunde & Informatica (CWI), Leiden University, 2016.

10. Sung-Shik Jongmans and Farhad Arbab. Can high throughput atone for high
latency in compiler-generated protocol code? In Fundamentals of Software Engi-
neering, pages 238–258. Springer International Publishing, 2015.

11. Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed event-based systems.
Springer Science & Business Media, 2006.

12. José Proença, Dave Clarke, Erik de Vink, and Farhad Arbab. Dreams: a framework
for distributed synchronous coordination. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 1510–1515. ACM, 2012.

13. Colin Tankard. What the GDPR [General Data Protection Regulation] means for
businesses. Network Security, 2016(6):5–8, 2016.

14. Fang Yu, Zhifeng Chen, Yanlei Diao, Tamil V. Lakshman, and Randy H. Katz.
Fast and memory-efficient regular expression matching for deep packet inspection.
In Proceedings of the 12th Symposium on Architecture for Networking and Com-
munications Systems, pages 93–102. IEEE, 2006.


