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Abstract

Perturbation analysis has proven to be a fruitful technique in the analysis of several multi-
dimensional Markov models. In order to successfully apply perturbation analysis, one must
find an appropriate scaling parameter. This leaves the approach with a large degree of free-
dom. In this paper we explore the use of perturbation analysis to determine the stationary
distribution of a specific polling model with random time-limited service. We discuss four
candidate scaling approaches to analyze the polling model and describe the difficulties that
must be overcome to construct a computationally feasible algorithm.
Keywords: Singular perturbation, analytic expansion, time-limited polling.

1 Introduction

Multi-dimensional Markov models, and specifically in the analysis of queueing systems, often
prove to be hard to analyze. In this paper we focus on the characterization of the stationary
distribution of a specific polling model with random time-limited service, by means of perturba-
tion analysis. Perturbation analysis was successfully used in a wide range of applications. De-
pending on the application field, the specific modeling approach and the object of interest, dif-
ferent terminology has been used for variations of perturbation analysis, including aggregation-
disaggregation analysis [8], decomposability [6], and time-scale separation and quasi-stationary
analysis [1, 4, 5, 10]. In these papers the focus is essentially on the leading term in perturbation
analysis. A modern treatise of analytic expansions of transient and stationary measures can be
found in Avrachenkov et al. [3] In the queueing theory literature the power series algorithm, see
e.g.[9], is a variation of perturbation analysis that has been very successful.

In this paper we investigate the use of singular perturbation for computation of the stationary
distribution of a two-dimensional Markov model of a specific polling model with time-limited
service. In previous work [7] we have established that the target stationary distribution satisfies
a boundary value problem, which we have not been able to solve. Our aim is to use perturbation
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analysis to develop a computation scheme for the stationary distribution. We use four different
parameter scalings and for each of these we discuss the difficulties that are encountered when
used for numerical computations.

The structure of the paper is as follows: We first describe the model in Section 2. A brief
explanation of perturbation analysis in the context of our model follows in Section 3. In Section 4
we discuss one of the scaling approaches in some detail, while we sketch three other scalings in
Section 5. We conclude in Section 6.

2 Model description and notation

We consider a two-queue polling model. Customers arrive to queues i = 1, 2, according to in-
dependent Poisson processes with rates λi. There is a single server that serves both queues. The
service times of customers in both queues are exponentially distributed with rates µ1 and µ2, re-
spectively. The server spends an exponentially distributed time with rate ci, i = 1, 2 at queue i,
after which it instantaneously switches to the other queue (there is no switch-over time).
Stability condition. The necessary and sufficient stability condition is [7]

λ1
µ1

<
c2

c1 + c2
and

λ2
µ2

<
c1

c1 + c2
. (1)

With Qi(t) we denote the queue length at time t of queue i, i = 1, 2, and S(t) ∈ {1, 2} is the queue
where the server is serving at time t. The stochastic process {Q(t) = (Q1(t), Q2(t), S(t)) : t ≥ 0}
with state space {S = {(n1, n2, i) : n1, n2 ∈ N0, i = 1, 2} is a CTMC. Let

π(n1, n2, i) = lim
t→∞

P(Q1(t) = n1, Q2(t) = n2, S(t) = i),

and π((n1, n2(|i) = lim
t→∞

P(Q1(t) = n1, Q2(t) = n2|S(t) = i).

The equilibrium equations for the defined model are: for n1, n2 ≥ 0,

(λ1 + λ2 + c1 + µ11(n1≥1))π(n1, n2, 1) = µ1π(n1 + 1, n2, 1) + 1(n2≥1)λ2π(n1, n2 − 1, 1)

+ 1(n1≥1)λ1π(n1 − 1, n2, 1) + c2π(n1, n2, 2). (2)

(λ1 + λ2 + c2 + µ21(n2≥1))π(n1, n2, 2) = µ2π(n1, n2 + 1, 2) + 1(n1≥1)λ1π(n1 − 1, n2, 2)

+ 1(n2≥1)λ2π(n1, n2 − 1, 2) + c1π(n1, n2, 1). (3)

A direct analytic computation of the joint queue length distribution (or its probability generating
function (PGF)) turns out to be as challenging as the workload analysis presented in [7, Sec. 6]. In
what follows we explore the use of parametric perturbation under different scaling schemes, and
also discuss the advantages and disadvantages of each particular scheme.

3 Perturbation analysis

We perturb some of the parameters of the model by scaling them by a common parameter ε.
There is a rich choice in which parameters to perturb. We demonstrate how this choice affects the
nature and the complexity of the underlying solution. Furthermore, for each specific choice, we
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demonstrate how to derive the leading term, and how to obtain recursive schemes to compute all
following terms.

More precisely, we scale some parameters (to be specified for each of the four options) by ε and
reflect the dependence of the perturbed model on ε in our notation, for example π((n1, n2, ε)|i) for
the conditional queue-length probabilities. Assuming the perturbed queue length distribution has
a Taylor series expansion

π((n1, n2, ε)|i) =
∞∑
k=0

εkπk((n1, n2)|i), i = 1, 2, (4)

we are then left with the computation of the coefficients in this expansion. The choice of scaling
should be such that the limiting distribution, as ε → 0 can be determined, and that πk((n1, n2)|i)
can be determine recursively from the equilibrium equations (2) and (3) after the scaling. The
original joint queue length distribution can be retrieved by setting ε = 1.
In this article we consider four different scaling schemes. The first scaling scheme is the least
trivial and is discussed in more detail than the other schemes.

4 Scaling 1: queue 1 with short visits and infrequent arrivals

We scale the rates λ1, µ1 and c2 as λ1 → ε2λ1, µ1 → εµ1 and c2 → εc2. The parameters that
are not perturbed are µ2, λ2 and c1. We will see that this choice directly leads to recursions for
πk((n1, n2)|i), i = 1, 2 with an explicit leading term when ε → 0. The quadratic term plays an
important role; in the scalings to be discussed later, we will see that without the quadratic term,
the recursions have a more complex form.

Substituting the perturbed parameters into (2) and (3) and rearranging the terms we obtain

επ((n1, n2, ε)|1) =ε
λ2

c1 + λ2
π((n1, n2 − 1, ε)|1)1(n2≥1) + ε

c1
c1 + λ2

π((n1, n2, ε)|2)

+ ε2
µ1

c1 + λ2
[π((n1 + 1, n2, ε)|1)− π((n1, n2, ε)|1)1(n1≥1)]

− ε3 λ1
c1 + λ2

[π((n1, n2, ε)|1)− π((n1 − 1, n2, ε)|1)1(n1≥1)], (5)

π((n1, n2 + 1, ε)|2) =
[
1(n2≥1) +

λ2
µ2

]
π((n1, n2, ε)|2)−

λ2
µ2
π((n1, n2 − 1, ε)|2)1(n2≥1)

− ε c2
µ2

[π((n1, n2, ε)|1)− π((n1, n2, ε)|2)]

+ ε2
λ1
µ2

[
π((n1, n2, ε)|2)− π((n1 − 1, n2, ε)|2)1(n1≥1)

]
. (6)

Substituting (4) and computing the coefficient of εk+1 from (5) and εk from (6), yields the required
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recursions of the perturbed queue length distributions, for k ≥ 0,

πk((n1, n2)|1) =
λ2

c1 + λ2
πk((n1, n2 − 1)|1)1(n2≥1) +

c1
c1 + λ2

πk((n1, n2)|2)

+
µ1

c1 + λ2

[
πk−1((n1 + 1, n2)|1)− πk−1((n1, n2)|1)1(n1≥1)

]
1(k≥1)

− λ1
c1 + λ2

[
πk−2((n1, n2)|1)− πk−2((n1 − 1, n2)|1)1(n1≥1)

]
1(k≥2), (7)

πk((n1, n2 + 1)|2) =
[
1(n2≥1) +

λ2
µ2

]
πk((n1, n2)|2)−

λ2
µ2
πk((n1, n2 − 1)|2)1(n2≥1)

− c2
µ2

[
πk−1((n1, n2)|1)− πk−1((n1, n2)|2)

]
1(k≥1)

+
λ1
µ2

[
πk−2((n1, n2)|2)− πk−2((n1 − 1, n2)|2)1(n1≥1)

]
1(k≥2). (8)

To iterate the recursions (7) and (8) we need πk((n1, 0)|2). The recursion for πk((n1, 0)|2)) is de-
rived from (8). Let πk((n1, ·)|2) denote the coefficient of εk of the marginal queue length distribu-
tion π((n1, ·, ε)|2). Multiplying (8) by n2 and then summing over n2 from 0 to∞, we obtain

πk((n1, 0)|2) =
(
1− λ2

µ2

)
πk((n1, ·)|2)−

c2
µ2

[ ∞∑
n2=1

n2π
k−1((n1, n2)|1)−

∞∑
n2=1

n2π
k−1((n1, n2)|2)

]
1(k≥1)

+
λ1
µ2

[ ∞∑
n2=1

n2π
k−2((n1, n2)|2)−

∞∑
n2=1

n2π
k−2((n1 − 1, n2)|2)1(n1≥1)

]
1(k≥2). (9)

There is still an unknown term πk((n1, ·)|2) in the above equation, which is the coefficient of εk of
the steady-state marginal queue length distribution πk((n1, ·, ε)|2), which is known [7, Sec. 3] and
leads to the recursion

πk((n1, ·)|2) =
λ1c1
µ1c2

πk((n1 − 1, ·)|2)1(n1≥1) +
[(

1− λ1c1
µ1c2

)
1(k=0) −

λ1
µ1

1(k=1)

]
1(n1=0)

− λ1
c2
πk−1((n1, ·)|2)1(k≥1) +

λ1
µ1

(
1 +

µ1
c2

)
πk−1((n1 − 1, ·)|2)1(n1≥1)1(k≥1)

+
λ21
µ1c2

[
πk−2((n1 − 1, ·)|2)1(n1≥1) − π

k−2((n1 − 2, ·)|2)1(n1≥2)

]
1(k≥2). (10)

Finally by combining (8), (9) and (10), we get a complete recursion for πk((n1, n2)|2), as well as a
recursion for πk((n1, n2)|1) from (7).
Computation of the first terms of the recursions. Calculating the results from (8), (9) for k = 0
yields

π0((n1, n2)|2) =
(
1− λ1c1

µ1c2

)(
λ1c1
µ1c2

)n1
(
1− λ2

µ2

)(
λ2
µ2

)n2

. (11)

Setting k = 0 in (7), iterating it for n2 gives

π0((n1, n2)|1) =
c1

c1 + λ2

(
µ2

c1 + λ2

)n2 1−
(
c1+λ2
µ2

)n2+1

1−
(
c1+λ2
µ2

) π0((n1, n2)|2). (12)
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We have now arrived at an explicit recursion for the coefficients of the expansion. Unfortunately
the above analysis does not come with a guarantee on the numerical stability if we wish to take
ε → 1. This drawback is common to many applications of perturbation analysis. Obtaining
theoretical lower bounds on the radius of convergence of the expansion often lead to very crude
bounds (and therefore of little use), see e.g. [2, p. 846]. For our model we conducted numerical
experiments, which suggest that the radius of convergence in general does not extend to = 1.
A better understanding of the radius of convergence is therefore needed to make this approach
useful for approximations.

5 Three alternative scalings

In this section we briefly address three other scaling approaches and - similar to the previous
scaling - we discuss the challenges encountered.

5.1 Scaling 2

In this scaling, we scale the rates λ1, λ2, µ2 and c2 as ελ1, ελ2, εµ2 and εc2. We first focus on the
initial solution as ε → 0 in (4). In this limit, one can observe that the server is always serving the
second queue, which implies that the second queue behaves as an M/M/1 queueing system and
also independent of the first queue. Hence the joint queue length distribution of the system is the
product of the distribution of the first and second queue as ε → 0. The queue length distribution
of the separate queue can be computed with some effort. Next step is to derive the other term
of series expansion (4). The recursions for those terms can be obtained from (2) and (3) using (4),
though it is not obvious to see how the initial solutions can be used to obtain πk((n1, n2)|i) for
k ≥ 1. But it does not exclude the possibility of using the initial solutions to derive the other terms
in a non-trivial way.

5.2 Scaling 3

In this scaling, we scale the residing times ci as εci for i = 1, 2. This scaling is an interesting
scaling because in the limit ε → 0, the considered model behaves as a two-dimensional Markov
modulated fluid queues. Unfortunately, the computations the limiting distribution as ε→ 0 turns
out to be as challenging as the workload analysis presented in [7, Sec. 6]. This could be a topic for
further investigation.

5.3 Scaling 4

In this scaling, we perturb the service and arrival rates as εµi and ελi for i = 1, 2, respectively.
This scaling has been discussed in detail by us in [7, Sec. 7]. In this paper, we propose a singular
perturbation analysis for the calculation of the joint queue length distribution of the perturbed
Markov chain. We have shown that the steady-state joint queue length distribution is written as
a Taylor series expression in terms of ε, whose coefficients form a geometric sequence, that can
be used for both exact and numerical calculations. Furthermore, we have shown that there exists
a computationally stable updating formula [7, Eqn. (7.15)] for the calculation of the perturbed
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steady-state joint queue length distribution. The only issue in this scaling is that, to approximate
the joint distribution numerically, one needs to solve a large system of equations, for which we
need to truncate the state space.

6 Conclusion

Perturbation analysis has proven to be a fruitful technique in the analysis of several multi-dimensional
Markov models. In order to successfully apply perturbation analysis, one must find an appropri-
ate scaling parameter in general. In this paper we explored the use of perturbation analysis to de-
termine the stationary distribution of a specific polling model with random time-limited service.
Exact analysis of our specific model has proven extremely challenging, thus making it natural to
resort to perturbation analysis. We discussed four candidate scaling approaches to analyze the
polling model. In all four cases, we succeeded to reduce the complexity of the original problem,
but were not able to establish a numerically reliable computation scheme. For each of the four
scaling approaches we described the difficulties that must be overcome to accomplish this goal.
Our work is meant to serve as an intermediate step in various directions, to eventually facilitate
reliable computations of stationary performance measures.
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