
d

(

.. . .

• "

I 0

j
L b

•

•

•

' " •

..

..

...

G E L 11 I D E

Di t is een k:lad•,,afd:ruk van een deel van het materiaal voor
het rapport R 989, "Prolegomena to X8 ALGOL", da.t D.V.
n.ajaa.:r '64 als Mathematical Centre Traot sal vereohijnen.

Het is tevens een expreriment in ''Engels ui tlijnen'' met
extra layout-faoiliteiten. Brandt Corstius komt"""' toe
voor de terzake verleende medewerking.

Dit is geen publioa:tie. Verapreiding is beperkt tot de
Rekena.fdeling van het KC en . ele intimi. De bedoeling is
oritiek, op- en aanmerkingen in te waohten en in een of
meer werkbesprekingen te beha.ndelen. Verantwoording naar
bui ten kan het M.C niet dra.gen zolang de disoussie over de
hardw·a.r-e niet is a:fgesloten en de fabrika,l'lt in gebreke
blijft behoorlijke besohrijvingen van zijn product te
dietribueren.

De ~nboud. ia
afdeling. De
Nederkoorn.

13-5-64

een oolleotief geea"teaproduot van de Reken··"·
-tel.cat is verzorgd door K"ruseman A:rets en

het Engels ia geschaafd door Maillour.

•

•

1

1. Preface

This report contains a preliminary sketch of an ALGOL 60 compiling

system for the ELECTROL ICA X8, a new computer to be released in

1965.

We only describe the running system: the output of the compiler is

defined for the constructions allowed in the la11guage. We also describe

the administrative and executive subroutines (in our terminology, the
11 c o m p l e x11) that are necessary for the proper functioning of the

system. Some of them have now been programmed in full, others will

be defined in t.erms of ALGOL 60 statements or in plain English. Little

attention is given to the construction of the compiler itself.

In executing an object program no interpretive system will be used,

nor will the pr . am consist mainly of a sequence of subroutine calls.

A compiler will produce a machine code program, which will occasionally

call for the complex routines.

The X8 wlll be a digital electronic computer having 16K or 32K of

directly accessible core storage. Most installations will be equipped with

some kind of backing store, but this asp,ect will be deliberately neglected

here. We only consider situations, wherein the complete object program,

selected library pr ams, complex, working spaces and in- and output

b ers are contained in directly accessible core memory.

The X8 may be concisely but incompletely described as being the

same computer as the Xl [2], extended in the following ways:

1. a 54 bit . register for floating numbers in a modified Grau

representation (3] and hardware floatin.g addition, subtraction, multiplication

and division;

2. a dynamic addressing facility using up to 58 pseudo index registers.
'

Any sequence of at most. 58 consecutive memory locations may at, ;1ny

moment be selected as address modification registers for indirect

referencing. Such a set of locations will be called a. display.. More than

one display may exist at a time but only one wlll be active. A display

is selected as act.ive by storing the address of its first lo,cation in the

display pointer D, which is address 63 of the core memoryJ

2

3. stack facilities including autornatic stack pointer u .· · atingJ

4. an instruction ,(n), which will cause the order in location n

to be executed.

A software com.1ntttee for the XS has been organized, in the spirit

of S RE, under direction of Prof. Dr. Ir. A. van Wijngaarden. er

groups represented on this committee will do the necessary work with

respect to asse .· lers, trace routines, in- and output facilities etc. A

group in Eindhoven (Prof. Dr. E.W. Dijkstra. and collaborators) will

give attention to the multiprogratnming problem, restricted however to

A OL 60 programs.

The object of this report, describing the ideas of a working team

of the Mathematical Centre on an A OL system for a homogeneous

memory, is twofold:

1. It is a proposal to the so · are comrnittee mentioned above and

an offer to complete the system described; that is, to write all programs

needed, the compiler, library organisation, in- and output routines, etc.

2. It tries to give potential XS users at an early stage an insight

into the possibilities and problems of an ALGOL system and to elicit

discussions and criticisms.

Our team consists of:

1. Prof. Dr. Ir. A. van Wijngaarden

2. Drs. F.J.M. Barning

3. Dr. F. E. J. K.ruseman Aretz

4. Drs. P.J.J. van de La1ll'sehot

5. J. N ederkoorn

6. Drs. J. A. Zonneveld

This report has been written by Kruseman Aretz and Nederkoorn,

using the working sheets of the group.

3
•

2. Notation and termJ~?~?~~ .t

Hardly any knowledge of the machine code of the XS will be necessary

to understand the rest. of this report, since we will explain every

instruction in ALGOL 60, supposing that the following declarations have

been made.
•

in~~e;er A, S, B, T, D; comment the registers A and S are

accumulators, used mainly for fixed point operations and address correction

and B for addressing the top of the stack / / T is the order counter

// D is the display pointer, used in dynamic addressing;

Boolean C, LS, LP, OF, NINT; comment condition, last sign, last

parity, overflow, non-integer;

~ntef:e!, -~:rra::, M[O: 32767]; corn,ment this array will represent the

core memory;

real F; comment the floating register;

in~~~e!
1
J?!,?C~?~!~ red(a); com1,1ent before using a p o s i t i v e

'

word for indirect addressing, this will be reduced as follows;

red : a - a : 2 18 >< 2 18;

•

memory

~~tfyger procedure pha(r ,q); comment pha means physical address / /
•

the compiler will associate with a variable a dynamic address, consisting

of 2 integers r and q/ / -256 < q < 255 / / 0 < r < 57;

pha:= red (M[red(D)+r]) + q;
• •

comment dynamic addressing amounts to this: the relative address

q is increased by the contents of an index register selected from the

display under control of r. If positive values are assigned to D and to

the index registers, only the 18 least significant bits of these words

will take part in the operation;

We expect -a compiler to consist of two distinct parts: an analytical

main program, to a great extent machine-independent, and a macro

processor. The analytical part produces a string of macros, the action

of some of them being specified by a set of addresses, code words,

constants etc., which we will call metaparameters, to avoid confusion

with the parameters of the source language. The macro processor

4

transforms the macros and their metaparameters into machine code
orders.

Macros will have names, e.g. RET (return), T AV (take arithmetical

value), TA (take address) etc., and code numbers for machine

representation.

From the term macro it should not be inf erred that the machine

code translation of a macro will require, as a rule, more than one

order. Some macros will, in fact, correspond to part of a machine

order. We will also define macros, which are not produced by the

analytical part of the compiler, to be used purely for explanatory

purposes. A macro, in short, is a logical unit.

If no confusion threatens we will use the macro name for the macro

itself, for the piece of object code translating it and, sometimes, for

the routine in the complex called for by this code.
'

In the fallowing sections a set of A OL statements printed on one

line will correspond to one hardware instruction. In Appendix 1 a

(generally more concise) version of each piece of program in the

assembler's code can be foundo

Since T := T + 1 is part of the function of most orders, this
•

statement will generally be o:rr,itted from the order description.

Jumps to subroutines in the complex will be described as ''procedure

(< name of macro or subroutine >)'t.

5

Our first aim is to implement high fidelity ALGOL 60 as defined

in [1], except for cases of downright impossibility as e .. g. the dumxny

switch jumps (4. 3.5. of [l]). Some quantitative restrictions due to

hardware limitations will have to be accepted. The only important ones

are these:

1. No nurnbers larger in absolute value than 2 26 - 1 n1ay b,e
•

assigned to integer variables and integer procedure identifiers (the word

le h of the XS being 27 bits).

2. A block must not be textually embraced by more t 57 other

blocks.

3. Of cot1rse an object program plus working spaces must not exceed

the storage capacity.

No restrictions wil be introduced as to side effects. size of floating

nun~1hers, len of names and expressions, depth of recursion, number

of parameters and dimensions, for list elements, switch elements etc.

Integer labels, unspecified formals called by name, value designational

expressions and own arrays with dynamic bounds will be included. (The

own concept, as defined in [1], is not wholly unambiguous. We chose

the so-callecl static interpretation, which means that own variables,

declared in a proced11re, whether recursive or not, will have at most

one identity. Except for own arrays with dynamic bounds and for clash

of names, this amounts to handling own vat·iables as if declared in the

outermost block).

On the other hand no innovations, extensions or deviations from

ALGOL 60 will be implemented on purpose, with one exception; namely,

~~:r;-si!1&, as a declarator and t . The wide range of possibilities opened

by this single e nsion will be discussed at length in sections 5. 7. and

15.
Since the system caters for value designational expressions, it will

implicitly cater for designational variables and assig11n1ents to them. So

a compiler might accept these features.

•

6

We also consider optimization to be largely a matter concerning the

compiler alone. So in describing the object program for the constructions

of ALGOL 60, we will as a rule restrict ourselves to the most general

case, sometimes indicating briefly some possible opportunities for

optimization.
'

If, for a particular implementation problem, more solutions present

themselves, some may be prefe1~able

lead to compacter object programs.

as to speed, whereas others may

In most cases we will then give

preference to speed. In other cases we will leave things open, since

compilers might, before compiling, give users the right to choose between

fast.-and-long and slow-and-compact. The latter choice would then imply

that even short fixed sequences ·of machine code would be relegated to

the complex.

7

Monitoring systern.s will of course depend on hardware configurations.

We will consider only the barest possible outfit here: a basic computer

operated by means of a teleprinter, one or two core modules of 16K

each, a punched tap,e reader (1000 heptads/sec), a tape punch (150

heptads/ sec).

In this situation we expect that multiprogran1m1ng will offer little

benefit. So we will restrict ourselves to sequent,ial execution of A OL

programs. The compiler will normally be operated in load- and-go
•

fashion. Object programs produced need not be relocatable, therefore.

It seem.a attractive, however, to be able to use the co . iler for the

construction of library procedures. The compiling program. should therefore,

at the user's request, produce (and print or punch in a readable code)

object pr ams that can be located freely by a library selecting pr am.

Some object pr ams, indeed, will need completion by libra·ry

procedures. In scanning the library tape for this pi1rpose, and completing

the object program with-selected i.tems from this library, or during the

execution of the prograrn, the compiler may be destroyed.

On the other hand, if the cornpiler should happen to be left intact,

compilation and execution of a program may begin immediately, even

before the output of the foregoing program has been completed.

Thus. for a monitor the following functions emerge:

1. Instructing the operator which kind of tape must be laid into the

tape reader: compiler tape; library tap,es; next ALGOL so,.1rce program

tape; or input tape of object pr am under execution;

2. Housekeep.ing of in- and output buffers;

3. Producing a complete logbook reporting operator actions, program

identifications, program errors, execution times, etc.

These considerations (and the general necessities of our implementation

system) almost force the partitioning of the entire storage into the

fallowing main sections:

8

1._the part of fixed extension during run time, including monitor ·

program, complex, object program, selected library routines, etc.;

2. stack (for most variables, arrays, link data, etc.);
'

3. no man's land (immediately at the disposal of the main, program

for extending the range of the stack, counter·-stack or buffer); •
•

4. counter-stack (for own arrays and strings);

5. in- and output buff er_;

6. compiler.

Since the counter-stack will have to be shifted aside if an in- or

output congestion occurs, all references to its contents including its

internal references will be relative to a variable, viz. location of counter­

stack (lcs) 1 co1nmon to monitor and complex.

•

•

9
'

Initially• we will consider only simple arit etic expressions involving

no if clauses. Of these we give a general treatment first, covering the

most awkward cases. In section 5. 2. we will show how much may be

gained by optimization in this area.

In calculating arithmetic expressions the system will - except in the

case of the integer division - completely ignore the difference between

integers and reals. Among floating point representations of numbers the

Grau representation has the extren1ely desirable property that the floating

point version of an integer is identical to its fixed point notation. Hence,

we need not be concerned about transfer functions (see 3.2.5 of [1]).

Example:

··••a + b x (c (1)

All identifiers denote simple non-formal variables.

Like most translating systems, our treatment will be based on

transposition of such formulae into Reversed Polish Form [8].

Formula (1) then reads like this: r,
> ,~

'
•

a - b C (l e f f1- X + (2)

If a machine scans this from left to right, it will never need to

store or postpone any operation.

A simple implementation rule would be the following:

If the machine finds a variable, it takes the value of the variable

into the floating register F, if necessary storing the previous contents
•

of F on the stack. If it finds a monadic operator (e.g. the first minus

sign of (2)), it transforms F accordingly. If it finds a dyadic operator

the corresponding operation is performed, using the top of the stack as

first operand and F as second operand. In this case the stack pointer

is decreased. The result is again left in F. Thus, all intermediate

results are initially formed in F and, if an expression has been calculated

as the first operand of a dyadic operator, then its value has to be

10

saved in the stack, in order to free F for the evaluation of the second

operand.

An obvious advantage of (2} is that the order of the primaries has

not been changed. This seems irrelevant in ALGOL 60, because in [l]

there are no specific rules concerning the order in wlnich the primaries .

have to be fetched. So - if read is an input function, made equal to

the next number on a punched paper tape, or any other function causing

a side effect on its following acti,ration -- the expression

read read

is undefined. But we think it highly desirable that such expressions

involving side effects have a well-defined meaning and so we postulate

for our implementation that the results be equivalent to those obtained
'

by fetching the primaries in textual order.

To derive (2) from (1) the following general rules might be applied

(these are given here as a definition of the Reversed Polish Form,

not as a compiler algorit) :

a. specify the order of operations in the expression by complete

bracketing;

b. transform recursively all f::Xpressions of the form

(< adding operator > < expression >)

involving a monadic operator, into

<expression>< adding operator>

and all expressions of the form

(< expressionl > < dyadic operator > < expression2 >)

into

< expressionl > < expression2 > <dyadic operator >.

metaparameters. All macros have built-in stack pointer correction.

q-•:n

Program

TAV(a)

NEG

STACK

TAV(b)

STACK

TAV(c)

STACK

TAV(d)

STACK

TAV(e)

TTP

STACK

TAV(f)

DIV

SUB

MUL

ADD

comment

take arithmetic variable; F : "· a

F :-·-· -F

M[B] := head(F); M [B+l]:= tail(F); B : B+2

In future we will avoid the use of the head­

and tail-functions and contract the first two

statements of STACK into: M[B]:= F;

to the power; forms d e in F

F II• .. d • f - .• • e / f

F :,q.. C d e / f

F :- . b X (c d e / f)

F • a+b X (c d e / f) •

The upper part of the stack passes through the following stages:

< empty>

a

a, b

a, b, c

a, b, c, d,

a, b, c, d e

a, b, c

a, b

a

13

14

<empty>

We will now leave this exa . le and discuss the translation of

ari etic macr,os into X8 machine code passing over the addressing

problem.

For TAV (< operand>) one has

F :=< operand >; (3)

if the operand is a simple variable or a constant. Is it a

constant

< 82768 in _absolute . e, then the so-called absolute versions of the

take ord,er may be used, i.e. the address t of the order contains

not the address of the constant but its absolute value.

If a simple arithmetic expression is of the form

+<term>

then the 11+11 may be ignored by the co ler. If

expression

is of the form < term >, then t,he operator will be translated by

NEG, the machine code version of which is

NEG: F :- -F; (4)

.. adic macros for_+ and . .,,.. are ADD and SUB. ADD is the easier

case be,cause of the oom1nutativity of the addition.

ADD: F :• - F + M(B - 2]; B :- B - 2; (5)

Subtraction being non-commutative, matters

difficult. An order F : M[B - 2] - F; B : B

. ome slightly more

2 is missing. A

completely general solution would be the translation of a - b by

SUB:

F :- a;

M[B] :- F ; B :-B + 2; comment STACK;

F := b; con·•·ment or any set of orders leaving the

second operand in F;

NEG;

ADD;

i.e. as if the source program had been a + (-b). It becomes clear

here that optimization might do a g . job in suppressing NEG operations,

exploiting the negative fetch orders in the XS code. For xnultiplioation

we have:

MUL: F :- F x M[B - 2]; B := B - 2J (7)

Divisicm ca.uses oo lioations, again because an inverse division

order is missing from the code. But we oa.n always transpose operands.

So we define

UNSTACK:

DlVt

F :· M[B ·- 2]J B,. :- B . a;

UNST ACKJstook ;• l!J ..
• , • . •' , .:v• ,' 7 ,· . .

F :=F / stock;

15

F : F / stock;

For TTP and IDI (integer division) no suitable orders are available

in the code. Therefore these macros are translated as jumps to subroutines

in the complex.

Until now the treatment has been general; that is, the schemes will

work for any operands, however complicated. E.g. an operand may be

conditional expression or a function designator or a subscript expression.

Such expressions are evaluated by a piece of object program that must

fulfil two requirements:

1. It must deliver the value of the expression in F;

2 . The stack pointer must have the same value before and after

the operation.

Similar rules will hold for expressions of other types. The reader

should keep this in mind whenever simple take orders are used in

examples.

5.2.

Since the macros described thus far will make possible an adequate,

if not optimal, translation of the class of arit etic expressions under

discussion, we might leave it as a matter of compiler strategy how far

to exploit the many obvious shortcuts presented by the order code, If

any effort is spent on optimization, it will be wise to have it concentrated

on this subject of arit etic expressions.

It is important to note in this respect, that optimization may be

found at different levels in the compiling process. It may often very

easily be introduced into the macro processor. Two logically ·independent

macros, which have been transformed into machine code may, in some

cases be welded together by combi.ning their respective last and first

orders into one machine order. The macro processor might be aware

of a set of these and similar possibilities.

The analytical part of a compiler may also be concerned with the

optimization problem. Then it may prove useful to introduce new macros

solely for this purpose, e.g.

TNAV(a): F : - a; (10)

16

•

ADDl(a):

MULl(a):_
' ' . .

SUBl(a):

DIVl(a):

F := F + a;

F := F x a;

F := F a;
F FI a;

(11)

(12)

(13)

(14)

All but the first are one-parameter-variants of the non-parametric

macros ADD, MUL , etc. Using these extra macros we will be able to

improve the translation schemes presented in the following ways.

NEG's may, if the operands are simple non-formal variables or·

constants, be suppressed by using the negative fetch order

TNAV(a): F : - a

This may , easily be extended to more complicated operands

such

as products and quotients. provided the first operand of the latter

constructions is again a simple, non·•·•formal va.riable, or a constant.

In the case of dyadic operators, for a sequence like

STACK;

TAV(b);

ADD;

one machine code order

ADDl(b);

may be substituted.

This substitution applies when the second operands is a simple non­

formal variable or a constant. But if only the first operand satisfies

these requirements, and if the operator is com1n11tative, the compiler

might venture a reordering of the formula, provided the second operand

cannot produce side effects changing the value of the first operand •. (For

these and other purposes we define a s t r a i g h t f o r w a r d expression

to be any expression not involving procedure identifiers or formals. The

set of straightforward expressions is a subset - large enough, in this

context - of the set of expressions having no side effects at all) •

As a result the initial translation, based on Reversed Polish Form,

of the formula a + b /c, that is

TAV(a)J

STACK;

TAV(b);

STACK;

TAV(c);

DIV;
ADD;

may, at one stage, contract into

TAV(a)J

•

•

•

•

..

and, if a, b and c are

STACK;

TAV(b)

DIVl(c);

ADD;

straightforward,

TAV(b);

DIVl(c);

ADDl(a);

even into

•

Regarding subtraction, though it be a non-commutative operation yet

· the same method will apply here, since it may be decomposed into

NEG and ADD.

,

So we can translate a - b >< c, provided all variables be straightforward,

as

TNAV(b);

MULl(c);

ADDl(a);
•

In the case of division, a new non-parametric macro will

prove

useful:

DIV2: (15)

This macro will enable us~ if reordering of operands is admissible,

to avoid the transposition orders involved in (9), translating e.g. (a+b)

/(c+d) as

TAV(c);

ADDl(d);

STACK;

TAV(a};

ADDl(b);

DIV2;

Evidently. it is not necessary here, that the first operand

be

simple.

'
'

,5:-~• ~O?~e!l-D
1
e?9?;res~~~~~

Here again we will deal only with simple Boolean expressions involving

no if clauses.

The binary register C - the condition register - is chosen as the

most appropriate pl.ace for storing intermediate results in evaluating

Boolean expressions. To represent the value of a s-imple Boolean variable

or to store an intermediate Boolean result on· the stack, the sign-bit of

~n XR ,n11nhinA wn-rd,. lin our not.ation. the sin of an. integer) •. will be

'

18

•

used. Subscripted variables, however, will be stored bitwise. All these

cases are listed here.

logical value

sign of integer

sign-bit of X8 word or bit

in Boolean array word

contents of C-register

true false

+

0 1

0 1

If the sign-bit of an integer represents a Boolean value,

then the

remaining 26 bits of the XS word are irrelevant and, in fact, undefined.
'

Important machine features in this context are:

1) the sign-bit of M[62] is always equal to the C-register; so all

condition-setting orders may change this sign-bit;

2) as a consequence of the ones-complement number representation
•

of the XS [7], there are two representations for zero: the integer +O is

a sequence of 27 zeroes; the integer -0 is a sequence of 27 ones.

Similarly ,the mantissa of the real nu er O. 0 will be a sequence of

either zeroes or ones (see section 18).

3) most orders in the code have condition-setting variants; i.e. the

orders may be extended by condition-setting elements. Two of these

elements are defined as macros.

POS: C := F > + O;

ZERO: C : F ... O;

A negative pendant of POS is missing. However, one may circumvent

this deficiency since there is a one-bit-register LS (last sign) that is

equal to the sign-bit of the last result used in setting C and most

orders have a condition-setting variant testing the equivalence of LS and

the sign-bit of the order, result (see e.g. LST).

Our treatment . of Boolean expressions will again be based in

principle on the Reversed Polish Form. Thus, in our first general

••

19
•

approach to the calculation of the value of relations, we will assume
.

the first arit etic operand to be on top of the stack and the second

operand in F. Similarly, logical operators will expect their Boolean

operands to be on top of the stack and in C, respectively.

For transport of operands, whether named or nameless, we have the

following macros:

TBV(a): S := a; C := S > + O; comment take Boolean

STAB:

UNSTAB:

value;

S : M[62];

M[B] :-... S; B := B + 1; comment stack Boolean

value;

S : M[B-1]; B :-•· B 1; C := S > + O;

•

•

(16)

(17)

(18)

Macros for logical operators:

NON '1 1 11 S : -M[62]; C:= S > + O; (19)

(20)

OR 11\/1 1

•

IMP ,, 711

QVL ''=11

•

if 7 C then B :-- B -

if C then UNST • ,

f C then B := B - 1;

if lC then UNSTAB;

if C then B := B - 1;

1;

if lC then be n S:=-M[B-1];

S :- M[62]; LS : - S > + O;

S : M[B1-l]; B:·· B-1; C : ...

(21)

(22)

B:=B-1 • C: S> + 0 end•·
, - lJJf!,

(23)

LS= S > + O;

To simplify our description of relational operators, we draw attention

to the fact that all corresponding macros will begin with a subtraction.

So we define

MINUS:

Macros for

EQU 11=11

UQU ,, ,1

LES 11<11

F F - M[B-2]; B :,nm B - 2;

relational operators:

MINUS; ZERO;

EQU;

NON;

MINUS; POS;

if C then be n F := F - 0 • POS end• # : a , I I

(24)

•

•

•

(25)

(26)

(27)

20

MST 11<''

MOR ''>''

LST '1>''

MINUS; POS;

if lC then ZERO;

MST;

NON;

EQU; LS : - F > + O;

•

(28)

(29) ..

•

(30)

if lC then be _n S :- -1; C : LS S > + 0 end; -
•

The statement F := F - 0 in LES is a consequence

of the zero representation. In the case -0<+0 the result

MINUS would be positive.

5.4.

of the iguity

of the preceding

The fallowing remarks about possible methods of producing more

efficient object programs are optional again. Compilers may or may not

spend time or space to improve on the general approach set forth in

the preceding section.

A) For systematic reflections on simplification of Boolean expressions

along lines similar to those known from propositional calculus, we refer

to [4].

B) In constructions like

BEl /\ BE2

BEl V BE2

BEl 7 BE2 .

where BE stands for Boolean Expression, it will often be sufficient

to calculate only one of the operands, provided the other is straightforward.

If both operands are straightforward, the compiler may select the simplest

one to calculate first. Hence, in some cases, the following substitutions

may be applied before translation:

For BEl /\ BE2 read

or
•

For BEl V BE2 read

or

For BEl 7 BE2 read

or

if BEl then BE2 else fal_se

if BE2 then BEl else false

if BEl then true else BE2

if BE2 then true else BEl

if BEl then BE2 else true

if BE2 then true else 7 BEl

•

21

C) If the second operand of LES is a constant the second machine
'

order of LES may be suppressed (provided the compiler substitutes -0

for +O).

D) If one of the operands of a relation is constant and O, then a

nonnegligible simplification of the corresponding object code may be

achieved by applying the following rules during translation:

1) if the zero operand is the right hand one, bring it to the left.

if necessary substituting the inverse relational operator;

2) suppress the TA V and ST ACK operations concerning the left

operand;

3) suppress the MINUS element in the relational macro and, if

possible, merge the condition-setting element of the first machine order

of the macro into the last preceding order; i.e. into the order forming

the right hand operand in F.

For translation of conditional expressions of any type, we introduce

the macros JU and COJU (jump and conditi9nal jmnp).
!

JU(A): g_9
1
t9 A; (31)

COJU(A) if 7C then go
1
to, A; (32)

A conditional expression of the form

if BE then El else E2

will be translated according to the following outline.

(code for BE);

COJU (Ll);

(code for El);

JU (L2);

Ll: (code for E2);

L2:

In section 5.2 we mentioned the optimization technique of welding

two consecutive macros by combining their last and first order into one

machine . order. A very simple exa1r1ple of this method presents itself
'

here. In translating an if clause of the form

if 7 BE then

as

22

(code for BE);

NON;

COJU(Ll);

the macro processor may easily detect the possibility of co ining

the last 2 machine orders into one:

UNLESS(Ll): if C ~h~n. ~?. to Ll;

5. 6 o Desi national e ressions

Since there are no operators in OL 60 working on designational

expressions, the latter will be of one of the following kinds:

1) label identifiers;

2) unsigned integers;

3) switch designators;

4) complicated designational expressions, composed of others by

means of parentheses, if clauses and delimiters else.

A full treatment of all problems arising here will be given in section

12. In this context the following remarks should suffice.

Not all designational expressions will deserve a translation as separate

conceptual units. We expect e~g .• that most go to statements will be

translated as JU orders.

If a separate translation is necessary I the machine code representing
•

the designational expression in the object program will have to perform

a task analogous to that in the case of expressions of other ·types; that

is, it will deliver the v a 1 u e of the designational expression (a notion

to be explained in section 12) in the registers A and S.

In some cases, the translator may not have been able to decide

whether an unsigned integer figures as an ari etic or as a designational

expression. In these situation, the expression is considered to be of

mixed type and the corresponding code will deliver both values (ari tical

and designational) in the appropriate registers.

As mentioned in section 3, the one extension to A OL 60 envisaged

in our implementation will be the introduction of the delimiter str~~i as

a declarator and as a type. So we will have string variables and
•

23

assignments to them, string arrays I string procedures and conditional

string expressions; in short, the full gamut of expressional facilities that

are at our disposal with respect to the other types, except own strings.

At first sight, the absence of operators might seem a restriction,

but this gap can and must be filled by procedures having a body expressed
•

in non-ALGOL code. In our system, this will be XS machine code. The

choice of the particular operations to be implemented in this way will

of course depend on the use one wants to make of strings and, therefore,

on the semantics of those strings. So it seetris convenient to expand

somewhat on this subject.

From our point of view, a string is a quantity having no inherent

meaning. Though there is a section in [1] about the semantics of strings

(2.6.3.), this section is almost void of contents. Hence, the prograromer,

in collaboration with the designers of the implementation, has the freedom

to define the meaning of the strings with which he is dealing. A string

may. for example, mean a complex number, or a sentence of natural

language, or a symbolic expression in the sense of LISP, or an algebraic

formula, etc. Now the natural way to convey the meaning of a string

in an A OL program is to choose the appropriate machine code

procedure for creating or processing it. This choice of machine code

procedure will also fix the internal representation of the string. For it

is highly improbable, that of all possible meanings of strings we see
•

.

fit to implement. one method of internal representation will be efficient

or even feasible for all.

So, to handle complex numbers in a concise way, it would be

attractive to add e.g. the following machine code procedures to the

system, (either by inserting them into a program., or by adding them

to the library, that is, more or less considering them as _standard
I .

functions like those mentioned in 3.2.4. of [1]):
I

1) complexnu er (realpart, imaginary part); this creates a string,

to be interpreted as a complex number, from two arit etic constituents;

'

· 2) readcomplexnumber;
-

•

24

3) multcomplexnumber (a, b); here the two operands would be strings, .

interpreted as complex numbers;

4) ealpart (complexnumber); a function procedure of type real; etc.

etc.

Other possible string procedures in machine code would be the

f amou~ LISP set, cons I car and cdr, together with Boolean procedures

eq and atom, operating on strings having the same interpretation.

It goes without saying that the requirements for internal representation

of the latter kind of string would be entirely different from those for

complex nurnber strings. These questions of representation will fully be

dealt with in section 15. Here it will suffice to mention, that the

treatment of string expressions in the running sytem will differ in one
-

important respect from that of other expressions. Strings are unrestricted

as to . le h and intricacy (except for the implicit restriction by finite

storage size). So the value of a string expression cannot be left in a

register. Instead, it will be left in the counter-stack. At the sarr1e time,

the k e y of the string is formed in the A- and S-registers as a two­

word unit. One of the functions of this key is to record the location

of the string in the counter,-stack.

In appendix 2 we give a complete list of the corrections and adfiltions

to [1]. made necessary by our extension of A OL 60 with respect to

string:-;.
•

'

•

25

6 ~ The stack

Since a go to statement cannot lead into a block from outside (4.

3. 4. of [1]) • control will always enter a block at the first statment of
•

that block, the block en tr an c e. We say that the block is then

a c t i v at e d. Until control has finished the execution of statements of

the block, the block remains act i v e. A block will cease to be active:

1) by a nor ma 1 b 1 o ck exit; that is, because the last statement
•

of the text of the block (supposing that it is not a go to statement) has

been executed$

2) by a 1 e a p i n g b 1 o c k e x i t; that is, by a go to statement

leading towa:rds a label outside the block.

In the text of an AI,C70L 60 prograrn, blocks of different levels may

be disting,1ished. The level of a block is defined as being equal to one

more than the level of the narrowest e racing block. The outermost

block - the program. itself - has level o. It will sometimes be called

the zero block.

In many cases activations and exits of the sa1ne block will alternate.

But sometimes a block may be activated while it is ~till active, e.g.

in the case of the recursive procedti·re call alluded to. in 5. 4o4. of [1]
•

'

• In such situations. we say that several i n c a r n a t i o n s of the
•

block are active, or that a number of nested activations of the block

exists at one moment, whereas at most one activation may be under

execution.

Since the other activations are yet unfinished and will possibly be

completed later on, for all these activations the values of local variables,

intermediate results of expressions and administrative data necessary for

the proper completion of the activation, must be in store simultaneously •.

This rules out any statical addressing device as a general method •
•

On the other hand, if an incarnation has been finished or broken

off by a leaping exit, the corresponding storage space must be left free

26

' ' •

for other purposes (except for. own variables, which are not discussed

here. See section 14.).
•

Experience seems to indicate that the type of memory organization

now commonly_called a stack is the most suitable instrument for dealing

with this dynamic storage allocation problem.

In our system a b 1 o ck c e 11 is a set of consecutive memory

words, reserved for the storage requirements of one block activation.

At any moment during run time, the stack consists of an ordered set

of adjoining block cells. The spatial order of the block cells in the

memory (from the zero block upwards) reflects the temporal order of

the 1mflnished block activations. The upper block cell belongs to the

block under execution. Its 1 may vary during the execution of the

various statements of the block, but it becomes fixed whenever a new

block is activated, before it is finished. Then a new block cell is laid

on the stack.
•

If a block exit occurs, one or more block cells are left free and

the stack pointer (the B,-register), indicating the address of the first

free memory word '' above•• the stack, is correspondingly decreased.

Thus, no shifting or sorting is necessary within the· stack •
•

Roughly speaking, a block cell may contain:

•

1) link data (see section 9);

2) variables or sets of variables (arrays);
•

3) pseudo-variables, to be explained later, introduced by the compiling

system;

4) displays, used for dynamic addressing (see below);

5) anonymous intermediate results of expressions being evaluated.

For every block cell, there is one principal point of reference,

which for historical reasons is called pp (pronounced parameter pointer
•

by Dijkstra [5] and procedure pointer by Randell and Russell [6]). This

quantity pp coincides with the address of one of the lowest machine

words of the block cell. Evidently, a pp is a dynamic quantity, evaluated

anew for every activation of a block. In principle, therefore, all variables
•

in the block cells have dyna1r1Jc addresses; i.e. machine orders referring

27

to them are not equipped by the compiler with absolute machine addresses

and q, denoting respectively the block level and the relative address in

the block cell of the variable.

To explain this, we must recall ,that at any moment during run time

only a subset of the variables, mentioned in the text of the source

program, will be a c c e s s i b 1 e. This accessible subset comprises all

variables declared either in the block under execution or in the blocks

textually embracing it. However, not all values of these variables need

be accessible; e.g. if a recursive procedure· is active, the program has

access only to the values belonging to the latest incarnation of the

proced1Jre.

So, if the block under execution has level n, then a d i s p 1 a y of

n+l pp's will suffice to define the absolute addresses of all relevant

variables. As mentioned in sections 1. and 2. the order code of the

X8 allows us to select any consecutive set of up to 58 memory locations

as active display.

The reduction of the dynaroic address of a variable v to its physical

address, defined by

~nteg~r. procedure pha(r,q); pha :- M[D+r] + q;

or, more exactly (see section 2.)

inte er I?!O~~dure pha(r ,q); pha := red (M [red(D) + r]) + q;

is then done automatically by hardware.

Thus, if in_our previous descriptions of take orders, or any orders

referring to variables, we wrote e.g.

F := a;

in a more precise rendering, this would run

F := M[pha(r(a), q(a))];

Now block activations and block exits will cause frequent changes

in the set of accessible variables; therefore, if we had only one display,

frequent updating would be necessary. To avoid this, several displays

will, generally speaking, be kept in store in the stack. The union of

all existing displays will cater for the potential accessibility of all active ·

blocks.

Only one display is active at any one time, however. because D (....

M[63]) stores the address of its first location. Adjusting D will be one
•

of the tasks of the block activation and block exit routines in the

complex.

f

•

. '

28

29

7. As~iS:~ent statements

In this section we deal with all ALGOL 60 assignments, with the

exception of assignments to simple formal variables not occ,1rring in a

value list. -

Initially, our treatment of assignments will again be based on the

Reversed Polish Form. To define this form for statements, we must

here supply some priority rules for the assignment, considered as a

dyadic operator:

1) the operator 11 :='' has a lower priority than any other operator

occurring in an expression;

2) in multiple left part lists, any preceding •1
: ·'' has a lower priority

than its successor.

'

In pseudo-ALGOL, bracketing would express the priorities as follows:

Ll : (L2 : (L3 :,,-. (E))); (33)
'

In Reversed Polish, this would run

Ll L2 L3 E : :, · := (34)
'

in accordance with 4.2.3. of [1].

At run time, every ~., .· · .. part Li leaves on the stack an. address
•

description of a variable. Every assignment macro stores the value of

the relevant register in the address described by the top o · the stack

and effects a suitable decrease of the stack pointer.

Evidently, in a case like (34), which involves a multiple left part
•

list, all but the last assignment macro must leave the relevant register

intact. For convenience, we extend this requirement to all assignment

macros, with the exception of those affecting integer variables, which
'

may round off the contents of F •
•

Note· that in (34), as compared with (38), the order of the assignment
•

operators has been reversed. This is important because macros used

in translating these operators. though necessarily of the same 11 type'' (4.

2.4~ of [1]), need by · no means be identical. They will reflect by
.

themselves or by · their meta.paran1eters the properties (form.al or not,

30

subscripted or not, etc.) of the Li preceding them in (33). In some

cases, it may even appear effective to repeat part of the information,

laid down in the object code of an Li, in the metaparameters of the

assignment macro.

The necessity of evaluating the left part first and in textual order

(otherwise the identity of left part variables would possibly be changed

by side effects of expressions to the right, contrary to 4.2.3. of [1]),

falls away if a left part variable is a simple non-formal variable. In

these cases, the compiler will suppress the Li in the object program;

their role is taken over by the assignment macro. Thus, in these simple

cases, no address description is laid on the stack.

For subscripted variables, the address descriptions referred to are

not physical addresses. Indeed it would be wrong to let the macro IND

(indexer) derive the machine address in the array storage from. the
• •

values of a set of subscript expressions, before the evaluation of E,

because part of the arrays (including at least the own arrays) will be

located in the counter stack, a set of machine words subject to shifting

and shuffling. Some of these deplacements may be brought about during

the calculation of E. Thus, at least for own array elements, the effects

of IND will have to be postponed until the assignme.~t macro gets its
:)

turn. Since this ar·rangement causes no loss of efficiency, it is adopted

for all kinds of arrays.

Among factors differentiating assignment macros, type is preeminent,

since it determines the storage requirements of a variable.
' A list of these requirements is given here.

type of variable number of XS words

real

integer

Boolean. non · subscripted

Boolean. subscripted

label (designational pseudo-variable)·

key of a string

2

1

1

(1 bit, see 7. 2.)

2

2

•

' '

31

For the real case, we have a simple solution, involving only one
machine order.

STR(v): V :-.... F;

This is an abbreviated description of the order. A

more complete

one would be:

(35)

M ha(r(v),q(v))] := head(F); M ha(r(v),q(v))+l] :- tail(F);

• •

For integers, matters become more complicated, because there is
•

no ha·rdware rounding order. By our decision to represent integer values

in the F-register during the evaluation of arit etic expressions, we

thus fa·r successfully avoided transfer functions from real to integer

representation and vice versa. But now, to get a two-word floating point

nurr,be.r properly stored in a one -word integer location, the system must

perform explicit normalizing and rounding operations. Consequently, we

must eventually dwell at some le hon the XS floating point representation.

'

If i and exp denote integers and x a real, some triplets x, i and

exp will satisfy the equations

X = i X ·2 exp

i < 2 40

exp< 2 11

exp minimal

if exp = 0,. then exp = + 0 -
Only nunibers x belonging to such triplets can be represented

•

exactly. If e is another integer and · si and se are sign-bits of i and

e r·espectively. e being defined by

e: if si=O then exp else - exp

then the· corresponding hardware representation of x

is shov.'Il in

the following die.gram:

1 bit 11 bits 1 bit

address(x) : se e si
•

1 bit 26 bits

14 bits

head of i

•

32

address(x)+l • : Sl tail of i

From a user's point of view, this diagram m.ay be taken for a

description of both the F-register and ,an arbitrary two-word unit storing

a real n er in the memory. Now, for all integers stored normally

and exactly,

e + 0
•

W II 1P

•

and

si se

••

'

• '

•
I

•

•

'

from which it follows, for all integers k, such that

k < 2 26,

that the contents of address(k) are either +O or -0 and all significant
.

bits of k can be found in the second word of tltl representation.

After these preparations, the following macro should be comprehensible.

STI(v): S: head(F); C :· · S 2":0 ;

if 7 C then procedure (·

v := tail(F);
•

(36)

D);
'

-In the procedure D a special integer 3 x 2 38 (Scholten's

constant) is employed. By adding and subtracting this constant to and

from an arbitrary floating nu · er x, both the normalizing and the

rounding of x will be correctly performed. The order ''procedure(RND)

'' is a subroutine jump laying its link on the stack.

RND: F : - F + scholtens constant,;

F :·· · F - scholtens constant.;

S := head(F)J C:-•• S=O;

if C then return by top of stack;

·.· o to monitor;

In multiple assignments to integer variables, since the first assignment

(i .. e. the last, textually speaking) will have rounded the number in F.

for all subsequent assignments a more simplified macro will suffice
'

SSTI(v): v :••· tail(F) J (37)

The same macro :may even be employed in translating a single

(i.

e. non-multiple) assignment or the first assignment of a multiple list,

provided the right hand expression of the statement is a constant integer

within the capacity of one XS word, or a variable or a function-designator,

declared to be integer.

., ' .

<

33

STB(v): S : M[62]; (38)

V := S;

For coioments, if necessary, see 5. 3.

. . .

A designational pseudo-var~iable being a two·,.•word unit, we again

disti ish a head and a tail of such a variable.

STL(v): head(v):··- AJ (39)

· tail(v): s;

To assign a string value to a string va:r~iable is a more complicated

task. performed by a subroutine in the compl.ex. So we translate
•

STS(v): tail(F):-•• pl1a(r(v),q(v));

procedure (STS);

For a ••full description, see section 16-

.

7 • 2 • A~~•~18~!!1-8.P.~::~n ~9 z2rSE,~~:Q!~Pt~?rw::V~!;~pl~!3.,

In this subsection, we will pay no attention to formal elements in

subscripted variables, but we will consistently assume that the formal

operations to be described in section 10 will have external effects

analogous to those of the corresponding non-,,,formal operations.

All macros storing values in locations of subscripted variables begin

by having an indexing routine IND (or INDB for Booleans) compress the

address descriptions on the stack (more fully defined in section 13) into

a p sical address, delive:r·ed in A, or, for Booleans, in A and s. Note

that all macros set forth in this subsection are non,,,,parametric.

7. 2 .1. Assi nments to subsCI"ipted reals
-: 1111 · ;z :mnnr't:r:: z:rtat ar:;;sr -

•

Here again, the real case is the simplest one. In ·the object program

we find:

STSR: procedure(IND); (41)

M (A]:··.. F;

7.2.2.

34

In the complex we have the following routine ..

STSI: procedure(IND);

•

s: .. - head(F); C :--- S=O;

if C then ?~f$il}= M[A]:- tail(F);

return by top of stack end;

F := F + scholtens constant;

F : F .,,.. scholtens constant:;

s := head(F); C :- s••lilo;

if C then !?~P.i!t. M[A]:= tail(F);

return by top of stack end;

(42)

In the simplified version, however (see 7 .. 1. 2), two orders in the

object program will suffice.

SST SI: procedure(IND); (43)

M[A]: · tail(F);

The Boolean indexing routine INDB fulfils the following requirements:

1) it leaves the condition-register C unchanged; this may be realised

in an easy way by the hardware feature of the 11 restoring jump'' (see

2 • 7 • 2 • of [2]) •

2) the address of the XS word containing the target bit (i.e. the

bit. that represents the variable in question), is left in A;
•

3) it leaves in S a mask word, consisting of 26 ones and a zero,

the position of the latter corresponding to that of the target bit.

' In the object program, the

the subroutine

macro

STSB:
•

procedure(IND);3);

stock : s;

STSB is tI~anslated as a jump to

(44)

logical multiplication(S, M[A]);
'

..

if 7 C then logical addition (S,-stock);

M(A]:·•- S;

return by top of stack;

For an explanation of the terms logical addition

(or '' carry-less'1

addition) and logical multiplication see 2.3 of [2].

35

Of course, the policy followed here of allocating only one bit of

storage space to subscripted Booleans, will entail some loss of efficiency

in fetching and storing these Booleans, for the sake of greater compactness.

Here, we may recall our remark of section 3. to the effect that other

running systems, fashioned after the needs of the user preferring ''fast

Booleans'', may easily be defined and introduced into the macro processor

as an option. Such systems would differ from that described here in a

small nu er of macros only (part of the Boolean fetch and store orders,

Boolean array declaration), and would, in all other respects, be fully

compatible with our overall organization.

After some preparations, the subroutine STSS will transfer to its

non-subscripted analogue STS.

STSS: stock := A; (45)

stockl :- S;

procedure(IND),;

tail(F):= A;

A :-· stock;

S :- stockl;

To the set of va14iables declared in the heading of the procedure

body, the compiler will - in the case of type procedures - add a pseudo­

variable, representing the procedure identifier and reflecting its type.

Thus, assignments to such identifiers offer no difficulties any longer,

since the same macros are used as· in the case of ordinary simple

variables. A suitable take order must be inserted into the object program,

36

at the end of the piece of code corresponding to the procedure body.

by the compiler, thus ensuring that the value of the function designator,

after completion of the procedure activation. be delivered into the correct

register.

Here too, the compiler will introduce extra pseudo-variables, local

to the procedure block, and representing the ''value formals 11
• The type

of these can be derived from the specifications, which are obligatory in

this case (see 5.4.5. of [l]). For ever·y such fot·mal, a sequence of

macros perforn1ing the assignment of the actual value to the corresponding
'll

pseudo;-variable, must be inserted into the object program. This is the

only occasion, where - in legitimate ALGOL 60 "" 4 assignments to

designational variables may occur. ·

No ''fictitious block'', as prescribed in 4. 7. 3.1. of [1], will be

created. Hence, in order to avoid a conflict with 5.2.4.2. of [1], these

value assignments mu.st ~e executed prior to all array declarations.

Further. we must allow the locals introduced in this fashion (but only

these) to occur in lower and upper bound expressions of array declarations

of the procedure block.

•

• 37

To explain our implementation of the for statement, we will first

set forth a general approach matching the most complicated constructions.

Then we will show the effects of optimization on simpler cases •

•

Consider a statement of the form

for V :"·· El, E2 while BE, E3 s~~E. E4 until E5 do SJ (46)
J I

V may be any variable, simple or subscripted, formal or non-formal.

El• E2,. • • are arit etic expressions and BE is a Boolean expression.

All expressions, including possibly subscript expressions in V, may be

unrestrictedly complicated, involving mutual side effects, etc. They may

contain function designators activating other for statements and even the

for statement under discussion. S may be any statement. It may contain

an arbitrary number of for statements, possibly nested. This high degree

of freedom in the source program will require great caution in our

design of the compilation method, particularly because in our way of

dealing with the three kinds of for list elements we will consistently
'

follow the models given in 4.6.4. of [1].

To facilitate compilation, the object code produced by the compiler

will, on the whole, show a close correspondence to the textual order of

the source progra:tn. Thus, though possible subscript expressions in V

must be evaluated £our times during every step of a step1-until element

(see 4.6.4.2. of [1]), the code for these subscript expressions will occur

only once in the object program, preceding the code for El etc.

To achieve this, the compiler scans the source text and produces

(at least in principle, see 8. 2.) for every expression Ei, BE and for
•

the left part V an implicit subroutine.
This is a piece of code, satisfying some special requirements. In

section 10 we will meet implicit subroutines of a more complicated sort,

used in translating actual parameters of procedure statements and function

designators, but in this section the requirements are simple. An implicit
•

38

subroutine will be activated by a subroutine ju:m.p which lays its link on

the stack. So it will end by a jump ''return by top of stack''. Furthe1·more

it will deliver the value of its expression (Ei or BE) into the appr·opriate

register (F or C),

As to V • it giyes tise to a more elaborate construction. Its implicit

subroutine will have two entrances. If it is activated by a jump order

to entrance I. then it is expected to deliver the v a 1 u e of the left

part variable into F. lf, however, control comes in by entrance II, then

it will produce an address description of V and lay it on the stack,

preparing fo1-- a subsequent assignme11t.

After this, the compiler produces code for the statement s. Then

it proceeds to compile short sequences of macros, each sequence

corresponding to a for list element and functionally equivalent to one of

the 3 patterns of 4. 6. 4. of [l].

To record its state of progress among the elements of the for list,

ea.oh for statement needs a pseudo-variable st at us. The compiler

introduces these pseudo-variables as locals to the smallest embracing

block in which the for statement occurs. If two for statements are

textually nested (one being part of the other's dependent statement S),

then they need 2 distinct status· variables. But if for statements a.re

te · ·. ally separate. they may share the same variable, provided they

belong to the same block. Thus, the compiler can easily deterznJne the

number of status 111variables needed for a blocko

Essentially I the system proceeds from one for list element to another

in two different ways. If control is dealing with an element of the first

kind, an arit · · · etic expression, then status (being a non, ◄orthodox

designational variable) is given the value of an address in the object

program. where either the following for list element. or the successor

of the complete for statement begins (4.6.3. of [1]). On the other hand,
'

when the two other kinds of for list elements come to be executed,

status is set to an address i n s i d e the for list element and the

transfer of control to the following element (or to the successor statement)

depends on a test.
One may easily verify that the translation schemes presented in the

following paradigm guarantee an adequate execution of the for statement
'

39

(46), independent. of the tex·tual order in which the 3 kinds of elements
occur.

For assignments, the paradigm. glves a general scheme. An assignment

V := Ei

is. in translation, described as

address VJ

F," · · ·-· E; 1" .. ,-,- "" • ' $

store

Each line may represent a subroutine jump here. It should

be

understood, however, that the compiler will insert the appropriate

assignment version, selecting one of the possible arrangements given in

section 7 (or. if V is formal, in section 10).

For the moment we refrain from w1·iting syntactically co:r.Iieot ALGOL.

We also depart from our convention that each line in a translation

scheme represents one machine or;lder.

•

40

•

o to L2;

(implicit subrou.tine for V)

(implicit subroutine for El)

(implicit subroutine for E2)

etc.

Ll: (code for S)

go to status;

2: address V;

F :-.. El;

store

status := L3;

L3 : status :: •= L4;

L4: address V;

F :·· E2;

store;
C : ... BE;

if C then Bi~Fi,, to, Ll;

L5: status :••· L6;

address V;

F :· ·· E3;

L6: address V;

F := V;

STACK;

F E4 • ·•M· ,

ADD;

L7: store;

F : V;

STACK;

F :*• E5;
6 ,

STACK;

F :..::.:: E4J

(47)

•

•

F := •=oF; C :•Ge F=O; LS :- F > + 0;

•

if C then B :-- B· .. 2;

I a ,..- •

if 7 C then C :-- F--0;

if C then g~+t -~?, Ll;

8. 2. timization of for statements
---- i ,fflil Pl [T.71CI

{ 2

41
'

end,;

Foremost among means of optimization here is the possibility of

suppressing implicit- subroutines whenever the expression or t.he variable

involved is a simple variable or a constant, or e\,.en a simple variable,

preceded by 11+1
' or uv=- .. •~.

Then, to the addition and subtraction :implicit in the step-until element,

some of the remarks made in 5.2. apply.

Furthermore, if only one element occurs in a for list, the assignments
'

to the status-variable become superfluous. In fact, the compiler may

skip this sort of for statement in its count of needed status-variables.

In some cases, however (conceptually speaking very special cases,

but probably covering the vast majority of actual for statements from

a statistical point of view), even a more drastic simplification becomes
'

practicable. In order that this may apply, the following conditions are

s icient:

1) V simple, non-formal;

2) the for list consists of one element, a step-until element;

3) E3, E4, and E5 simple. non-formal variables or constants.

In such situations a for statement may be translated as follows.

F :~ E3; (48)

~o, t9,, Ll;

LO: S;

F : V;

42

F :· · F+E4;

Ll: V :•mn F;

F :-- F ··· E5; C := F=O; LS := F > + O;.

!fl:,c then !?~gi1;1 F:-F0 ·•E4; C:= LS~F ?,70 ~!'-?,
iflC then pi~gi,!!, F:=E4 ; C:- F-0 ~P:~)

if C then . o to LO;
iii: ; 111» :eu r I rz;-«c:,

Here again. except for S, our convention that each line corresponds
to one machine order holds.

Virtually the same set of orde1·s may be used even if E3 or E5

Are complicated or formal. li E4 happens to be a constant =/ O, then

even the penultimate order may be orr1.]tted.

8. 3. Conditional statements

A conditional statement of the form

if BE then S1 else S2;

will be translated as

(code for BE);

COJU(Ll);

(code for Sl);

JU(L2);

Ll: (code for S2);

L2:

which, of course, closely rese les the outline given

in 5.5 for

the conditional expression. But here, since ''else S2'v may be m.i.ssing,

in some cases the code from the JU-order onward will be suppressed .

•

•

•

43

9. Non-· rocedure blocks

9. 1. Enterin a non-.. , rocedure block

At the beginni.ng of the block activation, reservations have to be

made in the block cell for the variables and pseudo-variables which are

P o i n t e r, w p. Furthermore, to make these variables accessible to

the statements in the block, the pp of the block must be recorded in

the display.

The working spaces in the block cell, reserved for local variables,

can be divided in two parts:

1) locations of simple variables and pseudo·avar·iables; the total amount

of this reservation can be established during compilation;

2) locations of arrays; in general, the storage space needed for

local arrays must be calculated at run time, since it will depend on

the values of the lower and upper bound expressions at the moment of

block activation.

Hence, the adjustment of the wp is brought about in two steps.

First, under control of a metaparameter m, established by the

compiler, the macro ENTER reserves the memory space needed for link

data and local scalars.

At this moment, some test must be inserted to prevent the stack

from growing into the counter-stack, or into buffer storage. For this

purpose we introduce the macro TESTB, to be explained in section 14.

Later, if array declarations appear in the block head, the corresponding

dynamic reservations are made by special type-bound declaratory macros,

one for each set of lower and upper bound expressions (see section 13)
'

•

•

44

the stack pointer B. Thus, when declarations are completed and statements

begin, is equal to B. This equality is, in general, lost during the

execution of statements. After completion. of each statement, however,

B has automatically been 1~eset to wp by implicit hardwar·e stack pointer

corrections. Therefore, keeping record of wp as a separate variable of

the running system would be superfluous but for one difficulty: dur~ing

the activity of the block under discussion (say, block A) ., other blocks

(say, blocks B, C, etc.) may be activatedJ in one of the latter blocks

control may meet a leaping block exit to a label, local to A. In such

cases, the block cells of B, C, etc. must be left· free and the stack

pointer must be reset to the value it had immediately after the declarations

of A. A reconstruction of this value wp would be almost impossible •
•

were it not that had been stored among the l.ink data of A.

In the non procedure blocks, considered in this section. the wp is

the only link datum. The two other link data, the link proper, and the

display pointer, only become relevant for the other kinds of blocks.

Thus, if m defines the storage requirements for link data and locals,

regardless of arrays, and n is the block level, then, in the object

program, the macro ENTER runs as follows:

ENTER(m, n): M[D+n]:= B; comment display [n]: pp;

B : .. ·B+m ; comment stack pointe1· adjusted;

M[B-m+l]:-B; comment wp adjusted and stored;

TESTB;

Part of the effects of this may be visualised in a diagram.

new value B and wp:

m-2 words for scalars:

[new value of]

pp of block cell:

= old value of B

space for display
pointer. unused here

(49)

45

cell of enclosing block

In appendix 3 we give a complete list of all items taken into account.

in calculating m.

We describe only normal exits here. For leaping block exits see

section 12.

Let n again be the bJ.ock level. Then, in the object program, the

macro EXIT can be very simple.

EXIT (n): B := M[D + n];

Consequently, all reservations made by the corresponding

ENTER

macro are thereby cancelled.

(50)

For all programs not involving own arrays and variable strings (that

is, all prograins, the counter-stacks of which are empty), this will be
'

sufficient. In the opposite case, it will be necessary to examine, whether

part of the counter-stack may be left free. The technique of this inquiry

and its possible effects are explained in section 14. In such programs,

the compiler will conclude all non-procedure blocks by

EXITC(n): B := M[D+n]; (51)

procedure (FREE CHAIN);

46

19. Ref er enc es

1. Naur, P. (ed.). (1962). Revised Report on the Algorithmic L age

ALGOL 60. Regnecentralen, Copenhagen.

2. Dijkstra, E.W. (1959). Communication with an automatic computer.

Thesis, Amsterdam.

3o Grau, A.A. (1962). On a floating-point nu er representation for

use with automatic languages. Com1nunications of the ACM, ~ 3, pp.

160-161.

4. Wijngaarden, A. van, (1962). Switching and prograro,1ning.

Mathematical Centre, Amsterdam, report MR 50.

5. Dijkstra, E.W. (1960). Algol 60 Translation. Mathematical Centre,

Amsterdam,· report MR 35.
' •

6. Randell, B. and L.J. Russell, (1964). ALGOL 60 Implementation •
•

A.P.I.C. Studies in Data Processing No.5. Academlc Press. London and

New York ..

7. Poel, W.L. van der, (1956). The logical principles of some
•

simple computers, Thesis, Arr,,sterdam.

8. Ha lin, C.L •. (1962). Translation to and from Polish notation •
•

Computer Journal, 2_, 3 1 pp. 210-213.

•

Table of contents

1 .. Preface

2 • Notation and terminology

3. General principles

4. Monitors, in- and. output

5. Expressions

6. The stack

7 • Assignment statements

(prelimi.nary)

8. For statements and· conditional statements

9. Non-, ·procedure blocks

10. Procedures; actual and formal parameters·

11. Implicit subroutines

12. Designational expressions and statements

13. Array declaration and indexing

14. n arrays in the counter stack

15. Strings in the counter stack

16. Com.pressing the counter stack
'

1 7. Library organisation •

18. Arit tics

19. References; acknowledgements
•

20. Concluding remarks

Amendments in [1]c, made necessary by the extension of ALGOL 60
'

with string as a declarator and type.

Section 2.3. DELIMITERS.

Replace the formulae for <declarator> and <specificator> by

<declarator>:: own Boolean inte-er real · arra switch

p~
1
?cedu!~ _s~!in,...

<specificator>:: label value
'

Section 2.8. VALUES AND TYPES.

Replace the first paragraph by
11 A value is an ordered set of numbers (special case: a single number)•

•

an ordered set of logical values (special case: a single logical value),

an ordered set of strings (special case: a single string),or a label.''
•

Replace the first sentence of the last paragraph by

~triw) basically
•

denote prope1~ties of values.''

•

Replace the formula for <expression> by

''<expression> ::=<ari etic expression> <Boolean expression>

<designational expression> <string expression>''

Section 3.2.3. Semantics.

Replace the first sentence by

'' Function designators define single numerical or logical values

or strings. which result through the application of given sets of

•

rules defined by a procedure declaration (cf. section 5.4. PROCEDURE

DEC LA TIONS) to fixed sets of actual parama.ters. '1

After section 3. 5. 5. insert the new sections:
11 3. 6. STRING EXPRESSIONS.

3. 6. 1. Syntax.

<simple string expression>: :=<string> <variable> notion designator>

(<string expression:>)
•

<string expression>::,,,,. <simple string expression>-

<if clause><simple string expression> else <string expression>''

Section 4'412 .. ASSIGNMENT STATEMENTS.

Replace the formula for <assignment statement> by

'•<assignment statement> : : eft part list> <arit etic expression>

<left part lis~ Boolean expression>

<left part 11s · string expression>''

Section 4.2.4. Types.

Insert after the second sentence
''If this type is string. the expression must likewise be string.''

•

Section 4 • 7. 5. 1 •

Delete this section.

•

Section 4. 7 6 5.4.

Delete the words ''or a stringu' in the first sentence •

•

Section 5 .1. 1. Syntax.

Replace the formulae for <type> and <local or own type> by

''<type> : :,·.:·= real !_nt,yft~!. Boolean stri

<local or own type> : :~ <type> own real own int er own Boolean••

